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Preface

This report documents a 30 ECTS (European Credit Transfatie8)) credits master
thesis at the image analysis group, IMM (Informatics andhdatatical Modeling),
DTU (Technical University of Denmark).

Data used in the project consists of multi-spectral imadesaind samples and of Peni-
cillium fungi. The images have 9 and 18 spectra, respegtivdhich run from ultra
blue to infra red.

The aim is to classify three speciesR#nicilliumfungi and estimate the moisture con-
tent in sand samples. For this purpose, regression methatieetduce the dimensions
of data are investigated. The dimensions must be reduceqatojgctions or exclusion
of variables, since the number of variables extracted floemulti-spectral images is
much larger than the number of observations. Furthermooelehselection methods
that reduce the dimensions and perform regression in opeasteof interest.

The general framework of the project is multivariate steiss pattern classification
and digital image analysis. It is assumed that the readea hasic knowledge of the
three areas.

Lyngby, February 2006

Line Harder Clemmensen
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Abstract

This report deals with identification of three different sjgs ofPenicilliumfungi and
estimation of moisture content in sand used to make condviiti-spectral images of
9 or 18 bands are used to analyze samples of sand and fumgcteely. The project
covers the image acquisition of the samples, the ideniibicaif Regions Of Interest
(ROIs) in the images, the feature extraction from the RO elassification or es-
timation based on the extracted features. The number airiemextracted is much
larger than the number of observations and the dimenstgnsliherefore a big issue
in the analysis of the data. Traditional multivariate, istatal methods for variable
selection, decomposition, classification, and regresaiercompared to newer meth-
ods that select variables and/or perform coefficient slagekwithin the regression.
Dummy variables are constructed to use the newer methodtafesification.

Chapter 1 is an introduction to problems of many variablesliation to the number of
observations. The idea behind methods used in this prajestilve such problems is
also described. In addition to that the chapter motivatestgective identification of

Penicilliumfungi and an estimation of moisture content in sand used teroancrete.

Finally, a problem formulation of the project is given, aslivees a disposition of the

report.

Chapter 2 gives the mathematical notation used througheuteport and briefly de-
scribes the subjects the reader is assumed to have knowdédge

Chapter 3 describes the three specie®aticillium fungi, the inoculation of fungal
isolates, and the design of the experiment.

Chapter 4 describes the sampling of sand, the referenceune@asnts of moisture
content, and the design of the experiment.

Chapter 5 describes the acquisition of the multi-speatnabes of both fungi and sand
samples.

Vii



viii

Chapter 6 introduces the methods used in this project. Téteskction describes two
methods for segmenting the fungal colonies in the imagelefungi samples. The
second section reviews the traditional multivariate,istiaal methods for regression
and classification of problems with many variables in relato the number of obser-
vations. The third section introduces the newer methode#b with these problems.
Finally, the fourth section describes additional featwoethese methods.

Chapter 7 states the results of the pre-processing. Hereeireproducibility of the
images over time, the segmentation of the fungal coloni¢iseanmages of fungi, and
the feature extraction from the ROIs of both fungi and sanages.

Chapter 8 describes and discusses the results obtaingdiagaihe fungi dataDis-
criminant Analysisand LARS-EN with dummy variables are compared for the classi
fication of the thredPenicillium species. Mahalanobidistance between speciasd
Hotelling’s T2-test detecting differences in means, are calculated. Fina#lyeral
tests are calculated determining the significance of aaiditiinformation provided by
each medium to the discrimination.

Chapter 9 describes and discusses the results obtaingaiagaithe sand datakor-
ward Selectiorof original variables and of principal components are core@éao the
Ridge regression, Lasso, and LARS-EN methods.

Chapter 10 concludes upon the results obtained. The fuergidantified with low
error rates using two to three variables on just one mediuhe distances between
species reflect the visual appearance, and all means dgféfisantly. The Discrimi-
nant Analysis is more robust and performs slightly bettanthARS-EN with dummy
variables, but LARS-EN is computationally much faster. Tiesver methods yield
lower standard deviations than the traditional for theneation of moisture content in
sand.

Chapter 11 discusses future work in relation to this project



Resumeé

Denne rapport omhandler identifikation af tre artePahicilliumsvampe og estimer-
ing af fugtindholdet i sand brugt til beton. Multispektraiieder med 9 eller 18 band
er anvendt til at analysere prgver af henholdsvis sand ®iempe. Projektet deekker
billedoptagelsen af prgverne, bestemmels®eadioner af InteresséROIS) og kon-
struktionen af features fra ROIs. Antallet af variable emgetestagrre end antallet af
observationer og dimensionaliteten er derfor et vigtignemdataanalysen. Tradi-
tionelle, multivariate, statistiske metoder til varialelektion, dekomposition, klassi-
fikation og regression sammenlignes med nyere metoderader Variabel selektion
og/eller parameter shrinkage sammen med regression. Duariagle konstrueres, sa
de nyere metoder kan anvendes til klassifikation.

Kapitel 1 er en introduktion til problemer med mange varmabforhold til antal af
observationer. Ydermere beskrvies ideen bag de metodei,dette projekt anvendes
til at Ilgse sadanne problemer. Kapitlet motiverer desudentifikation afPenicillium
svampe og estimering af fugtindhold i sand. Afslutninggyiges en problemformu-
lering og en disposition for rapporten.

Kapitel 2 giver den matematiske notation brugt i rapportgieskriver kort de emner
som leeseren antages at have kendskab til.

Kapitel 3 beskriver tre forskellige arter Benicilliumsvampe, podning af svampeiso-
later og eksperimentets design.

Kapitel 4 beskriver prgvetagning af sand, reference maugfiridhold og eksperi-
mentets design.

Kapitel 5 beskriver billedoptagelserne af multispektiailieder af bade mikrobiolo-
giske svampe og sandprgver.

Kapitel 6 introducerer metoder som benyttes i dette projéidrste afsnit beskriver



to metoder til at segmentere svampekolonier i billeder drafiiologiske svampe.
Andet afsnit opfrisker traditionelle multivariate, stitske metoder til regression og
klassifikation af problemer med mange variable i forholdotilservationer. Tredje
afsnit introducerer nyere metoder, som behandler disselgr®r, og fierde afsnit
beskriver yderligere egenskaber ved disse metoder.

Kapitel 7 beskriver resultater af preeprocesseringen. mtenugenskabelsen af billeder
over tid, segmentering af svampekolonier og konstruktidie@ures fra ROIs i bade
svampe- og sandbilleder.

Kapitel 8 beskriver og diskuterer resultaterne fra anatysaf svampedatdiskrim-
inant Analyseng Least Angle Regression - Elastic NeARS-EN) med dummyvari-
able sammenlignes til klassifikation af de Benicilliumarter. Mahalanobis afstand
mellem arter og Hotelling%™-test af forskel i middelvaerdi beregnes. Endelig udfgres
tests af signifikans af yderligere bidrag til diskriminatioa hvert medium.

Kapitel 9 beskriver og sammenligner resultaterne fra assaihye af sanddat&orward
Selectionaf originale variable og af principale komponenter samigeels med de
nyere Ridge regressions-, Lasso- og LARS-EN metoder.

Kapitel 10 konkluderer pa de opnaede resultater. De miktobiske svampe klassifi-
ceres med en lav fejlrate for to til tre variable fra kun et med Afstandene mellem
arter reflekterer den visuelle fremtoning af prgver og aliedelvaerdier er signifikant
forskellige. Diskriminant Analysesr mere robust og giver en anelse bedre resultater
end LARS-EN med dummyvariable, men LARS-EN er beregningssigehurtigere.

De nyere metoder giver lavere standardafvigelser end déitnaelle ved estimering

af fugtindhold i sandpraver.

Kapitel 11 diskuterer fremtidigt arbejde i forbindelse nuedte projekt.
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Chapter 1

Introduction

Traditional multivariate, statistical methods are adéguia situations with few vari-
ables in relation to the number of observations. Unfortelyathe same methods are
not applicable in most cases where the situation is revergedhere are more vari-
ables than observations.

This project concerns problems where the number of vasableuch larger than the
number of observations. Such problems often arise whetatligiages are analyzed.
The number of pixels and the number of features extracteddoacterize one obser-
vation is often large, the number increases if images of rspextra than the usual
RGB are examined.

Previously such problems have been solved, successfyllgpombining data com-
pression techniques, e.g. Principal Components and FAci@lysis, with a subse-
guent method of analysis such as t-tests, Discriminant ysmaletc. Furthermore,
cross-validation has proven advantegous in regard toblarselection, cf. [Conradsen
2002, [Skettrup 2003], and [Hastie, Tibshirani & Friedman 2001

Recently, methods have been suggested which integratatheamnpression and vari-
able selection in one step. These will be investigated antpeoed to the well known
methods.

Two sets of data will be examined; multi-spectral imagesamfdssamples and multi-
spectral images d®enicilliumfungi. In the first case the aim is to estimate the moisture
content of the sand samples based on the images. In the seasadhe aim is to
classify thePenicillium fungi into species. The two sets of data demand different
approaches; a continuous dependent variable to estimat@aisture content of the
sand and a nominal dependent class variable to identifyuithgi.f Consequently, the
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two situations must be handled differently. In both casesdver, the dimensions of
the feature space must be reduced, either by selecting ataflfeatures, or by using
adequate projections.

The first sections of this chapter give a motivation for idgiig Penicillium fungi
into species and for estimating the moisture content in santples. The third section
discusseshe curse of dimensionalignd hereby also motivates the use of dimension
reductive methods. Finally, the fourth section sums up thblpm formulation of this
project.

1.1 Identification of fungi

Identification of fungi is of importance for several reasdios a further phylogenetic
study, to reveal new species or isolates to use in e.g. foodealical industries, and,
recently, to substitute pesticides.

Traditionally, the identification has been performed by nseaf chemical and visual
studies of the fungi. In the last decade digital image amalyas also been utilized for
the classification, but till now it has been based on RGB irsage in [Hansen 2003].
This project will study classification by means of featuresived by image analysis
on multi-spectral images.

Since the dimension of data is increased by using multitsplemages (eighteen spec-
tra in stead of the traditional three for RGB images) it is artpnt to consider methods
which reduce the dimensionality of the feature space. Itiqudar, because the num-
ber of observations in our case is smaller than the dimerditre feature space. The
latter will be discussed further in Section 1.3.

1.2 Estimation of moisture content in sand

The sand samples considered here are used to make contietd.great importance
to know the moisture content of the sand in order to securethieaconcrete obtains
the right texture when it is mixed.

The aim of measuring the moisture content through imaging @btain inline regis-
tration in the mixing process. Hence, calculation issuesiraportant and the fewer
variables involved, the fewer calculations are necesdauythermore, there is a ten-
dency that fewer dimensions give more robust results.
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The methods presently used to measure the moisture coméefaidy uncertain. Ex-
act standard deviations are not available, as the constnuobmpanies consider this
information confident.

1.3 The curse of dimensionality

When working with data in high dimensions there are sevesalés to consider. Briefly,
these are:

Computational issues: Solutions to this problem can be increasing computational
power or reducing computational complexity of the algarith e.g. by approxi-
mations with fewer computations. This, however, is not ofanaterest in this
project, and will only be commented on briefly.

Sparse sampling in high dimensions:Sample size must grow exponentially with
the dimension of the feature space in order to preserve thpls®y density. In
particular, this is a problem if the joint probability fumm is desired. Solutions
to this can be either clustering or reduction of dimensibyallhe first men-
tioned is particularly useful if data has high probabiligngity in small regions,
the clusters, and if the density is small elsewhere. Redncf dimensionality
can be obtained either by decomposition of data or by vaisblection.

Such issues are related tothe curse of dimensionalitynd are often seen in rela-
tion to multivariate, digital images, as in [Hilger 2001f;dnradsen 20048, [Skettrup
2003], and [Windfeld 1992]. This project aims at providimgression and classifica-
tion methods to model the high dimensional data obtainedsandiltaneously, reduce
the dimensionality.

The consequences of a sparse sampling in high dimensiotisedmlowing. One, that
all observations are close the boundaries of the data s&inghprediction difficult.
Two, that in order to analyze a small percentage of data, Wéaxe to cover a large
percentage of the range of the variables, making local aralgractically impossible.
These two consequences will in the following be quantified.

Givenn uniformly distributed observations ingadimensional unit sphere centered at
origin, according to Hastte the median distance from the origin of the feature space
to the closest data point in data sets of these dimensiomgas by

11/n

dmedian(p7 n) = (1 - 5

[Hastie et al. 2001, Sec. 2.5]

e (1.1)
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As will be described later, the data sets examined in thigptaonsist of 36 observa-
tions, or from 9 to 59 observations & 36 Vn =9, ..., 59), and 3754 or 2016 features
(p = 3754V p = 2016). For the fungi, we havé,, 4., (36, 3754) = 0.999, and for the
sand samples the distances @fguian (9, 2016) = 0.999 10 d,,edian (59, 2016) = 0.998.
Consequently, the median of the distance to the nearest wdircover all but 0.1-
0.2% of the distance the boundary. Hence, the majority & gatnts is closer to the
boundary of the sample space than to any other data poiningmakediction much
more difficult. It is necessary to extrapolate from the nbghsamples rather than
interpolate to obtain predictions.

In the following we suppose that data is enclosedirdamensional hypercube. When
we want to analyze a fractiofiof the observations, which corresponds to a fracfion
of the unit volume, the expected edge length of a hypercudtesticloses that fraction
of the observations will be

e(f) =17 . (1.2)

In our case we have tha;s,(0.01) = 0.999 andesg;4(0.01) = 0.998. So, in order to
analyze 1% of data in any of the data sets we must cover mane98f& of the range
of each of the input variables. An analysis of 1% of data ismhéa be local, but a
neighborhood covering 99% of the range of the input varmbéanot be be considered
local.

1.4 Problem formulation and disposition

The aim of this project is to examine newer model selectiothous to model high
dimensional data with few observations relative to the neinab variables.

Two problems are desired solved:

() A regression problem where it is of interest to estimagenhoisture content in
sand samples used for mixing concrete.

(b) A classification problem where it is of interest to find drjextive method to
classify three fungal species of tRenicilliumgenus.

In order to obtain an inline approach for the concrete mixargl an objective method
for classifying the fungi, image analysis is used. Multespal images of samples are
acquired and features are extracted from these images.e limiges of the fungi it

is necessary to first segment the fungal colonies beforariesmaire extracted from the



1.4. PROBLEM FORMULATION AND DISPOSITION 5
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CATION
EXTRACTION
OF SPECIE
(b) Fungi

Figure 1.1: Diagrams of the flow of the data in the two probleestimation of the
moisture content in the sand samples and classificatiorediiigi samples. Squares
indicate that methods explained in Chapter 6 are used. seBigither indicate the
digitalization of the samples by imaging, or feature exicacfrom the images. The
circles are the input samples in petri dishes and outpuhageis related to the samples.
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images. The features are then used as data sets in the regrasd classification,
respectively. Flow diagrams of these processes are #iiestin Figure 1.1.

The sampling steps are explained in Chapter 3 and 4. Thalirgition of the samples
to multi-spectral images are explained in Chapter 5. Thensegation of fungi in
the images and the extraction of features from the regiomstefest in the images is
explained in Chapter 7. Results of the analyses, modelimdychassification of data
are given in Chapter 8 and 9.



Chapter 2
Reading This Report

It is assumed that the reader has a basic knowledge of the #ineas: multivariate
statistics, pattern classification, and digital image ysial The flow of data illustrated
in Section 1.4, Figure 1.1, can be helpful to keep in mind &vhglading the report.

In next section the notation used throughout this reporsisd.

2.1 Mathematical Notation

Scalars are lower case italic letters, as:
a€R

Vectors are denoted by italic lower case letters in bold, aredby default column
vectors

r = [.Tl,l’g,...,xn]T

where” indicates transposed ands used to denote the number of observations.
Matrices are denoted by italic upper case letters in bolch sis
X:[Xl,Xg,...,Xp] 5

where X ; is theith column of the matrixX', andp is used to denote the number of
variables.
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The 2-norm is notated and defined by

" 1/2
ol = (Zx?) |
=1

and the 1-norm by

n
|zl = lail,
=1

where|z;| is the absolute value af;.
The determinant of a matrix is denoted

det (X)

The covariance between two vectors is defined as
Cov (X, X;) = (X — )" (X — 1)

where the estimate of the meanis ji; = %Zzzl X}, the mean of théth variable
with X}, as thekth element in vectoX ;. The mean is also denotexi;. The covari-
ance matrix is

COV(Xl,Xl) COV(Xl,XQ) COV(Xl,Xn)
Cov (Xo, X1) Cov(Xa Xs) ... Cov(Xa X,
Cov (X) = ov ( :2 1) Cov ( :2 2) ; v ( :2 )
Cov(X,,X;) Cov(X,,Xs3) ... Cov(X,,X,)

The correlation between two vectors is defined as

Corr (X;, X ;) = Cov (X, X;)
" 7 \/COV(XZ,XZ)COV(X],XJ) 7

and the correlation matrix denoted

Corr (X))



Chapter 3
Fungi Data

3.1 Genus

The genusPenicilliumis a filamentous fungus also known as moléenicillium is
one of the most important fungal genera, as some of its spgc@duce important
drugs (e.g. penicillin and compactin) and other speciesisee in food fermentation
(e.g. white cheeses, Pamembertiblue cheeses, IPoquefortiand mold fermented
salami, Pnalgiovensg[Samson, Seifert, Kuijper, Houbraken & Frisvad 2004]. How
ever, there also exist species that deteriorate foods dret ataterials. Hence, in
order to prevent this, accurate identification is very int@or [Pitt 1979, Frisvad &
Samson 2004]. Unfortunately, identification to speciesllevthe genu®enicilliumis
very difficult because of minute differences in conidiumaqi®) colors, diffusible pig-
ments, exudates, droplets and texture [Frisvad 2006]. ébarding of these features
are rather subjective [Samson & Frisvad 1993, Christensilier & Tuthill 1994]
and objective methods are needed [Dorge, Carstensen &Er2000]. Due to the
large interest in th@enicillium genus the knowledge of the species is large and well
identified isolates exist which gives an accurate grounth tior the classification in
this project.

3.2 Species

Three species of thBenicillium genus are investigated here: gadlonicum(pol), P.
venetum(ven), and Pmelanoconidiunfmel). The three species are all in the section
Viridicata [Frisvad & Samson 2004] but belong to different series.

9
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P. melanoconidium habits grains such as wheat, rye, oat, rice, and barley. ¢{éns
most commonly found in cereals. It may produce penicillidagerrucosidin,
xanthomegnin and viomellein vioxanthin [Samson & Frisv@@3)]. It is one
of the Penicillium species that has the most pure green cadorsnassen the
genus and is of the seri®idicatum[Frisvad & Samson 2004].

P. polonicum is a common mold on dry-cured meat products. Also, it hablisat,
barley, rice, rye, oat, rice, corn, peanuts, onions, anétadyge field soil [Samson
& Frisvad 200%)]. It is able to produce verrucosidin a potent neurotoxinmfisz,
Diaz, Rodriguez, Aranda, Martin & Asensio 2000]. Furtherea may produce
penicillic acid and nephrotoxic glycopeptides. It is tygdlg the Penicillium
specie with the largest amount of blue in the conidium celomassand is of
the serieCyclopium[Frisvad & Samson 2004].

P. venetum is commonly found in soil decaying vegetation as onions anwdt bulbs
and is therefore ecologically different from the cereatfgomembers of the
Viridicata section. It is rare on foods, but is known to produce the ngxiat
Roquefortine C. [Samson & Frisvad 2051t has blue green conidien masse
and is of the serie€orymbifergFrisvad, Smedsgaard, Larsen & Samson 2004].

The striking color difference between felanoconidiunand P.polonicumis illus-
trated in [Raper & Thom 1949, page 428a] in one of the few cplotures in their
1949 monograph oRenicillium Superficially Ppolonicumand Pvenetuntould look
like they were the most closely related, but it is in fagt@onicumandP. melanoconi-
diumthat are the most closely related. Any data that can showfdbtsvould be of
interest, though, as the images used in this project maagyuce the appearance in
color this is not likely.

Furthermore, all species produce different mycotoxinsstaoff the natural products
produced by the three species examined here can be foundoenélpx B. Hence, an
objective method that can separate these three importaaiesp and allow identifica-
tion based on objective image analysis, is highly desitable

3.3 Samples

Three species of thBenicillium genus were chosen. Two with similar appearance
(P. polonicumand P.venetumand a third (Pmelanoconidiumwith visually distinct
appearance from the other two. This is done to investigaeptrformance of the
image based classification, both when the differences dio@ubbvious and when they
should not. For each specie 4 isolates were chosen thasegyire wide geographical
range. The fungal isolates were obtained from the IBT CaltQollection held at
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BioCentrum-DTU, Technical University of Denmark. The IBlimbers of the species
are listed in Table 3.1.

Isolate/Specie P.melanoconidium P.polonicum P.venetum
a IBT 3445 IBT 22439 IBT 23039
b IBT 21534  IBT 15982 IBT 21549
c IBT 3443  IBT 14320 |IBT 16215
d IBT 10031 IBT 11383 IBT 16308

Table 3.1: IBT numbers of theenicilliumisolates.

The isolates were inoculated on three different media: C¥&apeck Yeast extract
Agar), YES (Yeast Extract Sucrose Agar), and OAT (Oatmeal)agnd with three
replica on each medium. In total this resultS3inpecies x 4 isolates x 3 media x

3 replica = 108 samples. An overview of the experimental design is seen in Table
3.2.

Specie P.polonicum P.venetum P. melanoconidium
Medium/ isolate| a b (o d| a b C d| a b c d
CYA x3 x3 x3 x3| x3 x3 x3 x3| x3 x3 x3 x3
YES x3 X3 x3 x3| x3 x3 x3 x3| x3 x3 x3 x3
OAT x3 X3 x3 x3| x3 x3 x3 x3| x3 x3 x3 x3
Table 3.2: Overview of the experimental design.
3.4 Inoculation

The inoculation has been conducted at BioCentrum at thenlesHJniversity of Den-
mark. The 12 isolates have been grown beforehand in ordeothupe the necessary
spores. The isolates have been inoculated as three padintesjli.e. the aim has been
to grow the individuals in three well separated coloniese iffloculation has been per-
formed in 9cm petri dishes containing one of the three grautbstrates: YES, CYA
or OAT, also referred to as media.

First step is to scrape out spores from an isolate, remenparisterilize the scraper
each time. The scraping is illustrated in Figure 3.1. Dutimg inoculation, it is of

great importance to keep the tools sterilized as the sppread and grow easily. The
scrape is then placed in a small container with water andeshttkspread the spores
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(a) Sterilizing (b) Scraping

Figure 3.1: Small pieces of the grown mold are scraped antchpusmall containers
with water. The scraping tool is sterilized using a burner.

in the water, cf. Figure 3.2. Finally, a needle is dipped i&wWater and pricked into
the medium at three spots which will become the centers otdhenies, cf. Figure
3.3. The needle is dipped once for each isolate, and thabisgénto inoculate three
repetitions on each medium. The needle is, as the scrapeitizeid between each
isolate.

After incubation in complete darkness for 7 days at@5the cultures reach their
stationary phase and are able to produce secondary meegbolt this stage the
colonies have grown into three circular objects within tle¢ripdish and the fungal
colonies can be digitized.
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(a) Water with scrape (b) Shaking (c) Water with
before shaking scrape after shaking

Figure 3.2: The water with sample scrape is shaken to sphesspiores in the water.

Figure 3.3: The media are inoculated using a needle thatsisdipped in the water
with spores and then pricked into the medium in three spotshe three images the
inoculation is seen from different angles.



Chapter 4
Sand Data

Five types of sand with different geographical origins hagen examined in this ex-
periment. A further description of the origin of the five sagdes is listed in Table
4.1. The sand types vary in distribution of grains. Consatjyethe sand is further-
more classified by grain curves reflecting the distributiohgrains. A grain curve is
the curve that describes the amount of sand in percent thatleough a sieving as
a function of the size of the mesh in the sieve. Typically, tiesh size runs from 0O
to 32mm. There are three different grain curves: fine (F),ioradM) and large (L).
When the sand belongs to the fine grain curve the sand grassrall, and larger per-
centages of sand than the medium fall through the sievedavigh meshes. When the
sand belongs to the large grain curve the sand grains aes kmg smaller percentages
of the sand than the medium fall through the sieves with largehes.

Type Description Origin
1 hill sand Tarup Grusgrav, Nymglle Stenindustrier
2 hill material Brejning Grusgrav
3 seasand Starnholmen, RN Sten & Grus

4 dry screened hill sand  Ars, Hornum Murer- & Entreprengguning
5 dryscreened hill sand Lggstrup, Jorbomglle Grus og Samdgr

Table 4.1: Description of the five sand types. All types adntm washed sand.

Buckets of 10L with sand and water are mixed with the aim ofhésy one of eight
endeavored nominal moisture levels. Three samples of smadlnts of sand is then
taken from each bucket and placed in petri dishes. The cbofteach petri dish is then
imaged by a multi-spectral camera. The moisture contersaa@éh sample is measured
after the imaging by placing each sample in a special oveindities out the sample

14
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and measures the amount of vaporized water in relation tartieunt of dry sand.

The sampling is conducted so that:

e For sandtype 1, 3 and 5 there are three grain curves.
e For sand type 2 and 4 there is only one grain curve, the medium.

e The experiments have been conducted with up to eight diftdezels of mois-
ture content. The endeavored nominal moisture levels arel026%, 2.5%,
3.75%, 5%, 6.25%, 7.5% and 8.75%.

e Three to twelve repetitions were performed for each set crpaters.

An overview of the experimental design is seen in Table 4.2.

Type 1 2 3 4 5
Cuve | F M L|FML|/F M L|FML|F M L
000%|3 3 3/,- 3 -{3 9 3/- 3 -3 3 3

@ 1.25% (- 3 -|- 3 -|{- 3 -|- 3 -|- 3 -
1250% (3 3 3|,- 3 -3 9 3|- 3 -3 3 3
o 377%%| - 3 -|- 3 -{- 3 -]|- 3 -|- 3 -
% 5003 6 3|- 3 -3 12 3/,- 3 -|3 6 3
|/ 62%¢(- 3 -|- 3 -|- 3 -|- 3 -]- 3 -
= 750% |3 3 3|]- 3 -3 9 3|- 3 -3 3 3
8mv% |- 3 -|- 3 -\{- 3 -|- 3 -]- 3 -
TOTAL || 12 27 12{0 24 0]12 51 12|0 24 0|12 27 12

Table 4.2: Obsevations in each group. F: fine grain curve, Btliom grain curve, and
L: large grain curve.

There are 7 missing observations where the moisture cohtenhot been measured
adequately, these are listed in Table 4.3.

Type Grain Curve Moisture Level Number of NaNs

3 F 0% 3
3 F 5% 1
3 M 0% 3

Table 4.3: The seven missing observations.
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The samples with a moisture content of 0% are dried at ovetCL.ODhis gives an
abrupt change in appearance of the sample. Since this ismeatliatic situation the
samples are not included in the analyses.

To illustrate the analyzed data, the measured moistureenbfdr each of the sand
types is plotted as a function of the grain curve in Figure 4.1

Type 1, n=42 Type 2, n=21 Type 3, n=59
10 10 6 10
8
8 8 8
6 8 B .
6 § 6 0 6
4 ¢ g ¢ 4 4 o
of © ¢ 2 2 @ § ¢
0
0 0 0
1 2 3 1 2 3 1 2 3
Type 4, n=21 Type 5, n=42
10 10 ¢ Moisture %
8 8 g
6 6f ¢
4 3 Jf 3
2 8 2 ¢ Y ¢
0 0
1 2 3 1 2 3

Figure 4.1: lllustration of the moisture content obsexwmasi divided into groups for
each grain curve and sand type. For the grain curves 1=FaMe@ium, and 3=Large.
Observations of 0% moisture content are left out.

There is a rather large difference, up to 3%, between the malmnoisture content
levels and the measured moisture contents, cf. Figure 4@hérmore, the standard
deviation of the three repetitions of sand samples takan free same bucket is up to
0.3%, cf. Figure 4.2. This indicates that the sample vanais large and that it is
difficult to reach the nominal moisture contents in the btske
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Figure 4.2: Standard deviation of repetitions and meamadcs of repetitions to nom-
inal level as functions of the nominal moisture level.



Chapter 5

Image Acquisition

In this chapter the digitizing of the samples is described arconversion from the
multi-spectral bands to an RGB representation is perforriiée conversion to RGB
is made to illustrate the appearance of the samples.

5.1 The Image system

The samples have been digitized using a multi-spectratadighmera system as seen
in Figure 5.1, provided by Videometer A/S

Figure 5.1: Illustration of the camera system.

LURL http://www.videometer.com

18
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The camera system consists of an integrating sphere illatom (an Ulbricht sphere)
combined with a two step calibration procedure, which mtesia high precision and
reproducibility, based on a multi-spectral camera. Thalasf the sphere is covered
with a matte titanium paint that ensures a diffuse and homage illumination of
the sample. The illumination of the sample should be difficsavoid shadows and
reflections. Light diodes are placed inside the spherewstndited in Figure 5.2.

Light

area

Figure 5.2: Cross section of sphere illustrating the illoation.

In order to adjust the geometric and chromatic set-ups tihmecasirst calibrated. The
geometric and chromatic representations in the camera treyge over time due to
differences in temperature, humidity etc., and the calibneshould then redefine these
representations. This is done by imaging of two predefinedrohtic intensities (light
gray and dark gray) and of a predefined geometric grid. Themédmns of numerical
algorithms the images are adjusted to these conditions.

5.2 Fungi

The next step is to assure that the dynamic range is fullyogeol. This is done by
adjusting the light set-up through imaging of the lightekthe samples (the back-
ground should represent the lowest value in the dynamicefaidne images are taken
on a standard 1000 NCS sheet as background. The lid of thedtris removed to
avoid reflections during the process, and the sphere is émver avoid illumination
from the bottom of the sphere, as seen in Figure 5.3. Botlssfiehe fungi have
been imaged, as illustrated in Figure 5.4. In the imagesebttkside the lens of the
camera is reflected in the petri dish and dark shaded cirglpsaa in these images.
The information obtained from the back side could be usedidgianal information
for classification. When samples are classified visually tarmal procedure to look
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(a) Sphere & sample (b) Sphere lowered

Figure 5.3: The sphere in the process of image acquisiti@nsaimple.

at the back side as well since the color information herelevamt. However, in this
project focus has been put on the front side images.

The multi-spectral camera has constructed color inteimaiges for 18 different wave-
lengths. Hence, a multi-spectral image has 18 frames of aulensity images, each
with a resolution ob60 x 1280 pixels. For each sample this amountsl8ox 960 x
1280 ~ 2 - 107 pixels in total for the 18 frames.

The 18 wavelengths used are: 430, 450, 470, 505, 565, 5906830660, 700, 850,
870, 890, 910, 920, 940, 950, and 970nm. The spectra reprbsecolors from ultra
blue to infra red, see Table 5.1.

To represent the images in RGB the color-matching functfoore Wyszeckt, illus-

trated in Figure 5.5, have been used. The weights for R, G arfceBch spectral band
are chosen to represent the approximated area under threnecatohing functions, this
is illustrated in Figure 5.7. The weights for R, G and B ardest#o sum to one. Ap-
pendix C contains RGB images of all the samples, one of theseas in Figure 5.6.

2[Wyszecki & Stiles 1982]
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(a) Front of sample

(b) Back of sample

Figure 5.4: Imaging of front and back side of a sample.

Range (nm)

Color

Human eye

400-430
430-460
460-510
510-540
540-560
560-630
630-700
700-970

ultra violet-blue
blue

cyan

green

yellow
amber-orange
red

NIR

Visible
Visible
Visible
Visible
Visible
Visible
Visible
Not visible

Table 5.1: Description of the colors of the wavelengths. Wheelength ranges of the

colors are approximate.
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3.5

)
g | |
—b®)

25F

Tristimulus Values

-0.5} Ag=444nm c=526nm A,=645nm

460 4%0 560 55‘0 660 GéO 760 7éO 860
A (nm)
Figure 5.5: Color-matching functions of the CIE 1964 suppeatary standard colori-

metric observer in the system of real primary stimuli R(@#8n), G(526.3nm) and
B(444.4nm). The units of the primary stimuli are of unit i power.
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Mel - YES

Figure 5.6: An example of one of therRelanoconidiunmsolates on YES represented
in RGB.

3. 3.! 3.
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Figure 5.7: Weights for the 10 spectral bands in the visiued aepresented by the area
under the color-matching functions and later scaled to suomé.
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The intensity images of the 18 spectra are shown in Figure Sdie that the wave-
lengths of 470nm and 505nm (cyan) are better reflected theer atavelengths in the
visual area, i.e. the pixel values in the areas with fungdrdes are larger in these
bands. This is in accordance with the visual appearancesafdlonies, recall, that the
species have green/blue conidiamasse

430nm 450nm 470nm

&)
&

505nm 565nm

630nm 645nm

&
P2
DHOHD

700nm 850nm 870nm

&)
%)
&)

890nm 910nm 920nm

&)
&)
/%,

940nm 950nm

Figure 5.8: The 18 spectral bands of one of thenBlanoconidiunisolates on YES.
All images are displayed with same scale on the gray colomingp
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5.3 Sand

The sand samples have been imaged in the same way as the domgles, but only
nine spectral bands have been captured. The spectra are4428503, 515, 592,
612, 630, 875, and 940nm. The weights of the 6 spectra in gikbleiarea in a RGB
representation are illustrated in Figure 5.9. Examples @BRmages of the sand
samples for different sand types and grain curves are sefigime 5.10 to 5.12. In
some of the sand images the background appears in the cofRegson of Interest
(ROI) is therefore chosen to avoid including informatioorfr the background. ROl is
marked with a white square.

Tristimulus Values

400 450 500 550 600 650 700 750 800 400 450 500 550 600 650 700 750 800 400 450 500 550 600 650 700 750 800

@B (b)G (©R

Figure 5.9: Weights for the 6 spectral bands in the visua aepresented by the area
under the color-matching functions and later scaled to suomé.

type 1, grain F, 2.93% moisture type 3, grain F, 2.04% moisture type 5, grain F, 6.91% moisture

(@) Type 1 (b) Type 3 (c) Type 5

Figure 5.10: Examples of sand samples with fine grain cung@l iRmarked with a
white square.
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type 1, grain M, 9.65% moisture type 2, grain M, 5.129 moisture type 3, grain M, 2.68% moisture

s, R

(d) Type 4 (e) Type 5

Figure 5.11: Examples of sand samples with medium graineclR®I is marked with
a white square.

type 3, grain L, 2.63% moisture

AL T e

(b) Type 3 (c) Type 5

Figure 5.12: Examples of sand samples with large grain clR@ is marked with a
white square.



Chapter 6
Methods

The first section describes two segmentation methods to esgigRegions Of Inter-
est(ROIs) in the images dPenicilliumfungi. One that takes use of the geometrical
shape of the fungal colonies, and another that uses infam&bm histograms of
projections of the entire multi-spectral image.

The second section walks through the traditional regressiassification, model se-
lection, and decomposition techniques. The regressiomadetlescribed i©rdi-
nary Least SquareOLS). The classification method describe®iscriminant Anal-
ysis The model selection method describe@osward SelectionThe decomposition
method described Brincipal Component Analys{$CA). This section is meant as a
review of these methods.

The third section introduces newer methods that join resjpasand model selection

in one. The methods described here &Rélge regression_east Absolute Shrinkage
and Selection Operatditasso),Least Angle RegressidhARS), LARS - Elastic Net
(LARS-EN) andSparsePCA. The description of Ridge regression and Lasso is an
introduction to regression with constraints and the sthteeart methods: LARS and
LARS-EN. This section is meant as an introduction to thesthous.

Finally, section four provides additions to the newer tegbas, here in examines

shrinkage problems and the use of dummy variables in ordelassify via regres-
sion methods.

27
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6.1 Segmentation methods

Two methods for segmenting the fungal colonies in the imagesdescribed: A
method previously used to segment fungal colonies in imagesa newly developed
method that previously has been used to segment lesionagesof psoriasis.

6.1.1 Identification of circular colonies

The method described in this section has previously beething®orge et al. 2000]
and [Hansen 2003] to segment fungal colonies in RGB imagks.niethod assumes
that the fungi have grown into three circular colonies arzhised on information from
one spectral band.

The intensity, separating colony from petri dish, is usedatly to locate the colonies.
Hence, the intensity difference between dish and colonyhéltand chosen should
be as big as possible. First, the petri dish is found by sineplige detection from
the corners of the image along the diagonals. The edge istddtan four points, as
illustrated in Figure 6.1 (a), and a circle is fitted to therpaish. A circle with same
center as the petri dish but smaller radius is used for fudhalyses of the colonies.
The smaller radius is used to avoid light reflections neaettge of the petri dish.

(a) Identification of petri dish (b) Scans to detect fungal colonies

Figure 6.1: (a): The detected edge of the petri dish is mawkgdfour redzs. The
circle fitted to the petri dish and the circle with analyziagius are likewise plotted in
red. (b): The scan lines, from the circle of analyzing radavgards the center of the
petri dish detecting the fungal colonies, are marked in red.
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Next, scans from the analyzing circle to the center of thei pieth are performed
going counter clockwise from°Qto 360, with one scan line for each degree. The
scan is stopped when there is a change in the intensity seadésh from colony as
illustrated in Figure 6.1 (b). Local minima of the distanoanh the detected colony to
the center of the petri dish as a function of the scan angl@argified and two points
on each side of a minimum are chosen to identify the edge otdheny. The four
points for each colony are used to fit a circle to that colorhye €enter and the radius
of the circle are used as identification. This process istithted in Figure 6.2.

radius
N
wu
o

0 100 200 300 400
angle

Figure 6.2: Identification of circular colonies. Left: ThéhG&pectral band with the
circles, the centers of the fungal colonies, and the pointthe edge of the colonies
marked. Right: The distance from the detected colony to émer of the petri dish
versus the angle of the scans.

Only segments of the colonies are used to extract featuoes, fas the colonies are
known to interact chemically when they are situated clos€he Regions Of Interest
(ROIs) are illustrated in Figure 6.3.

Figure 6.3: ROIs from where the features should be extrackadangle of 135 (%w
radians) pointing away from the center of the petri dish edus
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Pros and Cons

DisadvantagesThis method assumes that the colonies are circular and hgeed

distinction in pixel value between medium and colony. Itaserthat all colonies are
exactly circular of shape. The approach only makes use oband and therefore all
available information is not exploited.

AdvantagesThe method identifies the center of the fungal colonies aisdliterefore
possible to extract features according to growth directismthe colonies grow from
the center and outwards and produce different mycotoxiogrding to the aging, this
can be useful. The aging difference can be seen from theeliifes between the light
edges of the colonies compared to the blue/green centdrs obtonies. Hence, spatial
information can be included in the features. Additionadlysegment of each colony
can be chosen as ROI according to geometric placement sattseqgh the fungi that
are almost in contact and known to be chemically interaatargbe excluded.

6.1.2 Histogram Pursuit

The Histogram Pursuit(HP) [Gomez 2005] is an algorithm striving for bi- or multi-
modality in data in order to segment interesting featuredaita. It is built on Fried-
man’s statistical approach to find interesting structuregjegtions of a multivariate
data set, th@rojection Pursuit(PP) algorithm [Friedman 1987].

Projection Pursuit finds interesting structures via lir@ajections where the projected
data differs as much as possible from the Gaussian disoibuEriedman gives four
heuristic arguments for the normal distribution being &west interesting:

e The normal distribution is totally specified by mean and cawace, and we are
seeking projections that can discover additional inforamato those captured
by the correlation structure of the data.

o All projections of a multivariate normal distribution arermally distributed.

e Most linear combinations of variables will be approximgtebrmally distributed,
as indicated by the central limit theorem; sums tend to benatly distributed.

e For fixed variance, the normal distribution has the leastrimftion (Fisher, neg-
ative entropy).

In one dimension Projection Pursuit looks for a linear camtibpn X = o Z, such



6.1. EGMENTATION METHODS 31

that the index
1< 1< ’

I(a) = ;(23 +1) |5 ; Pi(2d(a’z;) — 1) (6.1)
is maximized. This is the sample version of Friedman’s mtipa index, whereP; is
the Legendre polynomium of ordgrand®(X) is the standard normal density func-
tion. The PP method has previously proved to be a useful sopgit to classical linear
projection methods such &incipal Component Analysia finding interesting views
of multivariate images, cf. [Windfeld 1992].

Once an interesting projection has been found, the algoritioks for the next infor-
mative view by removing the structure that makes the prajagtist found interesting
and then remaximizing the projection index.

In data sets with more than two classes, or data sets with onm®e non-Gaussian
variables the first projection of PP may not be optimal, in $base that the classes
in the data set are not separated, and therefore require timammeone projection to
separate the classes. This is illustrated in the article@dudAppendix A.

The Histogram Pursuit (HP) algorithm uses the same appraad?P for projecting
the data, but only projections that separates the dataciasses are considered. The
method takes into account the assumed number of classesimalge, and maximizes
the index corresponding to the— 1 largest areas between consecutive modes in the
histogram of the projected data. This index is given by:

n—1 Tj41
I(H)=> [ Y {min(H;, min(M;, Mjy1))} — min(M;, Mj) - s () |
7j=1 1=x;

(6.2)

wherel; is the;*" local maximum located at;. nyns is the number of bins between
the j** and the(j + 1)™ maxima andH; is the frequency of thé” bin. The index is
illustrated in Figure 6.4.

In order to force the algorithm to provide only projectionghw: modes, the algorithm
gives an index of zero to all projections with a different rhenof modes.

Pros and Cons

DisadvantagesThe centers of the fungal colonies are not identified, andé&epatial
features cannot be provided. Computationally, it is slothan the method described
in Section 6.1.1.
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Figure 6.4: Region where HP calculates the index. Herex, andy = z3.

AdvantagesThe method does not use assumptions of the shape of the esldriis
is an even larger advantage if the fungi have not grown irreetlsolonies. Information
provided by all 18 bands is utilized. Structures, such a$ighéer edge of the colonies
can be segmented separately, and this might give additiofoamation in relation to
the classification.

6.2 Traditional regression and classification meth-
ods

In this section regression yrdinary Least Squareis discussed)iscriminant Anal-
ysis and the orthonormal projection methodRyrincipal Componentsire reviewed.
Additionally, the traditional variable selection methigatward Selections explained.
The projection method and the variable selection methodbeacombined with re-
gression and Discriminant Analysis to analyze a problenmedticed dimensions. In
an inline production the variable selection can be prefetoehe projection method, as
only a subset of features is required. On the other hand,rthegtion method can in-
clude more features in reduced dimensions and can thei@atain more information
which might yield better results.

6.2.1 Ordinary Least Squares

Consider th&eneral Linear Mode{GLM)
y=XB+e ,ec N(0,% . (6.3)
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TheOrdinary Least Squarg®©LS) estimates are obtained by minimizing Besidual
Sums of SquardfkSS), i.e.

Bors = argminy|ly — X85 . (6.4)
For a full rank matrixX this can be solved by use of the normal equations as
Bors = (X"X)"' X"y . (6.5)

For normally distributed and independent residuatbis is also known as thilaxi-
mum Likelihoodestimator. However, this is often not good enough for tweoea:

Prediction accuracy: The OLS estimate often suffers from having a large variance,
and therefore predicts poorly even though the estimatebssad.

Interpretation: With a large number of variables the solution can be diffitoilin-
terpret, and hence, we would like to reduce the number oaltes to a subset
characterizing only the strongest effects.

Traditionally, the latter problem is reduced usigward Selectioror Principal Com-
ponent AnalysisThe solution is often a trade off between over fitting data iaclud-
ing enough information to model data well.

6.2.2 Discriminant Analysis

This section briefly reviewBiscriminant Analysigor classifying data, if more infor-
mation is desired then see [Conradsen 20@hapt. 7], [Rencher 2002, Chapt. 8] or
[Hastie et al. 2001, Sec. 4.3].

The discrimination between two normally distributed p@iginsr; <, N(u4, 3) and
7o < N(p2,X) is performed using the Bayes solution, i.e. minimizing tkpezted
losses, and with equal loss the discriminant function betwtee two classes is given

by

1 1
51— 5= X 5y — py) — 5.“{2_1#1 + 5”52_1112 =0 . (6.6)
If s; — s, > 0 we classify the observation as belongingripand otherwise as,. The
w; andX are replaced by estimates based on the training data asmng@xen 2002
Sec. 7.1.3]. A pooled estimate of thgthin group sums of squares deviatioratrix
W, described in the next section, is used as an estimate ofgperdion matrix.
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For more than two classes we can expand the two class sitfabim before so that
classi has a discriminant scoring function of

1
si= X%y, — 5#?2_1%' : (6.7)

We then classify an observation to be from the class with igledst score. As in the
two class situation, the classes are assumed to be nornistiijpdted and with equal
dispersion.

The classification by means of Discriminant Analysis can &égsmed with the SAS
programpr oc di scrim

Wilks’ Lambda

Consider the following thresums of squares deviationeasures for stochastic in-
dependent variableX ;; € N,(u;,%),i = 1,...,candj = 1,...,n; of ¢ classes with
n1, ..., n. Observations, respectively. The group means are denotéd by., X .. The
between group sums of squares deviation matrix is defined as

B = ini()‘(i - X)X, -xX)" | (6.8)

the within group sums of squares deviation matrix as

(& N4

W= > (X;-X)(X;—X)" (6.9)

i=1 j=1

and the total sums of squares deviation matrix as

T3S X, - X)X - X (6.10)

i=1 j=1

It is given that we havd” = B + W. To discriminate between the classes, we want
the within group deviation to be small compared to that betwgroups. One way of
accomplishing this is to maximize

_ de(w)
- de(T)

(6.11)

which is also called WilksA. The test of the hypothesis

Hy:py=...=p, VvS. Hy:3ijli#j(p #py) (6.12)
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is given byA < U(p,c — 1,n — ¢), see further in [Conradsen 202X hapt. 7]. We
consider this test useful to see if the classes statisticath be discriminated. In the
SAS programgr oc di scri mandpr oc st epdi sc thistestis calculated. Wilk’s
A-test can be further extended to two-sided or three-sidatysis of variance. In this
case we have

_ det(Q,)
det(Q: + Q2) '’

where the null-hypothesis is that the effect@# is insignificant and; denotes the
error effect.c — 1 is substituted with the degrees of freedom for the examiffedte
Q->, andn — c substituted with the degrees of freedom of the error eff€qt, cf.
[Conradsen 2002 Chapt. 6] and [Rencher 2002, Chapt. 6].

(6.13)

6.2.3 Forward Selection

Forward Selectiorstarts by evaluating a model containing only a constant. Wa t
choose the variable with the largest partial correlatioth\the response variable. We
find the F-value for the coefficient of this variable beingrsiigantly different from
zero at am-level. If it is, we include it in the model and start over, bthwe stop.
The null hypothesis that the coefficient is zero is equividiehe null hypothesis that
the partial correlation coefficient between the dependantble and the independent
variable, conditioned on all the independent variables matuded in the modeis
zero, cf. [Conradsen 2062Chapt. 4]. A flow diagram of the variable selection is
seen in Figure 6.5.

Forward Selection of variables to Discriminant Analysissi8Vilk's A-test described
in Section 6.2.2 instead of a test of the partial correlation

Backward Selectionses as starting point the full model, i.e. the model incigdill
the effects that are desired examined. When the number iables is larger than the
number of observations Backward Selection is thereforadetjuate since the system
of the full model is underdetermined.
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Start with
a constant
as model

r

Choose variable with
largest partial
correlation with
dependent variable

'

Is the partial correlatior YES

significantly different _| Include the variable
from zero? in the model

NOl

STOP

Figure 6.5: Flow diagram of Forward Selection. The part@telation is the partial
correlation between the the dependent variable and thep@mdkent variable chosen,
conditioned on all the independent variables not incluaetie model.
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6.2.4 Principal Component Analysis

Principal Component Analysi®®CA) decomposes data by means of Eigen Value
DecompositioffEVD) of the dispersion matrix. It transforms data by pradgdinear
combinations of the original variables. Each linear comabon is composed in order
to describe as much of the variance in data as possible. Batandardized and the
correlation matrix considered for reasons described lat#ris section. The EVD of
the dispersion matrix = X X is defined as

> =P'AP . (6.14)

WhereA is a diagonal matrix consisting of the eigenvalueXafrdered in decreasing
order ; > Ay > ... > ),), and P is an orthonormal matrix with the corresponding
eigenvectors. The directions or loadings of the principahponents are the eigenvec-
torsp,. The principal components are the projections of the datta thve directions of
the principal components, i.&h principal component (PC) is given by

yi=p X . (6.15)

The amount of variance explained by thdirst principal components s, cf. [Conradsen
2002, Sec. 8.1],

M+ .o+ A

6.16
A+t A (6.16)

Choosing then first principal components reduces the dimensions of the skatt but

it has the disadvantage that each principle component (meersion) is described
using all of the original variables. In an inline productias for example mixing
of concrete, time is an issue and it is an advantage to cédcaafew variables as
possible.

PCA can also be done via ti&ngular Value Decompositiqi®VD) of the data matrix
X. We have the SVD of the data

X=UDV"T |, (6.17)

whereU andV are orthonormal and) is a diagonal matrix of the singular values, cf.
[Hansen 1998, Sec. 2.1.1]. Remembering the symmetBy, dfom (6.14) and (6.17)
we haveX” X = (UDVTT(UDV') = VD?*VT = PAP'. U are the PCs
of unit length, and the columns &f are the corresponding loadings of the principal
components, cf. [Zou, Hastie & Tibshirani 2a}4 The variance of théth PC isD?,
theith diagonal element if?.

The SVD is used theoretically in Section 6.3.5 and the sexgudlues are calculated
for the data sets to see if the data matrices have a numeachk) r.e. there is a
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gap in the spectrum of the singular values, as describedangeh 1998, Chapter 3].
Furthermore, if the singular values decay gradually to zerth no particular gap in
the spectrum, the problem is likely to ileposed[Hansen 1998, Chapter 2]. These
features cause us to expect that it is difficult to select acterumber of features to
include in the solutions and that it is necessary to regzgatie solution since the
system of linear equations is ill conditioned.

The Principal Component Analysis can be performed on batlectivariance as well as
the correlation matrix. Typically, the correlation matispreferred as all variables are
weighted equally because they are transformed to have eguahce. In this project
the correlation matrix is used.

6.2.5 Cross-Validation

To avoid over fitting in regression and supervised classifingproblems, as those con-
sidered in this project, cross-validation (CV) is a usetudlt cf. [Conradsen 200,
[Skettrup 2003], [Hastie et al. 2001], and [Duda, Hart & 8t2001].

Simple validation is when the dataset is randomly split imto: A training set and a
validation or test set. The parameter adjustment for thritrg set is stopped when
the error of the validation set reaches a minimum.

In k-fold cross-validation the dataset is split ikt@qually sized parts, each containing
approximately; observations. For théth part of the data, a model is fitted to the
remainingk — 1 parts, and the prediction error on théh part is calculated. The
parameters for the model are chosen where the mean predectior of thek parts is
minimal. The case where = n is known adeave-one-outross-validation.

With & = n, CV is approximately unbiased for the true prediction erbort the vari-
ance might be high if the training sets are very similar to each other. With lower
values of% the prediction error has lower variance, but bias could behlpm.

Hence, for a dataset of few observations, or at least fewlairabservations, leave-
one-out CV would be sufficient. As example, for the fungi datavhich have three
repetitions of each isolate it seems reasonable to alsoiegarower value of.
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6.3 State of the art methods

Reconsider the problems with OLS:

Prediction accuracy: The OLS estimate often suffers from having a large variance,
although it is unbiased. By sacrificing some bias to redueevdriance one
might obtain a better prediction accuracy. This can be dgne.dp. coefficient
shrinkage or by forcing some of the coefficients to zero. fimeht shrinkage is
also useful whemp > n since the coefficients tend to become very large in this
case. This issue is also known as over fitting.

Interpretation: With a large number of variables the solution can be diffitoilin-
terpret, and hence, we would like to reduce the number oaltes to a subset
characterizing only the strongest effects.

The traditional methods combine variable selection or dgmasition of data with OLS
in order to obtain fewer dimensions. The methods introdueeklis section join vari-
able selection and/or coefficient shrinkage with regresaralysis.

First Ridge and Lasso regression are described as an istroddo regression with

constraints and to the state of the art methods introdudexhing. These two meth-

ods perform coefficient shrinkage. The newer methods parbmth regression analy-
sis and variable reduction and/or shrinkage. These metredsARS and LARS-EN.

LARS performs regression with variable selection and LARS$-combines the vari-
able selection of LARS with coefficient shrinkage by use ofhbithe Ridge and the
Lasso constraints. Finally, Sparse PCA is introduced. Notaables are included in
the sparse principal components, hence, solving the timswing issue of calculat-
ing all variables in an inline production.

6.3.1 Ridge Regression

Ridge regression was introduced by Héen 1970 to achieve better prediction ac-
curacy than OLS while sacrificing some bias. The smalleravere of the prediction
error is obtained by shrinking the coefficients towards a®rsolving the regulariza-
tion problem

Brisge = argmin,{|ly — X B3} st. B3 <t . (6.18)
[Hoerl & Kennard 1970]
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This is equivalent to solving

Briage = argmin{ly — X85 + N85} (6.19)

in the sense that there is a one to one relation betwaad \. That is, for anyt > 0
there exists a € [0, co[ such that the two problems have the same solution, and vice
versa. The latter can be solved by the normal equations

Brigge = (XTX + M) ' X"y . (6.20)

The degrees of freedom for the linear Ridge smoofer (XX + \I)"' X" X is
df (S) = tr(S) which in most cases is close to the number of variables [Zastid &
Tibshirani 2004).

Hence, the Ridge shrinkage does not solve the problem otmeglthe dimensionality
of the feature space. The following three sections desaonigods which additionally
set some of the coefficients to zero or perform variable selec

6.3.2 Lasso

The Least Absolute Shrinkage and Selection Oper@tasso) method was proposed
by Tibshiranf in 1996, and it minimizes the RSS subject to the 1-norm of thedfe
cients being less than a constant. Using the 1-norm in thsti@nt instead of, as in
Ridge regression, the 2-norm, causes the method to produgmber of coefficients
that are exactly zero.

Problem solved

The Lasso estimate of the coefficieptss defined as

BLasso = argming{|ly — XB[3} st.[|BlL <t . (6.21)

The constraints of Ridge and Lasso are graphically illtsttdor two dimensions in
Figure 6.6. The OLS solution to a linear problem is also mavikethe figure, and
the contours of the quadratic functiofd — 3)" X7 X (8 — 3) are sketched. The
Ridge and Lasso solutions are obtained where the contostgdirch the respective
constraint. For the Lasso method this is likely to occur atear a corner (as illustrated
in the figure) where one of the coefficients is zero, while far Ridge regression it is
not very likely that one of the coefficients is zero.

2[Tibshirani 1996]
3This function equals the RSS criterion plus a constant, hactontours are centered at the OLS
solution [Tibshirani 1996].
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Figure 6.6: lllustration of the estimation with Ridggd(|3 < 1) and Lasso|(3]|; < 1).
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Algorithm

Instead of solving (6.21) the algorithm solves the equiviapeoblent

BLasso = argmlrb{Hy - Xﬁ”% + )\||/6||1} . (622)

The problems in (6.21) and (6.22) are equivalent in the s#rador anyt > 0 there
exists a\ € [0, oo such that the two problems have the same solution, and visa,ve
cf. [Leng, Lin & Wahba 2004]. Consequently, introducing tlegularization parame-
ter \ instead oft. A threshold sets coefficients of size less than® to zero, and the
method is, hence, operating on an active set of coefficiertg. coefficients are up-
dated using a second derivative method, as described il [[G&ifray & Wright 1981,
Chapt. 5]. The following update is used for the coefficientd ,'g ,. WhereH is
the second derivative anglthe first derivative of the object function in (6.22). The
algorithm is stopped once the change in the coefficientsstigani0—°. The Matlab
implementation used here is implemented by PhD Henrik @g&liMM, DTU.

Choice of Parameter

The choice of parametex, can be chosen by cross-validation, as described in Section
6.2.5. CV has proved useful in selecting the shrinkage patam for both Ridge
regression and Lasso in [Fu 1998]. A suitable choice has fevwero parameters, but
not so few that the prediction errors become too large.

Limitations

A limitation to Lasso, in particular fgy > n, is that it selects at mostvariables before
it saturates, cf. [Zou & Hastie 2005] and [Tibshirani 1998{irthermore, the solution
is not well defined unless the bound on the 1-norm of the caoeffis is smaller than a
certain value.

Advantages

The effective degrees of freedpmhich is an informative measurement of the model
complexity described in [Hastie & Tibshirani 1990], for thasso as a function of
corresponds to the number of active parameters, cf. [Zoli @084a]. That is, the
global trend of the effective degrees of freedom is monaiaty decreasing, implying
that the dimensions of the problem can be reduced using Lasso

4[Tibshirani 1996]
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6.3.3 LARS

The Least Angle Regressi@tARS) model selection algorithm suggested in [Efron,
Hastie, Johnstore & Tibshirani 2003] is computationalipgier than Lasso or For-
ward Selection. LARS provides an alternative way of inahgdnonzero coefficients
to the regression problem. As in Forward Selection, the otkettarts with all coeffi-
cients equal to zero and proceed by including one nonzefticieat at each iteration
till all coefficients are nonzero and the OLS solution is resat It is like Forward
Selection an iterative method.

The algorithm can be modified to either calculate all possitd#sso solutions, or all
possible Forward Selection solutions. The latter is the cedy for an idealized For-
ward Selection where the step size goes to zero, cf. [Efral.&003]. Since the
algorithm yields all Lasso or Forward Selection solutiomspectively, the stopping
criterion is of great importance.

Algorithm

LARS finds the predictor most correlated with the resporaieed a step in this di-
rection until the correlation is equal to another predictioen it takes the equiangular
direction between the predictors of equal correlatithre (east angle direction An
example with 2 independent variables is illustrated in Feghi7.

It is assumed that
Zyizo : Z;%:(] , and fojzl for j=1,2,...p, (6.23)
1=0 1=0 =0

so thatX” X = Corn(X). Andy is centered so that a constant term should be redun-
dant.

Equiangular direction
The equiangular vector for a set of observatidnis given by

Ups = XA’LUA (624)
where
wy = AA(X£XA)_11A and AA = (1£(X£XA1A)_1)_% , (625)

wherel, is a vector ofA ones. The equiangular vector if multiplied £ 4, i.e.
a = X% u,, yields angles between the columnsao&ind the columns oX 4 that are
90 degrees. Furthermore the vectoy is of unit length.
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Figure 6.7: lllustration of LARS iterations in the case wihndependent variables
[Efron et al. 2003].y,, is the projection ofy into the space spanned by andx..
The initial guess igty = 0. The residual vectoy,, — po has greater correlation with
x5 thanxy, hence, the next LARS estimateis = po + 7122, Where~; is chosen
such thaty,, — pq bisects the angle between andz, (the equiangular direction
u2) hence making the correlations betwagy andu,, andy,, andz; equal. Then
2 = p1+72u2, Where in the case with two independent variables: ||y, — 12,

leaving s = yp,-
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Length of step in the equiangular direction

The length of the step taken in this direction is exactly siheth a new variable has the
same correlation with the response, as the ones in the adivef variablesA, and
the variables of equal variance becomes active. The lerighiestep is given by

—min {C—Cj C+Cj
7= jed AA—CLJ"AA—FCLJ'

b (6.26)

the minimum distance for one of the inactive variables toobee active when pro-
gressing in directiom 4. a; is the;* value ina andc; is thej** value in the vector of
current correlationg = X (y — u,), Wherep , is the current LARS estimate. is
the maximum current correlation, i.€. = max; c;.

Iterative update
The updating of the LARS estimate is then:

Ba, =Ha+ U4 (6.27)

Lasso and Forward Selection

Modifications of this algorithm gives the Lasso and Forwagte&tion solutions, these
modifications are given in [Efron et al. 2003]. The Lasso rfiodiion is invoked when

the sign of a non-zero parameter does not agree with thaedafutrent correlation, as
they must be of same sign to be a Lasso solution. The paramében removed from

the active set and excluded from the calculations of theasmuilar direction. For

more details see [Zou & Hastie 2005, Sec. 3.1]. The Matladempntation used is
made by PhD student Karl Skoglund, IMM, DTU.

Stopping Criterion

As before CV can be used to find appropriate choices of thdaggation parameters
and the number of iterations. The algorithm yields all LA&Ssowvard Selection/LARS
solutions and one stopping criterion is therefore the nurobieerations. The number
of iterations can be chosen from CV or from a restriction o& tamber of desired
variables. CV based on RS%(), the RSS as a function of the number of iterations,
can be performed over the different criteria to find a goodtsmh.

6.3.4 LARS-EN

The Elastic NeLARS (LARS-EN) uses two constraints, both the Ridge and thesb
constraints. The Lasso chooses at mosfariables before it sets all coefficients to
nonzero. Since we are interested in variable selectiomttyht be limiting, and there-
fore LARS-EN is considered. Furthermore, groups of vagaldan enter at the same
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time with the LARS-EN algorithm, unlike previously mentethmethods. LARS-EN
performs the variable selection of the LARS algorithm withsko modification and
the shrinkage of Ridge.

Problem solved

The naive elastic net estimator is defined by Zas

B = argmin{[ly — XB[3 + M\ 18Il + AlIBl3} - (6.28)

Choosing)\; = 0 yields Ridge solutions, and likewise choosikg= 0 yields Lasso

solutions. Leta = Alﬁfh, then, according to Z8éu solving (6.28) is equivalent to

solving the optimization problem

B:argmirb{Hy—XﬁH% st. (1—a)||B]i+a|B|5 <t forsomet . (6.29)

The function(1 — «)||3||; + «||3||3 is called the elastic net penalty and it is illustrated
together with the Ridge and Lasso penalties in Figure 6.8.

1.5¢
1-
0.5
N
[ca B
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-05
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_1_
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-15 : : :
15 -1 05 0 05 1 15 2

Figure 6.8: lllustration of the estimation with Ridged(|3 < 1), Lasso (3], < 1)
and LARS-EN (1 — a)||8|: + «||B|? < 1 with a = 0.5).

5[Zou & Hastie 2005]
6[Zou & Hastie 2005]
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Algorithm

Zou and Hastiésays that we can transform the naive elastic net problenaimamuiv-
alent Lasso problem on the augmented data

X* = (14 M) 12 [ V%Ip} Lyt = {(’)J } . (6.30)

p

The normal equations, yielding the OLS solution, to thisraagted problem are

(=) [ [ )7 = o=l ] (2]
VIt N/ | VR, Vo, VI | Ve, 0,
— (XX +0IT1,)3 = X'y . (6.31)

—_

We see thabﬁfi* is the Ridge regression estimate with paramaterHence, per-
forming Lasso on this augmented problem yields an elastisaiation. Consequently,
we can with advantage use the LARS algorithm with the Lassdification to find the
Lasso solution to this augmented problem. Summing up, tive eéastic net estimator
is a two-stage procedure: For a fixagthe Ridge regression estimator is found and
then a Lasso-type shrinkage is performed through LARS.

However, the naive elastic net does not perform satisfaatoless it is very close to
either Lasso or Ridge regression. This is because a douldararof shrinkage will
occur. Therefore, the naive elastic net solution is scaded, using a scaling with
1+ X\, the variable selection property is preserved and the darbtaunt of shrinkage
is avoided. Furthermore, minimax optimality is obtainedh&i the Ridge regression
is combined with Lasso, the direct shrinkag;é;2 is not needed and is removed by
rescaling. It is unnecessary because the Lasso shrinkangeolsothe variance. We
will come back to this in Section 6.4.5.

Finally, since the problem is augmented, then, in partiowt@enp > n the computa-
tions are slowed down. Therefore, the inversion of the maYrﬁXA (the correlation
of the active independent variables, cf. the LARS algorijtisan with advantage be
done by an up or down dating of the Cholesky factorizatioXdf X 4 from the pre-
vious step.

’[Zou & Hastie 2005, Lemma 1]
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Choice of parameters

The algorithm uses the LARS implementation with the Lassdiffeation, and hence
we have the parametep to adjust, but also the number of iterations for the LARS
algorithm can be used. The largey, the more weight is put on the Ridge constraint
and the number of active variables increases. The Lassdraomnss weighted by the
number of iterations. Few iterations correspond to a highevaf \;, and vice versa.
The number of iterations can also be used to ensure a low nushbetive variables
comparable to the procedure in Forward Selection. Crokdaten on RSS,, ite),

the RSS as a function of, and the number of iterations, is used to choose good
regularization parameters.

6.3.5 Sparse Principal Components

The idea behind sparse principal components is to produiceijpal components with
sparse loadings. The sparseness reduces the number ef\ari@bles which e.g. is
desirable in an inline production. The method was introducg¢Zou et al. 2008] and
used the elastic net (LARS-EN) to perform a regression optimeipal components in
order to obtain the sparseness. In [Zou et al. 2D@# algorithm for producing sparse
principal components is stated, but it is also mentioned, ligwuse of the following
theorem, to perform a two-stage exploratory analysis taialsparse PCs.

Theorem B Vi, denoteY; = U, D, (D; is thez’:th diagonal element itD). Y, is
thei-th principal componentvA > 0, suppose th@p,,,. is the Ridge estimates given
by:

Brisge = argming {|Y: — X85 + AIB[3} - (6.32)

Letd = Iﬂﬂ% thenv = V;, whereX = U DV is the SVD ofX.
Ridge 2

8[Zou et al. 2004]
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Proof UsingX?X = VD?VT andV?V = I, we have

XTX 4+ M) XY,

BRidge (
(VD*VT £ ) XT(XV)
(
(V

V(D> + VIAXIV) VD IXTXV,
(D* + AV XTXV,
= VD + \I)'VIXTXV,
= V(D*+ \I)"'VI'VD*V'V,
V(D? +\I)'D*V'V,
D;
= Vim . (6.33)
O

Only theith diagonal element contributes in the last derivation duthé orthonor-
mality of V. From (6.33) we see that the Ridge estimates differ from tiirecp
pal directionsV; only by a constant, hence, normalizing the estimates walldyex-
actly the prlnC|paI directions and therefore title approximated principal component

U, = XV,isgiven as aresult o, = Hﬁl\z
The Ridge estimates do not give sparse solutions and there®RS-EN is used.
The Ridge penalty, though, should be kept to ensure reaani&tn of the principal
components.

In this project only an exploratory analysis is considetezhce, first the PCA is per-
formed and then the LARS-EN is used to find sparse approxamsti

The adjusted total variance of the Sparse PCs which takeottount the correlations
among the Sparse P8, can be calculated by use of a QR decompositibr- QR,
whereQ is orthonormal andR is upper triangular. The adjusted varianc&hfis R?

the jth diagonal element squared, cf. [Zou et al. 20&ec. 3.4].

6.4 Additions

This section examines additional features of the utilizedhods than those described
so far.

The first five sections examine the shrinkage effect of LaBsdge regression and
LARS-EN on the residuals. During the experiments residuétls trends were ob-
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served as if a constant term is missing in the model. Howetes,cannot be the
case because the response variable is centered. The trerelgwparticular observed
when early stopping was used in the LARS-EN algorithm. Thdue to the coefficient
shrinkage and can likewise be observed for Ridge and Lasso.

In the sixth section, regression with dummy variables agddgent variables is exam-
ined and the relation to Discriminant Analysis investigiate

6.4.1 Shrinkage in Lasso

A simple regression example with one independent variabtemnstructed
yi=0bx;+¢ , i=1,...n |, (6.34)

wheree; € N(0, %) with o = 1073, For a simulation witm = 1000, the residuals and
the true observation versus the estimated values obtaioertfie Lasso regression are
seen in Figure 6.9. Notice, how the residuals show a more amd pronounced linear
departure from the usuahndom noisepattern, hereafter referred to as trends, as the
shrinkage increases, i.&2.increases. Consequently, the effect of the coefficienhkhri
age is underestimation. Recall, the issue of predictionraoy which can be solved
by coefficient shrinkage by sacrificing some bias. The urdenation is exactly a
trade off bias for smaller variance with respect to preditaccuracy.

6.4.2 Shrinkage in Ridge

As seen for Lasso, shrinkage with Ridge results in undenasgion. A two-dimensional
data set with = 1000 is constructed, where

yi = 0.5x1; — 0.629; +¢; (6.35)

wheree; € N(0,0%) with o = 1072 andX,, = 012 012 . The measured obser-

vations and the residuals as functions of the estimatedlastrated in Figure 6.10.

The residuals begin to show trends)as increased. Again, the underestimation is a
trade off bias for smaller variance with respect to preditaccuracy.
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6.4.3 Early stopping in LARS-EN

A small example with a synthetic data set is given here. The skt has 9 variables
and 50 observationsX 5y.9. Note, that the following experiments show the same
trends when the number of observations is larger, for exarB@00, and therefore a
general tendency is described. It is created from normadlyiduted data transformed
to be correlated gradually with the response variablel he correlation matrix of the
response and regression variables is

Corr(ly, X]) =

1.00 -0.81 -0.69 -047 -0.39 —-0.15 020 0.02 0.14 0.10
-0.81 1.00 054 016 028 -0.21 -0.18 —-0.13 0.19 0.12
-0.69 054 1.00 -0.04 0.16 -0.03 —-0.07 0.04 —-0.18 —0.01
-047 0.16 —-0.04 1.00 —-0.06 0.17 0.15 —-0.06 —-0.23 —-0.15
-039 028 016 -0.06 1.00 0.10 -088 0.02 —-0.05 0.13
-0.15 -0.21 -0.03 0.17 0.10 1.00 —-0.09 —-0.02 —-0.44 —-0.42

020 -0.18 -0.07 0.15 —-0.88 -0.09 1.00 —-0.03 —-0.08 —0.23

0.02 -0.13 0.04 -0.06 0.02 —-0.02 —-0.03 1.00 —0.48 —-0.57

0.14 019 -0.18 -0.23 —-0.05 —-044 -0.08 —-048 1.00 0.27

0.10 0.12 -0.01 -0.15 0.13 —-042 —-0.23 —-0.57 0.27 1.00

Other correlation matrices were also examined, e.g. forr@lation matrix of

p 1
wherep € [0.60, 0.99], the results are similar. Again, this indicates that thelézties
illustrated in the following are general.

The simulated observations; the true observations, araastd using LARS-EN. The
LARS-EN algorithm is run with\ = 10~% and the results at each iteration are illus-
trated in Figure 6.12, and 6.13. In Figure 6.11 the singuddues of the data matrix,
X, are plotted.

It is seen that early stopping in this case produces trentieeinesiduals. The trends
are caused by underestimation. Underestimation was agsoveigh Lasso, and since
the number of iterations correspond to the weight of the dasmstraint, this was
expected. Furthermore, the singular values indicate kwafitst 6 variables included
are of greater importance as their singular values areratigis is verified by the
residual plots.
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Figure 6.11: Singular values of the test example with 9 Wem
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Figure 6.12: True observations versus estimated valugsabfeach LARS-EN itera-
tion. The red line markg = .
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Figure 6.13: Residuals for LARS-EN on the test example wittafables at each
LARS-EN iteration.

6.4.4 Regularizing with X in LARS-EN

Regularizing with\ in LARS-EN produces trends in the residuals as when earfy sto
ping is used for regularization. The same synthetic dates seted as in Section 6.4.3.

LARS-EN performs in accordance with the theory it selectstiriable with the great-
est absolute correlation with the response variable at gaction. The residuals and
true observations versus the estimates are illustratedifferent values of\ in Figure
6.14 and 6.15. The algorithm is iterated till all possibleiafles are entered for the
given\. Note, that the trends in the residuals are opposite of thbserved with early
stopping. Hence, overestimation is the result of regulagizvith A in LARS-EN. On
the face of it this was not expected sinkés the weight put on the Ridge constraint,
and Ridge regression tends to underestimate. However tgeRistimates of LARS-
EN require—— shrinkage to control the variance, but it is not performechise the

. 1+A2 . . .
Lasso shrinkage controls the variance, as we shall see mettiesection.
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Figure 6.15: Residuals for LARS-EN on the te6st example @iiariables. There are

9 active variables in all cases.
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6.4.5 Early stopping and X regularization

The data from Section 6.4.3 is used. Here, both early stgpgin regularization with

A is considered. For each value bfthe number of iterations is chosen based on the
Mean Squared ErroMSE. The residuals and true observations versus the esSmat
for different values of\ are illustrated in Figure 6.16 and 6.17.

True

12 ite, 9 vars 12 ite, 9 vars 10 ite, 9 vars
0.4
0
-04

A =1.0e-04 A =1.0e-02 A =1.0e-01

10 ite, 9 vars 7 ite, 6 vars 6 ite, 5 vars

A =2.0e-01

6 ite, 5 vars

A =1.0e+00

6 ite, 5 vars

A =1.0e+02

6 ite, 5 vars

-0.4

-0.4 0 0.4 -0.4 0 0.4 -0.4 0 0.4
A =1.0e+04 A = 1.0e+64 A =1.0e+300

Figure 6.16: True versus estimated valueg ot he red line markg = .

Using both early stopping andregularization gives in this case no trends in the resid-
uals. The two trends cancel out. Recall, that the trends wepesite for the early
stopping and the regularization (cf. Figure 6.13 and 6.15).

However, it may not always be possible to choose the numbgem@tions and a
such that the training data is not over fitted. Hence, trendke residuals caused by
over- or underestimation may be observed for the LARS-ENrétlgm.
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Figure 6.17: Residuals for LARS-EN on the test example wiiaiables.
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6.4.6 Classification via regression

The results obtained by Discriminant Analysis should begarable to those obtained
by multivariate linear regression, cf. [StatSoft 2005].isTis examined in the follow-

ing.

Two classes

In the Discriminant Analysis, each class is held againsiotiers separately. Using
a dummy variable as dependent variable is straight forwatte two class situation,
as we will see in the following. The dummy variable takes om ¥hluesl for class

a and—1 for classb. The classification is done by classifying all observatinitt a
predicted value greater than zero, as belonging to elaasd values smaller than zero
to classh. This is similar to what is done with the score functions ie Biscriminant
Analysis. Recall, that for two scoring functions and s, we have the classification
rule: if s, — s, > 0 then the observation belongs to classf. Section 6.2.2.

Comparison of Discriminant Analysis and regression witimduy variables
In the following, the resemblance between regression wittummy variable and
Bayesian Discriminant Analysis is illustrated.

Consider, the two class situation withindependent variables,, ..., x,. Let X =
[x1...x,], p be the mean of all observations gagandp, the means for the classes
andb, respectively. The dependent variable is a dummy variabtg minus ones and
n, ones centered to have zero mean and is dengted

We have

11 ... Tip 1
X'y = | : 4

np
Tp1r -« Tpn

=1
np

1 1
e ZiEa L1 = 5 Zz‘eb L1i

1 L ,
P D ica Tpi n > ich Tpi

= f, By (6.36)
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and the OLS parameter estimates are then

0 = (XTX)'XTy
(XTX) "M (1o — i) (6.37)

Recall, that the discriminating function for the GLM is givey

y::vTé = 0«
2" (XTX) (i, — ) = 0 . (6.38)

In the Bayesian Discriminant Analysis the discriminatingdtion is given by

I A —1

L. N N N N
Sa — Sb = i(ua + l'l'b)TE (/J’b - /J’a) + mTE (l’l'a - /J’b) =0 . (639)

There is a resemblance between (6.38) and (6.39). Thearlbgitweers: and X X

is not one to one. However, X is standardized both are estimates of the dispersion
matrix. In the Discriminant Analysis the within sums of sgggmdeviation matrix is
utilized. Furthermore, the Bayesian discriminating fumetincludes a constant, but
this is not necessary #f is centered.

Example

Figure 6.18 illustrates a small example of a data set withdlasses and two observa-
tions. Note that variable; can discriminate the two classes entirely while variable
cannot. The discriminant function from running the disériamt procedure in SAS is

Figure 6.18: Data set with two classes and two variables.
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Sq¢ = —0.754+ 1.5x1 + 1.529
sp = —30.75+ 13.521 + 1.5x5
Sq— 8y, = 30— 122, (6.40)

Hence, we have the classification ruies, — s, > 0 then class:.. Choosing a dummy
variabley equal tol for classa and —1 for classb and runningpr oc gl min SAS
should then yield a regression function equivalent to thai6i40). The regression
function becomes

y = 1.1765 — 0.47059z, (6.41)

Multiplying by a factor25.5 this gives numerically the same function as in (6.40), and
hence the classification rule$:s, — s, > 0 then class: andif y > 0 then class: are
equivalent.

More than two classes

The question is how to construnct the dummy variables in #s& ©f more than two
classes. Three options seem direct:

1 For the regression with dummy variables to resemble Disoant Analysis
each class should be compared to the others separatelye base with three
classes, one might consider dummy variables of ones, zanosminus ones.
For three classes, the dummy variables could look like this

1 -1 0
0 or 1 or -1 . (6.42)
-1 0 1

However, this includes a priori information about how thassles are related. In
practice, this did not turn out to be reasonable.

2 One might consider to hold one class against all otheretaas one. For three
classes, the dummy variables could look like this

1 -1 -1
-1 1 -1 . (6.43)
-1 -1 1

90— 5, >0 y>0
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For the example in Figure 6.19, the class in the middle, nthvkiéh triangles
cannot be distinguished from the other two if they are loakedn as one class.
However, in practice these dummy variables perform weld are therefore
used in this project.

e To consider only two classes at a time. This way the numbeegifessions
performed increases drastically with the number of classes

Figure 6.19: Data set with three classes and two variables.

Option 2 is the one considered in this proejct and by choogiagight classification
rule the disadvantage of this option is decreased. Whearmftis used one can choose
between two classification rule options:

a To classify an observation to the class it is closest todasethe estimated
values for all the dummy variables. This option makes thesifcation of the
middle class in Figure 6.19 possible.

b To classify an observation belonging to a class only if ibbgs to it in the two
class situation, and if it does not belong to any class, iflagsto a class of
unclassified observations.

In this project the observations are classified in accorglavith a, but an example of
option b will be given in Chapter 8.

6.5 Summing up

Two methods to segment the fungi from the images have besemed. One based
on information from one spectral band that assumes the foagg grown into cir-
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cular colonies and therefore can extract spatial inforomatand one that exploits the
information provided by all 18 spectral bands but withouwttsad information included.

The traditional OLS regression suffers from predictionuaacy due to over fitting

in the case wherg > n (the number of variables is much larger than the number of
observations). With many variables included, OLS alsodacterpretability. Discrim-
inant Analysis suffers from the same issues as OLS whenn. To solve these issues
Forward Selection or PCA can be performed preliminary teicedhe dimensions.

The Ridge and Lasso regression reduce the variance of thepoa error by adding
a constraint to the minimization of the RSS. Furthermore Lthsso constraint reduces
the dimensions. LARS reduces the dimensionality by vagialelection, and can be
modified to compute Lasso solutions computationally fagtan the original Lasso.
The LARS-EN model selection method combines the variahi@kfge of Ridge and
the variable selection from LARS with Lasso modification. nde, LARS-EN per-
forms both regression and variable selection as well ash@shrinkage in one step.

The sparseness of these methods can be used to constrget gpacipal components
where not all variables are included for each principal congmt, i.e. both a projection
of data and variable reduction is performed.

The shrinkage can cause the estimates to be under- or aweated, but can, nonethe-
less, be necessary in order not to over fit.

It is shown that Discriminant Analysis and regression witimany variables as depen-
dent variables are closely related, and utilization of taeer model selection methods
with use of dummy variables is proposed.



Chapter 7

Pre-processing

This chapter describes the results of the pre-processaigses of the images in order
to extract features to use for estimation or classificatibhe first section illustrates
the reproducibility of the images over time. The secondigagliustrates the results
obtained from the segmentation of the fungal colonies. dHewing sections describe
the extracted features. Five data sets are constructedtfrerfungi images and two
data sets from the sand images.

7.1 Reproducibility

Reproducibility of the images means that if the same imageedpiired at different

times the results should be comparable. Previously, thgewnt has been tested
over a time period of seven hours, cf. Appendix A. To verifgpdé results under
the circumstances of this experiment, the reproducibdityhe images over time is
investigated using the 1000 NCS standard sheet chosenkgrband. The mean and
standard deviation of sections of the background are platt€igure 7.1 as a function
of the image number. The images were taken over approxiynatelhours.

There is practically no variation in the values of the baockad for any of the 18
spectra. Hence, the accuracy and the reproducibility ofrtfages obtained with the
equipment are satisfactory.

63
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Figure 7.1: The mean and the standard deviation of the 1008 s@et background
in the images of fungi.

7.2 Segmentation of fungi

In this section the two segmentation methods for segmetiti@golonies in the im-
ages of fungi are validated. In the first part the results efitlentification of circular
colonies are illustrated. In the second part the segmentegsults obtained by use of
Histogram Pursuit are illustrated.

7.2.1 Identification of circular colonies

To illustrate the method, two examples from the images arergin Figure 7.2. One,
where the method performs well, and one where it performslypoblowever, in the
case of poor identification, the identified centers are ctosthe true centers of the
colonies, and therefore the ROIs only include fungi, thehodtwould in this case still
work. Additional problems have arisen in the cases wherethenies have grown
close to the edge of the petri dish. Such an example is ifitestrin Figure 7.3. The
analyzer radius if of great importance, in particular whies ¢olonies are close to the
edge of the petri dish. In Figure 7.3 two different analyzelirhave been used. When
a large analyzer radius is used, two of the colonies cannadédified because the
edge of the petri dish creates light reflections that the otkthterprets as the light
edge of the colonies. When a smaller analyzer radius is ohdke colony that is
close to the edge cannot be identified because the edge rschaded in the analysis.

In the cases where the identification fails, a manual ideatifbn of the centers and
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Figure 7.2: Two examples of identification of circular caks Left: The 6th spectral
band with the circles, the centers of the colonies, and thetpon the edge of the
colonies marked. Right: The distance from the detectedngolo the center of the
petri dish versus the angle of the scans.
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Figure 7.3: One example of identification of circular coeswith two different ana-
lyzer radii. Left: The 6th spectral band with the circles tenters of the colonies, and
the points on the edge of the colonies marked. Right: Thawltst from the detected
colony to the center of the petri dish versus the angle of thes
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radii of the colonies were used. On the YES medium, arourfiblitthe identifications
were performed manually. For the other media the methodpedd better.
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7.2.2 Histogram Pursuit (HP)

Here, the HP algorithfis used to segment the fungal colonies from the medium and
the background. The first step is to segment the backgrohedyetri dish, and the
fungal colonies into three classes. The next step is to ex@sach of the three classes
and then repetitively examine each of the subclasses @atéim further classes until

a subclass no longer can be split in two or more.

The interest is to segment the colonies from the backgroamnedl as the petri dish,
and if possible extract information of differences withiretcolonies. This is done in
order to extract features to be used in a further classificadf the individuals.

The subclasses obtained differ depending on the appeadérioe individuals. The
results are also illustrated in the article added in AppeAdiln the following subsec-
tion examples of the masks from each of the 9 groups of the 3anaedl the 3 species
are illustrated.

Three examples of the subclasses obtained from the HP tgodre illustrated in
Figure 7.4, for more examples see Appendix A. The coloniesvall separated from
both petri dish and background. Furthermore, the lightgresdand centers of the
colonies can be separated. The latter might be useful diecdifferent species differ
in appearance at the edge of the colonies.

The masks for the three individuals on the YES medium in Feagu® are illustrated
in Figure 7.5. The mask for the second repetition of isoladé®l melanoconidiunon
YES is constructed using the projection obtained for th¢ fepetition of same. This
is done because the classes cannot be split such that thesedigfected separately.
This results in the poorest mask obtained, illustrated gufé 7.6.

Examples on the OAT medium are illustrated in Figure 7.7. Flpolonicumon OAT

is segmented easily in all cases except one. The method doéadhthe edge of the
third replica of isolate d. Even though an adequate prajads found automatically,
the threshold is not. This is illustrated in Figure 7.8 whitie histogram of the found
projection is illustrated, as well as a manually chosensttoéd, and the edge obtained
hereby.

Examples of masks on the CYA medium are illustrated in Figuée The isolates of
the three species on CYA are segmented well in all cases.

Summing up, the fungi are well separated from the media foisalates. Further-
more, the method could separate the lighter edges from thkerdzenters of the fungal

[Gomez 2005]
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Figure 7.4: Example of segmentation of the three species®YES medium. First
column illustrates RGB representations of the multi skatnages. Second column
illustrates the first segmentation into three classes. Thd tolumn illustrates the
final segmentation.
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Figure 7.5: Masks for three of the individuals on YES.
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Figure 7.6: Mask of isolate d of melanoconidiunon YES.



70 CHAPTER 7. PRE-PROCESSING

(a) Mel OAT a (b) Ven OAT a (c) Pol OAT a

Figure 7.7: Masks for three of the individuals on OAT.
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Figure 7.8: Manually chosen threshold and the edge obtdiaegby. The segmented
edge is red. The medium it is segmented from is light blue hede¢maining classes
are dark blue. In this case the first identified fungi were sapd into two classes:
The middle of the medium and the colonies.

(a) MelCYA b (b) Ven CYA C (c) PolCYA Db

Figure 7.9: Masks for three of the individuals.
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colonies.

7.3 Fungi features from HP

The segmentations obtained from HP are utilized, where @l$fhe centers and the
edges of the colonies as one mask. The features extractadi®ROls are: The 1st,
5th, 10th, 30th, 50th, 70th, 90th, 95th, and 99th percentilee mean, the standard
deviation, and the maximal intensity. The features areaetd both for the original
spectra, the difference of the spectra, and the pair wisgugts of the spectra. Some
of the features give zero for all samples and are therefamgiarded. In total there
are 3754 features.

7.4 Fungi features of fungi and edge separate

In this data set the centers of the colonies and the edge @iolbnies are regarded
as separate masks. For the centers of the colonies the satueefe as the ones de-
scribed in Section 7.3, are extracted. The features ertitdot the edges are: The 1st,
10th, 50th, 90th, and 99th percentiles, the mean, the stanlgxiation, and maximal
intensity. In total there are 6219 features.

7.5 Fungi features of 10 visual bands represent-
ing RGB

This data set consists of the three linear combination ofghevisual spectra used to
represent R, G and B, as illustrated in Section 5.2. The ceated the edges of the
colonies are treated as one mask, and the features are tkeasdire ones in Section
7.3. In total there are 101 features.



72 CHAPTER 7. PRE-PROCESSING

7.6 Fungi features of the three bands closest to
RGB

This data set consists of the three spectral bands closestG@nd B. That is: 645nm,
505nm, and 450nm. The centers and the edges of the coloriggated as one mask,
and the features are the same as in Section 7.3. In totalahed3 features.

7.7 Spatial fungi features

This data set consits of features extracted from the ROIstiitkdl in Section 7.2.1.

The ROIs are subdivided into six sub areas, geoemtricapigrseed by 0.1, 0.3, 0.5,
0.7, and 0.9 times the radius of the colony. Since the fungl@nges grow from the

center and outwards, the subareas reflect the age of theycoldre sub areas are
illustrated in Figure 7.10. The features extracted fromheaub area are: The mean,
the standard deviation, the maximum intensity, and the3Dgh, 50th, 70th, 90th, and
99th percentiles. Each of the spectral bands are used, basadifference images and
pair wise products of the images of all spectral bands. kd tbere are 17496 features.

Figure 7.10: lllustration of the six sub areas of ROIs in thentification of circular
colonies.
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7.8 Sand features 1

For each image the features are extracted from histograthe &0l in the 18 spectra.
The features are: The mean, the standard deviation, thbthst, Oth, 50th, 90th, and
99th percentiles, and the maximum intensity in each spextas well as the mean of
the maximal intensities. The same features are extraateddifference and pair wise
products of the 18 spectra. For some of the pair wise proadithe spectra the higher
percentiles are zero for all observations, and these fesmfre disregarded, as they do
not provide additional information to the classification.tbtal there are 667 features
for each sample.

7.9 Sand features 2

The 1st, 5th, 10th, 30th, 50th, 70th, 90th, 95th, and 99tbgriles are evaluated of the
original spectra, the logarithm of the spectra, the difiees between the spectra, the
pair wise products of the spectra, the pair wise ratios betviee spectra, the opening,
and the closing of the standardized image. Furthermorée spaces are constructed
by filtering each spectral band with a Gaussian lowpass filitr standard deviations
0,1, 2,5,10, 15, 20, 25, and 30. The scale spaces are itedtraFigure 7.11. Note,
the large difference between the scale spaces on the medulitarge grain curve.

(a) Medium grain curve (b) Large grain curve

Figure 7.11: lllustration of scale spaces for medium angd@rain curve of sand type
3. From upper left corner: standardized image of 1st spdudrad, scale space image
with standard deviations 5, 10, and 15.
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The standard deviation, mean, kurtosis, and skewness sttile spaces and the dif-
ferences between the scale spaces are calculated. Addliteaiures are: The mean
and standard deviation of the gradient of the size fractibnd.9, 0.8, 0.6, 0.4, and
0.2 of the scale space images, constructed by nearest oeigitdrpolation. There are
2016 features in total.



Chapter 8

Results Fungi

This chapter describes the results obtained for the furigi. dehe first section exam-
ines the ill posedness of the problems through the singalaeg of the data matrices.
The second section illustrates the results obtained wathttonal Discriminant Analy-
sis. The third section lists the results obtained using LARSwith dummy variables.
The fourth section describes an analysis of variance onxperignent; testing which
of the effects are significantly different from zero. Fiyathe fifth section examines
the significance of the additional information provided bgluding information from
an extra medium.

If nothing else is mentioned each medium is considered agglgr leaving 36 obser-
vations in three equally sized classes.

In Discriminant Analysis and analysis of variance, the obsgons are assumed to
be normally distributed. For most of the groups and the erathvariables, tests of
normality* are accepted at a 10% level of significance. Furthermorearnihbyses are

considered robust to small non-compliances.

8.1 Singular values

The singular values can be used as an indication of whetheskdegm is ill or well
posed. The singular values of the féulata sets of features for the fungi samples on

Tests of nonnormality conducted were:  Shapiro-Wilk and rk@jorov-Smirnov, cf.
[NIST/SEMATECH 2006], both calculated in SAS.
°The data sets of spatial features is not included begaiss®o large.

75
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YES are illustrated in Figure 8.1. It is seen that there is@igahe singular values
between number 36 and 37. This reveals a numerical rank of@6gsponding to

the number of observations. Furthermore, the first singedre is large compared
to the second, leaving a small gap between the first and sesingdlar values. It is

therefore expected that one dimension can explain a langeopthe variance in the

data, and that at least 36 variables should be enough tadmafuthe analyses. The
same tendencies are illustrated for the data on OAT and CiyAmpendix E, Figure

E.land E.2.
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Figure 8.1: Plot of singular values for the fungi data setsy@$s. From upper left
corner: Features from edges and centers of the coloniethexgedges and centers
separated, linear combinations of the visual bands to septeRGB and the three
bands closest to RGB.

In the following, if nothing else is mentioned, the data dedlbspectra with the edges
and centers of the colonies together is used. The reasdmgasillustrated in Section
8.3.



8.2. DISCRIMINANT ANALYSIS 77

8.2 Discriminant Analysis

Performing Discriminant Analysis requires a subset ofalalgs or principal compo-
nents in order not to over fit training data. Linear discriarihfunctions are used for
the classification. Recall, that the linear discriminamtdiions assume homogeneity
of variance, i.e. that the dispersion of the classes arel.efbs assumption is tested
with Levene’s test of homogenettyOnly the data set with fungi and edge as one mask
is examined here. If nothing else is mentioned the resuttéram the data on YES.

With Forward Selection based on Wilk/s-tests of the original variables only two
variables are needed to classify all observations coyredth leave-one-out cross-
validation. These variables are the first two variables inld8.1. With 2-fold cross-
validation, i.e. one training set of eighteen observatiamsl one test set of eighteen
observations, DA2 is chosen for both sets, but DAL is sulistitby DA3 for one of
the sets, cf. Table 8.1. Levene’s test of equal varianceassdb level of significance
accepted for the two combinations of variables.

Var Image Parameter Bands (nm)
DAl Difference 99th percentile cyan & amber (505&590)

DA2 Difference 30th percentile ultra blue & red (430&645)
DA3 Difference 5th percentile ultra blue & NIR (430&870)

Table 8.1: The three variables selected according to Wik the Discriminant
Analysis on the YES medium.

Figure 8.2 illustrates scatter plots of the three selectthbles. Ppolonicumhas
larger differences between cyan and amber thareRetumand P.melanoconidium

P. melanoconidiunias larger absolute differences between ultra blue ancheedR.
polonicumand Pvenetum P.veneturmhas smaller absolute differences between ultra
blue and NIR(870nm) than Polonicumand P.melanoconidium

When only one variable is selected for each validation, stke P.venetunobserva-
tions are misclassified asmelanoconidiun17% of all observations).

Discriminant Analysis combined with PCA requires ten PCoider to obtain no
misclassifications.

Performing Discriminant Analysis on the data on CYA and OAg tesults are not as
good as on YES. On CYA there are two misclassifications whewaeables are se-

3Levene’s test is used instead of Bartlett’s test of equatityariance since it is less sensitive to
departures from normality, cf. [NIST/SEMATECH 2006].
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Figure 8.2: Scatter plots of DA1 and DA3 versus DA2. Greenmeé&lanoconidium
blue: P.polonicum and red: Pvenetum

lected and leave-one-out cross-validation used. On OAetissone misclassification
when ten variables are selected and leave-one-out crddst@n used.

8.3 LARS-EN with dummy variables

The LARS-EN method with dummy variables is used to identify three species in
this section. Both leave-one-out, 6-fold, and 2-fold CV adlvas different\s and
numbers of iterations have been tested for each of the theellamFurthermore, the
different data sets are compared on the YES medium.

The test and train results are illustrated in Figure 8.4 abdf@& the YES medium.
The results are satisfactory. The YES medium is best in thees¢hat when this
medium is used, fewer features are needed in order to obtamisclassifications.
Only two features for each dummy variable (in total six vialés) are necessary in that
situation for both leave-one-out and 6-fold CV. If only oraiable is used to regress
each dummy variable, i.e. three variables in total, thereate is 3%, or only one
misclassification. The three selected variables are listddble 8.2. Note, that only
five of the spectral bands are included: Ultra blue, cyan,eaambd, and NIR(870nm).
Note, that EN1=DA2, EN2=DA3, and EN3=DA1. The values of tlziables for
the three species are illustrated in Figure 8.3. It is seah EN1 discriminates P.
melanoconidiunwith respect to the two other species, EN2 discriminategiRetum
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and EN3 discriminates polonicum

Var Specie Image Parameter Bands (nm)

EN1 Mel Difference 30th percentile ultra blue & red (430&645
EN2 Ven Difference 10th percentile ultra blue & NIR (430&870
EN3 Pol Difference 99th percentile cyan & amber (505&590)

Table 8.2: The variables selected by LARS-EN for the YES medwith leave-
one-out CV and maximal one feature for each validation. pdescribes which
of the three species is discriminated from the remaininglHDA2, EN3=DA1 and
EN3=DA3.

~
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Figure 8.3: Plots of the three variables selected by LARS-EN1, EN2 and EN3.
Green: Pmelanoconidiumblue: P.polonicum and red: Pvenetum

Classification with 2-fold cross-validation was also coctéd, i.e. the data was split
in two sets. Including just one variable all observations loa classified correctly, but

it depends on how data is split. The error rate might be higgn@und nine misclas-
sifications or 25%). The results for two different partifiogs of data are illustrated
in Appendix E, Figure E.3. In general, therRelanoconidiunspecie is not a problem
to classify even if an isolate is not represented in bothspaira partitioning. The P.
polonicumand P.venetunspecies are more delicate. For the different partitionings
different sets of variables are selected, i.e. LARS-EN wlitimmy variables is very
sensitive to the training data.

The observations have been classified belonging to thestlokess. Classifying the
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Figure 8.4: Misclassifications for leave-one-out CV on YE&dmm.
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observations as either belonging to a class, or being wifitaf gives a higher error
rate. In this case, five variables are needed to classifyjbakvations correctly.

The OAT and CYA media require more features to obtain the samue rates as the
ones obtained on YES. With nine variables they yield two to foisclassifications (6-
11%). Onthe OAT and CYA media the results of LARS-EN are tHated in Appendix

E, Figure E.4to E.7.

Comparing the results on the YES medium with those obtaingdusing information
from three spectral bands; the ones closest to R, G and Birdiies that multi-spectral
images are an advantage. For the three bands: 645, 505 antch4&fur variables
are required to obtain no misclassifications for both leawe-out and 6-fold CV. The
results are illustrated in Figure E.8 and E.9 in Appendix E.

Similar results are obtained if three images representinG Bnd B, representations
which are linear combinations of the ten visual spectratisa®nly three variables are
needed to obtain low error rates (2-4 misclassificationsbt%), and if six variables
are used there are no misclassifications. However, for thieeetata set only five
spectral bands have been utilized. The results are ilkestia Figure E.10 and E.11
in Appendix E.

Separating the edges and the centers of the colonies giveoaddl features, but it
does not improve the classification. Three variables araired) to classify all the
observations correctly. The results are illustrated iuFéd=.12 and E.13 in Appendix
E.

Finally, the spatial features, obtained from identificatad circular colonies, result in
two misclassifications (6%) when two variables are selectbd results are illustrated
in Figure E.14 in Appendix E.

8.4 Three-sided analysis of variance

Considering an analysis of variance in this experimentgthee four factors: Medium

(M), specie (S), isolate (1), and repetition (R). Similaafrses are described in [Conradsen

20024, sec. 5.4] and [Rencher 2002, sec. 6.6.2].

Specie with respect to medium and isolate with respect taumedre cross classifica-
tions where as specie, medium, and isolate with respecpgdit®n, and specie with

4Option b in Section 6.4.6.
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respect to isolate are hierarchical classifications. That i

S x M S
I x M

Uuuuu
=viiev =y

S
1
M

The factors medium and specie are deterministic and theteféaused by these are
denoted with lower case letters. The repetition factor melcem and the effect caused
by this factor is therefore denoted with an upper case ldttean be argued whether
the isolate factor is indeed deterministic or stochastis.tlfe isolates are chosen to
represent a large geographic region and can be reprodueadcould be regarded

deterministic. On the other hand, if another laboratorywwasproduce the experiment
the isolates might not be the same and the factor could theegaeded as stochastic.

Two models are investigated: A deterministic model wheodaig is deterministic,
and a mixed model where isolate is stochastic.

The models are

Xklju = u+mg+ S +msg + i(s)j(l) + mi(s)kj(l) + R(msz’),,(klj) (82)
and

Xkljy = U + my + S + msg; + I(S)j(l) + mI(s)kj(l) + R(ms[)l,(klj) 3 (83)
where

k 1,...,3 (medium)

[ = 1,...,3 (specie)

i = 1,...,4 (isolate within specie)

v = 1,...,3 (repetition within medium, specie and isolate)

Note, that the interaction between the stochastic isolfeteand the deterministic
medium effect in Model (8.3) is a stochastic term.

8.4.1 Univariate analysis of variance

The Sums of Squares (SS) for the factors are calculated byftise formulas in Table
D.1 in Appendix D.2 and the results are listed in Table 8.3dioe of the variables
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| Variaton]| SS | f| SSf |
M 8.69 - 10! 2| 4.34-10"
S 5.48 - 10! 2| 2.75-10!
MS 6.23 - 10! 4| 1.56- 10
I(S) 1.36 - 10! 9| 1.51-10°

MI(S) 2.19-10' | 18| 1.22-10°
R(MSI) | 1.26-10'| 72| 1.75-107¢
Total 2.52-10%? | 107 | 2.36-10°

Table 8.3: ANOVA for the 99th percentile of the differencéveeen 4th and 6th spectra
of the data set with fungi and edge in one, DA1.

selected in the Discriminant Analysis, DAL. For the otheralgles selected in the
Discriminant Analysis, and the first two PCs, the resultsgven in Appendix E,
Table E.1 to E.4.

Tests of the following null-hypotheses are conducted: Tiatariance of the stochas-
tic terms are zero, and that each of the other effects amgnifisiant. In Appendix D.2,
Table D.2 and D.3 the expected values of the SS of each effeatiell as the error
effect to test against, are listed for the two models. Theotto test against is the one
with the same expected SS except for the variance of thedteffect. For example if
M is to be tested against R(MSI) the test size becog@es%.
r(Msn/frRvsT

The tests corresponding to Model (8.2) are listed in Tabllea®d in Appendix E,
Table E.5 to E.8. The tests corresponding to Model (8.3)iated in Table 8.5 and in

| Hy | Test Size | F-fractile |
m, =0, k=123 AL — 248 | F(2,72)p99 =4.91
s1=0,1=1,2,3 21500 — 157 | F(2,72).99 =4.91
msw =0, k=1,2,3,1=1,2,3 L5010 — 89.0 | F(4,72)099 =3.59
i(s);y =0, j=1,2,34,1=1,23| 2210 =863 | F(9,72)999 =2.66
mi(s k() = 0, k= 1,2, 3,
j=1,2,3,4,1=1,2,3 2200 — 6,97 | F(18,72)999=2.20

Table 8.4: Tests based on Model (8.2) for the 99th perceuttilee difference between
4th and 6th spectra of the dataset with fungi and edge in oAg&, D
Appendix E, Table E.9 to E.12.

First, Model (8.2) is examined where the isolate effect iedginistic. The results
are summarized in Table 8.6. The null-hypotheses that weatathstinguish between
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| Hy | Test Size | F-fractile |
m, =0, k=1,2,3 L3I0 = 35.7 | F(2,18)0.99 =6.01
s5=01=1,2,3 215100 = 18.2 | F(2,9)099 =8.02
msy =0, k=1,2,31=1,23] 2610 — 128 | F(4,18)59 =4.57
07, =0 LoMIOT =124 | F(9,18)067 =1.24
02,11 =0 L2000 — 6,97 | F(18,72)999=2.20

Table 8.5: Tests based on Model (8.3) for the 99th perceuttilee difference between
4th and 6th spectra of the dataset with fungi and edge in oAg, D

media, species and isolates and their interactions arejatited at a 3% level of sig-
nificance.

H, Nariable | DAL(EN3) DA2(EN1) DA3(EN2)] PC1  PC2 |

my, = 0 R(1%) R(1%) R(1%) | R(1%) R(1%)
s1=0 R(1%) R(1%) R(1%) | R(1%) R(1%)
msy = 0 R(1%) R(1%) R(1%) | R(1%) R(2%)
i(s);0 =0 R(1%) R(1%) R(1%) | R(1%) R(1%)
mi(s)o =0 | R(1%) R(1%) R(1%) | R(1%) R(3%)

Table 8.6: Summing up the tests based on Model (8.2). A inelidie null-hypothesis
is accepted and R rejected at a 5% level of significance. krplaeses is given the level
of significance where the acceptance or rejection still fiolthe variables DA1 and
DA2 are the ones selected in Discriminant Analysis, EN1, BN@ EN3 are the first
three variables selected with LARS-EN, and PC1 and PC2 arér#t two principal
components.

When Model(8.3) is examined where the isolate effect ishsstic we still at a 3%
level of significance reject the null-hypotheses relatati¢ceffects of media and inter-
actions between media and isolates for all variables reglarthe results are summed
up in Table 8.7. For all variables the two following null-tothesis is accepted: That
there is no significant difference between isolates.sicpnifi effect of the repetitions.

For the EN2 variable the null-hypothesis of no differenceneen species is accepted.
Figure 8.3 thus also shows that for this variable two of thecegs cannot be distin-
guished. For all remaining variables the null-hypothesisejected. For the PCs and
EN2 the hypothesis of no interaction effect between medathsgecies is accepted.
For DAL and DA2, on the other hand, this null-hypothesisrigrsily rejected.

Those results seem promising for the analyses made wheardesired to distinguish
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[ H, Variable] DAL(EN3) DA2(EN1) DA3(EN2)] PCl PC2 |

my, = 0 R(1%) R(1%) R(3%) | R(1%) R(1%)
s1=0 R(1%) R(1%)  A(l7%) | R(1%) R(1%)
msp = 0 R(1%) R(1%)  A(13%) | A(16%) A(17%)
07y =0 A(33%)  A(69%)  A(52%) | A(25%) A(23%)
0215 = 0 R(1%) R(1%) R(1%) | R(1%) R(3%)

Table 8.7: Summing up the tests based on Model (8.3). A inelidie null-hypothesis
is accepted and R rejected at a 5% level of significance. krplaeses is given the level
of significance where the acceptance or rejection still fiolthe variables DA1 and
DAZ2 are the ones selected in Discriminant Analysis, EN1, BN@ EN3 are the first
three variables selected with LARS-EN, and PC1 and PC2 arérst two principal
components.

between species but not necessarily isolates. Furtherti@reesults are promising if
other isolates within the three species are desired cledsifi

8.4.2 Multivariate analysis of variance

The expansion from one to more dimensions is straight fahwe SS become vari-
ance matrices where mean values and singleton observatiemsplaced with mean
vectors and observation vectors in the formulas. The tasisst changes to Wilk’s

A which was described in Section 6.2.2. If for example M is totbésted against
R(MSI) the test statistic becomggéﬁéﬁfji?féﬁm which is U-distributed instead
of F-distributed. A transform from the U- to the F-distritmut is utilized, as described

in Appendix D.1.

The tests performed here are limited by the error degreesefidm which in this case
are two, since there are three repetitions. Hence, only awiables can be used in a
multivariate analysis of variance before the examined icedroecome singular and a
solution thus becomes impossible.

The variables selected in the Discriminant Analysis andARBG-EN are used as bases,
but also the first two PCs are used as basis for the reasornsbaesinn the following.
The results for DA1 and DA2 are listed in Table 8.8 and 8.9,fanthe remaining sets
of variables in Appendix E, Table E.13 to E.18.
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| Hy | U lag|[r ] F | F-fractile |
my—0, k=123 0.0136] 2 | 72| 269 | F(4, 142)09y =3.45
5 =0, 1=1,23 0.0305| 2 | 72| 168 | F(4,142)099 =3.45
msy, = 0,

k=1,2,31=123 0.0117| 4 | 72| 146 | F(8,142)0.0 =2.64
i(s)zj0) =0,

j=1,2,34,1=1,23 0.135 | 9 | 72| 13.5| F(18,142).49=2.06
mi(s)zkj(l) =0, k=1,2,3,

j=1,2.3,4,1=1,2,3 0.0496| 18 | 72 | 13.8| F(36,142).40=1.77

Table 8.8: Tests based on the multivariate version of Mo8&)(and the variables;
30th percentile of the difference between 1st and 8th spectd 99th percentile of
difference between 4th and 6th spectra. The correlationdsst the variables is =
0.92. DA1 & DA2.

H, | U laq|r | F | F-fractile |
m,=0, k=1,2,3 |0.0500] 2 | 18] 29.2| F(4,43)009 =3.93
5=0,01=1,23 0.0422] 2 | 9 | 165| F(4,16)09 =4.77
msy =0,

k=1,231=12300779 4 | 18| 11.0| F(8,34)pe =3.09
0'22(3):0 0.440 | 9 | 18| 0.96| F(18,34)04s =0.96
72, =0 0.0496] 18 | 72 | 13.8| F(36, 142)g0o=1.77

Table 8.9: Tests based on the multivariate version of Mo8d)(and the variables;
30th percentile of the diference between 1st and 8th spacilad9th percentile of
the difference between 4th and 6th spectra. The correl@gtween the variables is
p = 0.92.
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PCA is performed to obtain dimensions that describe thamasd in data better. LARS-
EN is used to select the two principal components that desaach of the factors
best. Dummy variables that represent the factor levels @mstructed for the factors
and the interactions between the factors. Two principalgaments are not sufficient
to discriminate between either of the group effects. The &gl second principal
components are the ones selected more frequently for aiteffMultivariate analysis
of variance is therefore performed on the first two PCs. Tlogeptions that explain
most of the variance in original data are hence the ones mastiated with the effect
dummy variables. This seems to be a good basis for testinghehthe effects are
significant or not.

When the isolate effect is considered deterministic thehthpmotheses that each of the
other effects are insignificant are rejected at a 5% levabwiificance for all bases, cf.
Table 8.10.

H, Variable ‘ DAl & DA2 DAl & DA3 DA2 & DA3 PC1l & PC2 ‘

my, = 0 R(1%) R(1%) R(1%) R(1%)
5= 0 R(1%) R(1%) R(1%) R(1%)
msy = 0 R(1%) R(1%) R(1%) R(1%)
i(s);0 =0 R(1%) R(1%) R(5%) R(1%)
mi(s)ga =0 | R(1%) R(1%) R(1%) R(1%)

Table 8.10: Summing up the multivariate tests based on M@&d2). A indicates the
null-hypothesis is accepted and R rejected at a 5% levegoffsiance. In parentheses
is given the level of significance where the acceptance ectien still holds. The
variables DA1, DA2, and DAS3 are the ones selected in Diserami Analysis as well
as LARS-EN and PC1 and PC2 are the first two principal compsnen

As in the univariate analysis of variance an important défifee is observed when the
isolate effect is considered stochastic instead of detestic. The results are summed
upin Table 8.11. Itis then found that there is no significafiéence between isolates,
but there is still a significant difference between specresraedia. This leads us to
assume that the experiment can be conducted for otherasalathin the three species.
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‘ H, /Variable ‘ DAl & DA2 DAl & DA3 DA2 & DA3 PC1 & PC2 ‘

my, = 0 R(1%) R(1%) R(1%) R(1%)
s.=0 R(1%) R(1%) R(1%) R(1%)
msw =0 R(1%) R(1%) R(1%) R(8%)
0% =0 A(52%) A(54%) A(93%) A(18%)
02 15y = 0 R(1%) R(1%) R(1%) R(1%)

Table 8.11: Summing up the multivariate tests based on M@&dJ&). A indicates the
null-hypothesis is accepted and R rejected at a 5% levetoffsiance in general with
one rejection at an 8% level. In parentheses is given thé td\&@gnificance where
the acceptance or rejection still holds. The variables D242, and DA3 are the ones
selected in Discriminant Analysis as well as LARS-EN and R8d PC2 are the first
two principal components.
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8.5 Tests for media

This section calculates Mahalanobi’s distance betweeoniepeconducts Hotelling’s
T?-test for equal means, and tests for additional informatimvided by each medium
to the discrimination of species.

Seven PCs are included in the analyses as the covarianceesdiecomes close to
singular if more PCs are included. The PCs are chosen siegedthnot favor a par-
ticular medium like the variables chosen in LARS-EN and th&cbBminant Analysis
do.

Performing Discriminant Analysis with a linear discrimimidunction on the first seven
PCs all observations are classified correctly for the YES@AT media, but for the
CYA medium two Pvenetunobservations are misclassified. No cross-validation has
been performed.

Mahalanobi’s distance between species is calculated faroahbinations of media
and listed in Table 8.12. All distances are significant, Hetelling’s 7?-tesf where

the null-hypothesis that two means of the species are egeakpected. Hotelling’s
T?-test assumes that the classes have equal dispersion. e_svest of equality in
variancé rejects that the covariance matrices are equal at a 5% |és#jmificance.

However, Hotelling'sI*-tests are considered anyway.

Medium/Distance Mel-Pol Mel-Ven Pol-Ven

YES 216 (<1%) 53 (<1%) 140 (<1%

OAT 73 (<1%) 54 (<1%) 19 (<1%

CYA 41 (<1%) 35(<1%) 21 (<1%
YES & OAT 1582 (<1%) 142 (<1%) 480 (<1%)
YES & CYA 763 (<1%) 356 (<1%) 1410 (<1%)
OAT & CYA 217 (<1%) 642 (<1%) 195 (<1%)
YES & OAT & CYA | 3710 (2%) 4440 (1%) 3669 (2%)

Table 8.12: Mahalanobi’s distances between the speciesafdn of the media. The
calculations are based on the first seven PCs. For the feaititee edge and fungi in
one. In parentheses are given the p-values of Hotellifigrtest of the null-hypothesis
that the means of the two species are equal.

The distances between species on the different media ger lan the YES medium

SHotelling’s T2-test is reviewed in Appendix D.3.
SLevene’s test is used instead of Bartlett’s test of equatityariance since it is less sensitive to
departures from normality, cf. [NIST/SEMATECH 2006].



8.5. TESTS FOR MEDIA 91

than the other two media. However, the distance betweemeRnoconidiumand P.
venetunis largest on the OAT medium.

Each medium is now regarded as additional information ts#me observation. One
observation then hasvariables belonging to the YES mediumyariables belonging
to the OAT medium, ang variables belonging to the CYA medidniTests of the null-
hypothesis that a medium does not contribute to the disoétiin compared to one or
two media are conducted. This test corresponds to a tese¢ ¢tdiskp variables belong-
ing to the same medium do not contribute to the discrimiméti®he test statistics are
compared to fractiles in the F(12,20) and F(12,13) distrdms for the base with three
and two media, respectively. The p-values of these testssted in Table 8.13.

. . Test Medium

Base Media Distance YES OAT CYA
YES & OAT & CYA Mel-Pol | 20% 58% 89%
YES & OAT Mel-Pol | <1% <1% -
YES & CYA Mel-Pol | <1% - 5%
OAT & CYA Mel-Pol - 2% 10%
YES & OAT & CYA Mel-Ven | 44% 26% 12%
YES & OAT Mel-Ven | 17% 16% -
YES & CYA Mel-Ven | <1% - <1%
OAT & CYA Mel-Ven - <1% <1%
YES & OAT & CYA Pol-Ven | 18% 84% 40%
YES & OAT Pol-Ven | <1% 6% -
YES & CYA Pol-Ven | <1% - <1%
OAT & CYA Pol-Ven - <1% <1%

Table 8.13: P-values for tests of the null-hypothesis thatariables belonging to the
test medium do not contribute to the discrimination. Forfdatures of the edges and
the centeres of the fungal colonies in one.

Discriminating between any two of the species, all hypatkabkat one of the media
do not contribute compared to the other two are accepted &0&b bf significance.
Hence, leaving two media that contribute. Discriminatiegeen Pmelanoconidium
and P.venetumit is accepted (at a 16% level of significanca) that OAT and&Y®
not contribute to the discrimination with respect to eadteat

"Recall, thap = 7.
8The test is reviewed in App. D.4
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8.6 Summing up and discussion

The discussion is divided into three parts: Results obthioethe classification of the
three species, comparison of data sets, and comparisoed&efiscriminant Analysis
and LARS-EN with dummy variables.

Identification of Penicillium fungi

The three species can be classified correctly by use of orwasiables in Discrim-

inant Analysis. That is, differences between cyan and anavet ultra blue and red
are enough to distinguish between the species. The amogngsg-validation can be
discussed, however, as only two variables are utilized hadliscriminant functions
are linear in the analysis, the amount of over fitting ougtteganinimal.

Three-sided analysis of variance shows that the effectstidlepecies, and their inter-
actions are significant at a 5% level. The isolate effectasically significant if it is
considered deterministic, but insignificant if it is coresield stochastic. Hence, it can
be assumed that the three species can be distinguishedakpeziment is repeated
with the same as well as other isolates.

Mahalanobi’s distances between species are significaiffgreht from zero, which
underlines the fact that they can be discriminated. Theadcss illustrate that the
visual appearance, and not the genetic relation, is stetragethe smallest distances
are observed betweengdlonicumand Pvenetum

Furthermore, it can be assumed, statistically, that onbeoftiree media does not con-
tribute further to the discrimination compared to using thve other media. Hence,
using two media should be sufficient. Since the distances haen largest on YES,
and YES and OAT, statistically, can be assumed not to carngito the discrimination
with respect to each other, the best choice of media must l&aftel CYA. However,
as it was seen for both Discriminant Analysis and LARS-EN, shecies can be dis-
criminated using just one medium. The YES medium is the oaedlves the best
results for the classification.

Choice of data set

The masks where the edges and the centers of the colonieseatedt as one have
provides better features than if they are treated sepgrakelrthermore, the multi-
spectral images are an advantage to RGB as fewer variatde®auired when all
spectra are included. The features from the RGB represemtabtained by linear
combinations of the ten visual spectra performs slightlysgpthough comparable, to
using all spectra separately. However, the features selexntain information from
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ten spectra whereas the features selected from all spegtaaagely only uses five of
the spectral bands.

Comparison of methods

LARS-EN with dummy variables is more sensitive to which aliagons are in the
test respective training sets for few-fold cross-valiolatie.g. 2-fold cross-validation,
compared to Discriminant Analysis. Furthermore, the Disorant Analysis discrim-
inates between all species at the same time, and not as LARBeEveen one class
and remaining classes. That is each variable is used tardisate between all species
in Discriminant Analysis. Hence, the Discriminant Anal/sinly requires two vari-
ables to classify all observations correctly, compared teast three with LARS-EN
(corresponding to one misclassification with leave-one).



Chapter 9

Results Sand

This chapter describes the results obtained of the estmatf the moisture content
in the sand samples.

As the knowledge of the sand type is a priori, it seemss redgerio make a model
for each sand type. Models for each sand type are selectecbamgired using: For-
ward Selection combined with OLS, PCA combined with Forw&etection and OLS,
Ridge regression, Lasso regression, LARS-EN, and sparse PC

The number of observations is not proportional for the thyeen curves within each
sand type. Hence, when making one model for one sand typewsaght will be put
to the medium grain curve, as there are more observations®nitherefore, models
for each grain curve are also examined.

The first section describes the reason for transforming #peident variable. The
second section illustrates how the images can be used tofydsand type and grain
curve. The third section illustrates that some of the proislare ill posed. The fourth
section examines models for the five sand types for diffenemdel selection tech-
niques. The fifth section examines models for the grain urveEhe sixth section
briefly describes the features that are included in the nsodhally, the seventh sec-
tion sums up and discusses the results obtained.

9.1 Logarithmic transformation

In general, the variance of the moisture content tends tease with the moisture
content. The measured moisture content observations hexefore been logarithmi-

94
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cally transformed, and this have provided better resultsFigure 9.1 the residuals
are illustrated of OLS on sand type 1, fine grain curve withwaitout a logarithmic
transform of the measured moisture content.

Not Transformed Log Transformed
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0.2 ' 1 oz}
0.1 . 1 0.1
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Figure 9.1: Residuals from OLS on 10 variables selected Kettward Selection.

The variance of the residuals increases with the size ofshmates, it is known that
this trebd can be reduced by transforming the dependerdblas, cf. [Conradsen
2002, Chapt. 4]. Data shows less trends in the residuals andsyielder standard
deviations when the moisture content observations areitbgacally transformed.

The tendencies are caused by a larger variance for the higbisture content mea-
sures. However, the trends are not as obvious as in Figuferll groups of the data.
In the following only the logarithmic transformed moisturentent measures will be
regarded.

9.2 Sand types and grain curves

The five sand types can be discriminated entirely based ofiirgiewo canonical
variables, as illustrated in Figure 9.2. As the sand typaseadiscriminated visually,
and as they physically are gathered from five distinct ggugcgplaces, it is reasonable
to choose models for the five sand types separately.

Figure 9.3 illustrates the first two canonical variablesdiminating between grain
curves in the three sand types 1, 3, and 5. It is possible toidlisate between grain
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raS
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Figure 9.2: Plot of the first two canonical variables. The Baad types are marked
with: 1: red, 2: yellow, 3: green, 4: blue, and 5: black.

curves, however, models will be constructed both includithgrain curves and sepa-
rately for each grain curve within the sand types.
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Figure 9.3: Plot of the first two canonical variables basedlisarimination between
grain curves. The three grain curves are marked with: Fieg, Wedium: green, and
Large: blue.

9.3 Singular values

The singular values can be used as an indication of whetheskdem is ill or well
posed. In Figure 9.4 and 9.5 the singular values of the feanatrices for each of
the five sand types are plotted. Heatures 1the singular values decay gradually
and there is only a small gap around singular value number 20ese problems
can be assumed to be ill posed for a feature number less ti@an I2@s therefore
expected to be difficult to select an exact number of feati@gsthan 200 to include
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in the solutions. Fofeatures Zhe singular values reveal a numerical rank equal to the
number of observations in the data set. It is therefore drgdbat if a small amount

of variables is to be inclueded, then the number of variastesild equal the number
of observations. However, it might be desirable to inclueis|variables, but a part
from this gap the singular values decay gradually.

Type 1 Type 2 Type 3
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10° 10° 10°
-50 -50 -50
10 6 10 6 10 6
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0 500 1000 0 500 1000 0 5(_)0 1000
i
10" Dot o 1YPeS
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O Gi
10O 100
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10 6 10 °
10—100 -100
0 5(_)0 1000 0 5QO 1000

Figure 9.4: Singular values &#atures Ifor the five sand types.

9.4 Models for each sand type

This section validates models selected by the methods: ddr&election combined
with OLS, PCA combined with Forward Selection and OLS, Ridegression, Lasso
regression, LARS-EN, and sparse PCs.
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Type 1 Type 2 Type 3
1020 1020 1020
10° 10° 10°
10—20 10—20 10—20
0 2000 4000 0 2000 4000 0 2000 4000
i

1010 Type 20 Type 5

10

o G

10°

10°
10"
10—20 -20

10
0 2000 4000 0 2000 4000
[ [

Figure 9.5: Singular values &éatures Zor the five sand types.
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9.4.1 Forward Selection

Forward Selection with a significance level of 5% is perfodno@ the original vari-
ables of botHhfeatures landfeatures Zand combined with OLS estimation. Standard
deviations for test and training data are plotted in Figufe @singfeatures 2gives
much smaller errors of both training and test data, thangfsiatures 1

5 Type 1 5 Type 2 s Type 3
10 10 10
o—o——0
ElOO 100 V—H(:‘: 100 @Q? G
10° 10° 10°
0 20 40 0 10 20 0 50
. Type 4 . Type 5
10 10
v train 1
—6—test 1
S 10° 10° oxotrain 2
n —o—test 2
10° 10°
0 10 20 0 20 40

No. of PCs

Figure 9.6: Standard deviation of OLS with Forward Seletbased on leave-one-out
CV for the five sand types.

The lowest standard deviations obtained on the training oifeatures 2are listed in
Table 9.1. Training data is over fitted even though the nurobeariables included
is smaller than the number of observations. For some of the sges this method
yields low standard deviations of the prediction eror destbie over fitting. However,
this method is computationally very slow.
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Type | Std. Train Std. Test No. Vars
1 0.07 1.0 10
2 0.03 0.4 10
3 0.3 0.9 10
4 0.01 0.2 20
5 0.07 0.2 5

Table 9.1: The minimum standard deviations for training tast sets of OLS with
Forward Selection on features 2. The number of variablexts is also listed.

9.4.2 Principal Componenet Analysis

Forward Selection witlv = 5% is performed on the first 400 PCs and then the OLS
estimates based on the selected variables are used fordeaveut cross validation.
Standard deviations for test and training data are plottédgure 9.7.

For the data set without scale space featuezgures 1the training data fits sand type
2 and 4 better than the other sand types. These sand typesandist of samples
belonging to one grain curve. For the data set with scaleesfeaturesfeatures 2
some of the scale space features are selected for sand tg@end,5, but not for sand
type 2 and 4. In the following onlfeatures 2are considered.

Combining PCA and OLS clearly over fits data, and the bestiseare obtained when
only 5 PCs are included. The standard deviations of the tstate typically in the
range from 1 to 2, except for type 4 where it is around 0.2. Bselts forfeatures 2

are summed up in Table 9.2.

Type | Std. Train Std. Test No. of PCs
1 0.4 1.3 5
2 0.03 1.3 5
3 0.5 1.0 10
4 1016 0.2 20
5 0.4 1.7 5

Table 9.2: The minimum standard deviations for training texd sets of PCA com-
bined with OLS of features 2. The number of PCs included inahalysis is also
listed.
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Figure 9.7: The minimum standard deviations of OLS with P@sell on leave-one-

out CV for the five sand types.
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9.4.3 Ridge regrssion

The Ridge regression does not reduce the dimensionaléyptimber of active vari-
ables isp = 2016 in all cases. In Figure 9.8 the MSE as functiomas illustrated for
sand type 1.

10°

10" & L %

10+

MSE

10+

10+

—o—Test
x Train
T

10°L

Figure 9.8: MSE as a function of for Ridge regression on sand type 1. The CV
minimum and maximum of the MSE are illustrated with greengach value oA.

The results obtained with Ridge shrinkage are summed upbte™3. The highest
standard deviations are lower than for the combinationsooivFl Selection or PCA
with OLS.

Type | Std. Train  Std. Test A
1 0.3 0.8 10°
2 0.2 0.4 10!
3 0.2 0.7 101
4 0.04 0.3 10°
5 0.3 0.6 10°

Table 9.3: The minimum standard deviations for training &stldata in Ridge regres-
sion for the five sand types.is the regularization parameter chosen.



9.4. MODELS FOR EACH SAND TYPE 103

9.4.4 Lasso

The original Lasso algorithm and the Lasso modification irRSAEN are compared
for sand type 1. Figure 9.9 shows that the two algorithms giwalar results but
depend on the two different regularization paramesens Lasso and the number of
iterations used in LARS-EN. The MSE of LARS-EN is illustrdtas a function of
the number of active parameters instead of the number eattibers. The minima are
found at\ ~ 1073 and atk ~ 16 (number of active parameters in LARS-EN). When
A = 1073 there are around 20 active parameters.

10° T T T T T T 10
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R TT / ] o \(\( L
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MSE
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10°L - — - - — 10°® . . . . . . . :
6 5 4 3 2 1 0
10 10 10 10 10 10 10 0 5 10 15 20 25 30 35 40 45

A k

(a) Lasso original (b) Lasso in LARS-EN

Figure 9.9: MSE for Lasso on sand type 1. (a): The originasbasith A as reg-
ularizing parameter. (b): The Lasso modification in LARS-&ith the number of
active variablesk, as regularizing parameter. The CV minimum and maximum for
each value of: are illustrated with green.

Type | Std. Train Std. Test &
1 0.4 0.8 16
2 0.2 0.5 11
3 0.4 0.7 26
4 0.2 0.3 11
5 0.3 0.4 11

Table 9.4: The minimum standard deviations for training tastl data in Lasso for the
five sand typesk is the active number of variables chosen as regularizatoarpeter.
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The results obtained with Lasso for the five sand types aresdwp in Table 9.4. The
Lasso shrinkage improves the standard deviations compated traditional methods,
and the standard deviations are comparable to those obtaiitle Ridge regression.
Furthermore, Lasso reduces the dimensions and the ovegfidithereby reduced
compared to Ridge regression. The dimension reductionpsitant in an inline pro-
duction.

9.45 LARS-EN

In this section LARS-EN model selection for the five sand s/igeexamined. The two
regularization parameters are chosen by means of leavedr@V.

In Figure 9.10 the MSE in LARS-EN as function dion sand type 1 for four different
values of early stopping is illustrated. The early stoppiogmaximal number of
variables included in the model, is not necessarily theadetumber included. When
A is large the number of active variables decreases. The mmiMSE of the training
determines the number of iterations or equivalently the imemof variables included
in the model.

The standard deviation of the test set decreases as the nofm@iables increases
consecutively with an increasing value dfproviding the necessary regularization.
The minimum standard deviations of the test set are fourmlitiir CV on RSSX, ite)
and summed up in Table 9.5.

Type | Std. Train  Std. Test A ite  Var
1 0.4 0.8 107 69 20
2 0.3 0.4 102 119 118
3 0.2 0.7 1072 533 400
4 0.3 0.3 102 202 201
5 0.3 04 10 19 10

Table 9.5: The minimum standard deviations for training testiin LARS-EN for the

five sand typesA andite are the regularization parameters chosen. Var is the number
of active parameters in the model selected with the giveamaters for the entire data
set.
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Figure 9.10: MSE based on leave-one-out CV for sand typeriguifferent numbers
of iterations. The minimum mean standard deviations in lineet cases are: 1.3, 0.8,
0.9 and 1.0, respectively, correspondingXto= 107 A = 1072, A = 1072 and

A = 1072. Note, that the range for the MSE differs in the three pldtsréfore MSE
of 1073 is marked with a dotted line, and the minimum of the maximalButs the
training is marked with a broken line.
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9.4.6 Principal components

Performing LARS-EN model selection on the first 400 PCs exdtef the original
variables does not provide better results with respecttudstrd deviation. The results
are summed up in Table 9.6. Using the PCs the training dateeisfitted more than
when the original variables were used.

Type | Std. Train  Std. Test A ite  Var
1 2-1072 0.7 10 59 40
2 3-10°¢ 0.3 107 97 72
3 3-1072 0.9 102 11 10
4 2-10714 0.3 10¢ 65 20
5 0.7 0.9 10 12 11

Table 9.6: The minimum standard deviations for training tast in LARS-EN on the
PCs of the five sand types.andite are the regularization parameters chosen. Var is
the number of active parameters in the model selected witlyiken parameters for
the entire data set.

9.4.7 Sparse principal components

The Sparse PCs do not explain a greater variance than therflGheregression is
therefore not assumed to get better, but the over fitting midturthermore, fewer
variables are included in the anlyses which is an advantage inline production.

The loadings of the sparse PCs are chosen by LARS-EN Wwith10~% and a maxi-
mum of fifty active variables. In Figure 9.11 the loadingshd two first sparse princi-
pal components are illustrated together wiht their param@tolutions in LARS-EN.
Note, how the parameters become active as the iteratiogsgqa® There are 50 active
variables out of 2016, but from the loadings it is seen thit acouple of the variables
are weighted more than 0.5.

Table 9.7 lists the variance and cumulated variance of teetén PCs, as well as the
cumulated variance, and cumulated adjusted variance abitnesponding sparse PCs.
The amount of variance explained by the sparse PCs is veryHmwever, they are
still adequate in model building, as we will see in the foliog

Performing model selection with LARS-EN on the first twenpasse PCs yield ap-
proximately the same standard deviations of the trainirtg da on the PCs, but the
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Figure 9.11: The loadings and parameter evolutions of tloefinst sparse PCs. There
are 50 active variables in each sparse PC. The two featunghted more than 0.5
are for SPC1: the 157th feature, the 30th percentile in thespéctral band, and for
SPC2: the 543th feature, the 1st percentile of the mulagbn between the 1st and
6th spectral bands.
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Variance(%)/SPG 1 2 3 4 5 6 7 8 9 10

PC 53.7 202 112 75 19 12 11 06 06 04
Cum PC 53.7 739 851 926 945 957 96.7 974 979 98.2
Cum SPC 04 08 10 12 13 13 14 14 14 15

Cum Adj SPC 04 08 10 12 13 13 14 14 14 15

Table 9.7: The variance and cumulated variance of the PEguimulated variance of
the sparse PCs, and the cumulated adjusted variance ofdreedpCs for the first ten
PCs of sand type 1.

standard deviation of the test data is now comparable toathidie training, cf. Ta-
ble 9.8. Compared to OLS regression on a similar low numbd&t@sg the standard
deviation is decreased. Hence, the over fitting is decredaathermore, the number
of variables included in the calculations is decreased els gparse PC only contains
loadings for fifty of the original variables. The decreaseunber of variables is an
advantage in an inline production.

Type | Std. Train Std. Test A Var Sparseness
1 0.6 0.7 102 10 50
2 0.06 0.4 107* 15 50
3 0.6 0.8 1072 15 50
4 0.4 0.5 104 5 50
5 0.6 0.8 1075 8 50

Table 9.8: The minimum standard deviations for training st in LARS-EN on the
sparse PCs of the five sand types.is the regularization parameters chosgén,is
slightly larger than the number of active variables, VaraiSpness is the number of
active variables in the sparse PCs.

9.5 Models for each sand type and grain curve

In this section only LARS-EN model selection is considersdtas computationally
much faster and in the previous analyses it has provideast &s good results as the
other methods.
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9.5.1 LARS-EN

LARS-EN is used to select models for sand type 1, 2 and 3 diviate the three grain
curves fine, medium and large. The selection @ind the number of iterations/active
variables is illustrated in Figure 9.12 for sand type 1 aredfthe grain curve. From
maximally ten to forty active variables the difference in KIS small, and the lowest
number of variables might be to prefer.

The minimum standard deviation is found using CV on RS8¢). The results are
summed up in Table 9.9.

107 : : : : : ‘ 10° : : : : : ‘
= ,
10° - ] — 1 10° / 1
| /
0 107+ 0 10°
107 g 107
x - Train x - Train
1076 6 X 5 X 4 3 X 2 X 1 0 1076 6 5 4 3 2 X 1 0
10 10 10" 10 10" 10 10 10 10 10 10 10 10 10
A A
(a) Max 5 variables (b) Max 10 variables
10 : : : . . ‘ 10%
L 10°
D
10° / — /
¢
107
<>—/—<>—<>’/"?/
® 107 Yoo

10°

10°

—e—Test
* Train
10 L L L L L

—o—Test
x - Train
n

100

10 10 10 1())\ 10 10 10 10 10 10 1(})\ 10 10 10
(c) Max 40 variables (d) Max 100 variables

Figure 9.12: MSE based on leave-one-out CV for sand type Ireaatium grain curve.
There are 24 observations in the data set.
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The selected models are evaluated and the residuals asswh# aneasured observa-
tions are plotted versus the estimated values. Figure :1d®44 illustrate examples
for two of the data sets. In the first figure a slight underestiom is observed, caused
by the early stopping where only 40 variables are activdtetia part from this the data
behave neatly and the standard deviation is low. In the skfigare a slight overesti-
mation is observed, caused by the coefficient shrinkagesof4hactive variables with
a large value of\. However, the trend is not big since early stopping is usetbto
trol the variance and undo some of the overestimation. Iregénthe residual plots
have small trends of either under- or overestimation, astilated in the examples.
However, the trends are acceptable.

There also seems to be an outlier in the dataset. Three ofbernations are sam-
ples from one bucket with the intended moisture level of 7.6&t are all measured to
approximately 6%. The one with the highest measure, howbasrthe smallest esti-
mate. Furthermore, the variation is larger for the sampléshigher moisture content
than for those with lower, even after the logarithmic transfation of the moisture
content measures.

Finally, the sample variation might be reduced throughemihg more samples on the
fine and large grain curves. There should be enough sampléseamedium grain
curve, it is thus also for the medium grain curve the loweshdard deviations are
observed.

Type Grain Curve Std. Train  Std. Test A ite  Var
1 F 0.2 0.5 10° 101 100
3 F 0.3 0.8 10! 75 74
5 F 0.2 0.2 1072 53 40
1 M 0.1 0.2 1072 57 40
3 M 0.3 0.4 10% 59 20
5 M 0.3 0.4 10° 116 115
1 L 0.2 0.4 10° 268 267
3 L 0.1 0.4 10° 42 41
5 L 0.2 0.4 1073 11 10

Table 9.9: The minimum standard deviations for training testisets in LARS-EN for
each grain curve on the three sand types 1, 3, anddndite are the regularization
parameters chosen. Var is the number of active variabldseinmodel selected with
the given parameters for the entire data set.

Recall, that the prediction error of leave-one-out CV oftexs a large variance even
though it is unbiased. Therefore, 6- and 7-fold CV is triedlmamedium grain curves
as they have sufficient observations. The results are summadTable 9.9



9.5. MODELS FOR EACH SAND TYPE AND GRAIN CURVE 111

10 05
9l
0.4r
8l
X 0.3r o
[
s 7r o
% 0.2 °
© © 0.2r
5 ° 2
o 2 Q o
=1 = 0.1r
2 .
g 57 o o °
£ o
) O oo (OIS S S
4r o
o o
o
3f -0.1r o o
o o
2 L L L L -0.2 L L L L L
2 4 6 8 10 o 2 4 6 8 10 12
estimated moisture % estimated moisture %
(a) Features 1 (b) Features 2

Figure 9.13: Measured moisture content and residuals agidms of the estimated
moisture content on sand type 1, medium grain curve, and dnenmeters listed in
Table 9.9.
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Figure 9.14: Measured moisture content and residuals agidms of the estimated
moisture content on sand type 3, fine grain curve, and therpeas listed in Table
9.9.
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Type Grain Curve Std. Train  Std. Test A ite Var
1 M 0.1 0.2 1072 57 40
2 M 0.3 0.4 10° 132 131
3 M 0.3 0.5 102 59 20
4 M 0.3 0.3 10° 203 202
5 M 0.3 0.4 10 116 115

Table 9.10: The minimum standard deviations for training test in LARS-EN for
each grain curve in the three sand types 1, 3, andl &ndite are the regularization
parameters chosen with 6- or 7-fold CV. Var is the number tf/awariables in the
model selected with the given parameters for the entireskdta

9.6 Selected features

The scale space features were particularly useful when thareone grain curve was
included in the model. The features most often selected featares from differences
between spectra and pair wise relations between spectesgdctra included in the
model varies from sand type to sand type. All spectra araudsa, but more often
features with information from the two NIR bands are sekécte

9.7 Summing up and discussion

The scale space features were particularly useful when thareone grain curve was
included in the model. Both the singular values and the tesatained with OLS
shows thateatures 2are better thafeatures 1 Hence, the additional features in this
data set provide additional information to the other feaguFurthermore, information
from the NIR spectra of 875 and 940nm is always included irsélected models. Itis
known that subtracting the two NIR bands of 870 and 970nm efeat information of
water content in materiails The spectral bands are not quite the same, but the results
indicate that the NIR spectra are important in the estimmaticthe moisture content.

Ridge regression, Lasso and LARS-EN yield lower standavihtiens than Forward
Selection and PCA combined with OLS. Hence, the coefficienhkage is an advan-
tage. Furthermore, Lasso and LARS-EN select a subset @thtas to include in the
model. If the estimation is to be implemented in the consioudine, the time is an
issue, and evaluating less variables is therefore a plusllfi LARS-EN gives more
options and additionally provides the Lasso solutions,iiisdcomputationally much

[Carstensen 2006]
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faster than both Lasso and Ridge. Therefore the LARS-EN hsatkection is to prefer.
Finally, sparse principal components have been a goodatiee to principal compo-
nents, in particular if the sparseness is of importance.spaese principal components
use fewer variables and therefore tend to over fit less thanipal components.

The results have been best when models have been selecteacfosand type and
grain curve separately. Leave-one-out and 6- or 7-fold Gx¥gicomparable results
for all sand types and medium grain curve. Though, the overdits slightly smaller
with 6- or 7-fold CV, recall, that the prediction error of ileaone-out CV often has
large variance even though it is unbiased.

The standard deviations of the prediction error is aroudddr.most of the models se-
lected with LARS-EN, corresponding to a standard deviatioh 1-0.3 for the training
data.

Recall, that the samples collected from the same bucketanof do not have the same
moisture content measures. The standard deviations vifiese repetitions are 0.01-
0.35. The means of these standard deviations are 0.1, 0Z)&).03, and 0.1 for the

five sand types, respectively. The variations are largesdod type 1, 3, and 5 which
are also the sand types yielding the largest variationsdmptbdiction error.

Comparing the variations of the sampling repetitions wighprediction errors, around
one third of the prediction error is likely to be a consequeotthe repetition sample
variation.



Chapter 10

Conclusion

Conclusions from various aspects of the project are mader€efdre this chapter has
been divided into three parts. Conclusions for each set taf. déhe identification of
Penicilliumfungi, and estimation of moisture content in sand samplegditfonally,
conclusions from comparisons of the traditional multigtej statistical methods with
the newer model selection methods are likewise treatedaeha

Identification of Penicillium fungi

With a 0% error rate for both leave-one-out and 2-fold cresl&dation, the results have
been very promising. These results have been obtained aslgghe YES medium.
Furthermore, only two to three variables are needed to atptre species. The three
variables that have discriminated best between the spewksie information from
five of the spectral bands: Ultra blue, cyan, amber, red, dR{8¥0nm).

Summing up, the three speciesiielanoconidiumP. polonicum and Pvenetuncan
be identified objectively from just one medium.

The good classification results are in accordance with theltseof Hotelling’s77-
tests. The tests have shown that there, statistically, igrafisant difference between
the means of the three species on the three media.

Statistically, it can be assumed that three media do notdeckhdditional informa-
tion to the discrimination compared to using just two medtarthermore, it can be
assumed that the YES and OAT media do not provide additioviairmation to one
another in the discrimination. In addition to that Mahalarsdistances have been
largest on the YES medium.

Summing up, the best choice of media is YES and CYA.

However, in practice, the YES medium has shown sufficienidorominate the species
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completely.
Itis a big advantage that one medium is sufficient to idertki&/species since it is both
expensive and time consuming to inoculate the isolates nausmedia.

Mahalanobi’s distances betweenpBlonicumand Pvenetumhave been smaller than

between Ppolonicumand P.melanoconidiunusing the features considered. This
observation indicates that the considered features rdfiectisual appearance and
not the genetic relation.

Consequently, the best discrimination has been based @ptiearance of the fungal

colonies.

Finally, using images of all eighteen spectral bands hadged the best classification
results. However, using linear combinations of the tenaliBands as representations
of R, G, and B only has performed slightly worse in the senaerttore variables have
been included in the classification model. If species thainaore difficult to identify
are considered, it is therefore recommendable to gathspattra.

Estimation of moisture content in sand

The standard deviations of the prediction errors obtainild both leave-one-out and
6- or 7-fold cross-validation have been around 0.4, cooedmg to standard devia-
tions of 0.1-0.3 for the training data. LARS-EN has showrfuis® computationally
fast select only a subset of variables to include in the mod@akese qualities are of
importance if the estimation is to be implemented in a cacsion line.

Due to the fact that the images only capture the surface ohd sample, and that
the moisture content is particularly delicate exactly atsbrface, due to vaporization,
a certain sample variation must be expected. Furthermbeemeasured moisture
content is a measure of the moisture content in the entirglearklence, the relation

between the small amount of sand captured by the image arghtive sand sample
measured could cause some variation. Finally, the sandlearogllected in the petri

dishes from the same buckets of sand do not have the sameirea@entent measures.
The sample variations of the repetitions correspond toagdprately one third of the

prediction errors. Because of the many sources giving dsample variations it is

unlikely to obtain much lower standard deviations of thedpron error.

The scale space features have been useful in models withthreomeone grain curve
and features with information from the NIR spectra have beetuded in the best
models for all the sand types.

Comparison of methods

The Histogram Pursuit algorithm has only failed twice inreegting the fungal colonies,
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where as the identification of circular colonies has failedhalf of the cases on the
YES medium. Furthermore, fewer variables have been redjtorelassify the species
correctly with the features from the HP segmentation. Thealgerithm is therefore

preferable to segment the fungal colonies.

LARS-EN with dummy variables has shown more sensitive tociobservations

are in the test respective training sets for few-fold cresgdation, e.g. 2-fold cross-
validation, compared to Discriminant Analysis. Furtheredhe Discriminant Anal-

ysis discriminates between all species at the same timeyatras LARS-EN between
one class and the remaining classes. Hence, the DiscritmAmatysis often requires

fewer variables as each variable is used to discriminatedsat all species. The dis-
advantage of the Discriminant Analysis is that it is compataally much slower than

LARS-EN.

The shrinkage methods Ridge regression and Lasso havelpdogood results com-
pared to Forward Selection and PCA combined with OLS for tredsdata. Lasso
is preferable to Ridge as the number of variables is reducediderably. LARS-EN
have provided slightly better results than Ridge and La&sd,as both the Ridge and
Lasso solutions can be obtained computationally fastethdd ARS-EN, LARS-EN
is to prefer.

Using LARS-EN on the PCs has shown to give larger standartiens as training
data has been over fitted. However, sparse principal corm®have turned out to be a
good alternative to principal components, especiallygfgharseness is of importance.
The sparse principal components use fewer variables aneftine tend to over fit less
than the principal components.



Chapter 11
Future Work

This chapter gives some ideas on future work related to tiojggt.
Identification of fungal species

The experiment could be conducted with:

e Otherisolates.
e Other genera.

This would confirm the results obtained and produce an dbgmference classifica-
tion model for future use.

Furthermore, if necessary, information from the imageseftiack side of the fungal
colonies could be included in the models.

Estimation of moisture content in sand

e Use of a multi-spectral camera that takes consecutive imabe larger surface
covered with a thin layer of a sand sample. This might redaoeesof the sample
variation. Furthermore, the relation between the amousaaotl imaged and the
amount of sand used for the reference measure of the mogsintent would be
better.

e Study of vaporization from the sand samples through imagfrtge same sand
sample over time. To examine the influence of vaporizatiomfthe surface of
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the sand sample since the surface is the part of the sandeséimapis captured
in the image.

Methods

e Modify LARS-EN with dummy variables to regress more than dependent
variable at a time. Hence, each selected variable is usedllfof the dummy
variables. However, it is not straight forward how the vales should be se-
lected; if it is the one correlated most with all of the depeamtdvariables or the
one correlated most with one of the dependent variablesh&umore, this also
influences the equiangular direction.

e Use of maximum likelihood estimation of the effects in theaduexperiment
instead of sums of squares of deviations. Méytarived the “restricted maxi-
mum likelihood” (REML) for a multivariate mixed model withvb effects. The
REML overcomes the bias of the ML caused from ignoring the insdegrees
of freedom due to fitting of fixed effects. Furthermore, thehod transforms
to canonical variables which has the advantage of givingkteb features ex-
plaining a maximum of variance of an effect and weightingtbetfeatures that
add little extra information given the other features.

[Meyer 1985]
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Appendix A

Precise Acquisition and

Unsupervised Segmentation of
Multi-Spectral Images.

The article in this appendix has been submitted to the spissiae of Elsevier Com-

puter Vision and Image Understanding on ’Advances in Vigiorithms and Sytems
Beyond the Visible Spectrum’.
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Precise acquisition and unsupervised
segmentation of multi-spectral images.

David Delgado Gomez Line Harder Clemmensen
Bjarne K. Ersbgll Jens Michael Carstensen

Informatics and Mathematical Modelling, Building 321
Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

In this work, an integrated imaging system to obtain aceuaaid reproducible multi-
spectral images and a novel multi-spectral image segmentlgorithm are proposed.
The system collects up to 20 different spectral bands wighrange that vary from
395nm to 970nm. The system is designed to acquire geomtrazad chromati-
cally corrected images in homogeneous and diffuse illutonaso images can be
compared over time. The proposed segmentation algoritimbees the information
provided by all the spectral bands to segment the differegibns of interest. Three
experiments are conducted to show the ability of the systeacquire highly precise,
reproducible and standardized multi-spectral images aistidw its applicabilities in
different situations.

Keywords:Image acquisition, multi-spectral image analysis, illnation, exploratory
data analysis, image segmentation, pattern recognition.

A.1 Introduction

According to Wyszecky [Wyszecki & Stiles 1982], color is oefil as the aspect
of visual perception by which an observer may distinguidfetBnces between two
structure-free fields of view of the same size and shape.eSme beginning of im-
age analysis, several color models have been developediveitoal of enhancing
the contrast of the different structures embedded. Thelse spaces have made the
segmentation of the interesting structures easier in abpesblems. For instance, two

1Email addresses:ddg@imm.dtu.dk(David Delgado Gomez), s001376@servl.dnndk(Line
Harder Clemmensen), be@imm.dtu.dk(Bjarne K. ErshgingMichael Carstensen)
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of these color spaces, the CIE-XYZ and the CIE-Lab [Wyszé&ckitiles 1982] have

been successfully applied to the segmentation of derngit@blesions [Ganster, Pinz,
Rohrer, Wildling, Binder & Kittler 2001][Hance, Umbaugh,dds & Stoecker 1996].
These two color spaces are frequently used in Dermatologguse of the uniformity
of the CIE-Lab color space. This uniformity that helps to ersfand how different two
colors will look to a human observer is directly connectethwliermatologist’s visual
lesion evaluation. These two color spaces are a linear and-$imear transformation
of the RGB color space. The CIE-XYZ is defined by

X 0.41 0.36 0.18 R
Y = 0.21 0.71 0.07 G ,
Z 0.02 0.12 0.95 B

and the CIE-Lab by

whereX,,, Y,, andZ, are theX,Y, Z coordinates of a reference white patch.

Other color spaces have also been developed aiming at énfjdhne interesting struc-
tures in other image analysis areas. For example, the YCbIOr space has been
widely applied in facial and skin detection [Garcia & Tzast 1999][Phung, Bouzer-
doum & Chai 2005], the HSV in food assessment and fungi dete¢bDu & Sun
2005][Ihlow & Seiffert 2004], and the CIE-Luv in diabetesdaretinopathy detec-
tion [Luo, Chutatape, Li & Krishnan 2001][Zhang & Chutatap@04]. However,
the appearance of new multi-spectral equipments that aptore than just the tri-
chromatic bands, have emerged the need of finding new tranafmns that include
the information provided by the new bands.

An approach that has been considered to overcome this pnablprincipal compo-
nent analysis (PCA) [Jollife 2002]. This multivariate sttital technique consists
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(& Two dimen- (b) 1st PC
sional dataset

(c) 2nd PC (d) Bimodal pro-
jection

Figure A.1: A two dimensional dataset, its two principal gonents (PC) and a bi-
modal projection of the dataset.

in an eigenvalue analysis of the covariance matrix for a isialiensional stochastic
variable. Given a random-dimensional variable, thé" principal component is the
linear combination, with normed coefficients, of the oragimariables which is uncor-
related with the — 1 first principal components and it has the largest variandgs T
i'" principal component correspond to the eigenvector aswatisith thei’* largest
eigenvalues of the covariance matrix. PCA has the propkdty frequently, some of
the components reveal the wanted structures.

However, although this technique has successfully beeliegiip some data reduction
and classification problems [Turk & Pentland 1991], it is alole to provide a suitable
solution in other classification problems. An example o$ tisi illustrated applying
PCA to the dataset displayed in Figure A.1 (a). This synthaditaset was generated
according to a mixture of two Gaussian populations with Z0&0d 10000 data points,
1

0 25
tively. The two principal components obtained are shownigufe A.1 (b) and (c).
Note, that none of the two principal components are ablefiars¢e the Gaussian pop-
ulations. Moreover, it is shown in Figure A.1 (d) that it isgstble to find a bimodal
one-dimensional projection that separates both populstidherefore, there exits a
need to find an optimal projection from a classification pointiew that enhances the
different structures in the image.

means [0,0] and [0,10] and covariance matri eg 190 and , respec-
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This need is added to the already existing challenge of calig precise and repro-
ducible images so images collected at different times cacigely be compared. Dif-
ferent research projects in color calibration [Vhrel & Tsa 1999] and illumination
control [Vander, Haeghen, Naeyaert & Lemahieu 2000] haea lakeveloped with the
goal of achieving these two goals. The consequence of thedes is the appearance
of new equipments which aims at obtaining precise imagedsinviast years. For in-
stance, in dermatology, Magliogiannis [Maglogiannis Z00&veloped a system that
aimed at reducing the shadows produced by the human bodgtovev However, as it
was shown by Gutenev [Gutenev, A., Skladnev & Varvel 2001dré¢ are at least two
current problems in the acquisition of the images: speadfiection and misalign-
ments. Lack of precision in the image acquisition has beemgmted using suitable
methods to objectively evaluate the images.

In this work, two solutions are proposed to deal with the twoadions: an imaging
system to collect precise and reproducible images and amitign to find suitable
projections which easily segment interesting areas inrfages. In section two, an
integrated imaging system to obtain accurate and reprbliusiulti-spectral images
is proposed. The well defined and diffuse illumination of tuically closed scene
aims to avoid shadows and specular reflections. Furtherniloeesystem has been
developed to guarantee the reproducibility of the coll@ééteages. This allows for
comparative studies of time series of images. In order tomeed the interesting struc-
ture of the images, a novel segmentation algorithm, thedian pursuit, is presented
in section three. This algorithm combines the informatioovjled by all the different
spectral bands to enhance the main structures of the imdgepdrformance of both
the equipment and the histogram pursuit algorithm to aehike above commented
goal is tested and shown in section four. The obtained ieamitl extensions of the
developed work are discussed in section five.

A.2 Collecting multi-spectral images

The acquisition of the multi-spectral images was conduictedllaboration with Videome-
ter’. The proposed equipment, Videometer Lab, is composed aharea light emit-
ting diodes and a integrating sphere. The equipment has destigned to produce
completely diffuse light that avoid shadows and speculiectons. The system ac-
quires the multi-spectral images by fast strobe illummrafrom light emitting diodes
(LEDs) at up to 20 different wavelengths.

Figure A.2 left shows the equipment. Figure A.2 right digpla sketch of the set-
up. It displays the position of the camera and the diodeslénsf the sphere and the

2www.videometer.com
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(a) Imaging equipment (b) Light set-up

Figure A.2: The camera system.

(a) Diodes (b) Sheets

Figure A.3: Positioning of the diodes in the camera set-upcaiibration sheets.
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place where the object is located. Figure A.3 displays thstipo of the diodes in-
side the equipment. The camera resolution 1880 x 1035. In order to increase the
accuracy and reproducibility of the images a radiometrit argeometric calibration
are conducted [Folm-Hansen 1999]. The radiometric caldmaaims at eliminating
problems with uneven intensities and vignetting, and tadaiadize the measurement
scale. With this goal in mind two sheets of the natural col@tem (NCS) from the
Scandinavian Color Institute were selected as calibratigyets (NCS 1500 and NCS
8000). The equipment collects an image of each sheet. Then-fimear calibration
function is estimated and applied to each image pixel dutiegurther image acqui-
sition. The geometric calibration is conducted to make $ha¢ aberrations, such as
distortion, decentering and thin prism aberrations, doatffaict the accuracy of the
images. An image of a white sheet with black spots is grabh#dtive camera for
each wavelength. This calibration target is shown in figui@rght, together with the
radiometric sheets. The collected multi-spectral imagestaesholded and the center
of gravity of each spot is calculated. A third order polynahis applied to warp the
centers of gravity to a given target. This is done for eachdbarthe multi-spectral
image in order to assure co-site registration.

A.3 Segmenting the lesion: Histogram pursuit

The core of the proposed segmentation algorithm is foundigdman’s projection
pursuit algorithm [Friedman & Tukey 1974]. Projection puitéPP) is a statistical
technique developed to find interesting structures in the. dateresting structures are
found via linear projections in which the distribution oktprojected data differs as
much as possible from the Gaussian distribution. Friedratifies the non-interest
of the normal distribution based on a series of propertiesllathe projections of a
multivariate normal distribution are normal or that, for xefi variance, the normal
distribution has the least information (Fisher, negatingapy). The deviation from
a Gaussian is measured through an index that measures thenuoality of the pro-
jected data.

In 1D, Friedman looks for a projection of the sphered datX Z: o’ Z, such that the
index

I(a) =

(2j +1) % Z Pi(2®(atz) — 1)

|~

7=1

is maximized. P; is the Legendre polynomium of ordgrand ®(.X) is the standard
normal density function.
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| (d) - N(é) - (10‘) ‘“

Figure A.4: Top row: a) A two dimensional dataset composetivofGaussian popu-
lations. b) Histogram of the projected data obtained udiegcombination found by
PP. c¢) Histogram of the projected data obtained using thebgmtion found by HP.

Bottom row: d) A three dimensional dataset composed of t@a@essian populations.
e) Histogram of the projected data obtained using the coatioim found by PP. f)

Histogram of the projected data obtained using the comioim&und by HP.

Once an interesting projection has been found, the infoomatbtained by this pro-
jection is removed and the algorithm looks for the next infative view. This process
consists in transforming the data so that the density ofrdmesformed data&r**! is

as close as possible to the old dataunder the constraint that its marginal density
is normal. This produces the closest distribution in theseanf the relative entropy
distance measure

/ log(Z* ) ZF ) 2% dz

As it can be observed in Figure A.4 (b), Friedman’s algorifimmds a projection that
separates the two populations embedded in the synthetisetanalyzed previously
with PCA. This indicates that, from a classification pointvéw, maximizing the
non-gaussianity of the projected data is a more approperdezion than to maximize
the variance. However, maximizing the non-gaussianityhefrojected data is too
general. This may in datasets with more than two classesatasets that have some
non-gaussian variables, e.g. uniform variables, resuherprojection found by PP to
be not optimal and thereby require more than just one piiojectThis would cause
the computational inconvenience of having to analyze eagjegtion found in order
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Figure A.5: Region where HP calculates the index.

to discover the combination that enhances the desiredsteucr his fact is illustrated
in Figure A.4. Figure A.4 (e) shows the histogram of the datgguted on the first
projection obtained by PP of the dataset illustrated in Fegh.4 (d). This dataset
is composed of three Gaussian populations with 5000 datdgpeach, meand0 —
1], [1015], [2215] and covariance matric sg 8 ) g g and< 3 2 . Note,
that the first projection found by PP discriminates one ofgbpulations with respect
to the others. If the desired structure is not the discriteidathen a second projection
must be obtained in order to discriminate the wanted stractdowever, there exists

a one-dimensional projection that separates all of theethopulations.

In order to find this combination, the proposed algorithm ifiesl Friedman’s index in
order to incorporate information about the number of stireg included in the image.

If the image to be analyzed is assumed to hawdasses, the index associated to a
specific projection is defined as the- 1 largest area between two consecutive modes
in the histogram of the projected data. The region where tRalgorithm calculates
its index is labeled with andrea and displayed in Figure A.5. i/,,;, represents the
minimum histogram value calculated in the two maximums tledine the arear(and

Y), Npins 1S the number of bins between these two maximums, /(i is the value of
thei'" bin, then the index is calculated by:

I\ = (i min(H (1), Mmm)> — M,in X Npins-

Notice that this index is scale invariant. If the found condtion is) ;"% «;B;,
then the combinatiofy(>_**"* «;B;) ,6 € R, has the same index. In order to force
the algorithm to provide only projections withmodes, the algorithm gives an index
of zero to all projections with a number of modes different:toA pseudo-code to
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calculate the index is given by:

Let H be an obtained histogram and n the
nunber of classes in the inage

1- Snmooth H to renpve insignificant naxina.

2- Detect all the |ocal nmaxi m of the
snoot hed histogram Set n_nax to the
desired nunber of maxinmunms in H

3- If n_max is equal to n then
3.a- FORi equal 1 ton-1
find the area between maxi mumi and
maxi mum i +1
3.b- Index equal to the n-1 |largest area.

4- El se
| ndex=0.

5- Return | ndex

The optimizationin this work is conducted using geneticrajtation [Goldberg 1989].

A.4 Experimental results

In this section, three experiments are conducted to tesidberacy and applicability
of the proposed equipment and segmentation techniques firfhexperiment aims
to show the accuracy and reproducibility of the obtainedgesa The last two ex-
periments show the results obtained by the segmentatidmmitpee in two different
databases: a dermatological and a mycology database.

Experiment 1. Testing the performance of the Videometer-
Lab to collect reproducible and accurate images

The first experiment aims at demonstrating the accuracyeo$yistem and the repro-
ducibility of the acquired images. Reproducibility meahattif the same image is
collected at different times, the results should be contpararhis fact is really im-
portant when the objective is to detect and evaluate chandatemporal images. It
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Figure A.6: Variation in the measurements of the NCS resfzetihe time that the
equipment was turned on in the amber band, 592 nm.

guarantees that the differences in two images taken soneegjiart do not depend on
the conditions under which they have been taken. For instdahis quality is of prime
importance in applications such as evaluation of dermgto#b lesions where it is im-
portant to ensure that differences in the obtained measi@@snd only of changes in
the lesion.

In order to assess the reproducibility of the images, thepeagent was kept turned
on during 7 hours. The set-up was calibrated every hour aagés of four Natural
Color System sheet3{00/V, 2500N, 5000V, 8500N) from Scandinavian Color Insti-
tute were collected. The NCS sheets are all painted and heryesmall variation.

The mean of each spectral band of the collected images wadat&d. If the system
performs accurately, the mean should not vary significatit véispect to time. Marks
were placed in the NCS sheets to calculate the mean in appatedy the same area.

Figure A.6 shows the evolution of the measures with resetitte of the four NCS
sheets in the amber ban&@nm). Results obtained in the other bands are similar to
that obtained in this band. From the figure, it is noticed thatvariation is minimal.
After the first hour, where the equipment reached thermalibgum, the differences
are inappreciable. Moreover, for fixed NCS sheet, the vaegat the obtained mea-
surements for each band is minimal.

In table A.1, the variance of the measurements obtainedeicn band of the different
NCS sheets is displayed. This small variance guaranteesmtasures obtained in the
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Band/NCS numbef 1500 N| 2500 N | 5000 N | 8500 N
Blue 472 0.0007| 0.0105| 0.0236| 0.0348
Green 515 0.0002| 0.0012| 0.0028| 0.0074
Amber 592 0.0013| 0.0371| 0.1295| 0.1563
Red 630 0.0012| 0.0078| 0.0199| 0.0222
Near IR 875 0.0010| 0.0062| 0.0434| 0.0366
Ultra Blue 428 | 0.0058| 0.0057| 0.0141| 0.0320
Cyan 503 0.0003| 0.0011| 0.0023| 0.0086
Orange 612 0.0004| 0.0066| 0.0234| 0.0319
Near IR 940 0.0001| 0.0076| 0.0501| 0.0726

Table A.1: Variance of the seven means obtained for each ME& #n each spectral
band.

image depend only on the structure being analyzed and itshmwobustness of the
equipment.

Experiment 2:Segmenting 9 multi-spectral band psoriasis i m-
ages

The goal of the third experiment is to assess the use of mpéctral images when
analyzing dermatological lesions. Nowadays, the medreaking of dermatological
diseases is imprecise. The main reason is the lack of seitdipctive methods to eval-
uate the lesions. Presently, the severity of the diseas®isd by doctors just through
their visual examination. Doctors visually assess theotesind make scorings and
journal notes of the current condition. These notes andgpsrsome photographs are
usually the only memory of what the lesion looked like at tberesponding visit. Im-
age analysts have tried to provide different solutions éséproblems during the last
decades [Engstrom, Hansson, Hellgren, Tomas, Nordin,eviin& Wahlberg 1990].
However, difficulties in correctly acquiring the images [&nev et al. 2001], the lim-
ited information provided by the trichromatic images anelphesence of artifacts such
as hair [Chung & Sapiro 2000] cause that precise and obgestigres of the severity of
the lesions cannot be obtained. In order to evaluate thditeatusing multi-spectral
images, a collection of eight multi-spectral psoriasisgasmwere collected in collab-
oration with the dermatological department of Gentofte pitas in Denmark. These
multi-spectral images were composed of nine spectral beardgng from 472vm to
940nm.

The nine bands of one of the collected images together wih #ssociated wave-
lengths are displayed in Figure A.7. It is seen that one obtrels mainly shows the
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Figure A.7: The nine multi-spectral bands of one of the insag®p Left: ultra-blue,
428. Top Center: blue, 472. Top Right: Cyan, 503. Middle Lgfeen, 515. Middle
Center: amber, 592. Middle Right: orange, 612. Bottom Leétd, 630. Bottom
Center: near infrared 875. Bottom Right: near infrared 940.

hair and the veing580nm). This situation was also observed in the other psoriasis im
ages which presented these two structures (Figure A.8 (\[B)). This fact indicates
that the multi-spectral images provided a more informatggesentation of the lesion
than the traditional RGB images. This extra information barused to obtain a more
precise evaluation of the lesion where hair and veins areveth

In order to statistically assess the information providgdhe extra bands, the im-
ages were segmented using the HP algorithm. The HP algofdabnd a projection
where the lesion exhibited a considerable contrast witheetsto the other structures
involved in the image (Figure A.8 (C) ).The data in these getipns are distributed
approximately according to a mixture of two Gaussians. Tdrameters of this model
can be estimated [Taxt, Hjort & Eikvil 1991] and the lesiottragted via discriminant
analysis. Results of the segmentation are shown in FiguB€[). It is observed that
the nine multi-spectral bands provide enough informatmprecisely separate the le-
sion from the other parts of the images. The segmented invegresused to assess the
information provided by the extra bands in terms of Mahaktasalistances between
classes. Given two class&sandY” with observationsyy, ..., X,,, belonging toX and
observationg7, ..., Y,, belonging toY, Mahalanobis distance betweéhandY is
defined by

(1 — p2) ™S (g — pa),
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(A)

(B)

©

(D)

Figure A.8: (A) Four psoriasis images. (B) Spectral b&stnm. (C) Projection
image founf by the HP algorithm. (D) Lesion Segmentation.
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Image Ma}halanobls distance Mahalanobis distance
using the RGB bands . .

using the nine bands
1 10.0793 12.8460
2 2.9048 10.3904
3 7.3857 12.2284
4 14.8222 17.4322
5 1.8920 23.4698
6 23.4068 38.4291
7 7.1864 9.9264
8 18.0009 31.8217

Table A.2: Mahalanobis distances between the lesion anakliee structures involved
in the image.

wherey; andpu, are the mean of classésandY respectively. and _ is defined by

7’L1+7’L2—2

X = 7(2(&' - X)(Xi - X)" + Z(Y; -Y)(Yi-Y)T).

The mahalanobis distances, for each of the eight imagesgebatthe lesion and the
class composed of the other structures in the image (heslthy hair,...) using the
nine bands and using only a RGB approximation are shown ifeTAl2. It can be
observed that the distance increases considerably wherrth&ands are used. How-
ever, a more meaningful measure based on these measurestasigtically test the
null hypothesis that the six extra bands does not contritaugebetter discrimination.
Specifically, if the extra six variables do not contributetbetter discrimination, then

_ ny+mn,—p—1 ning (D, — Dy)
q (n1 + ng)(nl + ng — 2) + nlnqu

Z

follows aF'(q,n1 4+ n2 —p— 1) distribution, where:; andn, are the number of obser-
vations on each clasg,is the total number of variableg,is the number of variables
that are to be tested if they do or do not contribute to a beigarimination andD,,

and D, are the mahalanobis distances between classes using alribbles and all
the variables except the lagstResults showed that statistically the null hypothesis was
rejected with a significance level of 1%. This means thatadlkedix variables strongly
contribute to a better discrimination.
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Experiment 3:Segmenting 18 multi-spectral band fungi im-
ages

Classification of fungi is of importance for several reasdasa further phylogenetic
study or to reveal new species or isolates to use in e.g. foatkdical industries.

Traditionally, the classification has been performed bymse# chemical and visual
studies of the fungi. In the last decade digital image amsalyas also been utilised for
the classification, but till now it has been based on RGB imagan [Hansen 2003].

The species can be differentiated by macroscopic featarespscopic features and
behaviours like e.g. thermophilicity (whether or not thenagrow at high tempera-
tures). The macroscopic features are the ones capturee lipége acquisition.

The Penicillium genus was chosen due to the large knowletigadwell identified

isolates. Penicillium is a filamentous fungi also known asdn®lost of the species
are found in the soil and in the air. They are known to produgeatoxins. The

mycotoxins can cause infections when in contact with hunidmasigh, depending of
the type of mycotoxin. The fungi can also be used to produtibiatics, antitoxins

and other drugs.

Multi-spectral images with 18 wavelengths are examineded&lspecies are examined:
polonicum, venetum and melanoconodium of the Penicilli@mgs. It is assumed that
the many spectra additionally can reveal some chemicatrrdton about the fungi
compared to the ordinary RGB images. Within each speciediffi@rent isolates were
chosen, all obtained from the IBT Culture Collection hel@aCentrum-DTU. They
were chosen with geographical origin in different courstie get a greater variance
within each specie. Each isolate was grown on three differezdia: OAT (Oatmeal
Agar), YES (Yeast Extract Sucrose Agar) and CYA (Czapek trEagact Agar), with
three replicas on each medium to obtain the variance wilgh &mlate. The isolates
are grown on three media to get acces to more informatiors iSlthe usual practice
when isolates are to be identified. In total there are 108 knp

The first step is to segment the background, the petri dishtl@dungi into three

classes. The next step is to examine each of the three clasdethen repetively

examine each of the subclasses obtained for furthere slas$éa subclass no longer
can be split in two or more. The interest is to segment theiffrogy the background

as well as the petri dish, and if possible extract informatb differences within the

fungi. This is done in order to extract features to be used further classification

of the species. The first step is straight forward in all caglesre as the following

examinations differ depending on the appearance of theithdils.
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Figure A.9: Segmentation of a a melanoconidium, polonicamnad, a venetum species
all on the YES medium with IBT numbers: 3445, 22439 and 21Ehectively. First
coloumn illustrates RGB representations of the multi sp¢ohages. Second coloumn
illustrates the first segmentation in to three classes. fiiné toloumn illustrates the
final segmentation.

Results of the segmentation

Figure A.9 shows examples of segmentations within the imadehe three species
grown on the YES medium. The fungi are well seperated fronh Ipetri dish and
background, and furthermore, the lighter edge of the fuagilee separated from the
darker center of the fungi. The latter can be usefull sineddifferent species differ in
appearance at this point. The images are foremost spliBintasses; the background,
the medium and the fungi. As this is not sufficient the mediuna #ne fungi classes
are further examined for subclasses. Subdividing furtherjighter edge is separated
from the medium class and small segments of the medium isaeparom the fungi
class.

Figure A.10 illustrates two examples on the OAT medium whieedighter edge of the
fungi are segmented from the medium classes. Another exanfijplmelanoconidium
on YES medium is shown. In this case the lighter areas of thgifare classified as
fungi first time, but partitioning further gives a subdiggiof the fungi area.

In Figure A.11 the division of the segmented medium was peréd using three
classes. For the venetum isolate in the middle row the segadungi was divided
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Figure A.10: Segmentation of a polonicum, and two melanmtom species on the
OAT and YES media with IBT numbers: 22439, 3445 and 1003heesvely. First
coloumniillustrates RGB representations of the multi sp¢chages. Second coloumn
illustrates the first segmentation in to three classes. fiiné toloumn illustrates the
final segmentation.

further as it contained some of the medium. The edge of thgi fwas not identified
when first dividing the segmented medium, but at the follgvegmentation. The
divisions of the media may be usefull for examinations of themicals the fungi
produce during the growth.

Figure A.12 illustrates isolates where the fungi can beddigiinto more subgroups
than two; the edge and the center of the fungi. Two melanooaomi isolates and one
venetum isolate are shown on the CYA and YES media.

Segmentations of multi-spectral images of the three Puami species on the three
different media have been conducted. Examples from eaclpdrave been illustrated.
There are three examples where the appearance of the fuggsbmne variance within
the 9 groups and these are also illustrated. The resultsrshiostrate that the fungi

are well separated from the media for different isolatestHemmore, the method can
be used to find subclasses within the fungi.
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Figure A.11: Segmentation of a polonicum and two venetuncispeall on the CYA
and OAT media with IBT number: 15982, 23039 and 16215, rasmdyg. First
coloumn illustrates RGB representations of the multi sp¢ohages. Second coloumn
illustrates the first segmentation in to three classes. fiiné toloumn illustrates the
final segmentation.
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Figure A.12: Segmentation of a melanoconidium and two wenetpecies all on the
CYA and YES media with the IBT numbers: 21534, 23039 and 215&pectively.
First coloumn illustrates RGB representations of the nspectral images. Second
coloumn illustrates the first segmentation in to three eas$he third coloumn illus-
trates the final segmentation where each of the three cléisstefound are examined
for further divisions.
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A.5 Conclusions

In this work, a system to collect precise and reproducibléimspectral dermatologi-
cal images has been proposed. The system can collect upnoytdifferent spectral
bands. These bands are composed by the RGB tri-chromatitaideands plus seven-
teen extra bands that can be choosen in the range going ftaarblie to near infrared
(from 395 nm to 970 nm). The reproducibility of the equipmbat been tested. A
novel algorithm that combines the information of all theps bands in order to seg-
ment the interesting areas have also been provided. Redilttate that the equipment
and the segmentation algorithm are suitable tools to meadwanges in the evolution
of dermatological disease. Furthermore, it has been obdehat the six extra bands
provide more information than the classical RGB images.sTihiiormation can be
used to remove noise such as hair or occlusions and to obtai@ pnecise measures
to characterize the lesion. Furthermore, the applicgtolithe equipment and the seg-
mentation algorithm was tested on a second data base ofifuages. It was shown
that fungi as well as some structures in the fungi can be setpido obtain features
for further classification. Results point out the proposedding system as a suitable
tool for obtaining measures that characterize the objeudgustudy.
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Appendix B

Mycotoxins produced by P. mel, P.
pol and P. ven

Natutal products produced by the three species [Frisvad 2084]:

P. melanoconidium

1 Penicillic acid, dehydropenicillic acid, orsellinic dci
2 Verrucosidin, normethylverrucosidin

3 Xanthomegnin, viomellein, vioxanthin

4 Penitrem A, B,C,D, E, F

5 Roquefortine C & D, melagrin, oxaline

6 Sclerotigenin

P. polonicum

1 Penicillic acid, dehydropenicillic acid, orsellinic dci
2 Verrucosidin, normethylverrucosidin

3 Verrucosidin, verrucosinol, puberuline A, fructigeniAedehydroverrucosine,
demethylverrucosine, rugulosuvine, lecytryptopharkdtbpiperazine
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4 Cyclopeptine, dehydrocyclopeptine, cyclopepin, cyelu, 3-methoxyviridicatin,
viridicatol

5 Anacine

6 Asperterric acid

7 Methyl-4-(2-(2R)-hydroxyl-3-butynyloxy) bezonate

8 Nephrotoxic glycopeptides

P.venetum

1 Cyclopeptine, dehydrocyclopeptine, cyclopepin, cyelogd, 3-methoxyviridicatin,
viridicatol

2 Terrestric acid

3 Roquefortine C

4 Atrovenetins

5 Corymbiferan lactone C & D, corymiferone



Appendix C

RGB representations of fungi

Some of the images seem more yellow than the visual appearamparticular vene-

tum on CYA, since agar as well as the red liquid drops on tofhe¢ samples are
see-through, and hence the wavelengths for green lightilireftected by the agar or

the green fungi underneath the drops, respectively.
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Figure C.1: RGB representation of melanoconidium on OAT.
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Mel - YES Mel - YES
Mel = YES Mel = YES

Mel - YES Mel - YES Mel - YES
Mel - YES Mel - YES Mel - YES

Figure C.2: RGB representation of melanoconidium on YES.
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Mel - CYA Mel - CYA Mel - CYA

2
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Mel - CYA Mel - CYA Mel - CYA

®
®

Figure C.3: RGB representation of melanoconidium on CYA.
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Pol - OAT Pol - OAT Pol - OAT

Pol - OAT Pol - OAT Pol - OAT

Pol - OAT Pol - OAT Pol - OAT

Pol - OAT Pol - OAT Pol - OAT

Figure C.4: RGB representation of polonicum on OAT.
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Pol - YES

Pol - YES

Pol - YES

Pol - YES

Pol - YES

Pol - YES

'

Pol - YES

Pol - YES

Pol - YES

Pol - YES

Pol - YES

Pol - YES

Figure C.5: RGB representation of polonicum on YES.
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Pol - CYA
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Pol - CYA
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®

Pol - CYA

Pol - CYA

Pol - CYA

Pol - CYA
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Pol - CYA
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Figure C.6: RGB representation of polonicum on CYA.
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Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven — OAT

Ven - OAT

Ven — OAT

Figure C.7: RGB representation of venetum on OAT.
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Ven - YES

Ven - YES

Ven - YES

Ven - YES

Ven - YES

Ven - YES

Ven - YES

Ven - YES

Ven - YES

Ven - YES

Figure C.8: RGB representation of venetum on YES.



156

CHAPTER C. RGB REPRESENTATIONS OF FUNGI

Ven — CYA
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Figure C.9: RGB representation of venetum on CYA.



Appendix D

Mathematics and Statistics

D.1 Approximation of U-distribution by F-distribution

Theorem A[Conradsen 2004 Let U beU(p, ¢, r)-distributed and

1 P+¢ =5
t = =
PO PP #S
1
vo= 5@2rtg-p-1)
Then
p_ LU vt 1 5p

Ut Pq
is approximately distributed as

1
F(pg,vt+1— 52961)

The approximation is exact if eithgror ¢ equals 1 or 2.
Proof Omitted.

D.2 Three-sided Analysis of Variance

157
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| Variation | Formula for calculating SS

M
3
3-4-3.> (Xp. — X)?
k=1
S
3
3-4-3.> (X, - X)
=1
MS
3 3 - - -
3-4-) N (X — X — Xy + X)?
k=1 =1
I(S)
3 4 ~ ~
3-3-) ) (X — X
I=1 j=1
MI(S)
3 4 B - - -
3-3-) > (Xpy — Xp — Xy + X)%+
k=1 j=1
3 3 4 ~ ~ ~ ~ ~ - - -
33 YO (Kuj— Xt — Xy = Xij+ X + X1 +X ;- X)
k=1 I1=1 j=1
R(MSI)
3 3 4 3
DD (K — Xi)?
k=1 =1 j=1 v=1
Total
3 3 4 3 - B
2222 K = X)
k=1 I=1 j=1 v=1

Table D.1: Sums of Squares for models [Conradsen &002



D.2. THREE-SIDED ANALYSIS OF VARIANCE

| Variation | E(SS/) | Test against
M 02 +3-3-4-0% | R(MSI)
S 02+3-3-4-0% | R(MSI)
MS 02+3-4-0%, | R(MSI)
I(S) 0 +3-3-0% | RIMSI)
MIS) | o®+3 0, | RMSI)
R(MSI) | o? Total

Table D.2: Expected Sums of Squares for Model 8.2 [Conrad86&).

| Variation | E(SS/) | Test against
M 02+3-0MI(S)+3 3-4-0% MI(S)
S 02 +3- 0%y +3:3 07 +3-3-4-0% | I(S)
MS 0%+ 3 0% + 34 0%s MI(S)
I(S) 0% +3- 035+ 33 0%g MI(S)
MI(S) o2 +3.0 1(S) R(MSI)
R(MSI) | o2 Total

Table D.3: Expected Sums of Squares for Model 8.3 [Conragd86&,).
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D.3 Hotelling’s T?-test

For two normallly distributed classes < N(u,,X) andm, < N(u,, ) of ny
andn, observations ang variables, respectively, Mahalanobi’s distance is given b
[Conradsen 2004:

A1,

D= (f1; — )" (g — fa) (D.4)

where 1, is the sample mean of clagsand 3 is the within group variance matrix
weighted byn; + n, — 2. Hotelling’s7>-test [Conradsen 206

Hy:py=pe VS, Hy:pg # po (D.5)

is given by the test size:

n+n,—p—1 ning 9

7 —
p(m “+ ng — 2) ny + No

(D.6)

which under the null-hypothesis i5(p, n; + ny — p — 1)-distributed.

D.4 Test of contribution to discrimination

Consider two normallly distributed classes < N(u,, %) andmy <« N(pu,, ) of

n, andn, observations ang variables, respectively. A test of the null-hypotesis that
the lastq variables do not contribute to the discrimination is giventbe test size
[Conradsen 2004:

ny + ng — P — 1 nan(Df) — Dlz)_q)

7 —
q (’fll + ng)(nl + Ng — 2) + nlnng_q

: (D.7)

whereDf) is Mahalanobi’'s distance based on the fipstariables. Under the null-
hypothesisZ € F(q,n1 +ny —p —1).



Appendix E

Results Fungi

E.1 Singular values

1050 1050
10° -
5~ N 10°
i} i T
107 ) \
|
10*100 10*50 .
0 1000 2000 3000 4000 0 2000 4000 6000 8000
10”° 10
10°
6 10° [T~
1072 I —
10—40 10—50
0 50 100 150 0 50 100 150

Figure E.1: Plot of singular values for the fungi datasetsO#&i. From upper left
corner: features from edge and fungi together, edge and f@&pgrate, linear combi-
nations of the visual bands to represent RGB and the thresdisadosest to RGB.
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107° \
107 ; 107
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Figure E.2: Plot of singular values for the fungi datasetsCo&\. From upper left
corner: features from edge and fungi together, edge and s@&pgrate, linear combi-
nations of the visual bands to represent RGB and the threedsarosest to RGB.

E.2 Analysis of Variance

E.2.1 RSS for ANOVA Tables

| Variaton]| SS | f| SSf |
M 3.45 - 10° 2| 1.72-103
S 2.51-103 211.25-10%
MS 1.28 - 104 413.20-103
I(S) 1.39-10% | 9| 1.54-102

MI(S) | 3.93-10% | 18] 2.18- 102
R(MSI) | 3.74-102 | 72 5.20 - 10°
Total 2,45 - 107 [ 107 | 2.29 - 102

Table E.1: ANOVA for the 95th percentile of difference beemelst and 11th spectra
of the dataset with fungi and edge in one.
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| Variation|  SS [ SSif |
M 2.92-103 2| 1.46-103
S 1.12-10° 2| 5.59- 102
MS 7.33-103 411.83-10°
I(S) 2.33-10% | 9| 2.58- 102
MI(S) | 5.63-10° | 18] 3.13- 102
R(MSI) | 3.47-10% | 72| 4.82-10°
Total 1.97-10* | 107 | 1.84 - 10

Table E.2: ANOVA for the 10th percentile of multiplicatioretwveen 1st and 12th
spectra of the dataset with fungi and edge in one.

| Variation|  SS f1 SSlif |
M 1.10 - 10° 2548104
S 2.34-10% 21 1.17-104
MS 5.18 - 103 411.30-103
I(S) 8.04-10° | 98.94-102
MI(S) | 1.05-10% | 18] 5.84- 102
RMSI) | 1.37-10° | 721 1.90 - 10!
Total 1.58-10° | 107 | 1.48-10°

Table E.3: ANOVA for the 1st PC of the dataset with fungi angesth one.

| Variation|  SS f1 SSlif |
M 4.08 - 104 2| 204-104
S 6.31-10° 213.16-103
MS 2.09 - 10° 41 521-107
I(S) 3.50-10% | 9 3.89- 10
MI(S) | 4.77-10° | 18] 2.65- 102
R(MSI) |9.45-10® | 72| 1.31-10?
Total 6.69-10* | 107 | 6.26 - 102

Table E.4: ANOVA for the 2nd PC of the dataset with fungi angesth one.



164 CHAPTER E. RESULTS FUNGI

E.2.2 Tests for univariate ANOVA

| Hy | Test Size | F-fractile |
0% =0 220107 = 0.02 | F(72,107)0.01=0.60
my =0, k=123 LI =332 | F(2,72)090 =4.91
s;=0,1=12,3 L3100 =242 | F(2,72)099 =4.91
msy=0,k=1231=123 S0 =617 | F(4,72)000 =3.59
i(s);y =0, j=1,2,3,4, 1=1,23 | 12410 = 297 | F(9,72)999 =2.66
mi(s)a = 0, k = 1,2,3,
j=1,2,3,4,1=1,2,3 218100 — 42.0 | F(18,72)999 =2.20

Table E.5: Tests based on Model (8.2) for the 95th perceuttiifference between 1st
and 11th spectra of the dataset with fungi and edge in one.

| Hy | Test Size | F-fractile |
0% =0 ﬁ;gi;}gg =0.03 | F(72,107)901=0.60
m =0, k=1,2,3 Tt =303 | F(2,72)090 =4.91
51=0,1=1,2,3 9100 =116 | F(2,72)099 =4.91
msu =0, k=1,2,31=1,2,3 L8107 — 380 | F(4,72)0.99 =3.59
i(s);y =0, j=1,2,3,4,1=1,2,3 | 2810 = 536 | [(9,72)0.99 =2.66

mi(s)o =0, k= 1,2,3,
j= 1,2,3,4, 1=1,2,3 31310% _ 64 8 | F(18,72)0.99 =2.20

4.82.100

Table E.6: Tests based on Model (8.2) for the 5th percenttiteudtiplication between
1st and 7th spectra of the dataset with fungi and edge in one.
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| Hy | Test Size | F-fractile |
0% =0 L = 0.01 | F(72, 107)001=0.60
mr=0, k=1,2,3 248100 — 2890 | F(2,72)099 =4.91
5;=0,1=1,23 LITIO — 616 | F(2,72)0.99 =4.91
msy =0, k=1,2,3,1=1,2,3 L30100 — 68.2 | F(4,72).99 =3.59
i(s);y =0, j=1,2,3,4, 1=1,2,3 | 3910 — 471 | F(9,72)p09 =2.66
mi(s)kj(l) = 0, k= 1, 2,3,
. 102
§=1,2,3,4,1=1,2,3 S8 =30.8 | F(18,72)9.99 =2.20

Table E.7: Tests based on Model (8.2) for the 1st PC of thesdateth fungi and edge
in one.

| Hy | Test Size | F-fractile |
0h =0 i1 = 021 | F(72,107)5,=0.60
m =0, k=1,2,3 200100 — 156 | F(2,72)099 =4.91
s1=0,1=1,2,3 S16100 — 241 | F(2,72)099 =4.91
msy =0, k=123 1=1,23 L2100 = 3.97 | F(4,72)099 =3.59
i(s)jp=0,7=1,2,341=1,2,3 f;g?;}gé =296 | F(9,72)090 =2.66
mi(s)riq) =0, k=1,2,3,

102

j=1,2,3,4,1=1,2,3 2050, =2.02 | F(18,72)0s =2.01

Table E.8: Tests based on Model (8.2) for the 2nd PC of thesdataith fungi and
edge in one.

| Hy | Test Size | F-fractile |
0% =0 220107 .02 | F(72,107)0.01=0.60
mp=0, k=123 L2100 = 7.90 | F(2,18)099 =6.01
s55=0,1=1,23 L2510 =815 | F(2,9)099 =8.02
msy =0, k=123 1=123]32000 = 147 | F(4,18)09 =4.58
0}, =0 LI — 0.71 | F(9,18)05 =0.71
afnl(s) =0 % =42.0 | F(18,72)p99 =2.20

Table E.9: Tests based on Model (8.3) for the 95th perceuitii&ference between 1st
and 11th spectra of the dataset with fungi and edge in one.
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| Hy | Test Size | F-fractile
0% =0 182100 = 0.03 | F(72,107)0,0,=0.60
my, =0, k=123 LIGI0T — 468 | F(2,18)097 =4.29
s1=0,1=1,2,3 S0 =216 | F(2,9)0s3 =217
msy =0, k=123 1=123] 1310 =586 | F(4,18)p9 =4.58
07, =0 25810 — 0.83 | F(9,18)94s =0.83
02 1 =0 313100 — 64.8 | F(18,72)999 =2.20

Table E.10: Tests based on Model (8.3) for the 10th pereeafimultiplication be-

tween 1st and 12th spectra of the dataset with fungi and edgesd.

| Hy | Test Size F-fractile
0% =0 LS0I0— (.01 | F(72, 107)0;=0.60
mp=0, k=123 LASI0 = 93.9 | F(2,18)099 =6.01
s5=0,1=1,2.3 LITIO = 13.1 | F(2,9)099 =8.02
msy =0, k=123 1=123][ 13010 =299 | F(4,18)p4 =2.29
07, =0 SOLI0C — 153 | F(9,18)079 =153
02 1 =0 BBLIOC — 30.8 | F(18,72)999 =2.20

Table E.11: Tests based on Model (8.3) for the 1st PC of thaesdatvith fungi and

edge in one.
| Hy | Test Size F-fractile
0% =0 g;gg;}gg =0.01 | F(72,107)901=0.60
m =0, k=123 2y =T7.0 | F(2,18)p99 =6.01
s;=0,1=123 216100 =813 | F(2,9)099 =8.02
msy =0, k=123 1=123]32% =197 | F(4,18)pss =1.99
07y =0 %: 147 | F(9,18)077 =1.48
o =0 265107 — 9,02 | F(18,72)g.9s =2.01

Table E.12: Tests based on Model (8.3) for the 2nd PC of thesdatvith fungi and

edge in one.




E.2. ANALYSIS OF VARIANCE 167

E.2.3 Tests for Multivariate ANOVA

| Hy | U g r | F | F-fractile |
0% =0, 0.010 | 72] 107] 0.06] F(144,212)0.,=0.70
my—=0, k=1,2,3 0.0141 | 2 | 72 | 264 | (4, 142)099 =3.45
=0, 1=123 0.0425 | 2 | 72 | 137 | F(4,142)0.99 =3.45
msy = 0,
k=123 1=1,23 0.00852| 4 | 72 | 175 | F(8,142)049 =2.64
i(8)zj) = 0,
j=1,2.34 1=1,23 0.0824 | 9 | 72 | 19.6| F(18,142)49 =2.06
mi(s)zkj(l) =0, k=1,2,3,
j=1,2.3,4,1=1,2,3 0.0312 | 18| 72 | 18.4| F(36,142)0.49 =1.77

Table E.13: Tests based on the multivariate version of M{®8l€l) and the variables;
99th percentile of difference between 4th and 6th spectlal@th percentile of differ-
ence between 1st and 12th spectra. The correlation betleeamtiables i = 0.40.
DAl & EN2.
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| Hy | U g r | F | F-fractile |
0% =0, 0.967 72| 107 | 0.02| F(144,212)701=0.70
my =0, k=1,2,3 0.0141 | 2 | 72 | 264 | F(4,142)04 =3.45
=0, 1=123 0.0407 | 2 | 72 | 141 | F(4,142)p0 =3.45
msy, = 0,
k=1,231=1,23 0.00245| 4 | 72 | 341 | F(8,142)09 =2.64
i(s)zj(l) =0,
j=1,2,34,1=1,2,3 0.101 | 9 | 72 | 1.69| [(18,142)y¢s =1.68
mi(s)zkj(l) =0, k=123,
i=1,2,341=1,23 0.0224 | 18| 72 | 22.4| F(36,142)009 =1.77

Table E.14: Tests based on the multivariate version of M{®8l€l) and the variables;
30th percentile of difference between 1st and 8th specttd @th percentile of differ-
ence between 1st and 12th spectra. The correlation betleamtiables i = 0.46.

DA2 & EN2.
H, | U g r | F | F-fractile |
0'%3 =0, 0.869 72| 107 | 0.11| F(144,212)70,=0.70
my =0, k=1,2,3 0.00199| 2 | 72 | 761 | (4, 142)09 =3.45
5=0,01=1,23 0.0469 | 2 | 72 | 128 | F(4,142)09 =3.45
msy, = 0,
k=1,2,31=1,23 0150 | 4 | 72 | 28.1| F(8,142)04 =2.64
i(s)zj(l) =0,
j=1,2,3,4,1=1,2,3 0.0909 | 9 | 72 | 18.3| F(18,142).4 =2.06
mi(s)zkj(l) =0, k=1,2,3,
j=1,2.3.4,1=1,2,3 0.0645 | 18| 72 | 11.6| F(36,142)0g9 =1.77

Table E.15: Tests based on the multivariate version of M{&8l€)) and the first two
PCs. For the features of the edge and fungi in one. The ctoelaewtween the
variables isp = 0.00. PC1 & PC2.
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| Hy | U gl r | F | F-fractile |
oZ =0, 0.910 | 72| 107] 0.06] F(144,212).0,=0.70
my =0, k=1,2,3 | 00610 2 | 18 | 25.9| F(4,43)09 =3.93
5=0,1=1,23 0.0384| 2 | 9 | 16.4| F(4,16)0.9 =4.77

msy = 0,

k=1,2,3,1=1,2,3|0.0583| 4 | 18 | 13.3| F(8,34)p09 =3.09
o—f(s):o 0.469 | 9 | 18 | 0.87| F(18,34)939 =0.87
o2y =0 0.0312| 18| 72 | 18.4| F(36,142)099 =1.77

Table E.16: Tests based on the multivariate version of M{®818l) and the variables;
99th percentile of difference between 4th and 6th spectlal@th percentile of differ-
ence between 1st and 12th spectra. The correlation betweesmtiables i = 0.40.

| Hy | U g r | F | F-fractile |
0% =0, 0.967 | 72| 107 | 0.02| F(144,212)7.0,=0.70
m, =0, k=1,2,3 | 00427 2 | 18 | 32.6| F(4,43)0.99 =3.93
5=0, 0=1,23 0.0100] 2 | 9 | 359 F(4,16)0.99 =4.77

msy, = 0,

k=1,2,31=1,2,3| 00335 4 | 18 | 19.0| F(8,34)p9 =3.09
o2, =0 0.625 | 9 | 18 | 0.50] F(18,34)00; =0.52
o2, =0 0.0224| 18| 72 | 22.4| F(36, 142)0g0 =1.77

Table E.17: Tests based on the multivariate version of M{®818l) and the variables;
30th percentile of difference between 1st and 8th specttd @th percentile of differ-
ence between 1st and 12th spectra. The correlation betieeamtiables i = 0.46.

| Hy | U g r | F | F-fractile |
o2 =0, 0.869 | 72| 107] 0.11] F(144,212)9,=0.70
m, =0, k=1,2,3 |0.00028] 2 | 18 | 79.7| F(4,34)0.00 =3.93
5=0,01=1,23 0154 | 2 | 9 | 6.19| F(4,16)0.99 =4.77

msy =0,

k=1,2,3,1=1,2,3]0.460 | 4 | 18 | 2.02| F(8,34)p9, =1.98
0-22(3) =0 0.323 9 | 18 | 1.43| F(18,34)ps2 =1.43
Ufm(s) =0 0.0645 | 18| 72 | 11.6| F'(36,142)999 =1.77

Table E.18: Tests based on the multivariate version of M¢{&i€l) and the first two
PCs. For the features of the edge and fungi in one. The ctoelaetween the
variables isp = 0.00.
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E.3 LARS-EN with dummy variables

(a) Train, 1 vars, 1st split (b) Test, 1 vars, 1st split

(c) Train, 1 vars, 2nd split (d) Test, 1 vars, 2nd split

Figure E.3: Misclassifications 2-fold CV on YES medium. Twarfgionings of data
has been used.
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Figure E.4: Misclassifications for leave-one-out CV on OAg&dium.
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Figure E.5: Misclassifications for 6-fold CV on OAT medium.
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Figure E.6: Misclassifications for leave-one-out CV on CYAdium.
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(a) Train, 2 vars

RSSlesl

(b) Test, 2 vars

(c) Train, 9 vars

RSSiesl

(d) Test, 9 vars

Figure E.7: Misclassifications for 6-fold CV on CYA medium.
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Figure E.8: Misclassifications for leave-one-out CV on YE&dmm. Dataset of three
spectral bands closest to RGB.
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Rssnam
RSSlesl

(a) Train, 3 vars (b) Test, 3 vars

Rssnam
RSSlesl

(c) Train, 4 vars (d) Test, 4 vars

Figure E.9: Misclassifications for 6-fold CV on YES mediumatBset of three spectral
bands closest to RGB.
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Figure E.10: Misclassifications for leave-one-out CV on &&dium. Dataset of the
linear combinations of the 10 visual spectra to represer® RG
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Rssvam
RSSiesl

(a) Train, 1 vars (b) Test, 1 vars
25 30
20 25
4 g s
10 0
5 b 5
—
10 10 19\ 10° 10° 10 10 ui 10° 10
(c) Train, 2 vars (d) Test, 2 vars

Figure E.11: Misclassifications for 6-fold CV on YES mediubataset of the linear
combinations of the 10 visual spectra to represent RGB.



E.3. LARS-EN WITH DUMMY VARIABLES

179

Rssvam

Rssnam

g
15 T
g
10~ 10
5F 5
I
—
0
10° 10° 107° 10° 10° 10° 10 107 10
s S
(a) Train, 1 vars (b) Test, 1 vars
35
20 20
25 25
20| 320
4
15| LT
10| /" 10
5] 1 5
10° 10 10 10 10 10° 10 107 10

(c) Train, 2 vars

(d) Test, 2 vars

Figure E.12: Misclassifications for leave-one-out CV on &&dium. Dataset of the
fungi and edge seprarate.
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Figure E.13: Misclassifications for 6-fold CV on YES mediuBataset of the fungi
and edge seprarate.
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Figure E.14: Misclassifications for leave-one-out CV on &&dium. Dataset of the
geometrical features.



