
Cross-Docking

JIN.BIN

May 5, 2006

Abstract

Cross-docking techniques are applied universally across a wide range of busi-
nesses working in many market sectors. This dissertation provides a solution
method of solving the Cross-Docking problem to optimality by applying the
Column Generation technique. The feature and computation complexity of
the Cross-Docking problem are discussed in details. The master problem and
pricing subproblem are set up according to the column generation structure.
Three algorithms are developed to solve the subproblem from a closed optimal
value to the optimality, in which brings the possibility of solving the Cross-
Docking problem to optimality. The issues of implementation techniques are
discussed including dertermining a start point, adding new columns, stop crite-
ria and branching and bounding. The testing result shows that the application
of column generation in solving the Cross-Docking problem is successful and
promising. We also make a further study of how the time window constraint
and capacity constraint affect the Cross-Docking problem.

i

Acknowledgements

The author benefited from fruitful discussions with Larsen Jesper . I am grate-
ful to my supervisor, Larsen Jesper, for his experienced suggestion and helpful
comments on Column Generation technolodgy, both in theory and in practical
implementation. His constant support and encouragement inspired me to carry
on this project through to the very last ending. And I gained great interest in
every step forward during the project.

I also appricaited Clausen Jens for his help in dual problem discussion and
Thomas K. Stidsen for his support in development environment setup.

Last, but not least, I would like to thank my friends, Hua Wang, TianShun
Ye. They helped me getting through using the weird LaTex in writting the
report.

ii

Contents

1 Introduction 1

2 Problem Description 3

3 Problem Analysis 5
3.1 Feature of Cross-Docking Problem 5
3.2 Compared with other Pickup and Delivery VRP 7
3.3 Single Path and Combination Path 8
3.4 Time Windows in Cross-Docking Problem 9

4 Overview of Column Generation 11
4.1 Column Generation Technique 11
4.2 Dantzig and Wolfe Decomposition 13
4.3 Integrality Property . 14

5 Modeling of Cross-Docking Problem 15
5.1 Modeling of Cross-Docking Problem 15
5.2 Master Problem . 20
5.3 Subproblem . 21

6 GPLA for SPPTW 23
6.1 SPPTW Problem . 23
6.2 SPP and RCSPP . 23
6.3 GPLA for SPPTW . 24
6.4 Path and Label Treatment . 25
6.5 A New Order of Treatment of Labels 27
6.6 The Concept of A Generalized Bucket 29
6.7 GPLA Algorithm . 31

7 NDCA for SPPTW 33
7.1 Review of GPLA . 33
7.2 Dominance Test for the Label being Treated 34
7.3 Dominance Test for the Original Label 38
7.4 Backward-looking Dominance Test 40

iii

8 NDCA Adapting for Subproblem 42
8.1 Applying the NDCA in RCSPP 42
8.2 Applying the NDCA in Subproblem 43
8.3 Adapting the NDCA in Subproblem 43

9 CDSPA for Subproblem 45
9.1 Combination Path and Connective Path 45
9.2 CDSPA Solution Method . 47
9.3 Prominent Label . 50
9.4 New Objective Function . 58
9.5 Fast Dominance Test . 63
9.6 Master Label Extension . 65
9.7 Master Label Dominance . 66
9.8 Insertion of Master Label . 68
9.9 Waiting Label and Waiting List 70
9.10 Store Destination Label . 74
9.11 Final Dominance Test . 75
9.12 Conclusion of CDSPA . 76

10 The Optimal Cross-Docking Shortest Path Algorithm 77

11 Implementation of Subproblem 78

12 Implementation of Column Generation 80
12.1 Start Point . 80
12.2 Add Column into RMP . 81
12.3 Stop Criteria . 82
12.4 Branch and Bound . 83

13 Numeric Result 85
13.1 Subproblem Algorithm . 85
13.2 Column Generation Testing . 89
13.3 Increase Maximum Capacity Resource 103
13.4 Time Constraint of Subpath . 106
13.5 Solve Cross-Docking Problem Using NDCA Only 108

14 Conclusion and Recommendation for Future Research 114

Reference 116

Appendix 118

A Algorithm 118

iv

Chapter 1

Introduction

Switching from a traditional stockholding supply chain system to a cross-docking
system. Cross-docking techniques are applied universally across a wide range of
businesses working in many market sectors. The basic business motivations for
utilizing cross-docking techniques include increased stock flow, reduced stock-
holding, improved resource utilization and reduced delivery lead times.

A simple definition of cross-docking is as followings: receiving product from
a supplier or manufacturer for several end destination and consolidating this
product for common final delivery destinations. The key to the process is trans-
shipping , not holding stick. Equally important is the process of turning ex-
pensive delivery consignments into economic loads through consolidation and
resource sharing. For many businesses it is essential to keep track of product
consignments as they progress along the supply chain. An increasingly topical
theme for many bussiness is manipulating product into a user-friendly form for
the end user.

The key benifits results from the adoption of cross-docking techniques relate
to improvements in service levels, inventory levels, stocking returns and unit
costs.

In our dissertation, the cross-docking problem is to deliver each customer’s
order from the pickup node to the delivery node through cross-docking at the
depot. The objective is to achieve a minimal total time consuming of all the
deliverys. In addition to find the shortest ways of delivery orders, the reduced
time cost by improved resource utilization should also bring to consideration.
Obviously, the cross-docking problem is an NP-hard problem.

Dantzig-Wolfe decomposition and column generation, devised for linear pro-
grams, is a success story in large scale integer programing. Column generation
is nowadays a prominent method to cope with a huge number of variables. The
embedding of column generation techniques within a linear programing based

1

branch-and-bound framework was the key step in the design of exact algorithms
for a large class of integer programs.

We apply column generation technique in solving the cross-docking problem
to optimality. We merge promising contemporaty research works with more
classical solution strategies in the implementation process. The key in solving
the Cross-Docking problem to optimality is to find the shortest path with con-
sideration of saving loading effort. Three algorithms are developed to solve the
subproblem from closed optimal value to optimality. NDCA and CDSPA are to
find the closed optimal value of single path or combination path, respectively.
OCDSPA is to solve the subproblem into optimality. Issues of implementation
to solve the master problem are tailored and discussed including selecting an
initial start point, adding columns into the master problem, stop criteria and
branch-and-bound.

This disseration is organized into five main parts.

1. Problem and analysis. Section2 gives the details of the problem descrip-
tion; section3 analyses the feature of the Cross-Docking problem and
makes comparation with other VRP.

2. Column generation technique and modeling of the Cross-Docking problem.
Section4 gives an overview of column generation technique; section5 builds
an original model of the Cross-Docking problem and sets up the master
problem and the pricing subproblem.

3. Solving the subproblem. Section6 to 10 are dealing with the subproblem.
Section6 introduces the GPLA which is a foundation of development of
the three new algorithms for the subproblem; section6 and 8 describ the
NDCA and its adaption to the subproblem; section9 and 10 describ the
CDSPA and the OCDSPA algorithm.

4. Implementation. Section11 is the implementation of the three algorithms
of the subproblem; section12 is the implementation of the column gener-
ation technique in solving the master problem.

5. Numeric result and conclusion. Section13 is the numeric result and anal-
ysis; section14 is a conclusion.

2

Chapter 2

Problem Description

The Cross-Docking Problem is issued from Transvision and Jakob Birkedal
Nielsen.

We have a set of pickup-and-delivery orders, that is, each order can be charac-
terized by a place where we have to pickup the cargo and another place where
it has to be delivered. For each order we furthermore have the size measured in
number of pallets. Now the orders can not be driven directly from the pickup
place to the delivery place. They first have to go to a central distribution facility
denoted the depot. A node is either the depot, a pickup place or a delivery place.

At the depot we have a fleet of vehicles that leave at 6am in the morning
and has to be back at latest at 10pm in the evening. All trucks are identical
wrt. capacity. So each of the orders have to be transported from the pickup
place to the depot and then from the depot to the delivery place. In order to
complicate matters time windows on the customers can be added but this is not
part of the initial problem. It is allowed for a vehicle first to collect orders drive
to the depot offload some but not all orders, onload additional orders and drive
out again on a ”delivery route”.

For the problem we have realistic data generated based on a Danish scenario.
For simplicity we assume use Euclidean distances, and assume that the trucks
can keep a constant speed of 60 km/h on the road. No order must be left
overnight in the depot.

For each node it takes 10 minutes to dock the truck and a further 1 min for
each pallet that needs to be on- or off-loaded. Our aim is to minimize the total
time needed to deliver the orders. Additions to the objective like minimize the
number of vehicles and equal load sharing can be discussed in a more elaborate
project.

Figure 2.1 show a cross-docking problem instance. We have seven customers

3

A, B, C, D, E, F and G. O is the deport. Each customer has one pickup node
pi and one delivery node di. The task is to deliver every customer’s order from
pi to di. In figure 2.1 the left part contains two pickup routes, the right part
contains three delivery routes. A, B, C, D and E, F , G are first pickuped up
by pickup route seperately and transported back to the deport. Some orders
are offloaded and uploaded into different vehicles, others stay on the same ve-
hicles. After reloading process at the deport, the seven orders are grouped into
three delivering routes, A and G, B and D, C, E and F , and delivered to their
delivery nodes.

If we call a route start from depot and end at depot as subroute, figure 2.1
also shows that each subroute only contains one type of node, pickup node and
delivery node are never visited by a same subroute.

depot

A

G’

E’

D’

B

B’

Pickip subpath Delivery subpath

C

D

E

F
G

F’

A’

C’

Figure 2.1: The Cross-Docking Problem

We would like a solution approach to the described problem (either heuristic or
optimal) preferably with a mathematical model. If a heuristic is produced we
would like an assesment of the quality of the solutions.

4

Chapter 3

Problem Analysis

3.1 Feature of Cross-Docking Problem

First we analyse the problem from the view of customer. Each customer has two
service nodes, a pickup node and a delivery node. The service of a customer is to
transport the order from its pickup node to its delivery node. The pickup node
can be considered as a supply; the delivery node can be considered as a demand.
Thus each customer has both supply and demand. The service is accomplished
in two steps: 1)a customer’s order is first picked up at the pickup node, then
transported back to the deport and offloaded(if necessary). We denote this step
as pickup and the transporting path as pickup subpath; then 2)From the deport,
a customer’s order is transported to the delivery node from the depot We denote
this step as delivery and the transporting path as delivery subpath. Figure 3.1
show a whole trasportation process of service of a customer.

Second we analyse the problem from the view of vehicle routing. A vehicle can
service more than one pickup orders in a pickup subpath, and can service more
than one delivery orders in a delivery subpath. However, these two tasks is
never inter-mixed. A vehicle can only pickup orders on the pickup path; and
can only delivery orders on the delivery path. A vehicle can switch job between
pickup and delivery or choose to do one type of job only. The job switching is
only allowed at the deport only if a vehicle finishes its last job.

Tow situations of job switching process occuring at the deport: (a)a vehicle
switches from pickup job to delivery job; (b)a vehicle swithes from delivery job
to pickup job.

In (a) situation, after a vehicle has picked up some customers’ order from pickup
nodes and back to deport, it doesn’t have to offload all the orders. In another
word, if some part of the pickup orders are on the delivery path, they won’t be
offloaded at the deport. The vehicle will keep those orders onload, and upload

5

Figure 3.1: Transportation service of a customer

6

some additional delivery orders, which have already been transported into the
deport. Thus on a delivery subpath, a delivery order is either a directive pickup
order from the pickup subpath or a delivery order uploaded at the deport. Dur-
ing a job switching in situation (a), by keeping some orders onload on the vehicle
at the depot, we can save time consuming on offloading and uploading directive
pickup-delivery orders. This is the point of time saving in the cross-docking
problem.

Obvioulsy, in (b) situation, a vehicle’s onloading capacity is none after deliver-
ing the orders, no time saving can achieve from the job switching.

The Cross-Docking problem is to find the optimal path set which achieve deliv-
ering all orders in a minimum time cost. In addition to considering the set of
shortest path covering each customer nodes, the time consuming on job switch-
ing at depot should also be taken into account.

3.2 Compared with other Pickup and Delivery

VRP

The cross-docking problem is different from some other pick-up and delivery
vehicle routing problems(PDVRP) studied before.

In dial-a-ride problem(DARP), where goods are picked up at one location and
transported to an other location, the orders don’t have to be transported back
to the central deport as a connective node of the pickup part and delivery part.
Thus DARP won’t consider the time consuming of offloading and uploading at
the deport.

In VRP with backhauls problem(VRPB), where goods are transported to and
from the central depot, however, each customer has either a demand or supply,
but not both. This model indicates that none directive pickup-delivery orders
exist at all, so as that none time saving can be made from directive pickup-
delivery orders, The most advantage in our cross-docking problem disappears.

In VRP with simultaneous delivery and pick-up points(VRPSP), where goods
are transported to and from the central deport, and each customer has demand
and a supply, and the operations must be made simultaneously. However, in
cross-docking problem, as the pickup node and the delivery node of a customer
are in seperate places, the pickup and delivery operation can’t be made at a
same time. Also as in DARP, there is none time consuming of offloading and
uploading orders at the deport.

Thus, the cross-docking problem is clearly different from situations in the above
pick-up and delivery vehicle routing problems. We can’t use any solution method

7

from those PDVRP. The feature of cross-docking problem is the time saving from
loading(uploading/offloading) directive pickup-delivery orders. Our goal is to
find more directive pickup-delivery orders; and also keep the shortest path set
under a low value level. we starts from a study of the capacity constraints.

3.3 Single Path and Combination Path

In pickup subpart, a vehicle starts from deport with none capacity usage. The
capacity usage is increased each time after visiting a customer pickup node.
When back to the deport, the vehicle’s onloading capacity reaches the maxi-
mum capacity usage of the pickup path.

In delivery subpart, a vehicle starts from deport with uploading all delivery
orders of the delivery subpath. The vehicle’s onloading capacity is the maxi-
mum capacity usage of the delivery path. Each time after visiting a customer,
the capacity usage is decreased by the customer’s order. When back to deport,
the vehicle’s capacity usage is zero.

Above are two conversed vehicle routing procedures. However they both possess
a same capacity constraint property. That is, in each subpath, the maximum ca-
pacity usage should never excceed CAP, CAP is the maximum vehicle onloading
capacity:

pickup subpath :
∑

i∈PI

qi ≤ CAP (3.1)

delivery subpath :
∑

i∈DE

qi ≤ CAP (3.2)

PI, DE is the node set covered by pickup path and delivery path, respectively.

Thus, regarding to capacity constraint, a pickup subpath and a delivery sub-
path are equivalent. A delivery subpath can be considered as a pickup subpath:
starting from deport with zero capacity usage and increasing the capacity usage
each time by visiting a customer. Now to find a shortest delivery path is the
same as to find a shortest pickup path.

The same capacity constraint feature in both subpaths illuminate us a gen-
eral way of solving the cross-docking problem. We can seperate the pickup part
and delivery part into two equivalent subparts. Each subpart can be considered
as an independent vehicle routing problem. In general solution method of VRP,
a set of shortest paths will be generated in order to covery every customer nodes.
In our problem, these shortest path will also satisfy capacity constraint and time
window constraint, that is vehicles start routing after Tstart and should finish
all delivery before Tend. Moreover, we can’t solve these two subparts completely
seperately. We still have to think of the saving time by directive pickup-delivery

8

order, which builds a relationship between a pickup subpath with a delivery sub-
path.

There are three types of paths defined by different kinds of nodes they’re cov-
ering:

1. pickup path only covers pickup nodes;

2. delivery path only covers delivery nodes;

3. path covers both pickup nodes and delivery nodes;

The first two paths are the same as they contain only one job, we name it single
path or subpath. The single path should meet time window constraint and ca-
pacity constraint. We will build a new algorithm for the negative reduced cost
single path, named NDCA, which is developed based the GPLA.

The third path contains both pickup and delivery jobs, which is the point to
construct the optimal solution in Cross-Docking problem. We name it combi-
nation path. The combination path should meet time window constraint and
capacity constraint in both subpaths; and should try to achieve more saving cost
from directive pickup-delivery orders. We will analysis the combination path in
detail and form an algorithm CDSPA to find the optimal combination path.

We will apply Column Generation technique in the Cross-Docking problem to
generate these two types of path with negative cost. After getting the optimal
solution of liner relaxation of the Master problem, we will use branch and bound
to searching the solution tree and find the optimal optimal integer solution.

3.4 Time Windows in Cross-Docking Problem

The time window constaint in our problem is not as usual situation in which
each customer has its own service time window. Our loosey time window con-
straint indicates there will be more candidate paths existing during searching
for the optimal shortest path, compared with a tight time window constraint.

The time windows constraint in Cross-Docking problem is different from other
VRP. In addition to a same service time window for all nodes [Tstart, Tend], the
time windows constraints build inter-connection between two or more subpaths
makes a more complex situation.

Combined time window constraint

From the view of a vehicle which switches job at the depot, from pickup job
to delivery job, the total time spending on both jobs should not excceed the
maximum time window Tend−Tstart. Tstart and Tend are the opening and close

9

time of depot. If such a job switching paths is generated in ”one process”,
the time constraint is handled straightforwardly during generation. Otherwise,
as the pickup subpath and the delivery subpath are generated in independant
process, we can’t ganratee the time window constraint is satisfied. This con-
straint builds connection between one pickup subpath and one delivery subpath.

Sequence time window constraint

From the view of a delivery path, a delivery path can’t upload a delivery order
until the order has been pickuped and transported into the depot. In another
word, a delivery subpath should be waiting at the depot until all of its delivery
orders being collected at depot. This constraint builds connection between one
delivery subpath and several pickup subpaths.

10

Chapter 4

Overview of Column

Generation

Column generation is clearly a success story in large scale integer programming.
The linear programming bound obtained from an extensive reformulation is of-
ten stronger, the tailing off effect can be lessened or circumvented at all, and
the knowledge of the original compact formulation provides us with a strong
guide for branching and cutting decisions in the search tree. Today we are
in a position that generic integer programming column generation codes solve
many large scale problems of ”industrial difficulty”, no standard commercial
MIP solver could cope with. This is all the more true since non-linearities oc-
curring in practical problems can be taken care of in the subproblem.

Column generation may be most attractive in applications involving a huge
number of columns since these problems present challenges to other methods.
The goal is to formulate a decomposition that will allow the solution to the
RMP to serve as a tight bound on the value of the optimal integer solution to
facilitate the BB search.

4.1 Column Generation Technique

Let us call the following linear program the master problem (MP).

z⋆
MP := min

∑

j∈J

cjλj (4.1)

subject to
∑

j∈J

ajλj ≥ b (4.2)

λj ≥ 0, j ∈ J (4.3)

11

In each iteration of the simplex method we look for a non-basic variable to price
out and enter the basis. That is, given the non-negative vector π of dual variables
we wish to find a j ∈ J which minimizes c̄j := cj−πtaj . This explicit pricing is a
too costly operation when |j| is huge. Instead, we work with a reasonably small
subset J ′ ⊆ J of columns, the restricted master problem (RMP), and evaluate
reduced costs only by implicit enumeration. Let λ and π assume primal and dual
optimal solutions of the current RMP, respectively. When columns aj , j ∈ J ,
are given as elements of a set A, and the cost coefficient cj can be computed
from aj via a function c then the subproblem

c̄⋆ := min{c(a)− πta|a ∈ A} (4.4)

performs the pricing. If c̄⋆ ≥ 0, there is no negative c̄j , j ∈ J , and the solution
λ to the restricted master problem optimally solves the master problem as well.
Otherwise, we add to the RMP the column derived from the optimal subprob-
lem solution, and repeat with re-optimizing the RMP.

The advantage of solving an optimization problem in (4.4) instead of an enu-
meration in (4.1) becomes even more apparent when we remember that vec-
tors a ∈ A often encode combinatorial objects like paths, sets, or permutations.
Then, A and the interpretation of cost are naturally defined on these structures,
and we are provided with valuable information about what possible columns
”look like”.

In regards to convergence, note that each a ∈ A is generated at most once
since no variable in an optimal RMP has negative reduced cost. When dealing
with some finite set A (as is practically always true), the column generation
algorithm is exact.

In addition, we can make use of bounds. Let z̄ denote the optimal objective
function value to the RMP. When an upper bound κ ≥

∑
j∈J λj holds for the

optimal solution of the master problem, we have not only an upper bound z̄
on z⋆

MP in each iteration, but also a lower bound: we cannot reduce z̄ by more
than κ times the smallest reduced cost c̄⋆:

z̄ + κc̄⋆ ≤ z⋆
MP ≤ z̄ (4.5)

Thus, we may verify the solution quality at any time. In the optimum of (4.1),
c̄⋆ = 0 for the basic variables, and z̄ = z⋆

MP .

12

4.2 Dantzig and Wolfe Decomposition

We briefly review the classical decomposition principle in linear programming,
due to Dantzig and Wolfe (1960). Consider a linear program (the original or
compact formulation)

z⋆ := min cT x (4.6)

subject to Ax ≥ b (4.7)

Dx ≥ d (4.8)

x ≥ 0 (4.9)

Let P = {x ∈ Rn
+|Dx ≥ d 6= ∅. It is well known (Schrijver, 1986) that we

can write each x ∈ P as convex combination of extreme points {Pq}q∈Q plus
non-negative combination of extreme rays {Pr}r∈R of P , i.e.,

x =
∑

q∈Q

Pqλq +
∑

r∈R

Prλr,
∑

q∈Q

λq = 1, λ ∈ R
|Q|+|R|
+ (4.10)

where the index sets Q and R are finite. Substituting for x in (4.6) and applying
the linear transformations cj = cT pj and aj = Apj , j ∈ Q ∪ R we obtain an
equivalent extensive formulation

z⋆ := min
∑

q∈Q

cqλq +
∑

r∈R

crλr (4.11)

subject to
∑

q∈Q

aqλq +
∑

r∈R

arλr ≥ b (4.12)

∑

q∈Q

λq = 1 (4.13)

λ ≥ 0 (4.14)

It typically has a large number |Q|+ |R| of variables, but possibly substantially
fewer rows than (4.6). The equation

∑
q∈Q λq = 1 is referred to as the convexity

constraint. If x ≡ 0 is feasible for P in (4.6) at zero cost it may be omitted in
Q. The convexity constraint is then replaced by

∑
q∈Q λq ≤ 1.

Although the compact and the extensive formulations are equivalent in that
they give the same optimal objective function value z⋆, the respective polyhedra
are not combinatorially equivalent. As (4.10) suggests, x uniquely reconstructs

13

from a given λ, but not vice versa.

Given a dual optimal ū, v̄ to the RMP obtained from (4.11), where variabel v
corresponds to the convexity constraint, the subproblem (4.4) in Dantzig-WOlfe
decomposition is to determine minj∈Q∪R{cj− ūT aj− v̄}. By our previous linear
transformation this result in

c̄⋆ := min{(cT − ūT A)x− v̄|Dx ≥ d, x ≥ 0} (4.15)

This is a linear program again. We assumed P 6= ∅. When c̄⋆ ≥ 0 no nega-
tive reduced cost column exists, and the algorithm terminates. When c̄⋆ < 0
and finit, the optimal solution to (4.15) is an extreme point pq of P , and we
added the column [cT pq, (Apq)

T , 1]T to the RMP. When c̄⋆ = − we identify
an extreme ray pr of P as a homogeneous solution to (4.15), and we add the
column [cT pr, (Apq)

T , 0]T to the RMP. From (4.5) together with the convexity
constraint we obtain at each iteration

z̄ + c̄⋆ ≤ z⋆ ≤ z̄ (4.16)

where z̄ = ūT b+v̄ is again the optimal objective function value of the RMP. Note
that the lower bound is also valid in the case the subproblem generate an ex-
treme ray, that is, when c̄⋆ = −. Dantzig-Wolfe type approximation algorithms
with guaranteed convergence rates have been propsed for certain liear programs.

If the original formulation is to obtain integer solution in x variables, z̄ in
(4.16) is not a valid upper bound on z⋆, except if the current x variables are
integer. In general the generated set of columns may not contain an integer fea-
sible solution. Branching and cutting constraints are added, the refomulation is
re-applied, and the process continues with an updated master problem.

4.3 Integrality Property

Solving the subproblemas an integer programusually helps in closing part of the
integrality gap of the master problem, except when the subproblem possesses the
integrality property. This property means that solutions to the pricing problem
are naturally integer when it is solved as a linear program. This is the case
for our shortest path subproblem and this is why we obtained the value of the
linear relaxation of the original problem as the value of the linear relaxation of
the master problem.

14

Chapter 5

Modeling of Cross-Docking

Problem

The necessary building blocks for a column generation based solution approach
to integer programs: (1) an original formulation to solve which acts as the con-
trol center to facilitate the design of natural branching rules and cutting planes;
(2) a master problem to determine the currently optimal dual multipliers and to
provide a lower bound at each node of the branch-and-bound tree; (3) a pricing
subproblem which explicitly reects an embedded structure we wish to exploit.

Formulation may be the most crucial aspect an implementation. While it is
difficult to reduce the formulation process to a simple series of steps, it is easy
to describe desirable characteristics that a model should offer. Working to ob-
tain these desirable characteristics typically leads to an iterative formulation
process.

5.1 Modeling of Cross-Docking Problem

objective Z = min
∑

k∈K∗

T pik
k + T del

k − savingk (5.1)

Subject to:

∑

k∈K∗

∑

j∈N∪{t}

xk
ij = 1 i ∈ N (5.2)

∑

k∈K∗

∑

j∈N∪{t}

yk
ij = 1 i ∈ N (5.3)

∑

i∈{s}∪N

∑

j∈N∪{t}

qix
k
ij ≤ CAP k ∈ K∗ (5.4)

15

∑

i∈{s}∪N

∑

j∈N∪{t}

qiy
k
ij ≤ CAP k ∈ K∗ (5.5)

T pik
k + T del

k − savingk ≤ Tmax k ∈ K∗ (5.6)

∑

k∈K∗

∑

j∈N∪{t}

T pik
k xk

ij +
∑

k∈K∗

∑

j∈N∪{t}

T del
k yk

ij ≤ Tmax i ∈ N (5.7)

∑

i∈N

xk
it = 1 k ∈ K∗ (5.8)

∑

i∈N

yk
it = 1 k ∈ K∗ (5.9)

∑

j∈N

xk
sj = 1 k ∈ K∗ (5.10)

∑

j∈N

yk
sj = 1 k ∈ K∗ (5.11)

∑

j∈{s}∪N

xk
ji =

∑

j∈N∪{t}

xk
ij i ∈ N k ∈ K∗ (5.12)

∑

j∈{s}∪N

yk
ji =

∑

j∈N∪{t}

yk
ij i ∈ N k ∈ K∗ (5.13)

∑

j∈N∪{t}

xk
ij ≤ 1 i ∈ N k ∈ K∗ (5.14)

∑

j∈N∪{t}

yk
ij ≤ 1 i ∈ N k ∈ K∗ (5.15)

T pik
k =

∑

i∈{s}∪N

∑

j∈N∪{t}

(distpik
ij + serj)x

k
ij k ∈ K∗ (5.16)

T del
k =

∑

i∈{s}∪N

∑

j∈N∪{t}

(distdel
ij + serj)y

k
ij k ∈ K∗ (5.17)

seri = docking + loading ∗ qi i ∈ N (5.18)

sers = 0 (5.19)

serpik
kt = docking + loading

∑

i∈N

∑

j∈N∪{t}

qix
k
ij k ∈ K∗ (5.20)

serdel
kt = docking + loading

∑

i∈N

∑

j∈N∪{t}

qiy
k
ij k ∈ K∗ (5.21)

16

savingk = 2loading
∑

i∈N

qi(
∑

j∈N∪{t}

xk
ij

∑

j∈N∪{t}

yk
ij) k ∈ K∗ (5.22)

xk
ij ∈ {0, 1} yk

ij ∈ {0, 1} (5.23)

17

Parameters:

Tstart: Depot open time.

Tclose: Depot close time.

Tmax: The depot opeing period, Tmax = TcloseTstart

CAP : The vehicle capacity.

loading: The time consuming of loading one pallet.

docking: Docking time.

qi: Order of customer i.

distpik
ij : Distance during time between (i, j) in pickup subpart.

distdel
ij : Distance during time between (i, j) in delivery subpart.

s: Start deport.

t: Back deport.

N : Customer set.

Variables:

K∗: The optimal solution paths set. A path in K∗ could be either a single
path or a combination path.

T pik
k : Time consuming of path k in pickup subpart. If a path has no pickup

subpart, T pik
k is zero.

T delivery
k : Time consuming of path k in delivery subpart. If a path has no

delivery subpart, T del
k is zero.

savingk: The saving time of path k. A single path’s saving time is always
zero.

seri: Service time of node i.

xk
ij : 1 means path k covers arc (i, j) in pickup subpart; otherwise, 0.

yk
ij : 1 means path k covers arc (i, j) in delivery subpart; otherwise, 0.

18

The objective function is to minimize total time consuming of delivery all cus-
tomers’ orders. In another word, it is to minimize the sum of time consuming
of each path in K∗. T pik

k + T del
k − savingk is time consuming of path k.

(5.2), (5.3) make sure that each costomer pickup node and delivery node is
visited exactly once.

(5.4), (5.5) is the capacity constraint in each subpart.

(5.6) is the combined time window constaint. Time consuming of each path,
either single path or combination path, should not exceed the depot opening
duration.

(5.7) makes the sequence time window constraint satisfied. For each customer
i, there exist a combination path or two single paths to pickup and deliver i’s
order. In later situation, assume i’s pickup subpath is kpik

i and delivery sub-

path is kdel
i . And T pik

i , T del
i are the time consuming of kpik

i , kdel
i , respectively.

Obviously, T pik
i + T del

i should not excced the depot opening duration Tmax.∑
k∈K∗

∑
j∈N∪{t} T pik

k xk
ij is the T pik

i ;
∑

k∈K∗

∑
j∈N∪{t} T del

k yk
ij is the T del

i . If

each customer satisfiy time window constraint (5.7), the sequence time window
constraint are certainly satisfied. On each delivery single path, once the latest
order has been pickuped and transported back to depot in time, combination
time window constarint will be satisfied. In former situaion, when a customer
is serviced by a combination path, (5.6) has covered this situation.

(5.8) to (5.15) are flow conservation constraints.

(5.8) to (5.11) make sure each path k start at start depot and end at back
depot. (5.12), (5.13) make sure the incoming flow is equal to the outgoing flow.

(5.14), (5.15) make sure each node is at most visited once by path k.

(5.16), (5.17) are the calculation of time consuming, which include distance
covering duration and service time at each customer node and depot.

(5.18) to (5.21) are the service time calculation. Service time is composed of
docking time and loading time of order(s). The service time at a customer’s
pickcup node and delivery node is the same. The service time at back depot de-
pend on the onloading capacity of a subpath. Required by our solution method,
we still include the offloading and onloading service time of a directive pickup-
delivery order at depot. However, this part of service time will be deducted in
saving.

(5.22) is saving time calculation. Only a combination path could have none

19

zero saving time. As we include loading time of directive pickup-delivery orders
at depot, we have to deduct it here. A directive pickup-delivery order is an
order existing on both subpaths of a combination path.

5.2 Master Problem

sec:masterproblem
We write the time consuming of each path k as Tk,

Ck = T pik
k + T del

k − savingk k ∈ K (5.24)

The RMP is built as a set of paths k, k ∈ K, K is the candidate paths set, the
objective is to minimize the sum of Tk, k ∈ K.

objective ZRMP = min
∑

k∈K

Ckλk (5.25)

Subject to:

∑

k∈K

aikλk = 1 i ∈ N (5.26)

∑

k∈K

bikλk = 1 i ∈ N (5.27)

∑

k∈K

Ck(aik|bik) ≤ Tmax i ∈ N (5.28)

λ ∈ [0, 1] (5.29)

aik: 1 if pickup node of customer i is on path k; other wise, 0;

bik: 1 if delivery node of customer i is on path k; other wise, 0;

(5.26) and (5.27) are constraints of one visiting at each customers’ node.

(5.28) is sequence time window constraint. If a customer order is serviced by a
combination path kcom, then

aikcom
= 1

bikcom
= 1

aikcom
|bikcom

= 1

20

(5.28) will be

Ckcom ≤ Tmax

If a customer order is serviced by two independent single paths kpik and kdel,
(5.28) will be

Ckpik
+ Ckdel

≤ Tmax

u, v are dual variables of condition set (5.26) and (5.27), respectively. w is dual
variables of condition set (5.28).

Before we continue to build the model of subproblem, first analysis condition
(5.28). Condition (5.28) brings the following polynomial into the subproblem,

∑

i∈N

Ck(ai|bi)wi (5.30)

Ck is contained in (5.30), however Ck is the coefficient in RMP objective func-
tion. Thus (5.30) make the subproblem not satisfied the structure of being a
shortest path problem. For easy implementation in the Cross-Docking Problem,
we use a heuristic method.

We replace the condition (5.28) by two conditions,

Tpik ≤ 0.25Tmax (5.31)

Tdel ≤ 0.75Tmax (5.32)

(5.31) make sure a pickup single path not excceed 0.25 of depot opening dura-
tion; (5.32) make sure a delivery single path not excceed 0.75 of depot opening
duration.

These two conditions ensure that both the combination time window constraints
and sequence time window constraints are satisfied, as any pickup subpath can
be contacted with any delivery subpath. However, this condidtion replacement
will reduce the feasible solution set, and increase the optimal objective value.

5.3 Subproblem

objective Zsub = min C −
∑

i∈N

∑

j∈N∪{t}

xijui −
∑

i∈N

∑

j∈N∪{t}

yijvi (5.33)

21

The subproblem is to find the shortest single path or combination path k. If
the cost of k is negative, new column built from k is inserted into RMP; if none
path has negative reduced cost, the optimal solution of RMP is found.

We write (5.33) seperately for single path and combination path.

objective Zsub
pik = min

∑

i∈{s}∪N

∑

j∈N∪{t}

(distpik
ij + servj)xij −

∑

i∈N

aiui (5.34)

let us = 0, (5.34) can be written as

objective Zsub
pik = min

∑

i∈{s}∪N

∑

j∈N∪{t}

(distpik
ij + servj − ui)xij (5.35)

(5.35) is the objective function for the shortest pickup single path. A pickup sin-
gle path satisfy all flow conservation constraints, capacity constraint and time
window constraint. The time window constraint is the time consuming of a
pickup single path which should not exceed 0.25Tmax.

The shortest delivery single path has the same structure as (5.35), let vs = 0:

objective Zsub
del = min

∑

i∈{s}∪N

∑

j∈N∪{t}

(distdel
ij + servj − vi)yij (5.36)

A delivery single path satisfy all flow conservation constraints, capacity con-
straint and time window constraint. The time window constraint is the time
consuming of a delivery single path which should not exceed 0.75Tmax.

The shortest combination path path objective function is

objective Zsub
comb = min costpik + costdel − saving (5.37)

costpik =
∑

i∈{s}∪N

∑

j∈N∪{t}

(distpik
ij + servj − ui)xij (5.38)

costdel =
∑

i∈{s}∪N

∑

j∈N∪{t}

(distdel
ij + servj − vi)yij (5.39)

saving = 2loading
∑

i∈N

qi(
∑

j∈N∪{t}

xij

∑

j∈N∪{t}

yij) (5.40)

22

Chapter 6

GPLA for SPPTW

6.1 SPPTW Problem

The shortest path problem with time windows (SPPTW) consists of finding the
least cost route between a source p and a sink q in a network G = (N, A) while
respecting specified time windows [ai, bi] at each visited node. The duration dij

of each arc is restricted to positive values while the cost cij of each arc (i, j) ∈ A
is unrestricted.The SPPTW is NP-Hard.

GPLA presenets an efficient generaliezd permanent labelling algorithm to solve
SPPTW. This algorithm is base on the defining of the concept of a generalized
buckets and on a specific order of handling the labels.The algorithm runs in
pseudo-polymonial time.

Even if the time windows constraints and the positive durations guarantee the
finiteness of feasible paths, they do not guarantee that the feasible paths will
be elementary (i.e. all nodes in a path visited only once).

6.2 SPP and RCSPP

The unconstrained shortest path problein has a considerable importance in
transportation models and is the subject of an enormous number of papers.
The solution to the shortest path problem is a directed spanning tree T of
G = (N, A) rooted at source p. Let label Ci be the cost of the unique path
in T from p to i, i ∈ N . T is a shortest path tree with origin p if and only if
Bellman’s conditions hold:

Ci + cij − Cj ≥ 0 ∀(i, j) ∈ A (6.1)

All the algorithm of finding a solution of the shortest path problem use dynamic
programming and perform the same operations:

23

1. Initilize a directed tree T rooted at p and for each i ∈ N , let Ci be the
cost of the path in T from p to i;

2. Let (i, j) ∈ A be an arc for which condition (6.1) is not satisfied. Then
update the path cost accordingly, i.e.: Cj := Ci + cij and adjust the tree
T replacing the current arc incident into node j by arc (i, j);

3. Repeat step 2 until conditions (6.1) are satisfied for all arcs.

The main aspect in the implementation of this procedure is how to select an
arc at step 2 to verify condition (6.1). In most algorithms, a node k is selected
and treated, all all k′s successors are checked; i.e., for all arcs (k, j) ∈ A step 2
is performed. Let Q be the set of candidate nodes; i.e., the set of nodes whose
leaving arcs are not guaranteed to satisfy (6.1). There are many selection rules
for node k ∈ Q. The most common being:

1. FIFO: the oldest element in Q is selected and treated. The set Q is
represented by a queue. New nodes are inserted at the tail of the queue;
the node to be treated is selected from the head of the queue;

2. LIFO: the newest element in Q is selected and treated. The set Q is
represented by a stack. New nodes are inserted at the top of the stack;
the node to be treated is selected from the top of the stack;

3. Best-First: the node k ∈ Q with the least cost Ck is selected and treated.

In the resource constraint shortest path problem(RCSPP), constraints can be
the vehicle max loading capacity, the vehicle longest travel distance/time; cus-
tomer serviced in specific sequence order, and other constraints on either vehi-
cles, customers or on both. All these additional constraints make SPPAC more
complex in that a set of candidate routes associated with a node. For instance,
vehicle loading capacity constraint occurs in most RCSPP.

SPPTW can be considered as a special RCSPP, i.e., time windows is a re-
source constraint of service time at customer. The SPPTW was formulated by
Desrosiers, Pelletier and Soumis as a subproblem of a route construction prob-
lem. The authors formulate the following optimality principle: for a given path
Xpj from source p to node j , if this path is efficient and if arc (i, j) is the last
arc of Xpj , then the sub-path Xpi is an efficient path as defined in 6.3. This
dynamic programming based method generally allows the efficient treatment of
the nodes. This method is sensitive to the initial ordering of the data, and the
algorithm can be accelerated by sorting the data in increasing order of starting
times of the time windows. This algorithm can solve problems of low to medium
density 15% to 30% with up to 300 nodes.

6.3 GPLA for SPPTW

The GPLA impove the SPPTW algorithms by using a different rule of node
selection. The algorithm uses pushing method to only extend the efficient paths

24

from source node to sink node. It reduces the operations down to a polynomial
complexity of order O(D2). This is achieved by defining a Best-First rule of
treatment of the efficients labels and by using generalized buckets.

The following sections are constructed by in setion 6.4 giving the terminologe
and general treatment order of paths and labels inGPLA, in section 6.5 and
6.6 introducing two crucial ideas, lexicographically order and bucket, and how
they can increase the operation in GPLA, in section 6.7 giving details of GPLA
alrogithm.

6.4 Path and Label Treatment

With each path, i.e.: Xpj from the origin p to the node j satisfying time win-
dows, is associated a (time, cost) label corresponding to the arrival time at node
j and the cost of the path Xpj , respectively. There are always a set of possible
path from node p to node j. These labels will be denoted by (T k

i , Ck
i) to indicate

the characteristics of the kth path from p to i, where the indices k and i may
be dropped when the context is unambiguous.

The visiting nodes sequence is also a very important feature of a path. Even two
paths cover a same set of nodes visited, if the visiting sequence is different, the
cost of these two paths is not certainly the same. Thus it is necessary to recored
nodes sequence for each path. A sequence containts two types of infomation,
coverd nodes and visiting sequence.

To find the optimal solution of SPPTW is to find the minimal cost of path
fron origin p to destination q which is also satisfied time windows constraint.
This is achived by extending any feasible paths from p to q. Pushing and pulling
are two methods to extend a path. In pushing method, during the treatment of a
node i, the set of paths of node i, i.e., {X1

pi, X
2
pi, X

3
pi, · · · } is all pushed to i’s suc-

cessors respectively. If the extended path of a successor j meets the time window
constraint of j, it becomes a new feasible path of j, i.e., {X1

pj, X
2
pj , X

3
pj , · · · }.

In pulling method, during the treatment of node i, paths of predessors of node
i are extended to i. GPLA use pushing method to extend path.

Each path is constructed by a sequence of nodes which are passed through by
the path subsequently, i.e.: Xpj = (i0, i1, i2, · · · , iL). Where i0 = p and iL = j.
Labels of these nodes are calculated iteratively along the path, as follows:

Ti0 = 0 (6.2)

Ci0 = 0 (6.3)

Til = max{ail , Til−1 + dil−1il} l = 1, · · · , L (6.4)

Cil = Cil−1 + cil−1il l = 1, · · · , L (6.5)

25

Start status (6.2), (6.3) means that no time consuming and cost from the start
node. (6.4) indicate to arrive node il, time consuming is the sum of time con-
suming of preceed node il−1 and time using on arc (il−1, il). (6.5) is the cost
of path arriving node il. Additionally for time windows constraint, the arrival
time Til can’t be early than the service time windows of node il.

Following, give definitions of terminologe used within the argurithm GPLA.

Definition 1 (Domination) Let X1 and X2 be two different paths from p
to j with associated labels (T 1, C1) and (T 2, C2). Then X1 dominates X2 or
(T 1, C1) dom (T 2, C2) if and only if (T 1, C1)−(T 2, C2) ≤ (0, 0) and (T 1, C1) 6=
(T 2, C2)

Definition 2 (Efficient label/path) A label (T, C) at a given node j is said
to be efficient if no other label at j dominates it. A path Xpj from p to j is said
to be efficient if its label is efficient.

Obviously, a set of efficient labels may be linked to a node. The domination
relation is not a total order and dose not allow all paths to be ordered. But, it
does allow us to conclude that an efficient path Xpj is the shortest path arriving
at node j at time Tj or before. In order to full order all efficient path, GPLA
use the well-known lexicographic ordering. Details is presented in 6.5.

This relation allows the definition of the cost of the feasible path as a function
of arrival time. Figure 6.1 shows this cost-time function for a given node. The
vertical axis represents the paths cost and the horizontal axis represents the
arrival time of the paths.

Figure 6.1 illustrates the relation between several different labels associated
with efficient paths, i.e., X1 to X4; and others which are dominated, i.e., X5

to X8. I.e., analyse X2 and X7. From figure obviously show that both arrival
time and cost of label X2 than label X7. Also in the sample from section 6.2,
p1 and p2 are both efficient path of node i, as cost of p2 is less than p1, however
used capacity of p1 is less than p2.

EFF (Q) denote the set of efficient labels among Q. EFF (Qi) denote the set of
efficient labels of node i. The process of extension of a path will be as following.
Let (T k

i , Ck
i) be an efficient label at node i and its associated path Xpi. When

arc (i, j) ∈ A is added to the path Xpi, a new path Xpj for node j is obtained
if T k

j + dij ≤ bj. The new label associated to this extended path is:

(Tj , Cj) = (max[aj , T
k
i + dij], C

k
i + cij) (6.6)

The label is added to the set of efficient label at node j , Qj and this set is
updated:

Qj := EFF (Qj ∪ {(Tj , Cj)}) (6.7)

26

Figure 6.1: Domination Relation between labels Associated with Different Paths

This treatment is done for all arcs (i, j) ∈ A incident to node i. One thing
should be mentioned is, an efficient path, during the path extension, will pos-
sibly be dominated by other efficient path. Thus it is a continously process of
new efficient paths gennerating and efficient paths, either original one or new
extended one, being dominated. If to extend path in a way that the new path
is less possible or impossible improved/dominated by other path, the algorithm
operation times can be reduced. Next two sections intruduce two labels treat-
ment methods to reduce the occuring of dominating/being dominated situation
during extending process.

6.5 A New Order of Treatment of Labels

As Known in section 6.2, in a shortest path problems, in order to select an arc
at step 2 to verify condition (6.1), first define an treatment order of candidate
nodes, then apply the verification for all arcs of a selected node k. Three of the
most common rules for selecting candidate node k ∈ Q are FIFO, LIFO and
Best-First. GLPA use Best-First rule of treatment of efficient labels.

In a unconstrained shortest path problem, an efficient label of a node k only
depends on path cost. The notions of ”node” and ”label” are closely indication,

27

i.e., only one efficient label linked with a node. The order of treatment is thus
defined simultaneously for nodes and labels. When apply Best-First rule algo-
rithm, select a minimun cost label from the set of untreated nodes, i.e., node k
with lablel (Ci), then deal with path extension to all k′s successors.

However, this is not true in the case of constrained shortest path problem. In
later situation, a set of efficient labels are possibly associated with each node,
these two notions are distinct. The existence of an efficient Best-First rule al-
gorithm for the SPPTW depends on the existence of a treatment order for the
labels with a qualification condition on the arcs such that it is impossible to
improve a label which has been previously treated.

The well-known lexicographic ordering is a total ordering in ℜ2, i.e. the fol-
lowing three propositions hold:

1. For all a, b ∈ ℜ2, if a < b, then a < b.

2. For all a, b ∈ ℜ2, if a > b, then a > b.

3. For all a, b ∈ ℜ2, if a < b, then a b.

Lexicographic ordering is compatible with the dominance ordering, i.e., a label
(Ti, Ci) is in ℜ2. As the time consuming t is always a positive number, all arcs
have lexicographically positive label. The sign of cost c is unrestricted.

Using increasing lexicographic ordering of time consuming, we get a full order-
ing of the efficient labels. It is obviously that after sorting the efficient paths,
the order of label’s duration and cost is conversed. I.e., if labels are sorted in
increasing duration order, their costs are in decreaing order. Assume efficient
paths: (10, 20), (30, 5), (20, 11), the increasing lexicographically order of time
consuming is:

(10, 20), (20, 11), (30, 5)

their cost is in decreasing order.

Following is two Theorem of lexicographic ordering.

Theorem 1 Let P be the set of labels already treated and let Q be the set of
untreated labels. If

(1) all arcs (i, j) ∈ A have lexicographically positive label, and
(2) the labels of Q are treated in increasing lexicographic order, then

for all a ∈ P and all b ∈ Q, a < b, the treatment of any label of Q can not
improve a label in P .

28

Proof : The successors of any given label being treated are all lexicographically
greater than this label. Using induction on the cardinality of P and that any
element of Q is a successor of an element of P , we derive the conclusions easily.

Figure 6.2: Treatment order of labels

Figure 6.2 explain theorem more clearly. The rectangle represent the treated
labels set P and untreated labels set Q. In set {P ∪ Q} all labels are sorted
by lexicographically increasing order. Any treatment of label of Q won’t effect
a label in P . This means treatment of labels of larger lexicographical order
won’t improve labels of smaller lexicographical order. Thus treating the set of
untreated labels in increasing lexicographic order, new labels won’t improve a
previously treated label. This label treatment order satisfies the application of
Best-First rule algorithm for the SPPTW, and does help to reduce the operation
times by avoiding doing unwise extending.

6.6 The Concept of A Generalized Bucket

In last section present the increasing lexicographically treatment order of labels
from the overview of GPLA, this section will show that in some small range of
lexicographical interval, arbitrary treatment order of labels can be used. These
small interval are defined as bucket.

Desrochers improved the criterion for choosing the next label to be treated
by using a generalization of the concept of a ”bucket” introduced by Denardo
and Fox. A bucket is a list of nodes whose label values lie within a specified
intenrval. In the simple case, the pth bucket is made up of all nodes whose
label values are included in the semi-open interval [pm, (p + 1)m) where m is
the width of the bucket. The set of buckets generated by the algorithm has the
same bucket width spreading over different intervals.

m = min{cij}.

The search for the smallest temporary label is thus replaced by the search for
an element of the first bucket to contain the temporary labels.

29

In ℜ2, GPLA use the same concept of a bucket by defining the width of the
bucket as

(md, mc) = minlex{(dij, cij)}

Before analyse the treatment order property within a bucket, first construct
a bucket. Let F (Q) be the next label to be handled according to increasing
lexicographically order, F (Q) is the smallest label in the set of untreated labels:

F (Q) = minlex{(T k
i , Ck

i)}

Construct a bucket B(Q) which lower bound is at F (Q), thus B(Q) is the
generalized bucket defined by:

B(Q) = {(T k
i , Ck

i) ∈ Q|F (Q) ≤ (T k
i , Ck

i) < F (Q) + (md, mc)}

The upper bound of B(Q) is F (Q) + (md, mc).

Desrochers showed that replacing the treatment of F (Q) by the treatment of
an element in B(Q) does not alter the optimality of the algorithm.

Theorem 2 If (md, mc) > (0, 0), then the elements of the generalized bucket
B(Q) cannot be improved during the treatment of an element of B(Q).

Proof: Suppose it were possible to improve an element (T k
j , Ck

j) of B(Q) by

treating another element (T l
i , C

l
i) of B(Q),

(T l
i , C

l
i) + (dij , cij) < (T k

j , Ck
j)⇒ (T l

i , C
l
i) + (dij , cij) < (T k

j , Ck
j)

on the other hand,

(T k
j , Ck

j) < F (Q) + (md, mc) as(T k
j , Ck

j) ∈ B(Q)

(T l
i , C

l
i) + (dij , cij) < F (Q) + (md, mc)

(T l
i , C

l
i) < F (Q) + (md, mc)− (dij , cij)

(T l
i , C

l
i) < F (Q) as (md, mc) < (dij , cij)

which contradicts the definition of B(Q). It is therefore impossible to improve
the elements of B(Q).

30

In the case of the SPPTW, since the durations dij are strictly positive, it is
sufficient to verify that the label (T, C) are lexicographically positive without
any restrictions on the costs. Thus the value of md , which is only decided by
dij , where

md = min{dij} (i, j) ∈ A

Using bucket method to collect a small set of untreated labels within a bucket,
from Theorem 2, labels can be treated in any order without affecting the oper-
ation efficiency.

6.7 GPLA Algorithm

In previous sections, it has been sufficient to verify that in SPPTW, label (T, C)
is lexicographically positive. The generalized permanent labelling algorithm
(GPLA) can be described as follows:

Step1: Initialization.

Pi = {
{(0, 0)} i = p
∅ ∀i ∈ N, i 6= p

Qi = ∅ ∀i ∈ N
md = mindij (i, j) ∈ A

Pi is the set of permament labels for node i.
Qi is the set of candidate labels for node i.

Step2: Find the current bucket.

Find F (Q) the label {(T k
i , Ck

i)} of lexcigraphically minimum cost from
the set Q = ∪i(Qi − Pi). If Q = ∅, stop.
Calculate the upper bound of B(Q),

Step3: Find the next label to be treated.

Find one element of B(Q).
If B(Q) is empty, go to step 2.

Step4: Treatment of label (T k
i , Ck

i).

For all successors j of node i do
begin
if T k

i + dij < bj (time windows satisfied) then
(Tj , Cj) = (max(aj , T

k
i + dij), C

k
i + cij)

Qj = EFF (Qj ∪ {(Tj, Cj)})
end.

31

Pi = Pi ∪ {(T k
i , Ck

i)}
go to step 3.

Step 1 is initialization, path extension starts from root node p with none dura-
tion consuming and cost. Step 2 is to find the lexicographically minimum cost
label F (Qi) from untreated labels. Step 3 is to construct bucket B(Q) starting
from F (Qi) and collect all untreated labels within B(Q). Step 4 is how to ex-
tend each label in bucket B(Q). New extended paths are added into efficient
label set only if not being dominated by existing paths and without violating
the time window constraint. After finishing all paths extension in B(Q), go
back step 2 and find the next untreated label.

By applying Theorem 1, step 2 shows that the untreated labels are selected
to be treated in an increasing lexicographic order of time; by applying Theorem
2, Step 3 and 4 show untreated labels grouped by a bucket are treated in an
arbitrary order. From an overview, the treatment of labels of a specific node
still follow an increaing lexicographically order.

To verify the time window constraint in Step 4, two conditions are checked:
1) the finish time can’t exceed the time window constraint bi; 2) the start time
can’t be earlier than the time window constraint ai.

32

Chapter 7

NDCA for SPPTW

From this section we will describe state-dominance criteria for the GPLA for
solving the SPPTW on dense graphs. The new criteria markedly improve its
performance. The new algorithm developed based on GPLA is new dominance
criteria algorithm, in short NDCA.

Two types of dominance check are intruduced in the NDCA. One is a domi-
nance test of label at the destination node, the other is at the original label
being treated. At destination node dominance check, two criterias are used: 1)
a minimun cost label dominance check; 2) a backward-looking dominance test.
At treated node, the criteria of minimun cost label dominance test is used.

Both dominance checks are possible due to a new label arrangement and treat-
ment order within each bucket: 1)labels are grouped by node to which they
belong; 2)labels are stored and treated lexicographically in decreasing service
ime order and increasing cost order. This treatement order allied with the sug-
gested dominance criteria results in a significant time execution performance
improvement with respect to the basic dense-graph GPLA.

7.1 Review of GPLA

Before continue the new dominance criterias, review some points in GPLA.

For each node i with time windows constraint [ai, bi], which means for any
label, the service time of custom i is no earlier than ai and no later than bi.
Only consider integer solution, the number of different possible time value in
a label is:

∑
(bi − ai) + 1. Except labels having same time and cost value, for

each node i, the maximun number of efficient labels is
∑

(bi−ai)+1. The total
number of efficient labels in a SPPTW is:

∑

i∈N

(bi − ai) + 1

33

In GPLA, it is important to point out that Desrochers and Soumis (1988) con-
centrated their computational investigation of the implementation of GPLA to
situations in which the number of labels of nodes actually present in the solution
is small relative to the number of possible efficient labels (

∑
i(bi − ai) + 1). In

their tests, they used a linear list, sorted in lexicographic order, to represent
each set Qi of temporary candidate labels for node i. At each iteration, for
every successor j of node i, the corresponding label (Tj , Cj) was stored in the
set Qj if and only if it was not dominated. Thus, for each successor j the merger
and reduction of the set of undominated labels associated with node j required
the comparison of the labels with every other labels stored in Qj .

In GPLA for dense graphs, Desrochers and Soumis (1988) also suggest a rather
different implementation of the GPL algorithm (which for purposes of clarity
we will call GPLd, with the lower case ”d” referring to ”dense”) from the formal
GPLA description in the same paper. As mentioned before, in the GPLA only
non-dominated labels of node i are added to the set of efficient labels Qi. In
GPLd, however, the authors proposed to use a table to represent each set Qi:
Thus, all efficient paths as well as some dominated ones are included. According
to Desrochers and Soumis, to eliminate the dominated paths it is sufficient to
carry out a dominance test at each node at the end of the algorithm.

The dominance check in GPLA and GPLd are both time consuming, every
new label should compared with existing labels of node i before adding to ef-
ficient set; or a whole dominance test is needed at a destination node at each
iteration. Moreover during every dominance check, both time service value and
path cost comparation are needed.

In our new dominance criteria algorithm, more dominance tests are intruduced
into the process, as in GPLA and GPLd, these dominance tests improve al-
gorithm’s performance by sharply reducing the increasing of the amount of
candidate labels. Moreover, these new dominance tests are more efficient and
less time consuming. In some situations, dominance tests speeds up operations
by avoiding applying check for every labels in a candidate set. Most of the
dominance checks only need one comparation of the time value.

7.2 Dominance Test for the Label being Treated

In basic NDCA, the improvement is brought about by the intruduction of a
dominance test for a new extended label before adding it into the successor’s
candidate label set. This test becomes feasible if the temporary labels for a
given node are treated lexicographically in decreasing time order.

Instead of sorting the temporary labels lexicographically in decreasing service
time directly, the same result can be achieved more easily by sorting buckets.

34

As with Desrochers and Soumis, the bucket width is constant and equal to the
smallest inter-task duration from i to j plus duration of task i.

m = min(di + tij) ∀i, j ∈ N

.
If a label belongs to bucket p, its start service time lies within the bucket inter-
val: [mp, m(p + 1)). As the bucket index increases, the time interval increases.
Thus labels belong to lower index buckets have earlier start service time than
those belong to higher index buckets. Based on the relationship between bucket
and service time, treating buckets in increasing index order naturally brings to
a treatement order of labels in increasing start service time.

The following three points prove the feasiblity to treate buckets in an increasing
index order.

1. First, from theorem 2, buckets can be swept in increasing order without
affecting the optimality of the solution.

2. Second, extending labels (Ti, Ci) in bucket p to successor j, from theorem
2, the new label (Tj, Cj) won’t belong to bucket p. As consuming time is
strictively positive, Tj > Ti, new label belongs to bucket q, which q > p.
Thus new label is always extended to a larger index bucket. This property
enable an increasing treatment order of buckets. But it won’t grand that
new labels are extended in a sequent increasing bucket index order. Figure
7.1 shows how buckets are generated and treated.

Figure 7.1: Bucket generating and treatment order

3. Third, from Theorem 2, as no inter-dominance improvement within a
bucket, no specific treatment order of labels within a bucket. The imple-
mentation use a FIFO(Fist-In, First-Out) rule for storing and removing
the labels to be treated.

35

Conclude, in basic NDCA, treating labels in an increasing service time order can
be achieved by treating buckets in increasing index order. Following introduce
calculation of bucket index.

The bucket index of label (Ti, Ci) is:

p = ⌊Ti/m⌋ (7.1)

As we know the upper bound of time consuming Tend, which is the latest time
back to deport, the maximum number of buckets is:

PMAX = ⌊Tend/m⌋ (7.2)

The skeleton of basic NDCA is as following: as no time consuming and cost from
start deport, initialize by adding label (0, 0) of node 0 into the bucket 0. The
algorithm starts treatment of labels from bucket 0, which has only one label.
Next is to extend label (0, 0) to all customer nodes. If new label meets the time
window constraint of the corresponding successor, calculate new label’s bucket
index k using (7.1); add it into bucket k. After finishing treatment of bucket 0,
go to bucket 1, and so on. If a bucket is empty, continue to the next bucket.
The algorithm stops when finishing dealing with bucket PMAX .

Within a bucket, labels are grouped by nodes to which they belong. After
treatment of one label group, the next group treatment is initiated. This pro-
cedure is repeated until all label groups have been treated. Figure 7.2 shows
the structure of buckets, nodes and labels. Buckets are treated by increasing
index order. Within each bucket, label groups are treated in an arbitrary order.
Within each label group, labels are treated in an arbitrary order.

Figure 7.2: Bucket structure in basic NDCA

36

The basic NDCA, shown in figure A.1 brings improvement by introducing a
dominance test for new extended labels. Each node i ∈ N is associated a value:
mincost[i], which represents the minimun cost of currently treated labels of
node i. Dominance test is done before adding new extended label (Tj , Cj) into
a bucket. If Cj is less than mincost[j], store the label into bucket; otherwise,
discard it. This dominance test is excuted at destination node of all successors
of a label being treated.

Following figure 7.3 is an example. On the left table, the first line is the current
mincost[j], below are new extended labels of node j, left is index to present for
each label. On the right table show the stored new labels after dominance test.

Figure 7.3: Dominance test at destination node

This minimal cost test only need cost comparation of two labels, without compa-
ration of starting service time. The reason is: as the buckets are swept and the
corresponding labels treated in an increasing time order, label earlier treated
has earlier starting service time than a new extended label. This means the
starting service time associated with current minimun cost label is always ear-
lier than a new extended label. If new label of node j has greater or equal
cost as mincost[j], it is certainly dominated by the current minimun cost label;
Thus, it is not necessary to keep the starting service time.

If a new extended label has smaller cost than mincost, it is only a candidate la-
bel, not necessarily an efficient label. As shown in figure 7.3, l1, l3, and l4, l6 are
stored. Assume the bucket width is 10, using (7.1): l1 and l3 belong to bucket
2, l4 and l6 belong to bucket 4. Obviously, in bucket 4, (44, 53) < (48, 56), l6 is
dominated by l4. In bucket 2, both labels are efficient labels.

In figure A.1, see step 27, the mincost is updated after all labels have been
treated within a bucket. As we grand that new labels are extended into a later
index bucket, but not grand that new labels are generated in sequently increas-
ing order, see figure 7.1. Suppose we update mincost[j] at step 25 when a

37

new label, i.e., (T p
j , Cp

j), has smaller cost; assume in later, another new label
is generated, i.e., (T q

j , Cq
j). As the relation of T q

j and T p
j is not certain, it is

not sufficient to do the dominance test by comparation mincost[j] and Cq
j only.

Thus in order to keep the validity of the minimal cost test, only update minimun
cost after finishing treating all labels in a bucket. For example in figure 7.3, if
update mincost[j] to 28 once after treatment of (29, 28), efficient l3 won’t be
stored into bucket 2.

Figure A.1 present the basic NDCA. Step 3 initialize the minmum cost for
all nodes as a super large number. Step 12 select a temperary label from a node
group(labels seperated by group according to the node to which they belong).
Step 10 to 26, labels are treated by using FIFO rule for storing into and re-
moving from the buckets. step 13 to 19 extend label from i to successor j: 1)
update starting service time; 2) check upper bound of time window constraint;
3) adjust starting service time by lower bound of time window; 4) update cost of
path. Step 20 to 23 is the dominance test at the destination node. If new label
is not dominated by minmum cost label, store it into calculated Kth bucket.
Step 27 update mincost[j] when finishing dealing with a bucket. Step 29 is a
minmum test at back deport N + 1 to find the shortest path.

7.3 Dominance Test for the Original Label

The basic NCDA can be markedly improved by introduction of two additional
state-dominance criterias. Each critera construct a dominance test at an origi-
nal label before being extended to it’s successors.

First dominance critera is a minimun cost test at an original node, which holds
the same idea introduced in section 7.2. Once a label cost is equal or larger
than the minmum cost of the node, we won’t generate labels of its successors.
See section 7.2 for details.

Second criteria introduce another dominance test at an origin node based upon
a new order of storing labels within a bucket. Labels are stored in decreasing
start service time order and increasing cost order in each group in a bucket,
instead of FIFO rule used as treatment order in basic algorithm version. Before
explain the dominance itself, we first disscuss insertion situations of the new
label storing order.

Figure 7.4 show four possible situations of label insertion into a bucket. In (a)
and (b), non-dominance occurs during insertion, new label (50, 47) and (57, 31)
are stored orderly into bucket. In (c), new label is dominate by a stored one
in the bucket, i.e., (52, 35) < (55, 37). In (d), new label dominates an already
stored label in the bucket, i.e., (50, 33) < (52, 35).

This orderly insertion process is very likely an efficient labels domination test,

38

Figure 7.4: Label inserted in new storing order

except in situation (b), both label (57, 29) and label (57, 31) are stored. Once a
label, either a new extended label or a stored label, is found to be dominated
in a insertion, we discard it. Thus, this orderly label insertion itself lead to dis-
carding quite a few unefficient labels. As a result, labels are stored in decreasing
start service time order and increasing cost order.

The second dominance test is a previous time test based on above label stor-
ing order. For each node i in a bucket, introduce a previous time variable
previousTi: the start service time of most recent treated label of node i. We
only need to treat a label (Ti, Ci), when Ti < previousTi. Otherwise, we won’t
extend to its successors. As within a bucket, labels are sorted by decreasing
cost order and increasing start service time order. The cost of previous label is
no larger than the current treated label. Once the start service time of current
label is no earlier than a previous one, it is certainly dominated by the previous
label. This dominance test help discard unefficient labels described in figure
7.4 (b). Using previous time dominance test, unefficient label (57, 31) won’t be
treated to extend to its successors, as it’s start service time is no ealier than
latest privious time 57.

The modified NDCA(NDCA II) resulting from the introduction of these two
dominance tests at orginal label is stated in figure A.2.

Step 8 initialize the staring service time of previous treated label as a super
large number. Step 14 apply the first dominance test by minmum cost label at

39

destination node. Step 15 apply the second dominance test by previous service
time variable. Step 20 store new label into Kth bucket in increasing service time
order and decreasing cost order. This insertion procedure is likely a domination
test of efficient labels. Step 22 update previousTi by service time of current
label being treated after its treatment Step 32, as in basic algorithm, update
the minmum cost after finishing treatment of all labels in a bucket.

7.4 Backward-looking Dominance Test

Besides the minimal cost dominance test, we introduce another backward-looking
test at a destination node.

The backward-looking test is to compare a label cost with the minimal cost(s)
in backward bucket(s). If bucket k stored label(s) of node i, there will be a
minimal cost of i: bckmincostki , It is a local minimal cost of node i, which is
different from mincosti. Before store a new extended label (Tj, Cj) into bucket
k, first compare Cj with bckmincostj in each backward bucket (k− 1), (k− 2),
· · · , until the bucket contains lower bound of j’s time window aj , i.e., bucket
kstart

j . In another word, kstart
j is the first feasible bucket index to store label of

j. (7.3) show how to calculate kstart for a node:

kstart
i = ⌊Ti/m⌋ (7.3)

A new label will be stored only if its cost is smaller than all those backward
buckets minimal cost.

Following shows the validity of backward-looking dominance test. First, in a
bucket, labels are stored in increasing cost order and decreasing starting service
time order. Second, bucket definition and an its increasing index treatment
order ensure that label stored in backward bucket has earlier start service time
than a current treated label. Once the current label cost is larger than label of
backward bucket, it is certainly dominated.

As the specific label storing order in a bucket discussed above, the first la-
bel of each label group is the minimal cost label in that bucket.

Following example, in figure 7.5, show six extended labels of node j. Assume
the minimun cost is 64 and bucket width is 10. After minimun cost dominance
check, four candidate labels left: l1 and l3 are stored in bucket 2; l4 and l6 are
stored in bucket 4. It’s obviously shown that l6 and l4 are already dominated
by l1. However the insertion can be avoided by the introduction of backward-
looking dominance test, as l4 and l6 are both have larger cost than a backward
bucket minimal cost 28, they won’t be stord into bucket 4.

40

Even without the backward-looking dominance check, we still have a chance
to discard l4 and l6 in a later stage. After finishing the treatement of bucket
2, mincostj is updated to 28. Thus during the minimun cost test at bucket 4,
these two labels will be discarded as their cost are larger than 28.

However, backward-looking dominance test still has advantage in that it helps
to dominate a candidate label in an earlier time, which prevent implementing
a set of dominance check in order to orderly insert the label into a bucket. In
above example, if l4 and l6 are dominated in an earlier stage, none time will
consume on orderly insertion these two labels.

Figure 7.5: Backward-looking example

This dominance criterion is applied to all newly extended label at its destination
node before insertion.

NDCA III, shown in figure A.3 is improved from NDCA II by introduction
of backward-looking dominance test. In figure A.3 show that, step 22, the test
is implemented after a minimun cost dominance test. Figure A.6 in appendix
show the details of backward look test algorithm. Step 1 first calculate the first
valid bucket for node j, InBK. Step 5 to 13, the while loop begin to compare
the cost of label (Tj , Cj) with the minmum cost label in every precedence buck-
ets, from bucket (K−1) to bucket InBk. If Cj is smaller than all its precedence
valid buckets, store (Tj , Cj) into buclet K; otherwise, discard the label.

41

Chapter 8

NDCA Adapting for

Subproblem

The NDCA is expatiated based on SPPTW. The algorithm is also applicable
for the one resource constrained shortest path problem(RCSPP).

To short we use NDCA refer to NDCAIII discussed in previous section.

8.1 Applying the NDCA in RCSPP

Time window can be considered as a time using resource constraint. [ai, bi] can
be explained in that at least ai − Tstart time has been used before visiting cus-
tomer i; and no more than bi−Tstart time has been used when finishing service
customer i.

In a capacity constraint SPP, each node has a same capacity window constraint,

[0, CAP] (8.1)

CAP is maximum capacity of vehicle.

(8.1) means no more than CAP order is onload after visiting a customer. In
another word, the onloading capacity should never excceed the maximum ca-
pacity of vehicle. In (8.1), the minimal onloading is 0. Obveriously, a vehicle
could load nothing.

Above show SPPTW and one recourse RCSPP can be explained with each
other, thus the NDCA can also be applied to find optimal solution of capacity
constraint RCSPP.

42

8.2 Applying the NDCA in Subproblem

In our CG subproblem, one of the objective function is to find the shortest single
path with capacity constraint and time window constraint. Obviously, NDCA
is not sufficient to find the optimal solution of the single path in subproblem.
The dominance test hasn’t considered time consuming of path. A dominated
path is still possible to be extended to the destination having less cost in the
subproblem if it consumes less time. Less time consuming makes a path have
more possibility of extension.
Thus the optimal single path is possibly dominated during the extension process
in NDCA. However NDCA is still applicable in the subproblem:

1. the time window constraint is very loose in subproblem. Instead of having
a tight time window for each node, all nodes share one big time window
from Tstart to Tend. This condition leads the subproblem won’t be sen-
sition to the time window constraint. Instead, the capacity constraint
mainly affeacts the labels extending. Relaxing time consuming in the
dominance test won’t affect too much of the solution value;

2. instead of finding the optimal single path in the subproblem, it’s only
necessary to find negative reduced cost columns to insert into RMP. NDCA
is an efficient algorithm to find the negative reduced cost single path with
good quality.

Thus NDCA is sufficiently applicable in the subproblem of finding insertion
columns. However, if the destination label list doesn’t contain any negative cost
path, NDCA can’t guarantee that no more negative reduced cost single path
exists. This situation will be solved in another algorithm CDSPA discussed in
section

8.3 Adapting the NDCA in Subproblem

To apply NDCA for capacity RCSPP, some modification is needed. We use
NDCA’ to indicate the modified NDCA.

In NDCA’ for RCSPP, label is presended as (capi, Ci), capi is the capacity
used finishing service of customer i, Ci is the path cost finishing service of cus-
tomer i. The first label of depot is initialized in (8.2). (8.3), (8.5) are label
extension calculation:

(cap0, c0) = (0, 0) (8.2)

capil = capil−1 + qil−1 l = 1, · · · , L (8.3)

Cil = Cil−1 + distpik

il−1il + seril + uil l = 1, · · · , L (8.4)

43

If an extended label’s capacity exceed CAP, discard it.

During the label extension, the time window constraint should be checked.

Til = Til−1 + distpik

il−1il + seril l = 1, · · · , L (8.5)

Ti is the time consuming finishing service of customer i. If an extended label’s
time consuming excceed the maximum working time,

pickup single path : Ti ≥ 0.25Tmax (8.6)

delivery single path : Ti ≥ 0.75Tmax (8.7)

, discard it.

Above is extension calculation of pickup subpath, the calculation of delivery
subpath has the same constructure.

Path capacity usage and path cost are used in dominance test. As each customer
order is strictively positive, capacity usage will also be strictively lexicographic
positive. In NDCA’, bucket width is defined by the minimun customer order,
see (8.8). The bucket index of a label is calculated using capacity usage, see
(8.9), (8.10). (8.11) is calculation for maximum bucket index. Treating buck-
ets in increasing index order leads to a treatment order of labels in increasing
lexicographic order of capacity usage. Within each bucket, labels are treated in
decreasing capacity usage order and increasing cost order.

m = min qi ∀i ∈ N (8.8)

k = ⌊q/m⌋+ 1 (8.9)

kstart = ⌊0/m⌋ (8.10)

kmax = ⌊CAP/m⌋+ 1 (8.11)

There is a difference in NDCA’ from NDCA during the inital label extending
process. At the begining in both NDCA’ and NDCA, only one label of node
0, (0, 0), in bucket 0. After extension of depot in NDCA, all newly generated
labels will be stored into a forward buckets. However, in NDCA’, as deport has
no order, q0 = 0, using (8.3), each generated label still has none capacity usage.
Thus after extension of (0, 0), all generated labels will be stored in bucket 0.

44

Chapter 9

CDSPA for Subproblem

NDCA is applied to find the negative reduced cost single path containing one
type of job, either pickup orders or delivery orders. A combination path is
distinguish from single path. It consists both pickup and delivery job, which is
possible to achieve saving more time in cross-docking routing. In this section,
we will develop an algorithm to find negative reduced cost combination path
in the subproblem. The solution is developed based on the NDCA discussed in
previous sections. Additional modification is made to satisfy new constraint in
the combination situation. To distinguish from NDCA, we use ”cross-docking
shortest path algorithm”, shortly CDSPA, to indicate the new algorithm.

9.1 Combination Path and Connective Path

In this section, we analyse the property of connective path, and how it can save
time. Then we give out the saving time calculation of a connective path. First
we give the terminologe used in the discussion.

Definition 3 (Combination path) Combination path is a path covering both
pickup and delivery order(s).

Definition 4 (Connective delivery) If a customer’s order is picked up and
delivered by a same vehicle, without being offloaded and uploaded at the depot,
it is a connective delivery, or a connective order.

Definition 5 (Connective path) A combination path is a connective path if
it contains at least one connective delivery.

Property 1 (Combination path) A connective path is a combination path;
a combination path is not necessarily a connective path.

Obviously, not each orders on a connective path is necessary to be a connective
order.

45

Following is a study of these two path types. To simplicity, we analyse a sit-
uation of one customer only, i.e., customer A, Ap and Ad are the pickup and
delivery node, respectively.

The figure 9.1(a) show a none connective order delivery process. A is a none
connective delivery order, delivered from Ap to Ad by a combination path p1.

A is uploaded at Ap on vehicle v and delivered back to depot. A is first of-
floaded at depot, then uploaded onto vehicle w and delivered to Ad. Finally, A
is offloaded at Ad.

The figure 9.1(b) show a connective order delivery process. A is a connec-
tive delivery order, delivered from Ap to Ad by a connective path p2.

Figure 9.1: Delivery process of a none connective delivery

Comparing figure 9.1(a) and 9.1(b), the routing distance of p1 and p2 is equal,
and each path docks two times at depot, one time at Ad and one time at Ad. p1

has uploaded or offloaded A four times; however, p2 has only two times. Thus,
p2 is able to save time from skipping an offload and an upload of order at depot.

To conclude from above instance, a connective path achieves saving more load-
ing time than a combination path from connective deliverys. The reason is by
beging picked up and delivered on a same vehicle, a connective order won’t be
offloaded or uploaded at the depot, in which the consuming time of offloading
and uploading will be saved.

Only a connective path can save loading time. A combination path, but none
connective path, will not save loading time. Below is the general calculation of
saving time of connective path. First we give the definition of symbols:

Assume a combination path p, PI and DE present its pickup nodes set and
delivery nodes set, respectively. CON is the connective delivery set of p:
CON = PI ∩ DE. If nodes set CON is not empty, p is a connective path.

46

If nodes set CON = PI or CON = DE, p is a super connective path.

Definition 6 (Super connective path) If all pickup orders, or all delivery
orders of a combination path are connective orders, the combination path is a
super connective path.

Property 2 (Super connective path) The connective delivery set of a super
connective path is a smaller set of pickups set and deliverys set:

CON = {
PI ifPI ⊆ DE
DE ifDE ⊆ PI

One connective delivery can make saving time:

savingi = 2loading ∗ qi i ∈ CON (9.1)

The saving time of a connective path p is the sum of all its connective orders’
saving time:

saving =
∑

i∈CON

2loading ∗ qi (9.2)

9.2 CDSPA Solution Method

A combination path contains both pickup and delivery jobs. These jobs are not
intersected: a combination path can not begin its deliverys until finishing all its
pickups and back to the depot.

The initial delivery onloading status, initloaddel, is capacity usage before a
vehicle start to upload new deliverys at the depot, which can be empty(zero) or
not. Additional uploading delivery capacity, addiloaddel, is the capacity of how
much additional orders can be uploaded at depot for delivery.

For a none connective combination path, all the pickup orders will be offloaded
at depot: initloaddel = 0, addiloaddel = CAP. At most CAP additional deliv-
erys can be uploaded.

For a connective path, the connective delivery orders won’t be offloaded at
depot.

initloaddel =
∑

i∈CON

qi (9.3)

addiloaddel = CAP −
∑

i∈CON

qi (9.4)

47

Both none connective path and connective path meet the following constraints:

initloaddel + addiloaddel ≤ CAP (9.5)

∑

i∈CON

qi + addiloaddel ≤ CAP (9.6)

∑

i∈DE

qi ≤ CAP (9.7)

For non connective path,
∑

i∈CON qi is zero.

(9.5) to (9.7) indicate that neither subpath will excceed the onloading capacity.
A combination path can be considered as a composition of two independent
subpaths each from one subpart: a pickup subpath pik and a delivery subpath
del. See figure 9.2.

Figure 9.2: Seperate delivery process of a combination path

Refer to the time window constraint (5.31), (5.32) in section ??, any two sub-
paths from each subpart could be contacted without violating the time window
constraint:

Tpik ≤ 0.25Tmax

Tdel ≤ 0.75Tmax

Tpik + Tdel ≤ 0.25Tmax + 0.75Tmax = Tmax

Thus the combination path will certainly subject to the capacity constraint,
time window constraint and flow conservation constarints.

During the indpendent subpath generation processm we’ve assumed every order
is a non-connective delivery and will be offloaded and uploaded at the depot.
After the combination operation, an order becomes a connective delivery if it

48

exists on both subpaths. Therefore, the connective delivery’s loading time at
the depot should be deducted from the combination path time consuming and
cost:

Tcomb = Tpik + Tdel − saving (9.8)

Ccomb = Cpik + Cdel − saving (9.9)

Tpik and Tdel are time consuming in pickup and delivery subpath respectively.
Cpik and Cdel are the cost in pickup and delivery subpath, respectively. saving
is calculated by (9.2).

Conclude, a combination path can be constructed in following steps:

1. generate a subpath pik in pickup subpart, pik is a single path;

2. generate a subpath del in delivery subpart, del is a single path;

3. construct a combination path by contacting pik, del, pcomb = {pik, del};

4. find all connective deliverys on pcomb;

5. the time consuming and cost of pcomb are calculated using (9.9), (9.8),
respectively.

Now we can outline the solution nethod of CDSPA:

1. generate a candidate set of pickup subpaths, PIKS;

2. generate a candidate set of delivery subpaths, DELS;

3. build combination paths using subpaths from PIKS and DELS;

4. collect combination paths with negative cost.

Each subpath building a combination path is alled the pickup subpath and the
delivery subpath, respectively.

The algorithm should be efficient to generate these two candidate sets. As
in the NDCA, only the subpaths which are possible to construct a negative
cost combination path will be extended in the CDSPA. In another word, each
candidate set is generated as tiny as possible, but still sufficient to constain the
required subpaths.

49

9.3 Prominent Label

The NDCA will keep any efficient label and extend it toward the destination
node. If a label is dominated by another label, it will be dropped. This section
we will analyse the dominance situation to decide when to keep a dominated
label.

A dominated label will be dropped as it has neither advantage in less-cost nor
in less capacity usage. A destination label extended from a dominated label will
always be dominated by the one extended from the dominating label. Following
we’ll study whether a dominated label has advantage in construction a combi-
nation label.

Assume label p1 is dominated by label p2, (cap1, C1) > (cap2, C2). Now p1

and p2 both build a combination path with label p3,

pcomb1 = {p1, P3}

pcomb2 = {p2, P3}

The cost of pcomb1 and pcomb2,

Ccomb1 = C1 + C3 − savingcomb1

Ccomb2 = C2 + C3 − savingcomb2

If Ccomb1 < Ccomb2, p1 still has advantage in having less-combination cost than
p2:

Ccomb1 < Ccomb2 (9.10)

C1 + C3 − savingcomb1 < C2 + C3 − savingcomb2

C1 − savingcomb1 < C2 − savingcomb2

C1 > C2

Therefore in order to satisfy condition (, the saving condition will be

savingcomb1 > savingcomb2 (9.11)

(9.11) shows a dominated label still has advantage of having less-combination

50

cost against the dominating label only if it can construct a combination path to
save more time from the connective deliverys. Following we study the property
of connective deliverys in a connective path.

A connective path has at least one connective delivery:

CON = PI ∩DE 6= ∅ (9.12)

CON ⊆ PI (9.13)

CON ⊆ DE (9.14)

The saving time will satisfy following constraints:

saving = 2 ∗ load ∗
∑

i∈CON

qi ≤ 2 ∗ load ∗
∑

i∈PI

qi (9.15)

saving = 2 ∗ load ∗
∑

i∈CON

qi ≤ 2 ∗ load ∗
∑

i∈DE

qi (9.16)

cappik, capdel is the onloading capcacity of path pik, del, respectively:

cappik =
∑

i∈PI

qi

capdel =
∑

i∈DE

qi

Constraints (9.15), (9.16) can be written as:

saving ≤ 2 ∗ load ∗ cappik (9.17)

saving ≤ 2 ∗ load ∗ capdel (9.18)

(9.17), (9.18) leads to the maximal saving time theorem:

Theorem 3 The maximal saving time of a connective path is the total load-
ing time of the subpath with less capacity. The loading time constains time
consuming of uploading and offloading all orders of the subpath.

savingmax = 2 ∗ load ∗min{cappik, capdel} (9.19)

51

Obviously, the saving time of a connective path is always larger than zero.

Using (9.19) in the connective path cost (??), get:

Cpik + Cdel − savingmax ≤ Cpik + Cdel − saving = C{pik,del} (9.20)

Using (9.17), (9.18) in (9.20),

Cpik + Cdel − 2 ∗ load ∗ cappik ≤ C{pik,del} (9.21)

Cpik + Cdel − 2 ∗ load ∗ capdel ≤ C{pik,del} (9.22)

Above (9.21), (9.22) leads to the minimal combination path cost theorem:

Theorem 4 A connective path will not have less cost than the sum of each
subpath cost substract the loading time of either subpath.

Remove Cdel in (9.21),

Cpik − 2 ∗ load ∗ cappik ≤ Cpik − saving (9.23)

(9.23) leads to the combination path cost theorem:

Theorem 5 Subpaths p1 and p2 are in the same subpart, if

C1 < C2 − 2 ∗ load ∗ cap2

, then any combination path formed by p1 will always have less cost than a
combination path formed by p2.

Prove:

Assume pik′ and pik are both from pickup subpart, and satisfy condition of
theorem5,

Cpik′ < Cpik − 2 ∗ load ∗ cappik

Now pik′ and pik build a combination path with any subpath del of the delivery
subpart, respectively:

C{pik′,del} ≤ Cpik′ + Cdel < Cpik − 2 ∗ load ∗ cappik + Cdel ≤ C{pik,del}

(5) got proved.

Theorem 5 draws the first rule of dropping off a dominated label:

52

Rule 1 (Dropping rule) If p2 is dominated by p1, and the cost satisfy the
following condition

C1 < C2 − 2 ∗ load ∗ cap2

we will discard p2.

As from theorem 5, any combination path formed by dominated path p2 is
impossible to have less cost than p1. Thus p1 has none advantage in less-
combination cost, either. It will be dropped.

Now we analyse the reversed situation of (5): C1 ≥ C2 − 2 ∗ load ∗ CAP2.
Assume pik′ dominate pik, and satisfy the reversed condition in Theorem5,

Cpik′ ≥ Cpik − 2 ∗ load ∗ cappik

Now pik′ and pik build a combination path with any subpath del of the delivery
subpart, respectively.

Cpik′ + Cdel ≥ Cpik − 2 ∗ load ∗ cappik + Cdel

as left hand side

Cpik′ + Cdel ≥ C{pik′,del}

and right hand side

Cpik − 2 ∗ load ∗ cappik + Cdel ≤ C{pik,del}

Conclusion: if p1 dominate p2, and C1 ≥ C2 − 2 ∗ load ∗CAP2, the relationship
of combination cost formed by p1 and p2 is not certain.

Following we analyse the condition of when to store and extend a dominated
label.

Assume pik is dominated by pik′, if we can find a subpath delo in another
part which makes path {pik, delo} have smaller cost than path {pik′, delo}, pik
still has advantage in having less-combination cost against pik′:

C{pik,delo} < C{pik′,delo}

Cpik + Cdelo − saving{pik,delo} < Cpik′ + Cdelo − saving{pik′,delo}

53

Cpik − saving{pik,delo} < Cpik′ − saving{pik′,delo}

Cpik − Cpik′ < saving{pik,delo} − saving{pik′,delo} (9.24)

(9.24) leads to the first keeping rules:

Rule 2 (Keeping rule) p1 is dominated by p2. In the construction of a con-
nective path path with p3, if p1 archieves saving more cost from the connective
deliverys than the more cost it has,

C1 − C2 < saving{1,3} − saving{2,3}

p1 is able to build a combination path having less combination cost than p2, it
will be stored.

In order to prove that there exists such a path delo satisfy the keeping Rule 2,
we’ll study the RHS of Rule 2: the saving difference bwtween a dominance pair.

As before, PI, PI ′ are nodes set covered by pik, pik′, respectively. SH is
the nodes set covered by both PI and PI ′:

SH = PI ∩ PI ′

PIex = PI − SH

PI ′ex = PI ′ − SH

PIex ∩ PI ′ex = ∅

PIex and PI ′ex are the rest nodes set in PI, PI ′, respectively. We define them
as exclusive nodes set of pik, pik′, respectively.

Now pik′ and pik both build a combination path with subpath del, respectively.
DE is the nodes set of del. The connective delivery nodes set will be:

CON{pik,del} = PI ∩DE = {PIex ∪SH}∩DE = {PIex ∩DEo}∪ {SH ∩DE}

CON{pik′,del} = PI ′∩DE = {PI ′ex∪SH}∩DE = {PI ′ex∩DEo}∪{SH∩DE}

54

The saving of connective deliverys will be:

saving{pik,del} = 2load
∑

i∈{PIex∩DE}

qi + 2load
∑

i∈{SH∩DE}

qi (9.25)

saving{pik′,del} = 2load
∑

i∈{PI′

ex∩DE}

qi + 2load
∑

i∈{SH∩DE}

qi (9.26)

(9.25)-(9.26), we get

saving{pik,del} − saving{pik′,del} = 2load
∑

i∈{PIex∩DE}

qi − 2load
∑

i∈{PI′

ex∩DE}

qi

(9.27)

(9.27) indicate that the saving difference between the two combination paths
will not be affected by the shared nodes set SH . This can be explained as: if an
order of the shared set is a connective delivery on pik, it will also be a connective
delivery on pik′; if an order of the shared set is not a connective delivery on pik,
it will not be a connective delivery on pik′, either.

In order to satisfy the saving condition in Rule 2, the method is to increase
the RHS. From the exclusive nodes set definition, PIex ∩ PI ′ex = ∅, we could
assume a path delo that makes every node of PIex as a connective delivery; and
none of PI ′ex. (9.27) can be written as:

saving{pik,delo} − saving{pik′,delo} = 2load
∑

i∈PIex

qi (9.28)

In another word, by combination with path delo, pik will achieve the maximal
saving difference against pik′.

2load
∑

i∈PIex

qi ≥ saving{pik,del} − saving{pik′,del} (9.29)

del ∈ DELS

If LHS of (9.29) meets the saving condition in Rule 2,

2load
∑

i∈PIex

qi > Cpik − Cpik′ (9.30)

that is: the more saving of {pik, delo} against {pik′, delo} could make compen-
sation for the more cost of pik against pik′. Otherwise, we could not find a path
delo to meet the saving condition in Rule 2. As (9.29) show that the LHS is
the maximal more saving pik could achieve, no combination path having more

55

saving exists. Thus, (9.30) draw the second keeping rule of dominated label:

Rule 3 (Keeping rule) p1 and p2 are subparts in the same subpart. p2 is
dominated by p1. If they meet the following condition:

C2 − C1 < 2load
∑

i∈EXp2

qi

EXp2
is the exclusive nodes set of p2 against p1.

The dominated p2 is able to build a combination path having less combination
cost than p1. It will be stored. Otherwise, it will be dropped.

Following we give the definitions of prominent label and master label.

Definition 7 (Prominent Label and Master Label) Label A and B are in
the same subpart, A is dominated by B. If A and B meet the saving condition
in Rule 2, then A is a prominent label of B, B is a master label of A.

Here prominent means a dominated label is prominent to have less combination
cost than the dominating label.

A prominent label is build up from a pair of dominating label and dominated
label. A master label is a dominating label; and a prominent label is certainly
dominated by the master label. As dominated label, a prominent label is stick
to a master label: a master label can have none or more than one prominent
labels; a prominent label has only one master label.

For consistent discussion, we extended the master label definition:

Definition 8 (Master label) An undominated efficient label is a master label.

Now a master label can have none prominent label. The efficient labels in NDCA
are master labels.

Prominenet labels are stored in the prominent list of the master label, see figure
9.3.

The CDSPA keeps the framework of the NDCA to collect efficient labels and
applys Rule 2 and Rule 3 to collect prominent labels. We can now give a com-
plete definition of the candidate set: the candidate subpaths set is composed of
master labels and the prominent labels.

In order to collect prominent labels, we have to calculate the exclusive order
capacity of a dominated label by comparing each order with the dominating

56

Figure 9.3: Prominent labels storeage

57

label, which is a time consuming operation. Observe tge saving condition, the
result is decided by two factors: more cost(LHS); and more saving(RHS). In the
next two sections, we’ll introduce two method to short cut the operation time
using in judging a prominent label. Each is developed according to one of the
factor in the saving condition.

Section 9.4 introduce a new label presentation helping to avoid the prominence
test in some situtation; section 9.5 introduce a new fast keeping rule without
calculating the exclusive order capacity.

9.4 New Objective Function

In this section, we’ll study a new label presentation which helps to avoid a
prominence test by making a dominated label become an efficient label.

Update Objective Function

Our objective is to minimize the total time consuming of delivery orders. Time
consuming contains three parts: travel distance, load order, dock at node. As-
sume the optimal solution paths set is K and |K| is the number of paths in set
K. The objective function can be written as

MIN Z =
∑

k∈K

distk +
∑

k∈K

loadk +
∑

k∈K

dockk (9.31)

First, we discuss the total time of loading orders:

Total loading time =
∑

k∈K

loadk (9.32)

An order is either a connective delivery or none connective delivery, and the
path set K covers each customer(one pickup node and one delivery node) once,
(9.32) can be written as:

Total loading time =
∑

i∈N

loadorderi (9.33)

=
∑

i∈CON

loadorderi +
∑

i∈NCON

loadorderi (9.34)

loadorderi is time consuming of loading an order i. N is customers set, CON
is connective delivery set, NCON is none connective delivery set. N = CON ∪
NCON .

For a none connective delivery,

loadorderi = 4loadingqi (9.35)

58

For a connective delivery,

loadorderi = 2loadingqi (9.36)

Use (9.35), (9.36) into (9.37), we get

Total loading time = 4loading
∑

i∈NCON

qi + 2loading
∑

i∈CON

qi (9.37)

= 4loading
∑

i∈N

qi − 2loading
∑

i∈CON

qi (9.38)

(9.37) shows the variety of total loading time is only affected by the connective
delivery set. More connective deliverys save more loading time so as to reduce
the cost of objective function.

Second, we discuss the total time of docking at nodes.

Total docking time =
∑

k∈K

dockk (9.39)

Docking happens at two types of nodes: a customer node(pickup node or deliv-
ery node) and the depot. The optimal solution path set K covers each customer
once, both pickup node and delivery node, thus the total docking time spending
at customer nodes is fixed:

Total customer docking time =
∑

k∈K

2docking|N | (9.40)

The number 2 means, for each customer, docking at the pickup node and the
delivery node each one time.

The total depot docking time is decided by

Total depot docking time =
∑

k∈K

dockingk (9.41)

If a path is a combination path, it docks at depot two times: each sub path
docks once. If a path is a single path, it docks at depot one time. Using (9.40),
(9.41) into (9.39), we get

Total docking time = 2docking|N |+
∑

k∈K

dockingk (9.42)

(9.42) shows the variety of total docking time is only affected by the optmial
solution paths number and type.

59

Now, using (9.37), (9.42) into (9.31), the objective function is changed as fol-
lowing:

MIN Z =
∑

k∈K

distk + A− 2loading
∑

i∈CON

qi + B +
∑

k∈K

dockingk(9.43)

=
∑

k∈K

distk − 2loading
∑

i∈CON

qi +
∑

k∈K

dockingk + A + B(9.44)

A = 4loading
∑

i∈N

qi (9.45)

B = 2docking|N | (9.46)

Remove the scalar A and B from (9.43),

MIN Z ′ =
∑

k∈K

distk − 2loading
∑

i∈CON

qi +
∑

k∈K

dockingk (9.47)

=
∑

k∈K

distk − 2loading
∑

k∈K

Capcon
k +

∑

k∈K

dockingk (9.48)

=
∑

k∈K

distk − 2loading ∗ Capcon
k + dockingk (9.49)

Capcon
k =

∑

i∈CONk

qi (9.50)

CONk is the connective delivery set of path k.

(9.47) shows three features in fact affect the objective fucntion:

1. total traveling distance;

2. total connective delivery capacity;

3. total solution path number .

Observe (9.47), we can rewrite each path cost C′.

If a solution path k is a non combination path:

C′
k = dist + docking (9.51)

If a solution path k is a combination path composed by kpik and kdel:

C′
k = distkpik

+ distkdel
+ 2docking − 2loading ∗ Capcon

k (9.52)

= C′
kpik

+ C′
kdel
− 2loading ∗ Capcon

{pik,del} (9.53)

60

(9.52) indicate that a combination cost is still the sum of each subpath cost
subtracting the connective order loadint time.

Thus we can use the traveling distance as the label cost in the label presenting
in NDCA and CDSPA:

label of node i : (cap, dist)

cap is onloading order capacity arriving node i, dist is the traveling distance
arriving node i. As each subpath consumes one docking time, exclude the dock-
ing time in label cost(9.51) won’t affect the dominance and prominance testing.
Once a label is extended back into depot, the final cost of the label is the
distance time plus another docking time. During a combination operation, a
combination path cost is the sum of each subpath cost substract the saving time
from connective deliverys.

Next section, we show the advantage of using the new objective function (9.47)
and new label presentation.

New Label Presentation

Figure 9.4 show two path p1 and p2,

s

p1 order = 20

p2 order = 10

p

dist = 9

dist = 4

loading = 1

docking = 1

Figure 9.4: Label dominance condition

61

Using (cap, C) to present label p1 and p2:

p1 : (20, 25)

p2 : (10, 20)

P1 is dominated by p2, we need a prominence test to check whether p1 is a
prominent label of p2. However, if Using (cap, dist) to present label p1 and p2:

p1 : (20, 4)

p2 : (10, 9)

P1 is not dominated by p2 anymore, both p1 and p2 are efficient labels and will
be stored. The reason is p1 has a larger capacity consuming more loading time.
It has more cost using (cap, C). Once change to (cap, dist), the advantage of
short distance of p1 stands out. In later situation, a prominent test is unneces-
sary in which saves the operation of exclusive order calculation.

Now the inital label status and extension rule is changed as following:

label at start depot : (0, 0) (9.54)

Extend label from node i to node j:

capj = capi + qj (9.55)

Cj = Ci + distij − uj (9.56)

Tj = Ti + distij + serj (9.57)

In (9.55), if capj > CAP , drop the infeasible extended label. In (9.57), if Tj

excceed the maximum working hours (0.25Tmax for pickup path; 0.75Tmax for
delivery path), drop the infeasible extended label.

Conclusion: by rewritting the objective function in form (, the new label pre-
sentation can be used, in which the three real factors affecting the objective
function stand out: 1)traveling distance; 2) connective deliverys’ capacity; 3)
the solution paths type and number.

Through using the new label presentation, efficient labels are stored avoiding
any prominence test, in which the operation time is saved.

62

9.5 Fast Dominance Test

In the saving condition, the other factor is the more saving time of dominated
label. In this section, we’ll study the property of the more saving time.

Assume label p1 is dominated by label p2. I1, I2 are nodes set covered by
p1, p2 respectively. The more capacity of p1 against p2 is presented as ∆cap;
the exclusive order capacity of p1 against p2 is presented as capex,

∆cap = cap1 − cap2

The relationship between ∆cap and capex is analysed in following three situa-
tions.

Figure 9.5: Three situations of covering nodes set

i) I1 ∩ I2 = ∅, as shown in figure ??(a).

∆cap = A

capex = A−B

∆cap < capex

In the situation p1 and p2 have no shared node, p1’s exclusive order is larger
than ∆cap.

ii) I1 ∩ I2 6= ∅ and I1 ∪ I2 6= I1, as shown in figure 9.5(b).

∆cap = (A + C)− (B + C) = A−B

capex = A

∆cap < capex

In the situation p1 and p2 have shared nodes; and p1 and p2 both have exclusive

63

order, p1’s exclusive order is larger than ∆cap.

iii) I1 ∪ I2 = I1, as shown in figure 9.5(c).

∆cap = A

capex = A

∆cap = capex

In the situation p1 covers all the nodes in p2, p1’s exclusive order is equal to
∆cap.

From (i) to (iii), we conclude the property of capex as:

Theorem 6 Subpath p1 and p2 are in the same subpart, p1 is dominated by p2.
The exclusive order capacity of p1 is larger or equal than the more capacity of
of p1 against p2:

∆cap = cap1 − cap2 ≤ capex
1

capex
1 is p1’s exclusive order against p2.

Above property provides a new saving rule to speed up the prominence test.

Rule 4 Subpath p1 and p2 are in the same subpart, p1 is dominated by p2. If

C1 − C2 < 2loading(cap1 − cap2) (9.58)

p1 is a prominent label of p1.

Prove:

From Theorem 6, cap1 − cap2 ≤ capex
1

2loading(cap1 − cap2) ≤ 2loading ∗ capex
1 (9.59)

Using (9.59) into (9.58),

C1 − C2 < 2loading(cap1 − cap2) ≤ 2loading ∗ capex
1 1 (9.60)

(9.60) satisfied Rule3, p1 is a prominent label of p2.

64

Got proved.

If a dominated label satisfy condition in Rule 4, it certainly becomes a promi-
nent label of the dominated label. Otherwise, an additional prominent test is
necessary. Rule 4 extremely speeds up the opertaion of prominence test by
avoiding the calculation of the exclusive order capacity.

Now we can conclude the complete procedure of a prominence test of a domi-
nance pair: assume label p is dominated by label q:

1. Using Rule 1, if condition satisfied, go to step (4); otherwise, go to step
(2);

2. Using Rule 4, if condition satisfied, go to step (5); otherwise, go to step
(3);

3. Using Rule 3, if condition satisfied, go to step (5); otherwise, to to step
(4);

4. p is not a prominent label, finish.

5. p is a prominent label, finish.

This test procedure delay the exclusive order calculation at a later step in order
to save operation time.

9.6 Master Label Extension

Master label extension is much like the label extension described in section 9.4.
A difference is once to extend a master label, its prominent label also needs to
be extended.

Theorem 7 Extend a master label and its prominent label to a same node, the
new extended pair still holds prominence relationship.

Prove:

For simplicity, assume master label l has only one prominent label lp. l and
lp are labels of node i. Now extend these two labels from i to node j.

Step 1, extend l to l′. Using (9.55), (9.56):

capl′ = capl + qj

Cl′ = Cl + distij

Step 2, extend lp to l′p:

65

capl′p
= caplp + qj

Cl′p
= Clp + distij

During extension, we have to check the capacity of new extended label won’t
exceed the maximum capacity of vehicle CAP. If the capacity constraint is not
satisfied, we drop the infeasible label. So is the time window constraint.

The relationship of the new extended label l′ and l′p will be:

capl′p
− capl′ = caplp − capp ≥ 0 (9.61)

Cl′p
− Cl′ = Clp − Cl ≥ 0 (9.62)

(9.61) and (9.62) shows that l′p is dominated by l′. The more cost of l′p against
l′ is the same as that between lp against l. As l and lp are extended to the same

node, the exclusive order of l′p against l′ is the same as that lp against l. l
′

p and
l′ still hold the saving condition in Rule2, thus l′p is a prominent label of l′.
Got proved!

This property shows that a prominent relationship still holds during a mas-
ter label extension. No additional prominence test is needed. This is why we
store prominent labels sticking to the master label.

The master label extension rule is concluded as following:

1. Extend a master label itself using (9.55) to (9.57);

2. Extend all the prominent labels using (9.55) to (9.57);

3. Store the extended labels in step 2 in the prominent list of the label
extended in step 1.

4. Drop labels violating the maximum capacity constraint and time window
constraint.

9.7 Master Label Dominance

In this section, we will study dominance relationship between master labels,
which contains dominance relationship between the master labels themselves;
and dominance relationship between a master label and the prominent labels of
another master label.

66

For simplicity, we assume two master labels p1 and p2 of a same node. Each of
them has one prominent label, p

′

1 and p
′

2:

cap′1 ≥ cap1 (9.63)

C′
1 ≥ C1 (9.64)

cap′2 ≥ cap2 (9.65)

C′
2 ≥ C2 (9.66)

capex
p′

1

is the exclusive order capacity of p′1 against p1. capex
p′

2

is the exclusive

order capacity of p′2 against p2.

We’re interested in the relatioship between p
′

1 and p2(or p
′

2 and p1) under dif-
ferent situations.

Situation i) If p1, p2 are both efficient labels, and

cap1 > cap2 (9.67)

C1 < C2 (9.68)

Using (9.63) and (9.67), the capacity of p
′

1 is larger than p2.

cap′1 ≥ cap1 > cap2 (9.69)

However, the relationship of C′
1 and C2 are not certain by (9.64) and (9.68).

Thus the relationship of p′1 and p2 is not certain. If C2 ≥ C′
1 , p2 can’t dominate

p
′

1; if C2 < C′
1, p2 dominate p

′

1.

Using the same method, we can also prove that the relationship of p1 and p
′

2 is
not certain, either.

Conclusion: given two efficient master labels, the relationship between the
prominent labels of each master label is not certain.

Situation ii) If p1 dominates p2, but p2 is not a prominent label of p1:

cap1 < cap2 (9.70)

C1 < C2 (9.71)

67

2loading ∗ capex
p′

2

≤ C2 − C1 (9.72)

Using (9.65), (9.70),

cap′2 ≥ cap2 > cap1 (9.73)

Using (9.66) , (9.71),

C′
2 ≥ C2 > C1 (9.74)

(9.73), (9.74) shown, p1 also dominate p
′

2. However, the exclusive order capacity
of p

′

2 against p1 is not the same as capex
p′

2

. The more cost C′
2 − C1 is lager than

C2 − C1. An additional prominence test is necessary to check whether p
′

2 is a
prominent label of p1.

Situation iii) If label p2 is a prominent label of p1. From prominent label def-
inition, p2 is certainly dominated by p1. Thus (9.73), (9.74) still holds; label
p1 dominates label p

′

2. However, the exclusive order of p
′

2 against p1 is not the
same as capex

p′

2

. The more cost C′
2 − C1 is larger than C2 − C1. An additional

prominence test is necessary to check whether p
′

2 is a prominent label of p1.

From i) to iii), the dominance relationship between master labels can be con-
clude as

Theorem 8 If label A dominates master label B, then label A also dominates
B’s prominent label(s).

To check whether the prominent label of B is prominent label of A, an addi-
tional prominence test is necessary. Based on these dominance and prominence
realationship property, in next section, we construct the rule of how to insert a
new label into the bucket.

9.8 Insertion of Master Label

In this section, we deal with the five situations of inserting a new extended
master label into a calculated bucket.

In NDCA, everytime insert a new label into a bucket, a dominace test is applied.
If the new label is dominated by a label already stored in bucket, the new label
will be discarded. If the new label is dominating a label already stored in buket,
the old label will be removed from the bucekt.

In CDSPA, a dominance test is still applied before inserting a master label

68

is still needed. Moreover, once a dominance occurs, an additional prominence
test is applied, which is in order to check whether the dominanted label is a
prominante label. There are five situations of relationship between a new ex-
tended label with a label stored in the bucket.

Assume the new extended master label is p1, we are going to insert p1 into
bucket k. p2 is a master label already stored in bucket k. For simplicity, both
master labels have one prominent label, p′1 and p′2, respectively. The five situa-
tions will be:

Situation A: p1 is not dominated by labels stored in bucket; and none label in
bucket is dominated by the new label p1.

Situation B: p1 dominate p2, and p2 is not prominent label of p1.

Situation C: p1 dominate p2, and p2 is prominent label of p1.

Situation D: p2 dominate p1, and p1 is not prominent label of p2.

Situation E: p2 dominate p1, and p1 is prominent label of p2.

Above situations are the same as we discussed in previous section. Follow-
ing is the corresponding operations under each situation.

Situation A)
Insert p1 into bucket k by increasing lexicographic order of used capacity.

Situation B)
Append p

′

2 into p1’s prominent list if it is a prominent label if p1. Insert p1 into
bucket k by increasing lexicographic order of used capacity. Remove p2 from
bucket k.

Situation C)
Append p2 into p1’s prominent list. Append p

′

2 into p1’s prominent list if it is a
prominent label if p1. Insert p1 into bucket k by increasing lexicographic order
of used capacity. Remove p2 from bucket k.

Situation D)
This situation is the same type as situation B). P1 won’t be inserted into bucket
k. Append p

′

1 into p2’s prominent list if it is a prominent label if p2.

Situation E)
This situation is the same type as situation C). Append p1 into p2’s prominent
list. Append p

′

1 into p2’s prominent list if it is a prominent label if p2.

We’ve finished discuss the method of master label extension and how to in-
sert a master label into a bucket. Now we conclude the advantage of storing

69

prominent labels in a master label’s prominent list:

1. From the definition, a prominent label is possible to have less combination
cost than its master label.

2. During master label extension, the prominence relationship property still
holds, none additional prominence test is necessary.

3. The most advantage of storing prominent label in the prominent list, in-
stead of storing them in the master list, is that the NDCA framework
won’t be destroyed. Efficient labels are stored and treated seperately
from prominent labels. The result of the extended efficient labels is the
same as in the NDCA and the computation effort of efficent labels keeps
unchanged.

4. Some modification and adaptions are employed to keep the prominent
labels.

5. Using Theorem 8, it’s efficient to decide whether and where to store a
prominent label of a dominated master label.

9.9 Waiting Label and Waiting List

In the NDCA, dominance occurs at four operation situations:

1. Insert an extended label into a bucket. Dominance occurs between the
extended label and a stored label in bucket.

2. Minimal cost test before the treatment of a label. Dominance occurs
between the treated label and a mininal cost label.

3. Minimal cost test before inserting an extended label. Dominance occurs
between the new extended label and a mininal cost label.

4. Backward-look test before inserting an extended label. Dominance occurs
between the new extended label and a set of bucket mininal cost labels.

The situations 2 to 4 are minimal cost tests. In NDCA, once a label cost is
larger or equal than a minimal cost, it is dominated by the minimal cost label.
It will be discarded.

In the CDSPA, we also invite these minimal cost tests. A difference is once
a master label is dominated by a minimal cost label, an additional prominence
test is necessary. Furthermore, if the master label has prominent labels, by
Theorem5, its prominent label will also be dominated by the minimal cost la-
bel. A prominence test is necessary for each of the prominent label between the
minimal cost label.

70

The prominent label of the minimal cost label, either a master label itself or its
prominent label, will be stored in a seperate list named waiting list. Otherwise,
it will be discarded. We will discuss the waiting list later.

In order to apply a prominence test with a minimal cost label, in addition
to recored the minimal cost mincosti, a complete information of the minimal
cost label is necessary for the the exclusive order capacity calculation.

A node’s minimal cost label is stored in one of the previous treated bucket.
In each label list of a bucket, master labels are stored in increasing lexico-
graphically order of cost; and decreasing lexicographically order of capacity.
Obviously, the first label is the minimal cost label. A minimal cost label can
be retrieved using its bucket index. I.e., kimin

is the bucket index storing the
minimal cost label of node i. Following shows how to retrieve the minimal cost
label of node i:

1. find bucket kimin
;

2. find the label list of node i in bucket kimin
;

3. the first label of the label list is the minimal cost label of node i.

The backward-look test is much alike the minimal cost test. In a backward-look
check, a treated label will have a set of minimal cost test with bucket minimal
cost labels in backward buckets from kstart to k − 1.

If a label is a prominent label of a minimal cost label, we will store it. Suppose
we store it in the prominent list of the minimal cost label, it never gets chance
to be extended. As the NDCA never retreates a label having been treated before.

In order to get further extension, we move the prominent label(dominated by
either a minimal cost label or a bucket minimal cost label) into an independent
list,named waiting list, stored in the current label list. Figure 9.6 shows the
new data structure.

A bucket consists of a set of label lists of different nodes. Each label list con-
sists of two sublists: 1) a master label list(master list); and 2) a waiting label
list(waiting list). Label stored in a waiting list is a waiting label. A waiting
label is a prominent label of a minimal cost label.

Figure 9.7 show the storage status change of storing a waiting label.

Now the label extension operation contains:

1. extend the master labels in the master list;

2. extend the prominent labels of each master label, if exist;

71

Figure 9.6: Bucket data structure

3. extend waiting labels in the waiting list.

Waiting label extension calculation is the same as master label extension. A
new extended waiting label is to be stored in the waiting list in the label list in
a calculated bucket.

The waiting labels in a same waiting list have none sorting order; there will be
no dominance test between two waiting labels. In order to control the increas-
ing number of waiting labels, as master label, before inserting a new extended
waiting label into a calculated bucket, the minimal cost test and the backward-
looking check are introduced. A new extended waiting label has dominance test
with the minimal cost label and a set of bucket(s) minimal cost label in previous
buckets. A waiting label will be discarded if it is dominated by any of these
minimal cost label.

In addition to minimal cost test, another Master-Waiting dominance test is
introduced. The test is applied between a waiting label and a the master label.

For each waiting label, introduce a dominance test with each master label the
same label list. Once a waiting label is dominated by a master label, it is dis-
carded from the waiting list. This dominance test can efficiently reduce a larger
set of waiting labels.

The improved algorithm is shown in figure A.4. step 16 to 18: introduce the
minimal cost test before treatment of a label; steps 24 to 25: introduce the
minimal cost test before inserting a new label into a bucket; steps 27: introduce
backward-look test before inserting a new label into a bucket.

72

Figure 9.7: Store a waiting label

73

In CDSPA, another improvement is made to speed up the algorithm opera-
tion by sorting customers by increasing order capacity. This increasing capacity
order is helpful in label extension treatment. A label is extended to each suc-
cessor by this order. Once an extension is infeasible due to violation maximum
capacity constraint, we discard rest of successors. As each of the rest successor
has order capacity no less than the current one, none extension will be feasible,
either.

9.10 Store Destination Label

In the NDCA, each destination label(depot label) having negative cost will be
stored. In the CDSPA, a combination path having negative cost is probably
composed by subpaths either or both having nonnegative cost. Thus some des-
tination labels with nonnegative cost are required to be stored in the CDSPA. A
cost check test is introduced before storing a destination label in order to avoid
the unwise storage.

Theorem 9 If a destination label has cost larger or equal than its double loading
time,

C ≥ 2loading ∗ cap

, by contacting with any other label, the combination cost won’t be kess than the
cost of the other label.

Prove:

Assume a label p with cost Cp, and Cp ≥ 2loading ∗ capp. Combine p with
any other label q, the combination cost is

C{p,q} = Cp + Cq − saving

As saving ≤ 2loading ∗ capp,

C{p,q} = Cp + Cq − saving ≥ Cp + Cq − 2loading ∗ capp

As Cp ≥ 2loading ∗ capp,

Cp − 2loading ∗ capp ≥ 0

Cp − 2loading ∗ capp + Cq ≥ Cq

74

C{p,q} ≥ Cp − 2loading ∗ capp + Cq ≥ Cq

Got proved!

Theorem 9 indicate that when to construct a combination path, a path with
cost C ≥ 2loading ∗ cap can’t help in decreasing the combination path cost.
Therefore we won’t store such destination path.

Rule 5 (Destination label cost check) If a destination label has a cost larger
or equal than its double loading time,

C ≥ 2loading ∗ cap

it will be discarded; otherwise, it will be stored.

Another difference from the NDCA is extended destination labels are stored in
seperate list according to their types. A master destination label is stored in a
master label list. A waiting destination label is stored in a waiting label list.
When finishing the calculation in CDSPA, we have two destination label lists.

9.11 Final Dominance Test

In this section, we will discuss the final dominance test at node N + 1. The
minimal cost combination path is found by an enumerative combination of des-
tination labels from each candidate set. Sometimes the number of destination
labels will be very huge. The final dominance test helps to reduce the number
of destination label sharply. It is to deal with labels in the two label list at
destination: master list and waiting list. When finishing the final dominance
test, a candidate solution label list is returned.

As destination labels have been pushed back into depot and no more order
needs to be onloaded, the empty capacity of a vehicke won’t be considered in
a dominance test any more. A label becomes an efficient label if it has smaller
cost. A label becomes a prominent label once it is possible to save more time
by combination.

Definition 9 A, B are both destination labels, if A cost is less than B, A
dominates B.

Definition 10 If a final label won’t be dominated by any other labels, it becomes
a final efficient label.

75

Definition 11 If label A final dominate label B, and

CB − CA < 2loading ∗ capex
B

capex
B is the exclusive order capacity of B against A

B is prominent label of A.

The final dominance test is only to keep final efficient labels and final prominent
labels.

A final efficient label is the minimal cost label of destination, which is stored in
the master list. It’s probable to have more than one final efficient label. All of
them will be stored into the candidate solution list.

A prominent label of a finial efficient label certainly becomes a final promi-
nent label. For the rest labels in either master list or waiting list, a prominence
test is necessary. The prominence test is described in section 9.5. A promininent
label will be inserted into candidate solution list.

After a final dominance test in each subpart, we get two solution label lists:
pickup solution list and delivery solution list. The combination operation is
to form combination paths by enumerative combination of subpaths from each
solution list. See section 9.1 for details of combination operation and relative
calculations. We only collect the combination paths with negative cost.

9.12 Conclusion of CDSPA

Using CDSPA, we’re able to collect either negative cost single path or negative
cost combination path. The solution of the CDSPA can completely covers that
of the NDCA. On the other handm the computation effort increases.

In the CDSPA, we exclude the consideration of time consuming in dominance
and prominence criteria between two labels. This relaxation indicates that the
shortest path found by the CDSPA is possible not an optimal solution path of
the original subproblem with time window constraint. Thus the CDSPA can’t
prove the optimality of RMP when no more negative cost path can be found.

However, CDSPA is an efficient algorithm of subproblem in finding negative
reduced cost columns to be added into RMP.

In order the prove the optimality of RMP, another optimal algorithm of the
subproblem is drawn, which is built based on the CDSPA by adding one promi-
nence condition.

76

Chapter 10

The Optimal Cross-Docking

Shortest Path Algorithm

The optimal algorithm of subproblem(OCDSPA) is easy to develop based on the
CDSPA. We only have to include the time consuming factor into the dominance
test criteria.

A dominated label has advantage against the dominating label if it has less
time consuming. Like the less onloading capacity usage, less time consuming
increases a label’s extension possibility, which helps in reducing the path cost
by selecting more attractive paths in extension. Thus we should have to keep
those dominated labels with less time consuming compared to the dominating
label.

In order to keep the framework of treatment order of master labels, we let the
original dominance test unchanged and make modification in the prominence
test criteria. Another new rule is added:

Rule 6 (Keeping rule) Label A is dominated by label B. A is a prominent
label of B if A has less time consuming of B.

Rule7 will be applied between a dominated pair before any other rules listed
at the end of section 9.5. Once a dominated label has less time consuming, it
becomes a prominent label immediately.

By adding Rule7 into the CDSPA, the OCDSPA is able to find the optimal
solution of the subproblem, either the shortest single path or the shortest com-
bination path. When the OCDSPA can’t find any negative cost path, it is
sufficient to prove the RMP has reached the optimality.

77

Chapter 11

Implementation of

Subproblem

All algorithm is implemented using C++ language calling ILog CPLEX callera-
ble library. The implement of NDCA and CDSPA follows the direction of 1)not
distrubing the algorithm structure and 2)operation efficience. Several classes
are designed as container of the treatment according to the algorithms.

The class nodeLabel used to present a label information. It contains node
index, path cost, and path details. The visiting nodes sequence is stored as a
list. We again create a covered nodes set stored as a set. This makes constant
access time during calculation exclusive order.

A master label and a prominent label present using MasterLabel class and Prom-
Label class respectively. The MasterLabel class is derived from nodeLabel class,
as it has a prominent list storing the prominent labels. The PromLabel class is
also derived from nodeLabel.

The class myBucket present a bucket information. As the number of buck-
ets in one problem is fixed, a list of buckets is created initially at the begining.
For constant access time of one specific bucket during a minimal cost label test,
this buckets set is stored in a vector.

The class labelList present the list of a node labels stored in a bucket. In
NDCA, a labelList store the Master label list of a node. In CDSPA, a labelList
store the Master label list and the waiting label list of a node. Both label lists
are stored as list type.

Each bucket may contain many label lists of different nodes. The treatment
of label lists in a bucket has no special requirement. However, during a minimal
cost label test or a backward-looking check, we have to retrieve a specific node’s

78

label list. For constant access time, we build a map of node’s index with the
label list address.

When finishing computing, each algorithm return one label list as candidate
set. We use combLabel class to present a candidate single path or a com-
bination path constructed by enumerative combination labels from these two
candidate sets. After sorting, we select the set of best cost(minimal negative
cost) paths to add into RMP.

Order to improve the operation efficiency, we sorted all customers by increasing
order. In this way, during treatment of a label extension, once an extension is
infeasible due to excceeding the capacity, we immediately stop its extension and
switch to a next label treatment. As all sequent successor order is no less than
the current successor, the extension will be infeasible.

79

Chapter 12

Implementation of Column

Generation

12.1 Start Point

The well known simplex first phase carries over to column generation. Artificial
variables, one for each constraint, penalized by a bigM cost, are kept in the
RMP to ensure feasibility in a branch-and-bound algorithm. A smaller M gives
a tighter upper bound on the respective dual variables, and may reduce the
headinging effect (Vanderbeck, 2004) of initially producing irrelevant columns.

In some applications, the unit basis is already feasible. Then, an estimate of the
actual cost coefficients should be used instead of M . Heuristic estimates of the
optimal dual variable values are imposed as artificial upper bounds by Agarwal,
Mathur, and Salkin (1989) by introducing unit columns with appropriate cost.
The bounds are gradually relaxed until they are no longer binding.

We use the unit basis as a start point in the CG implementation. For each
customer’s node, we make a route start from depot to visit the node; after ser-
vice the node, the route directly goes back to the depot. Each customer will
have two routes, one pickup subpath and one delivery subpath. The initial start
point will have 2N routes. The cost of each route is calculated by the actual
distance, 2distsi, s refers to the depot.

This unit basis start point make sure that we can always find an integer optimal
solution of the original problem. However, this start point is very far away from
the integer optimal solution. It’s the worst feasible integer solution. This bad
start point indicate the most time of solving the cross-docking problem will be
spent in searching a huge branch and bound tree.

80

12.2 Add Column into RMP

We are free to choose a subset of non-basic variables, and a criterion according
to which a column is selected from the chosen set. According to the classical
Dantzig rule, one chooses among all columns the one with the most negative
reduced cost. Various schemes are proposed in the literature like full, partial,
or multiple pricing (Chvatal, 1983). Column generation is a pricing scheme for
large scale linear programs.

The role of the pricing subproblem is to provide a column that prices out prof-
itably or to prove that none exists. It is important to see that any column with
negative reduced cost contributes to this aim. In particular, there is no need
to solve subproblem exactly; an approximation sufficiency until the last itera-
tion. The ideal SP should have a structure that can be solved effectively since it
must be solved repetitively. One method is to use a heuristic to generate good
solutions quickly. If the heuristic fails to identify an improving column, an op-
timizing algorithm that requires more run time but is guaranteed of identifying
an improving column (if one exists) must be employed.

We may add many negative reduced cost columns from a subproblem, even
positive ones are sometimes used. We may solve a temporary restriction of the
subproblem, or a relaxation, which is the case for the vehicle routing problem
with time windows (Desrochers, Desrosiers, and Solomon, 1992). The RMP
may require longer solution times due to the enlarged problem size. Conversely,
columns which are of no use for the linear relaxation may be required for the
integer feasibility of the RMP.

In our CG solution, we will add columns into RMP built by single paths or
combination paths with negative reduced cost. NDCA is for finding negative
reduced cost single path. If NDCA find negative cost single paths in both sub-
parts, obviously we can construct negative cost combination path from these
single paths.

Our column insertion stratage is first applying NDCA to find negative cost
single paths in each subparts. These paths are stored in pickup path list and
delivery path list, seperately. Second, we construct combination paths by enu-
merate combination single paths from these two path list. As each single path
in the path list has negative cost, the built combination path also has negative
cost. Third, we collect the built combination paths and all found single paths,
and select 100 paths with least cost to insert into RMP.

The process continue till no good quality negative cost path, either single path
or combination path, can be found or constructed by NDCA. To identify the
good quality path generated by NDCA, we use two criteria: 1) if the negative
cost is not smaller enough; 2) if the actual number of columns to be added into
RMP is not big enough; As NDCA dosen’t consider the candidate subpath of

81

construction a connective path, the built combination path usually has a smaller
saving cost. In the later stage of using NDCA to generate combination path,
the paths negative cost are not small enough. These columns make very slow
converge to the optimal solution. This is also the result in situation 2), not
enough columns added into RMP makes slow converge. Thus, either these two
situation occurs, we will switch to CDSPA.

By alppying CDSPA, the candidate single paths to construct negative cost con-
nective path are found. Also the dominated negative cost single path could be
found and stored in prominent list or waiting list. The insertion stratage of
columns into RMP by using CDSPA is the same as NDCA.

The complexity of CDSPA is higher than NDCA, as much more candidate labels
are generated in CDSPA. We use NDCA as a heuristic method to approach the
optimal solution first, without solving the subproblem exactly. Thus we achieve
saving time consuming of applying CDSPA at the very begining. This method
efficiently brings us close to the optimal solution

We will swithch from CDSPA to OCDSPA when no good negative column gener-
ated by CDSPA, see above. As the CDSPA hasn’t taken time consuming of path
into dominance test consideration, the feasible solution set of original problem is
not completely included into CDSPA. By applying OCDSPA, the complete fea-
sible solution set is searched and it is probably to find better negative columns
insert into RMP.

12.3 Stop Criteria

One would expect that the tailing off effect be amplied by the multitude of lin-
ear programs to solve. However, the contrary is true. Early termination makes
the algorithm effective for integer programs in contrast to linear programs. The
need for integer solutions provides us with a very simple amendment: Stop gen-
erating columns when tailing off occurs and take a branching decision.

we terminate solving the subproblem earlier to save the computational efforts.
When applying OCDSPA to generate negative cost path, if the path cost is not
small enough, we stop the subproblem and switch to branch and bound. Here is
a tradeoff between computational efforts and the quality of the obtained lower
bound upon premature termination. As the start point is not good quality,
which will bring astray columns into RMP. The result is there is probable more
columns with fraction coefficient in RMP, which make the search tree very huge.
Thus it is not necessay to get an exclusive lower bound in the situation.

Note that monitoring the relative decrease of the objective function value over
a predefined number of iterations (Gilmore and Gomory, 1963) is not robust
against temporary stalls.

82

12.4 Branch and Bound

After get a lower bound of the RMP, we begin the branch and bound process
to search the integer optimal solution. In out CG implementation, we use the
depth-first branch and bound stratage.

We choose to branch on sum of x-variables, xij =
∑

k∈K xk
ij . This kind if

decisions are characterized by fixing arcs (i, j) of the network for all vehicles k.
As in our model, all subproblems stay identical.

Our approach to selecting a variable on which to branch is to determine the
total flow associated with each xij variable and branch on the fractional part

fij closest to 0.5, where xij is the fractional part of
∑

k∈K
f
ij

λk
i , Kf

ij is the set

of columns that incorporate xij , Kf
ij ∈ Ki.

Branch on
∑

k∈K xk
ij is equivalent to branch on single flow variables fij . In the

VRPTW context this was proposed by Desrochers, Desrosiers and Solomon(1922).
All subproblems remains identical. Fixing fij to 0 simply done by removing the
arc (i, j) from the network. In the master problem, all columns covering arc
(i, j) will be removed; in the subproblem, arc (i, j) is removed from network.

Fixing fij to 1 is more complex than branch to 0. In the master problem,
remove all columns start from i except terminating at j. If i is depot, keep
those columns. And remove all columns terminate at j except starting at i. If
j is depot, keep those columns. In the subproblem, remove all arcs start from i
except arc (i, j). If i is depot, keep those arcs. And remove all arcs terminate
at j excpet start from i. If j is depot, keep those arcs.

It will be the situation that a RMP has infeasible solution during the branching
process. The reason is after muti-times of branching, some arcs are removed
which is necessary in order to build a feasible solution. To avoid this problem,
we keep the start point solution untouched. The first 2N columns are always
keeping stayed in the RMP. As these columns form an integer solution of cross-
docking problem, we can always find a feasible solution within these columns
included in.

During the branch and bound process, we can use the updated upper bound to
prone the infeasible branches. Each feasible integer solution we find during the
branch and bound process is an upper bound of the original problem solution.
These integer solutions are not generated by decresing objective value order.
However, we can still use them to update the global upper bound, which will
be the smallest integer solution objective value. During branching, once a lower
bound of a branching node is larger than the global upper bound, this branch
node is proned. As each integer solution found under this branching node is
larger than the node’s lower bound, which is obviously larger than the global

83

bound.

84

Chapter 13

Numeric Result

13.1 Subproblem Algorithm

Subproblem has to be repeatedly solved in finding negative reduced cost columns.
The efficiency of a column generation implementation is mainly decided by the
efficiency of the algorithms of solving subproblem. We include the testing of the
three algorithims developed to solve the subproblem.

1. NDCA is the algorithm to find the optimal path in a capacity resource
constrained shortest path problem.

2. CDSPA is the algorithm to find the optimal combination path in a capacity
resource constrained shortest path problem.

3. OCDSPA is the algorithm to find the optiaml path in a capacity resourse
constrained shortest path problem with time window constraint(RCSPPTW).

Without any time window constraint

The NDCA is very fast algorithm to find good negative reduced cost single
path in the subproblem. However the CDSPA is only efficient to find good
negative reduced cost path within very few nodes situation, usually under 10
customers. Testing the CDSPA with 10 customers, it becomes extremely time
consuming. The reason is the number of candidate path of destination node
becomes very huge. The algorithm try to push every label which is possible to
become an optimal subpath in construction of the shortest combination path.
As during the label pushing process in one subpart, we have no information of
how the label pushing situation is in the other part, in which no condition can
be used to prone candidate labels being pushed further.

Apply a tight time window constraint

There are several ways to make the testing more practical and more realistic.

85

We choose to add a tight service time window constraint for each customer’s
node. For each customer, the pikcup node and the delivery node have a service
time window [ai, bi], respectively. A vehicle can’t begin docking at a customer’s
node before the start serving time ai; and should finish uploading or offloading
a customer’s order before the end serving time bi. This tight time windows
constraint sharply cut down the feasible set of candidate labels.

The time windows are generated as following. As a delivery node is usually
two to three times far away from the depot than a pickup node, and the depot
opens from 6am to 22pm, we assume all pickup nodes’ start seving time between
7am to 14pm and all delivery nodes’ start serving time between 10am to 21pm.
For each customer, the start service time between delivery node and pickup
node is far enough to ensure that a vehicle has enough time to transport the
order back to depot first, then delivery it to the delivery node. For each delivery
nodes’ end service time, we make sure that a vehicle can return to depot and
offload all the orders before 22pm. The width of time window is around one to
two hours depending on the actual order capacity of each customer.

The CDSPA efficiency has been sharply improved by adding time windows con-
straints.

A test with N customers indicates there are total 2N service nodes, N pickup
nodes and N delivery nodes. Testing case is generated by selecting the nodes
from the provided data. First introduce the content in each column:

1. column 1: name of the testing case;

2. column 2: objective value of NDCA;

3. column 3: objective value of CDSPA;

4. column 4: objective value of OCDSPA;

5. column 5: gap between NDCA and OCDSPA;

6. column 6: gap between CDSPA and OCDSPA;

7. column 7: cpu time using of NDCA;

8. column 8: cpu time using of CDSPA;

9. column 9: cpu time using of OCDSPA;

10. column 10: cpu time ratio between NDCA and OCDSPA;

11. column 11: cpu time ratio between CDSPA and OCDSPA;

The number in case name indicates customer number. The charactor p or d at
the end of case name indicate pickup subpart or delivery subpart. For instance ,
ds50.a4.p refer to a data file containing 50 customers’s pickup nodes information.

86

Table 13.1 show the three algorithms testing result of customer number from 10
to 200. Under each testing case, the NDCA used least cpu time to find the opti-
mal solution and the OCDSPA used the most cpu time. The optimal objective
value found by the NDCA is no better than the other two algorithms, and the
CDSPA is no better than the OCDSPA. As the cumstomer number increases,
computation effort grows within all the three algorithms.

The difference of objective solution value between the three algorithms show
variety in customers number. When customer number is under 20(include 20),
for the NDCA, there is 1 case less than optimal gap 0.5%, 1 case less than opti-
mal gap 5%, 2 cases less than optimal gap 15%, and 3 cases larger than optimal
gap 15%; for the CDSPA, there is only one case less than optimal gap 0.5%.

When customer number is 50, for the NDCA, there’re 4 cases less than op-
timal gap 0.5%, 8 cases less than optimal gap 5%, 2 cases less than optimal
gap 15%, and 1 cases larger than optimal gap 15%; for the CDSPA, there is 1
case less than optimal gap 0.5%, 6 cases less than 5%, and 2 cases less than 15%.

When customer number is from 100 to 200, for the NDCA, there’re 6 cases
less than optimal gap 0.5%, 5 cases less than optimal gap 5%, 4 cases less than
optimal gap 15%, and 1 cases larger than optimal gap 15%; for the CDSPA,
there’re 5 cases less than optimal gap 0.5%, 5 cases less than 5%, and 1 case
less than 15%.

Conclude, in 10 to 20 customers, the NDCA has 12.5% case larger than the
optimal gap 5%; the CDSPA all reach optimal solution. in 50 customers, the
NDCA has 9.4% case larger than the optimal gap 5%; the CDSPA has 6.2%.
in 100 to 200 customers, the NDCA has 14% case larger than the optimal gap
5%; the CDSPA 3%. The result show that the NDCA is capable of finding close
solution to the optimality, the CDSPA is capable of finding very close solution
to the optimality. And as the customer number increase, the gap of NDCA
shows increasing tendence, however the CDSPA shows the opposite result.

In addition to the objective value, the computation effort also show difference
variety between the three algorithms. In order to find the optimal solution, the
OCDSPA always consumed much more cpu time. In the 10 to 20 customers,
the average cpu time of OCDSPA is 3.3 to 5 times of the NDCA; 1.7 to 2 times
of the CDSPA. In the 50 customers, the average cpu time of OCDSPA is 7 to
10 times of the NDCA; 2.5 times of the CDSPA. In the 10 to 20 customers, the
average cpu time of OCDSPA is 17 to 50 times of the NDCA; 3 to 10 times of
the CDSPA.

The difference of computation effort shows that the NDCA achieves to sav-
ing computation effort by the possibility of increasing optimal gap, and the
CDSPA and OCDSPA cost more computation effort to close the optimal gap.

87

As the customer number increased, the difference of computation effort between
the NDCA and the OCDSPA also increased drasticly. We can expect that the
incresing cpu time is due to the increasing treated candidate labels, thus the
above result show that:

1. the candidate paths treated in the CDSPA or the OCDSPA are much more
than the NDCA;

2. the candidate paths treated in the CDSPA or the OCDSPA grow drasticly
fast than the NDCA as the customer number increases;

3. the candidate paths treated in the CDSPA or the OCDSPA are more sensi-
tive to the nodes distribution situation as the customer number increases.
In the testing case from 100 to 200 customers, the computation effort
comparation betwee the NDCA and the OCDSPA shows a broad variety
from 17 to 50. In another word the efficiency of OCDSPA and CDSPA
is not only dependent on nodes number but also dependent on the nodes
location.

Conclusion of the subproblem algorithms testing: the NDCA is fast to find a
close optimal solution of negative single path, the CDSPA is efficient to find
a very close optimal solution of subproblem with less time cost compared to
the optimal algorithm. The result clearly shows the complexity in solving the
Cross-Docking problem into optimality. An successful algorithm of the Cross-
Docking problem results in an efficient subproblem algorithm capable to handle
the drastic increasing candidate labels.

Compare with a loose time window constraint

We also study the result of NDCA, CDSPA and OCDSPA under a loose time
windows constraints. Table how the solution result under a loose time windows
of 3-hours service time for each customer node, bi − ai ≤ 3h. As above, the
comparation was made under different customers number.

Under each testing case, the optimal objective value found by the NDCA is
no better than the other two algorithms, and the CDSPA is no better than the
OCDSPA. Within 10 to 20 customers, the NDCA and the CDSPA are both
none of optimal gap larger than 5%. With 50 customers, the NDCA has 7.5%
optimal gap larger than 5%; the CDSPA has 5%. With larger than 50 cus-
tomers, the NDCA increase to 22%; the CDSPA increase to 11%. Under each
testing case, the NDCA used least cpu time to find the optimal solution and
the OCDSPA used the most cpu time. As the cumstomer number increases,
computation effort grows within all the three algorithms.

In addition to the comparation of testing result of the three algorithms un-
der a loose time window constraint, we also make comparation with the result
of 1-hour service time window got above. As the time window constraint for

88

each node was regenerated, the comparation only include the computation effort
under tight/loose time window situations; the objective value is not included in
the comparation.

Compared with 1-hour service time, the result of 3-hours show that with less
customers’ situation, a loose time window constraint is prone to close the op-
timal gap of the NDCA and the CDSPA; however when the customers number
increases, a loose time window constraint is prone to increase the optimal gap
of the NDCA and CDSPA.

The result obviously show the difference of dominance criteria of the three algo-
rithms. In the situation of less customers and loose time windows constraint, we
can consider that the time window constraint is almost relaxed. Thus the dom-
inance criteria of the NDCA approximatedly presented for the optimal solution
dominance criteria. The possibility of the candidate label of optimal solution
being cut off decreases; and the optimal gap closes. However in the situation of
density network and loose time windows, the time window constraint can’t be
relaxed. A wide service time window increase the number of candidate labels,
thus the possibility of candidate label of optimal solution being dominated in-
crease also; and the optimal gap increases.

Compared the computation effort with 1-hour service time, 3-hours service time
hadn’t increased the cpu time drasticly as we expected. On the opposite, the
computation effort didn’t changed too much. The result is most probably due
to the time window constraint defined for pickup subpath(4 hours) and delivery
subpath(12 hours).

13.2 Column Generation Testing

The computation effort of column generation implementation without time win-
dows constraints is extremely time consuming, as the bad performance of the
algorithm in solving the subproble. Even under the situation of less than 10
customers, the result is rather very unsatisfied, either. Thus we won’t include
the testing result here.

In addition to the low efficiency of subproblem algorithm discussed in previ-
ous section, the reason for the bad performance of extremely time consuming
can be explained in several ways:

1. First is the start point. As we have no warm start points, the one-way-
out-and-in solution is very far away from the optimal solution. Poorly
chosen initial columns lead the algorithm astray, when they do not resem-
ble the structure of a possible optimal solution at all. They must then
be interpreted as a misleading bound on an irrelevant linear combination
of the dual variables. Thus at the begining of column generation process,

89

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
da10.a1.p -213 -213 -213 -0 -0 9999.99 20000 30000 0.333333 0.666667
da10.a1.d -1155 -1155 -1155 -0 -0 20000 30000 40000 0.5 0.75
da10.a2.p -201 -206 -206 0.0242718 -0 0 9999.99 20000 0 0.5
da10.a2.d -766 -766 -766 -0 -0 10000 20000 30000 0.333334 0.666667
da10.a3.p -257 -257 -257 -0 -0 9999.99 20000 20000 0.5 1
da10.a3.d -951 -951 -951 -0 -0 9999.99 20000 30000 0.333333 0.666666
da10.a4.p -329 -329 -329 -0 -0 0 9999.99 30000 0 0.333333
da10.a4.d -891 -891 -891 -0 -0 10000 20000 30000 0.333334 0.666667
da10.a5.p -192 -192 -192 -0 -0 0 9999.99 20000 0 0.5
da10.a5.d -638 -638 -638 -0 -0 10000 9999.99 20000 0.500001 0.5
da10.b1.p -334 -334 -334 -0 -0 0 9999.99 30000 0 0.333333
da10.b1.d -705 -705 -705 -0 -0 10000 20000 40000 0.25 0.5
da10.b2.p -198 -212 -212 0.0660377 -0 0 9999.99 20000 0 0.5
da10.b2.d -706 -706 -706 -0 -0 10000 9999.99 20000 0.500001 0.5
da10.b3.p -132 -132 -132 -0 -0 0 9999.99 20000 0 0.5
da10.b3.d -1124 -1124 -1124 -0 -0 10000 20000 30000 0.333334 0.666667
da10.b4.p -204 -204 -204 -0 -0 10000 20000 30000 0.333334 0.666667
da10.b4.d -981 -981 -981 -0 -0 9999.99 20000 30000 0.333333 0.666667
da10.b5.p -147 -147 -147 -0 -0 9999.99 20000 30000 0.333333 0.666667
da10.b5.d -689 -689 -689 -0 -0 9999.99 20000 30000 0.333333 0.666667

Table 13.1: Shortest path of 10 customers

9
0

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
da20.a1.p -230 -310 -310 0.258065 -0 10000 40000 89999.9 0.111111 0.444444
da20.a1.d -1039 -1039 -1039 -0 -0 30000 70000 120000 0.25 0.583333
da20.a2.p -221 -274 -274 0.193431 -0 10000 50000 99999.9 0.1 0.5
da20.a2.d -866 -866 -866 -0 -0 30000 79999.9 170000 0.176471 0.470588
da20.a3.p -386 -386 -386 -0 -0 30000 79999.9 160000 0.1875 0.5
da20.a3.d -1053 -1053 -1053 -0 -0 50000 110000 190000 0.263158 0.578947
da20.a4.p -384 -427 -427 0.100703 -0 20000 60000 140000 0.142857 0.428571
da20.a4.d -1117 -1117 -1117 -0 -0 40000 89999.9 190000 0.210526 0.473684
da20.a5.p -325 -417 -417 0.220624 -0 10000 60000 110000 0.0909092 0.545455
da20.a5.d -1616 -1616 -1618 0.00123609 0.00123609 30000 79999.9 160000 0.1875 0.5
da20.b1.p -224 -224 -224 -0 -0 9999.99 40000 69999.9 0.142857 0.571429
da20.b1.d -1163 -1163 -1163 -0 -0 30000 60000 89999.9 0.333333 0.666667
da20.b2.p -223 -223 -223 -0 -0 10000 40000 89999.9 0.111111 0.444444
da20.b2.d -1626 -1626 -1626 -0 -0 30000 70000 170000 0.176471 0.411765
da20.b3.p -216 -216 -216 -0 -0 20000 50000 89999.9 0.222222 0.555556
da20.b3.d -1026 -1026 -1026 -0 -0 30000 69999.9 120000 0.25 0.583333
da20.b4.p -216 -216 -216 -0 -0 20000 50000 89999.9 0.222222 0.555556
da20.b4.d -1121 -1121 -1121 -0 -0 40000 79999.9 130000 0.307692 0.615385
da20.b5.p -300 -300 -300 -0 -0 10000 50000 99999.9 0.1 0.5
da20.b5.d -1131 -1131 -1131 -0 -0 40000 79999.9 140000 0.285714 0.571429

Table 13.2: Shortest path of 20 customers

9
1

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
da50.a1.p -422 -433 -488 0.135246 0.112705 70000 330000 770000 0.0909091 0.428571
da50.a1.d -1574 -1592 -1592 0.0113065 -0 160000 480000 1.1e+06 0.145455 0.436364
da50.a2.p -330 -425 -425 0.223529 -0 70000 320000 779999 0.0897437 0.410256
da50.a2.d -1399 -1399 -1399 -0 -0 190000 560000 1.18e+06 0.161017 0.474576
da50.a3.p -318 -325 -325 0.0215385 -0 50000 270000 570000 0.0877194 0.473684
da50.a3.d -1665 -1665 -1665 -0 -0 180000 470000 829999 0.216868 0.566265
da50.a4.p -438 -438 -438 -0 -0 60000 260000 560000 0.107143 0.464286
da50.a4.d -1368 -1368 -1368 -0 -0 150000 420000 809999 0.185185 0.518519
da50.b1.p -395 -395 -408 0.0318627 0.0318627 60000 290000 640000 0.0937501 0.453125
da50.b1.d -1404 -1404 -1422 0.0126582 0.0126582 190000 480000 1.09e+06 0.174312 0.440367
da50.b2.p -441 -441 -441 -0 -0 60000 290000 639999 0.0937501 0.453125
da50.b2.d -1864 -1864 -1906 0.0220357 0.0220357 180000 510000 1.22e+06 0.147541 0.418033
da50.b3.p -316 -319 -319 0.00940439 -0 50000 230000 500000 0.1 0.46
da50.b3.d -1324 -1324 -1324 -0 -0 140000 370000 800000 0.175 0.4625
da50.b4.p -382 -383 -383 0.00261097 -0 60000 350000 789999 0.0759494 0.443038
da50.b4.d -1886 -1886 -1977 0.0460293 0.0460293 230000 620000 1.7e+06 0.135294 0.364706
da50.c1.p -426 -426 -426 -0 -0 70000 290000 640000 0.109375 0.453125
da50.c1.d -1492 -1492 -1492 -0 -0 180000 470000 1.38e+06 0.130435 0.34058
da50.c2.p -443 -443 -443 -0 -0 60000 330000 719999 0.0833334 0.458333
da50.c2.d -2066 -2066 -2066 -0 -0 210000 550000 1.15e+06 0.182609 0.478261
da50.c3.p -457 -459 -459 0.0043573 -0 70000 390000 899999 0.0777778 0.433333
da50.c3.d -1528 -1528 -1528 -0 -0 200000 590000 1.61e+06 0.124224 0.36646
da50.c4.p -407 -407 -407 -0 -0 70000 320000 719999 0.0972223 0.444445
da50.c4.d -1429 -1429 -1429 -0 -0 210000 580000 1.93e+06 0.108808 0.300518
da50.e1.p -336 -336 -362 0.0718232 0.0718232 60000 260000 600000 0.1 0.433333
da50.e1.d -1512 -1512 -1512 -0 -0 170000 450000 1.02e+06 0.166667 0.441176
da50.e2.p -442 -442 -445 0.00674157 0.00674157 70000 350000 879999 0.0795455 0.397727
da50.e2.d -1399 -1399 -1399 -0 -0 170000 560000 1.53e+06 0.111111 0.366013
da50.e3.p -445 -445 -450 0.0111111 0.0111111 90000 460000 1.37e+06 0.0656935 0.335766
da50.e3.d -1635 -1635 -1635 -0 -0 250000 800000 2.05e+06 0.121951 0.390244
da50.e4.p -426 -426 -426 -0 -0 50000 320000 729999 0.0684932 0.438356
da50.e4.d -1307 -1307 -1324 0.0128399 0.0128399 210000 590000 1.29e+06 0.162791 0.457364

Table 13.3: Shortest path of 50 customers

9
2

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
da100.a1.p -474 -500 -510 0.0705882 0.0196078 260000 1.54e+06 4.72e+06 0.0550848 0.326271
da100.a1.d -2428 -2428 -2430 0.000823045 0.000823045 850000 2.64e+06 2.078e+07 0.0409047 0.127045
da100.a2.p -446 -446 -446 -0 -0 180000 1.09e+06 2.66e+06 0.0676692 0.409774
da100.a2.d -1761 -1761 -1766 0.00283126 0.00283126 590000 1.79e+06 8.73e+06 0.067583 0.20504
da100.b1.p -456 -457 -457 0.00218818 -0 230000 1.49e+06 3.98e+06 0.057789 0.374372
da100.b1.d -1861 -1861 -1965 0.0529262 0.0529262 920000 2.97e+06 1.162e+07 0.0791738 0.255594
da100.b2.p -448 -510 -514 0.128405 0.0077821 220000 1.46e+06 4.28e+06 0.0514019 0.341122
da100.b2.d -2082 -2082 -2082 -0 -0 750000 2.45e+06 1.043e+07 0.071908 0.234899
da100.c1.p -465 -465 -465 -0 -0 230000 1.32e+06 3.4e+06 0.0676471 0.388235
da100.c1.d -2077 -2077 -2077 -0 -0 760000 2.23e+06 8.41e+06 0.0903686 0.26516
da100.c2.p -526 -526 -528 0.00378788 0.00378788 240000 1.61e+06 5.14e+06 0.0466926 0.31323
da100.c2.d -1827 -1827 -1882 0.0292242 0.0292242 820000 3.03e+06 2.085e+07 0.0393285 0.145324
da100.d1.p -545 -566 -566 0.0371025 -0 270000 1.92e+06 6.81e+06 0.0396476 0.281938
da100.d1.d -2011 -2011 -2011 -0 -0 760000 3.37e+06 1.29e+07 0.0589147 0.26124
da100.d2.p -443 -443 -443 -0 -0 240000 1.57e+06 3.92e+06 0.0612245 0.40051
da100.d2.d -1890 -1890 -1890 -0 -0 870000 2.79e+06 1.449e+07 0.0600414 0.192547

Table 13.4: Shortest path of 100 customers

9
3

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
da150.a.p -567 -567 -567 -0 -0 610000 4.4e+06 1.695e+07 0.0359882 0.259587
da150.a.d -2303 -2303 -2313 0.00432339 0.00432339 2.06e+06 7.34e+06 7.938e+07 0.0259511 0.0924666
da150.b.p -568 -572 -646 0.120743 0.114551 570000 4.43e+06 2.196e+07 0.0259563 0.20173
da150.b.d -2249 -2249 -2249 -0 -0 2e+06 9.18e+06 8.703e+07 0.0229806 0.105481
da150.c1.p -528 -528 -528 -0 -0 510000 3.31e+06 1.095e+07 0.0465754 0.302283
da150.c1.d -2072 -2072 -2156 0.038961 0.038961 1.97e+06 7.24e+06 6.833e+07 0.0288307 0.105956
da150.c2.p -444 -519 -519 0.144509 -0 510000 3.96e+06 1.405e+07 0.0362989 0.281851
da150.c2.d -1992 -1992 -1992 -0 -0 1.76e+06 7.33e+06 8.98e+07 0.0195991 0.0816258
da150.d1.p -552 -552 -552 -0 -0 510000 3.89e+06 1.136e+07 0.0448944 0.34243
da150.d1.d -2201 -2201 -2201 -0 -0 1.66e+06 6.49e+06 4.026e+07 0.041232 0.161202
da150.d2.p -516 -516 -516 -0 -0 550000 4.07e+06 1.252e+07 0.0439297 0.32508
da150.d2.d -2172 -2172 -2172 -0 -0 1.65e+06 6.48e+06 3.271e+07 0.0504433 0.198105
da200.a1.p -460 -576 -576 0.201389 -0 800000 6.47e+06 2.485e+07 0.0321932 0.260362
da200.a1.d -2524 -2524 -2524 -0 -0 3.14e+06 1.129e+07 1.18308e+09 0.00265408 0.00954286
da200.b.p -562 -563 -563 0.0017762 -0 860000 7.24e+06 2.379e+07 0.0361497 0.30433
da200.b.d -2259 -2299 -2376 0.0492424 0.0324074 3.85e+06 1.414e+07 1.15452e+09 0.00333472 0.0122475
da200.c.p -582 -582 -582 -0 -0 1.09e+06 8.31e+06 3.771e+07 0.0289048 0.220366
da200.c.d -2329 -2329 -2329 -0 -0 3.3e+06 1.319e+07 2.4716e+08 0.0133517 0.0533662
da200.d.p -531 -531 -531 -0 -0 940000 8.29e+06 3.055e+07 0.0307692 0.271358
da200.d.d -2323 -2323 -2323 -0 -0 3.15e+06 1.324e+07 6.2356e+08 0.00505164 0.0212329

Table 13.5: Shortest path of 150-200 customers

9
4

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
ds10.a1.p -210 -210 -210 -0 -0 9999.99 20000 30000 0.333333 0.666667
ds10.a1.d -946 -946 -946 -0 -0 9999.99 20000 30000 0.333333 0.666667
ds10.a2.p -218 -218 -218 -0 -0 0 9999.99 20000 0 0.5
ds10.a2.d -799 -799 -799 -0 -0 10000 20000 30000 0.333334 0.666667
ds10.a3.p -200 -200 -200 -0 -0 10000 9999.99 20000 0.500001 0.5
ds10.a3.d -633 -633 -633 -0 -0 9999.99 20000 30000 0.333333 0.666667
ds10.a4.p -223 -228 -228 0.0219298 -0 0 10000 20000 0 0.5
ds10.a4.d -615 -628 -646 0.0479876 0.0278638 0 9999.99 20000 0 0.5
ds10.a5.p -155 -155 -155 -0 -0 10000 9999.99 20000 0.500001 0.5
ds10.a5.d -501 -501 -501 -0 -0 9999.99 20000 30000 0.333333 0.666667
ds10.b1.p -310 -310 -310 -0 -0 0 9999.99 30000 0 0.333333
ds10.b1.d -713 -713 -713 -0 -0 10000 20000 40000 0.25 0.5
ds10.b2.p -233 -233 -233 -0 -0 0 9999.99 20000 0 0.5
ds10.b2.d -946 -946 -946 -0 -0 10000 20000 30000 0.333334 0.666667
ds10.b3.p -95 -95 -95 -0 -0 9999.99 20000 20000 0.5 1
ds10.b3.d -672 -672 -672 -0 -0 9999.99 20000 30000 0.333333 0.666666
ds10.b4.p -155 -155 -155 -0 -0 10000 20000 30000 0.333334 0.666667
ds10.b4.d -926 -926 -926 -0 -0 9999.99 20000 30000 0.333333 0.666667
ds10.b5.p -172 -172 -172 -0 -0 10000 20000 20000 0.500001 1
ds10.b5.d -1046 -1046 -1046 -0 -0 9999.99 20000 30000 0.333333 0.666666

Table 13.6: Shortest path of 3-hours service window

9
5

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
ds20.a1.p -326 -338 -338 0.035503 -0 20000 50000 89999.9 0.222222 0.555556
ds20.a1.d -882 -882 -882 -0 -0 30000 69999.9 120000 0.25 0.583333
ds20.a2.p -226 -226 -226 -0 -0 20000 60000 110000 0.181818 0.545455
ds20.a2.d -885 -885 -885 -0 -0 40000 89999.9 150000 0.266667 0.6
ds20.a3.p -279 -293 -293 0.0477816 -0 20000 69999.9 150000 0.133333 0.466667
ds20.a3.d -979 -979 -979 -0 -0 50000 110000 200000 0.25 0.55
ds20.a4.p -315 -315 -315 -0 -0 20000 60000 99999.9 0.2 0.6
ds20.a4.d -1314 -1314 -1314 -0 -0 40000 79999.9 130000 0.307692 0.615385
ds20.a5.p -315 -315 -315 -0 -0 20000 60000 110000 0.181818 0.545455
ds20.a5.d -1445 -1445 -1448 0.00207182 0.00207182 40000 89999.9 190000 0.210526 0.473684
ds20.b1.p -216 -216 -216 -0 -0 9999.99 40000 69999.9 0.142857 0.571429
ds20.b1.d -1072 -1072 -1072 -0 -0 30000 60000 99999.9 0.3 0.6
ds20.b2.p -340 -340 -340 -0 -0 10000 40000 89999.9 0.111111 0.444445
ds20.b2.d -1397 -1397 -1397 -0 -0 30000 80000 150000 0.2 0.533333
ds20.b3.p -211 -211 -211 -0 -0 10000 40000 79999.9 0.125 0.5
ds20.b3.d -1032 -1032 -1032 -0 -0 30000 70000 110000 0.272727 0.636364
ds20.b4.p -218 -218 -218 -0 -0 9999.99 40000 69999.9 0.142857 0.571429
ds20.b4.d -1077 -1077 -1077 -0 -0 30000 70000 99999.9 0.3 0.7
ds20.b5.p -315 -315 -315 -0 -0 10000 50000 99999.9 0.1 0.5
ds20.b5.d -1295 -1295 -1295 -0 -0 40000 89999.9 150000 0.266667 0.6

Table 13.7: Shortest path of 3-hours service window

9
6

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
ds50.a1.p -444 -444 -444 -0 -0 70000 380000 979999 0.0714286 0.387755
ds50.a1.d -1784 -1784 -1784 -0 -0 180000 590000 1.63e+06 0.110429 0.361963
ds50.a2.p -324 -337 -337 0.0385757 -0 70000 320000 719999 0.0972223 0.444445
ds50.a2.d -1322 -1322 -1334 0.0089955 0.0089955 200000 550000 1.4e+06 0.142857 0.392857
ds50.a3.p -332 -332 -332 -0 -0 50000 240000 510000 0.0980393 0.470588
ds50.a3.d -1356 -1474 -1596 0.150376 0.0764411 140000 410000 979999 0.142857 0.418367
ds50.a4.p -325 -325 -325 -0 -0 50000 230000 490000 0.102041 0.469388
ds50.a4.d -1426 -1426 -1426 -0 -0 150000 390000 760000 0.197368 0.513158
ds50.b1.p -444 -444 -444 -0 -0 80000 360000 799999 0.1 0.45
ds50.b1.d -1611 -1611 -1611 -0 -0 250000 650000 1.55e+06 0.16129 0.419355
ds50.b2.p -353 -353 -353 -0 -0 60000 250000 590000 0.101695 0.423729
ds50.b2.d -1501 -1501 -1501 -0 -0 160000 450000 1.09e+06 0.146789 0.412844
ds50.b3.p -340 -340 -340 -0 -0 50000 230000 510000 0.0980393 0.45098
ds50.b3.d -1451 -1451 -1451 -0 -0 150000 400000 1.01e+06 0.148515 0.39604
ds50.b4.p -444 -444 -444 -0 -0 70000 290000 650000 0.107692 0.446154
ds50.b4.d -1863 -1863 -1863 -0 -0 180000 480000 1.17e+06 0.153846 0.410256
ds50.c1.p -385 -400 -400 0.0375 -0 70000 320000 699999 0.1 0.457143
ds50.c1.d -1484 -1501 -1634 0.0917993 0.0813953 190000 520000 1.82e+06 0.104396 0.285714
ds50.c2.p -434 -434 -440 0.0136364 0.0136364 80000 370000 879999 0.0909091 0.420455
ds50.c2.d -1677 -1677 -1677 -0 -0 230000 610000 1.76e+06 0.130682 0.346591
ds50.c3.p -462 -462 -462 -0 -0 70000 260000 560000 0.125 0.464286
ds50.c3.d -1443 -1443 -1443 -0 -0 160000 420000 889999 0.179775 0.47191
ds50.c4.p -423 -449 -449 0.0579065 -0 60000 280000 590000 0.101695 0.474576
ds50.c4.d -1494 -1494 -1494 -0 -0 160000 440000 989999 0.161616 0.444444

Table 13.8: Shortest path of 3-hours service window

9
7

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
ds50.d1.p -358 -371 -371 0.0350404 -0 60000 330000 849999 0.0705883 0.388235
ds50.d1.d -1500 -1500 -1500 -0 -0 220000 700000 2.14e+06 0.102804 0.327103
ds50.d2.p -336 -427 -427 0.213115 -0 60000 260000 590000 0.101695 0.440678
ds50.d2.d -1546 -1546 -1546 -0 -0 150000 430000 1.01e+06 0.148515 0.425743
ds50.d3.p -332 -334 -334 0.00598802 -0 70000 270000 580000 0.12069 0.465517
ds50.d3.d -1716 -1716 -1716 -0 -0 160000 430000 919999 0.173913 0.467391
ds50.d4.p -229 -229 -229 -0 -0 50000 200000 440000 0.113636 0.454546
ds50.d4.d -1165 -1165 -1165 -0 -0 140000 360000 750000 0.186667 0.48
ds50.e1.p -337 -337 -337 -0 -0 50000 250000 570000 0.0877194 0.438597
ds50.e1.d -1507 -1507 -1507 -0 -0 170000 470000 1.22e+06 0.139344 0.385246
ds50.e2.p -438 -438 -438 -0 -0 60000 300000 630000 0.0952381 0.476191
ds50.e2.d -1415 -1415 -1415 -0 -0 160000 450000 979999 0.163265 0.459184
ds50.e3.p -416 -416 -416 -0 -0 70000 350000 859999 0.0813954 0.406977
ds50.e3.d -1390 -1390 -1390 -0 -0 220000 650000 1.75e+06 0.125714 0.371429
ds50.e4.p -443 -443 -443 -0 -0 50000 280000 600000 0.0833334 0.466667
ds50.e4.d -1436 -1442 -1467 0.0211316 0.0170416 190000 490000 1.2e+06 0.158333 0.408333

Table 13.9: Shortest path of 3-hours service window

9
8

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
ds100.a1.p -553 -553 -553 -0 -0 250000 1.37e+06 3.87e+06 0.0645995 0.354005
ds100.a1.d -2206 -2206 -2206 -0 -0 710000 2.22e+06 1.131e+07 0.0627763 0.196286
ds100.a2.p -437 -448 -448 0.0245536 -0 170000 1.01e+06 2.44e+06 0.0696722 0.413934
ds100.a2.d -1727 -1727 -1727 -0 -0 530000 1.64e+06 4.86e+06 0.109054 0.337449
ds100.b1.p -451 -451 -451 -0 -0 250000 1.44e+06 3.91e+06 0.0639387 0.368286
ds100.b1.d -2078 -2078 -2078 -0 -0 770000 2.37e+06 9.33e+06 0.0825295 0.254019
ds100.b2.p -443 -530 -530 0.164151 -0 200000 1.3e+06 3.37e+06 0.0593472 0.385757
ds100.b2.d -1936 -1936 -2113 0.0837672 0.0837672 720000 2.25e+06 7.34e+06 0.0980927 0.306539
ds100.c1.p -468 -468 -468 -0 -0 230000 1.39e+06 3.81e+06 0.0603675 0.364829
ds100.c1.d -2127 -2127 -2127 -0 -0 820000 2.56e+06 1.008e+07 0.0813492 0.253968
ds100.c2.p -529 -529 -529 -0 -0 230000 1.36e+06 3.69e+06 0.0623307 0.368564
ds100.c2.d -2112 -2112 -2112 -0 -0 830000 2.62e+06 1.513e+07 0.0548579 0.173166
ds100.d1.p -461 -546 -546 0.155678 -0 240000 1.78e+06 5.17e+06 0.0464217 0.344294
ds100.d1.d -2169 -2169 -2169 -0 -0 890000 3.65e+06 1.072e+07 0.0830224 0.340485
ds100.d2.p -446 -446 -446 -0 -0 220000 1.53e+06 4.12e+06 0.0533981 0.371359
ds100.d2.d -1783 -1783 -1783 -0 -0 900000 3.02e+06 1.03e+07 0.0873787 0.293204

Table 13.10: Shortest path of 3-hours service window

9
9

case NDCA sol CSPA sol CDSPA sol gap1 gap2 cpu time1 cpu time2 cpu time3 cpu rat1 cpu rat2
ds150.a.p -461 -501 -542 0.149446 0.0756458 510000 3.47e+06 1.406e+07 0.0362731 0.246799
ds150.a.d -1983 -2036 -2226 0.109164 0.0853549 1.72e+06 6.02e+06 6.627e+07 0.0259544 0.0908405
ds150.b.p -558 -558 -558 -0 -0 500000 3.37e+06 1.011e+07 0.049456 0.333333
ds150.b.d -2185 -2185 -2185 -0 -0 1.82e+06 6.03e+06 7.373e+07 0.0246847 0.0817849
ds150.c1.p -562 -562 -562 -0 -0 550000 3.5e+06 1.19e+07 0.0462185 0.294118
ds150.c1.d -2004 -2004 -2157 0.0709318 0.0709318 1.56e+06 5.49e+06 5.961e+07 0.0261701 0.0920986
ds150.c2.p -457 -523 -542 0.156827 0.0350554 480000 3.35e+06 1.147e+07 0.0418483 0.292066
ds150.c2.d -2199 -2199 -2339 0.0598546 0.0598546 1.88e+06 7.29e+06 4.1768e+08 0.00450105 0.0174535
ds150.d1.p -571 -572 -572 0.00174825 -0 540000 3.77e+06 1.117e+07 0.0483438 0.337511
ds150.d1.d -2245 -2245 -2245 -0 -0 1.86e+06 6.24e+06 4.086e+07 0.0455213 0.152717
ds150.d2.p -450 -450 -450 -0 -0 500000 4e+06 1.146e+07 0.04363 0.34904
ds150.d2.d -2105 -2105 -2105 -0 -0 1.58e+06 6.39e+06 2.916e+07 0.0541838 0.219136
ds200.c.p -548 -554 -554 0.0108303 -0 820000 7.69e+06 3.353e+07 0.0244557 0.229347
ds200.c.d -2339 -2339 -2339 -0 -0 3.29e+06 1.402e+07 5.9476e+08 0.00553164 0.0235725
ds200.d.p -455 -527 -527 0.136622 -0 920000 7.08e+06 2.686e+07 0.0342517 0.263589
ds200.d.d -2248 -2248 -2248 -0 -0 3.32e+06 1.658e+07 1.77237e+09 0.0018732 0.0093547
ds200.a1.p -555 -561 -564 0.0159574 0.00531915 870000 6.05e+06 2.133e+07 0.0407876 0.283638
ds200.a1.d -2239 -2240 -2262 0.010168 0.00972591 3.18e+06 1.129e+07 2.0336e+08 0.0156373 0.0555173
ds200.b.p -562 -564 -564 0.0035461 -0 920000 7.82e+06 3.542e+07 0.025974 0.220779
ds200.b.d -2438 -2438 -2438 -0 -0 3.51e+06 1.47e+07 1.04743e+09 0.00335106 0.0140343

Table 13.11: Shortest path of 3-hours service window

1
0
0

much time is consumed on finding a better solution, but not converge to
the optimal solution.

2. Second is the subproblem solution quality. Besides the increasing number
of candidate labels in CDSPA, the columns which have been generated
have very closed reduced cost. It’s quite often a situation that a number
of generated columns have very little difference value bwteen 1 or 2.

A even worse situation is, as no time window constarints in the shortest
path subproblem, the generated paths are more likely to be symmetric.
For instance, a negative cost path visits customer 1,3,5,6 sequently. Thus
we will have another path 6,5,3,1 of the same reduced cost. When doing
combination operation to construct a combination path, this symmetry
situation gets enlarged. By enumerative combination, more symmertic
combination paths will be generated.

Affected by these closed value columns and similar form columns, the
master problem will spend more time to price out the non-basis variables,
which makes the convergence very slow.

3. Another reason in that the generated similar columns bring more variables
into the master problem, which leads to the situation of having more
fraction solution variables. Thus most of the computation effor will be
consumed on branch and bound process.

To make the testing practical and more realistic, as the method used in the sub-
problem algorithm testing, We generated a tight service time window constraint
for each customer’s node. See the generation method in the previous section.
We introduce each column first.

1. column 1: name of testing case;

2. column 2: objective value of start point;

3. column 3: the lower bound;

4. column 4: the first integer solution objective value;

5. column 5: the final solution objective value;

6. column 6: cpu time using to find the lower bound;

7. column 7: cpu time using to find the first integer solution;

8. column 8: cpu time using to find the final integer solution;

9. column 9: the optimal gap of low bound solution;

10. column 10: the optimal gap of first integer solution;

11. column 11: the iterations to find the lower bound;

101

12. column 12: the branch nodes number;

Table how the result from 10 to 20 customers. With 10 customers, 3 cases got
the optimal integer solution without branching and bound and 2 cases reached
the optimality as the first integer solution. With 20 customers, 3 cases reached
the optimality as the first integer solution. The two gaps are both small. With
10 customers, the lower bound gap is around 0.01 to 0.03, the 1st integer solution
gap is around 0.03. With 20 customere, the lower bound gap becomes smaller
from 0.0003 to 0.01, the 1st integer solution gap is from 0.0005 to 0.01. It runed
3 to 7 iterations to reach the lowe bound in 10 customers, 7 to 15 iterations
in 20 customers. The branching and bound nodes number is rather different
between 10 and 20 customers. With 10 customers, average 1 to 30 nodes were
branched and bound. With 20 customers, the branching nodes grow from 30
to more than 600, the most case reached 2469. However the cpu time using to
find the 1st integer solution and optimal solution aren’t very long, which is 1 to
2 times of finding the lower bound. These result show that the two algorithm
work efficiently to reach a good lower bound and fast to find the optimal solu-
tion in the situtation with less customers.

The testing result of 50 customer is shown in table The algorithm can’t stop
runing in 2 hours as the huge searching tree. We stop the run after 2 hours. To
be consistent, we use the best integer solution value as the ”optimal” objective
value to calculate gaps in columns 9 and 10.

As the customer increase, the two gaps increased a little bit. The lower bound
optimal gap increases to 0.04 to 0.10; the first integer solution optimal gap in-
creaed to 0.02 to 0.10. It runed 25 to 35 iterations to reach the lower bound.

However the searching tree growed fast, the branching and bound nodes in-
creased drasticly. On average 2000 to 6000 nodes have to be branched. Most
of the time was spent in branch and bound operation, which makes the conver-
gence very slow. The cpu time using to find the first integer solution grows to
9 to 11 times of finding the lower bound. Although the increasing computaion
effort in branching, the solution value improvement is different. Averagely the
objective value can get reduced around 200 to 300. In the best case the reduced
value is 700; yet in the worst case only 43.

When the customers increased to 100, we can’t find a integer solution within 2
hours. At the end of Table we also include the testing result of 100 customers.
The lower bound found was average one third of the start point solution.

Above result show that the column generation solution of the cross-docking
problem is able to reach the lower bound efficient. And it can also find the first
integer solution without a rather long time consuming process by branching and
bound operation. However the convergence is slow after reach the first integer
solution. The new integer solutions found later after are having closed objective

102

value below or above the upper bound. The occurence of upper bound updating
is not frequently and reduced objective value is very small. This make extremely
slow convergence in the later computaion.

In addition to the bad start point applied as we discussed in section another
two reasons seem most probably lead to such situation.

1. The quality of the adding cloumns set. Each time we selected the 100
best columns(if exists) of the minimal cost to add into RMP. However we
haven’t consider the variety between each column in the adding set. The
column generation technique is built on the simplex method of using du-
ral variables in the subproblem in order to lead to find negative reduced
cost columns to price out non-basis variables in the RMP. Thus the dual
variables are crucial in deciding the quality of the columns found in sub-
problem. The similarity of the adding columns increases the chance of
more columns becoming redudant in getting the dual solution. Less effec-
tive columns make slow change in the dual variables, in which misleads
the subproblem solving.

2. The quality of each geneated cloumn. As we don’t have a upper bound
of the total paths required to delivery all orders, we can’t use the bound
check condition(. It will be the situation that the best or good negative
cost paths found are infeasible solution as they already exceed the lower
bound of the shortest path problem. Thus without the upper bound k,
k =

∑
i λi, we can’t control the quality of a generated column.

3. The distribution of pickup nodes and delivery nodes. It is average situa-
tion that a customer’s delivery node is far away than the pickup node from
the depot. The distance of a delivery node to the depot is around 2 to 3
times of a pickup node. Thus we assigned the maximum path duration of
4-hours and 12-hours for each subpart, respectively.

This distribution situation leads to different convergence of finding nega-
tive cost path in the subproblem. The pickup subpart is always fast than
the delivery subpart. When there is no negative cost path found in pickup
subpart, more attractive negative cost paths are existing in the delivery
subpart. This unbalanced convergence reduced the chance of generating
good quality combination paths. As one subpart has none candidate path,
we can only add single paths into RMP.

13.3 Increase Maximum Capacity Resource

A cross-docking delivery is to find the shortest path to deliver orders and saving
loading time of connective deliverys at depot. It’s a straightforward expecta-
tion that with an increased maximum capacity of vehicle, the This section we

103

case start LB 1st last cpu time LB cpu time 1st cpu time obj gap1 gap2 it bound nodes
ds10.a1 4184 1942.67 1978 1968 50000 70000 90000 0.0128726 -0.0050813 3 2
ds10.a2 3886 1368.67 1482 1423 90000 120000 410000 0.0381822 -0.0414617 8 18
ds10.a3 4394 2152 2154 2154 50000 50000 60000 0.000928505 0 4 1
ds10.a4 4148 1808 2032 1899 80000 190000 360000 0.04792 -0.0700369 7 13
ds10.a5 3978 2024 2024 2024 60000 60000 60000 0 0 4 0
ds10.b1 3808 1611.89 1793 1640 100000 170000 780000 0.0171409 -0.0932927 5 32
ds10.b2 4630 2407.5 2441 2441 30000 40000 50000 0.0137239 0 3 1
ds10.b3 3906 1765.83 1922 1850 60000 80000 440000 0.0454955 -0.0389189 5 17
ds10.b4 4262 1944 1944 1944 60000 60000 60000 0 0 4 0
ds10.b5 4180 1939 1939 1939 50000 50000 50000 0 0 5 0
ds20.a1 8578 3528.33 3598 3585 360000 870000 3.17e+06 0.0158066 -0.00362622 7 35
ds20.a2 8058 3225.8 3238 3223 560000 900000 1.47e+06 -0.000868756 -0.00465405 8 7
ds20.a3 8192 2464.5 2469 2469 600000 630000 660000 0.0018226 0 9 1
ds20.a4 8324 3059.63 3359 3122 440000 1.86e+06 1.4407e+08 0.0199792 -0.0759129 8 2469
ds20.a5 8790 3115.3 3481 3173 440000 1.28e+06 4.477e+07 0.0181847 -0.097069 9 648
ds20.b1 9050 3460 3603 3534 410000 720000 3.5e+06 0.0209394 -0.0195246 10 36
ds20.b2 8788 3677.25 3694 3694 290000 410000 580000 0.00453438 0 6 6
ds20.b3 8464 2968 3340 2976 400000 900000 3.82e+06 0.00268817 -0.122312 7 50
ds20.b4 8498 3477.75 3486 3486 360000 520000 710000 0.00236661 0 7 4
ds20.b5 8426 2951.5 3013 2980 390000 580000 4.05e+06 0.00956376 -0.0110738 7 33

Table 13.12: Cross-Docking solution

1
0
4

case start LB 1st last cpu time LB cpu time 1st gap1 gap2 it bound nodes
ds50.a1 21172 6757.42 8241 7976 6.367e+07 7.772e+08 0.152781 -0.0332247 31 2133
ds50.a2 20492 7379.52 8408 8245 3.4e+07 3.6021e+08 0.10497 -0.0197696 27 2918
ds50.a3 21220 8281.99 9333 8570 1.272e+07 8.916e+07 0.0336064 -0.0890315 27 4545
ds50.a4 21704 9061.7 10142 9437 1.244e+07 1.1391e+08 0.0397687 -0.0747059 22 5030
ds50.b1 21274 7806.35 9325 8368 1.693e+07 2.1356e+08 0.0671188 -0.114364 24 3601
ds50.b2 22122 8463.18 8999 8896 1.863e+07 1.7041e+08 0.048653 -0.0115782 23 3859
ds50.b3 21018 7764.26 8549 8290 2.176e+07 1.6157e+08 0.0634186 -0.0312425 25 5361
ds50.b4 20888 7572.66 8390 8267 4.272e+07 4.2901e+08 0.083989 -0.0148784 34 2829
ds50.c1 20454 8334.49 9717 9232 9.451e+07 7.0283e+08 0.0972178 -0.0525347 30 2714
ds50.c2 20174 7192.1 8385 8176 4.831e+07 4.9573e+08 0.12034 -0.0255626 28 2607
ds50.c3 21466 7794.21 8438 8158 2.3e+07 1.7699e+08 0.0445926 -0.0343221 23 3940
ds50.c4 20336 7680.83 8470 8427 4.622e+07 2.3403e+08 0.0885451 -0.00510265 25 4250
ds50.d1 21518 7952.97 9885 8558 1.4606e+08 9.7854e+08 0.0706973 -0.15506 35 2757
ds50.d2 22592 8046.21 8850 8713 6.622e+07 4.7937e+08 0.0765287 -0.0157236 29 2838
ds50.d3 22050 8295.88 9472 8855 1.901e+07 1.6544e+08 0.0631417 -0.0696781 27 4747
ds50.d4 20892 8424.19 9802 9107 2.08e+07 1.7212e+08 0.0749766 -0.0763149 24 5955
ds100.a1 41664 12805.8 -1 41664 5.98735e+08 0 0.692642 1.00002 69 1
ds100.a2 42924 16044.6 -1 42924 1.01571e+09 0 0.626209 1.00002 57 27
ds100.b1 43396 15029.7 -1 43396 -1.73782e+09 0 0.653661 1.00002 60 22
ds100.b2 41906 14081.3 -1 41906 -1.09234e+09 0 0.663978 1.00002 74 1
ds100.c1 41754 14450.7 -1 41754 -2.12457e+09 0 0.653909 1.00002 65 20
ds100.c2 41746 14582.5 -1 41746 -3.42727e+08 0 0.650684 1.00002 65 22
ds100.d1 43948 14484.9 -1 43948 1.43102e+09 0 0.670407 1.00002 77 1
ds100.d2 41956 14510.8 -1 41956 -1.89646e+09 0 0.654142 1.00002 76 1

Table 13.13: Cross-Docking solution

1
0
5

made testing of increasing the maximum capacity of each vehicle and see how
it affected the cross-docking problem.

To keep the testing consistent, we use the same time window in table nd only
increase one time of capacity of each vehicle. Now the maximum capacity is
2CAP , the testing result is shown in talbe Due to the optimality reason, we
only include the testing case with 10 to 20 customers. The solution of each
testing case reached the optimality.

The objective value decreased as the maximum capacity increased. Within 10
customers, the average objective value decreased 40. Within 20 customers, the
average objective value decreased 130 to 180, and in some cases the decreased
value reached to 260 and 230. The result show that increasing the capacity
helps to decrease the total delivery cost. As the capacity increased, a vehicle
tries to pickup or deliver more orders by one route within the time window
constraint, in which the total traveling distance decreases. This also increased
the possibility of generation of more connective deliverys, in which the loading
time of connective deliverys is saved.

The computation effort increased as the maximum capacity increased. With
10 customers, the iterations of finding the lower bound didn’t change much.
With 20 customers, the iterations increased 1.5 to 2 times. The cpu time also
showed this change. From 10 to 20 customers, the cpu time used to find the
lowe bound increased from 1.5 to 2 time, respectively. The coveragence didn’t
change too much. However with 20 customers, the branching and bound nodes
number increased 2 to 7 times. This shows that an increased maximum capacity
brought more fraction solution variables into the master problem.

13.4 Time Constraint of Subpath

As the unbalanced distance distribution of pickup nodes and delivery nodes, we
assigned the maximum duration of pickup subpath and delivery subpath with
4-hours and 12-hours, respectively. In the section, we’ll study the sensitivity of
this time constraint assignment and how it affects the cross-docking problem.

We made testing of two time constraint situtations. One is 6-10 time con-
straint, in which the maximum duration of pickup subpath is 6-hours and the
maximum duration of delivery subpath is 10-hours. The other is 8-8 time con-
straint. Tablend howed the testing result, respectively. We made comparation
of these two situations of time constraint assignment with 4-12 situation.

Under 6-10 situaion, the objective value of almost every testing case got in-
creased. With 10 customers, the objective value averagely increased 100 to 300.
In some cases, the value decreased 60 to 100. With 20 custimers, the objec-
tive value averagely increased 400 to 600. Under 8-8 situation, the increased

106

case start LB 1st last cpu time LB cpu time 1st cpu time obj gap1 gap2 it bound nodes
ds10.a1 4184 1903.67 1927 1927 80000 120000 150000 0.0121086 0 5 2
ds10.a2 3886 1336.25 1426 1384 150000 330000 1.51e+06 0.0345014 -0.0303468 10 25
ds10.a3 4394 2070 2070 2070 80000 90000 90000 0 0 6 0
ds10.a4 4148 1735 1878 1814 120000 230000 610000 0.0435502 -0.0352811 9 10
ds10.a5 3978 1977 1977 1977 100000 110000 110000 0 0 7 0
ds10.b1 3808 1522 1535 1535 170000 250000 300000 0.00846906 0 8 1
ds10.b2 4630 2400.5 2441 2441 40000 60000 60000 0.0165916 0 4 1
ds10.b3 3906 1727.33 1810 1746 110000 150000 280000 0.0106911 -0.0366552 7 3
ds10.b4 4262 1874.5 1879 1871 100000 140000 250000 -0.00187066 -0.00427579 7 3
ds10.b5 4180 1913 1913 1913 70000 70000 70000 0 0 7 0
ds20.a1 8578 3365.5 3762 3408 700000 3.65e+06 1.1759e+08 0.0124707 -0.103873 11 670
ds20.a2 8058 2966 2966 2966 1.65e+06 1.66e+06 1.66e+06 0 0 14 0
ds20.a3 8192 2335 2335 2335 1.79e+06 1.81e+06 1.81e+06 0 0 16 0
ds20.a4 8324 2941.83 3222 2973 660000 2.99e+06 -1.09494e+09 0.0104832 -0.0837538 11 16451
ds20.a5 8790 2980.25 3069 3053 740000 2.07e+06 2.3039e+08 0.023829 -0.00524075 13 1098
ds20.b1 9050 3295.4 3422 3402 740000 1.25e+06 6.77e+06 0.0313345 -0.00587889 15 31
ds20.b2 8788 3458.67 3466 3460 780000 1.15e+06 1.58e+06 0.000385356 -0.0017341 11 2
ds20.b3 8464 2814.12 2815 2815 1.15e+06 1.27e+06 1.36e+06 0.000313447 0 13 1
ds20.b4 8498 3357.75 3320 3320 550000 1.52e+06 3.07e+06 -0.0113705 0 9 10
ds20.b5 8426 2837.55 2927 2872 1e+06 1.86e+06 2.08e+07 0.0119951 -0.0191504 15 62

Table 13.14: Cross-Docking with 2CAP

1
0
7

objective value got enlarged. With 10 customers, the objective value averagely
increased 300 to 1000. With 20 custimers, the objective value averagely in-
creased 1300 to 2000.

In addition to the increased objective value, the computation effort also got
increased. Under 6-10 situation, the cpu time used to find the lower bound
increased 1.5 to 2 times; and the iterations increased 1 to 1.5 times. Under 8-8
situation, the cpu time used to find the lower bound increased 2 to 4 times;
and the iterations increased 1 to 2 times. In ordert to find the integer solu-
tion, the increasing of branching and bound nodes number is diverse. With 10
customers, both two situations didn’t change too much, except one case under
8-8 situation, the branching nodes increased to 13 times. With 20 customers,
the branching nodes increased drasticly. Under 6-10 situation, average 2000 or
10000 nodes are branched. Under 8-8 situation, average 300 to 400 nodes are
branched, in some cases reached to more than 1000, the extreme case reached
13680 branching nodes.

Above result show that the maximum duration time constraint assigment of
pickup and delivery subpath should be selected delicatedly. As an unlogical
time constraint assignment will not only increase the objective value but also
increase the computation effort drasticly. A wise maximum duration assignment
is selected according to the real distance distribution of the pickup nodes and
delivery nodes.

13.5 Solve Cross-Docking Problem Using NDCA

Only

We include the testing result of solving Cross-Docking problem using the NDCA
only. Without the CDSPA and the OCDSPA, some parts of the feasible solution
set are obviously cut off. The objective solution using the NDCA only can’t be
proved optimality. Table howed the testing result.

With 10 customers, the objective value averagely increased 50 to 300; with 20
customers, the objective value averagely increased 500 to 900. As the feasible
solution set was cut off smaller, the computation effort decreased also. The cpu
time used to find the lower bound decreased to 0.5 to 1 time. However, in order
to find the integer solution, the cpu time increased a little bit. The cpu time
used to find the optimal integer solution increased 13 to 30 times. The drasticly
increased branching nodes number also shows the increasing computation effort.

Table howed the testing result of 2-times of the maximum capacity constraint
situation. As showed in previously sections, the objective value decreased and
the computation effort increased as the maximum capacity increased.

108

case start LB 1st last cpu time LB cpu time 1st cpu time obj gap1 gap2 it bound nodes
ds10.a1 4184 1943 1990 1950 110000 290000 1.31e+06 0.00358974 -0.0205128 5 23
ds10.a2 3886 1650 1650 1650 200000 210000 210000 0 0 10 0
ds10.a3 4394 2001.38 2048 2031 110000 220000 1.37e+06 0.0145864 -0.00837026 7 23
ds10.a4 4148 1801 1833 1810 130000 300000 960000 0.00497238 -0.0127072 7 15
ds10.a5 3978 2351 2351 2351 90000 100000 100000 0 0 6 0
ds10.b1 3808 1703.75 1795 1730 140000 280000 1.49e+06 0.0151734 -0.0375723 7 26
ds10.b2 4630 2356.5 2385 2385 70000 90000 120000 0.0119497 0 5 2
ds10.b3 3906 1988 1988 1988 70000 80000 80000 0 0 6 0
ds10.b4 4262 2160.33 2369 2183 100000 170000 340000 0.0103833 -0.0852038 7 7
ds10.b5 4180 2165.71 2174 2174 70000 90000 110000 0.00381128 0 6 1
ds20.a1 8578 3874 4132 3955 860000 4.86e+06 -1.10034e+09 0.0204804 -0.0447535 11 16439
ds20.a2 8058 3551.43 3953 3631 1.16e+06 7.05e+06 9.4002e+08 0.0219152 -0.0886808 14 4320
ds20.a3 8192 3076.87 3448 3103 1.26e+06 1.219e+07 -8.36597e+08 0.00842149 -0.111183 13 13170
ds20.a4 8324 3450.92 3490 3448 970000 3.39e+06 2.13e+07 -0.00084776 -0.012181 11 56
ds20.a5 8790 3651 3970 3777 2.48e+06 1.449e+07 7.2889e+08 0.0333598 -0.0510988 16 3197
ds20.b1 9050 3866.36 4364 3961 470000 2.45e+06 1.35628e+09 0.0238937 -0.101742 9 10543
ds20.b2 8788 4136.4 4141 4129 530000 650000 1.47e+06 -0.0017922 -0.00290627 9 6
ds20.b3 8464 3170.81 3341 3208 1.12e+06 5.42e+06 5.367e+07 0.0115917 -0.0414589 13 218
ds20.b4 8498 3637.98 4207 3688 650000 2.92e+06 3.0268e+08 0.013563 -0.140727 12 1840

Table 13.15: Cross-Docking solution of 6-10 situation

1
0
9

case start LB 1st last cpu time LB cpu time 1st cpu time obj gap1 gap2 it bound nodes
ds10.a1 4184 2220.5 2271 2258 160000 430000 1.05e+06 0.0166076 -0.00575731 8 12
ds10.a2 3886 2165 2165 2165 180000 190000 190000 0 0 8 0
ds10.a3 4394 2678.25 2784 2693 100000 280000 980000 0.00547716 -0.0337913 4 17
ds10.a4 4148 2215 2263 2238 80000 180000 730000 0.010277 -0.0111707 5 20
ds10.a5 3978 2473.43 2479 2476 110000 150000 200000 0.00103854 -0.00121163 8 2
ds20.a1 8578 4723.55 4741 4726 1.13e+06 2.92e+06 9.26e+06 0.000519371 -0.00317393 11 20
ds20.a2 8058 4118.67 4217 4133 960000 3.93e+06 8.624e+07 0.00346802 -0.0203242 11 299
ds20.a3 8192 3821.5 3894 3825 1.15e+06 5.02e+06 3.137e+07 0.000915033 -0.0180392 10 100
ds20.a4 8324 4386.6 4492 4460 1.73e+06 3.62e+06 -2.02073e+09 0.0164574 -0.00717489 13 13680
ds20.a5 8790 5103.47 5217 5092 7.32e+06 4.141e+07 2.0161e+08 -0.0022519 -0.0245483 12 312
ds10.b1 3808 1865 2014 1968 110000 330000 1.212e+07 0.0523374 -0.023374 6 357
ds10.b2 4630 3498.9 3541 3516 70000 150000 470000 0.00486348 -0.00711035 6 14
ds10.b3 3906 2208.5 2224 2216 70000 100000 150000 0.00338448 -0.00361011 6 3
ds10.b4 4262 2837 2837 2837 90000 90000 90000 0 0 6 0
ds10.b5 4180 3043.33 3194 3066 60000 260000 690000 0.00739291 -0.0417482 4 18
ds20.b1 9050 5482.67 5807 5531 350000 2.06e+06 8.226e+07 0.00873862 -0.0499006 8 729
ds20.b2 8788 5400.88 5577 5450 620000 2.21e+06 1.695e+08 0.00901376 -0.0233028 10 1080
ds20.b3 8464 4227.89 4465 4332 1.01e+06 3.96e+06 9.263e+07 0.0240317 -0.0307018 11 348
ds20.b4 8498 4637.88 5039 4766 720000 3.98e+06 5.125e+07 0.0268831 -0.0572807 11 339
ds20.b5 8426 4311.75 4528 4337 2.2e+06 9.96e+06 3.8176e+08 0.005822 -0.0440397 15 1288

Table 13.16: Cross-Docking solution of 8-8 situation

1
1
0

Above testing results both showed the advantage of applying the CDSPA and
the OCDSPA in solving the Cross-Docking problem.

111

case start LB 1st last cpu time LB cpu time 1st cpu time obj gap1 gap2 it bound nodes
ds10.a1 4184 1946 1979 1965 40000 70000 110000 0.00768836 -0.00922604 3 5
ds10.a2 3886 1667.67 1826 1718 70000 140000 1.44e+06 0.0292976 -0.0628638 4 79
ds10.a3 4394 2152 2154 2154 60000 60000 60000 0 0 4 0
ds10.a4 4148 1885 1920 1905 60000 90000 190000 0.0104987 -0.00787402 4 6
ds10.a5 3978 2099 2099 2099 50000 50000 50000 0 0 4 0
ds10.b1 3808 1736.5 1868 1849 50000 110000 670000 0.0608437 -0.0102758 4 35
ds10.b2 4630 2549.83 2588 2588 40000 50000 60000 0.0147476 0 4 1
ds10.b3 3906 1968 2059 2012 60000 100000 320000 0.0218688 -0.0233598 5 11
ds10.b4 4262 2018 2087 2031 70000 110000 160000 0.00640079 -0.0275726 5 4
ds10.b5 4180 2070.33 2241 2227 50000 70000 360000 0.0703488 -0.00628648 4 24
ds20.a1 8578 3951.3 4044 3974 260000 500000 4.18e+06 0.00571213 -0.0176145 6 67
ds20.a2 8058 3724.86 3919 3766 340000 1.03e+06 2.506e+07 0.0109231 -0.0406267 7 376
ds20.a3 8192 3322.05 3623 3362 430000 2.07e+06 8.543e+07 0.0118838 -0.0776324 9 1076
ds20.a4 8324 3282.18 3634 3399 300000 1.07e+06 7.6584e+08 0.0343677 -0.069138 7 11425
ds20.a5 8790 3177 3317 3191 330000 650000 1.86e+06 0.00438734 -0.0394861 7 22
ds20.b1 9050 4294.14 4545 4447 220000 600000 1.9319e+08 0.0343731 -0.0220373 7 4330
ds20.b2 8788 4147.17 4263 4164 270000 670000 7.86e+06 0.00404259 -0.0237752 7 109
ds20.b3 8464 3453.67 3663 3490 290000 1.16e+06 5.041e+07 0.0104107 -0.0495702 8 694
ds20.b4 8498 3790.27 3940 3830 270000 550000 1.971e+07 0.0103736 -0.0287206 6 296
ds20.b5 8426 3400 3771 3475 440000 1.47e+06 1.5139e+08 0.0215827 -0.0851799 9 1679

Table 13.17: Cross-Docking solution using NDCA only

1
1
2

case start LB 1st last cpu time LB cpu time 1st cpu time obj gap1 gap2 it bound nodes
ds10.a1 4184 1913.67 1949 1949 60000 90000 130000 0.018129 0 4 2
ds10.a2 3886 1604.33 1846 1679 110000 400000 6.11e+06 0.0444709 -0.099464 6 159
ds10.a3 4394 2070 2070 2070 70000 70000 70000 0 0 6 0
ds10.a4 4148 1844.5 2003 1876 90000 310000 1.29e+06 0.016791 -0.0676972 6 31
ds10.a5 3978 2061 2061 2061 90000 90000 90000 0 0 7 0
ds10.b1 3808 1708.5 1886 1779 100000 280000 5.62e+06 0.039629 -0.0601461 6 160
ds10.b2 4630 2525.5 2558 2558 70000 90000 110000 0.0127052 0 7 1
ds10.b3 3906 1921 1935 1935 120000 160000 200000 0.00723514 0 8 1
ds10.b4 4262 1927 1927 1927 100000 100000 100000 0 0 8 0
ds10.b5 4180 2005 2166 2130 80000 150000 740000 0.0586854 -0.0169014 6 21
ds20.a1 8578 3751.74 3882 3811 560000 1.47e+06 1.0083e+08 0.0155495 -0.0186303 11 682
ds20.a2 8058 3514.09 3626 3551 580000 1.95e+06 1.635e+07 0.0103951 -0.0211208 10 82
ds20.a3 8192 3145.29 3649 3189 1.09e+06 6.45e+06 5.8232e+08 0.013707 -0.144246 15 2603
ds20.a5 8790 3028.33 3081 3059 670000 1.21e+06 6.41e+06 0.0100251 -0.00719189 11 23
ds20.b1 9050 4063.57 4313 4217 410000 1.21e+06 5.8327e+08 0.0363833 -0.022765 11 5771
ds20.b2 8788 3943.71 3986 3963 510000 1.64e+06 4.997e+07 0.00486644 -0.00580368 10 277
ds20.b3 8464 3223.69 3405 3319 620000 2.27e+06 2.9994e+08 0.0287179 -0.0259114 12 1558
ds20.b4 8498 3619.82 3838 3701 460000 2.17e+06 8.1068e+08 0.0219345 -0.037017 9 5772
ds20.b5 8426 3234.47 3453 3324 770000 2.68e+06 3.4886e+08 0.0269354 -0.0388087 13 1534

Table 13.18: Cross-Docking solution of 2CAP using NDCA only

1
1
3

Chapter 14

Conclusion and

Recommendation for

Future Research

In this dissertation we apply column generation techniques in solving the Cross-
Docking problem into optimality. The numeric result shows that the solution
method is promising for the complex NP-hard problem. The linear programing
bound obtained from an extensive reformulation is stronger. And the knowledge
if the original compact formulation provides with a strong guide from branching
and cutting decisions in the searching tree. It is a successful implemenation of
column generation for the Cross-Docking problem.

The result shows that for very hard problems, it always exists a tradeoff be-
tween computation effort and solution quality. As the subproblem needs to be
solved repeatedly, it’s crucial to focus on the algorithm efficiency by developing
a heuristic method or algorithm of finding a closed optimal solution, instead of
an exact optimal solution.

In the Cross-Docking problem, three algorithms of solving the subproblem are
efficient. The NDCA and the CDSPA can find closed optimal solution of single
path or combination path. The later type of path is the key in solving the Cross-
Docking problem. These two algorithms efficiently add new negative reduced
columns into the restricted master problem. The optimal algorithm OCDSPA
is only necessarily applied at a final stage to prove the optimality.

The further testing case shows that the Cross-Docking problem is sensitive to
the maximum duration time window constraint of each subpart. The sensitivity
is shown both in objective value and in computation effort. A good maximum
duration time constraint assignment is selected logically corresponding to the
distance distribution of pickup and delivery nodes, which helps to decrease the

114

objective value and save the computation effort.

Another factor directively affects the objective value is the maximum capac-
ity resource. Increaseing the vehicle onloading capacity leads to a decreased
objective value by the increasing possiblity of finding a better shorest paths set
or making more connective deliverys.

During the implementation of column generation to solve the Cross-Docking
problem, the numeric result shows that the selected initial start point will af-
fect the performance of the convergence. A rough start point leads astray the
constructure of the basis in which makes the searching become huge. An im-
provement can be achieved by using a warm start.

As the unbalanced optimality convergence in each subpart, we expect that solv-
ing each subpart as an independent VRP to a closed optimal solution first,
then combining two subparts together to find the negative cost single path or
combination path, will improve the situation. After solving each subpart inde-
pendently, the columns of each subpart are very closed to the optimal solution of
the Cross-Docking problem. Thus the combination paths found by the NDCA
or CDSPA, OCDSPA lead the convergence to the optimal solution.

Another aspect for further research is to deal with the time window constraint.
The combined time constraint and the sequence time constraint affect both the
objective value and the computation effort.

115

Bibliography

[1] .Desrochers, F.Soumis, ”A generalized permanent labelling algorithm for
the shortest path problem with time window”, INFOR vol.26 (1988), no.3

[2] .B.Cunha,J.Swait, ”New dominance criteria for the generalized permanent
labelling algorithm for the shortest path problem with time windows on
dense graphs”, INTERNATIONAL TRANSACTIONS IN OPERATION
RESEARCH, 7 (2000), 139-157

[3] .Righini, M.Salani, ”Dynamic programming algorithms for the elementary
shortest path problem with resource constraints”, ELectronic Notes in DE-
SCRETE MATHEMATICS, 17 (2004) 247-249

[4] .H.Hartel, H.Glaser, ”The resrouce constrained shortest path problem im-
plemented in a lazy functional language”, J.Functional Programming, 1 (1):
1-100, January 1996,

[5] .Feillet,P.Dejax,M.Gendreau,C.Gueguen, ”An exact algorithm for the el-
ementary shortest path problem with resource constraint: application to
some vehicle routing problems”, Networks, 2004

[6] .Kjerrstrom, The resource constrained shortest path problem,

[7] .Larsen, ”The dynamic vehicle routing problem”, published by IMM DTU,
2000

[8] .Cook,J.L.Rich, ”A parallel cutting-plane algorithm for the vehicle routing
problem with time windows”, ,

[9] .Desrosiers,M.E.Lubbecke, ”A primer in column generation”, Column Gen-
eration, Spring, 2005

[10] .Villeneuve,J.Desrosiers,M.E.Lubbecke,F.Soumis ”On Compact Formula-
tions”,

[11] Vehicle routing with time windows and time-dependent rewards:a problem
from the American Red Cross”, November 19, 2003

116

[12] .A.Person,M.G.Lundgren, ”Shipment planning at oil refineries using col-
umn generation and valid inequaliites”, Europe Journal of operation re-
search, 163 (2005) 631-652

[13] .Desrosiers,M.E.Lubbecke, ”Selected topic in column generation”, Opera-
tion Research, Revised March 9 2004, October 21 2004

[14] .Wilhelm, ”A technical review of column generation in integer program-
ming”, Optimization and Engineering, 2 2001, 159-200

[15] .Brenninger-Gothe, ”Two vehicle routing problems: Mathematical pro-
gramming approaches”, 1989

117

Appendix A

Algorithm

118

1 begin � NDCA I implementation for dense graphis
� calculate the domension of the bucket (dim bck)

2 dim bck ← minimum(di + tij), all(i, j) ∈ A
� initialize the variables which contain the current minimum cost to each node

3 for i← 0 to n + 1
4 do min cost[i]←∝

� generate the label corrensponding to node 0
5 T0 ← 0; C0 ← 0
6 while there are buckets with temporary labels to be treated
7 do

� minimum cost of the labels being treated for node i in the current bucket
8 aux←∝
9 while current bucket not empty

10 do
11 � find the next label to be treated
12 select and remove label(Ti, Ci) from the bucket
13 for all successors j of node i
14 do

� determine arrival time at j
15 Tj ← Ti + dj + tij

� verify time window constraint
16 if Tj ≤ bj

17 then
18 Tj ← max(Tj , aj)
19 Cj ← Ci + cij

� verify if label (Tj , Cj) is not dominated:
� compare the cost of the new path with the old path

20 if Cj < min cost[j]
21 then
22 calculate the bucket K to store the label (Tj , Cj)
23 store (Tj , Cj) in Kth bucket
24 store (Tj , Cj) as a permanent label
25 aux← min(aux, Cj)
26 find the next label in the current bucket to be treated

� update the current minimum cost to node i
27 min cost[i]← min(min cost[i], aux)
28 find the next bucket with temporary labels to be treated
29 carray out the dominance test at node n + 1
30 end

Figure A.1: labels treatment order in basic NDCA(NDCA I)

119

1 begin � NDCA II implementation for dense graphis
� calculate the domension of the bucket (dim bck)

2 dim bck ← minimum(di + tij), all(i, j) ∈ A
� initialize the variables which contain the current minimum cost to each node

3 for i← 0 to n + 1
4 do min cost[i]←∝

� generate the label corrensponding to node 0
5 T0 ← 0; C0 ← 0
6 while there are buckets with temporary labels to be treated
7 do

� minimum cost of the labels being treated for node i in the current bucket
8 previousTj

←∝
� receives the cost of the least cost label within the bucket for node i

9 aux← Ci

10 while current bucket not empty
11 do
12 � find the next label to be treated
13 select and remove label(Ti, Ci) from the bucket

� dominance test at origin i
14 if Ci < min cost[i]

then
15 if Ti < previous Ti

then
16 for all successors j of node i

do
17 extend label from node i to node j

� verify if label (Tj , Cj) is not dominated:
� compare the cost of the new path with the old path

18 if Cj < min cost[j]
then

19 calculate the bucket K to store the label (Tj , Cj)
20 store (Tj , Cj) in Kth bucket
21 store (Ti, Ci) as a permanent label
22 previous Ti ← Ti

23 if Ti = ai

then
24 disregard the remaining labels for node i

else
25 find the next label in the current bucket to be treated

� update the current minimum cost to node i
26 min cost[i]← min(min cost[i], aux)
27 find the next bucket with temporary labels to be treated
28 carray out the dominance test at node n + 1
29 end

Figure A.2: NDCA II
120

1 begin � NDCA III implementation for dense graphis
� calculate the domension of the bucket (dim bck)

2 dim bck ← minimum(di + tij), all(i, j) ∈ A
� initialize the variables which contain the current minimum cost to each node

3 for i← 0 to n + 1
4 do min cost[i]←∝

� generate the label corrensponding to node 0
5 T0 ← 0; C0 ← 0
6 while there are buckets with temporary labels to be treated
7 do

� minimum cost of the labels being treated for node i in the current bucket
8 previousTj

←∝
� receives the cost of the least cost label within the bucket for node i

9 aux← Ci

10 while current bucket not empty
11 do
12 � find the next label to be treated
13 select and remove label(Ti, Ci) from the bucket

� dominance test at origin i
14 if Ci < min cost[i]

then
15 if Ti < previous Ti

then
16 for all successors j of node i
17 do
18 if Cj < min cost[j]

then
19 calculate the bucket K to store the label (Tj , Cj)
20 backward look check
21 store (Ti, Ci) as a permanent label
22 previous Ti ← Ti

23 if Ti = ai

then
24 disregard the remaining labels for node i

else
25 find the next label in the current bucket to be treated

� update the current minimum cost to node i
26 min cost[i]← min(min cost[i], aux)
27 find the next bucket with temporary labels to be treated
28 carray out the dominance test at node n + 1
29 end

Figure A.3: NDCA III algorithm

121

1 begin � CDSPA implementation for dense graphis
2 dim bck ← minimum(capi), i ∈ N � calculate the domension of the bucket (dim bck)
3 generate bucket list
4 for i← 0 to n + 1 � initialize the variables which contain the current minimum cost to each node
5 do min cost[i]←∝
6 for i← 0 to n + 1 � initialize the variables
7 do min cost k[i]← −1
8 storedList← empty � initialize master list
9 waitingList← empty � initialize waiting list

10 T0 ← 0; C0 ← 0 � generate the label corrensponding to node 0
11 while there are buckets with temporary labels to be treated

do
12 while there are label lists within current treated bucket

do
13 aux←∝
14 previous Ti ←∝ � initialize start time of labels being treated for node i in current buc
15 find current minimal cost label of node i: min cost[i]
16 while there are labels within current masterlabel list
17 do minimal cost test of the current label(Ti, Ci)
18 minimal cost test of each waiting label
19 while there are labels within current masterlabel list

do
20 select and remove label(Ti, Ci) from the bucket
21 for all successors j of node i

do
22 extend to new label(Tj, Cj)
23 store label(Tj , Cj) into storedList if it is destination label
24 if Cj ← min cost[j]

then
25 minimal cost test of label(Tj , Cj)

else
26 calculate the bucket K to store the label (Tj , Cj)
27 backward look check
28 store label(Tj , Cj) into masterList of bucket K, if it not dominated
29 store label(Tj , Cj) into waitingList of bucket K, if it is prominen
30 previous Ti ← Ti

31 aux← min(aux, Ci)
32 min cost[i]← min(min cost[i], aux)
33 update bucket index of current minimum cost of node i
34 while there are labels within current waitinglabel list

do
35 for all successors j of node i

do
36 extend to new label(Tj, Cj)
37 store label(Tj , Cj) into waitingList if it is destination label
38 if Cj ← min cost[j]

then
39 minimal cost test of label(Tj , Cj) against minimal cost label

else
40 calculate the bucket K to store the label (Tj , Cj)
41 backward look check
42 store label(Tj , Cj) into masterList of bucket K, if it not dominated
43 store label(Tj , Cj) into waitingList of bucket K, if it is prominen
44 find the next bucket with temporary labels to be treated
45 carray out the dominance test at node n + 1
46 end

Figure A.4: CDSPA algorithm

122

1 prominent test for each prominent label of label(Ti, Ci)
2 store it into waitingList of the corresponding bucket if it is prominent label of minimal cost label
3 remove it from prominent list if it is not prominent label of minimal cost label
4 if Ci ≥ min cost[i]
5 then
6 if label(Ti, Ci) is prominent label of minimal cost label
7 then
8 store label(Ti, Ci) into waitingList of the corresponding bucket
9 else

10 remove label(Ti, Ci)

Figure A.5: minimal cost test algorithm

1 InBk ← address of the first valid bucket for node j
2 x← K − 1
3 isProm← false
4 isDomed← false
5 while not isDomed and x ≥ InBk
6 do
7 if (Tj , Cj) dominated
8 then
9 isDomed← true

10 if (Tj , Cj) is prominent label
11 then
12 isProm← true
13 x← x− 1

Figure A.6: backward look check

123

