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Abstract

This thesis deals with scheduling of periodic timetables for railways. The model
is based on the Periodic Event Scheduling Problem (PESP) formulated in terms
of some cycle basis of the constraint graph.

Important properties of the PESP relevant for train scheduling such as sequenc-
ing and matching are examined. Constraints appearing in timetable planning
are identified and formulated using the PESP, and integration with other plan-
ning phases are achieved, partly by extending the PESP model. In particular,
aspects of lineplanning is introduced into the model by matching of predefined
linesegments.

Instances are created and solved for the Copenhagen commuter train service
S-train. The main objective is to minimise the number of required train units
used to operate the service, and thereby the estimated operating costs. Simul-
taneously, minimising passenger waiting times for certain connections is also
attemted for one instance. In general, results show that solutions can easily
be obtained for basic instances, where lineplanning is not considered. When
lineplanning is allowed, the complexity and solution time increases significantly.

For periodic train networks the method seems to be a relevant alternative to ex-
isting manual or ad-hoc timetabling mehtods, since it is based on a widely recog-
nised mathematical model and is able to integrate most aspects of timetabling
and some aspects of lineplanning, leading to better solutions in some cases.
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Resumé

Dette projekt omhandler konstruktion af periodiske jernbanekøreplaner. Den
benyttede model er baseret p̊a Periodic Event Scheduling Problem (PESP), for-
muleret vha. en kredsbasis i grafen svarende til problemets betingelser.

Vigtige egenskaber af PESP i forhold til konstruktion af køreplaner, s̊asom
sekvensering og matching, undersøges. De mest almindelige begrænsninger,
der forekommer i planlægning af køreplaner, bliver identificeret og formuleret
vha. PESP. Ydermere undersøges integration med andre planlægningsfaser, hvilket
tildels kræver en udvidelse af PESP modellen. Specielt undersøges en partiel in-
tegration med lineplanlægning ved at betragte kombinationer af foruddefinerede
liniesegmenter.

Køreplaner konstrueres for Københavns S-tog. Hovedformålet er at minimere
antallet af anvendte togstammer og dermed de forventede operationelle omkost-
ninger. I et enkelt tilfælde vises, at passagerventetiden p̊a givne forbindelser
kan minimeres simultant. Generelt viser resultaterne, at løsninger forholdsvis
let kan opn̊as, n̊ar linieplanlægning ikke betragtes. N̊ar linieplanlægning integr-
eres stiger kompleksiteten og løsningstiden kraftigt.

Metoden fremst̊ar som et relevant alternativ til eksisterende manuelle eller adhoc
metoder, da den bygger p̊a en anerkendt matematisk model og da det er muligt
at integrere de fleste aspekter af køreplanlægning samt enkelte aspekter fra
linieplanlægning, der kan føre til bedre løsninger.
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Chapter 1

Introduction

1.1 Problem Formulation

The purpose of this thesis is to investigate how the Periodic Event Scheduling
Problem may be used efficiently to construct good railway timetables for periodic
train services. A good timetable is one that has low operating costs as well
as a high level of passenger service. In particular, several timetables will be
constructed for the Copenhagen S-train. These timetables should satisfy basic
railway requirements wrt. infrastructure, rolling stock, and safety. In addition,
special requirements may be explored wrt. for example passenger service. Is it
possible to construct such timetables for S-train in reasonable time? And, if
so, is it possible to integrate aspects of line planning into the construction of
timetables, while still obtaining results in reasonable time?

1.2 Timetabling for Railway Systems

A railway timetable defines for each train the time of departure from and arrival
at each station in the network. When creating such a timetable, some constraints
must be respected. The time between a departure at one station and the arrival
at the next station must be sufficient for the train to travel the distance between
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the two stations. The time a train stops at a station must be sufficient to
let passengers alight and board. There should be some slack in the timetable,
allowing trains to catch up with potential delays. At certain stations, there must
be sufficient time for train operations, such as turning the train or coupling or
decoupling of train cars. Conflicts between trains, e.g. where trains need to
use the same track at the same time, must be avoided. It must be possible to
assign drivers to the trains in the timetable without violating union rules and
allowing for drivers to operate the trains safely. A good timetable has low cost
of operation, low travel and waiting time of passengers, and a high degree of
robustness, i.e. it is insensitive to delays in the system.

In periodic railway systems, a line defines a set of trains serving the same stations
in the same sequence with a fixed time interval. Hence, for each line only one
train needs to be scheduled. If all lines have the same frequency corresponding
to the time interval T , a timetable for a timeperiod of length T is sufficient to
define the entire timetable.

1.3 Scheduling Periodic Events

The Periodic Event Scheduling Problem (PESP) faces the issue of scheduling
a number of events in a periodic context, such that for certain ordered pairs
of events the difference in time must be in a prespecified interval (the span
interval). That the events are periodic means that all events are assumed to
recur with a global fixed interval (the timeperiod). Given a timeperiod of length
T each event may be scheduled by assigning to it a point in time in the interval
[0, T [.

The PESP may be formulated as a mixed integer program with one continuos
variable for each event (the time of occurrence) and one integer variable for
each span interval. Alternatively, a formulation, known as the cycle periodicity
formulation, with fewer integer variables can be used.

1.4 Concepts in Railway Systems

Train units are the physical trains used to operate a timetable. A train unit or
rolling stock unit may consist of several rail cars and possibly a locomotive if
the rail cars are not motorised. At least one driver is needed to operate a train
unit. Each train unit in operation make up the main part of the operational
cost of the railway network. These costs related to the operation of rolling stock
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units include driver salary (per hour), electricity or fuel consumption (per km),
maintenance of rolling stock, and maintenance of track.

A train line defines the sequence of stations, that are served by a train in some
direction with fixed interval, such that the starting and ending station is the
same. For a symmetric line, each station is served twice, once in each direction,
such that the sequence of stations visited is reversed for the opposite direction,
e.g. some line visiting the stations s1, s2, ..., sk, could visit the stations in the
sequence s1, s2, ..., sk−1, sk, sk, sk−1, ..., s2, s1. A lineplan is a set of lines, while
a symmetric lineplan is a lineplan in which all lines are symmetric. A symmetric
lineplan is easily communicated to passengers by a graphical representation, for
example as shown in figure 4.3.

If the arrival time in some direction and the departure time in the opposite
direction for some line at some station sum to 0 modulo the timeperiod holds
for all lines and stations, then the timetable is said to be symmetric. In a
symmetric timetable, the running and dwell times of a line on the same track
segment / at the same station is the same for the two opposite directions. Also,
transfer time between two lines at some station is the same, whether transferring
from one line to the other or vice versa. Hence, passenger travel time between
two stations is also independent on the direction of travel.

Headway constraints ensures a minimum safety distance between trains. In op-
eration, the track network is subdivided into blocks, a single track of length
from 200 m. to 2 km. Restricting the number of trains in each block to max-
imum one, and requiring a minimum time between two consecutive trains in
the same block, ensures no collissions. However, in strategic timetabling, a sim-
ple minimum time difference between arrivals of two consecutive trains at the
beginning of a common track segment is often used. One must then be able
to show, that no overtakings (collissions) will take place on the common track
segment. If running and dwelling times are fixed for the respective lines and
track segments, it is clear that no overtakings will take place.

The length and condition of the track as well as rolling stock properties deter-
mines the running time of trains between stations. That is, the time it takes for
a train unit to travel from one station to the subsequent station. Some extra
time, slack, may be added to the running time to prevent and to be able to
recover from disruptions. The dwell time is the time a train unit stops at a
station platform. The dwell time needs to be large enough for passengers to
alight and board, but should not delay subsequent trains more than necessary.

At terminal stations, trains must be able to turn, i.e. a northbound train change
direction to become a southbound train and vice versa. This usually involves,
that the driver must go to the other end of the train before continuing in the
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opposite direction. Such turnarounds may take place when the train is parked
either at a shunting track or at a platform track adjacent to a passenger platform.
I will refer to the latter as platform turnaround. Platform turnarounds may be
done faster, since no driving to and from the shunting yard is needed, but take
up scarce ressources at the passenger station.

At certain stations, where many passengers are expected to transfer from one
line to another, good connections may be ensured by restricting the transfer time
between arrival of one line and departure of the other line. The transfer time
consists of a minimum transfer time and passenger waiting time. The minimum
transfer time must reflect f.ex. the walking distance between the two platforms
plus some buffer time, whereas the maximum transfer time is the maximum
waiting time plus minimum transfer time.

Passenger travel time is the time a passenger uses in the system from he departs
at the origin station until arrival at the destination station. It includes time
spent in trains (train running and dwell time) as well as potential transfer time
between lines. Waiting time at origin and destination is not included.

Merging of lines at a terminal station (the merging station) allows for rolling
stock units to be used on more than one line. This is done by allowing vehicles
on some line entering its terminal station to leave the station as a different line.
Merging of lines requires that at least two lines have a common terminal station.
Merging of lines at a non-terminal station can cause the lineplan to be altered.
This can also be understood as matching of some linesegments incident to the
merging station. Allowing matching of linesegments is a powerful way to expand
the solution space.

1.5 Litterature Review

In the article A Mathematical Model for Periodic Scheduling Problems [23] from
1989 by Serafini and Ukovich the Periodic Event Scheduling Problem (PESP)
is defined and a solution method is proposed, which iteratively fixes the integer
variables and checks for feasibility. Backtracking is used to recover feasibility,
when infeasibility is detected. Serafini and Ukovich also propose an extended
model with multiple time periods for ressource scheduling.

Odijk uses in Railway Timetable Generation [20] the PESP to randomly generate
a set of railway timetables. These timetables are then used for evaluating some
proposed infrastructure changes in the railway network, in particular changes
to the capacity of stations. He also shows that the PESP is NP-complete by
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reduction from the node colouring problem.

The Ph.D. thesis Train Schedule Optimization in Public Rail Transport [18] by
Lindner conciders the PESP and a minimum cost scheduling model. The poly-
hedral structure of the PESP is investigated and a new class of cutting planes
are developed. Several algorithms are presented and evaluated on instances from
Germany (Deutsche Bahn) and the Netherlands (Nederlandse Spoorwegen).

In On Cyclic Timetabling and Cycles in Graphs [15], Liebchen and Peeters dis-
cusses cycle bases of graphs in the cycle periodicity formulation of the PESP
in relation to periodic railway timetabling, and what characterises a good cy-
cle basis. They propose to look at integral cycle bases and not only strictly
fundamental cycle bases when formulating the PESP.

In Finding Short Integral Cycle Bases for Cyclic Timetabling [10], Liebchen eval-
uates the effect of using generalised fundamental cycle bases instead of strictly
fundamental cycle bases. In particular, an algorithm by Berger to construct gen-
eralised fundamental cycle bases is evaluated on two timetabling instances from
Deutsche Bahn AG and the Berlin Underground. Significantly faster solution
times are reported when using Bergers algorithm.

The article The Modelling Power of the Periodic Event Scheduling Problem:
Railway Timetables - and Beyond [13] by Liebchen and Möhring explores the
use of PESP constraints in modelling features in periodic railway timetabling.
In addition to simple running time, dwell time, and train separation constraints,
more sophisticated features are modelled. These include bundling of lines, train
sharing, variable trip times as well as modelling aspects of vehicle scheduling,
line planning, and infrastructure planning.

In A Case Study in Periodic Timetabling [12], timetables are constructed using
the PESP framework for the Berlin Underground and evaluated wrt. passenger
waiting time and number of required vehicles. The model was modified itera-
tively to accomodate expectations of practitioners. The final timetable reduced
passenger waiting time, while using the same number of train units compared
to the timetable in operation.

Peeters Ph.D. thesis Cyclic Railway Timetable Optimization [22] is concerned
with the construction of periodic timetables using the cyclic periodicity formu-
lation of the PESP. A number of timetable instances are created for intercity
and interregional trains in the Netherlands. For the larger timetabling instance
consisting of both intercity and interregional trains, no solution could be found
within reasonably computation time. Therefore, a heuristic solution procedure
was developed, in which first a solution for the intercity network, only, was
found, whereafter the obtained sequence of intercity trains was fixed when solv-
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ing for the entire network. He also shows how merging of two lines at a terminal
station can be allowed within the framework of the PESP model, and how the
objective function minimising the number of required train units can be obtained
when merging is allowed.

In Symmetry of Periodic Railway Timetables [11], Liebchen discusses symme-
try for periodic railway timetables. Constraints ensuring symmetric timetables
does not fall within the PESP framework and are therefore added explicitly to
the MIP formulation. Liebchen reports faster solution times for timetabling
instances with symmetry constraints.

Liebchen and Peeters considers in Some Practical Aspects of Periodic Timetabling
[16] various practical aspects regarding scheduling of periodic public transit sys-
tems. First they show, that if vehicles are not allowed to change lines, and
running and dwell times are fixed, the number of vehicles required differs by
at most the number of lines. Secondly, they consider a heuristic for allowing
vehicles to change line at a terminal. They report that for the tram network of
Halle, timetables that minimise passenger waiting time uses more rolling stock
than timetables that minimise the number of vehicles needed. Also, minimis-
ing rolling stock results in timetables that have considerably larger passenger
waiting times. Finally, they discuss sequencing of rail lines and introduce cuts
limiting the solution space of the PESP based on the fact that the lines must
be sequenced. They also show that the linear ordering problem is polynomially
reducible to the PESP.

In Infrastructure Update According to Schedule? [14], Liebchen, Möhring, and
Wagner explores integrated fixed-interval timetables (IFIT), which are timeta-
bles in which for some (hub) station all lines depart at the same time. IFIT’s
are attractive from a passenger view, but very unflexible in a planning context.
The authors question previous practices of upgrading the existing infrastructure
to accomodate a desired IFIT, and propose to use mathematical optimisation,
specifically PESP, to construct attractive timetables fitting the existing infras-
tructure.

Liebchen, Proksch, and Wagner investigates in Performance of Algorithms for
Periodic Timetable Optimization [17], various solution methods for the PESP.
These include solving the MIP formulation using CPLEX, local search proce-
dures, and constraint programming. The solution methods are evaluated on
three PESP instances, optimising periodic timetables. The three instances are
for the Berlin U-bahn, a small intercity rail network, and a larger intercity net-
work, all in Germany. In particular, for experiments with CPLEX they report
that for the larger instances, changing the CPLEX parameters from their default
values may improve solution time or best integer solution considerably.
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1.6 Report Overview

In chapter 2, the Periodic Event Scheduling Problem is presented and important
aspects of the model are investigated. In particular, the cycle periodicity formu-
lation of the PESP is derived. Also, one class of cutting planes are defined and
investigated. Finally, the possibility of matching periodic events is introduced.

Chapter 3 deals with the problem of constructing feasible and optimal timeta-
bles for periodic railway services. The basic constraints of timetabling are intro-
duced as well as the possibility of integrating aspects of lineplanning and vehicle
scheduling.

A case study of constructing timetables for a real size railway network is pre-
sented in chapter 4. First, the current structure of the S-train network and
lineplan is introduced. Next, timetabling instances are created for two scenar-
ios, one with 20 minute lineplans and eleven lines and an alternative scenario
with 10 minute lineplans and six lines. Solutions for the timetabling instances
are obtained minimising the number of train units used. For the latter scenario,
the number of train units used can be further reduced when integrating aspects
of lineplanning.

Finally, the thesis is summarised and suggestions for further research are pro-
posed in chapter 5.
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Chapter 2

The Periodic Event
Scheduling Problem

2.1 Definition and Notation

The Periodic Event Scheduling Problem (PESP) is the problem of scheduling
a number of recurring events, such that each pair of events fulfills certain con-
straints on the time between them. More specifically, given n events to be
scheduled and a timeperiod of length T , a particular point in time u (the poten-
tial) within the timeperiod must be determined for each of the events, satisfying
a number of constraints. Each constraint a defines a lower bound d−a and an
upper bound d+

a on the time difference modulo T between two events.

Let each event be represented by a node and each constraint by an edge in a
directed multigraph G = (N,A), and let uε denote the potential of node ε ∈ N .
Also, let ε−a and ε+

a denote the initial and final node of edge a, respectively.
Furthermore, let va = uε+a − uε−a define the tension of an edge a ∈ A. For each

edge a ∈ A a span [d−a , d
+
a ] is defined by d−a , d

+
a ∈ R with d−a ≤ d+

a .

The PESP may be defined as the problem of finding a set of feasible node
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potentials u for G satisfying the set of constraints

uε+a − uε−a − zaT ∈ [d−a , d
+
a ], ∀a ∈ A (2.1)

for some integers za. In the following, I will sometimes refer to a PESP instance
by referring to its constraint graph G = (N,A, d−, d+).

Below is a small example of a PESP instance with three events and four con-
straints and timeperiod T = 10. Figure 2.1 shows the constraint graph for the
PESP instance. Note, that the last constraint is equivalent to 2 ≤ u0 − u2 −
10z′3 ≤ 5.

Find u, z such that
1 ≤ u1 − u0 − 10z0 ≤ 3
−1 ≤ u1 − u2 − 10z1 ≤ 1

0 ≤ u2 − u0 − 10z2 ≤ 4
−8 ≤ u0 − u2 − 10z3 ≤ −5

0 1

2

[1,3]

[0,4]

[-8,-5]

[-1,1]

Figure 2.1: Constraint graph for small PESP instance with three events and
four constraints.

In the following, it is assumed that 0 ≤ d+
a < T , and that the width of the span

d+
a − d−a < T for all a in A. These assumptions do not affect the feasibility of

the instance, since the span [d−a , d
+
a ] can always be shifted such that d+

a ∈ [0, T [
by changing the value of za and a span with width greater than or equal to the
period length T does not impose any restrictions to the instance and is therefore
redundant.

Let πε = uε mod T define the periodic potential. Now, the constraints (2.1)
may be rewritten in terms of the periodic potentials,

πε+a − πε−a − zaT ∈ [d−a , d
+
a ], ∀a ∈ A (2.2)
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which for all edges a ∈ A limits the integers za to take values from the set
{−1, 0} only. For short, we write (2.2) as

πε+a − πε−a ∈ [d−a , d
+
a ]T , ∀a ∈ A (2.3)

Define ϑa = πε+a − πε−a − zaT , such that for a feasible solution ϑa ∈ [d−a , d
+
a ].

When scheduling periodic events, an edge a may be thought of as representing
a set of activities initiated by the events ε−a and finalised by the events ε+

a . One
occurence of the activity will then have starting time πε−a and ending time πε+a
in the same or in one of the subsequent time periods. The periodic tension ϑa
mod T then represents the time between the starting time of the activity and
the first subsequent ending time.

2.2 Properties of PESP

Now, some basic properties are discussed. Firstly, it is shown that parallel edges
in the constraint graph may result in disjunctive span constraints. Secondly, the
integrality property of the PESP is shown.

2.2.1 Parallel Edges

Parallel edges are allowed in the PESP constraint graph, as they simply model
several span constraints between the same pair of events, e.g. the two edges
between node 0 and 2 in figure 2.1. Note that an edge in the constraint graph
may be reversed by multiplying the respective constraint by −1. Thus, the
edge from 2 to 0 with span interval [−8,−5] may be replaced by an oppositely
directed edge with span interval [5, 8].

When parallel edges exist for a pair of events all the respective constraints must
be fulfilled, i.e. the potential difference between the two events must belong to
the intersection of the span intervals. In figure 2.2, the principle of intersecting
periodic intervals is shown for two constraints. If the resulting span interval
is non-disjoint (figure 2.2 (1, 2, 4) ), the respective span constraints may be
replaced by one span constraint (unless the resulting interval is equivalent to
[0, T ], in which case no constraint is required), thereby reducing the number of
constraints.
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c

d

b

a

d

a

b

c

a

b

c

d c

a

b

d

(2) (3) (4)(1)

Figure 2.2: Intersecting two periodic intervals [a, b] and [c, d]

A union of two disjoint intervals may be modelled as an intersection of two
periodic intervals as shown in figure 2.2 (3). k constraints is necessary and
sufficient to model a union of k disjoint intervals.

The two parallel edges in figure 2.1 are seen to yield an empty interval, and the
PESP instance is thus infeasible.

2.2.2 Integrality Property of PESP

The integrality property states that a feasible solution to a PESP instance with
integral upper and lower bounds, i.e. d−, d+ ∈ Z, always has integral tensions.
This is used in the reduction from the node colouring problem.

If (v, z) is a feasible solution to a PESP instance with constraint graph G =
(N,A, d−, d+) and integral upper and lower bounds, then the tension v is inte-
gral. This is shown below:

Suppose a feasible solution (v, z) to the PESP instance given by G exists, and
let d− and d+ be the vectors of lower and upper bounds respectively, then we
have

d− ≤ v − zT ≤ d+

m
v ≤ d+ + zT

−v ≤ −(d− + zT )

This is equivalent to
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[
I
−I

]
v ≤ d+ + zT

−d− − zT

where I is the m×m identity matrix. Since,

[
I
−I

]
is totally unimodular ([24],

prop. 3.1 and 3.2) and the right hand side is integral, it follows that v is integral
([24], prop. 3.3).

2.3 Complexity

Now, the complexity of the PESP is investigated. PESP is shown to be NP-
complete by reduction from the Node Colouring Problem, as well as, from the
Hamiltonian Cycle Probelm.

2.3.1 Node Colouring Problem

The node k-colouring problem (NCP), may be formulated as the problem of
assigning k integer values in the interval [0, k−1] to nodes in a graph, such that
no two adjacent nodes are assigned the same value. Let the undirected graph
G = (N,E) represent such a k-coloring instance PNCP . Also, let a directed
complete graph K = (N,A) represent a PESP instance P PESP with period k
and span constraints

va − zak ∈ [1, k − 1], ∀a ∈ A′ (2.4)

where A′ = {(i, j) ∈ A|(i, j) ∈ E}.

The problem of finding a feasible node colouring on the graph G is now equiva-
lent to the problem of finding a feasible node potential for the PESP represented
by K. We will show this in the following:

First note that, an integer solution u to the problem PNCP with values in
[0, k− 1] is feasible if and only if it satisfies, that the absolute distance between
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two adjacent nodes in G is greater or equal to 1, i.e.

1 ≤ u+
a − u−a , ∀a ∈ A′ : u−a < u+

a

u+
a − u−a ≤ −1, ∀a ∈ A′ : u+

a < u−a
0 ≤ uε ≤ k − 1, ∀ε ∈ N

(2.5)

If PNCP has a feasible solution then P PESP has a feasible solution:

Let u be a feasible node colouring, and consider an edge a in A′. If u+
a > u−a ,

then since u+
a ≤ k and u−a ≥ 1, we have u+

a − u−a ≤ k − 1. Otherwise u+
a < u−a ,

and since u−a ≤ k and u+
a ≥ 1, we have 1− k ≤ u+

a − u−a .

Let za = 0, when u+
a ≥ u−a and za = −1 otherwise. Then we have, 1 ≤

u+
a −u−a − zak ≤ k− 1 for all a ∈ A′, which corresponds to the span constraints

(2.4) in the PPESP . The colouring u is therefore a feasible solution to P PESP .

Conversely, if PPESP has a feasible solution then PNCP has a feasible solution:

A solution u to PPESP is feasible if and only if it satisfies (2.4).

Let z′a = za −
[
u+
a−u−a
k

]
, where [r] denotes rounding towards 0, such that |r| −

|[r]| ∈ [0, 1[. Now, z′a = 0 when u+
a ≥ u−a and z′a = −1 otherwise. Define a

periodic potential π = umod k − ε, for some ε ∈ [0, T [, such that for some i ∈
{1, ..., n}, πi = 0. Then we get π+

a −π−a = u+
a −u−a −k

[
u+
a−u−a
k

]
∈]−k, k[ ∀a ∈ A

and (2.4) becomes

1 ≤ π+
a − π−a − z′ak ≤ k − 1, ∀a ∈ A

If π+
a ≥ π−a , we satisfy 1 ≤ π+

a − π−a , otherwise π+
a − π−a ≤ −1.

Since the upper and lower bounds in (2.4) are integral, any feasible solution is
integral (see section 2.2.2). Since the tensions are in the range [0, k − 1] and
there exists a potential πi = 0, it follows that π is integral and in the range
[0, k − 1]. Hence π is a feasible node colouring of G.

Since, PNCP is polynomially reducible to P PESP and the NCP is NP-complete,
it follows that PESP is NP-complete.



2.3 Complexity 15

2.3.2 Hamiltonian Cycle Problem

Consider the problem PHC of finding a hamiltonian cycle in an undirected graph
G = (N,E) with n nodes. A PESP instance P PESPwith period n may now be
constructed, which is equivalent to PHC .

Let PPESP be given by the complete directed graph K = (N,A) with n nodes
and arbitrarily oriented edges. Consider the set of edges A′ = {(i, j) ∈ A|(i, j) ∈
E}, and introduce into P PESP the following span constraints

va − zak ∈ [1, n− 1], ∀a ∈ A′
va − zak ∈ [2, n− 2], ∀a ∈ A \A′

Then, the problem of finding a hamiltionian cycle on the graphG is equivalent to
the problem of finding a feasible node potential in the PESP instance represented
by K. This is shown below:

First note that, since all span intervals are symmetric of the form [a, n− a], the
direction of any edge in A may be reversed, yielding the equivalent span interval
[a− n,−a] = [a, n− a]. Therefore, the edges of A may be oriented arbitrarily.

If PHC has a feasible solution, then P PESP has a feasible solution:

A hamiltonian cycle C may be defined by an assignment of distinct integer
potentials to nodes, such that the difference modulo n between two adjacent
nodes in the cycle is either 1 or n− 1.

Then PHC obviously satisfies va ∈ [1, n − 1] for all edges a ∈ C in the cycle
and va ∈ [2, n − 2] for all a ∈ A \ C. Since, [2, n − 2] is completely contained
in [1, n − 1], the span constraints for the edges in A′ \ C are satisfied, and a
solution to PPESP is obtained.

If PPESP has a feasible solution, then PHC has a feasible solution:

Given a feasible solution (u, z) to P PESP . Since K is the complete graph, for
every node ε ∈ N there must exist two nodes ε−, ε+, such that

(uε − uε−) mod n = 1
(uε − uε+) mod n = n− 1

Hence, the potentials u define a hamiltonian cycle in G.
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Since, PHC is polynomially reducible to P PESP and the hamiltonian cycle prob-
lem is NP-complete, it follows that the PESP is NP-complete.

2.4 Cycle Periodicity Formulation

Given the formulation (2.1) of the PESP, a formulation with fewer integer vari-
ables can be obtained, namely one in which, the integer variables are associated
with each cycle in some integral cycle basis of the constraint graph G.

Let the periodic tension be defined by ϑa = va − zaT and let for some oriented
cycle c in G, c+ and c− denote the set of edges in c oriented along, respectively
against, the direction of c. Since, for any cycle c in G, the sum of the aperiodic
tensions v along c wrt. its orientation is 0, we have for all cycles in G,

∑

a∈c+
(va − zaT )−

∑

a∈c−
(va − zaT ) = T

(
−
∑

a∈c+
za +

∑

a∈c−
za

)
, ∀c ∈ G

where za ∈ Z.

Now, define for each cycle in G a new integer variable yc = −∑a∈c+ za +∑
a∈c− za. Inserting, we have

∑

a∈c+
ϑa −

∑

a∈c−
ϑa = ycT, ∀c ∈ G (2.6)

where yc ∈ Z.

Conversely, given (2.6), define for all edges a, va = ϑa + zaT , where za is any
integer. Let H be any spanning tree in G and let C be the strictly fundamental
cycle basis defined by H . From equation 2.6, we get

∑

a∈c+
va −

∑

a∈c−
va −

∑

a∈c+
zaT +

∑

a∈c−
zaT = ycT, ∀c ∈ C

Now, set za = 0 for all a ∈ H . Since C is strictly fundamental, there is exactly
one edge from A \H in each cycle c ∈ C in the cycle basis. Therefore it suffices
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to set za = −yc if a ∈ c+ and za = yc if a ∈ c− for all a ∈ A \ H . We
immediately obtain,

∑
a∈c+ va −

∑
a∈c− va = 0, for all cycles in the cycle basis

C. Furthermore, for the linear combination λ1, ..., λm−n+1, that defines a given
non-basic cycle b, we have

∑

c∈C
λc

[∑

a∈c+
va −

∑

a∈c−
va + T

(
−
∑

a∈c+
za +

∑

a∈c−
za

)]
=
∑

c∈C
λcycT

Since −∑a∈c+ za +
∑
a∈c+ za = yc,

∑

c∈C
λc

[∑

a∈c+
va −

∑

a∈c−
va

]
= 0

Also, b is defined by the linear combination λc of cycles in C. Therefore, we
have

∑

a∈b+
va −

∑

a∈b−
va = 0

for any cycle b in G.

Hence, the PESP instance with constraint graph G has a periodic tension ϑ if
and only if the cycle periodicity property (2.6) holds for all cycles in G.

If in addition to the cycle periodicity property the periodic tension ϑ respects
the span constraints [d−, d+], i.e. d−a ≤ ϑa ≤ d+

a for all a in A, it defines a
feasible solution to the PESP. Therefore, the PESP can be formulated using the
cycle periodicity property.

2.4.1 Valid cycle bases for CPF

We showed above that it is sufficient to require that the cycle periodicity prop-
erty (2.6) holds for the edges in a strictly fundamental cycle basis in order to
obtain a periodic tension for the PESP. In fact, it is enough to enforce the cycle
periodicity property for all edges in an integral cycle basis. We show this below.



18 The Periodic Event Scheduling Problem

A cycle basis C in G is integral if and only if any non-basic cycle b with incidence
vector γb can be expressed as an integer linear combination λb of the cycles in C
with incidence vectors γ1, ..., γm−n+1.That is, γb =

∑
c∈C λ

b
cγc such that λbc ∈ Z

for all cycles b in G [15].

Let C be an integral cycle basis for which the cycle periodicity property holds.
Consider the non-basic cycle b defined by the linear combination λ of C. Then
we have,

∑

a∈b+
ϑa −

∑

a∈b−
ϑa =

∑

c∈C
λc

(∑

a∈c+
ϑa −

∑

a∈c−
ϑa

)
= T

∑

c∈C
λcyc

Since yc, λc ∈ Z, we get that the sum of the periodic tension along b wrt. the
orientation of the edges is an integer multiple of the period length, T . Therefore,
the cycle periodicity property holds for all cycles in G.

2.4.2 Bounds on the cycle integer variables

Bounds on the cycle integer variables y can be obtained by summing the bounds
along each cycle in the cycle basis.

For each cycle c in G, an arbitrary orientation is chosen. Let c+ and c− be the
sets of edges oriented along, respectively against, the direction of c. Summing
along the cycle wrt. the orientation of the edges yields,

∑

a∈c+
d−a −

∑

a∈c−
d+
a ≤

∑

a∈c+
ϑa −

∑

a∈c−
ϑa ≤

∑

a∈c+
d+
a −

∑

a∈c−
d−a

Let d−c =
∑

a∈c+ d
−
a −

∑
a∈c− d

+
a and d+

c =
∑

a∈c+ d
+
a −

∑
a∈c− d

−
a .

Since the cycle periodicity property holds for all cycles in G, we get

d−c ≤ ycT ≤ d+
c
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As yc is integral, the following bounds on yc are obtained

⌈
d−c
T

⌉
≤ yc ≤

⌊
d+
c

T

⌋
(2.7)

for all cycles c ∈ C.

2.4.3 Good cycle bases for CPF

Solving the PESP using the cycle periodicity formulation with the cuts (2.7),
the solution time depends on the number of possible values the cycle integer
variables can take. Therefore, it is desirable to have as tight bounds on the
cycle integer variables as possible. This can be achieved by choosing the cycle
basis carefully.

Each cycle integer variable yc can take bd+
c /T c − dd−c /T e + 1 possible values.

Define the width of a cycle basis C [10],

WC =
∏

c∈C

(⌊
d+
c

T

⌋
−
⌈
d−c
T

⌉
+ 1

)

Choosing the cycle basis such that the width WC is minimal will therefore result
in a formulation of the PESP, where the cycle integer variables y can take the
smallest possible number of values.

Since strictly fundamental cycle bases are also integral cycle bases (see [15] for
a further discussion of a classification of cycle bases) and efficient algorithms to
find such cycle bases exists, one might want to consider only strictly fundamental
cycle bases, however by considering the entire set of integral cycle bases, a tighter
formulation for the PESP may be obtained. The trade-off is longer computation
time for finding the cycle basis.

According to [15], a cycle basis C is fundamental if there exists an ordering of
the cycles in C, such that each cycle in C contains at least one edge, which is
not part of any of its predecessors in that ordering.

In Algorithm 1, an algorithm proposed by Berger (described in [10]) to find a
generalised fundamental cycle basis is outlined. Even though the entire set of
integral cycle bases is not considered, using generalised fundamental cycle bases
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Figure 2.3: (a) Constraint graph for small PESP instance. Bold arcs make up
the minimum spanning tree wrt. span widths. (b) A minimal width strictly
fundamental cycle basis constructed from the spanning tree in (a).

is a significant improvement compared to using only strictly fundamental cycle
bases.

Bergers algorithm iteratively adds cycles to the cycle basis, expanding the set
of potential edges in each iteration. Starting with a minimum spanning tree,
each of the non-tree edges are considered in order of increasing width. In each
iteration, the cycle added to the cycle basis is obtained from the current non-tree
edge and the shortest path between its initial and final vertices in the undirected
graph obtained from the spanning tree and the non-tree edges considered in
previous iterations. The algorithm is shown for a small instance in figure 2.4.
In the first iteration (a), the shortest path in the undirected minimum spanning
tree (solid edges) between node 1 and 2 is considered, yielding the cycle c′1
(b). The edge from 2 to 1 is added to the spanning tree and the shortest path
between node 2 and 3 in the undirected version of the obtained graph (c) yields
cycle c′2 (d).

2.5 Chain Cutting Planes

In this section, a special type of chain cutting planes, introduced by Lindner
in [18], is developed for the cycle periodicity formulation. First a class of valid
inequlities for the PESP, used to define a class of cutting planes, namely chain
cutting planes, is introduced. Secondly, these valid inequlities are used to de-
velop a special class of chain cutting planes suitable for the cycle periodicity
formulation.
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Figure 2.4: The two iterations of Bergers algorithm on the PESP instance in
figure 2.3 (a). Edge labels in (a) and (c) denote span widths. The resulting
cycle basis consists of the cycles c′1 (b) and c′2 (d).

Algorithm 1 Bergers algorithm for finding a minimum width fundamental cycle
basis. Si,j denotes the set of edges on the shortest path from i to j without
considering the direction of the edges.

find minimum spanning tree H wrt. width of edge spans
let B ← H
while B 6= A do

find edge a ∈ A \B with min. width of edge span
let ci ← Sε+a ,ε−a ∪ {a}
let B ← B ∪ {a}
i← i+ 1
C ← C ∪ {ci}

end while

Consider a set {1, 2, ..., k} of k edges with the same initial vertex εr and same
final vertex εs. In the following, let the tension v be defined by πs − πr. Also,

define by d̂−a = d−a mod T and let pa be the integer such that d̂−a = d−a + paT
for a = 1, ..., k. Furthermore, assume that the edges are ordered, such that

0 ≤ d̂−1 ≤ d̂−2 ≤ ... ≤ d̂−a ≤ ... ≤ d̂−k < T (2.8)
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(otherwise, reassign indices such that the ordering is true). Let αa = d̂−a − ˆd−a−1

for a = 2, ..., k and α1 = d̂−1 + T − d̂−k . Then the following inequality is valid
(Lindner),

d̂−k +

k∑

a=1

αa (za − pa) ≤ πs − πr (2.9)

The validity of this statement is shown below following a proof by Lindner:

First realize that
∑k

a=1 αa = T and
∑k

a=i+1 αa = d̂−k − d̂−i . Let v̂ = (πs −
πr) mod T = v + qT . Then a particular potential π uniquely determines a
partition i of the edges, such that

0 ≤ d̂−1 ≤ d̂−2 ≤ ... ≤ d̂−i ≤ v̂ < ˆd−i+1... ≤ d̂−k < T

where i = 0 imply v̂ < d̂−1 . (It is necessary to restrict the value of d̂−1 to be
strictly positive whenever i = 0).

Since the span constraints are valid for all edges, we have d−a ≤ v−zaT ⇔ d̂−a ≤
v̂ + (pa − q − za)T .

Then, for any a ∈ {1, 2, ..., i}, d̂−a ≤ v̂ implies that 0 ≤ pa−q−za ⇔ q−pa ≤ −za.
Similarly, for all a ∈ {i+1, ..., k}, v̂ < d̂−a imply that, 1 ≤ pa−q−za ⇔ q−pa+1 ≤
−za. Thus,

v = v̂ − qT +

k∑

a=1

αaza −
i∑

a=1

αaza −
k∑

a=i+1

αaza

Substitute the lower bounds for −za as described above

v ≥ v̂ − qT +

k∑

a=1

αaza +

i∑

a=1

αa(q − pa) +

k∑

a=i+1

αa(q − pa + 1)

Substituting
∑k

a=1 αa = T
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v ≥ v̂ +

k∑

a=1

αaza −
i∑

a=1

αapa −
k∑

a=i+1

αapa +

k∑

a=i+1

αa

and
∑k
a=i+1 αa = d̂−k − d̂−i , we get

v ≥ v̂ +

k∑

a=1

αa(za − pa) + d̂−k − d̂−i

Since 0 < v̂ − d̂−i ,

v ≥ d̂−k +

k∑

a=1

αa(za − pa)

which concludes the proof.

2.5.1 Chain cutting planes for CPF

Consider the cycle periodicity formulation of the PESP and an instance with
constraint graph G = (N,A, d−, d+) and cycle basis B. Furthermore, consider
a particular vertex ε ∈ N with Cε being the set of k cycles in the cycle basis B,
such that ε is visited by each of the cycles in Cε. I.e. Cε =

⋃
j{cj : ε ∈ N(cj)},

where N(c) is the set of nodes visited by the cycle c.

Now introduce into G a loop a for each cycle c in Cε with d−a = d−c and d+
a = d+

c ,
so that va − zaT ∈ [d−c , d

+
c ]. Since a is a loop, va = 0. Let A′ denote the set of

k new loops generated in this way. If we let za = −yc, we get ycT ∈ [d−c , d
+
c ],

and this new set of constraints does therefore not restrict the original problem,
these constraints are already part of the formulation. Let the set of loops A′ be
indexed according to (2.8) and let the cycles in Cε have the same indexation.
Applying the valid inequality (2.9) for the set of edges A′ yields,

d̂−k +
∑

a∈A′
αa (za − pa) ≤ 0
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where d̂−a , αa, pa are defined as above, assuming that the edges (and cycles) are
ordered . Hence, the vertex ε ∈ N , defines the valid inequality

d̂−k ≤
∑

c∈C
αc(yc + pc) (2.10)

In general, efficient chain cutting planes (2.10), are found by considering vertices
for which the number of visiting cycles |C| is large. However, if for some c ∈ C
the value of the integer variable yc is fixed, the instance cannot be restricted
further wrt. yc. Also, cycles c ∈ C for which αc = 0 do not contribute to the
cut. Therefore, we may state more precisely, though informally, that

an efficient chain cutting plane is obtained by considering a vertex ε
in the constraint graph, such that the number of cycles in C ′ = {c ∈
C : αc 6= 0, dd−c /Te 6= bd+

c /Tc} is large.

2.6 Sequencing and Matching

In the following, the concepts of sequencing and matching of periodic events
will be discussed, and important results that are used in timetable planning are
derived.

2.6.1 Sequencing of Events

Consider an oriented cycle c with k edges, such that c+ is the set of edges in
c with orientation along c and c− is the set of edges in c oriented against the
orientation of c. Let {a1, a2, ..., ak} be the set of edges in c, and let εi denote
the initial node of ai if ai is in c+, otherwise the final node, such that if the
cycle is traversed in the positive direction starting at ε1, the nodes of the cycle
will be visited in the order ε1, ε2, ..., εk. In figure 2.5 an example with k = 5 is
shown.

The nodes in c are said to be cyclically sequenced in the order ε1, ε2, ..., εk if
and only if, ([22])

0 ≤ πi+1 − πi, i = 1, ..., k − 1
π1 − πk ≤ 0
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If strict inequality holds, the nodes are said to be proper cyclically sequenced
in the order ε1, ε2, ..., εk.

In terms of the tensions, this can be stated as

0 ≤ va, a ∈ c+ \ {ak} ∪ c− ∩ {ak}
va ≤ 0, a ∈ c− \ {ak} ∪ c+ ∩ {ak}

Figure 2.5 shows a proper cyclic sequencing of five events.

ε1 1

ε2 2

ε3 3

ε44

ε55

a1

a2a3

a4

a5

c

Figure 2.5: Cyclically sequencing five events for T = 5. Numbers in bold denote
a periodic potential of the event, such that the events are proper cyclically
sequenced in the order ε1, ε2, ε3, ε4, ε5.

In the following we assume that the tensions v are in the interval ]− T, T [, and
that the nodes in c are proper cyclically sequenced.

Since for all a ∈ c− it holds that −T < va < 0, we have that za = −1 for all
a ∈ c− \ {ak}. Also, since 0 < va < T for all a ∈ c+, we have that za = 0 for all
a ∈ c+ \ {ak}. For ak, we get zak = −1 if ak ∈ c+ and zak = 0 if ak ∈ c−.

For a set of proper cyclically sequenced events, the integer values correspond-
ing to any pair of those events may therefore be fixed a priori, reducing the
complexity of the PESP instance.

Summing the tensions along the cycle c, we get

∑

a∈c+
za−

∑

a∈c−
za = −

∑

a∈c−\{ak}
za+

∑

a∈c+∩{ak}
za = |c−\{ak}|−|c+∩{ak}| (2.11)
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Now, either ak ∈ c+ or ak ∈ c−. However, in both cases we get,

∑

a∈c+
za −

∑

a∈c−
za = |c−| − 1 (2.12)

Conversely, for a given directed cycle c with c+ being the set of edges directed
along the orientation of the cycle and c− being the set of edges directed opposite
to the orientation of the cycle, assume that (2.12) holds and that za ∈ {−1, 0}
for all edges a ∈ c. Then the following holds

−|c−| ≤
∑

a∈c−
za =

∑

a∈c+
za + 1− |c−| ≤ 1− |c−|

where the lower bound is obtained when za = −1 for all a ∈ c− and the upper
bound is obtained when za = 0 for all a ∈ c+.

Therefore,
∑
a∈c− za can take exactly two values −|c−| or 1− |c−|. In the first

case (
∑

a∈c− za = −|c−|), za = −1 for all a ∈ c− and for exactly one edge a∗ in
c+, za∗ = −1. Otherwise (

∑
a∈c− za = 1− |c−|), za = 0 for all a ∈ c+ and for

exactly one edge a∗ in c−, za∗ = 0. Label the nodes in c, such that ε+
a∗ = ε1 if

a∗ ∈ c+ and ε+
a∗ = εk if a∗ ∈ c−. If a∗ is in c+ (first case), we have that

πε−a ≤ πε+a , ∀a ∈ c
+ \ {a∗}

πε+a ≤ πε−a , ∀a ∈ c
−⋃{a∗}

otherwise, a∗ is in c− (second case), and we have

πε−a ≤ πε+a , ∀a ∈ c
+
⋃{a∗}

πε+a ≤ πε−a , ∀a ∈ c
− \ {a∗}

If the nodes are labeled, such that a∗ connects ε1 and εk, this is equivalent to

0 ≤ πi+1 − πi, i = 1, ..., k − 1
π1 − πk ≤ 0

Hence, the nodes in c are cyclically sequenced.
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Therefore, the nodes in c are cyclically sequenced in the order ε1, ε2, ..., εk if and
only if equation 2.12 holds. Or, in terms of the cycle integers y, the nodes in c
are cyclically sequenced in the order ε1, ε2, ..., εk if and only if

yc = |c−| − 1 (2.13)

2.6.2 Matching four events

Matching of events is a powerful concept and may be modelled within the frame-
work of the PESP. First matchings for a small subgraph of four events is con-
sidered, before extending to the general case.

Suppose four events ε1, ..., ε4 and six edges make up a subgraph G′ of the con-
straint graph of a PESP instance, as shown in figure 2.6 (a). Assume that, a42

and a31 have symmetric bounds [s−, T − s−]. An ordered pair of events are
said to be matched, if and only if, the tension between them is in some interval
[d−, d+].

Now we want to find a (maximum) matching M of the bipartite subgraph con-
sisting of the events ε1, ..., ε4 and the constraints a12, a14, a32, a34, such that
ϑij , ϑkl ∈ [d−, d+]T , if and only if, M = {aij , akl}. In other words, we want to
impose the constraints

ϑ12, ϑ34 ∈ [d−, d+] xor ϑ14, ϑ32 ∈ [d−, d+] (2.14)

relating to each of the two possible matchings.

Suppose, that the matching {a12, a34} is chosen, then ϑ12, ϑ34 ∈ [d−, d+]T and
furthermore constraint a42 ensures ϑ32 ∈ [d−+s−, d++T−s−]T and ϑ14 ∈ [d−−
(T−s−), d+−s−]T = [d−+s−, d++T−s−]T . Similarly, if the matching {a32, a14}
is chosen, we have ϑ32, ϑ14 ∈ [d−, d+]T and ϑ12, ϑ34 ∈ [d− + s−, d+ + T − s−]T .

Hence, constraint a42 ensures, that each event in {ε1, ε3} is matched with at
most one event from {ε2, ε4}. That is, e.g. ϑ34 ∈ [d−, d+]T imply ϑ32 ∈ [d− +
s−, d+ +T − s−]T . Similarly, constraint a31 ensures that each of the two events
ε1, ε3 cannot be matched with the same event in {ε2, ε4}. That is, e.g. ϑ12 ∈
[d−, d+]T imply ϑ32 ∈ [d− + s−, d+ + T − s−]T .

Also, we must require all events to be matched (if a maximum matching is
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Figure 2.6: Subgraph ensuring matching of the four events 1, 2, 3, 4. In (b)
each disjunctive constraint (solid edges) in (a) is replaced by two conjunctive
constraints.

desired). To this end, we may assume

d+ + T − s− < d− + 2s− ⇐⇒ d+ − d− + T < 3s−

This will ensure that, if an event εi for i = 1, 3 is not matched with εj for
j = 2, 4, i.e. ϑij ∈ [d− + s−, d+ + T − s−]T , then constraint a42 ensures ϑik /∈
[d− + s−, d+ + T − s−]T , for k = 2, 4 and k 6= j, and therefore εi is matched
with εk. Similarly, this also holds for all i = 2, 4 and j = 1, 3 with a31 as the
separating constraint. In fact, this means that the events ε1, ε2, ε3, ε4 either
occur in the sequence ε1, ε2, ε3, ε4 or in the sequence ε1, ε4, ε3, ε2.

Now we can rewrite 2.14 as

ϑij ∈ [d−, d+]T ∪ [d− + s−, d+ + T − s−]T for i = 1, 3 j = 2, 4 (2.15)

Assuming that the two periodic intervals [d−, d+]T and [d−+ s−, d+ +T − s−]T
are disjoint, equations (2.15) may be expressed in terms of conjunctive span
constraints

ϑij ∈ [d−, d+ + T − s−]T ∩ [d− + s−, d+ + T ]T for i = 1, 3 j = 2, 4 (2.16)

Therefore, replace each disjunctive constraint aij for i = 1, 3 j = 2, 4 in fig-
ure 2.6 (a) by two constraints a′ij and a′′ij with span intervals [d−, d+ + T − s−]
and [d− + s−, d+ + T ], respectively, as shown in figure 2.6 (b).
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2.6.3 Matching 2n events

In the following, the matching constraints from the previous section is gener-
alised. We consider two disjunct sets of n events I and J . I and J each constitute
a clique, where each edge in these two cliques have span interval [s−, s+], and
s+ = T − s−. Also for each pair of events (i, j) ∈ I × J the tension between i
and j must be in the interval [d−, d+]∪ [d−+ s−, d+ + s+]. This is modelled by
the two edges a′ij and a′′ij with span intervals [d−, d+ +s+] and [d−+s−, d+ +T ],
respectively.

Let ϑij be the periodic tension of a′ij . Now, we say that a pair of events (i, j) ∈
I × J is matched, or (i, j) ∈M for some matching M if and only if ϑij is in the
interval [d−, d+].

i

I

ε

j

J

Figure 2.7: Subgraph for matching 10 events. For each pair (i, j) ∈ I × J a
matching constraint exists. For clarity, only the matching constraints in some
maximum matching M (solid arrows) are shown. The separation constraints
(dashed arrows) form two cliques together with I and J .

For a maximum matching M , it must hold that each event i ∈ I is matched
with exactly one event j ∈ J , and that each event j ∈ J is matched with exactly
one event i ∈ I .

Suppose, that i ∈ I and j ∈ J are matched, i.e. ϑij ∈ [d−, d+], then for any
event k ∈ I , the clique constraints between the events of I ensures that ϑkj ∈
[d− + s−, d+ + s+] and hence (k, j) is not in the matching. Similarly, the clique
constraints between events in J ensures, that for any event k ∈ J , ϑik ∈ [d− +
s−, d+ + s+] and hence (i, k) is not in the matching. So, each event i ∈ I is
matched with at most one event j ∈ J .
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To ensure a maximum matching, we must also require that each event i ∈ I is
matched with at least one event j ∈ J and that each event j ∈ J is matched
with at least one event i ∈ I .

d+ + s+ < d− + ns− (2.17)

is a sufficient condtion to ensure that each event i ∈ I is matched with at least
one event j ∈ J .

Proof. Consider the events i ∈ I and j ∈ J , such that i and j are not matched,
i.e. ϑij ∈ [d− + s−, d+ + s+]. For some event k 6= j ∈ J , it must hold that

ϑik + yT = ϑij +
∑

a∈P+
jk

ϑa −
∑

a∈P−jk

ϑa (2.18)

for some integer y and all paths Pjk from j to k in Q, where P+
jk is the set of edges

in Pjk along the direction of Pjk and P−jk is the set of edges with orientation
opposite to Pjk . Choosing Pjk as the path visiting each node in J exactly once,
and summing the lower bounds along the edges in aij ∪ Pjk we obtain a lower
bound on ycT

d− + s− + ps− − q(T − s−)− ϑik ≤ ycT (2.19)

where p is the number of edges in P+
jk and q is the number of edges in P−jk .

Since, p+ q = n− 1, we get

d− + ns− ≤ ϑik + (yc + q)T (2.20)

The assumption is that d+ + s+ < d− + ns−, yielding

d+ + s+ < ϑik + (yc + q)T (2.21)

Similarly, summing the upper bounds along the edges in aij ∪Pjk we obtain an
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upper bound on ycT

ycT ≤ d+ + s+ + p(T − s−)− qs− − ϑik = d+ + (p+ 1)T − ns− − ϑik (2.22)

Assuming d+ + s+ < d− + ns−, which is equivalent to d+ − ns− < d−(T − s−),
we get

ϑik + (yc − p)T < d− + s− (2.23)

Equation (2.21) and (2.23) imply, that the periodic tension of aik is not in the
interval [d− + s−, d+ + s+], hence aik is in the matching.

A similar result holds for i ∈ J , and j 6= k ∈ I .

2.6.4 An objective function for matching constraints

In many cases, it is desirable to minimise or maximise the sum of the tension of
only those edges that are in the matching. In the following, I will explain how
this can be accomplished for the matching subgraph G′ = (I ∪ J,A′). This has
been shown by Peeters [22] for a subgraph of four nodes.

Consider some cycle cij = {a′ij , ajk , a′ik} visiting i ∈ I , j ∈ J , and k 6= j ∈ J
in that order, as shown in figure 2.8 (a), such that c+ij = {a′ij , ajk} is the set

of edges oriented along the direction of cij and c−ij = {a′ik} is the set of edges
oriented against the direction of cij .

The integer

yc =
∑

a∈c+ij

ϑa −
∑

a∈c−ij

ϑa (2.24)

is associated with cij . Bounds on ycij are obtained by applying (2.7).

⌈−(d+ − d−)− (s+ − s−)

T

⌉
≤ ycij ≤

⌊
(d+ − d−) + 2s+

T

⌋
(2.25)
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i j

k

(a)

[d−, d+ + s+]

[d−, d+ + s+]

[s−, s+]
cij

ε

(b)

Figure 2.8: (a) The cycle cij with events i ∈ I and j, k ∈ J . (b) The clique Q
of events J and separation constraints. The edges of Q are directed such that
no edge is incident to ε ∈ J .

Since (d+ + s+)− (d− + s−) < T and T < (d+ + s+)− (d− + s−) + T , we have
that ycij are binary,

0 ≤ ycij ≤ 1 (2.26)

Now according to (2.13), the events in cij are cyclically sequenced in the order
i, j, k if and only if ycij = |c−ij | − 1 = 0. It follows from (2.26), that ycij = 1
otherwise.

Now, consider two events ε ∈ J and ε′ ∈ I such that aε′ε is in some maximum
matchingM . Next, reverse all edges inQ incident to ε, as shown in figure 2.8 (b).
Note that since s+ = T − s−, the span intervals on the reversed constraints are
[s− − T,−s−] which is equivalent to [s−, T − s−].

For each pair (i, j) ∈ I \ {ε′} × J \ {ε} consider the cycle cij = {aiε, aεj , aij}.
Since aiε /∈M we have that ycij = 1. Equation 2.6 yields,

ϑij = ϑiε + ϑεj − T (2.27)

Summing the tensions of the edges in the matching M , we get
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Z = ϑε′ε +
∑

aij∈M\{aε′ε}
ϑiε + ϑεj − T (2.28)

=
∑

i∈I
ϑiε +

∑

j∈J\{ε}
ϑεj − (n− 1)T (2.29)



34 The Periodic Event Scheduling Problem



Chapter 3

Periodic Railway Timetabling

3.1 The Planning Process

Scheduling of ressources in a railway system is traditionally done hierarchically
from the planning of the physical infrastructure to vehicle and crew scheduling.
This subdivision of tasks is due to different planning horizons and the complexity
of the tasks. Also the geographical implications of the problems influence the
planning process. Wheras some tasks are local in nature (platform assignment,
shunting), other tasks are done on a global level (e.g. lineplanning, timetabling,
vehicle assignment). At each planning level, however, decisions interact with
decisions made at the other levels, in particular the immediately adjacent levels.

The first step in the planning process is the planning of the physical infrastruc-
ture. At this level decisions concerning the allocation of new railway corridors
and new stations to accomodate changing demography or travel patterns, as
well as capacity enhancing measures, such as extra tracks etc., are taken. De-
cisions at this level are expensive, time consuming, and are not easily undone.
Therefore the planning horizon is long, normally 5 - 20 years.

At the next level a lineplan is constructed that determines the general level of the
service of the railway system. A (undirected) train line is a sequence of stations
that a train must serve, starting and ending at the same terminal station. In a
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symmetric line, each station is served twice - once in each direction, such that
the sequence of the stations is reversed for the opposite direction of the same
line. A lineplan is a set of such lines. A good lineplan is characterized by low
operational costs and high quality customer service. At this strategic level, low
operational costs is obtained by minimising the estimated number of required
vehicles, while high quality customer service is often obtained by maximising
the estimated number of passengers with a direct connection.

Once a lineplan has been established, the basic timetable is constructed. That is,
points in time are assigned to each arrival and departure event of the individual
lines at each station. In periodic railway systems, each arrival and departure is
repeated with a given time interval - the period length, e.g. one hour.

In the final phases of the planning process rolling stock and crew are scheduled
and the routing and platform assignment of trains are determined. In rolling
stock scheduling trips are generated and the specific rolling stock units are
assigned to trips, such that requirements on e.g. maintenance are respected.
Crew scheduling assigns the personnel to operate the train units and service
passengers, while respecting the need for e.g. regular restperiods and demands
on varied trip schedule for drivers.

Attempts has been made to integrate certain steps or aspects from different
phases of the traditional planning process.

3.2 The Periodic Railway Timetabling Problem

Constructing a good timetable is a crucial step in the planning process to en-
sure low operational costs and high level passenger service, while operational
constraints are satisfied according to known limitations of the infrastructure,
rolling stock, and human factors.

Such operational constraints impose restrictions on headway, train running-
and stopping time, and turn around time at terminal stations. Additionally,
constraints may be introduced that restrict waiting time between two connecting
trains in order to ensure a high service level.

The set of constraints and possibly an objective function reflecting costs or pas-
senger service define a timetabling instance. A feasible solution to the timetabling
instance is a timetable that can be operated under the given circumstances.

The Periodic Railway Timetabling Problem is the problem of scheduling ar-
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rival and departure events of train lines at stations given a lineplan, such that
each event is recurring with some interval T , and the requirements wrt. safety,
running and stopping time etc. are respected.

An event may be characterised by a station, a line, a direction, the type of
event (arrival or departure), and an index denoting which timeperiod it takes
place. However, since each event is recurring with fixed interval, it is sufficient
to schedule the events in some reference period. Let εarr(s, l, δ) and εdep(s, l, δ)
denote the arrival respectively departure of line l in direction δ at station s in
the reference period. Similarly, let πarr(s, l, δ) ∈ [0, T [ and πdep(s, l, δ) ∈ [0, T [
be the point in time, when εarr(s, l, δ) resp. εdep(s, l, δ) occurs. Also, let N be
the set of all events in the reference period.

In the following, different types of constraints used in scheduling railway sys-
tems are identified. Connection constraints was introduced by Nachtigall in [21],
running time, headway, and line synchronisation constraints was used by Odijk
in [20], turnaround constraints was introduced by Lindner in [18], while con-
straints allowing for merging of lines at a terminal station [22] and matching of
linesegments [13] was identified by Peeters respectively Liebchen and Möhring.

3.2.1 Dwell and running time constraints

Minimum (d−) and maximum (d+) dwell time of a line l at a station s in the
direction δ, may be imposed by the constraint

πdep(s, l, δ)− πarr(s, l, δ) ∈ [d−, d+]T

Similarly, minimum (r−) and maximum (r+) running time of a line l between
two (adjacent) stations s1 and s2 in the direction δ, may be imposed by the
constraint

πarr(s2, l, δ)− πdep(s1, l, δ) ∈ [r−, r+]T

The minimum running time is composed of the actual minimum travel time of
the train when driving at the maximum possible (or maximum allowed) speed,
as well as a certain amount of slack time (or buffer time), so recovering from
delays is possible.
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3.2.2 Turnaround constraints

Limits (t−, t+) on the turnaround time of line l at station s, may be given by

πarr(s, l, δ)− πdep(s, l, δ′) ∈ [t−, t+]T

or

πdep(s, l, δ)− πarr(s, l, δ′) ∈ [t−, t+]T

where δ′ denotes the opposite direction of δ. The first constraint type may be
used, when turnaround occurs at a passenger platform and only arrival and
departure events at s are given, while the latter constraint type may be used,
when turnaround occurs at a shunting track and arrival and departure events
at s are given for both directions. Turning of a train at a platform track usually
requires a dedicated platform not used by other lines, which put a high demand
on platform capacity. In figure 3.1, dwell, running, and turnaround constraints
are shown for a single line. It is seen that, the northern terminal station (with
four events) uses shunting at turnaround, while no shunting is required at the
southern terminal.

North

Figure 3.1: PESP subgraph for a single line. Each node represents either an
arrival or a departure at a station on the line. Solid edges represent running
time constraints, dotted edges represent dwell time constraints, while dashed
edges represent turnaround constraints at the two terminal stations.

3.2.3 Headway constraints

Let a track segment q be a piece of (single) track between s1 and s2, with δ1

being the direction from s1 to s2 and δ2 the direction from s2 to s1. For each
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track segment q, a minimum headway h must be ensured between any pair of
arrivals of two lines l1 6= l2 in the same direction at the beginning of the track
segment. That is,

πdep(s1, l1, δ1)− πdep(s1, l2, δ1) ∈ [h, T − h]T

and

πdep(s2, l1, δ2)− πdep(s2, l2, δ2) ∈ [h, T − h]T

must hold for any pair of lines l1 6= l2 using q in the same direction.

Also it must hold, that the sequence of trains entering q must be equal to the
sequence of trains leaving q, i.e. no train is allowed to overtake another train
along q. If r− and r+ is the minimum and maximum running time resp. along
q, then r+ − r− < h ensures no overtaking along the track segment. However,
if l1 and l2 uses the same platform track at s2, we must also ensure, that no
overtaking occurs at s2, i.e. (r+−r−)+(d+−d−) < h. While r−, d−, and h are
strict bounds dictated by infrastructure and the number of expected passengers,
r+ and d+ may be chosen to accomodate this requirement.

To ensure no collissions between trains using the track segment q in opposite
directions, assuming maximum running times r+

1 in the direction δ1 and r+
2 in

the direction δ2, the following constraints for any two pair of lines l1 6= l2 using
q in the direction δ1 and δ2, respectively, is sufficient

πdep(s1, l1, δ1)− πarr(s1, l2, δ2) ∈ [h, T − (r+
1 + r+

2 )− h]T

Here, the lower bound ensures a minimum headway h at s1 and the upper bound
ensures a minimum headway h at s2, as shown in figure 3.2. That the minimum
headway at s2 is ensured can be realised by reversing the constraints as shown
in figure 3.3 and summing the lower bounds along the path 1, 2, 3, 4, yielding

−r+
1 − (T − r+

1 − r+
2 − h)− r+

2 = h− T

Since the sum of tensions along the path 1, 2, 3, 4 equals the tension π4 − π1

modulo T , we have
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(h− T ) mod T ≤ (π4 − π1) mod T (3.1)

⇔ h ≤ (π4 − π1) mod T (3.2)

If r+
i = r−i , for i = 1, 2, the condition is also necessary. Otherwise, some feasible

timetables may be cut off if the actual running times are not at the maximum.

12

3 4

[h, T − (r+
1 + r+

2 )− h]

[r−2 , r
+
2 ]

[r−1 , r
+
1 ]

l1

l2

Figure 3.2: PESP constraints ensuring minimum headway h between two lines
l1 and l2 using track segment q in opposite directions. The events 1 and 3
represents arrival of line l1 and l2 resp. at q, while 2 and 4 represents the
departure of line l1 and l2, resp., from q.

12

3 4

[−(T − r+
1 − r+

2 − h),−h]

[−r+
2 ,−r−2 ]

[−r+
1 ,−r−1 ]

l1

l2

Figure 3.3: Reversing the constraints in figure 3.2.

These headway constraints may be generalised in that the track segment q does
not necessarily have to begin and end at a station. E.g., a piece of track between
two stations may be subdivided into several track segments by inserting extra
nodes. This can be necessary to avoid overtaking along track segments, when
the span of the running times are wide.

The constraints mentioned so far deals with fundamental properties of the rail-
way system with respect to infrastructure and safety. A feasible timetable may
be constructed using these fundamental constraints only. However, other con-
straints may be added in order f.ex. to ensure a minimum level of passenger
service or to allow the merging of lines at certain stations.
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3.2.4 Connection constraints

At certain stations where many people are expected to change from one line to
another, it may be attractive to ensure an upper limit on the waiting time of
passengers changing lines. This is done by introducing connection constraints.
Let the minimum connection time g− reflect the expected time it takes to trans-
fer from line l1 in direction δ1 to line l2 in direction δ2 at station s, that is the
time it takes to get in and out of the trains plus walking time between platforms.
Also, let the maximum connection time g+ be the transfer time plus the max-
imum allowed waiting time for passengers transferring from line l1 in direction
δ1 to line l2 in direction δ2 at station s. Then the connection constraints may
be formulated as

πdep(s, l2, δ2)− πarr(s, l1, δ1) ∈ [g−, g+]T

3.2.5 Line synchronisation

At stations served by two or more lines in the same direction and with at
least one common successive station, an attractive timetable will have an even
distribution of departures in that direction. An even distribution of the k lines
l1, l2, ..., lk in the direction δ at station s, can be achieved by requiring that the
minimum time between the departures of any two lines is T/k, i.e.

πdep(s, li, δ)− πdep(s, lj , δ) ∈
[
T

k
, T − T

k

]

T

, ∀i < j ∈ {1, 2, ..., k}

More flexibility may be introduced, by allowing (small) deviations up to ε time
units from the equal distribution,

πdep(s, li, δ)− πdep(s, lj , δ) ∈
[
T

k
− ε, T − T

k
+ ε

]

T

, ∀i < j ∈ {1, 2, ..., k}

3.2.6 Merging of lines at terminals

Merging of two lines at a common terminal station may be allowed using the
matching constraints described in section 2.6.2. Let l1 and l2 be the lines for
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which we want to allow merging at their common terminal station s, and let δ−1
and δ−2 be the direction of l1 respectively l2 upon entering s, and δ+

1 and δ+
2

be the direction of l1 respectively l2 when leaving s. Also, let t− and t+ be the
minimum and maximum turnaround times at s, and assume that l1 and l2 are
separated by synchronisation constraints at arrival to and departure from s:

πarr(s, l1, δ
−
1 )− πarr(s, l2, δ−2 ) ∈

[
s−, s+

]
T

πdep(s, l1, δ
+
1 )− πdep(s, l2, δ+

2 ) ∈
[
s−, s+

]
T

where s+ = T − s−. Assuming, that the intervals [t−, t+] and [t−+ s−, t+ + s+]
are disjoint, we can apply the matching constraints (2.16),

πdep(s, li, δ
+
i )− πarr(s, lj , δ−j ) ∈

[
t−, t+ + s+

]
T
, ∀i, j ∈ {1, 2} and (3.3)

πdep(s, li, δ
+
i )− πarr(s, lj , δ−j ) ∈

[
t− + s−, s+ + T

]
T
, ∀i, j ∈ {1, 2} (3.4)

However, if we want to be able to get the correct number of train units needed
to operate the resulting timetable, we need to sum the tensions for those edges,
that describe the resulting matching as explained in section 2.6.4. This requires,
that t+ + s+ < T . If this is not fulfilled, one may insert two dummy events ε1

and ε2 between the arrival and departure events, replace (3.3-3.4) by

π(εi)− πarr(s, lj , δ−j ) ∈
[
0, t+ − t− + s+

]
T
, ∀i, j ∈ {1, 2} and (3.5)

π(εi)− πarr(s, lj , δ−j ) ∈
[
s−, s+ − t− + T

]
T
, ∀i, j ∈ {1, 2} (3.6)

and insert two new constraints with tension fixed as the minimum turnaround-
time

πdep(s, li, δ
+
i )− π(εi) ∈

[
t−, t−

]
T
, ∀i ∈ {1, 2}

This is shown in figure 3.4.
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a2 ε2 d2

a1 ε1 d1

[t−, t+]

[t−, t+]

[s−, s+] [s−, s+]

Figure 3.4: PESP subgraph allowing for merging of lines at a common terminal
station s. The events a1 and a2 represents arrival of line l1 and l2 resp. at
s, while d1 and d2 represents the departure of line l1 and l2 resp. The edges
without labels correspond to the constraints defined by (3.5-3.6)

3.2.7 Matching of linesegments

So far, the lineplan we have considered was assumed to be given and fixed.
However, the matching constraints discussed in section 2.6.3 may also be used
to allow certain changes in the lineplan.

The principle is the same as for merging of lines at a terminal station as de-
scribed previously. However, now we allow the lines to merge at a non-terminal
station where the lines share a common track. The assumption is that to avoid
collissions an arrival at the station is followed immediately by a departure. This
is ensured by the headway constraints.

Consider the two lines l1 and l2 in figure 3.5 using the same track in each
direction at their common station s. Two new lines l′1 and l′2 can be obtained,
such that l′1 is defined by the linesegment of l1 south of s and the linesegment
of l2 north of s, while l′2 is defined by the linesegment of l2 south of s and
the linesegment of l1 north of s. Now, two different lineplans L = {l1, l2}
and L′ = {l′1, l′2} are obtained covering the same track segments at the same
frequencies. In finding an optimal timetable, it may be worthwhile to consider
both lineplan L and L′ in that one of the two may allow for a better timetable.
E.g. lineplan L′ may be cheaper than lineplan L to operate, requiring less trains.

This can be done by allowing l1 and l2 to merge in both directions. I.e. the
dwell time constraints [d−, d+] at s are replaced by the matching constraints

πdep(s, li, δ
+)− πarr(s, lj , δ+) ∈

[
d−, d+ + s+

]
T
∩
[
d− + s−, s+ + T

]
T
, ∀i, j ∈ {1, 2}

πdep(s, li, δ
−)− πarr(s, lj , δ−) ∈

[
d−, d+ + s+

]
T
∩
[
d− + s−, s+ + T

]
T
, ∀i, j ∈ {1, 2}
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s s s

l1 l′1l2 l′2

(a) (b) (c)

North

Figure 3.5: Merging of two lines at a non-terminal station s. Two lines l1
and l2 with a common station s (a). l1 and l2 split into four linesegments,
such that each linesegment terminate at s (b). Possible matchings of the four
linesegments resulting in the original lineplan L = {l1, l2} (a) and an alternative
lineplan L′ = {l′1, l′2} (c).

where δ+ 6= δ− denote the two directions. The proper separation of arrivals and
departures are enforced by the separation constraints

πarr(s, l1, δ
+)− πarr(s, l2, δ+) ∈

[
s−, s+

]
T

πdep(s, l1, δ
−)− πdep(s, l2, δ−) ∈

[
s−, s+

]
T

such that the assumption d+ + s+ < d− + 2s− holds. However, to ensure a
symmetric lineplan, i.e. that each line serves the same stations in each direction,
we must require that if li merge with lj in one direction, lj must also merge with
li in the opposite direction. This cannot be done within the framework of the
PESP. However, additional constraints may be introduced.

Consider the cycles cδ
+

and cδ
−

in figure 3.6 (b). As shown in section 2.6.4,
ycN , ycS ∈ {0, 1}. Also, if ycN = 0 no merging occurs in the northern direction
since event 4 occur immediately after event 2. Similarly, if ycS = 0 no merging
occurs in the southern direction. Hence, requiring that the resulting lineplan is
symmetric is equivalent to requiring ycN = ycS .

In general, for a set L = {l1, l2, ..., lk} of k lines servicing a common non-terminal
station s using the same track in each direction we may allow merging of the lines
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Figure 3.6: PESP subgraphs allowing for merging of lines at a common non-
terminal station s (a). The events 1 and 2 represents arrival in the northern
direction of line l1 and l2 resp. at s, while 3 and 4 represents the departures in
the northern direction of line l1 and l2 respectively. Likewise, the events 5 and
6 represents arrivals in the southern direction of line l1 and l2 resp. at s, while 7
and 8 represents the respective departures. Dotted arcs represent running time
constraints, while dashed arcs represent separation constraints and solid arcs
represent matching constraints.

at s by replacing the dwell time constraints [d−, d+] by the matching constraints

πdep(s, li, δ
+)− πarr(s, lj , δ+) ∈

[
d−, d+ + s+

]
T
∩
[
d− + s−, s+ + T

]
T
, ∀i, j ∈ L

πdep(s, li, δ
−)− πarr(s, lj , δ−) ∈

[
d−, d+ + s+

]
T
∩
[
d− + s−, s+ + T

]
T
, ∀i, j ∈ L

and ensuring the minimum separation of the lines, by the separation constraints

πarr(s, li, δ
+)− πarr(s, lj , δ+) ∈

[
s−, s+

]
T
∀i 6= j ∈ L

πdep(s, l1, δ
−)− πdep(s, l2, δ−) ∈

[
s−, s+

]
T
∀i 6= j ∈ L

To ensure a symmetric lineplan, we consider, for each pair of lines (li, lj) ∈ L×L
and each direction δ ∈ {δ+, δ−}, the cycles described in section 2.6.4. Define
first the events εi = εarr(s, li, δ), εj = εdep(s, lj , δ), and εk = εdep(s, lk, δ).

Now let cδijk = {a′ij , ajk, a′ik} be the cycle visiting the events εi, εj , and εk, in

that order, and let a′ij and a′ik have span intervals [d−, d+ + s+], as shown in
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figure 3.7. Denote by J the set of departure events at station s in the direction
δ

As shown in section 2.6.4, if ajk is oriented along the orientation of cδijk , ycδijk = 0

if and only if the events i, j, k occur in the sequence i, j, k, otherwise ycδijk = 1.

i

j

k

J

Figure 3.7: The event i and the events in J . Solid edges are matching con-
straints, while dashed edges symbolise separation constraints. To simplify the
figure, only separation constraints with j as initial or final vertex are included.

Let N+
j ⊂ J be the set of nodes in J , that are in the out-neighbourhood of j

and N−j ⊂ J the set of nodes in J , that are in the in-neighbourhood of j. If

k ∈ N+
j then ycδijk = 0 imply that line li and line lk are not merged. Also, if

k ∈ N−j then ycδikj = 1 imply that line li and line lk are not merged. Note that

two lines li and lj merge in some direction if and only if li only merge with lj
and lj only merge with li. Hence, two lines li and lj merge in the direction δ if
and only if

ϕδij =
∑

k∈N+
j

ycδijk +
∑

k∈N−j

(
1− ycδikj

)
= 0

We can therefore enforce the lineplan to be symmetric by only allowing merging
of an ordered pair of lines in one direction if the same pair of lines also merge
in the opposite direction. In terms of ϕ, this can be expressed as
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ϕδ
−
ij ≤Mϕδ

+

ji

ϕδ
+

ij ≤Mϕδ
−
ji

where M is some integer greater than or equal to the number of lines at s.

3.2.8 Objective

The two most common objectives for the timetabing planning phase is to min-
imise the rolling stock required to operate the timetable and minimise total
passenger waiting time in the system.

The first objective is easily obtained in the MIP formulation of the model, since
the duration of each train cycle (dwell, running, and turnaround edges for each
line) determines the number of train units required to operate each line. When
merging between two lines is allowed, the turnaround edges are replaced in the
objective function by the relevant matching and separation edges as described
in section 2.6.4. The number of train units needed to operate the timetable is
then given by

Z =
1

T

∑

a∈A′
ϑa

where A′ is the set of all running, dwell, and turnaround time edges.

Passenger waiting time for some connections defined by the set of connection
constraints A′′ can be simultaneously minimised by considering the contribution
wa(ϑa−d−a ) of connection constraint a to the objective function. The weight wa
of that particular connection may for example be a function of the estimated
number of passengers using the connection. Note, that ϑa − d−a denote the
waiting time only and not the total transfer time (ϑa).

The combined objective function to be minimised is then

Z =
1

T

∑

a∈A′
ϑa +

∑

a∈A′′
wa(ϑa − d−a )
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3.3 Limitations of the Model

The Periodic Event Scheduling Problem can handle the most important aspects
of traditional timetabling for periodic railway services. However, certain aspects
may not be modeled using PESP. These include symmetry of timetables and
different types of rolling stock equipment. Also, routing of passengers is not
taken into account making it difficult to estimate e.g. average passenger waiting
and travel time in the system.

According to practitioners [11] symmetry is an important property of periodic
timetables, and is also to a large extent maintained in the 2006 timetable for S-
train. However, timetable symmetry may not be modeled within the framework
of the PESP. Recall that a timetable is symmetric if and only if the sum of the
arrival time in one direction and the departure time in the opposite direction for
the same line at the same station equals an integer multiple of the timeperiod.
Liebchen shows in [11] that timetable symmetry can be ensured by introducing
side constraints of the form

(πdep(s, l, δ) + πarr(s, l, δ
′)) mod T ≤ 0

where δ′ is the opposite direction of δ.

Varying passenger demand during each day and during the week puts differ-
ent requirements to the service provided by a railway service. To accomodate
varying demands, usually different lineplans and timetables are constructed for
different periods of the day and the week. For example, a high frequent service
may be offered during rush hour when demand is high, while lower frequencies
are offered during evening periods and Sundays. This model can be applied to
any such planning period, and it is possible to construct optimal timetables for
each period separately. However, the transition between two planning periods
and between periods of operation and periods of no operation (e.g. at the begin-
ning and end of the day, if no night train service is provided) are not considered.
This problem of routing vehicles, such that the train units used in the current
planning period are ready to operate the new timetable at the beginning of the
next period, is known as the rolling stock circulation problem. This include
taking some train units out of operation and/or inserting train units that are
not currently in operation. The planning of rolling stock circulation is heavily
dependent on the location of rolling stock depots and may require deadheading,
i.e. moving train units not in operation between two points in the network.

From a passenger perspective, a very attractive timetable is one, that minimises
the average passenger travel and/or waiting time. For this purpose reliable
data for the route chosen by individual passengers is needed. These data may
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be estimated by statistical methods for a single timetable, or, if passengers are
assumed always to choose the shortest route, by simply calculating the shortest
path in an appropriate graph. However, when a new timetable is introduced
these passenger flows are likely to change. Especially if also the lineplan changes,
which requires some passengers to make more line changes, while others need
to make less changes. To allow for optimal routing of passengers in the network
in the MIP formulation, an extra set of variables denoting passenger flow on
each of the edges in the PESP constraint graph is needed. Minimising the
average passenger travel time in the network hence requires a quadratic objective
function making even small instances difficult to solve.

A train unit may consist of various types and number of rolling stock. E.g., one
train unit may consist of a locomotive and four train cars, while another train
unit may consist of only two motorised train cars. The availability and difference
in operating costs for different combination of rolling stock is not considered in
the model.



50 Periodic Railway Timetabling



Chapter 4

Timetable Construction for
S-train

In this chapter a number of experiments will be performed to investigate the
applicability of the PESP model to timetable construction for the Copenhagen
S-train system. Two types of lineplans are considered. One with eleven lines
each operated at 20 minute intervals and another with six lines each operated
at 10 minute intervals. Is it possible to determine the minimum number of train
units required in a reasonable amount of time? Furthermore, is it possible to
allow merging of lines and matching of linesegments and still obtain solutions
in reasonable time, and if so, does this improve the optimal solution? Finally,
the effect of chain cutting planes on the solution time is evaluated.

4.1 The S-train Network

The S-train is a commuter train service for the greater Copenhagen area. It
serves 85 stations along a total track length of 170 km [1]. The infrastructure is
almost entirely double track, except for a 500 m track segment crossing a bridge
between Værløse and Farum stations. The track network is star-shaped with a
central track segment, three radial ’fingers’ to the north of the central segment,
three ’fingers’ to the south and one (half-) circular track segment intersecting all
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’fingers’. Figure (4.1) shows a schematic representation of the network. Stations
have between two and five platform tracks.
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Figure 4.1: Schematic representation of the track layout. All tracksegments are
double track except for a section between Farum(Fm) and Værløse(Vær). ->
indicates that connections can be made to other train networks.

On an average day 240000 passengers uses the S-trains. The largest passenger
station is Nørreport on the central track segment with app. 80000 passengers
on a weekday [5].

The S-train network is part of a larger public transit transportation network
comprising local-, metro-, regional-, and intercity trains, as well as busses. Con-
nections between the other train networks and the S-train network are possible
at certain stations marked by (->) in figure 4.1. Changing between S-train and
intercity trains is possible at four stations, while connection to regional trains
can be made at seven stations, to metro at three stations, and to local train
operators at three stations.

The current lineplan is operated with a fixed frequency of 20 minutes for all lines.
It consists of three main types of lines, namely core lines running all day Mon-
day through Sunday, daytime lines running during the daytime period Monday
through Saturday, and a single rush hour line with only a few departures during
the morning rush hour period Monday through Friday. Furthermore, a few lines
are extended during certain periods. The operating times are summarised in
table (4.1). All lines except the rush hour line are symmetric, i.e. they serve the
same stations in each direction, but in opposite order.
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In the published timetable for 2005, there were seven core lines (A, B, C, E,
F, F+, H), four daytime lines (A+, B+, Bx, H+) and one rush hour line (Ex).
Line E was a daytime line to Hi, but turns in Ly outside the daytime period.
Line F+ was a core line between Nel and Hl, but was extended to Kl during the
weekend daytime. In 2006, line Bx was taken out, and line F+ was extended to
Kl all days during daytime. Furthermore, line A+ was extended to Bud during
Monday to Friday. The lines and line types for the 2005 and 2006 timetable are
shown in table (4.2). Figure (4.2) shows the 2005 lineplan during morning rush
hour.
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Figure 4.2: The 2005 lineplan during morning rush hour. A black square indi-
cates whether the line is stopping at the respective station.

Monday - Friday Saturday Sunday
Core 05:00 - 00:30 05:00 - 00:30 06:00 - 00:30
Daytime M-S 06:00 - 19:00 09:00 - 15:00 -
Daytime M-F 06:00 - 19:00 - -
Rush hour 06:45 - 07:45 - -

Table 4.1: Approximate operating times for line types.
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Line type Lines (2005) Lines (2006)
Core A B C E(Ly) F F+ H A B C E(Ly) F F+ H
Daytime M-S A+ B+ E(Hi) H+ A+(Kk) B+ E(Hi) H+
Daytime M-F Bx A+(Bud)
Rush hour Ex Ex

Table 4.2: Grouping of lines according to linetype in the 2005 and 2006 published
timetables.

4.2 Model Assumptions

In the following sections, timetables will be constructed for the S-train network
based on the model presented in section 3.2. Some assumptions regarding the
network has been made.

4.2.1 Infrastructure

A new station Ny Ellebjerg (Nel) between Sjælør and Ellebjerg (Elb) is under
construction and is to be ready by 2007. At that time Ellebjerg station will be
closed. At Nel connections can be made between trains on the southern (Køge
Bugt) track and the circular (Ringbane) track. Therefore Elb is replaced in the
model by Nel and all lines are to stop in Nel in all scenarios. The running times
to and from Nel on the southern track are assumed to be the same as to and
from Elb (which is not entirely correct). The running times to and from Nel on
the circular track are assumed to be the same as to and from the temporary Ny
Ellebjerg station at Gl. Køge Landevej.

The single track segment between Fm and Vær is inserted with an assumed
scheduled running time from Fm of 1 minute. Scheduled running time across
the single track segment are assumed to be 0.4 minutes, i.e. trains are assumed
to pass at a speed of 80 km/h. This running time is fixed in both directions for
all scenarios.

The headway between two departures from the same station in the same direc-
tion is in practice minimum two minutes. The theoretical minimum is assumed
to be 1.5 minutes. In the following a minimum headway of 2 minutes is used
for experiments with 20 minute line frequencies, while a minimum headway of
1.9 minutes is used for experiments with 10 minute line frequencies.
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4.2.2 Dwell, running, and turnaround times

Dwell times at stations and running times between stations are based on the
published timetable for 2006 [6], which specifies scheduled departure times at
each station for each line in half minutes, as well as scheduled dwell times (10,
20, or 30 seconds) for each station.

Minimum and maximum running times are found by decreasing respectively
increasing the scheduled running time by a certain percentage of the scheduled
time. In the case where the scheduled running time differs between lines on
the respective track segment, the scheduled running time for an arbitrary line is
chosen. The dwell times are assumed to be fixed and are chosen as the scheduled
dwell time according to [6].

Minimum turnaround times for all scenarios are set to 6 minutes for platform
turnaround and 10 minutes for turnaround when shunting is needed. Recall that
platform turnaround occur while the train is parked at a track adjacent to a
passenger platform. Maximum turnaround time is assumed to be 15 minutes for
platform turnaround and 18 minutes when shunting is needed. These maximum
times are designed to comply with the assumption for merging constraints to
be disjunct, so that merging of lines at terminals easily can be implemented.
Shunting is required for turnaround at Bud and Ba. Shunting is also used for
turnaround of line F/F+ at Hl to ensure adjacency to connecting trains.

4.2.3 Objective

The objective of the timetable construction in the experiments is to minimise
the required number of train units needed to operate the timetable. In section
4.5.3, however, a combination of rolling stock and passenger waiting time for
some connections are minimised.

4.3 Computational Environment

The timetabling instance is modeled in C++, while the underlying PESP model
is developed in GAMS. The PESP instance is solved using ILOG CPLEX 9.020.
Computations are performed on a 1000 Mhz SUN Fire V440 with four processors
and 8 GB RAM running Solaris 9.
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4.3.1 CPLEX Parameters

Two configurations of CPLEX parameters has been used in the experiments.
On small and easy timetable instances CPLEX was run with all parameters set
to their default values. When solution time was long the CPLEX parameters
varsel and mipemphasis was changed from their default settings. In particular,
the variable selection method (varsel) was set to strong branching, while MIP
emphasis (mipemphasis) was set to optimality.

When strong branching is selected a number of sub problems are solved at each
node in the branch-and-bound tree to determine the best variable to branch on.
This reduces the size of the branch-and-bound tree considerably.

Setting MIP emphasis to optimality causes the branch-and-bound algorithm to
first process nodes in the branch-and-bound tree that have the best lower bound
(for minimisation). This leads to a shallow branching tree with relatively few
nodes necessary to be evaluated. Even though an optimal solution is often found
faster for a large problem, the first feasible solution may take long to find. As
default, MIP emphasis is set to balance optimality and feasibility. Therefore
a depth-first search of the branch-and-bound tree is employed until a feasible
solution is obtained, whereafter optimality is emphasised.

4.4 Experiments with Twenty Minute Interval
Lineplan

In this section timetables are generated for a lineplan based on the 2005 lineplan,
with line A+ extended to Bud as in the published timetable for 2006. This is
based on the assumption that line Bx will be reinserted at some point, and
line F+ therefore will be shortened to Hl during Monday to Friday. Line Ex is
omitted, as this line is operated mainly in one direction (Kj - Hl). Transferring
vehicles without passengers (deadheading) is necessary from Kh to Kj when
merging with other lines are not allowed in order to maintain a circulation of
rolling stock in the PESP. In practice, the vehicles operating Ex are probably
taken out of operation at the end of the morning rush hour. Figure (4.3) shows
the lineplan for the basic scenario.

Initially, strict synchronisation between lines are enforced pairwise, such that
two lines form a 10 minute interval service at certain track segments. Table
(4.3) shows where synchronisation is introduced.
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Figure 4.3: The lineplan for the basic scenario. A black square indicates whether
the line is stopping at the respective station.

4.4.1 Basic scenario

First timetables are constructed that explore the possibility of variable running
times. Instances in which running times are assumed to be fixed are infeasible.
Of course, instances with fixed running times equal to those in the schedule
should be feasible. However, recall that for the same track segment different
line may have different running times in the published timetable, whereas we
assume lines to have the same bounds on running time along the same track
segment. In the following timetables with running times of up to 1% and 5%
deviation from the scheduled running time are considered.

When strict 10 minute synchronisation are enforced and no merging is allowed,
PESP instances with 1124 events, 2033 constraints, and 910 fundamental cycles
are obtained. The timetabling instance with up to 1% deviation is denoted
instance 20a, while the timetabling instance with maximum 5% deviation is
denoted instance 20b. Instance 20a yields a minimum rolling stock usage of 77
train units, while instance 20b yields a solution using 75 train units. Table 4.4
shows the rolling stock usage on the different lines for the latter timetable. The
CPLEX calculation time is 3 s. and 54 s. respectively.
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Synchronise lines at stations
C Bx Kl-Ch
B B+ All stations
F F+ All stations
A E Hi-Hot
A+ E Kj-Gre
H H+ Fs-Mw, Fm-Vær

Table 4.3: Synchronisation of lines.

Line A A+ B B+ Bx C E F F+ H H+ total
Train units 8 8 6 6 6 6 9 3 3 10 10 75

Table 4.4: Rolling stock usage on lines for basic twenty minute lineplan with
running times deviating up to 5% from the scheduled running time.

4.4.2 Merging at terminals

Next, merging of lines are allowed at terminal stations between pairs of lines
that both turnaround at that station. In particular, merging is allowed between
A and E in Hil, H and H+ in Fm and Fs, B and B+ in Hot and Ht̊a, C and Bx
in Kl, F and F+ in Hl and Nel, as well as, between A+ and E in Kj. As two
extra events and nine extra constraints are inserted for each of the nine merging
possibilities, this results in an instance with 1142 events, 2114 constraints, and
973 fundamental cycles. Instance 20c and 20d refer to the timetabling instances
with up to 1% respectively 5% deviation from the scheduled running time.

Allowing merging at these terminals reduced the required rolling stock to 74
for instance 20c, and 73 for instance 20d. That is a reduction of 3 respectively
2 train units compared to the results without merging (instance 20a and 20b).
Table 4.5 shows that the reduction in rolling stock for instance 20d is due to
merging of line A/A+/E and H/H+.

Line A/A+/E B/B+ Bx/C F/F+ H/H+ total
Train units 24 12 12 6 19 73

Table 4.5: Rolling stock usage on lines for twenty minute lineplan allowing
merging at terminals with running times deviating up to 5% from the scheduled
running time (instance 20d).

Figure 4.4 shows a timetable graph for the southern track segment from Kj to
Syv for the obtained timetable. The vertical axis represent time in the twenty
minute timeperiod, while the vertical axis represent the physical location on the
track network (the station). Each coloured linesegment represent either dwell
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time (vertical segments) or running time of the train lines. Hence, the end of
each linesegment represent either an arrival or a departure of a train line at the
given time and station. Note, that both directions of a train line are depicted, so
that running time in the northern direction is represented by SW-NE oriented
line segments, while running time in the southern direction is represented by
SE-NW oriented line segments.
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Figure 4.4: Visual representation of timetable when merging is allowed at ter-
minals for the tracksegment Kj - Syv. It is seen that, merging of lines A+
(cyan) and E (purple) occur at Kj, as the time between arrival of line A+ and
departure of line E (app. 8 min.) is in the interval [6,15].

4.4.3 Merging at Vesterport

Now, modification of the existing lineplan is allowed, by allowing merging of lines
at Vpt on the central track segment. However, allowing merging between all
lines, results in a timetabling instance which is too large to be solved. Therefore,
four lines (Bx, C, H, H+) are chosen, for which merging is allowed. A span
of +/-5% on the running times is used. After 20 hours of calculation time,
optimality had not been proven by CPLEX. However, an optimal solution of
73 train units had been reached. (Best possible solution objective was 72.12).
Hence, no reduction of rolling stock was obtained by allowing merging of only
these four lines. This can be due to the relatively small number of lineplans
(24) considered and the assumption (2.17) enforcing a minimum separation (¿4)
between the lines allowed to merge.

For experiments, where merging is allowed between more than four lines, no
integer solution was obtained within 20 hours of computation time.
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Figure 4.5: Visual representation of timetable when merging is allowed at ter-
minals for the tracksegment Hl - Hi (b). It is seen that, lines A (blue) and E
(purple) merge in Hi, while there is no merging between B (green) and B+ (light
green) in Hot.

4.5 Experiments with Ten Minute Interval Line-

plan

In this section, I will investigate a lineplan, in which all lines are operated at a
fixed interval of ten minutes.

The motivation for introducing ten minute frequency of lines is first of all to
reduce the number lines and thereby reduce the complexity of the timetabling
instance to be solved, in the hope that solutions allowing merging of lines at a
central track segment can be obtained. For the passengers, the result is a less
complex lineplan and fewer departure times to remember.

The initial ten minute frequency lineplan is constructed to be close to the basic
twenty minute frequency lineplan described previously. This is possible since
many track segments in the basic lineplan are serviced by pairs of lines (e.g. B
and B+ have the same route from Ht̊a to Hot). However, since not all lines
are paired, a choice has to be made as to which single lines are upgraded to
ten minute frequency and which are omitted. Line C and A+ are chosen to be
in the lineplan, while Bx is omitted. This results in a lineplan with increased
frequency (one extra train each 20 minutes) on the segments Ba-Fl, Bud-Ryt,
Dbt-Sam, and Und-Syv, but lower frequency (one train less each 20 minute) on
the segment Ht̊a-Dah. The remaining parts of the network has same frequency
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as in the basic 20 minute lineplan. The resulting lineplan is shown in figure 4.6.
The stopping pattern of each line has been revised slightly.

A B

H

F

C

A

F

A+

C

B

H

A+

VanJytIstHutHerSkoMptBaMwKidVsFs Øl Gtg St

EmtDytAngKetBudSgtBavSktHarVærFm

Kh

Vpt

Kn

Kk

Nht

Sam

Val Av

HitRdoBøtGlAlbTåHtå

Sjæ Syv

Hl

Hi Li Hot Vir Sft Ly Jæt GjBi

Bit

Nø

Fut

Ght

Kbn

Vgt

Bft

Dah

ÅmFrhAvøBsaIh

Ålm

GreKluSolJsiØlbKj Und

Ch

Op

Kl

Ryt

Dbt

NelVlb

Vat

Pbt

Fl

Figure 4.6: Lineplan with ten minute frequencies for all lines.

4.5.1 Basic scenario

In all instances a deviation of up to 5% from the scheduled running time is al-
lowed, whereas dwelltime is fixed. Turnaround time is defined as in the previous
section. No sycnchronisation between lines is enforced. Initially, no merging is
allowed and minimum headway is set to 2 minutes as in the previous instances.
This yields a PESP instance of 614 nodes, 827 edges, and 214 cycle basis edges.

Requiring a minimum headway of 2 minutes results in an infeasible timetabling
instance (since the timeperiod is 10 minutes and 5 lines uses the central track
segment, all lines must be separated by exactly 2 minutes at the central segment
and therefore have fixed running time along the central track segment). There-
fore, the minimum headway is reduced to 1.9 minutes in the following runs.
With no merging of lines a timetable is obtained using 79 train units. The
CPLEX solution time is 0.21 seconds. The rolling stock usage on the different
lines is shown in table 4.6.
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Line A A+ B C F H total
Train units 15 15 12 12 6 19 79

Table 4.6: Rolling stock usage on lines for basic ten minute lineplan.

4.5.2 Merging of lines

Now, we want to consider a set of lineplans allowing merging of the existing
lines at Vesterport(Vpt) station. Five lines (all lines except line F) uses Vpt,
and therefore 5! = 120 lineplans are considered. The minimum headway is set
to 1.9 minutes as in the previous instance.

After 20 hours of running CPLEX had still not determined the optimal solution.
However, the absolute gap was only 1.074 train units, yielding an optimal value
of either 76 or 77 train units. As the best possible solution is very close to 76, it
is not likely that 76 train units allows a feasible integer solution. Another run
may provide the evidence. The solution using 77 units gives a reduction of 2
train units compared to the scenario without line merging at Vpt, which would
give a considerable reduction of operational costs.

In a second run, the MIP emphasis and the variable selection strategy in the
CPLEX solution procedure is changed from their default values. The MIP
emphasis is set to emphasize finding an optimal solution, while the variable
selection strategy is set to strong branching. The optimal solution is found after
app. 7.5 hours, yielding a rolling stock usage of 77 train units.

Figure 4.7 shows a visual representation of the resulting timetable for the central
track segment. E.g. it is seen that the southern segment of line H (red) merges
with the northern segment of line C (orange) in both directions, hence creating
a new line between Fs and Kl. In figure 4.8 the resulting lineplan is depicted.

It should be noted that there are possibly many lineplans yielding a rolling
stock usage of 77 train units. Extending the objective function to also minimise
passenger travel and waiting time may thus result in a timetable with the same
rolling stock usage, which is more attractive for passengers.

Currently, trains from Holte, Hillerød and Klampenborg may continue towards
Ny Ellebjerg via Flintholm by changing to the circular track at Hellerup, hence
bypassing the central tracksegment. The planned infrastructure at Ny Ellebjerg
station, however, does not allow for trains on the circular track segment to
continue on the southern track and vice versa. In the following such an extension
of the infrastructure is considered. This allows for merging of lines at Hl and Nel
stations, thereby allowing line F to be extended in both northern and southern
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Figure 4.7: Visual representation of timetable with 10 minutes frequencies on
all lines and merging at Vpt.

direction.

We now consider lineplan 10b and allow merging at Hl and Nel, but not at Vpt,
hence an optimal timetable without merging requires 77 train units as obtained
above. After 20 hours of calculation the best integer solution uses 77 train units
with a lower bound of 76.4. Hence, the optimal schedule uses the same amount
of train units (77) as the original lineplan, and no further reduction in cost was
immediately obtained. However, allowing also merging at Vpt will enlarge the
solution space and in that case the cheapest solution may comprise an extension
of line F.

4.5.3 Connection constraints

So far, in the construction of timetables, passenger service level has not been
considered. This means that the obtained timetable and lineplan, may force
a relatively large number of passengers to change lines, lengthening their total
travel time. Also, for passengers changing between two lines at some station, the
waiting time may be very high. The latter problem may be reduced by intro-
ducing connection constraints, i.e. introducing an upper bound on the waiting
time for certain important connections.
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Figure 4.8: Visual representation of minimum cost lineplan with 10 minutes
frequencies on all lines.

We want to investigate whether the minimum cost lineplan 10b obtained in
section 4.5.2 can accomodate a timetable with small changing times for some
previously defined connections. To ensure low travel times between any two
stations on the same track segment, connection constraints are inserted between
the fast line, and the normal line on each finger (except the western finger),
e.g. in Und the waiting time when changing from line A+ to line A in the
northern direction is limited to 3 minutes, assuming a minimum transfer time
of 1 minute. At stations where the radial lines intersect the circular line F,
slightly higher waiting times (4 minutes) are allowed, still assuming a minimum
transfer time of 1 minute. To avoid restricting the instance too much, only
two to four connection constraints are introduced at each station. Table 4.7
summarises the connection constraints introduced.

Introducing these connection constraints results in a timetable using 80 train
units instead of 77, which is a significant increase in cost. Table 4.8 shows where
the cost is imposed, and gives an indication of which constraints are too tight.
F.ex. the cost on line A is increased by one which is likely to be due to one of
the connection constraints involving line A causing it to run slower along certain
track segments or have increased turnaround time at one of the terminals.

If the trade-off between passenger waiting time and rolling stock usage is known,
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Station From To Min Max
Und A+ north A north 1 4
Und A south A+ south 1 4
Ba H north C north 1 4
Ba C south H south 1 4
Bud A+ south A south 1 4
Bud A north A+ north 1 4
Hot C south B south 1 4
Hot B north C north 1 4
Nel A+ north F north 1 5
Nel F south A+ south 1 5
Dah B north F north 1 5
Dah F south B south 1 5
Fl H north F north 1 5
Fl F south H south 1 5
Fl H north F south 1 5
Fl F south H north 1 5
Ryt A+ south F south 1 5
Ryt F north A+ north 1 5
Hl C south F south 1 5
Hl F north C north 1 5

Table 4.7: Connection constraints

Line A B C A+ F H total
w/o. connection const. 11 12 16 17 6 15 77
w. connection const. 12 13 16 17 6 16 80

Table 4.8: Rolling stock usage on lines for ten minute lineplan with and without
connection constraints.

it is possible to find an optimal timetable, wrt. this service-cost trade-off. As an
example, in the following a maximum waiting time of eight minutes is assumed
for all connection constraints in table 4.8, i.e. each connection constraint have
span interval [1, 9]. Each train unit is assumed to have a weight (or cost) of
10. First assume that each minute a passenger must wait for a connecting train
(including minimum transfer time) have weight 0.1. The resulting timetable
uses the minimum number of train units (77), and the total waiting time on the
20 connections is 52 minutes (not considering the number of passengers using
each connection), giving an average waiting time of 2.6 minutes. Increasing the
weight of passenger waiting time to 1 results in a timetable using 79 train units,
but the total waiting time is reduced to 30 minutes, giving an average waiting
time of 1.5 minutes. The results are summarised in table 4.9.
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Weight Train Transfer time Waiting time
train unit connections units total total avg
10.0 0.1 77 72 52 2.6
10.0 1.0 79 50 30 1.5

Table 4.9: Rolling stock usage and passenger waiting time for different weights
on passenger waiting time (Weight, connections) at 20 predefined connections
with a minimum transfer time of 1 minute and maximum waiting time of 8
minutes.

If the number of transferring passengers at each connection is known, differ-
ent weights on transfer time may be assumed, allowing for a more accurate
estimation of average passenger waiting time.

4.6 Evaluation of Chain Cutting Planes

In this section the chain cutting planes developed in section 2.5 is evaluated
based on the effect on solution time. A few timetabling instances obtained
from the previous examples from S-train are solved with and without the chain
cutting planes.

In table 4.10, the optimisation time, CPLEX iterations, and branch-and-bound
nodes are shown for three instances with and without the use of chain cutting
planes. They clearly show that the chain cuts have no effect on the solution of
the instance. In fact, it seems that the solution space is not reduced at all, since
the number of CPLEX iterations and the number of branch-and-bound nodes
is the same with and without chain cuts.

inst. |N | |A| |C| opt. time iterations BB nodes
1 1124 2033 910 58 (61) 136712 (136712) 3429 (3429)
2 1124 2028 905 28 (27) 60824 (60824) 2940 (2940)
3 1142 2114 973 390 (386) 689633 (689633) 22257 (22257)
4 616 939 324 27280 (26716) 15077831 (15077831) 349124 (349124)

Table 4.10: The effect of chain cuts. CPLEX optimisation time (s), iterations,
and number of nodes in the branch and bound tree for some timetabling in-
stances with chain cutting planes. Figures in parenthesis are without chain
cutting planes. Instance 1-3 are for 20 minute interval lineplan without merging
at a non-terminal station, while instance 4 is for a ten minute interval lineplan,
in which merging is allowed at Vpt. CPLEX parameters were set to default for
instance 1-3 and to the non-default configuration (section 4.3.1) for instance 4.
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The fact that the chain cutting planes have no impact on the solution of the
instance is probably due to the structure of the timetabling instances, in which
the value of the bounds are relatively close to each other. This is likely to result
in many cycle integers with the same lower bound (2.7). In particularly, two
cycles consisting of many headway constraints (with the same lower and upper
bounds) are likely to have the same cycle integer bounds. If for some vertex
many of the lower bounds on the cycle integers associated with the fundamental
cycles passing through the vertex are equal, the respective chain cutting plane
is not tight. In particular, if all the lower bounds are equal (e.g. 0), the chain
cutting plane does not impose any restrictions to the problem at all. For all the
instances, it holds that many of the cycle integer lower bounds are equal, and
the cuts obtained therefore impose little or no restriction of the solution space.

4.7 Summary and Conclusion on Experiments

Based on the S-train network, a number of lineplans and timetabling instances
have been created and solutions have been obtained using CPLEX to solve the
underlying PESP instance.

Instances with a timeperiod of 20 minutes and 11 lines were easily solved as
long as the lineplan was fixed. However, when considering several lineplans (by
allowing merging at a central tracksegment), the solution time increased dras-
tically. An optimal solution was found when considering 24 different lineplans
by merging of four lines. This solution could also have been obtained using
enumeration as the number of lineplans is small.

When reducing the total number of lines to six (and thereby the total number
of constraints) by doubling the line frequency, a solution to a timetabling in-
stance, considering 120 lineplans, was obtained in reasonable time (7.5 hours).
Allowing merging of lines at Vpt decreased the optimal solution by two train
units compared to the fixed lineplan first considered. A solution considering 144
lineplans (allowing merging at Nel and Hl) was obtained in less than 20 hours,
but did not result in a further reduction of train units.

From the experiments shown, it is clear that most of the operational require-
ments for constructing periodic timetables can be modeled using the Periodic
Event Scheduling Problem. Furthermore, good solutions minimising total rolling
stock usage as well as estimated passenger waiting time on selected connections
can be found for relatively large railway networks in reasonable time.

Also, advanced modelling possiblities makes it possible to integrate aspects of
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other planning phases, such as lineplanning and rolling stock circulation into
the timetabling process, at least for networks of limited size.



Chapter 5

Conclusion

5.1 Summary

In this report, the Periodic Event Scheduling Problem and its Cycle Periodicity
formulation is described and important properties and modelling possibilities
are investigated. In particular, it has been shown how sequencing and matching
of events can be modelled by PESP constraints. Furthermore, a class of cutting
planes for the CPF has been derived.

Secondly, the problem of constructing periodic railway timetables is addressed,
and it is shown how the most important aspects of timetabling can modelled
using the PESP. Furthermore, advanced planning possibilities (i.e. merging of
lines) is introduced by employing matching of events.

Finally, a number of timetables are constructed for the Copenhagen S-train ser-
vice. Merging of lines was first employed between two lines at terminal stations.
Secondly, merging was used at a central station, breaking up the initial lineplan
and creating a larger solution space. Finally, constraints on the passenger wait-
ing time on selected connections are introduced, and the sum of these waiting
times are incorporated into the objective function.



70 Conclusion

5.2 Further Activities

The modelling and experimentation described in this report is, of course, lim-
ited. Other modelling possibilities and experiments are relevant in the context
of timetabling, some of which has previously been described in the litterature.
Also, further research in optimisation methods tailored for the specific applica-
tion will be interesting in order to be able to solve large problems arising from
the integration of planning phases.

5.2.1 Model improvement

In the timetabling model presented in section 3.2, slack time is implicitly taken
into account, as it is incorporated into the minimum running time d−. It is there-
fore fixed for each track segment between stations. In theory, it may be that a
small reduction in the slack at certain track segments or terminals (turnaround),
will allow for a significantly cheaper timetable, e.g. by saving one train unit. As
a reduction in slack probably incur a less robust timetable, one must consider
the trade-off between cost and robustness. What consequences does a reduction
in slack at some track segment have on the robustness of the entire system? If
these two questions can be answered, one may incorporate the slack into the
objective function, penalising timetables with possibly very low cost, but also
low robustness. Alternatively, one may allow a different distribution of the slack
over several track segments and/or lines.

Timetable symmetry may be introduced into the model, however, exceeding the
PESP framework. How would ensuring symmetric timetables affect the solutions
wrt. e.g. rolling stock usage, and how would the solution time be affected?

5.2.2 Minimising passenger travel time

As mentioned in section 3.3, minimising passenger travel time when constructing
timetables is difficult. In the following, a heuristic to minimise expected total
passenger travel time in a railway network is outlined.

The method assumes that origin-destination data describing the average number
of passenger travelling from any station to any other station in the railway
network is available for the duration of the planning period only (e.g. rush hour,
if a timetable is constructed for rush hour only).
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First the PESP constraint graph G associated with the timetabling instance is
constructed. Secondly, a graph F is constructed that defines the possible move-
ments of passengers. F consists of all nodes and all train dwell- and running
time constraints in G, as well as connection constraints allowing passengers to
change between lines at stations. In F is also inserted for each station two
nodes, representing departure from respectively arrival to that station. Edges
are inserted from each departure node to all train departure nodes at the re-
spective station. Similarly, edges are inserted from all train arrival nodes to the
respective passenger arrival node at each station.

In each iteration of the heuristic, shortest paths in F for each unordered pair
of stations from passenger departure node to passenger arrival node of the re-
spective stations, are calculated. This makes it possible to estimate the number
of passengers using each edge of PESP constraint graph and assign weights to
the PESP problem accordingly. Then, the PESP is solved yielding an optimal
timetable given the fixed passenger flow. At each iteration, the passenger flow is
calculated based on the travel times given by the solution to the PESP instance
solved in the previous iteration. In the first iteration, the routing of passengers
may done using minimum travel times, i.e. lower bounds of the PESP graph,
yielding a lower bound to the total passenger travel time.

Having one passenger departure node for each station and letting travel time
to and from these nodes be 0 assumes that passengers plan their trip to arrive
at the station exactly in time to catch the best/fastest connection. This is very
unlikely due to arrival times of connecting buses or trains. However, an arbitrary
discrete distribution of arriving passengers may be assumed by replacing each
single passenger departure node in F by an arbitrary number of nodes, each
representing a specific point in time in the reference timeperiod [0, T [, and each
connected to all departing lines at the station.

The heuristic is halted after a certain number of iterations or when convergence
of the obtained solutions is observed.

Although common when assigning traffic flows in road network models, the
method has not, to my knowledge, been applied when designing timetables for
public transportation. Also, it is not known whether the method will result in
solutions that are converging.

5.2.3 Efficiency measures

For large timetabling instances, solving the MIP formulation using CPLEX
is still too time consuming for most practical purposes. Several measures to
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improve efficiency of the solution procedure may be investigated.

Liebchen et. al has done a study on the effect of some CPLEX parameters.
However a comprehensive study may be needed for each specific timetabling
problem to determine the optimal combination of parameters, since this may
depend on the specific structure of the instance under consideration.

The impact of choosing a good cycle basis has been studied intensively, in partic-
ular by Liebchen and Peeters. However, it is still not clear how the optimal cycle
basis should be constructed. E.g., is it worth to consider not only generalised
fundamental cycle basis, but the entire domain of integral cycle bases, in order
to get a good MIP formulation? The trade-off is longer cycle basis calculation
time.

In this project, the cycle integer bounds (2.7) are introduced only for cycles
in the cycle basis. However, in principle these cycle cutting planes can be
introduced for all cycles in the constraint graph. For which (possibly all) cycles
should the cycle cutting planes be enforced, and what is the impact on solution
time?

A further investigation of the chain cutting planes (2.10) would be both relevant
and interesting, especially in relation to the structure of the constraint graph.
Which types of PESP instances (if any) benefit from chain cutting planes, and
which do not?

The chain cutting planes are based on cycle integer lower bounds. Possibly,
similar cutting planes may be developed based on upper bounds. If so, will
these have any impact on the solution space?

5.3 Conclusion

The objective of this thesis has in general been to investigate the PESP model
and its application to timetable construction for periodic railway systems, and
in particular to develop timetables for S-train using the PESP. The project has
shown that it is possible to construct timetables, minimising the number of
required train units for the full S-train network (excluding line Ex) using the
CPF formulation of the PESP in reasonable time. Furthermore, for a smaller
network it is possible to integrate aspects of lineplanning extending the original
PESP model to obtain timetables of lower cost in reasonable time. However,
further research especially in the area of solution methods and adjustment of
solution methods for specific instances may be necessary to solve larger problems
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and make it possible to facilitate greater integration of planning phases.
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Appendix A

Stations

The following table shows the station abbrevations and full name, as well as,
the required dwell time at each station.

Abbreviation Station Dwell time (s)
Alb Albertslund 20
Li Allerød 20
Avø Avedøre 10
Ålm Ålholm 10
Åm Åmarken 10
Bav Bagsværd 10
Ba Ballerup 20
Bft Bernstorffsvej 10
Bi Birkerød 20
Bit Bispebjerg 10
Bsa Brøndby Strand 10
Bøt Brøndbyøster 20
Bud Buddinge 10
Ch Charlottenlund 10
Dah Danshøj 10
Dbt Dybbølsbro 10
Dyt Dysseg̊ard 10
Elb Ellebjerg 10
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Emt Emdrup 10
Av Enghave 10
Fm Farum 0
Fl Flintholm 30
Fs Frederikssund 0
Frh Friheden 10
Fut Fuglebakken 10
Gj Gentofte 10
Gtg Gl. Tofteg̊ard 10
Gl Glostrup 20
Gre Greve 10
Ght Grøndal 10
Har Hareskov 10
Hl Hellerup 30
Her Herlev 20
Hi Hillerød 0
Hot Holte 20
Ht̊a Høje Taastrup 0
Und Hundige 20
Hut Husum 10
Hit Hvidovre 20
Ih Ishøj 20
Ist Islev 10
Jæt Jægersborg 20
Jsi Jersie 10
Jyt Jyllingevej 10
Klu Karlslunde 10
Kbn KB Hallen 10
Ket Kildebakke 10
Kid Kildedal 10
Kl Klampenborg 0
Kh København H 60
Kj Køge 0
Vat Langgade 10
Ly Lyngby 20
Mpt Malmparken 10
Mw Måløv 10
Nht Nordhavn 10
Nø Nørrebro 20
Kn Nørreport 30
Nel Ny Ellebjerg 0
Op Ordrup 10
Ølb Ølby 10
Øl Ølstykke 10
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Kk Østerport 30
Pbt Peter Bangs Vej 10
Rdo Rødovre 20
Ryt Ryparken 20
Sjæ Sjælør 20
Skt Skovbrynet 10
Sko Skovlunde 10
Sol Solrød Strand 10
Sft Sorgenfri 10
Sgt Steng̊arden 10
St Stenløse 10
Sam Svanemøllen 20
Syv Sydhavn 10
T̊a Taastrup 20
Val Valby 30
Vlb Vallensbæk 10
Ang Vangede 10
Van Vanløse 20
Vær Værløse 10
Vs Veksø 10
Vpt Vesterport 30
Vgt Vigerslev Allé 10
Vir Virum 10
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Appendix B

Running times

The following table shows the running time between pairs of station in each di-
rection according to the current schedule, as well as, the +/-5% band. Direction
= 0 denote southern direction, while direction = 1 denote northern directions.

From To Direction Scheduled runtime (min) -5% +5%
Ht̊a T̊a 1 2.17 2.06 2.28
T̊a Ht̊a 0 2.00 1.90 2.10
T̊a Alb 1 2.67 2.53 2.80
Alb T̊a 0 3.17 3.01 3.33
Alb Gl 1 2.67 2.53 2.80
Gl Alb 0 2.67 2.53 2.80
Gl Bøt 1 2.17 2.06 2.28
Bøt Gl 0 2.67 2.53 2.80
Bøt Rdo 1 1.67 1.58 1.75
Rdo Bøt 0 1.67 1.58 1.75
Rdo Hit 1 1.67 1.58 1.75
Hit Rdo 0 1.67 1.58 1.75
Hit Dah 1 1.17 1.11 1.23
Dah Hit 0 1.17 1.11 1.23
Dah Val 1 2.00 1.90 2.10
Val Dah 0 1.67 1.58 1.75
Val Av 1 1.83 1.74 1.93
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Av Val 0 2.50 2.38 2.63
Av Dbt 1 2.33 2.22 2.45
Dbt Av 0 2.33 2.22 2.45
Hl Sam 0 2.67 2.53 2.80
Sam Hl 1 2.50 2.38 2.63
Sam Nht 0 1.83 1.74 1.93
Nht Sam 1 1.67 1.58 1.75
Nht Kk 0 2.00 1.90 2.10
Kk Nht 1 1.83 1.74 1.93
Kk Kn 0 1.50 1.43 1.58
Kn Kk 1 2.50 2.38 2.63
Kn Vpt 0 1.50 1.43 1.58
Vpt Kn 1 1.50 1.43 1.58
Vpt Kh 0 1.50 1.43 1.58
Kh Vpt 1 1.00 0.95 1.05
Kh Dbt 0 1.33 1.27 1.40
Dbt Kh 1 2.50 2.38 2.63
Fs Øl 1 5.33 5.07 5.60
Øl Fs 0 6.00 5.70 6.30
Øl Gtg 1 2.83 2.69 2.98
Gtg Øl 0 2.33 2.22 2.45
Gtg St 1 1.83 1.74 1.93
St Gtg 0 1.83 1.74 1.93
St Vs 1 3.33 3.17 3.50
Vs St 0 3.33 3.17 3.50
Vs Kid 1 2.83 2.69 2.98
Kid Vs 0 2.83 2.69 2.98
Kid Mw 1 2.33 2.22 2.45
Mw Kid 0 2.33 2.22 2.45
Mw Ba 1 3.17 3.01 3.33
Ba Mw 0 2.83 2.69 2.98
Ba Mpt 1 1.83 1.74 1.93
Mpt Ba 0 2.17 2.06 2.28
Mpt Sko 1 1.33 1.27 1.40
Sko Mpt 0 1.83 1.74 1.93
Sko Her 1 2.17 2.06 2.28
Her Sko 0 2.33 2.22 2.45
Her Hut 1 1.83 1.74 1.93
Hut Her 0 1.67 1.58 1.75
Hut Ist 1 1.83 1.74 1.93
Ist Hut 0 1.83 1.74 1.93
Ist Jyt 1 1.83 1.74 1.93
Jyt Ist 0 1.33 1.27 1.40
Jyt Van 1 1.67 1.58 1.75
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Van Jyt 0 1.33 1.27 1.40
Van Fl 1 1.00 0.95 1.05
Fl Van 0 1.17 1.11 1.23
Fl Pbt 1 1.33 1.27 1.40
Pbt Fl 0 1.00 0.95 1.05
Pbt Vat 1 1.83 1.74 1.93
Vat Pbt 0 1.83 1.74 1.93
Vat Val 1 1.50 1.43 1.58
Val Vat 0 1.33 1.27 1.40
Hi Li 0 6.17 5.86 6.48
Li Hi 1 6.00 5.70 6.30
Li Bi 0 4.17 3.96 4.38
Bi Li 1 4.67 4.43 4.90
Bi Hot 0 4.67 4.43 4.90
Hot Bi 1 3.67 3.48 3.85
Hot Vir 0 2.33 2.22 2.45
Vir Hot 1 1.67 1.58 1.75
Vir Sft 0 1.83 1.74 1.93
Sft Vir 1 1.83 1.74 1.93
Sft Ly 0 3.17 3.01 3.33
Ly Sft 1 2.33 2.22 2.45
Ly Jæt 0 1.67 1.58 1.75
Jæt Ly 1 1.67 1.58 1.75
Jæt Gj 0 1.83 1.74 1.93
Gj Jæt 1 1.67 1.58 1.75
Gj Bft 0 1.83 1.74 1.93
Bft Gj 1 1.83 1.74 1.93
Bft Hl 0 2.00 1.90 2.10
Hl Bft 1 1.83 1.74 1.93
Kl Op 0 2.33 2.22 2.45
Op Kl 1 2.50 2.38 2.63
Op Ch 0 1.83 1.74 1.93
Ch Op 1 1.83 1.74 1.93
Ch Hl 0 3.00 2.85 3.15
Hl Ch 1 2.83 2.69 2.98
Fm Fbk 0 1.00 0.95 1.05
Fbk Fm 1 1.00 0.95 1.05
Fbk Vær 0 1.93 1.84 2.03
Vær Fbk 1 2.60 2.47 2.73
Vær Har 0 2.83 2.69 2.98
Har Vær 1 2.83 2.69 2.98
Har Skt 0 2.33 2.22 2.45
Skt Har 1 2.33 2.22 2.45
Skt Bav 0 2.33 2.22 2.45
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Bav Skt 1 1.83 1.74 1.93
Bav Sgt 0 1.83 1.74 1.93
Sgt Bav 1 1.83 1.74 1.93
Sgt Bud 0 1.83 1.74 1.93
Bud Sgt 1 1.83 1.74 1.93
Bud Ket 0 1.83 1.74 1.93
Ket Bud 1 1.83 1.74 1.93
Ket Ang 0 1.83 1.74 1.93
Ang Ket 1 1.83 1.74 1.93
Ang Dyt 0 1.83 1.74 1.93
Dyt Ang 1 1.83 1.74 1.93
Dyt Emt 0 1.83 1.74 1.93
Emt Dyt 1 1.83 1.74 1.93
Emt Ryt 0 2.67 2.53 2.80
Ryt Emt 1 2.33 2.22 2.45
Ryt Sam 0 2.17 2.06 2.28
Sam Ryt 1 2.17 2.06 2.28
Kj Ølb 1 2.33 2.22 2.45
Ølb Kj 0 3.50 3.33 3.68
Ølb Jsi 1 3.83 3.64 4.03
Jsi Ølb 0 3.83 3.64 4.03
Jsi Sol 1 1.83 1.74 1.93
Sol Jsi 0 1.83 1.74 1.93
Sol Klu 1 3.83 3.64 4.03
Klu Sol 0 3.83 3.64 4.03
Klu Gre 1 2.33 2.22 2.45
Gre Klu 0 2.33 2.22 2.45
Gre Und 1 2.67 2.53 2.80
Und Gre 0 2.83 2.69 2.98
Und Ih 1 2.17 2.06 2.28
Ih Und 0 2.17 2.06 2.28
Ih Vlb 1 2.33 2.22 2.45
Vlb Ih 0 2.17 2.06 2.28
Vlb Bsa 1 1.83 1.74 1.93
Bsa Vlb 0 2.33 2.22 2.45
Bsa Avø 1 2.33 2.22 2.45
Avø Bsa 0 1.83 1.74 1.93
Avø Frh 1 1.83 1.74 1.93
Frh Avø 0 1.83 1.74 1.93
Frh Åm 1 1.83 1.74 1.93
Åm Frh 0 1.83 1.74 1.93
Åm Nel 1 1.33 1.27 1.40
Nel Åm 0 1.83 1.74 1.93
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Nel Sjæ 1 2.17 2.06 2.28
Sjæ Nel 0 2.33 2.22 2.45
Sjæ Syv 1 1.33 1.27 1.40
Syv Sjæ 0 1.67 1.58 1.75
Syv Dbt 1 2.83 2.69 2.98
Dbt Syv 0 2.33 2.22 2.45
Hl Ryt 0 2.17 2.06 2.28
Ryt Hl 1 2.00 1.90 2.10
Ryt Bit 0 1.83 1.74 1.93
Bit Ryt 1 2.17 2.06 2.28
Bit Nø 0 1.17 1.11 1.23
Nø Bit 1 1.33 1.27 1.40
Nø Fut 0 1.33 1.27 1.40
Fut Nø 1 1.17 1.11 1.23
Fut Ght 0 1.33 1.27 1.40
Ght Fut 1 1.33 1.27 1.40
Ght Fl 0 1.50 1.43 1.58
Fl Ght 1 1.83 1.74 1.93
Fl Kbn 0 1.83 1.74 1.93
Kbn Fl 1 1.50 1.43 1.58
Kbn Ålm 0 0.83 0.79 0.88
Ålm Kbn 1 1.33 1.27 1.40
Ålm Dah 0 1.17 1.11 1.23
Dah Ålm 1 0.83 0.79 0.88
Dah Vgt 0 1.33 1.27 1.40
Vgt Dah 1 1.67 1.58 1.75
Vgt Nel 0 1.50 1.43 1.58
Nel Vgt 1 1.33 1.27 1.40
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Appendix C

Turnaround times

The bounds on the turnaround times used (in minutes) are summarised in the
following table.

Station Type Min. time Max. time
Ht̊a platform 6 15
Ht̊a shunting 10 18
Hot platform 6 15
Hot shunting 10 18
Kl both 6 15
Ba platform 6 15
Ba shunting 10 18
Fs both 6 15
Fm both 6 15
Bud both 10 18
Und both 6 15
Kj both 6 15
Nel both 6 15
Hl platform 6 15
Hl shunting 10 18
Hi platform 6 15
Kk both 6 15
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