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Summary

In a production facility machine locations are an important factor when calcu-
lating the material handling cost.

This report reviews different methods for optimizing the placement of the ma-
chines. The methods try to minimize the distance that the materials and semi
fabrics will have to move to get from one machine to another when also taking
into account that a rearrangement of machines has a price.

The first method uses reduced integer programming. It locates the machines in
a hexagonal graph in order to determine the relative positioning between the
machines. This information is used to find a small size integer program that
solves the problem.

The second method uses ant colony optimization to solve the problem. Ant
colony optimization is a meta-heuristic that uses a methods similar to that of
ants when these find the shortest path from their nest to a food source. This
method has been implemented and tested on various problems.

The last method uses simulated annealing to solve the problem. Various neigh-
borhood generating methods have been reviewed and tested. Different machine
layout problems have been solved using simulated annealing and ant colony
optimization to investigate their relative performance.

The solutions found using reduced integer programming are not as good as those
found using simulated annealing or ant colony optimization. When comparing
simulated annealing and ant colony optimization it is concluded that for small
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problems ant colony optimization is better than simulated annealing, but for
large problems it is the opposite.



Resumé

Maskinernes placering i en fabrikshal er en vigtig faktor n̊ar prisen p̊a materiale
transportering skal beregnes.

I denne raport vil forskellige metoder til at optimere placeringen af maskinerne
blive undersøgt. Metoderne forsøger at minimere distancen materialerne skal
transporteres for at komme fra en maskine til en anden under hensyntagen til
at flytning af en maskine ogs̊a har en pris.

Den første metode bruger reduceret heltalsprogrammering. Maskinerne plac-
eres i en hexagonal graf for at f̊a den relative beliggenhed mellem maskinerne.
Denne information bruges til frembringe et reducered heltalsprogram, som løser
maskinopsætningsproblemet.

Den anden metode bruger myrekolonioptimering til at løse maskinopsætningsprob-
lemet. Myrekolonioptimering er en metaheuristik som benytter sig af teknikker
baseret p̊a de teknikker som myrer bruger til at finde den korteste vej fra
myretuen til et sted med føde. Denne metode er blevet implementeret og brugt
til at løse forskellige problemer.

Den sidste metode benytter simuleret udglødning til at løse problemet. Forskel-
lige metoder til at generere nabolag er blevet undersøgt og testet. Forskellige
maskinopsætningsproblemer er blevet løst med b̊ade simuleret udglødning og
myrekolonioptimering for at undersøge deres indbyrdes styrker og svagheder.

Løsninger fundet ved hjælp af reduceret heltalsprogrammering ikke er lige s̊a
gode som løsninger fundet ved hjælp af simuleret udglødning eller myrekolo-
nioptimering. Ved sammenligningen mellem simuleret udglødning og myrekolo-
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nioptimering konkluderes det at simuleret udglødning er bedre hvis problemerne
er store og at myrekolonioptimering er bedre med små problemer.
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Chapter 1

Introduction

A product often consists of several raw materials which have been processed on
different machines, assembled and packed by other machines. The raw materials
and semi fabrics are transported between the machines by a material handling
system (MHS). The machine arrangement determines how long the materials
have to travel, the material handling cost. Machines that handle materials after
each other can be placed close to each other to minimize this cost. This is easy
if all the materials are processed on the machines in a given order, but if the
order in which the machines have to handle the materials is complex, it is a
hard problem to solve.

At a given time the future demand is uncertain, but the different scenarios for
the future are known. For example in a factory producing doors and windows,
there may be 40% chance that doors should be produced and 60% chance that
windows should be produced. This stochastic demand function can be used to
estimate the expected material flow between the machines.

Over time, the demand can change implying that for each time period (day,
week, month etc.) there is a different stochastic demand function. For example
in week 1 the door/window ratio may be 40/60, but in week 2 it may be 50/50.
When the demand changes radically the machines might have to be reorganized
in order to be efficient. The right time to make this change is important for the
price of the material handling vs. the cost of reorganizing the machines.
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The problem of organizing the machines efficiently with respect to a stochastic
demand function is called the machine layout problem (MLP) and when ex-
panding the problem with a changing demand function it is called the flexible
machine layout problem (FMLP).

Studies has shown that 15% to 70% of the total manufacturing operating ex-
penses can be attributed to material handling, and that an effective machine
layout can reduce these costs by 10%-30%[7].

1.1 Constraints

When modelling the machine layout there are both hard and soft constraints
to consider. The hard constraints are that no machines overlap and that no
machines are located beyond the boundaries of the factory floor. These hard
constraints must be satisfied at all times. Soft constraints may be that two
machines need to be separated because of noise or heat, or that a machine
needs to be near a specific location because of special needs to electricity, air
ventilation etc. In order to decide whether to satisfy a soft constraint or to
construct a better layout a penalty must be added to the cost of the layout
if a soft constraint has not been satisfied. The size of this penalty must be
considered for each of the soft constraints.

1.2 The machine handling system (MHS)

An important factor when constructing a machine layout model is the material
handling system, because it limits the way of organizing the machines. Some
classic ways of organizing the machines are listed below (See Figure 1.1):

• Circular. A robot-arm distributes the materials between the machines.
The limitation of this MHS is that the machines must be placed with
their input and output at the same distance to a certain point (the robot-
arm). The robot-arm can be extendable, which makes it possible to place
the machines in different distances, but in this case the machines still have
to be placed so they do not block the arm from reaching other machines.

• Linear single-row. A transport belt or automated guided vehicle (AGV)
distributes the materials. The machines must be placed on a line so the
MHS is able to deliver and pickup the materials.
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• Linear double-row. A transport belt or AGV distributes the materials.
This is the same as with the single-row, but with this MHS there are two
lines of machines in stead of one.

• Cluster machine layout. A gantry robot distributes the materials. The
machines can be placed in any locations, since the gantry robot works in
two dimensions and therefore can pick up and deliver materials at any
given space.

The cluster machine layout is the most flexible and is the one considered in this
report.

Figure 1.1: Overview of different machine handling systems

1.3 Input/Output areas on a particular machine

When modelling the MLP the location of the input and output areas on a
machine must be considered. These can be modelled either as the center of
a machine or as given points on the machine. It is simpler to model them as
the center of the machines and doing so makes the problem easier to solve.



4 Introduction

Modelling them as certain points on the machines makes it more precise at the
cost of higher complexity in finding solutions.

In this report the center of the machines will be used as the input/output area,
which is justified given the size of the machines relative to the entire floor [5].

When calculating the cost of material handling, the distance from the output
on one machine to the input on another is multiplied by the amount of material
that is moved between the machines. It may be more expensive to move heavy
materials than light materials, therefore a material-movement cost can be mul-
tiplied as well. The type of MHS is essential in calculating the distance. For the
cluster machine layout the distance is calculated as the Manhatten distance.

1.4 The scope of the report

Yang and Peters [8] implemented the reduced integer programming method and
solved two flexible machine layout problems in 1997. Their method has been
reviewed and commented. In 2004 Corry and Kozan [2] implemented ant colony
optimization and solved the same test problems with better results, but longer
running times.

In this report the two articles are reviewed. Ant colony optimization is imple-
mented and simulated annealing is described and implemented. Quality and
running times are compared for the two methods for problems of different size.

1.5 Structure of the report

The report has been structured so chapter 1 and 2 can be read to get an overview
of the machine layout problem and the different methods used to solve it. Chap-
ter 3 to 7 contain a more detail description. In chapter 8 a description of test
problems and results has been made. In chapter 9 several ways to continue the
research with machine layout problems and the different solution methods has
been listed. Chapter 10 contains the conclusion of the report.



Chapter 2

The different techniques to
solve MLP

In the following a brief introduction to MLP solution techniques will be given.
Later chapters will give a more detailed description and also give details on the
implementation of the techniques.

2.1 When to change layout

The three methods chosen can be used to find good layouts for the MLP. An
existing layout and the expected flow are used as input and the output is a
new layout and the price for material handling plus the price for rearranging
machines. The expected flow is found using the stochastic demand function. If
a layout covers more than one period the expected flow is found by adding the
expected flows for all the individual periods.

When deciding on how many periods a layout has to cover other methods have
to be used. A change of layout can take place prior to each period. A brute
force method for finding a solution if there are two periods is described below:

• Calculate the material handling cost if no change is made to the layout.
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• Calculate the material handling cost and cost of machine rearrangement
if a change is made before the first period. This is done by finding the
expected material flow using the two demand functions and using this as
an input to the layout algorithm.

• Calculate the material handling cost and cost of machine rearrangement if
a change is made before the second period. The expected flow is calculated
using the demand function for the second period and the initial layout is
used as input for the algorithm.

• Calculate the material handling cost and cost of machine rearrangement
if a change is made both before the first period and also before the second
period. The layout to use in the first period is found using the demand
function for the first period and the initial layout. The layout to be used
in the second period is found using the demand function for the second
period and the layout used in the first period.

The cost of the four calculations are compared and the solution with the lowest
cost is chosen. If this method is used the layout algorithm runs 2n+1 − n − 2
times where n is the number of periods.

Brute force can be used if the method for finding good solutions is fast and if
there is not a large number of periods, but if this is not the case another method
has to be used.

The Silver Meal lot-size (SMLS) [6] heuristic can be used in a modified version.
The SMLS can be reformulated to the FMLP by recasting the inventory cost to
material handling and the setup cost to machines rearrangement.

The modified SMLS works by calculating the per period cost for a machine
layout covering 1 period, then for a machine layout covering 2 periods and so
on. It keeps going until the per period cost no longer decreases. The layout with
the lowest per period cost is chosen. Then the algorithm continues by finding
how many periods the next layout has to cover and so on. The running time of
the SMLS algorithm is O(p ∗ c(n)), where p is the number of periods and c(n)
is the time needed to find a layout for a problem of size n. A more detailed
description of SMLS can be found in section 7.3

2.2 Reduced integer problem (RIP)

Integer programming can be used to find optimal solutions. However, if there
is a lot of integer variables the running time is high. Reducing the number
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of integer variables reduces the running time, but the quality of the solutions
depends on the quality of the reduction. The reduction presets some of the
integer variables to values found by another heuristic.

When solving the MLP using RIP, a mathematical model is constructed using
the current machine layout and the expected flow between the machines.

The sum of the material flow times the price for transporting the materials plus
the cost of the machine rearrangements is the objective function that needs to be
minimised. The constraints are that no two machines overlap and no machines
are beyond the boundaries of the factory floor.

This is a problem with 1.5n2 + 5.5n integer variables, where n is the number
of machines. A problem of this size does not solve efficiently, hence a reduction
is needed. The reduction is done by obtaining relative positioning of some of
the machines before solving the problem, which reduces the number of integer
variables to 0.5n2 + 6.5n.

The reduction heuristic uses a hexagonal adjacency graph from the Spiral pro-
cedure [4] which gives good relative positioning of the machines. The Spiral
procedure finds the relative positioning by rating the machines in three ways
and then placing them one by one in a hexagonal adjacency graph.

First, the machines are rated in order of how many materials they handle.

Second, the machines are rated in pairs so the pair for which the most materials
travel between the machines is rated highest and so on.

Third, the machines are rated in groups of three. The highest rated triple is the
one where most materials travel between the three machines.

These ratings are used to place the machines in a hexagonal graph, which is used
to reduce the integer problem by presetting the relative machine order. Figure
2.1 shows an adjacency graph produced by the spiral procedure. Machine 1 is
positioned above machine 4, left of machine 8 and so on. This information is
used to eliminate some of the integer variables in the original problem, making
it possible to find good solutions in acceptable time.
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M1
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M8

M6 M5

M3

M7

Figure 2.1: The relative positioning of machines

2.3 Ant colony optimization (ACO)

Real world ants find the shortest way to the food by laying out a pheromone
scent trail and using this trail when deciding which path to follow. This is
used by ACO to find good solutions. Artificial ants travel a weighted graph,
where the weights represent the accumulated pheromone and a path on the
graph represents a solution. The amount of pheromone an ant deposits depends
on the quality of the solution it has found. Over time the pheromone trail
evaporates so the ants do not get stuck on bad solutions. When an artificial ant
has to move it chooses randomly between two functions. The first function uses
the pheromone trail and a deterministic heuristic to choose the best way. The
other uses a probability function to choose which way to go.

In order to use ACO on the MLP this has to be modelled as a weighted graph.
This is done by laying a grid over the factory floor and dividing it into squares.
All of these squares are nodes in the graph. Each machine is modelled as a node
and there are arcs between all the machine nodes and also between each of the
machine nodes and all the floor nodes. With N machines and a floor divided
into W ∗ L squares there is N ∗ (N − 1) + N ∗ (W ∗ L) arcs in total. All the
arcs must store an amount of pheromone. When an ant makes a trip it visits
the machine nodes one by one. After visiting a machine node it visits the nodes
representing the floor spaces that the particular machine will be placed on. The
ant can only visit floor nodes that are not currently occupied by other machines.
The path followed by an ant represents a solution since all the machines nodes
are connected to floor nodes.

An ant only has two choices to make: Which machine to place next and where
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to place it.

2.3.1 Choosing the next machine to place

When the ant has to decide which machine it should place next, it can use two
functions. The first is deterministic and the other is probabilistic. The ant
randomly chooses which function to use and the parameter R0 is used to decide
with what probability to choose one in stead of the other.

There are two parameters that influence the choice of machine. One is the
strength of the pheromone trail between the machine that the ant has just
placed and the machine to place next. The other is the amount of materials
that flow between the machine to place and all the machines already in place.
This amount is called Hord(i, j) where i is the machine just placed and j is the
next machine to place. These parameters are weighted with δ and β. If the
deterministic function is used, the machine to place next is found by calculating
the pheromone trail multiplied by Hord for each machine not yet placed and
choosing the one with the highest value. If the probabilistic function is used the
same values are calculated, but now the values determine with what probability
a given machine are chosen. When all probabilities have been calculated the
machine is randomly chosen.

An ant is located at machine node i if it has just placed machine i. The variable
trail(i, j) is the accumulated pheromone at the trail between machine-node i
and machine-node j. When machine j is to be placed the variable Hord(i, j) is
the sum of expected flow between machine j and the machines already placed.
Frei is the set of machines not yet placed. The machine-node to visit after node
i is denoted j and is found using the following function:

j =

{
maxm∈Frei{trail(i,m)δ ∗Hord(i,m)β} ifR ≤ R0

J Otherwise
(2.1)

δ and β are used as weights so the pheromone trail and the Hord value can have
more or less influence on the choice. R0 is a number between 0 and 1 used to
decide whether to use the greedily best choice or use a randomly selected node,
R is a random number generated every time a machine is selected. J is a node
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from Frei and is selected according to the probability function:

p(i, J) =

{
trail(i,j)δ∗Hord(i,j)βP

m∈Frei trail(i,m)δ∗Hord(i,m)β
if j ∈ Frei

0 Otherwise
(2.2)

2.3.2 Choosing where to place the machine

Now a location for the chosen machine has to be found. Again there is a deter-
ministic and a probabilistic function. The parameters that influence the choice
are the trails from the machine node to the floor nodes and the cost. If the
machine is located at Lcni, the cost, Hpos(Lcni), is the price for rearranging
any machines that in the previous layout were using this location plus the ma-
terial handling cost for materials traveling between the machine to place and
the machines already placed. Since a machine can take up more than one floor
node the average trail information at Lcni is used. The deterministic function
calculates the average trail value divided by Hpos for all the possible locations
and the location with the highest value is chosen. The probabilistic function
calculates the same values, but again the values now represent the probability
of the location being chosen and the location is chosen randomly.

If machine i is to be placed at position Lcni, Hpos(i, Lcni) is the cost. The
cost is the material handling for materials that travel between machine i and
the machines already in place plus the rearrangement cost of any machines
that must be rearranged because of machine j being placed in location Lcni.
Rearrangement cost of machines already placed are is not included. M(Lcni) is
the set of floor-nodes occupied by the machine and V cti is the set of floor-nodes
not occupied by any machines. The location of the machine is found using the
following function:

Lcni =

{
maxM(Lcni)⊆V ct′i

trailavg(i,Lcn′i)
δ

Hpos(i,Lcn′i)
β if R ≤ R0

LCNi Otherwise
(2.3)

trailavg(i, Lcni) is the average accumulated pheromone on the trails from the
machine-node i to the floor-nodes M(Lcni).

LCNi is a location, such that M(LCNi) ⊆ V cti, selected by the probability
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function:

p(i, LCNi) =





trailavg (i,LCNi)
δ

Hpos(i,LCNi)
β

P
M(Lcn′

i
)⊆V cti

trailavg (i,Lcn′
i
)δ

Hpos(i,Lcn′
i
)β

if M(LCNi) ⊆ V cti

0 Otherwise

(2.4)

2.3.3 Pheromone trail

When an ant has found a solution it is rated and the pheromone on the trail
is updated. The amount of pheromone to add to the trail is U

C where U is a
parameter controlling how much pheromone to be used, and C is the cost of the
solution with respect to material handling and machine rearrangements. The
value of U must be so low that the level of pheromone is not at max everywhere,
but so high that the level of pheromone is not too low in interesting places.

When all ants have found solutions and deposited pheromone, the evaporation
takes place. The new pheromone values of the trails are found using the following
function.

trailnew = min(τ0, (1− α) ∗ trail) (2.5)

τ0 is the maximum pheromone possible at a trail and α is used to decide how
much evaporation takes place.

The ants then start over and find solutions using the new trail information.

2.4 Simulated Annealing (SA)

Simulated Annealing is an improvement heuristic. It searches the neighboring
solutions of the initial solution to find a better one. A neighboring solution is one
where an adjustment has been made to the original solution. Neighbor solutions
are reviewed one by one. The neighbor solution to review is picked randomly
from the whole neighborhood. If the neighbor solution is better than the current,
it is selected and neighbor solutions of this one are reviewed. Sometimes a worse
solution is selected which gives a possibility to escape a local minimum. The
chance that a worse solution is chosen decreases during the run of the algorithm.
The stop criteria for the algorithm can be one or more of the following:

• The algorithm has been running for a given number of iterations.
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• The chance that a worse solution is selected is sufficiently small.

• The best found solution has not improved during the last n iterations.

• The best solution is better than a given value.

When solving the MLP using simulated annealing the existing layout is used as
input.

Neighboring solutions are found by moving a machine from its existing location
to a new feasible location, by having two machines switch locations or letting a
machine change orientation. An orientation change means to turn the machine
90 degrees. This only makes sense when the length and width of the machine
are different.



Chapter 3

The Machine Layout Problem

The machine layout problem is a problem where a number of machines must
be placed in locations under various restrictions. The location of the machines
are a factor when computing the price for a given layout. Another factor is
the price for transporting the material. If it is very expensive to transport
a certain material due to weight, fragileness, toxicness it is probably wise to
place machines between which this material is transport close to each other.
The same goes if a lot of material is transported between two machines. On
the other hand if two machines creates a lot of heat or noise they should be
separated. The goal is to find the optimal location for all the machines when
respecting all constraints and minimizing the price for material handling and
machine rearrangements.

A machine can have many different shapes. The machines considered in this
report will, however, be rectangular, so they can be modelled as rectangles when
viewed from above. A factory floor can also have many different shapes. There
might be pillars supporting the ceiling and other obstacles. The floor will also
be modelled as a rectangle, with no obstacles in it. The use of rectangles eases
the calculations needed when making the mathematical model.
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3.1 Price of a layout

When calculating the price for a layout several issues will have to be considered.
If an original layout is to be improved there will be a rearrangement price for
moving a machine. If the rearrangement price for at machine is relatively high it
might not be profitable to move it. If constructing a layout for a new production
facility no rearrangement price will be needed.

The distance that the material has to be transported when moved from one
machine to another depends on the material handling system. If a transport
belt is used it is the linear distance, if a gantry robot is used it is the Manhatten
distance, etc.

The type of material is important when calculating the handling price as well.
A million small screws cost less to transport than a million cars. A material
handling weight can be multiplied with the amount of material that is been
transported between two machines in order to take this into account.

The area of the machine where the materials must be dropped off or picked
up can influence the price as well. The materials must be transported from
one machines output area to another machines input area. This will have great
effect on very large machines, but in the problems studied in this report the
distance between the center and these points will be so small compared to the
whole system that it has no importance[5].

The last issue that will affect the price of a layout is the soft constraints. If
a machine has special needs in terms of electricity or heat dispation a certain
location might be ideal for it. In some cases this is so important that it will be
a hard constraint that must be satisfied in order for the layout to be feasible. In
other cases there might be a price for not satisfying the constraint. An example
is that for each meter that a particular machine is away from the chimney the
layout will cost a certain amount more. This means that the price of the soft
constraint decides whether to satisfy it in contrast to getting a cheaper material
handling cost.
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The Reduced Integer Problem

An integer problem is an optimization problem where one or more of the vari-
ables are restricted to integer values. Integer programming is used to solve
integer problems. There are four groups of integer programs.

• Mixed Integer Program (MIP). A MIP is used when some but not all
variables are integers:

max{cx+ hy}
Ax+Gy ≤ b
x ≥ 0, y ≥ 0 and integer

• Integer Program (IP). An IP is used when all the variables are integers

max{cx}
Ax ≤ b
x ≥ 0 and integer

• Binary Integer Program (BIP). A BIP is used when all the variables are
restricted to 0 or 1.

max{cx}
Ax ≤ b
x ∈ {0, 1}n
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• Combinatorial Optimization Program (COP). COP is used when having a
finite set of components, N = {1, 2, ..., n}. Each component has a weight
cj , j ∈ N and a set of feasible subsets, F , of N exists.

max
S⊆N
{
∑

j∈S
cj : S ∈ F}

A large number of problems can be formulated and solved using these programs.
The typical way to solve a problem using integer programming is to formulate
the problem according to one of the above. When the problem has been defined
a set of constraints can be created and entered into an interpreter like GAMS1

which will generate a solution using a MIP-solver.

Integer programming can be very inefficient and will be very time consuming if
a large number of integer variables is used. A Reduced Integer Problem (RIP)
is an integer problem where some of the integer variables have been eliminated.
The RIP is easier to solve because of the reduced complexity. The RIP is
created by having a heuristic find good values for some of the variables, thereby
converting these to constants. The quality of the final solution will however
depend heavily on the quality of the reduction.

4.1 Using RIP on MLP

The integer program of the MLP is a mixed integer problem. There are variables
taking continuous values and there are binary variables. Below the parameters
and variables are listed and explained.

Parameters:

N = The number of machines in the layout
Ai = The rearrangement cost of machine i
Fij = The expected material flow between machine i and j

ζi =

{
1, machine i is in vertical position in the original layout.
0, machine i is in horizontal position in the original layout.

εij = The flow weight between machine i and j
M = A very big number
wi = Width of machine i
vi = Length of machine i
W = Width of the floor
H = Length of the floor

1http://www.gams.com
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Variables:

Zi =

{
1, Machine i is in vertical position
0, Machine i is in horizontal position

(xi, yi) = Coordinates of the centre of machine i
αij = 1 if xi ≥ xj and 0 otherwise
βij = 1 if yi ≥ yj and 0 otherwise
σi = 1 if xi ≥ ai and 0 otherwise
ρi = 1 if yi ≥ bi and 0 otherwise
τi = 0 if xi = ai and 1 otherwise
λi = 0 if yi = bi and 1 otherwise
φi = 0 if τi = λi = 0 and 1 otherwise

Ii =

{
0, φ = 0 and Zi = ζi
1, otherwise

θij = Binary variable used to prevent overlap between machine i and j
Eij = xi − xj if xi > xj , 0 otherwise
Fij = xj − xiif xi < xj , 0 otherwise
Gij = yi − yj if yi > yj , 0 otherwise
Hij = yj − yiif yi < yj , 0 otherwise
Pi = xi − aiif xi > ai, 0 otherwise
Qi = ai − xiif xi < ai, 0 otherwise
Ri = yi − biif yi > bi, 0 otherwise
Si = bi − yiif yi < bi, 0 otherwise

Λ = {(i, j)|i = 1, ..., N − 1; j = i+ 1, ..., N ; i 6= j}
∆ = {i|i = 1, ..., N}
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The variables are found using the following equations which will be explained
in the following.

min
∑

(i,j)∈Λ εijFij [Eij + Fij +Gij +Hij ] +
∑

i∈∆AiIi (4.1)

xi − xj = Eij − Fij (i,j)∈Λ(4.2)

yi − yj = Gij −Hij (i,j)∈Λ(4.3)

Eij ≤ αijM (i,j)∈Λ(4.4)

Fij ≤ (1− αij)M (i,j)∈Λ(4.5)

Gij ≤ βijM (i,j)∈Λ(4.6)

Hij ≤ (1− βij)M (i,j)∈Λ(4.7)

Eij + Fij − 1−Zi
2 wi − Zi

2 vi −
1−Zj

2 wj − Zj
2 vj ≥ −θijM (i,j)∈Λ(4.8)

Gij +Hij − 1−Zi
2 vi − Zi

2 wi −
1−Zj

2 vj − Zj
2 wj ≥ (θij − 1)M (i,j)∈Λ(4.9)

xi − ai = Pi −Qi (i,j)∈Λ(4.10)

Pi ≤ σiM i∈∆ (4.11)

Qi ≤ (1− σi)M i∈∆ (4.12)

Pi +Qi − τiM ≤ 0 i∈∆ (4.13)

yi − bi = Ri − Si i∈∆ (4.14)

Ri ≤ ρiM i∈∆ (4.15)

Si ≤ (1− ρi)M i∈∆ (4.16)

Ri + Si − λiM ≤ 0 i∈∆ (4.17)

τi + λi − 2φi ≤ 0 i∈∆ (4.18)

φi + Zi − 2Ii ≤ 0 (ζi = 0) i∈∆ (4.19)

φi + (1− Zi)− 2Ii ≤ 0 (ζi = 1) i∈∆ (4.20)

Zi, αij , βij , θij , σi, τi, ρi, λi, φi, Ii ∈ {0, 1}
0 ≤ xi, Pi, Qi, Eij , Fij ≤W
0 ≤ yi, Ri, Si, Gij , Hij ≤ H



 i ∈ ∆ and (i, j) ∈ Λ (4.21)

The objective function (4.1) is the sum of material handling costs and machine
rearrangement costs and should be minimized. Equations 4.2, 4.4 and 4.5 ensure
that E or F is set to the vertical distance between the centroids of machine i
and j and that the other is set to 0. Equations 4.3, 4.6 and 4.7 does the same
with G and H for the horizontal distance. With the help of θ, equations 4.8
and 4.9 ensure that machine i and j does not overlap in both vertically and
horizontally (See figure 4.1). Equations 4.10-4.13 ensures that τi is set to 1
if the centroid of machine i is moved from its original position in the vertical
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direction. Equations 4.14-4.17 ensures the same for λi, but in the horizontal
direction. Equation 4.18 ensures that φi is set to 1 if the centroid of machine i
has moved in either the vertical or horizontal direction. Finally equations 4.19
and 4.20 will make Ii indicate if machine i has been rearranged.

Figure 4.1: (a) shows overlap in the vertical direction. (b) shows overlap in the
horizontal direction. Overlap in both at the same time would result in machine
collision.

As seen in equation 4.21 there are 3 types of binary variables with the ij index

and 7 with the i index. Since there are N(N−1)
2 elements in ∆ and N variables

in Λ there are a total of 1, 5N 2 + 5, 5N binary variables, which is far too many
to allow an efficient solution of the problem to optimality. Therefore a reduction
in the number of binary variables must be made.

4.2 Using the Spiral procedure to reduce the

number of variables

The Spiral Procedure [4] provides a relative positioning between all the ma-
chines, which is indicated by the variables αij and βij . With αij and βij known
for all (i, j), the number of binary variables is reduced to 0.5N 2 + 6.5N . This
gives a problem that can be solved efficiently if the number of machines is not
very high. The spiral procedure places the machines in a hexagonal graph and
uses this graph to find the relative positioning.

4.2.1 Creating the hexagonal graph

The graph is constructed by adding machines to it one by one. Each machine can
have up to 6 neighbors. When evaluating a location, the flow and flow weight
between the machine and all its neighbors are the only factors considered. The
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sum of all the weighted flows is called the adjacency score. Three lists are
created to find the order in which the machines should be placed in the graph.

The first list contains tuples with one machine. The flow between a machine
and all the other machines decides the order of this list. The machine with
the highest material flow to other machines is at the top. This is the unary
relationship list.

The second list contains tuples with two machines. The flow between the two
machines decides the order of the list. The pair of machines which has the high-
est material flow between them is at the top. This list is the binary relationship
list.

The third list has tuples with three machines. Like with the binary relationship
list, the first tuple is the one where the flow between the three machines is the
highest.

Now a decision must be on which of the three ratings to use. If the unary is cho-
sen the machines are placed in the order of the unary rating. The first machine
is placed in the center and when placing the following machines all locations
where the machine would get at least one neighbor is evaluated. The location
with the highest adjacency score is chosen. If using the binary relationship,
the two machines from the first tuple is placed in the graph. The list is now
scanned from the top down. The first tuple having one machine not yet in the
graph and one machine in the graph with at most 5 neighbors are chosen. All
free locations next to the machine already in the graph are now evaluated for
the other machine. The location which has the highest adjacency score is used.
If the terniary relationship is used, the three machines from the first tuple is
placed. The list is then scanned from the top down. The first tuple containing
one machine that has not been placed and two machines that has been placed
next to each other is used. The two machines that has been placed must have
a common neighbor location that is unused. The other location that the two
machines have in common will logically be occupied, so the free location will be
used.

When all the machines have been placed the graph is modified to obtain a local
optimum. The optimization is done by trying all possible swaps of two and
three machines. If a swap improves the total adjacency score it is accepted and
every possibly swap is done over again.
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4.2.2 Using the graph to reduce the number of variables

When the graph has been constructed and optimized, the layout of the graph is
used to reduce the number of variables in the original problem. By considering
the machines pairwise all αij and βij are found. If machine i is placed further
left than machine j then αij is set to 0, if not it is set to 1. If machine i is placed
below machine j, βij is set to 0, if not it is set to 1. This is done for all pairs
of machines. In the example in figure 4.2, eight machines has been located in a
hexagonal graph. Each pair of machines are now examined to determine α and
β.

In this example α and β values related to machine 2 takes the following values:

• α12 = 0, β12 = 1

• α23 = 0, β23 = 1

• α24 = 1, β24 = 1

• α25 = 0, β25 = 1

• α26 = 1, β26 = 1

• α27 = 0, β27 = 0

• α28 = 0, β28 = 0

M1

M4 M2

M8

M6 M5

M3

M7

Figure 4.2: The relative positioning of machines
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4.2.3 Limitations of the spiral procedure

The spiral procedure does not take machine rearrangement into account. This
means that an optimal adjacency graph in terms of adjacency score, could be
very expensive when used to reduce the integer problem. This has been verified
in article [2], where test problems with different rearrangement prices has been
solved using RIP. RIP performs better with low or no rearrangement prices.
The size of the machines are not considered either. If the problem consists of
a large machine in combination with several small machines, gaps between the
machines can occur.



Chapter 5

Ant colony optimization

Ant colony optimization is a meta-heuristic for finding good solutions to opti-
mization problems. It uses techniques similar to the technique ants use to find
the shortest way from the nest to a food source. ACO was first used in early
’90s, so it is a relatively new technique.

5.1 Ants in the real world

The communication between ants are based on a chemical called pheromone,
which is different from humans and other higher species where the most im-
portant senses are visual and acoustic. A special form of pheromone is trail-
pheromone which some ant species use for marking trails on the ground, for
example from the nest to a food source. The pheromone trail is used by the
ants to find the path to food discovered by other ants. The ants have a tendency
to choose a route with a high pheromone scent over a route with weak scent.
This behavior is the inspiration source for ACO.

A good example of how the ants use pheromone to find shortest paths is the
double bridge experiment [3]. If there are only 2 paths from the nest to the food
and the paths have the same length the traffic most likely converges to one of
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the paths. This happens because of the randomness with which the ants choose
between two routes with the same amount of pheromone. At some point more
ants will choose one of the routes over the other. When this has happened the
pheromone trail on this route gets stronger than the trail on the other. Because
of the stronger pheromone trail more ants will choose this route and thereby
reinforce the trail. If one of the paths is longer than the other the traffic most
likely converges towards the shortest path (See figure 5.1). When there is no
pheromone on either of the trails the ants choose randomly between the two
routes. The ants choosing the short path will reach the food faster and when
they are returning there will only be pheromone on the short path. Because of
the higher pheromone trail on the short route the ants will be likely to choose
this route and reinforce the trail. This example shows that an ant colony has
optimization capabilities although simpler than the artificial ants described in
the latter.

Figure 5.1: The double bridge experiment

5.2 The ACO meta-heuristic

The ants in the real world are not very intelligent. They pick a route randomly
and the only thing that makes it different from complete randomness is the level
of pheromone scent on the different paths. When simulating these ants, there
are several changes that can be made to make the artificial ants smarter than
the real ants and therefore able to solve more complex problems.
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5.2.1 The mathematical model

In order to use ACO on a problem, this must have some special characteristics.
It must be an optimization problem (S, f,Ω), where S is the set of candidate
solutions, f is the objective function and Ω is a set of constraints. To use ACO,
the problem is mapped on a problem characterized by these points:

• A finite set C = {c1, c2, ..., cNc} of components is given. Nc is the number
of components.

• A sequence of components is a solution or part of a solution. The list
of all possible sequences is denoted χ. The length of a sequence, x, is
expressed by |x|. The maximum length of a sequence is bounded by a
positive constant n <∞

• The set of candidate solutions S is a subset of χ so S ⊆ χ.

• A set of feasible sequences χ̃, so χ̃ ⊆ χ. This subset is defined so all x ∈ χ̃
satisfies Ω and all x /∈ χ̃ fail to satisfy Ω.

• A non-empty set of optimal solutions, S?, where S? ∈ S and S? ∈ χ̃.

• A cost, f(s), associated with each candidate solution, s ∈ S. In some
cases it can be an advantage to have a cost function with a sequence as
input in order to get the price of a partial solution or to get the price of
an infeasible solution.

Given this, the artificial ants can make randomized walks on the fully connected
graph, Gc. The nodes in the graph, C, are all the components and by making
a walk an ant constructs a solution.

5.2.2 Artificial ants

“An artificial ant in ACO is a stochastic constructive procedure that incremen-
tally builds a solution by adding opportunely defined solution components to a
partial solution under construction. This means that ACO can be applied to
any problem for which a constructive heuristic can be defined.” [3]

The opportunely defined solution components can be found using a heuristic
created for the specific problem. Besides this heuristic the artificial ants has
an advantage since they have exact memory of their current state. They know
exactly where they have been, what choices they have made to get there etc.
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This memory is used when the ant is laying out pheromone, but can also be
used by the heuristic when finding the components to add to the solution.

5.2.2.1 A qualified choice of route

When an artificial ant has to make a choice of which component to add to its
currents solution, it evaluates all the possible components and rates them to be
able to make a more qualified choice. The heuristic for evaluating the compo-
nents are problem specific and can use the knowledge of the already traveled
path, the price of adding the component and the weight of the edge from the
latest added component to the component to add.

The pheromone trail from latest added component to the component being
evaluated is also a factor. Weights can be used so the pheromone trail can have
more or less influence than the heuristic. Each component gets a score based
on the heuristic and the pheromone trail.

The ant can either choose the component with the highest score or it can choose
the component according to a probability function. The higher the score a
component has the higher the probability is for it being chosen. A parameter
decides with what probability the highest rated component should be selected
over using a probability function.

5.2.2.2 Deposition of pheromone

An artificial ant is not forced to lay out its pheromone while walking as a real ant
must do. The artificial ant can wait until it has finished constructing a solution
and then deposit an amount of pheromone proportional with the quality of this
solution. This is a big advantage since ants who have created good solutions
will have more influence on the pheromone levels than ants who have created
poor solutions.

When an ant has created a solution of bad quality it still deposits pheromone. In
unfortunate situations this can happen several times in the first iterations, which
would result in the ants getting stuck on a bad solution since this has a strong
pheromone trail. To avoid situations like this the pheromone trail evaporates
over time. The parameters controlling how much deposition and evaporation of
pheromone that takes place must be adjusted in order to match the problem.
Strong evaporation makes the search diverse, while weak evaporation will result
in the search getting narrow faster. If using a lot of ants on a small graph, the
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amount of pheromone to deposit should be relatively small.

5.2.2.3 Elitist ant strategy

The pheromone level on the path of the best found solution might be just as
strong or even weaker than other paths. This especially occurs if the best
solution found differs a lot from other good solutions that have been found. A
method to reinforce the path of the best found solution is to have a number of
ants travel the path in every iteration. It is not unlikely that an even better
solution will include parts of the yet best found solution, so reinforcing the
pheromone trail of the best solution gives the ants a higher probability of using
parts of this solution when making randomized walks.

5.3 ACO on the MLP

5.3.1 The mathematical model

The MLP is modelled as a construction problem in order to use ACO on it.
There are two parts that needs consideration: Which machine to place next and
where to place this machine. In order to use ACO the floor must be divided
into discrete units, so a finite number of locations exists for each machine.

The graph that is used consists of a node for each machine and a node for each
floor unit. There are edges between all the machine nodes and between every
machine node and all the floor nodes.

When an ant constructs a solution it does so by selecting a machine-node and
visiting it. Then it decides where to place it and visits all the floor nodes
corresponding this location. It returns to the machine node and selects the next
machine to place.

In figure 5.2 a solution has been constructed. The problem consists of three
machines that needs to be placed on a 4 by 6 unit floor. Machine 1 has the
dimensions 1,2, machine 2 is 2,2 and machine 3 is 2,3. An ant has started with
machine 1, this has been placed on floor nodes (2,3) and (2,4). Then the ant
has selected machine 3 and placed it. After the solution is constructed the price
is calculated and the pheromone level of the path is updated. In this example
the edges to update are:
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• Machine node 1 to floor node (2,3)

• Machine node 1 to floor node (2,4)

• Machine node 1 to machine node 3

• Machine node 3 to floor node (3,3)

• Machine node 3 to floor node (4,3)

• . . .

The number of edges to update are the number of floor units the machines cover
plus the number of machines minus 1.

Figure 5.2: Mathematical model of ACO on MLP. 3 machines placed on a floor
with discrete units

5.3.2 Finding the next machine

The order in which the machines are placed is important. The machine that
is placed last will not have as many feasible location as it would have had if
it were to be placed first, since other machines block a lot of locations. When
creating the heuristic that calculates the order in which the machines are to be
placed this is essential. It is important to emphasize that a layout is independent
of the order in which the machines have been placed and that the order only
has influence on how hard it is to find good layout. The machine to place next
should be the most important one with respect to the machines already in place.
In other words, out of the machines not already in place, the one which has the
highest material flow to the machines already in place is the most important.
When no machines has been placed, all machines are equally important and will
take turn in being placed first.
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The heuristic for rating the machines to place, when ant q has completed step
s, is called Hord and is described in the following:

Hord(i) =
∑

m∈L(s)
q

εmiFmi (5.1)

where L
(s)
q is the machines that ant q has placed after step s, Fmi is the flow

between machine m and machine i, and εmi is the flow weight between machine
m and machine i.

The pheromone trail between the machines also has an influence on the choice.
The heuristic rating combined with the pheromone level between the machines
gives the following function for choosing which machine to place after having
placed machine i:

j =

{
maxm∈Frei{trail(i,m)δ ∗Hord(m)β} ifR ≤ R0

J Otherwise
(5.2)

Frei is the set of machines not yet placed, after machine i has been placed.
R0 is a parameter used to decide if a probability function should be used or of
the machine with the highest rating combined with the highest pheromone trail
should be selected. R is a random number between 0 and 1 and is generated
every time a machine is chosen. If R ≤ R0 and two or more machines have the
highest value, one of them is picked randomly. If R > R0 the machine is picked
using the following probability function.

p(i, J) =

{
trail(i,j)δ∗Hord(i,j)βP

m∈Frei trail(i,m)δ∗Hord(i,m)β
if j ∈ Frei

0 Otherwise
(5.3)

The probability with which a machine is chosen depends on the value of Hord

and the amount of pheromone on the trail between the machine that was just
placed and the machine.

5.3.3 Finding a place for the chosen machine

Once the machine to place next has been selected, the location must be found.
The machine must be placed within the boundaries of the factory floor such
that it does not overlap with other machines.

The price for placing a machine in a given location is found using the flow
between the machine and the machines already in place. The distance between



30 Ant colony optimization

the machine and every other machine is multiplied by the material flow between
the machines and multiplied by the flow weight. If the location is not the same
as in the original layout a rearrangement price is added too. If the machine
is placed in a location that prohibits machines not already placed from being
placed in their original locations, the rearrangement costs for these machine are
added as well.

Hpos(i, Lcni) =
∑

m∈L(s)
q

εmiFmi(|cxi−cxm|+|cyi−cym|)+
∑

m∈Ri
Am+ΨiAi (5.4)

where

Ri = {m|m 6= i;m /∈ L(s)
q ;M(Lcn0

m) ⊆ V ctqi ;M(Lcn0
m) ∩M(Lcni) 6= ∅}

and

Ψi =

{
1 ifM(Lcn0

i ) ⊆ V ctqi ∧ Lcni 6= Lcn0
i

0 otherwise

cxi is the center of the machine on the vertical axis. This means that the
distance between two machines is calculated as the 1-norm distance between
the centers of the machines. Lcn0

m is the location of machine m in the original
layout. M(Lcn) is the set of floor nodes that Lcn covers.

The first sum is the cost of material handling between machine i and the ma-
chines already in place, when placing machine i in location Lcni.

The second sum is the price of rearranging any machine in Ri. Ri is the set of
machines that have not been placed yet, and still can be placed in their original
locations. Their original locations are not occupied by any of the machines that
has been placed and does not overlap with Lcni.

The last element is the price of rearranging machine i. This is added if Lcni is
different from Lcn0

i and Lcn0
i is not occupied by any of the machines already

placed.

Hpos is a greedy heuristic and does not always find the optimal solution, so it will
be combined with the ACO. This means that the pheromone trail between the
floor nodes also has an influence on which location will be used. Since a machine
can occupy more than one floor unit, the pheromone level between a machine
and a location will be calculated as the average value of the level between the
machine node and all the floor nodes that is will cover. The pheromone level
can be calculated as the highest level between the machine node and all the
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floor nodes that is covers, but this would result in a lot of locations with the
same level, so the more accurate method using the average is used.

The location for machine i, Lcni is found using the following function.

Lcni =

{
maxM(Lcni)⊆V ct′i

trailavg(i,Lcn′i)
δ

Hpos(i,Lcn′i)
β if R ≤ R0

LCNi Otherwise
(5.5)

where

trailavg(i, Lcn
′
i) =

∑
[x,y]∈M(Lcn′i)

trail(i, [x, y])

viwi

If R ≤ R0 the location with the highest average pheromone trail combined with
the lowest price is used. Otherwise LCNi is found using the following probability
function.

p(i, LCNi) =





trailavg (i,LCNi)
δ

Hpos(i,LCNi)
β

P
M(Lcn′

i
)⊆V cti

trailavg (i,Lcn′
i
)δ

Hpos(i,Lcn′
i
)β

if M(LCNi) ⊆ V cti

0 Otherwise

(5.6)

5.3.4 Pheromone deposition and evaporation

When all ants has constructed solutions the pheromone is updated and evap-
orized. The function to update the pheromone level according to the solutions
constructed by the ants is:

∆trail(i, j) =
∑

q∈K

U

Cq
(5.7)

where
K = {q|(i, j)part of ant q’s path,q = 1, ...Nant}

To make sure that the path of the currently best solution is reinforced, elite ant
strategy is used.

∆traile(i, j) = einij
U

Cbest
(5.8)

where

einij =

{
e (i, j) part of path in best known solution
0 Otherwise
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The pheromone levels for the next iteration will be found using the following

trail′(i, j) = min(τ0, (1−α)trail(i, j)+α(∆trail(i, j)+∆etrail(i, j))) ∀(i, j) ∈ E
(5.9)

The above equations show that α is used to control the evaporation, e is used
to control the influence of the elite ant and U is used to control how strong the
reinforcement of the trails should be. τ0 sets an upper bound of the pheromone
level.

5.4 Implementing ACO

5.4.1 Pheromone trails

The implementation has been done in c++. The source code can be found on
the web1.

When implementing ACO on MLP the pheromone level between machines is
separated from the pheromone level between machines and floor nodes. Both
are implemented using arrays, the first using a two dimensional array and the
second using a three dimensional array.

The pheromone level should not be updated until all ants have finished their so-
lution. To avoid having to remember every ants solution a temporary pheromone
array is created and every ant updates this when it has finished constructing
a solution in stead of remembering its path. When all ants have finished up-
dating the temporary array the elite ant information is added and the main
pheromone arrays are updated. The temporary arrays are reset and the next
iteration begins.

5.4.2 Selecting a solution component

When finding the next machine or a location for a machine all possibilities are
evaluated and the prices are stored.

If using the probability function, a random number between 0 and the sum of
prices is generated. The component to use is found by running through the

1http://www.student.dtu.dk/˜ s973381/MLP
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solutions again and summing the prices. When the sum is higher than the
random number, the current solution is chosen.

The method for selecting the best component randomly if there are two or more
are done in a special way so it is only necessary to save one instance. At a
given point only one “best component” will exist. If another component is
equally good it will with a 50% change ( 1

2 ), be the new “best component”, and
a counter will hold that two solutions are best. If yet another component is best
this will be select with 33% chance ( 1

3 ) and the counter will increment. This
way every “best component” has the same probability of being chosen. Doing
this eliminates the need for a linked list or alike to remember all the “best
components” and selecting randomly in the end.

To illustrate how a component is chosen pseudo code for this is listed below.
It should be noted that the possible components are ordered, meaning that
the “next component” function returns the components in the same order both
times it is run.

sum=0

counter=1

best_p=999999

while(c=next_component)

p=get_price(c)

cache(c)=p

sum=sum+p

if(p=best_p)

counter++

if(RAND<1/counter)

p=best_p

c=best_c

if(p<best_p)

p=best_p

c=best_c

counter=1

if(use_probability_function)

R=RAND*sum;

sum=0

while(c=next_component)

sum=sum+cache(c)

if(sum>=R)

use(c)

exit
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else

use(best_c)

5.4.3 Different U for order and placement

In contrast to article [2] the parameter U is different when updating pheromone
level between machines contra machines and floor nodes. The number of floor
nodes will always be higher than the number of machines, so if the same level
is used, the pheromone level between the machines will almost always be at
maximum (τ0).

5.4.4 Print functions

Print functions have been implemented so the final layout can be displayed.
Furthermore a print function to show the pheromone level between a machine
and the floor nodes has been implemented. This function is very convenient since
it gives a good overview of the pheromone levels and can be used to see whether
U or α are set too high or low. Figure 5.3 shows three examples of the pheromone
level print function. High levels of pheromone are marked with dark color and
low levels are marked with light color. The initial pheromone level is set to
the highest possible level. The more iterations performed the more pheromone
is evaporated. The pictures shows that after 10 iterations the machine has an
almost equal chance of being placed in all location. After 50 iterations the
pheromone level to good locations has been reinforced, while the pheromone
level to poor locations has evaporated. After 90 iterations the pheromone level
to the poor locations has evaporated even more. It is important to remember
that the pheromone level is not the only factor when choosing location, but that
the material flow to the already placed machines also has influence.

5.4.5 Parameter values

The values of the parameters are the same as those used by Corry and Kozan
in article [2].

• R0 for the machine order: 0.5

• R0 for the machine placement: 0.9
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Figure 5.3: Pheromone level from a machine to the floor nodes after 10,50 and
90 iterations. High levels of pheromone are marked with dark color and low
levels are marked with light color.

• δ, weight of trail value : 1

• β, weight of heuristic value: 3

• τ , max value of pheromone: 2

• α, evaporation factor: 0.025

• The number of iterations has been set to 180

The number of ants and elite ants change with the amount of machines. For
problems with 6 Corry and Kozan have used 100 ants and 50 elite ants. For
problems with 12 machines they have used 200 ants and 100 elite ants. They
have not tested problems with 8 machines, so for those problems 150 ants and
75 elite ants have been used. These values are used because Corry and Kozan
also used 16 2

3 ants per machine and 8 1
3 elite ants per machine. For problems

with more than 12 machines 200 ants and 100 elite ants have been used. If more
ants were used the running times would be unreasonable.

The parameter that decides how much pheromone to deposit, U , has been found
for each individual problem by calculating the material handling price when no
machine rearrangement has been made. U for machine order is set to a third of
this price.

5.4.6 Compiling

The running time of ACO is fairly high, but using the right compiler and the
right options proved very successful. When switching from gnu’s compiler to
sun’s the running time improved by a factor 7. The compilation command is
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CC -fast -xchip=ultra3 -xarch=v8plusb -xopenmp -lmtmalloc

This shows that a parallel library is included and that memory allocation for
multiple threads are optimized.

5.4.7 Parallel implementation

Even with the improved compiler the algorithm still has a high running time.
Especially when tuning parameters this is a problem. ACO is really suited for
parallelization, since each ant can create a solution at the same time.

When parallelizing ACO the only critical points are when the temporary pheromone
arrays are updated. This is solved by creating a temporary array for each thread.
When all the ants are done creating solutions the temporary pheromone arrays
are merged and the actual pheromone arrays are updated. The parallelization
is close to perfect since the time consuming parts of the algorithm is when
the ants are calculating Hord and Hpos for every possible situation. This means
that when running with n threads, the algorithm finishes approximately n times
faster than it would without parallelization.

5.4.8 Code profiling

In order to optimize both the actual code and also the parallelization of the,
this is analyzed using suns analyzer2. This is done by compiling the code with
a debugging parameter (-g) and using the collect program. The collect program
will gather information about which functions run at what time and also about
the memory usage during runtime. When the job finishes the information is
analyzed so functions that are very time consuming and threads that are sleeping
can be identified and possibly optimized.

2http://developers.sun.com/prodtech/cc/analyzer index.html
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Simulated Annealing

Simulated annealing (SA) has its name and inspiration from metallurgy. Heating
metal and cooling it slowly increases the size of its crystals and reduces their
defects.[1]

SA is an improvement heuristic, which means that an initial solution is needed.
The initial solution is improved by making small changes and accepting these if
they improve the solution. Sometimes a change that makes the solution worse is
accepted in order to be able to escape a local minimum. When slowly accepting
fewer and fewer worse solutions a good solution can be found. Depending on
the complexity of the problem SA may be able to find good solutions within
reasonable time.

6.1 The initial solution

The initial solution needed by SA must be generated by another algorithm.
Depending on the neighborhood generation and the price calculation, the initial
solution may be infeasible. The initial solution does not have to be a very good
one, since the first steps of SA will allow major changes to the solution in order
to make the search diverse.
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6.2 Neighborhood generation

The neighborhood of a solution is the set of solutions which can be created by
making small adjustments to the solution. One of these solutions will be picked
randomly and depending on the quality accepted or rejected. If the solution
is rejected another solution from the neighborhood is picked and evaluated. If
the solution is accepted the neighborhood of the new solution is searched and
so on. When iterating through neighborhoods it should be possible to reach
any solution from any other solution. An example can be seen in figure 6.1. If
the neighborhood are solutions where two machines have been switched, it will
never be possible to come from the initial solution (a) to the optimal solution
(b). If the neighborhood were the solutions where one machine had been moved
to a new location, it would be possible to come from (a) to (b) in a number of
iterations.

1 6 3

2 4 5

(a) (b)

1 2 3 6 5 4

Figure 6.1: Two solutions to a problem

6.3 Accepting or rejecting a solution

The temperature, the quality of the current solution and the quality of the solu-
tion being evaluated influences whether a solution is accepted. A better solution
is always accepted and so is a solution of equal quality. If the quality of the
evaluated solution is worse, then the difference in quality and the temperature
determines with which probability the solution is accepted. The function used
is as follows:

paccept = e
Pc−Pe
T (6.1)

Pc is the price of the current solution, Pe is the price of the solution being
evaluated and T is the temperature. The function states that the higher the
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temperature the higher a probability of accepting a worse solution. In the first
iterations where the temperature is high many worse solutions will be accepted.

6.4 Cooling

The starting temperature should be at a level so approximately 50% of the worse
solutions are accepted. While the algorithm runs the temperature is lowered,
resulting in fewer and fewer solutions being accepted. Before the algorithm
terminated the temperature should be so low that it is very rare that a worse
solution is selected.

The temperature can be lowered after a given number of iterations or after each
iteration. The fewer iterations that takes place before a temperature reduction
the closer the reduction factor should be to 1. If the temperature is lowered
too fast the search will not be diverse enough. If the temperature is lowered
too slow poor solutions will be accepted so often that it is likely that no good
solutions will not be found.

6.5 Stop criteria

At some point the algorithm will have to stop. One of the following conditions
can be used as stop criteria or more can be combined.

6.5.1 Stop after a given number of iterations

The algorithm may stop after a given number of iterations. The amount of
time that an iteration uses can be calculated in order to calculate how long the
algorithm will run before it finishes.

6.5.2 Stop when the temperature is below a certain degree

Using the temperature as a stop criteria is closely related to using the number
of iterations. The only difference is that if the starting temperature is higher
more iterations will be performed. If stopping after a given number of iterations
with a starting temperature higher than expected the algorithm will stop too



40 Simulated Annealing

early. When stopping too early the temperature is so high that good solutions
might not have been found.

6.5.3 Stop when there has been no improvement in a given
number of iterations

Using a sliding window keeps the algorithm running while improving the solu-
tion. The sliding window means that when the best found solution has been
improved the algorithm keeps running for a given number of iterations. It is
important to consider that in the first many iterations the search is very diverse
meaning that good solutions are not necessarily found. This can be a problem
if the sliding window is not very wide. A solution can be to widen the sliding
window or to force the algorithm to run for a given number of iterations before
the sliding window stop criteria is introduced.

6.5.4 Stop when the best solution is at a given quality

If a solution of a given quality is needed the algorithm can be stopped when
this has been found. It may be used when it is not important to find solutions
better than the given. This stop criteria should be combined with at least one
of the others. If this is the only stop criteria and no solutions better than the
given can be found the algorithm will not terminate.

6.6 SA on MLP

6.6.1 The initial solution

The MLP that is the focus in the report will always have a current layout. This
layout can be used as the initial solution in SA. If no initial layout is available
the machines can be placed randomly on the factory floor in order to find an
initial layout. In this case the rearrangement price should be 0.



6.6 SA on MLP 41

6.6.2 The price of a solution

The price of a solution is calculated in the standard way (see 3.1), but in some
cases infeasible solutions are allowed. In case of an infeasible solution where
a machine overlap occurs the distance between the machines is still calculated
as the 1-norm distance between the centroids. An overlap is penalized and the
penalty calculation is described in the latter.

6.6.3 The neighboring solutions

Different methods for generating neighboring solutions has been investigated
and will be listed in this section.

6.6.3.1 Only feasible solutions

The first method for finding neighboring solutions is to pick a random machine
and moving it to a new location where it neither overlaps with any other machine
nor is placed outside the factory floor boundaries. If the factory floor is of limited
size it can be hard to spread the machines in order to get a diverse search. This
can be solved by enlarging the factory floor.

6.6.3.2 Allow infeasible solutions

This is a lot like the first, but it is changed in the way that the randomly chosen
machine is allowed to overlap any other machine. This way more solutions are
searched when the temperature is relatively high. Since a machine can be moved
to any location the chance that it will be placed in its optimal location is higher
since it does not matter if an other machine is in the way. Allowing overlap
makes it possible to expand the neighbors with two new types of change. The
first is a swap where two random machines are swapped and the second is an
orientation change of a random machine. The solution that should be used is of
course the best found solution that is feasible.

This method gives some problems with finding feasible solutions. When the
temperature gets low machines will tend to be placed in overlapping positions
because the distance between them will be smaller when they overlap, resulting
in lower material handling cost. To deal with this a penalty is added to the
solution when overlapping occur.
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To allow the heuristic to move towards feasible solutions when the temperature
get low, a penalty is added for any two machines that overlap. Moving a machine
to a location where it does not overlap will now result in a cheaper solution even
if other machines overlap.

A penalty method where the penalty is proportional with the size of the overlap
has also been tested. Now a layout that is almost feasible will get a smaller
penalty than a layout where machines overlap a lot. This has proved to be the
best method to generate neighbor solutions.

6.6.3.3 Keeping one machine at its original location

In a solution where a machine has been moved to another location than its
location in the initial layout, a rearrangement cost is added. This rearrangement
cost is usually relatively small compared to the solution cost. When the search
has been running for many iterations the machines will have a hard time finding
back to their initial locations to eliminate the rearrangement cost. The initial
location of a machine might be occupied by another machine and an overlap
penalty will be added at the same time as the rearrangement cost is removed.
If the penalty is higher than the rearrangement cost the price of the solution
is higher and it will often be rejected. The result of this is that the machines
will be placed in good positions relative to each other, but not relative to their
original locations. One solution to this problem is to keep one machine from
being rearranged. The algorithm is run as many times as there are machines,
each time with a different machine locked to its original location.

6.6.4 The initial temperature

The initial temperature is set so the number of rejected worse solutions is the
same as the number of accepted.

The initial temperature is found by running the algorithm for a number of
iterations without any temperature reduction. If the number of rejected and
accepted worse solutions is not relatively close to each other the temperature is
adjusted and the test is done again.
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6.7 Implementing SA

The implementation has been done in c++. The source code can be found on
the web1. The stop criteria has been implemented as a sliding window.

6.7.1 Calculation price of solution and penalty

When calculating the price a two dimensional array is used. This holds the
price for material handling between every pair of machines. It also contains
information on rearrangement price for every machine. When calculating the
price for a neighbor only one or two machines has moved. The information on
the moved machine(s) is cached and the new values are obtained. The distance
between the machines will only be calculated when it is actually changed and
not every time the price of the layout is needed.

6.7.2 Print functions

Print functions has been implemented in order to examine values of the variables
during runtime. Figure 6.2 shows a plot of these.

6.7.3 Parameter tuning

The longer the algorithm is allowed to run the better solutions it can find. The
temperature is reduced after every iteration and the cooling factor has been
found by running several several test with a very wide window and a varying
cooling factor. With the cooling factor set to 0.999999 the algorithm is able to
find good solutions in reasonable time. The width of the sliding window has been
found by running several tests with the found cooling factor and with a very wide
sliding window. The sliding window that will be used is 20.000.000 iterations
wide. This is larger than greatest number of iterations between improvements
in all the tests.

The other parameters are tuned to a local optimum by optimizing them one by
one until no improvement is seen. The parameters that have been tuned are:

• The probability that the neighborhood solution is a swap. Tuned to 24%

1http://www.student.dtu.dk/˜ s973381/MLP
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Figure 6.2: Different interesting solution statistics

• The probability that the neighborhood solution is an orientation change.
Tuned to 13%

• The probability that the neighborhood solution is a move. Tuned to 63%.

• The penalty for overlap. Tuned to 105 per overlapping floor unit.

The initial temperature has changed from problem to problem. It is found using
the already described method.
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Extending to the flexible
machine layout problem

The described methods can be used to solve the machine layout problem. This
is useful when the demand does not change. If the demand changes, the layout
will have to change as well. Changing the layout every time the demand changes
can be very costly depending on how expensive the rearrangement of machines
is. The best way to handle the change of demand is to create a layout covering
a number of periods with changing demand. The challenge is to figure out when
to change the layout and how to construct a layout that has to cover different
demand scenarios.

A period is a time period (day,week,month,...) where the demand does not
change. When constructing a layout that covers more than one period, the
expected material flow between the machines for each period is added in order
to find the flow that will be used in the layout.

7.1 Changing the layout in the end of a period

The change of layout should always happen when the demand changes. It will
never be more efficient to change layout in the middle of a period. If a new
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layout is used in the middle of a period, either the old or the new layout will
be better at handling the current demand or they will be equally good. If one
is better it should be used the whole period and if they are equal it will not
matter if the change is made at the end of the previous period or at the end of
the current.

7.2 Using brute force to find the right time to

change layout

When planning for a fixed number of periods a brute force method can be used
to find the right time to change layout. This is done by using an algorithm for
finding a layout in every possible scenario and using the best. If planning for
n periods there will be n layouts including the 1 period, all these will use the
original layout as the initial layout. n − 1 layouts will include the second but
not the first, but there will be two possible initial layouts. One will be if the
original layout was used in the first period and the other if the original layout
was altered in the first period. n− 2 layouts include the third, but not the first
and second. These layouts will have four different initial layouts. The number
of times the layout finding algorithm will have to be run when solving for n
periods is found using the following sum.

i=n−1∑

i=0

2i(n− i) = 2(n+1) − n− 2 (7.1)

It is possible to use the brute force method when solving for a very small number
of periods, but in general other methods will have to be used.

7.3 Using Silver-meal lot size to find the right
time to change layout

The Silver-meal lot size algorithm (SMLS) [8] is a good alternative to using
brute force. The running time of the algorithm is O(p ∗ c(n)), where p is the
number of periods and c(n) is the time needed to find a solution to a problem
of size n. Since the running time is linear with respect to the number of periods
SMLS can be used to solve problems with a high number of periods.

The algorithm works by creating a layout covering more and more periods. It
evaluates the price as cost per period and the layout with the lowest cost per
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period is used. When a minimum has been found the algorithm stops and the
layout is used. In some occasions the minimum found will not be global (See
figure 7.1). By continuing for a number of periods after the minimum has been
found the global minimum can be found in many of the cases.
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Figure 7.1: In (a) the global minimum will be found. In (b) the global minimum
will be missed

If a plan for ten periods is needed the following steps would describe how SMLS
would be used:

• A layout covering the first period will cost 260 in material handling and
machine rearrangement.

• A layout covering the first two periods will cost 245 per period in material
handling and machine rearrangement.

• A layout covering the first three periods will cost 235 per period in material
and machine rearrangement.

• A layout covering the first four period will cost 250 per period in material
handling and machine rearrangement. This is more expensive than the
previous, so the previous layout will be used.

• A layout covering the fourth layout will cost 220 in material handling and
machine rearrangement.

• A layout covering the fourth and fifth layout will cost 240 in material
handling and machine rearrangement. This is more expensive than the
previous, so the previous will be used.

• ...
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An advantage of SMLS is that the time horizon can be unknown. The example
above would be the same if we were planning for fifty periods or for an unknown
number of periods.

7.4 Limitation to the methods

When using either brute force or SMLS to find the right time to change layout
a limitation is that the future demand is not considered when finding a layout
that has to cover a period. If this is considered, a machine might be placed in
a location that is not optimal for the current layout or for the next layout, but
it will not have to be rearranged when changing the layout.
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Computational results

This section describes how the test cases have been created and evaluated. The
running time and solution quality of the different methods that have been im-
plemented is also reviewed.

8.1 Test problems

The test problems are created using random size machines. The width of the
machines is between 1 and 10 units and the height is between 1 and 7 units.
The flow between each pair of machines is randomly chosen between 0 and 20.
The machines are randomly placed on a floor 3 times the size of the machines.

A test problem from article [2], has been investigated as well.

All details of the test problems can be found on the web1.

1http://www.student.dtu.dk/˜ s973381/MLP
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8.2 Results

8.2.1 Finding the optimal SA neighborhood

The neighborhood where one machine is locked to its original location has proved
best. This can, however, be because the algorithm is run n+ 1 times where n
is the number of machines in stead of just 1 time. In order to test if this is the
case, 8 test problems has been generated and solved using this method. The
problems have also been solved by running SA 9 times with no locked machines.
The following tables shows the results when solving the 8 test problems with a
rearrangement price of 100.

Machine at locked position Lowest
0 1 2 3 4 5 6 7 none price

1 4553 4600 4685 4702 4668 4647 4543 4580 4645 4543
2 4328 4365 4365 4365 4365 4365 4365 4307 4365 4307
3 3589.5 3725.5 3725.5 3667.5 3734.5 3629.5 3786.5 3654.5 3724.5 3589.5
4 4864 4892 4931 4973 4931 4911 4925 4814 4932 4814
5 3690 3738 3753 3798 3752 3756 3747 3646 3747 3646
6 3187 3265 3284 3345 3302 3165 3257 3223 3233 3165
7 3676.5 3828.5 3804.5 3811.5 3803.5 3746.5 3682.5 3776.5 3774.5 3676.5
8 3832 4045 4041 4016 4078 4079 4042 3972 4029 3832

Machine at locked position Lowest
none none none none none none none none none price

1 4644 4505 4646 4629 4635 4590 4625 4693 4670 4505
2 4365 4365 4365 4365 4365 4365 4365 4365 4365 4365
3 3684.5 3695.5 3632.5 3739.5 3638.5 3676.5 3725.5 3743.5 3704.5 3632.5
4 4939 4889 4961 4876 4912 4897 4936 4895 4928 4876
5 3738 3742 3765 3722 3742 3742 3740 3681 3734 3681
6 3144 3303 3283 3139 3127 3190 3240 3263 3300 3127
7 3805.5 3810.5 3804.5 3738.5 3808.5 3758.5 3785.5 3793.5 3781.5 3738.5
8 3985 4018 3958 3938 4013 4016 4016 4004 3987 3938

The method where a machine is locked is on average 36.25 or 0.91% better. The
average standard deviation of the results in the other method is 33.74 or 0.85%.
The low standard deviation means that running the algorithm many times only
improves the solution marginally.

Problems with higher rearrangement price have been solved and the results can
be seen in the table below.



8.2 Results 51

Rearrangement locked no locked %
price machines machine difference

200 4098.56 4159.31 1.48%
300 3885.31 3930.06 1.15%
500 4681.81 4671.69 -0.22%
1000 4417.5 4417.5 0%

For each of the rearrangement prices, 8 test problems has been generated and
solved with the two different methods. When the rearrangement price gets high
compared to the flow, rearrangement of machines will rarely be profitable. The
price on the saved material handling will rarely be higher than the price of
rearranging a machine.

8.2.2 Comparing the ACO implementation to other im-
plementations of the same heuristic

ACO has been implemented by Corry and Kozan[2]. A test problem from their
article has been solved and the results are compared.

The problem has been solved 8 times and the results are listed below.

Price

7860
7844
7902
7860

7853.5
7859.5
7859.5
7874.5

The best value is 7844 which is 0.3% higher than the best value found by Corry
and Kozan. The average is 7831 which is 0.4% higher than the average value
found by Corry and Kozan.
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8.2.3 Running time and quality - 8 machines

Eight test problems with 8 machines has been generated and solved using both
ACO and SA. The results are displayed below. ACO was run on 4 processors so
in order to compare it with SA, which is a serial algorithm the running times of
ACO has been multiplied by 4. This is justified since the parallel implementation
is close to optimal.

Problem # Best SA ACO

1 4740.5 4838.5
2 3799 3769
3 4210 4210
4 4301.5 4293.5
5 4196.5 4183.5
6 3132 3105
7 3854 3772
8 4160.5 4159.5

The running time of ACO was 58 min and 56 sec for solving all 8 problems. SA
did this in 105 min and 6 sec. The price for solutions found by ACO are on
average 0.19% better than those found by SA.

8.2.4 Running time and quality - 12 machines

Eight test problems with 12 machines are solved using ACO and SA.

Problem # Best SA ACO

1 11362.5 11188.5
2 8436 8236
3 10142.5 10057.5
4 9877 9743
5 9648.5 9515.5
6 9425 9505
7 9098 9100
8 10007.5 9799.5

ACO (real): 42 min and 46 sec.
ACO (adjusted): 171 min and 4 sec.
SA: 157 min 56 sec.
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ACO solutions are on average 1.10% better than SA solutions.

8.2.5 Running time and quality - 25 machines

Eight test problems with 25 machines are solved using ACO and SA

Problem # Best SA ACO

1 67560 70539
2 65049 67793
3 66285.5 68365.5
4 66446.5 68174.5
5 67885 70117
6 69982.5 72537.5
7 66261 69131
8 66725 68233

ACO (real): 437 min and 17 sec.
ACO (adjusted): 1749 min and 8 sec.
SA: 276 min and 29 sec.

SA solutions are on average 3.37% better than ACO solutions.

ACO would probably be able to perform better if running with more ants and
iterations. This would however give a much higher running time, since the
running time is proportional with the number of ants and also proportional
with the number of iterations.

8.3 Results from other authors

In [2] RIP and ACO has been tested against each other. For problems with 12
machines the authors show that the quality of solutions found by ACO on aver-
age is 9.87% better than solutions found by RIP. For problems with 6 machines
this value i 21%.
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Chapter 9

Prospects for the future

The main focus on this report has been to review the theory of the methods for
solving the machine layout problem. There are other topics that are interesting.

The theory can be used on different types of machine layout problems. These
may contain machines with non-rectangular shapes. The machines can be placed
at different angles to each other. If the height of each machine was considered
the machines could be placed in different heights and even on top of each other;
a 3d-MLP.

These extensions will not require a lot af change to the theory or implementation
of ACO and SA. The running time will probably be considerably higher, but a
larger variety of problems can be solved.

Another topic is to consider real life problems. This introduces a lot of new hard
and soft constraints that have to be taken into account. It would be interesting
to see if a solution found using methods like ACO or SA is in a real factory
environment.

The flexible machine layout problem has not had much attention in this report.
The Silver Meal lot size and brute force methods described can solve the FMLP
using any method for solving the MLP. The layouts in the solutions does not take
the upcomming demand into account. An interesting approach to the FMLP is
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to use SA on the whole problem in stead of using it on parts of the problem.



Chapter 10

Conclusion

The RIP method has been described as well as its drawbacks. RIP is not very
good at solving MLP, because it does not consider the rearrangement price
when reducing the integer problem. The fact that RIP places the machines in
a hexagonal graph and does not take machine sizes into account makes it hard
for RIP to find very good solutions for the MLP.

ACO on MLP has been described and implemented with small changes to the
implementation of Corry and Kozan [2]. The implementation takes into account
that the amount of pheromone to distribute on the edges between machine nodes
should be different from the amount on the edges between machine nodes and
floor nodes. If the same amount is used, the pheromone level on edges between
machine nodes would be at maximum all the time, which would result in the
memory features of ACO not being used. The amount of pheromone on the
edges can be examined using the print functions implemented.

ACO is better than RIP at finding good solutions, but does this at the cost
of relatively high running time. However, since the implementation of ACO is
capable of running on multiple processors the running time can be reduced. The
quality of ACO is up to 12% better than RIP. This together with the fact that
ACO can run parallelized, makes ACO the recommended method to use over
RIP.
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SA on MLP has been described and implemented. Different neighborhood gen-
erating methods have been investigated. The best method has proved to be
where machine overlap is allowed, but penalized. When run multiple times the
standard deviation of the results is relatively small which implies that the result
of a problem will not be improved much by running the algorithm several times.
By locking a machine to its original location and running the algorithm a small
improvement can be gained to the solution quality. The algorithm has to be
run with all the machines locked one by one. This is due to the fact that when
a machine has been moved it can be difficult to place it at its original location
again because of other machines occupying the location. Again the improvement
is marginal compared to the running time which is many times higher.

SA cannot produce better results than ACO on small problems with 8 to 12
machines. This goes for both running time and solution quality. When the
problem contains 25 machines both the running time and solution quality of
SA exceeds ACO by far. It will probably be possible for ACO to find solutions
of higher quality by raising the number of iterations and ants, but since the
running time is proportional to both the amount of ants and the number of
iterations, this would increase the running time drastically.

Two methods of finding the right time to change the layout when solving the
FMLP has been described. A limitation to these method are that future demand
are not considered when finding solutions. A new approach to this problem has
been outlined for further investigation.



Appendix A

Results from the test
problems

Rearrangement price 100.

Machine at locked position Lowest
0 1 2 3 4 5 6 7 none price

1 4553 4600 4685 4702 4668 4647 4543 4580 4645 4543
2 4328 4365 4365 4365 4365 4365 4365 4307 4365 4307
3 3589.5 3725.5 3725.5 3667.5 3734.5 3629.5 3786.5 3654.5 3724.5 3589.5
4 4864 4892 4931 4973 4931 4911 4925 4814 4932 4814
5 3690 3738 3753 3798 3752 3756 3747 3646 3747 3646
6 3187 3265 3284 3345 3302 3165 3257 3223 3233 3165
7 3676.5 3828.5 3804.5 3811.5 3803.5 3746.5 3682.5 3776.5 3774.5 3676.5
8 3832 4045 4041 4016 4078 4079 4042 3972 4029 3832

Machine at locked position Lowest
none none none none none none none none none price

1 4644 4505 4646 4629 4635 4590 4625 4693 4670 4505
2 4365 4365 4365 4365 4365 4365 4365 4365 4365 4365
3 3684.5 3695.5 3632.5 3739.5 3638.5 3676.5 3725.5 3743.5 3704.5 3632.5
4 4939 4889 4961 4876 4912 4897 4936 4895 4928 4876
5 3738 3742 3765 3722 3742 3742 3740 3681 3734 3681
6 3144 3303 3283 3139 3127 3190 3240 3263 3300 3127
7 3805.5 3810.5 3804.5 3738.5 3808.5 3758.5 3785.5 3793.5 3781.5 3738.5
8 3985 4018 3958 3938 4013 4016 4016 4004 3987 3938
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Rearrangement price 200.

Machine at locked position Lowest
0 1 2 3 4 5 6 7 none price

1 4560.5 4532.5 4628.5 4428.5 4548.5 4450.5 4581.5 4315.5 4460.5 4315.5
2 3650.5 3792.5 4120.5 4120.5 3811.5 4120.5 3987.5 3539.5 3604.5 3539.5
3 4098.5 4620.5 4578.5 4402.5 4227.5 4130.5 4376.5 4057.5 4195.5 4057.5
4 4271 4476 4515 4467 4602 4617 4394 4302 4387 4271
5 4207.5 4459.5 4297.5 4395.5 4207.5 4368.5 4337.5 4231.5 4223.5 4207.5
6 4193 4350 4513 4346 4507 4278 4531 4278 4130 4130
7 3527 3951 4012 3574 3623 3737 3930 3742 3527 3527
8 4982.5 4991.5 5102.5 5168.5 5110.5 5062.5 5035.5 4740.5 4982.5 4740.5

Machine at locked position Lowest
none none none none none none none none none price

1 4443.5 4585.5 4409.5 4396.5 4528.5 4505.5 4476.5 4465.5 4523.5 4396.5
2 3815.5 3730.5 3860.5 4120.5 3997.5 3736.5 3824.5 4104.5 4021.5 3730.5
3 4356.5 4451.5 4200.5 4232.5 4579.5 4274.5 4452.5 4372.5 4111.5 4111.5
4 4479 4403 4495 4498 4488 4539 4397 4439 4437 4397
5 4267.5 4291.5 4249.5 4396.5 4336.5 4215.5 4266.5 4287.5 4267.5 4215.5
6 4287 4224 4155 4118 4295 4149 4120 4283 4200 4118
7 3727 3736 3650 3624 3744 3527 3625 3527 3846 3527
8 5063.5 5037.5 5038.5 4936.5 4778.5 5088.5 4987.5 4994.5 5074.5 4778.5
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Rearrangement price 300.

Machine at locked position Lowest
0 1 2 3 4 5 6 7 none price

1 4518.5 4702.5 4203.5 4498.5 4726.5 3923.5 4294.5 4459.5 4512.5 3923.5
2 3732 3904 3904 3904 3904 3904 3904 3732 3904 3732
3 3579 3569 3569 3579 3569 3569 3569 3569 3569 3569
4 5059.5 3987.5 3987.5 4054.5 4054.5 4081.5 4044.5 3987.5 4061.5 3987.5
5 3660 3420 3444 3660 3660 3660 3420 3420 3420 3420
6 5413.5 5908.5 5869.5 5824.5 5876.5 5807.5 5821.5 5616.5 5809.5 5413.5
7 2820.5 2820.5 2932.5 2820.5 2855.5 2820.5 2920.5 2820.5 2820.5 2820.5
8 4216.5 4539.5 4631.5 4385.5 4629.5 4674.5 4837.5 5166.5 4216.5 4216.5

Machine at locked position Lowest
none none none none none none none none none price

1 4364.5 3923.5 4115.5 4512.5 4590.5 4306.5 4288.5 4084.5 4257.5 3923.5
2 3904 3904 3904 3904 3904 3904 3904 3904 3904 3904
3 3569 3569 3569 3569 3569 3569 3569 3569 3569 3569
4 3987.5 3987.5 3987.5 3987.5 4044.5 4054.5 3987.5 3987.5 3987.5 3987.5
5 3420 3420 3420 3420 3420 3420 3420 3420 3420 3420
6 5665.5 5873.5 5661.5 5694.5 5831.5 5630.5 5786.5 5599.5 5714.5 5599.5
7 2820.5 2820.5 2820.5 2820.5 2820.5 2890.5 2820.5 2820.5 2820.5 2820.5
8 4216.5 4328.5 4338.5 4318.5 4319.5 4216.5 4231.5 4216.5 4349.5 4216.5
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Rearrangement price 500.

Machine at locked position Lowest
0 1 2 3 4 5 6 7 none price

1 5890 6284 6368 5980 6156 6412 6061 5941 6412 5890
2 4813 4873 4813 5109 4884 4859 4817 4813 4813 4813
3 4312.5 4502.5 4312.5 5056.5 4312.5 4312.5 4742.5 4312.5 4312.5 4312.5
4 4537 4537 4537 4537 4537 4537 4537 4537 4537 4537
5 2891 2891 2891 2891 2891 2891 2891 2891 2891 2891
6 4286 4286 4286 4286 4286 4286 4286 4286 4286 4286
7 5744.5 5619.5 5641.5 5632.5 5619.5 5736.5 5619.5 5614.5 5614.5 5614.5
8 5110.5 5110.5 5110.5 5110.5 5209.5 5110.5 5614.5 5110.5 5110.5 5110.5

Machine at locked position Lowest
none none none none none none none none none price

1 5891 5809 5989 5945 5944 6033 5842 5843 6140 5809
2 4813 4813 4813 4813 4817 4817 4834 4817 4817 4813
3 4312.5 4312.5 4312.5 4312.5 4312.5 4312.5 4312.5 4312.5 4312.5 4312.5
4 4537 4537 4537 4537 4537 4537 4537 4537 4537 4537
5 2891 2891 2891 2891 2891 2891 2891 2891 2891 2891
6 4286 4286 4286 4286 4286 4286 4286 4286 4286 4286
7 5614.5 5614.5 5641.5 5614.5 5614.5 5614.5 5653.5 5796.5 5614.5 5614.5
8 5110.5 5110.5 5727.5 5110.5 5110.5 5110.5 5110.5 5110.5 5110.5 5110.5
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Rearrangement price 1000.

Machine at locked position Lowest
0 1 2 3 4 5 6 7 none price

1 3262 3262 3262 3262 3262 3262 3262 3262 3262 3262
2 5766 5766 5766 5766 5766 5766 5766 5766 5766 5766
3 5433 5433 5433 5433 5433 5433 5433 5433 5433 5433
4 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5
5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5
6 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5
7 4632.5 4632.5 4632.5 4632.5 4666.5 4632.5 4632.5 4632.5 4632.5 4632.5
8 3452 3452 3452 3452 3452 3452 3452 3452 3452 3452

Machine at locked position Lowest
none none none none none none none none none price

1 3262 3262 3262 3262 3262 3262 3262 3262 3262 3262
2 5766 5766 5766 5766 5766 5766 5766 5766 5766 5766
3 5433 5433 5433 5433 5433 5433 5433 5433 5433 5433
4 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5 4280.5
5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5 3649.5
6 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5 4864.5
7 4632.5 4632.5 4632.5 4632.5 4632.5 4632.5 4632.5 4632.5 4632.5 4632.5
8 3452 3452 3452 3452 3452 3452 3452 3452 3452 3452
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[3] M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press, Mas-
sachusetts, 2004.

[4] M. Goetschalckx. An interactive layout heuristic based on hexagonal adja-
cency graphs. European Journal of Operational Research, 63:304–321, 1992.

[5] S.S. Heragu and A. Kusiak. Machine layout problem in flexible manufactur-
ing systems. Operations Research, 36:258–268, 1988.

[6] E.A. Silver and R. Peterson. Decision Systems for Inventory Management
and Production Planning. Wiley, New York, 1979.

[7] J.A Tompkins, J.A. White, Y.A. Bozer, E.H. Frazelle, J.M.A. Tanchoco,
and J. Trevino. Facilities Planning 2.ed. Wiley, New York, 1996.

[8] T. Yang and B.A. Peters. Flexible machine layout design for dynamic and
uncertain production environments. European Journal of Operational Re-
search, 108:49–64, 1998.

http://en.wikipedia.org/wiki/simulated_annealing

	Summary
	Resumé
	Preface
	1 Introduction
	1.1 Constraints
	1.2 The machine handling system (MHS)
	1.3 Input/Output areas on a particular machine
	1.4 The scope of the report
	1.5 Structure of the report

	2 The different techniques to solve MLP
	2.1 When to change layout
	2.2 Reduced integer problem (RIP)
	2.3 Ant colony optimization (ACO)
	2.4 Simulated Annealing (SA)

	3 The Machine Layout Problem
	3.1 Price of a layout

	4 The Reduced Integer Problem
	4.1 Using RIP on MLP
	4.2 Using the Spiral procedure to reduce the number of variables

	5 Ant colony optimization
	5.1 Ants in the real world
	5.2 The ACO meta-heuristic
	5.3 ACO on the MLP
	5.4 Implementing ACO

	6 Simulated Annealing
	6.1 The initial solution
	6.2 Neighborhood generation
	6.3 Accepting or rejecting a solution
	6.4 Cooling
	6.5 Stop criteria
	6.6 SA on MLP
	6.7 Implementing SA

	7 Extending to the flexible machine layout problem
	7.1 Changing the layout in the end of a period
	7.2 Using brute force to find the right time to change layout
	7.3 Using Silver-meal lot size to find the right time to change layout
	7.4 Limitation to the methods

	8 Computational results
	8.1 Test problems
	8.2 Results
	8.3 Results from other authors

	9 Prospects for the future
	10 Conclusion
	A Results from the test problems

