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Abstract

The current report concerns methods of early detection of connective tissue
disorders leading to aortic aneurysms and dissections. Automated and accurate
segmentation of the aorta in 4D (3D + time) MR image data is reviewed, and a
computer-aided diagnosis (CAD) method using independent component analysis
is reported. This admits the objective identification of subjects with connective
tissue disorders from 4D aortic MR images.

The majority of the presented work is concentrated on independent component
analysis(ICA), estimating sources to be used for the diagnosis task. Prior knowl-
edge of the source distribution is utilized using an ordering of the components.
Two new ordering measures are introduced in current work. A novel approach
to constrained dimensionality reduction in ICA is developed. A new idea of
time-invariant independent components is introduced, and assists in the disease
detection in the presence of sparse data.

4D MR image data sets acquired from 21 normal and 10 diseased subjects are
used to evaluate the efficiency of the method. The automated 4D segmentation
result produces accurate aortic surfaces. The ICA results are validated by a
leave-one-out classification test, and are further substantiated by visual inspec-
tion of the components. Using a single phase of the cardiac cycle, 8 out of 10
diseased subjects are identified and the specificity is 100 %, classifying all 21
healthy subjects correctly. These results are obtained using components show-
ing correspondence to clinical observations. With 4D information included, the
CAD method classifies 9 out of 10 diseased correctly, and still the specificity is
100 %.
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Resumé

Den indeværende rapport vedrører metoder til tidlig detektering af bindevævs-
sygdomme, som fører til aortic aneurysms og dissections. En automatisk og
præcis metode til segmentering af aorta i 4D (3D + tid) MR data er refer-
eret og en computerassisteret diagnose (CAD) metode, der involverer brugen
af independent component analysis, er rapporteret. Dette muliggør en objektiv
identificering af subjekter med bindevævssygdomme, udfra 4D MR billeder af
aorta.

Hovedparten af det fremlagte arbejde er koncentreret omkring independent com-
ponent analysis (ICA), som estimerer kilder, der bruges under diagnose opgaven.
A priori viden om kildernes fordeling er udnyttet til udformningen af en sor-
tering af de fundne komponenter. To nye sortereringsmål er fremført i det
indeværende arbejde. En ny tilgang til dimsionsreducering under bibetingelser i
ICA er udviklet. Et nyt koncept om en tidsinvariant independent component er
desuden introduceret, hvilket assisterer til sygdomsdetekteringen, n̊ar der kun
er en stærkt begrænset mængde data til r̊adighed.

4D MR billedsæt, optaget af 21 normale og 10 syge subjekter, er brugt til at
evaluere effektiviteten af den udviklede metode. Den automatiserede 4D seg-
mentering giver en nøjagtig aorta overflade. ICA resultaterne er valideret ved
en leave-one-out klassificeringstest, og er yderligere underbygget ved visuel in-
spektion af de fundne komponenter. Ved brug af en enkelt fase a hjertecyklen,
bliver 8 af 10 syge subjekter korrekt identificeret og specificiteten er 100 %, s̊a
alle 21 sunde subjekter bliver klassificeret korrekt. Disse resultater er opn̊aet
med komponenter, der viser lighed med kliniske observationer af bindevævssyg-
domme. N̊ar 4D informationen er inkluderet, kan CAD metoden klassificere 9
af 10 syge subjekter korrekt, samtidig med at specificiteten stadig er 100 %.
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Preface

This thesis was prepared at Seamans Center of Engeering, the University of Iowa,
in fulfillment of the requirements for acquiring the masters degree in engineering.
The majority of the work and the writing of one article has been performed in
Iowa. The report and the second article were written at the Technical University
of Denmark.

This thesis is concerned with analysis of the aortic shape using independent
component analysis to diagnose subjects with connective tissue disorders. The
main focus of the work has been to address the problem that only data from a
limited number of subjects is available.

The thesis consists of a report thouroughly explaining the main conclusions and
a collection of the two research papers written during the project period, one
published by CVAMIA’06 (App. C) and the other submitted to MICCAI (App.
D) awaiting review.

Lyngby, Marts 2006

Michael Sass Hansen



vi



Papers

Here is a list of papers produced during my work with the thesis. Abstracts are
included in the appendix.

[C] Michael Sass Hansen, Fei Zhao, Honghai Zhang, Nicholas E. Walker, An-
dreas Wahle, Thomas Scholz and Milan Sonka. Detection of Connective
Tissue Disorders from 3D Aortic MR Images Using Independent Compo-
nent Analysis CVAMIA’06, Springer LNCS, 2006. Accepted for publica-
tion.

[D] Michael Sass Hansen, Fei Zhao, Honghai Zhang, Bjarne K. Ersbøll, An-
dreas Wahle, Thomas Scholz and Milan Sonka. Detection of Connective
Tissue Disorders from 4D Aortic MR Images Using Independent Compo-
nent Analysis submitted to MICCAI’06, 2006. Awaiting review.



viii



Acknowledgements

I thank my supervisor Bjarne Kjær Ersbøll for great assistance in structuring
my work, and much good advice.

I want to thank my supervisor Milan Sonka for guidance and for giving me
inspiration when it was needed. I thank the people from the Medical Imaging
group at the University of Iowa for exchanging ideas and letting me be part
of the interesting work they are doing. I thank all my new friends in Iowa for
having helped making the whole experience of staying in Iowa a great one.

I wish to send a greeting to Kitware that provides and keeps improving The
Visualization Toolkit free of charge. I certainly spent many joyful hours unrav-
elling the mysteries of 3D visualization.

Last I want to thank my girlfriend Camilla for being so supportive and sticking
by me during the whole process.



x



Contents

Abstract i

Resumé iii
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Chapter 1

INTRODUCTION

Aortic aneurysms and dissections are the 15th leading cause of death in the
the U.S., representing 0.7 % of all deaths in 2004 [1]. Persons with certain
connective tissue disorders, such as Marfan’s syndrome and Familial Thoracic
Aortic Aneurysm syndrome are at increased risk of developing aortic aneurysm
and dissection, which makes an early detection very important.

This study is approaching cardiovascular disease diagnosis using magnetic res-
onance (MR) imaging. Producing manual outlining of the aorta in 3D images
requires expert knowledge and is a tedious and time-consuming task. Detec-
tion of connective tissue disorder is based on a crude diameter measure of the
ascending aorta from a single 2D MR-slice. Fig. 1.1 shows three 2D slices of a
typical 3D cardiac MR images with manually traced aorta contours.

The reported work focuses on the analysis of the automatically segmented aorta.
The segmentation was done in a previous study as reported in [2], and the out-
line of the applied method is provided here for completeness. The data was
normalized to 16 phases of the cardiac cycle, and the aortic shapes for three of
the cardiac phases are illustrated for a subject in Fig. 1.2. The aortic shapes
were analyzed using a point distribution model based on independent compo-
nent analysis (ICA). The ICA method was extended with two different ordering
measures and a novel approach to dimensionality reduction. To utilize the in-
formation of all the 16 phases and find statistically significant descriptors, the
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Figure 1.1: Three sample 2D slices of a typical aorta candy-cane MR image
with manually traced contours outlining aortic lumen.

concept of dividing the model into time-invariant and time-variant components
has been introduced.

Figure 1.2: The phases 1, 6 and 11 of the cardiac cycle of a healthy subject.

A computer-aided diagnosis (CAD) method for objective identification of sub-
jects with connective tissue disorders from 16-phase, 3D+time aortic MR images
using independent component analysis is reported.

1.1 Organization of the report

The report is divided in four parts, each described below.

• Background (I): The imaging technique is described, as well as some
of the connective tissue disorders and the most common effects they may
cause. The data is presented as well as previous work in the area.
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• Methods (II): The proposed automatic 3D segmentation method is re-
viewed and the concept of a point distribution model is described. In-
dependent component analysis (ICA) is described along with associated
algorithms and the development of several extensions to the basic ICA
model is presented. The structure of the implemented program is shortly
described.

• Results (III):. The segmentation results are demonstrated, and the es-
timated indpendent components are evaluated both by visual inspection,
and by performing a classification task on the labeled subjects.

• Discussion and conclusion (IV): The developed methods are discussed
as well as the obtained results.
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Part I

BACKGROUND
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Outline of the presented background

In this part of the report the background of the study is summarized. Both the
physical background of MR imaging and the clinical background of the connec-
tive tissue disorder are reviewed. In chapter 2 the development of cardiovascular
MR imaging is presented, including the basic physics and a description of the
state of the art techniques. Chapter 3 contains a review of connective tissue
disorders including a description of current diagnostic techniques. Chapter 4
presents the available data and gives an outline of the problem at hand. The
recent contributions in the fields of this thesis are outlined in chapter 5.
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Chapter 2

Cardiovascular Magnetic
Resonance Imaging

The first steps towards cardiovascular magnetic resonance imaging were taken
back in the early 1980’s but huge advancements have been made since then.
Magnetic resonance imaging (MRI) is based on the physical principles of nuclear
magnetic resonance (NMR). Almost every nucleos in the periodic system has a
net spin due to an unpaired proton or neutron [3]. This spin causes the nucleus
to function like a tiny magnet. In order to minimize the energy, the spin tends
to align with an external magnetic field, while the axis is still rotating around
the magnetic field. This is illustrated in Fig. 2.1

The rotation around the magnetic field can be amplified by applying an os-
cillating electric field at the resonance frequency. Once the oscillating field is
removed, the nuclei falls back into the normal state, shown in Fig. 2.1. This is
the basic principle behind NMR. The more recent techniques use a gradient in
the magnetic field and a whole range of frequencies to assemble an image in the
fourier space. Fourier transformation gives the images as they are presented in
this thesis.

MRI technique has advantages such as high spatial and temporal resolutions,
and favorable signal-to-noise ratio. It is widely used in routine clinical practice.
Approximately 200 million MRI scans were in 2004 reported performed on more
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Figure 2.1: This spin axis tend to align with the magnetic field, while still
revolving around the magnetic axis.

than 20,000 MRI units worldwide [4]. Protocols focused on imaging of the heart
region are referred to as Cardiovascular Magnetic Resonance (CMR).

The CMR images are typically 4D images acquiered using an ECG signal to
trigger the data acquisition. The cardiac cycle is defined at the period of time
between two peaks of the ECG R-wave. A simple ECG graph is shown in Fig.
2.2. The basic principle of ECG measurements is to measure the depolarisation
of cells in the heart, which happens at every heartbeat.

The CMR images are acquired from a slice of the 3D object of interest. To
reduce scan time and achieve desired temporal resolution, the slice thickness is
normally chosen larger than the slice plane resolution. A typical voxel size of
a 3D CMR image is 1.5mm×1.5mm×8mm, where 8mm is the slice thickness
and 1.5mm is the slice plane resolution. The 3D image representation of the
whole object of interest is acquired by stacking several slices of CMR images
and the resulting 3D image is therefore anisotropic in 3D. The stacking process
is illustrated in Fig. 2.3.

A 4D image representation of the object of interest is acquired from several
cardiac cycles. The typical procedure of acquiring a 4D image with a fixed
number of phase, N , is to measure the current cardiac cycle length and calculate
the time offsets for each phase. During a whole cardiac cycle, the images are
acquired from one or several slices at fixed locations at calculated time offsets.
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Figure 2.2: A sample of an ECG signal with the the R-wave peaks illustrated
with circles. Adapted from [5]

Figure 2.3: An illustration of the merging of several slices into a volume.
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This step is repeated to acquire images at different slices until images from all
prescribed slices are acquired. Images can be taken with a lot of different views,
including short axis and long axis views that refers to the axes of the heart.

Several typical artifacts of the CMR images are:

• The anisotropic nature of voxel may introduce partial volume effect, a loss
of resolution caused by multiple features present in the image voxel. For
example, a voxel may contain both water and fat and the resulting image
pixel intensity is neither of fat nor of water.

• The motion artifact is caused by motion of the entire object or part of it
during acquisition. It typically results in blurring of images.

• Flow artifact caused by flowing blood or fluids in the body.



Chapter 3

Connective Tissue Disorders

The connective tissue supports many parts of the body like the skin, the eyes,
the heart and the skeletal system. The connective tissue disorders can affect
all these different parts. The most significant of the defects are cardiovascular
abnormalities, which may include enlargement or dilatation of the base of the
aorta, with aortic regurgitation, and prolapse of the mitral valve. People affected
with connective tissue disorders have high risk of developing aortic aneurysm
and dissection, described in section 3.1 and section 3.2 [6]. Congenital con-
nective disorders include Chondrodysplasias, Cutis Laxa, Ehlers-Danlos Syn-
drome, Marfan’s Syndrome, Mucopolysaccharidoses, Osteogenesis Imperfecta,
Osteopetroses and Pseudoxanthoma Elasticum [7].

People with the Marfan’s syndrome carry a mutation in one of their two copies
of the gene that encodes the connective tissue protein fibrillin-1. The majority
of the affected individuals (75%) have inherited an abnormal copy of this gene
from an affected parent. About one-quarter of the affected people have a new
mutation that is not present in anyone else in their family but can be passed to
their offspring [9].
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(a) (b)

Figure 3.1: The effect of Marfan’s syndrome on the aorta adapted from [8]. (a)
A normal aorta. (b) An aorta with enlargement caused by Marfan’s syndrome.

3.1 Aortic Aneurysm

Aortic aneurysm [6] is a localized abnormal expansion, widening or balloon-
ing of the aorta wall. Congenital connective tissue disorders such as Mar-
fan’s syndrome, trauma, and less commonly, syphilis, hardening of the arter-
ies (atherosclerosis) and high blood pressure (hypertension) can lead to aortic
aneurysm. Aortic aneurysms occur in the ascending aorta (25 % of the time),
the aortic arch (25 % of the time), or the descending aorta (50 % of the time).
An example of ascending aorta aneurysm is shown in Fig. 3.1 . Aneurysms are
potentially dangerous because they may burst [10].

Patients with aortic aneurysms are treated if the diameter of the aorta is greater
than 5 - 6 cm. Because the size of individuals differ, an aneurysm may also be
defined by how much larger the weak area of the aorta is, compared to its
normal size for that person. If the enlarged area is 1.5 to two times larger
than the normal size of the blood vessel, it is defined as an aneurysm [11]. A
common treatment is to surgically replace the aorta with a fabric substitute. For
smaller aneurysms of the descending aorta, the aorta can be stented by placing a
tube inside the vessel without chest incision or introducing specialized catheters
through arteries at the groin. Operation puts the patient under high risk of
complications which may include: heart attack, irregular heartbeats, bleeding,
stroke, paralysis, graft infection, and kidney damage. Death soon after the
operation occurs in 5 - 10 % of the patients.
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(a) (b)

Figure 3.2: The two typical shapes of an aortic aneurysm adapted from [11].
Both aneurysm are illustrated on the ascending aorta. The three blood vessels,
at the top of the aorta, are positioned at the aortic arch, and the descending
aorta is the long part descending. (a) Fusiform aneurysm, which is an area
enlarged in all directions. (b) Saccular aneurysm (below right), which is a bulge
or sac on one side of the aorta
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3.2 Aortic Dissection

Aortic dissection [12] involves tearing of the inner layer of the aortic wall. As a
result a new false channel forms in the wall of the aorta. The likelihood of death
within the first 48 hours is 1 % per hour for untreated patients. The disorder is
curable with surgical repair if it is performed before aortic rupture. Less than
half of the patients with ruptured aorta survive.

A dissecting aneurysm indicates that the inner wall of the aorta develops a tear
which propagates down the inside of the aorta due to the blood pressure. It
may also be associated with other injury, infection or congenital weakness of
the aorta such as Marfan’s syndrome.



Chapter 4

Data description

The presented research is part of a study on Highly Automated Analysis of 4-
D Cardiovascular MR Data funded by an NIH grant provided for the medical
imaging group at the Department of Engineering, University of Iowa [13]. The
goal of the project is in part to create ”A set of validated quantitative indices
of aortic morphology and motion”. The subjects investigated in the current
study are 10 patients, genetically known to have a connective tissue disorder,
and 21 normal persons scanned for the purpose of comparison. The patients
and the test subjects are as far as possible drawn from the same demographic
distribution.

The analyzed MR data is acquired by either Siemens or GE MR scanners. The
sequences used are Fiesta for the GE scanner and True Fisp for the Siemens
scanner. Those sequences are virtually identical, so no bias caused by the used
scanner is expected. The images are of two standard views, the candy cane view
and the left ventricluar outflow tract (LVOT) view. This is because the second
one is normally used in the manual diagnosis of connective tissue disorders,
because it gives more accurate images of the ascending aorta. They are both
visible in Fig. 4.1.

In Fig. 4.2 more data is illustrated for inspection.

The original voxel size for the GE scanner is 1.5× 1.5× 6mm3 with image size
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(a) (b)

Figure 4.1: Images representing the two different views present in the acquired
set of data. (a) Candy cane view. (b) Left ventricular outflow tract view.

Figure 4.2: Three typical images of the acquired dataset.
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(a) (b)

Figure 4.3: Images demonstrating the registered images to be merged to create
the data ready for analysis (a) Candy cane view. (b) Left ventricular outflow
tract view.

256×256. The voxel size for the Siemens scanner is about 1.9×1.9×6mm3 with
image size 132 × 192. Typically 15–25 phases were acquired per cardiac cycle,
together forming the 4D data. The 4D data is created by interpolating (using
nearest neighboring) the anisotropic images into isotropic images and merge the
images from candy cane and LVOT views together after registration as can be
seen in Fig. 4.3. It can be seen that the two different images desribe the same
area of the body, and they are merged to give data with fewer artifacts and less
noise.

The number of phases of the cardiac cycle is normalized to 16 using cubic B-
spline interpolation. The resulting preprocessed data consist of 4D data with
16 phases. Part of the analysis consists of segmenting the aorta. The aorta is
visible in Fig. 4.1(a) as a candy cane or a bit like a question mark tilted left.
Typical examples of the aorta can be seen in Fig. 4.4, where the mean of all
the diseased subjects and of the healthy subjects are illustrated. The mean of
the diseased (Fig. 4.4(b)) is seen to be a bit dilated compared to the mean of
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the healthy subjects (Fig. 4.4(a)), which corresponds to clinical observations
refered to in section 3. The mean shape is unfortunately not precise enough,
as a descriptor, to separate the two classes using a simple distance measure or
canonical discriminant analysis. This is part of the motivation for the current
work. Examples of the segmented aorta are available in App. A.

(a) (b)

Figure 4.4: Mean shape of healthy versus diseased subjects, taken over the first
phase of the cardiac cycle from all the subjects. (a) The mean shape of all
healthy subjects. (b) The mean shape of all diseased subjects.



Chapter 5

Previous work

The aortic segmentation of computed tomography (CT) and MR images has
already undergone a lot of research. Due to the labor intensive and difficult
analysis of the vast amount of images, developing reliable and fast analysis tools
has been a high priority for a decade. Rueckert et al. [14] used Geometric De-
formable Models (GDM) to track the ascending and descending aorta. Behrens
et al. [15] obtained a coarse segmentation using Randomized Hough Transform
(RHT). Bruijne et al.[16] introduced an Adapting Active Shape Models (ASM)
for tubular structure segmentation. Subasic et al.[17] utilized the level-set al-
gorithm for segmentation of abdominal aortic aneurysm (AAA). Though aortic
segmentation has been repeatedly attempted in the past, it is believed this is
the first study investigating its use for connective tissue disorders detection.

Independent component analysis (ICA) has its origin in the 1980’s in the area
of neurophysiology and was soon adapted in neural network applications by
Herualt et al. [18]. Not untill the 90’s did the area recieve much attention
outside of France and with the development of the fastICA algorithm in 1997
by Hyvärinen et al.[19], it is now a mature active field of research. Lelieveldt et
al.[20] have studied the application of ICA in statistical shape models, instead
of the more commonly used PCA. ICA has proved to be a well suited tool
in the analysis of the myocardial diseases. In modelling the left ventricular
myocardial contour, ICA extracted more localized features that helped to assess
the myocardial contractibility patterns [21].



22 Previous work

The same data that has been analyzed in the current work was previously ana-
lyzed using a support vector machine [2]. This gave good results that were un-
fortunately very difficult to interpret clinically. The above mentioned features
of independent component analysis, in particular in the ventricular modelling
was the source of inspiration for applying ICA to the same problem.



Part II

METHODS
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Outline of the presented methods

In this part of the report the different methods applyed in the computer aided
diagnosis are described. This part is divided in chapters each describing a dif-
ferent of the applied methods. Initially the segmentation algorithm is described
briefly in chapter 6, for the purpose of completeness, though the development
has not been part of the presented thesis. Chapter 7 gives an introduction to
the concept of capturing shape variations in a point distribution model. The
theory of independent component analysis is reviewed in chapter 8, including
an illustration of the method, which also certifies that the implemented algo-
rithm works as expected. The three subsequent chapters 9, 10 and 11 provide
thorough descriptions of the developed extensions of the basic ICA model pre-
sented previously. In chapter 12 the classifiers used in the diagnostic step are
presented. Chapter 13 describes the structure of the implemented Visual C++
program.
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Chapter 6

Segmentation

The segmentation method is as mentioned previously to provide a complete
description of the diagnosis process, from 4D MR images to the final diagnosis.
The work has been reported by Zhao et al. [2].

6.1 Aortic surface presegmentation

A 3D fast marching segmentation method [22] was used to obtain an approx-
imate aortic surface. Starting with a small number of interactively identified
seed points within the aorta, the initial surface Γ propagates in an outward
direction with the speed F . Let T (x, y, z) be the arrival time at which the level
set surface passes through the point (x,y,z) in the 3D image. The gradient of
this arrival time shall be inversely proportional to the speed function F [22].

|∇T|F = 1 (6.1)

The principal idea behind fast marching methods is to trace the surface ac-
cording to the solution function T (x, y, z) solved using Eq. 6.1. To facilitate
numerical solution, discretization in both space and time domains must be per-
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formed. Then,
max

(
D−x

i,j,kT, 0
)

+ min
(
D+x

i,j,kT, 0
)

max
(
D−y

i,j,kT, 0
)

+ min
(
D+y

i,j,kT, 0
)

max
(
D−z

i,j,kT, 0
)

+ min
(
D+z

i,j,kT, 0
)


1/2

=
1

Fi,j,k
(6.2)

where D+ and D− represent forward and backward difference operators. The
speed function is defined by Eq. 6.3, where Gσ ∗ Ix,y,z represents the image
smoothed by a Gaussian filter with a characteristic width σ. This definition
ensures that the surface development stops at a voxel with a high gradient.

F (x) = e−α|∇(Gσ∗Ix,y,z)|, α > 0 (6.3)

Using a binary tree sorting technique, the fast marching method can solve Eq.
6.2 with a time complexity of O(N log N), where N is the number of visited
points in the image [22]. The fast marching algorithm stops the surface in the
vicinity of object boundaries yielding an approximate object surface.

In order to achieve an accurate segmentation, a skeletonization algorithm [23] is
applied to the result of the approximate segmentation to extract the aortic cen-
terline. As a last segmentation step, a cylindrical surface graph search method
is used to accurately determine the final luminal surface.

6.2 Accurate aortic surface segmentation

Optimal border detection is an efficient segmentation algorithm applicable to
tubular surfaces such as blood vessel. The method consists of 1) a coordinate
transformation, 2) surface detection using dynamic programming, 3) mapping
of the segmentation result back onto the original image.

Coordinate transformation. In order to construct the aortic surface de-
tection graph, a coordinate transformation is needed. First, cross sections are
obtained by resampling the image in the directions perpendicular to the center-
line. Each voxel in the aortic cross sections is resampled using a cubic B-spline
interpolation technique [24, 25]. The aorta is straightened by stacking the resam-
pled cross sections to form a new volume. Each cross section in the resampled
volume is unfolded into polar coordinates to transfer the cylindrical surface into
a terrain-like surface [26]. This unfolded image is used for construction of the
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aortic surface detection graph. Fig. 6.1 shows the process of straightening the
aorta into a cylindrical tube. Fig. 6.2 shows the unfolding process.

(a) (b)

Figure 6.1: The process of transforming the aorta into a straight cylinder.

Figure 6.2: Unfolding of the cylindrical surface into a terrain-like surface.

Detection of the accurate surface. After constructing the graph from the
unfolded cross-sections, the border detection problem is transformed into a
search for optimal paths in weighted graphs [26]. Each pixel in the unfolded
cross section corresponds to a node in the graph. A cost is assigned to each
node. The lower the cost, the more likely it is that the node is actually on the
border. The minimum-cost path (optimal border) that connects the start node
and the end node is determined by dynamic programming [26].

Cost function design. The cost functions used for the identification of the
aortic surfaces plays a vital role in the graph search methods. Since the ascend-
ing aorta is connected to the left-ventricle and is surrounded by tissue of similar
MR appearance as the aortic wall, the borders of ascending aorta are hard to
detect with a simple cost function. In this study, two different cost functions
were developed – one for the ascending aorta and the second for the descending
aorta. First, a 3D edge image of the aorta is formed. The usual simple edge
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operators often overestimate or underestimate the actual border positions. To
overcome this problem, our edge operator utilizes a combination of first and
second derivatives (3× 3 Sobel edge detector and 5× 5 Marr-Hildreth edge de-
tector) of 2D gray-level images [27]. The edge image can be represented by:

E = (αS + βM)I , (6.4)

where I is the original image, S is the Sobel operator, and M is the Marr-
Hildreth operator. The parameters α and β control the relative weight of the
first and second derivatives. In the results presented in this study, α was fixed
at 0.8 and β = 0.2. The cost function can be represented as:

C(i, j) = max
x∈X,y∈Y

{F̄ (x, y)− F̄ (i, j)} , (6.5)

where F̄ (i, j) is the edge function which is ”inverted” to form the cost function.

• Descending Aorta and Aortic Arch: Let d(i, j) represent the edge direction
of a pixel (i, j). The edge function for the descending aorta and the aortic
arch is as follows:

F̄ (i, j) =
{

E(i, j) d(i, j) ∈ [π/2, 3π/2]
E(i, j)−∆P otherwise (6.6)

where ∆P is a constant penalty term.

• Ascending Aorta: The ascending aorta borders are difficult to detect with
a simple cost function such as given in Eq. 6.6. In order to overcome this
problem, a knowledge-based cost function [28] is used for the ascending
part. After examining the cross section perpendicular to the centerline, a
small gap between the ascending aorta border and its surrounding tissue
was detected (Fig. 6.3). The thickness of this gap ranged from 2 to 4
pixels. Using this information, the edge function of the ascending aorta is
calculated as a combination of two related edges:

F̄ (i, j) = F̄i(i, j) + F̄o(i, j) (6.7)

The inner edge function F̄i(i, j) and outer edge function F̄o(i, j) are:

F̄i(i, j) =
{

E(i, j) d(i, j) ∈ [π/2, 3π/2]
E(i, j)−∆P otherwise (6.8)

F̄o(i, j) = max
∆j=2,3,4

{
E(i, j + ∆j) d(i, j + ∆j) ∈ [−π/2, π/2]

E(i, j + ∆j)−∆P otherwise
(6.9)
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(a) (b)

(c)

(d)

Figure 6.3: (a) A single 2D cross section of the ascending aorta. (b) the
cross section with manually traced outlines. The inner outline is the border
of ascending aorta, the outer outline is the border of the surrounding tissue.
(c) The unfolded image of (a). (d) The unfolded image with manually traced
outlines. The lower outline is the border of ascending aorta, the upper outline
is the border of the surrounding tissue.
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Chapter 7

Point Distribution Model

Using the segmentation results, a shape Point Distribution Model (PDM) of the
aorta population was generated. A PDM serves to represent shapes as variations
over a mean shape. Building the PDM consists of two stages: 1) Automatic gen-
eration of aortic landmarks on the 3D segmentation result. 2) Capturing the
shape variation by using statistical shape analysis, namely independent compo-
nent analysis on the aortic shape.

7.1 Landmark generation

To build the PDM, the shape must be described by n corresponding landmarks.
In this study, we generated the landmarks automatically from the aortic seg-
mentation results in the following 3 steps:

1. Template shape generation. In order to obtain a compact model, the seg-
mentation result images were aligned to remove the Euclidian transforma-
tion effects of scale, rotation and translation by applying an affine trans-
form Taffine. The template shape was generated by applying shape-based
blending [29] to the aligned segmentation surfaces.
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2. Template Shape landmarks generation. Landmarks were generated on the
template shape. The general layout of the method for generating land-
marks was using triangular meshes to model the surface of the aorta, and
use vertices of these triangular meshes as landmarks. A marching cubes
algorithm [30] was used to generate the triangular meshes.

3. Landmarks mapping. Once the entire set of aortic segmentations was
landmarked, each landmark was mapped back onto the original image
data. In other words, the landmarks generated on the template shape
were mapped back onto the original volumes by using the inverse affine
transform T−1

affine followed by a B-spline elastic transform to propagate the
landmarks onto the individual shapes. Each resulting shape sample was
represented by a shape vector x = (x1, y1, z1, ..., xm, ym, zm), consisting of
m pairs of (x, y, z) coordinates of the landmark points.

7.2 Shape Analysis

The landmarks were set to have correspondence between the different aortic
shapes, in line with their nature. To analyze the different shapes they can be
modelled as variations of a golden standard shape. This is much related to the
way humans interpret images. For instance if one thinks of an apple, everybody
can picture an apple, though apples come in variety of shapes, sizes and even
colors, but still we have a clear idea of the concept of an apple. Similarly the
shape analysis is based on the analysis of variations over a shape chosen to be
the mean shape. The mean shape is estimated as a mean of all the individual
shapes. The mean shape for the first phase of the cardiac cycle is illustrated in
Fig. 7.1.

Subtracting this mean shape from all samples makes the sample vectors zero-
mean, which is an important prerequisit in independent components analysis,
used to model the shape variations, as presented in chapter 8.
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Figure 7.1: The mean shape of the first phase of the cardiac cycle.
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Chapter 8

Independent Component
Analysis

Independent Component Analysis (ICA) is a method suitable for recovering in-
dependent sources that are mixed to form new signals. The general assumption,
which has also been adopted in this work, is that the mixing process is linear.

The classical ICA example consists of a setup of several microphones placed at
a cocktail party to pick up many distinct voices speaking. Each microphone will
receive a different signal, depending on which persons it is close to. In this case
ICA is suitable for separating the voices without using any knowledge of speak
recognition, except for the fact that the amplitude of the voices is non-Gaussian.

8.1 The Linear ICA model

Linear ICA models assume that the observed signals are linear combinations of
the independent sources.

X = AS , (8.1)

where Xd×1 are the d observed signals, Sk×1 represents the value of the k in-
dependent sources and Ad×k is the mixing matrix. To correctly identify the
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true sources d ≥ k needs to be true. It might actually be possible to estimate
the mixing matrix in cases d < k, but the sources can still not be determined,
because the mixing matrix Ad×k is not invertible in this case.

To recover the independent sources a demixing matrix Wk×d is introduced by

S = WX , (8.2)

where the sources S are assumed of zero mean and unit variance. The true
sources can be reconstructed except for a scaling factor.

The independent components can, assuming non-Gaussian distribution of the
sources, be found by maximizing a measure of non-Gaussianity. This is due to
the Central Limit Theory, which states that a mixture of any two, non-Gaussian,
distributions will be more Gaussian than the original distributions. Finding the
different components maximizing the non-Gaussianity yields distributions that
are not mixtures and the recovered components are thus independent.

8.2 Whitening

Independent component analysis seeks to find components that yield indepen-
dent sources. Unlike principal component analysis nothing can be said about
the relation between the variance of these projections. In order to compare two
projections the different measures of independence either maximize a measure of
non-Gaussianity or a measure of the information content of the sources. Com-
mon for all measures is that they deal with the distribution rather than scaling
and offset of the variables. For this reason, most algorithms require the data to
be whitened before the algorithm is applied.

Initially the mean µ is subtracted from the observations to give the input a zero
mean. Let X̄ denote the data with subtracted mean, then

X̄ = X − µ . (8.3)

The whitening process then consists of a linear transformation that decorrelates
the variables and changes the variance of each variable to 1. Let Id be the unit
matrix with dimensions d× d, and U the whitening matrix then

cov(UX̄) = Id , (8.4)

where U can be estimated by using principal component analysis, as the prin-
cipal coefficients are uncorrelated and the analysis also yields the variance of
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each component for normalizing the variance. Let V be a matrix containing
the principal components of X̄ and Λ be a diagonal matrix with the variance of
each component in the diagonal. The whitening matrix U can be chosen to be

U = V Λ− 1
2 V T , (8.5)

which, if applied, gives white data as shown by

cov(UX̄) = cov(V Λ− 1
2 V T X̄) = V Λ− 1

2 V T cov(X̄)(V Λ− 1
2 V T )T

= V Λ− 1
2 V T (V ΛV T )V Λ− 1

2 V T = Λ− 1
2 ΛΛ− 1

2 = Id . (8.6)

In general, only a limited number of samples exists in the medical application of
independent component analysis. The number of principal values greater than
zero equals the number of samples (minus one as the mean has been subtracted).
This means that the diagonal matrix with the variances is not invertible, and
the above listed scheme can not be applied in this case.

A possible modification giving uncorrelated variables with unit variance will now
be presented. Considering each term in the presented matrix U = V Λ− 1

2 V T , the
rightmost V T can be considered as a transformation into a principal coefficient
space, Λ− 1

2 is a scaling in this space so the variance of the coefficients becomes 1,
and the left V a transformation back into the original space. Λr is introduced as
a reduced version of Λ, where Λr is a diagonal matrix where all the r elements
of the diagonal are different from zero, including the non-zero principal values
of Λ. Vr contains the r corresponding principal components and the singular
value decomposition of cov(X̄) can be written cov(X̄) = V ΛV T . Let Ur be the
new whitening matrix, then Ur can be written as

Ur = Λ− 1
2

r V T
r , (8.7)

giving scaled principal coefficients, all with a variance of one as can be shown
by

cov(UrX̄) = cov(Λ− 1
2

r V T
r X̄) = Λ− 1

2
r V T

r cov(X̄)(Λ− 1
2

r V T
r )T

= Λ− 1
2

r V T
r (V ΛV T )VrΛ

− 1
2

r = Λ− 1
2

r ΛrΛ
− 1

2
r = Ir . (8.8)

In this work, the second transformation, Ur, has been used, as it works even
when the number of samples is smaller than the number of observed dimensions.



40 Independent Component Analysis

8.3 ICA methods

ICA methods can be split up in two parts, namely an objective function and a
optimization algorithm. The ensemble forms an ICA algorithm.
ICA method = Objective function + Optimization algorithm [31].
First different objective functions, typically measuring the degree of non-Gaus-
sianity, are described, and subsequently different optimization algorithms suited
for the presented objective functions are treated.

8.3.1 Objective functions

In this section an overview of the considered objective functions is provided.

8.3.1.1 Kurtosis

The Kurtosis kurt(x) of the distribution of a random variable, x, is a measure
of Gaussianity. The description of Kurtosis is included in this report because of
its simple analytical properties that in section 10.1.1 shall facilitate an analysis
of some of the features of independent component analysis. The Kurtosis is
defined by

kurt(x) =
E{x4}
E{x2}2

− 3, (8.9)

where x is a random variable. It can be shown that the Kurtosis is 0 for a
Gaussian distribution. For practical estimation Kurtosis is far from the optimal
measure due to sensitivity to outliers and because it mainly measures the tail
of the distribution and is largely unaffected by structure in the middle of the
distribution [32]. For the theoretical considerations this does not pose a problem
as it can be assumed that the true distributions are know. For two random
independent variables x and y it holds that

kurt(x + y) = kurt(x) + kurt(y), (8.10)
kurt(cx) = c4kurt(x), (8.11)

where c is an arbitrary constant. Let the row vector, w, be a projection, wX,
on the input data X, and let the projection vector be bound by E{(wX)2} = 1.
As stated earlier X is assumed to be generated by the model X = AS (Eq. 8.1).
Let z be defined by z = wA and observe that E{(wX)2} = wAE{S2}(wA)T =
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‖z‖2 = 1, since the sources are independent and assumed of unit variance.

kurt(wX) = kurt(wAS) = kurt(zS) =
k∑

i=1

z4
i kurt(Si). (8.12)

To find distributions diverging from the Gaussian distribution, the numerical
value of the Kurtosis can be maximized under the constraint ‖z‖2 = 1. This
can be shown to be the canonical base vectors ±ei, projections on only one
independent component [33]. Intuitively, remembering the constraint ‖z‖2 = 1,
it is also expected that maximizing Kurtosis corresponds to distributing the
variance over fewer components, as values smaller than one raised to the power
of four are reduced even more.

8.3.1.2 ICA by tensorial methods

One approach to ICA can be considered as a generalization of principal com-
ponent analysis. PCA seeks to maximize the variance of the components, while
keeping the correlation coefficients zero. Cumulant tensors are generalizations
of the covariance matrix, in particular the fourth order cumulant tensor is given
by

cum(xi, xj , xk, xl) = E{xixjxkxl} − E{xixj}E{xkxl}
−E{xixk}E{xjxl} − E{xixl}E{xjxk} , (8.13)

which is a four-dimensional array, or a ”four-dimensional matrix”. All fourth-
order cumulants can be obtained as a linear combination of the cumulants of xi.
The Kurtosis, descibed in section 8.3.1.1, of a linear combination of the input,
can be written as

kurt
∑

i

wixi = cum

∑
i

wixi,
∑

j

wjxj ,
∑

k

wkxk,
∑

l

wlxl


=

∑
ijkl

w4
i w4

j w4
kw4

l cum(xi, xj , xk, xl) . (8.14)

A cumulant tensor is a linear operator defined by the fourth-order cumulants
cum(xi, xj , xk, xl). The tensor is defined as a linear transformation in the space
of d × d matrices oposed to the covariance matrix with elements cov(xi, xj),
which is defined in the space of d-dimensional vectors. Let the transforma-
tion of a matrix M be described by F and the i, jth element be given by the
transformation Fij , then the transformation is given by

Fij =
∑
kl

mklcum(xi, xj , xk, xl) . (8.15)
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As for the common matrix transformation, an eigenvalue decomposition can be
defined for cumulant tensor, given by

F(M) = λM . (8.16)

Assume that a W is found, satsifying the ICA model (8.2) with whitened data,
then

X̄ = WT S , (8.17)

since W is orthogonal. X̄ then has the special structure that M given by

M = wmwT
m , (8.18)

is an eigenmatrix, where wm,m = 1, . . . , d is a row of the de-mixing matrix W .
This can be shown by considering an element of the transformed matrix.

Fij(wmwT
m) =

∑
kl

wmkwmlcum(X̄i, X̄j , X̄k, X̄l)

=
∑
kl

wmkwmlcum

∑
q

wqiSq,
∑
q′

wq′jSq′ ,
∑

r

wrkSr,
∑
r′

wr′lSr′


=

∑
klqq′rr′

wmkwmlwqiwq′jwrkwr′lcum(Sq, Sq′ , Sr, Sr′) . (8.19)

Since the sources, Si, are independent, only terms where q = q′ = r = r′ gives
cumulants different from zero, which gives

Fij(wmwT
m) =

∑
klq

wmkwmlwqiwqjwqkwqlkurt(Sq) , (8.20)

where it is used that kurt(sq) = cum(Sq, Sq, Sq, Sq). The rows of W are orthog-
onal which means that

∑
k wmkwqk = δmk and the same for index l. This gives

Fij(wmwT
m) =

∑
q

wqiwqjδqmδqmkurt(Sq) = wmiwmjkurt(Sm) , (8.21)

which shows that matrices of the form (8.18) are eigenmatrices with eigenvalue
kurt(Sm). It can be shown that all other eigenvalues of the tensor are zero
[31]. If the eigenvalues of the tensor, corresponding to the Kurtosis of the
independent components, are distinct, every eigenmatrix corresponds to one row
in the de-mixing matrix W . A method for estimating the desired eigenmatrices
is described in section 8.3.2.1.
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8.3.1.3 Negentropy and mutual information

Entropy can be percieved as a measure of information or disorder contained in
a distribution. If a distribution for example only has two possible states with
equal probability the entropy of a random variable distributed according to this
distribution is one bit. This is the information that is gained if we knew the
actual ”state” of the variable. It can also be thought of, as the disorder of the
variable, in the sense that knowing only the distribution, ”how many possible
ways” can the variable be distributed. The differential entropy, defined for
continous valued random vectors Y , is given by

H(Y ) = −
∫

pY (ε)logpY (ε)dε , (8.22)

where pY is the density of Y .

The reason that the entropy is an interesting measure in the ICA setting is
that among all distributions with a fixed variance, the Gaussian has the largest
entropy. This indicates that the difference between the entropy of a distribution
and the entropy of a Gaussian distribution with the same variance could be
used as a measure of how Gaussian a distribution is. This measure is called
negentropy and is given by

J(Y ) = H(YGauss)−H(Y ) , (8.23)

where YGauss is a Gaussian random variable. As H(YGauss) assumes the high-
est possible value, the negentropy measure is always positive, and maximizing
negentropy is in a sense the optimum way of determining non-Gaussianity. The
problem though consists of determining the density of the random vector Y . In
the presence of sparse data this is very dificult, which is why approximations to
the entropy have been introduced.

Another information theoretic approach is minimizing mutual information to re-
cover the independent components which, after approximations, gives the same
algorithm for estimating the components.

8.3.1.4 Joint Entropy

Another measure of entropy is the joint entropy, measuring the information
contents of a linear projection of the data followed by a nonlinear transformation,
which for example can be done by a sigmoid function. The projection Y is then
given by

Y = f
[
WX̄ + w0

]
, (8.24)
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where w0 is an extra bias weight. Let ‖J‖ be the determinant of the Jacobian
matrix, then the distribution of the output Y, pY (Y ) is related to the distribution
of the observed signals pX̄(X̄) by

pY (Y ) =
pX̄(X̄)
‖J‖

. (8.25)

The joint entropy is defined similar to the diferential entropy (8.22), except the
idea of joint entropy is, as the name implies, to estimate an entropy of the whole
de-mixing matrix W , rather than just evaluating a single component. Using the
notations introduced already, this can be written as

H(Y ) = −E [logpY (Y )] = E [log‖J‖]− E
[
logpX̄(X̄)

]
, (8.26)

where the second term E[logpX̄(X̄)] is seen to be independent of the chosen
weights, which is taken into consideration when maximizing the joint entropy
in section 8.3.2.3.

8.3.2 Optimization algorithms

Different algorithms are suited for the different objective functions. This section
gives a description of algorithms suited for the presented objective functions.

8.3.2.1 Joint approximative diagonalization of eigenmatrices

The joint approximative diagonalization of eigenmatrices (JADE) method is
an approximative method for estimating the eigenmatrices described in section
8.3.1.2. This can be done by restating the eigenmatrix property. The de-mixing
matrix W is the matrix that diagonalizes F(M) for any M . This means that Q =
WF(M)WT is diagonal. In order to estimate the W ’s so Q becomes a diagonal
matrix a measure is wanted for the amount of diagonalization. An appearent
approach is maximization of the diagonal elements, as W is orthonormal and
the squared sum of all the elements remains constant.

JJADE(W ) =
∑

i

‖diag(WF(Mi)WT ‖2 . (8.27)

In the presence of true and limited data, a complete diagonalization is not pos-
sible. The matrices Mi could in principle be chosen arbitrarily, but to reduce
computation time, a set consisting of eigenmatrices of the cumulant tensor can
be chosen [34]. One problem with the JADE algorithm is that the cumulant ten-
sor scales like O(n4) with the number of dimensions, so for high dimensionality
signals, the memory requirements become very high.
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8.3.2.2 FastICA

This algorithm works well with the negentropy (and mutual information) ap-
proximation. It does work with several different objective functions, but due
to its current use, the negentropy approximation is emphasized, as discussed in
App. B

The FastICA algorithm is iterative and let n represent the iteration number,
w(n) the estimated independent component in the nth iteration step. Xd×1

is a column vector with the d rows representing the observed signals, in the
presented case corresponding to features of a patient. The iteration steps are
given by the following

w(k) = E{XT g(w(n− 1)X)} − E{g′(w(n− 1)X)}w(n− 1), (8.28)

where g and g′ are derivatives of a non-quadratic function G(u) = − exp(−u2/2).
This is the previously mentioned negentropy approximation. The components
are found sequentially and the data projected into the subspace orthogonal to
the recovered projections to improve performance and convergence [35]. The
weight vector, w, is randomly initialized which influences the obtained solution
due to multiple local maxima. Multiple w’s were initialized allowing the selection
of the one resulting in a source with the most desirable properties.

8.3.2.3 Gradient descent

Gradient descent works by maximizing a function iteratively by moving in small
steps along the negative gradient untill a suitable maximum is reached. Let G
be a function of the weight vector w, then the update rule can be described by

∆w = α
δG(w)
δW

|W=W (t−1) (8.29)

Gradient descent on the joint entropy measure The gradient descent
algorithm has proven its worth on the joint entropy measure introduced in sec-
tion 8.3.1.4. It is noted that the determinant of the Jacobian can be rewritten
as

‖J‖ =

∣∣∣∣∣‖W‖
d∏

i=1

δYi

δX̄i

∣∣∣∣∣ , (8.30)

and next using (8.29) gives

∆W = α
δH(Y )

δW
=

δ

δW
log‖J‖ =

δ

δW
log‖W‖+

δ

δW
log

d∏
i=1

∣∣∣∣ δYi

δX̄i

∣∣∣∣ . (8.31)
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The derivative of log‖W‖ can be rewritten as

δ

δW
log‖W‖ = [WT ]−1 , (8.32)

giving the final and simpler expression

∆W = α[WT ]−1 + (1− 2Y )X̄T , (8.33)

where the nonlinearity is assumed to be sigmoid.

The gradient descent algorithm was implemented on the joint entropy measure
revealing similar results as the FastICA algorithm on the aortic shape as well
as on the simple test, described in section 8.4. It did have a slower convergence
though.

8.3.3 Conclusion

For recovering the independent components, the FastICA algorithm has been
applied in this study, due to its fast convergence and robustness[32]. As men-
tioned in section 8.3.1.1, the Kurtosis is not very well suited in practical imple-
mentations with only a limited number of samples. The JADE algorithm was
previously implemented by the current research group, which did not yield sat-
isfactory results. As discussed in section 10.1.1 more sources than samples may
exist, and JADE is not well suited for making a selection between interesting
components. Gradient descent on a joint entropy measure was implemented,
yielding similar results, but later discarded due to slower convergence.

8.4 A demonstration of ICA

The following example works to prove that the produced implementation works
to find independent components, as well as to demonstrate the hypothesis of
ICA in the presence of the same number of sources as observable signals.

8.4.1 Two independent sources

This example demonstrates that two independent sources can be identified and
separated. The two uncorrelated sources have been constructed as a random
uniformly distributed signal and a serrated signal shown in Fig. 8.1(a).
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(a) (b)

Figure 8.1: (a) The two indpendent signals. A serrated signal and a random
unform signal. (b) Two mixtures resulting from a linear mixture process.
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The two signals are mixed linearly using an arbitrary mixing matrix A2×2 given
by

A =
[

0.23 0.30
0.35 0.28

]

The two signals resulting from the mixture process given by (8.1) are shown in
Fig. 8.1(b). It is evident that both mixtures are rather similar mixtures of the
sources. Figure 8.2(a) shows a scatter plot of the two sources. It can be seen
that both sources are uniformly distributed and in Fig. 8.2(b) it is illustrated
how the mixed signals have a skewed distribution.

(a) (b)

Figure 8.2: (a) The two indpendent signals. The serrated signal and the random
unform signal. Both have a uniform distribution which can clearly be observed
in the plot. (b) Two mixtures resulting from a linear mixture process. The
uniform distributions are now skewed.

Principal Component Analysis The most common procedure in dimen-
sionality reduction and/or feature extraction is using principal component anal-
ysis (PCA). PCA is finding projections that explain the biggest amount of vari-
ance, whereas ICA is concerned with finding independent components. In the
presence of data with a Gaussian distribution, ICA can not be utilized, as Gaus-
sian distributions can not be distinguished. In this case PCA finds the principal
axes in the hyper-ellipsoid describing the Gaussian distribution.

PCA applied on the two mixtures gives two principal axes illustrated in Fig.
8.3(a). It can be observed how the one axis represents the majority of the
variation and the other the rest. In describing the two different sources they
performed badly, since they are both a mixture of the two independent sources,
which can be clearly observed in Fig. 8.3(b).
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(a)

(b)

Figure 8.3: (a) Scatter plot of the two linear mixtures. The two red lines are
illustrating the principal components, scaled like 2 times the standard deviation.
(b) The resulting scores of each principal component. The scores on the left
graph are from the principal component explaining the most variance, and the
scores shown in the right graph are from the other principal component. This
can also be observed in the values of the scores, which have greater variance
for the first independent component. They are both clearly a mixture of the
random uniform signal and the serrated signal.



50 Independent Component Analysis

Independent Component Analysis The obtained results using ICA on the
mixed data are presented in this section. Initially the data was whitened as de-
scribed in section 8.2. Subsequently the FastICA algorithm was applied on the
whitened data to estimate the independent components. In Fig. 8.4(a) the esti-
mated independent components can be observed. The directions perpendicular
to the components have also been emphasized with dashed lines to illustrate
that the parts excluded by the projection of the data on the independent com-
ponents are the other components. In Fig. 8.4(b) the estimated sources can be
seen to correspond almost excactly to the true sources illustrated in Fig. 8.1(a),
except for an offset and a scaling factor. The amplitude of the sources cannot
be determined, as it is unknown if the scaling origins from the mixing process or
from the original source signal. A closer investigation yields small ripples in the
estimated saw teeth which are caused by chance correlations between the two
signals. The average magnitude of these depends on the number of samples.

(a)
(b)

Figure 8.4: (a) Scatter plot of the two linear mixtures. The two red lines
are illustrating the independent components, scaled apropiately. The dashed
lines show the directions perpendicular to the independent components, which
can be seen to be directed along the distribution of the other source. (b) The
resulting estimated independent sources. It can be seen that the original sources
illustrated in Fig. 8.1(a) are reconstructed except for scaling and an offset.

8.5 Conclusion

In this section several objective functions were described as well as some of the
optimization algorithms considered. In a previous study, a JADE implementa-
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tion of ICA by tensorial methods was used, without giving acceptable results.
For this reason, this method was not pursued further. The negentropy objec-
tive function is analytically attractive, because it in some sense is a ”natural”
measure of non-Gaussianity. The approximation introduced in section 8.3.2.2
made for an efficient optimization algorithm. Joint entropy was also an attrac-
tive objective function, giving similar results using a gradient descent algorithm,
but slower convergence makes the negentropy measure combined with the ap-
proximation and FastICA algorithm the prefered choice of algorithm. Unless
specifically stated, the algorithm used in the remaining of this report is the
FastICA algorithm as described in section 8.3.2.2, and implemented as outlined
in chapter 13.
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Chapter 9

A first approach to ICA on
the aortic shape

Due to the orthogonalization step in the FastICA algorithm, the ordering of
the components has a rather great significance on the estimated components.
Three different ordering measures are implemented in this work, introducing the
new Fisher discriminant measure, a localization measure, and a measure based
on the approximated negentropy measure. Section 9.2 introduces the ordering
measure that maximizes localization, which is preferable in the interpretation
of the extracted components, and in section 9.3 the Fisher discriminant as an
ordering measure for extraction of the component that separates the diseased
and normals, is described.

9.1 Ordering by the negentropy approximation

Initially the FastICA algorithm was applied on the data, searching for the max-
imum possible number of components that could be estimated. Having 31 sub-
jects, after the whitening process, the maximum number of independent com-
ponents to be estimated was 30. The coefficient values of the projection of the
data onto these 30 independent components yield an initially interesting result.
The objective function to be maximized by the FastICA algorithm was a mea-
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sure of non-Gaussianity. In Fig. 9.1 the distribution of the coefficients for each
independent component is illustrated.

Figure 9.1: Distribution of the projections on each independent component. It
can be observed that the first components explain an almost binary division of
the patients in two groups.

It is observed that the sources corresponding to the first components are dis-
tributed almost solely around the binary values 1 and -1, which gives a very
non-Gaussian distribution. Dividing the data into two distinct groups is proba-
bly not caused by an underlying feature of the data, but is rather arising from
the scarce amount of samples available for estimation of the mean values in the
FastICA algorithm. The components best suited for distinguishing the normal
subjects and the patients, were components of the order 9 - 17, and none showed
any particular clear separation between the two groups of subjects. The first
component which gives an almost completely binary distribution of the coeffi-
cients is shown in Fig 9.2. It can be observed that the major difference between
the two binary groups is centered around the ascending aorta, seeming to have
two different angles. Also at the tip of the descending aorta there are some
differences and this is not a very interesting feature, since the segmentation of
the end of the descending aorta is not very robust.

To achieve features with distributions different from just being non-Gaussian,
two new ordering measures are introduced.
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Figure 9.2: Illustration of an independent component. One phase of the inde-
pendent component is projected onto the mean shape of the aortic candy cane.
It is color coded such that red corresponds to a dilation of the aorta at a given
point and blue to a shrinkage at that point. Green means the components is
not dependent on a point.

9.2 The localization of the components

The true underlying sources are believed to be localized. Being diseased for
instance is expected not to influence the entire shape of the aorta, but only
a part of it close to the heart at the ascending aorta or at the aortic arch.
More generally in medical applications, components are usually expected to
show local rather than global features. This is the main reason to reinforce the
localization of the enountered independent components through an ordering of
the components.

A measure is defined that focuses on the peaks of the shape variation, extending
a measure defined by Lelieveldt et al. [20] to 3D. The variation of the shape
by a given projection is mapped onto the normals of the mean surface. The
normals are determined from the triangulation using a scheme as depicted in
Fig. 9.3. Each triangle is assigned a ”spin”, and by registering the spin in each
connection between points, forming the triangles, it can be made sure that all
the spins are rotating in the same direction. This is done by noting that each
edge is an edge in two triangles, and that the ”spin-direction” of the edge is
opposite for the two triangles. Starting by assigning a direction to one triangle,
the rest can be assigned using this scheme. The normals are found by taking
the cross product of two of the edge vectors, using the spin direction to choose
the ordering.

The volume between the two triangles, illustrated in Fig. 9.4, is calculated by



56 A first approach to ICA on the aortic shape

(a) (b)

Figure 9.3: (a) An example of triangles with normals, all pointing in the same
direction (either outwards or inwards). (b) Defining a direction by assigning a
spin to each triangle.

multiplying the area of the triangle by a projection of the displacement on to
the normal vector of the mean shape. All volumes are compared and peaks are
found as will be described.

Figure 9.4: Illustration of the calculated volume between a triangle of the mean
shape and a corresponding triangle of an estimated independent component.

Peaks with a peak value of over 50% of the maximum peak value are counted
as peaks. The average volume of these peaks is taken as a measure of how the
component has centered its shape changes in these few large peaks. Let npeaks

be the number of peaks, nP the number of points included in these peaks, and
V the volume of the significant peaks, then the measure L is defined as

L =
V

nP npeaks
. (9.1)

Introducing this ordering measure, the independent components are estimated
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again, using the FastICA algorithm. This gives the independent components
much more localized features as can be observed in Fig. 9.5(b) that has been
colorcoded according to the shape variations. The principal components repre-
sent more global variations which can be observed in Fig. 9.5(a). These different
characteristics can obviously also be observed in the value of the ordering mea-
sure.

(a) (b)

Figure 9.5: Blue corresponds to no variation and red to maximum variation.
(a) Aortic shape variations captured by a PCA mode. Notice the big variance
in color over the whole aortic surface. (b) Aortic shape variations captured by an
independent component. It is observed that the independent component show
very localized features compared to the more global variations of the principal
component.

It should be noted that the illustrated independent component is not well suited
for separating normal subjects from patients, leading back to the issue that the
distinction between the normal subjects and the patients is not very good. This
issue is treated in section 9.3.

9.3 The Fisher discriminant

The hypothesis of this study is that connective tissue disorder is one of the
sources shaping the aorta. The lack of an aparent ordering measure, having
no exact knowledge of the distribution of the seeked component, it is modelled
to be composed of two normal distributions. One is representing the normal
subjects and the other the diseased subjects, offset by the difference between
being diseased and having a normal aorta. The Fisher discriminant, evaluating
the projection separation of the two populations, is expected to have its maxi-
mum at the true source and thus seems a well suited ordering measure. Initially
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canonical discriminant analysis was performed, as this method finds the opti-
mum projection under the given assumption, but this did not yield a complete
separation of the subjects.

The Fisher ordering measure has been implemented, and a resulting distribution
is compared to the previously best obtained separation in Fig. 9.6. It is seen
that the separation, using the Fisher ordering, is much better, though the groups
are still not entirely separated.

(a) (b)

Figure 9.6: Separation between normal (+) and diseased (o) subjects. (a) A
typical best separation obtained with two of the features calculated using non-
Gaussianity as independent component ordering. (b) Much better separating
features using the Fisher discriminant as ordering measure.

Visual inspection of the independent components, shown in Fig. 9.7 yields that
the coefficients corresponding to diseased subjects tend to have a dilation along
the ascending aorta and the aortic arch. During the testing a rather strong
dependency on the initialization was observed, giving inspiration to section 9.3.1.

9.3.1 Multiple Initializations

Due to the random initialization of the FastICA algorithm and multiple min-
ima, it was also tried to initialize more independent components than could be
estimated. The ”best” components could then be selected by the ordering mea-
sure, and a complete separation could be obtained. This worked better when
discarding the principal coefficients corresponding to the least significant vari-
ances. In Fig. 9.8 it can be observed that the groups can be separated linearly,
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(a) (b)

Figure 9.7: Variation of the two best separating independent components, using
the Fisher discriminant as an ordering measure for the independent components.
Left corresponds to negative coefficients (diseased) right to positive coefficients
(normals) (a) The first independent component, the diseased are seen to have
a dilation at the ascending aorta. (b) The second independent component also
with a dilation for the diseased subjects, apparently including a dilation around
the beginning of the descending aorta.

though without a very clear division. Unfortunately the generalization is bad.
The separation was best using around 14 principal coefficients, but this gives 13
degrees of freedom and only 31 samples, so we expect the problem to be that
the solution is over-fitted to the presented data.

9.4 Conclusion

In this section it has been shown that using different ordering measures can
improve vastly on the properties of the recovered components. Using a measure
of localization has given very localized components and the Fisher discriminant
as ordering measure showed a much better separation of the components. In
section 9.1 it was learned that the number of free parameters was too high,
giving components with no medical significance. This may also to some extent
have been the case using the two other ordering measures.

Another problem with the two ordering measures is how to combine them. This
and the poor ability to generalize is treated in chapter 10.
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Figure 9.8: Distribution of the projections on each independent component,
along the two first independent components. A linear separation is possible,
though not very convincing.



Chapter 10

A novel approach to
dimensionality reduction

In secion 9.3.1 it was reported that the generalization ability of the estimated
independent components was very poor, and that this may be related to over-
fitting of the solution. This hypothesis has been investigated further, and a
suggestion for a constraining scheme has been proposed, which is summarized
in the article Detection of Connective Tissue Disorders from 3D MR Images
using Independent Component Analysis that is to be orally presented at the
Computer Vision Approaches to Medical Image Analysis (CVAMIA) workshop
of the ECCV conference. The paper is appended in App. C. This section
provides an elaboration of the reported work.

10.1 Sparse data

The number of dimensions is an important factor because the data is very sparse.
The observed data, X, in this study has d = nlandmarks · 3 = 248 · 3 = 744 di-
mensions when using one phase and 1581 when using two phases of the cardiac
cycle. The number of samples is still only 31, 21 normals and 10 diseased. As
described in section 8.2, the data is projected onto the principal components.
This is both out of computational convenience and because the data is only
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distributed along these directions. In section 9.3.1 it was reported that limiting
the number of included principal components made an improvement to the sep-
aration of the independent components, but gave a poor generalization ability.
This gives motivation to further reduce the number of free parameters in the
estimation of the independent components.

10.1.1 The number of source signals

The data is describing the shape of the aorta and therefore the number of
independent source signals is expected to be rather high. The physical shape
of the subject, the gender of the subject, the height and the age of the subject
could all be independent sources shaping the aorta. The one of interest in this
study divides the subjects in two groups with versus without connective tissue
disorders.

Due to the reduced number of free dimensions and the complex shaping of the
aorta, there are probably more sources than dimensions of the observed signal
(e.g. samples). This is in contrast to the original assumption behind the ICA
model (8.1). Reformulating the model in the framework of the anlytically simple
Kurtosis measure shows some interesting features, and is the topic of this section.

Maximizing the absolute value of the Kurtosis can be interpreted as recovering
a projection that is only directed along a single of several independent compo-
nents. Now examining wT X = wT AS, the common assumption in ICA is that
Ad×k satisfies d ≥ k because in this way no constraints are imposed on z given
by z = wA. This was also the assumption in section 8.3.1.1 where Kurtosis was
introduced. Assuming that d < k means that wA is only spanning a subspace of
Rk, the space of S. This could mean that some of the minima are not described
in this subspace. Denote the subspace of Rk not spanned by wA by V̂k−d×k.
The additional constraints on z are given by (Eq. 10.1), where 01×k−d is a vector
of zeros due to the orthogonality.

zV̂ T = 01×k−d (10.1)

The number of constraints under the maximization is bigger than the number
of parameters and thus the earlier described minima can not be reached. The
Kurtosis measure is still favoring distributing the zi’s on as few components as
possible though. Meanwhile recovering a true independent component is not to
be expected, the maximum will, by this objective function, be as independent
from the other sources, as possible using a linear transformation.
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10.1.2 Overcomplete source basis

Several locally stable projections are found by the FastICA algorithm. The
outcome depends on the initialization of the algorithm, and it is assumed, based
on the discussion in section 10.1.1 that the different projections favor different
source signals. None of them may fully describe a true source signal, but it
will be more or less represented in every projection. This is the motivation
for choosing an ordering measure that favors the components that is believed
to describe the desired sources well. An observation of section 9.3.1 was that
the number of free parameters needs to be reduced. Based on the conclusion
of section 10.1.1 that the ICA algorithms still favor few source signals in the
presence of more source signals than observable signals, the idea of the current
section is to constrain the estimation to include only a few observable variables
at the time.

Let the total number of observables be denoted d and the number of independent
sources k. In the specific case d = 22, retaining 97.5 % of the information and
discarding the 8 least significant principal components. To reduce the number
of degrees of freedom the search is constrained to only alter the coefficients
corresponding to dividing the variance in c = 5 ≈

√
22 parts. This is illustrated

by
Xd = AconSc , (10.2)

where the constraints of the constrained matrix Acon are best illustrated by
writing out the matrix representation.


x1

x2

...
xd

 =



a1,1 a1,2 = 0 · · · a1,c = 0
a2,1 a2,2 = 0 a2,c = 0

...
...

...
ad1,1 ad1,2 = 0 · · · ad1,c = 0

ad1+1,1 = 0 ad1+1,2 ad1+1,c = 0
...

...
...

ad2,1 = 0 ad2,2 · · · ad2,c = 0
...

...
. . .

...
adc−1+1,1 = 0 adc−1+1,2 = 0 · · · adc−1+1,c

adc,1 = 0 adc,2 = 0 · · · adc,c




s1

s2

...
sc

 ,

where the number of free parameters in each constrained independent compo-
nent is d1−1, d2−d1−1, ..., dc−

∑
i<c di−1. In the specific case, the maximum

is 6 free parameters (keeping in mind that all components are normalized to a
unit length, taking one degree of freedom). To emphasize the calculation of one
constrained independent component, the equation governing the ith component
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under the above mentioned constraints is given by

xi =


xdi−1+1

xdi−1+2

...
xdi

 =


adi−1+1,i

adi−1+2,i

...
adi,i

 si ,

which can be estimated using the same algorithm as the usual ICA model (8.1).

The realizations in section 10.1.1 indicate that the estimated components found
in (10.2) will not describe only one independent source. This observation, com-
bined with the fact that prior information about the true source distribution
exist inspires to allow a relaxation of the constraints given by (10.2) by including
a second mixing matrix. Let the constrained mixing matrix be named Acon and
the second mixing matrix Am(c× c), then

X = AconAmSc , (10.3)

which gives a new model formulation for the estimation Am

X̃c = AT
conXd = AmSc , (10.4)

since AT
conAcon = Ic due to the previous whitening of X. Equation (10.4) is

seen to be of the same form as the ICA model (8.1) and the components can
thus be estimated with the same method. The number of degrees of freedom in
the model is observed to be reduced drastically.

The aortic shape of each subject is, after application of ICA, represented by
the projection on the independent components. As the components are cho-
sen with the property to divide the two populations, ICA is applied again on
the most significant projections to extract more localized components using the
same scheme as represented by (10.4). This is both due to a desire to obtain in-
tuitively simple sources and because we a priori believe the sources are localized
as discussed in section 9.2.

10.2 Example with more sources than observa-
tions

To illustrate the properties of maximizing the Kurtosis, an example of a ran-
domly selected mixing matrix A2×3 is chosen. This corresponds to 3 sources but
only two observables. The Kurtosis of the three distributions are also randomly
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chosen by

A =
[

0.6136 1.0320 0.7604
−0.8242 −0.4344 1.2546

]
K1 = 0.118 K2 = 0.7005 K3 = 2.133. (10.5)

The projection vector w is rotated from 0 to π and the size is set to match the
constraint E{(wX)2} = 1. z is still defined by z = wA. The result is seen in Fig.
10.1. The rotation of w giving the maximum Kurtosis is seen to include mainly
one of the three independent components, whereas the two eigenvectors, defined
by the maximum and the minimum of the dash-dotted curve, are mixtures of
comparable fractions of all three independent components. This illustrates the
trend that the Kurtosis measure under constraints as without constraints is
better than the PCA measure at isolating a few independent components.

Figure 10.1: w-projections in an over-constrained independent component sys-
tem. The x-axis is the rotation of w in radians. The solid line is the calculated
Kurtosis with the maximum illustrated. The dashed lines are representing the
fraction of variance contributed from each independent component. The dash-
dotted line is the variance of the projection along the w-direction.

To investigate the matter further, and to affirm that the implemented FastICA
algorithm gives the same result as the theoretical expectation, the sources and
the mixing matrix is constructed with properties as described in (10.5). Sources
with a specific Kurtosis can be constructed from a uniform distribution. A uni-
form distribution is described by the with and the density along the uniform
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part, the rest of the probability density is concentrated around zero, as illus-
trated in Fig. 10.2. The relation between the density and the width a is chosen
so that the variance is one.

Figure 10.2: A uniform distribution with width a = 3.34 and density 0.0403,
with the remaining probability concentrated around the value zero.

The Kurtosis of a distribution like the one illustrated in Fig. 10.2, with width
a and density p can be estimated by

E{x2} =
∫ a

−a

px2dx =
2pa3

3
= 1

⇔ p =
3

2a3

E{X4} =
∫ a

−a

px2dx =
2pa5

5
=

3a2

5

kurt(x) =
E{x4}

(E{x2})2
− 3

⇔ a =

√
5
3
kurt(x) + 3 , (10.6)

which means that deciding a value of Kurtosis, a distribution with the desired
Kurtosis can be assigned by choosing the value of a and hereby also the value
of p, as it is set to be of unit variance. Three such signals, with Kurtosis as
described in (10.5), are illustrated in Fig. 10.3.

The three source signals are mixed with the mixing matrix from (10.5) to con-
struct two mixtures, shown in Fig. 10.4.

A scatter plot of the two mixtures is seen in Fig. 10.5. It is observed that
the high density around zero for all the distributions results in three lines in
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(a) (b)

Figure 10.3: Three source signals, with Kurtosis of 0.118, 0.7005, and 2.133. (a)
The constructed signals. Most of the values are set to a small random number.
(b) The resulting histograms. All have approximately unit variance and zero
mean.
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Figure 10.4: The two signal mixtures. It is possible to spot all the three inde-
pendent sources in the mixtures, but hard to make out, how to separate them.

the scatter plot. The density is by far the highest in the center of the plot,
corresponding to all three sources assuming small values.

Figure 10.5: A scatter plot o the two signal mixtures. The three independent
sources can best be identified by their high density around zero.

The FastICA algorithm was applied on the two mixtures to assess if the al-
gorithm gives results similar to those expected by the Kurtosis analysis in Fig.
10.1, where a clear maximum of the Kurtosis is seen where the projection mainly
consists of one independent source, namely the third one, with the highest Kur-
tosis value. The other component will, due to the whitening, be orthogonal to
this component, and will thus include almost none of this component, but a
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mixture of the two other components. The resulting estimated sources of the
FastICA algorithm is illustrated in Fig. 10.6(a), and a clear correspondence
between the third independent source, seen in Fig. 10.3, and the first estimated
independent signal can be seen. The second component can clearly be seen to be
a combination of the two other sources as is expected by the previous analysis
on Kurtosis.

(a)

(b)

Figure 10.6: (a) The demixed signals, obtained using the FastICA algorithm.
(b) The principal coefficient are clearly mixtures of all sources to a higher extent
than the independent components.

Comparing the estimated independent components with the principal compo-
nents shown in Fig. 10.6(b), it is evident that the independent components
describe the sources more precisely. Whereas the principal components both
seem like mixtures of all components the independent components appear like
either a mixture of the two sources or a single sources with only a little of the
random source added.

To investigate the matter further, the scatter plots of the projections are exam-
ined in Fig. 10.7. Note that the different sources are distributed along the dense
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lines that are visible in the scatter plot, because for all distributions the values
around zero are the most frequent ones. The longer line correspond to the third
independent source having the largest Kurtosis. In Fig. 10.7(a), showing the two
independent components, it can be seen that this line is almost exactly aligned
with the first independent component. The second component is a combination
of the two other components as can be seen by the orientation of the these lines.
In Fig. 10.7(b) the distribution of the principal coefficients is illustrated, and
there is clearly not much tendency in any of the principal components.

(a) (b)

Figure 10.7: Scatter plots where the direction of the different sources is appear-
ent through the lines with higher density. (a) The independent coefficients.
(b) The principal coefficients.

To summarize this illustration of independent component analysis in the pres-
ence of more sources than observables, it can be concluded that ICA was a
better tool for extracting the sources than principal components.
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Time-invariant ICA model

The modification of the ICA model presented in chapter 10 proved to create
a more robust estimation of the independent components working on only a
single phase. Increasing the number of phases in the analysis did not improve
the classification accuracy. The extra phases are included in the calculated
principal components and do effect the principal coefficients forming the ba-
sis for the independent component analysis, but there seems to be a tendency
that capturing the desired variations becomes harder, when the dimensional-
ity of the problem increases. This was the motivation for developing a new
model including time-invariant independent components. The basic assumption
is that some time-invariant components exist along with some time-variant com-
ponents. The work has been reported in a paper submitted to the MICCAI’06
conference, awaiting review, available in App. D. The current section is an at-
temp to elaborate the description of the idea presented in the paper. For the
presented model the landmarking scheme had to be altered to consist of time
corresponding landmarks, meaning to say that the landmarks in different phases
were assigned using the same template.
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11.1 Time-Invariant ICA

The time-corresponding landmarks consist of 243 three-dimensional points. It
is assumed that the independent sources explaining the shape-variation can be
divided in time-variant and time-invariant sources. The ICA model can be
formulated as

X729×1(t) = Acsc + At(t)st = [Ac At(t)]
[

Sc

St

]
, (11.1)

where Ac represents the time-invariant components and Sc the corresponding
time-invariant sources. At(t) are the time-variant components with correspond-
ing time-independent sources St. All 16 phases of the cardiac cycle can now be
represented by the following model

X729×16 = [x(1) x(2) · · ·x(16)] = [Ac At(1) · · · At(16)]


Sc Sc . . . Sc

St 0 . . . 0
0 St . . . 0
...

. . .
...

0 0 . . . St

 ,

where X729×16 is the concatenation of all the 16 aortic phase instances of a
subject. It is assumed that a time-invariant source exists, only related to the
disease status of the subject. The source represents the same shape variation
independently on the phase of the heart cycle. This is an important assumption,
since 16 instances exist of each of the 31 subjects, augmenting the total number
of aortic instances to 496 for the estimation of the independent components.
The model given by (11.1), along with the usual ICA implementation, is used
to determine the time-invariant components. The different phases are correlated
in their variation to some degree, but this model is still expected to be more
robust than the one-phase model.

The independent component related to connective tissue disorders is most likely
time-variant to some extent. The flow of blood and the aortic motion are both
affecting the shape during the cardiac cycle. However, the component was
divided in a time-invariant and a time-variant component. The time-invariant
part can be estimated using far more instances of the aorta resulting in a more
robust classification. Only one source related to being diseased is expected to
exist, but as discussed in chapter 10, we expect the recovered components to be
combinations of several true independent components. Therefore it is relevant
to include more than one component in the later classification. The time-variant
part of the component is estimated phase-wise based on the 31 instances of a
specific phase of the aorta.
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The diagnostic step

Finding a single independent component distinguishing between diseased and
normal subjects has not proven possible. This is discussed more thoroughly
in chapter 17 but to summarize; more than one component may be needed
to describe all connective disorders. The Fisher discriminant was introduced
as an ordering measure in section 9.3 and may help to assess if a component
contains valuable information in the diagnostic step. The choice of classifiers
is explained in section 12.1, the quadratic classifier is the topic of section 12.2,
and the perceptron classifier is explained in section 12.3.

12.1 Choosing a classifier

Concentrating on the components seemingly containing the most discrimina-
tive information about the two groups, a classifier is still needed to make the
diagnosis decision. Important aspects in choosing a suitable classifier are

• The number of features.

• The complexity of the classification task.

• The complexity of the classifier.
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• Intuitive intepretation of the classifier output.

The number of interesting features can be reduced to only two or three, using
the Fisher discriminant and multiple initializations is to obtain a few diagnostic-
wise interesting components. The classification task is rather simple once good
independent components have been selected. Since the number of samples is very
small (only 31 subjects available), there appears not to be sufficient evidence for
creating a very complex decision boundary. This, in terms, means the classifier
preferably should be rather simple. Because the final diagnosis will be given by
a physician, it is important that he can validate that the decision is based on a
sound foundation. Visual inspection of the decision rule is considered as a rather
strong argument. A cuadratic classifier has most of the desirable properties and
was the basis of the classification step in the work described in chapter 10.
The perceptron classifier furthermore has a linear decision boundary where the
normal vector can be illustrated visually. This could be presented alongside the
actual instance of the aortic shape, to affirm that the caught variation is indeed
present in the shape.

12.2 The quadratic classifier

The quadratic classifier is very well described in the litterature and the decision
rule will just be emphasized here along with the assumptions made [36]. The
prior probabilities are assumed equal, knowing that this probably gives a small
bias to classify subjects as diseased, as the apriori probabilities seem hard to
estimate. The quadratic discriminant function is given by

gi(X) = −1
2
XT Σ−1

i X + µT
i Σ−1

i X − 1
2
µT Σ−1

i µ− 1
2
log|Σi| , (12.1)

where Σi and µi are the estimated covariance matrix and mean for the two
distributions.

12.3 The perceptron classifier

The implemented perceptron classifier is adapted from [37] getting a bit of in-
spiration from the support vector machine, which tries to maximize the distance
between two groups.

The perceptron searches for a projection vector ad+1 including a bias that sepa-
rates the populations, letting the sign decide how to classify a sample. Samples
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that are misclassified are collected and added to the projection vector. To find
a better separation, a constraint is put on the distance to zero, so the distance
from the separating hyperplane to all the points can be maximized for increased
generalization ability.
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Chapter 13

Implementation

The algorithms and preprocessing of the data have been implemented in Visual
C++ 6.0. Some of the graphs presented in the current report are generated using
MATLAB 6.5. This section is intended to give an overview of the implemented
code, organized as a short description of the different implemented classes.

The different implemented classes are listed in Fig. 13.1. Direct dependency is
illustrated with an arrow.

Figure 13.1: List of implemented classes, strong dependencies are listed with an
arrow.

The different classes together form the backbone of all the analysis performed
as described in this chapter. The following is an attempt to give some insight
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into the structure of the implemented program.

• Matrix-template A matrix-template was developed using core features
like principal component analysis and matrix inversion from an existing
array class made by Steve Mitchell. This new matrix class is a template
class, meaning it can be defined for all variable types, and uses operator
overloading, allowing pseudo-normal syntax in matrix calculations, very
much similar to the syntax of MATLAB. This matrix-template is applied
by all the implemented classes and functions, and serves as a format for
exchange of data between classes.

• landmarkClass As the landmarked data had its origin from several sour-
ces and was stored in different formats a general procedure was build into
the landmarkClass. It also reads and stores the triangulation of the shape,
if a such exists.

• Visual Toolkit A toolkit developed open source by Kitware which can be
downloaded free of charge. It is a rather powerfull toolkit for visualization,
but has proved hard to learn being new to the concept. Two books exist
on the toolkit, which have shown to be very useful [38] [39].

• displayICA A function has been created to display the variety of ICA
results in different ways, as illustrated in the current report. This function
is based on the Visual Toolkit.

• ICAclass A class that contains the implementation of the different algo-
rithms implemented in this work. To keep the implementation general,
the functions are implemented as a FunClass that for instance has its
functions overloaded by − exp−

−x2
2 , named gaussFun in the case of the

negentropy approximation for the FastICA algorithm.
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RESULTS
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Outline of the presented results

The objective of the presented study was three-fold. A partial objective was to
obtain a good automatic segmentation of the aorta. This was obtained previ-
ously, but the results are provided in chapter 14 for completeness, as they form
the basis of the current work. The reported methods are briefly reviewed in
chapter 6. A second goal was to obtain features describing the aortic morphol-
ogy, which is presented as the independent components in capter 15, both in
the single-phase situation, and the time-invariant features extracted from the
16 phases of the cardiac cycle. The diagnosis step based on the estimated inde-
pendent components is validated in chapter 16 applying a leave-one-out test on
the data.
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Chapter 14

Segmentation results

The developed segmentation method produced aortic surfaces with subvoxel
accuracy as judged by the signed surface positioning errors of -0.09±1.21 voxel
(-0.15±2.11 mm) and unsigned positioning errors of 0.93 ± 0.76 voxel (1.62±
1.25 mm). An example of a typical segmentation result is shown in Fig. 14.1.
The segmentation result is shown in transverse and coronal views. For each
view shown in the figure, 4 slices were randomly selected from the 3D image.
The volumetric representation of segmentation is shown in Fig. 14.2. Fig. 14.3
summarizes the signed positioning errors obtained for each image.
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(a)

(b)

Figure 14.1: Automated segmentation result in 4 randomly selected slices; the
segmentation outlines are shown in green. (a) Transverse view. (b) Coronal
view.
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Figure 14.2: Volumetric representation of the segmentation result.

Figure 14.3: The average signed positioning errors for all analyzed images.
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Chapter 15

ICA Results

The ICA results are divided in the analysis of a single phase from the 31 available
subjects and the estimation of time-independent components from all 16 phases
of the cardiac cycle.

15.1 Single-phase ICA results

Fig. 15.1 illustrates the shape variations captured by the first and second in-
dependent components on the first phase. The analysis suggests that the first
independent component represents the variation in the length at both ends and
to a smaller extent the shape of the aortic arch. The second independent com-
ponent shows less localized variations concentrated along the ascending aorta.
None of the components seem to have much effect on the descending aorta,
which corresponds well to the clinical expectation stating the effect is centered
around the arch, as described in section 3.
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(a)

(b)

Figure 15.1: Aortic shape variations observed in the analyzed population. Red
corresponds to negative variation, compared to the normal of the mean-aorta,
on which the variances are projected. Blue corresponds to positive variation.
Positive values of the projection correspond to a higher likelihood of having
a connective tissue disorder. (a) Shape variations for the first independent
component on both sides of the aorta. The aortic shape corresponding to a
diseased subject is seen to have a ”flatter” and slightly dilated aortic arch.
(b) Shape variations for the second component, again from both sides. The
diseased subjects corresponding to the positive blue is seen to have a more
rounded arch, and a dilation around the ascending aorta.
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15.2 16 phase ICA results

The two first time-invariant independent components estimated using all 16
phases are illustrated in Fig. 15.2. They both describe diseased subjects with
thicker ascending aorta and the first one also a thicker aortic arch and start of
the descending aorta. This also corresponds the clinical observations of connec-
tive tissue disorder, though the components are less localized, which indicates
variation in between phases.
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(a)

(b)

Figure 15.2: Aortic shape variations described by the first two time-invariant
independent components, shown as the mean shape ±2 standard deviation. (a)
The first time-invariant independent component. It can be observed that the
diseased subjects (left) seem to have a thicker arch and in particular a thicker
ascending aorta. (b) The second component. The diseased subjects (left) also
appear to have a thicker ascending aorta and a flatter aortic arch.



Chapter 16

Diagnosis Results

The diagnosis results can be divided in the results obtainable considering only a
single aortic phase or the same model applied on two phases, and the obtained
results utilizing the extra information in all the 16 phases.

16.1 Single-phase and two-phase results

The distribution of the projection of the data on the two first independent
components, shown in Fig. 16.1, illustrates that the separation task can very
well be performed by a simple classifier. The evaluation is done using a leave-
one-out approach and though it always appears possible to find independent
components dividing the two populations, it is not guaranteed to generalize to
the unseen sample.

For the single-phase case, 248 landmarks were automatically generated on each
aortic luminal surface. The quadratic classifier working on two independent
components exhibited a sensitivity of 80%, meaning that 80% of diseased were
diagnosed as such and a specificity of 100%, meaning that all normal subjects
are classified as being normal in the leave-one-out test. When working on two
phases, 248 landmarks on the first phase of the aortic surface and 279 landmarks
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Figure 16.1: Projection of data along the two first independent components.
Diseased subjects are marked with ’+’ and healthy subjects with ’o’. A clear
separation is observed.

on the aortic surface in the middle phase were included. The classification
proved worse, namely a sensitivity of only 70% but still a specificity of 100%.
The analysis on two phases using the same model was performed to compare
the method to the previous work using a support vector machine, reported in
[2]. The localization ordering measure was designed for only one object and not
two phases and this may have affected the outcome.

The overall results are summarized in table 16.1 and table 16.2, showing the
confusion tables of the single-phase model and the two-phase model.

The single-phase model applied to either one of the two phases gives the same
confusion table, but one of the errors in classifying the diseased was for different
subjects, so a combination of the one phase models, believing that the specificity
is really 100% would actually give an even better classification. The very en-
couraging results obtained analyzing a single phase work well as a motivation for
further exploration analyzing 2 phases and all available 16 phases. Initially the
constraints on the ICA were a simple constraint as described earlier setting the
elements corresponding to the last 16 principal components to zero. This gave
a good separation, but the limited ability to generalize lead to less than perfect
specificity and only 40% sensitivity. An issue that might make the sensitivity
worse than the specificity is that the number of diseased is only 10 compared to
21 normals. As only two independent components were needed for the classifi-
cation task, it seems that when using prior knowledge of desired features of the
component, more task-specific information can be contained in the independent
components than in the higher-variance principal components. The previously
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implemented support vector machine needed 9 principal components.

Predicted
Disease Status Diseased Normal

Diseased 8 2
Normal 0 21

Table 16.1: Classification results of
the single-phase model

Predicted
Disease Status Diseased Normal

Diseased 7 3
Normal 0 21

Table 16.2: Classification results of
the two-phase model.

16.2 16 phase results

Fig. 16.2 shows the distribution of the projections of the 16 phases of the
different subjects. The diseased subjects tend to have negative values of both
components. The dilation of the components is located differently for the two
components and it is seen that the different aortic instances are combinations
of the two, each corresponding to a different position of the aortic dilation.

Figure 16.2: Projection of data along the first two time-invariant independent
components. The arotic instances of the left-out diseased subject are seen to be
distributed among the other diseased subjects.

The projections along the time-variant and time-invariant independent compo-
nents were combined using a perceptron classifier on each phase. In the last
classification step the phases 1, 7 and 8 were included, corresponding to the
phases around the cardiac R-wave peak and in the middle of the R-R interval.
This gave more robust results. Results of a leave-one-out test can be seen in
Table 16.3. Only one diseased subject was wrongly classified as being normal.
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This is an improvement from the one-phase results that classified two diseased
subjects as normals. The advantage of the reported ICA-method is the ability
to verify that the features it captures, correspond to the clinical expectation,
namely dilations around the aortic arch, and the ascending aorta.

Predicted
Disease Status Diseased Normal

Diseased 9 1
Normal 0 21

Table 16.3: Leave-one-out classification results of
the 16-phase model

To assess the classification in more details Fig. 16.3 has been generated. From
this we can learn that one of the diseased subjects appears more healthy than
one of the healthy subjects, but only, when the diseased one has been left out
of the independent component estimation.

Figure 16.3: A confusion matrix of the results of the leave-one-out test. It can be
observed that the values are generally a bit closer to the decision boundary, zero,
in the diagonal, where they have been left out of the independent component
estimation. NB. ”out subject” refers to the left-out-subject.
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Chapter 17

Discussion

The results described in chapter III are good however, there is still room for
improvement. In every aspect, we are interested in getting as precise descriptors,
as possible, for the diagnosis. Some weaknesses of the proposed models have
been considered and are summarized and some ideas for further investigation
are described. It should be emphasized that it is a list of apparent problems
rather than a complete list of possible problems.

• The independent component assumption

It is doubtful whether one independent component can explain all the
possible variations observed in subjects with connective tissue disorders.
Suppose that several components are needed (as for the practical diagno-
sis task), then they should describe different independent connective tissue
disorders. Otherwise, if they were describing the same phenomenon, they
would obviously be inter-dependent, and the basic independency assump-
tion (8.1) of the analysis would not be met. The two components shown
in Fig. 15.1 each show distinct characteristics, but this may be a conse-
quence of the described estimation method. With the limited number of
subjects it appears difficult to conclude anything statistically significant
on this issue.

• Analysis of variation
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Figure 17.1: Demonstration of how features 1 and 2 that are present in the
”training data” (the two left figures), is not present in the rightmost figure,
even though it clearly has a similar dilation.

Suppose a situation like the one depicted in Fig. 17.1 existed. To a human
observer, it is apparent that the third example is of the same kind as the
two presented examples, assuming the two first belong to the same class of
illness. This will not be captured by the independent component analysis,
as it only can capture variations that globally resemble a presented case,
even though the local correspondence is very much alike. This means that
a given local variation has to be present at the same global position, to be
recognized.

• Landmark dependency

The model captures variations by doing statistics on the chosen landmarks.
The result is that every variation in the precise landmark assignment,
will also have an effect on the statistical analysis. Possibly this could be
avoided by considering landmark-free shape models. Since it has been
observed that the descending aorta has little or no significance as a clas-
sification feature, it might also be an idea to discard it from the analysis
all together, to avoid chance correlations. A different approach could be
a thinning of the correlation over distances, which could be another way
to reduce chance correlations.

• Sparse data

The major issue of the current work has been the very limited amount of
available data. The acquisition of data is work intensive and expensive.
In time more data will be available for the study, but the number of
subjects will still be limited. The considerations on sparse data preseneted
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in chapter 10 are valid in many medical applications that mostly suffer
from the same problem.

Related to the correlation thinning discussed previously, it is interesting
if the goal of obtaining localized independent components is achievable.
Suppose an independent component has been estimated, depending only
on variations in a small localized area of the aorta (maybe even of one
phase only). The analysis then has isolated the variation in this area,
independently of the configuration of the rest of the aortic shape. To
make this observation that all other variations occur independently of this
local variation, a significant number of samples would be required.

A different approach to the problem of an insufficient number of samples
might be to make a ”rotation” and consider the subjects as observations
and the landmarks as samples. This would augment the number of ”sam-
ples” to several thousands. A parallel to this approach is an efficient way
of calculating a singular value decomposition, however it has not been in-
vestigated further, as the independence condition between sources is not
always expected to hold true, which is illustrated in Fig. 17.2. The cur-
rent implemented methods do also include some assumptions that may
only be partially met, so it could still make sense to engage in further
investigations of this idea.

(a) (b)

Figure 17.2: Examples of two independent sources. (a) The two shapes are
colored green and red, and the mean shape is black. It is seen that they have
an overlap in common. (b) The value of the observations, subtracted the mean
shape. Still one shape is represented by green and the other by red. The black
curve illustrates the cumulative estimated covariance of the components, which
are seen not to be independent.

Yet another approach could have been to use the orthomax, varimax or
sparse principal component analysis (SPCA) algorithms instead of the
ICA, but they unfortunately lack the generative model of the analyzed
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data, which gives a more physical interpretation of the components. Con-
versely it could be argued that the very small number of samples means
that investigating the distribution in multiple dimensions, is not optimal
for a general analysis.

• Structure of the components

It is observed that the components have quite a bit of structure. Meth-
ods for independent component analysis on signals with a time structure
have been developed, making separation by either autocovariances or by
changes in the variance of the signal [31]. This can not immediately be
applied to the artic shape, as it is a surface distributed in two dimen-
sions, and not just in one dimension as a time-signal. But creating a
two-dimensional reference system on the aortic surface, it could prove an
interesting way to exstract components.

The presented considerations consist of some the possible problems and sugges-
tions to their solutions, but not necessarily all problems, as the problem was
indeed a very complicated one.
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Conclusion

Early detection of connective tissue disorders leading to aortic aneurysms and
dissections is potentially an important tool in a prophylactic treatment of these
severe diseases. Objective identification of subjects with connective tissue dis-
orders is shown to be possible from 4D aortic MR images. Automated and ac-
curate segmentation of the aorta in 4D (3D + time) MR image data is reviewed,
and a computer-aided diagnosis (CAD) method using independent component
analysis (ICA) is reported.

The presented problem is ill-posed, with a high number of dimensions compared
to the number of samples (subjects), but the developed ICA model was a suit-
able approach for capturing the structural shape variations important to the
classification task.

Two different ordering measures have been introduced, based on conclusions
drawn from the performed analysis. Except for being generally applicable or-
dering measures, they also demonstrate that the ICA results can be vastly im-
proved by choosing an appropiate ordering of the independent components. In
many cases would probably be useful to model the desired sources, and order
the corresponding independent components accordingly.

To improve on the generalization ability, a method for constraining the estima-
tion of the independent components was developed. This constraining method
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may very well be applicable in other medical imaging challenges, as the problem
of sparse data is very common in the medical imaging field. A paper present-
ing the method (App. C) and the obtained results, has been accepted for oral
presentation at the CVAMIA’06.

The concept of time-invariant independent components has been introduced,
and it has been shown to have great use in the extraction of the information
from several available phases in the classification step. In many applications,
data is available from several time steps, and this could be a way to extract
information from it. Especially when data is sparse it may help to increase the
robustness of the feature extraction, as has been demonstrated in the current
work.

4D MR image data sets acquired from 21 normal and 10 diseased subjects were
used to evaluate the efficiency of the methods. The obtained ICA results have
been validated by performing a leave-one-out classification task on the most
significant features, as well as performing a visual inspection of the components.
A quadratic classifier and a linear perceptron classifier were both sufficent for
the classification task, and when using a single phase of the cardiac cycle, 8 out
of 10 diseased subjects were identified and the specificity was 100 %, classifying
all 21 healthy subjects correctly. With 4D information included in the analysis
by using the estimated time-invariant components, the developed CAD method
classified 9 out of 10 diseased correctly, and still the specificity was 100 %.
The independent components were inspected visually to further substantiate
their validity, and this analysis showed good correspondence between the clinical
observations and the estimated indendent components.
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Appendix A

Aorta examples

The aortic shape of 10 diseased subjects and 10 normal subjects are illustrated
for the first phase in this appendix.

Subject reference list
Diseased subjects Normal subjects

p99308931-030612-1226 p01487814-041019-1457
p98088726-020826-1138 p32871631-040818-1043
p96947008-030214-1046 p70083176-040803-1147
p89311241-030923-1129 p87159991-041119-1550
p88249033-021204-1548 p95094481-041018-1332
p77188991-030502-1606 p98013520-041115-1539
p76043978-040716-1011 p98013891-041116-1539
p75047514-040319-1339 p98374221-040929-1455
p72151835-020118-1418 p99402301-040928-1506
p01005182-040216-1315 p99540886-041215-1541

Table A.1: List of illustrated subjects
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Figure A.1: Diseased subjects.
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Figure A.2: Normal subjects.
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Appendix B

The fastICA algorithm

In this section the fixed-point fastICA algorithm is developed using negentropy.
The fastICA algorithm is a fixed-point algorithm, which means that when it
converges like

w = f(w) . (B.1)

Let E{G(wX)} be an approximation of the negentropy then

∇wE{G(wX)} = E{Xg(wX)} , (B.2)

where g(wX) is the derivate of the approximation G(wX). Now inspired by
the gradient descent algorithm, the fixed-point algorithm is constructed so the
weight vector is aligned with the gradient. This can be modified a bit, and we
get

w = E{Xg(wX)} (B.3)
(1 + α)w = E{Xg(wX)}+ αw , (B.4)

where (B.3) still holds true for all values of α. This is recognized as being
very similar to the Lagrange condition, when optimizing E{G(wX)} under the
constraint that ‖w‖2 = 1, which gives

E{Xg(wX)}+ βw = 0 . (B.5)
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Let F be the left-hand side, then

δF

δw
= E{XXT g′(wX)}+ βI . (B.6)

This can be approximated by noting that X is sphered, to get E{XXT g′(wX)} ≈
E{XXT }E{g′(wX)} = E{g′(wX)}I. Thus according to the newton iteration

w(n + 1) = w(n)− [E{Xg(wX)}+ βw]/[E{g′(wX)}+ β]
⇒ w(n + 1) = E{Xg(wX)} − E{g′(wX)}w , (B.7)

remembering that the w(n + 1) is normalized in every step, and that the sign is
also arbitrary.

This completes the fixed-point iterations in the fastICA algorithm. A typical
approximation G(wX) to the negentropy is the function G(x) = −e−x2

, which
has also been implemented in the current report. The developed fixed point
algorithm converges towards independent components, which was proved by
Hyvärinen et al. [31].
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Detection of Connective
Tissue Disorders from 3D
Aortic MR Images using
Independent Component

Analysis

Accepted for publication by CVAMIA’06 in Springer LNCS.

Michael Sass Hansen, Fei Zhao, Honghai Zhang, Nicholas E. Walker, Andreas
Wahle, Thomas Scholz and Milan Sonka.

Abstract A computer-aided diagnosis (CAD) method is reported that allows
the objective identification of subjects with connective tissue disorders from
3D aortic MR images using segmentation and independent component analysis
(ICA). The first step to extend the model to 4D (3D + time) has also been
taken. ICA is an effective tool for connective tissue disease detection in the
presence of sparse data using prior knowledge to order the components, and the
components can be inspected visually.
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3D+time MR image data sets acquired from 31 normal and connective tissue
disorder subjects at end-diastole (R-wave peak) and at 45% of the R-R interval
were used to evaluate the performance of our method. The automated 3D seg-
mentation result produced accurate aortic surfaces covering the aorta. The CAD
method distinguished between normal and connective tissue disorder subjects
with a classification accuracy of 93.5 %.



Appendix D

Detection of Connective
Tissue Disorders from 4D
Aortic MR Images using
Independent Component

Analysis

Submitted to MICCAI’06 , awaiting review.

Michael Sass Hansen, Fei Zhao, Honghai Zhang, Bjarne K. Ersbøll, Andreas
Wahle, Thomas Scholz and Milan Sonka.

Abstract Independent component analysis (ICA) is applied in a computer-
aided diagnosis (CAD) method that allows the objective identification of sub-
jects with connective tissue disorder from 4D aortic MR images. A novel idea
of time-invariant independent components assists in the disease detection in the
presence of sparse data with high dimensionality. Prior knowledge of the source
distribution is utilized using an appropiate ordering of the components.
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4D MR image data sets acquired from 21 normal and 10 diseased subjects were
used to evaluate the performance of our method. The automated 4D segmenta-
tion result produced accurate aortic surfaces. The CAD method distinguished
between normal and diseased subjects with a classification accuracy of 96.8 %,
using features showing correspondence to clinical observations of connective tis-
sue disorder.
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