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Abstract

The application of a number of metaheuristic methods to multi-modal con-
tinuous functions is described. Metaheuristics included are Descent Methods,
Simulated Annealing, Tabu Search, Nelder–Mead simplex, Ant Colony Opti-
mization, Genetic Algorithms, Evolution Strategies, Memetic Algorithms and
Iterated Local Search. The Memetic Algorithm is chosen for implementation
based on comparison and a modified SWOT analysis as it has the best possibil-
ities of utilizing a divergent/convergent search strategy.

The problem solving process follows a creative approach where both brainstorm-
ing and SWOT analysis is used. A creative design process using brainstorming
outlines the final algorithm. A creative search strategy based on divergent and
convergent search is designed. In this way the metaheuristic search is guided
around the search space. Two versions of the final algorithm are implemented.
One, is the Memetic Algorithm with a divergent/convergent search strategy.
Second, is a combination of the Memetic Algorithm and Simulated Annealing
which is used to optimize parameter settings of the Memetic Algorithm.

The final algorithm is tested on five mathematically defined multi-modal con-
tinuous functions. The tests provide results similar to those found in the paper
[14].

The final algorithm is used for parameter optimization of a groundwater sim-
ulation model. This case is used to verify the final algorithm on a black box
problem, where the relation between input and output is hidden in the sim-
ulation model. Four different setups are used to compare manual calibration
to that made by the metaheuristic approach. The objective function value has
improved by 3 – 7 % in three out of four setups whereas, the objective value
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has worsened by 5% for one setup.

It is seen that the final algorithm is useful for parameter optimization of ground-
water models. Thus, it is concluded that the purpose of designing a method for
optimization of multi-modal continuous functions is fulfilled. Furthermore, cre-
ative thinking has been utilized in the problem solving process and the search
strategy design.

Finally, the project is evaluated in retrospective view. Parts of the design process
is described taking departure in the creative thinking of professional designers
studied by [5].



Resumé

Et antal metaheuristikkers anvendelse til optimering af kontinuerte funktioner
med flere optima beskrives. Descent Methods, Simuleret Udglødning, Tabu-
Søgning, Nelder–Mead simpleks, Myre Koloni, Genetiske Algoritmer, Evolutions-
Strategi, Memetiske Algoritmer og Itereret Lokalsøgning er inkluderet i beskri-
velsen. Den Memetiske Algoritme vælges til implementering baseret p̊a sammen-
ligninger og en modificeret SWOT analyse, idet den har de bedste muligheder
for at udnytte en divergent/konvergent søgestrategi.

Problemløsningen følger en kreativ fremgangsmåde, der benytter sig af b̊ade
brainstorming og SWOT analyse. En kreativ designprocess, der benytter brain-
storming bruges til at frembringe den endelige algoritme. P̊a den måde bliver
metaheuristikkens søgning guidet rundt i løsningsrummet. Der implementeres to
versioner af den endelige algoritme. Den ene er den Memetiske Algoritme med en
divergent/convergent søgestrategi. Den anden er en kombination af den Meme-
tiske Algoritme og Simuleret Udglødning, der bruges til at optimere parameter
værdierne for den Memetiske Algoritme.

Den endelige algoritme testes p̊a fem matematisk definerede kontinuerte funktio-
ner med flere optima. Testene viser resultater svarende til dem der præsenteres
i artiklen [14].

Algoritmen anvendes ydermere til parameter optimering af en grundvands simu-
lerings model. Dette problem bruges til at verificere at algoritmen kan optimere
et problem, hvor relationen mellem input og output er givet implicit i simulerings
modellen. Fire forskellige opsætninger af problemet bruges til at sammenligne
den manuelt kalibrerede model med modellen der er kalibreret vha. metaheuri-
stikken. Værdien af objektfunktionen er forbedret med 3 – 7 % i tre ud af fire
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opsætninger hvorimod den er forværret med 5 % i et enkelt tilfælde.

Det fremg̊ar at den endelige algoritme er nyttig i forbindelse med parameter op-
timering af grundvands simulerings modeller. Derfor konkluderes det at formålet
med at designe en algoritme, der er i stand til at optimere kontinuerte funktioner
med flere optima er opfyldt. Desuden er kreativ tænkning udnyttet i processen
til problemløsning samt i det endelige design af søgestrategien.

I sidste ende evalueres projektet retrospektivt. Dele af designprocessen beskrives
med udgangspunkt i den kreative tankegang for professionelle designere som er
studeret af [5].
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Chapter 1

Introduction

1.1 Purpose and Problem

This thesis seeks to combine creative thinking and methods of soft operations re-
search with metaheuristic optimization. The aim is to optimize problems given
by multi-modal continuous functions. The continuous function is defined by a
continuous search space of variables in contrary to combinatorial optimization
problems. This type of optimization problem can appear in different configura-
tions. Pure mathematical functions can represent the multi-modal continuous
properties. However, the continuous functions also appear in various real-life
applications.

Simulation models of different kinds provide output which can be processed
in an objective function. All simulation output is based on input parameters.
Metaheuristic optimization of an objective function that rely on such simulations
does not need to rely on a description or definition of the simulation model.
The ability of obtaining an output from the simulation model for any input of
parameters makes it possible to evaluate by an objective function. Problems
where the relation between the input parameters and objective value is not
described mathematically - or hidden by a simulation model - are referred to as
black box problems in this thesis. The purpose of this thesis can be formulated
by the following points:
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• To design a method for optimization of multi-modal continuous functions.
The method should be able to optimize both mathematically defined func-
tions and black box functions where an explicit description of the relation
between the solution input and the function output is not available.

• To merge creative thinking and methods of soft operations research with
metaheuristic methods and mathematical optimization.

• Utilize creative thinking in the problem solving process and the implemen-
tation of the search strategy.

In this thesis a groundwater simulation model represents the real-life applica-
tion. The choice of application is based on an idea developed through a case
study made in a special course by Tomas Netopil and the author of this thesis.
However, the simulation software used in this thesis is not the same as suggested
in the special course.

1.2 Structure of the Report

The thesis is structured in chronological order to describe the problem solving
process and the design of the metaheuristic method.

In chapter 2, it is described how different metaheuristics are applied to con-
tinuous functions. The description makes it clear what metaheuristics can be
applied and how to do it. Furthermore, chapter 2 works as a foundation to the
comparison and SWOT analysis presented in chapter 3. The SWOT analysis
concludes by choosing which metaheuristic method to use.

The actual search strategy is developed in chapter 4. The design of the search
strategy is initialized by a brainstorming session in order to come up with as
many alternatives as possible and maintain fluency in the ideas. Four main
tools are used for guiding the final algorithm - given in chapter 5 - in a diver-
gent/convergent way.

In chapter 6, the results are presented. The final design of the algorithm is
tested on five mathematically defined functions and a groundwater simulation
model. The groundwater simulation model represents a black box function. The
two types of results are compared to those of another metaheuristic presented
by [17] and to those found by manual calibration respectively.

Chapter 7 outlines different discussion points and a conclusion on the work is
given in chapter 8. The design process is evaluated in chapter 9.



Chapter 2

Overview of Metaheuristics

2.1 Introduction to the Description of Metaheuris-

tics

In the following a number of metaheuristics will be described. The aim is to
give an introduction to the metaphors from nature and/or social behaviour that
inspire the metaheuristics. Furthermore the procedure of the metaheuristic is
described often supported by pseudocode. Minimization problems are assumed
when nothing else is specified. This means the smaller the objective value of a
solution is the better. Assuming that fitness is a measure of something “positive”
the fitness of a solution x is given by: fitness = −f(x), where f(x) is the
objective value. If the fitness value is negative it can in some cases be necessary
to shift the values by adding a constant to make them positive.

The description of the procedure is focused on how to make the metaheuristic
work on continuous functions with a large number of local minima. Thus, the
description differs from the one given in books on combinatorial optimization.
The reason is that this section is seen as a prerequisite for choosing a meta-
heuristic for optimization of a continuous function. Naturally the pros and cons
of using a metaheuristic on combinatorial problems, can be very different from
the pros and cons of applying the same metaheuristic to continuous functions
with multiple minima.
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2.2 Neighborhood Based Metaheuristics

The first category of metaheuristics described in this thesis is based on neighbor-
hood search or point-to-point movement. A characteristic of these metaheuris-
tics is that the candidate solutions are somehow created by going from one
solution to another related solution. The relation between a current solution
and a candidate solution are diverse. Furthermore, the way to accept or reject
candidate solutions are different. In fact the rejection/acceptation procedure is
often closely related to the actual algorithm and its name.

The neighborhood based metaheuristics described in the following are all well
known in combinatorial optimization. The simplest is the Descent Method (DM)
or Hill Climber (HC). More interesting are the Simulated Annealing (SA) and
the Tabu Search (TS) which can escape local minima.

2.3 Descent Methods

2.3.1 Metaphor

Descent Methods1, Local Search (LS)2 or Hill Climbing (HC) as it is called for
maximization problems has its analogy to nature in the hill climbing metaphor.
The hill climber in its simplest form is an individual who wants to reach the
top. This is done by all the time taking a step in some random direction if that
step brings the individual higher. This is referred to as a greedy version of the
hill climber as it takes any step that is better not considering other possible
steps. Another version of the hill climber could have a look at all possible steps
to make and take the one that brings the individual highest referred to as the
steepest version.

2.3.2 Descent Methods for Optimization of Continuous
Functions

In order for a Descent Method to work on continuous problems a step has
to be defined. If x(h) is a vector representing a solution to the optimization

1minimization
2both minimization and maximization
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problem at some iteration h the next improved solutions is represented by x(h+1).
Pseudocode 2.3.1 illustrates how the Descent Method works.

A way to find the next improved solution is to take a random candidate x∗ from
a neighbourhood defined by x(h) +d ·z where z is a symmetric vector of random
numbers with mean zero, pseudocode 2.3.1 line 4. The factor d is determining
the step size and can be reduced for every j’th iteration throughout the running
of the algorithm if intensification is desirable, line 3 and line 11. In the case
where the objective value of the candidate solution f(x∗) is lower than the the
objective value of the current solution f(x(h)), the candidate solution is chosen
as the new solution x(h+1), line 6. The Descent Method stops when a local
minimum is reached. Working with continuous functions this means that the
objective value has not improved over a number of iterations N . Furthermore
for methods utilizing intensification the step size d has to be below a specified
threshold ǫ in order for the procedure to terminate, line 2.

Pseudocode 2.3.1 Procedure descent()

1: x
(0) = random solution

2: while f(x(h)) < f(x(h−N)) or d > ǫ do

3: for h = h to h = h + j do

4: x
∗ = x

(h) + d · z
5: if f(x∗) < f(x(h)) then

6: x
(h+1) = x

∗

7: else

8: x
(h+1) = x

(h)

9: end if

10: end for

11: d = βd, 0 < β < 1
12: end while

13: return x
(h)

2.3.3 Variations of Descent Methods

The Descent Method is probably the simplest metaheuristic. For combinatorial
problems the solutions could be represented by a binary vector. A neighborhood
is then defined by the solutions that are reached by flipping a single bit in the
binary vector. For that kind of neighborhood intensification is not defined by
a step size3. Thus, the algorithm becomes even simpler. The local minima

3intensification can be done in other ways i.e. by going from a 2-optimal neighborhood,
containing all the solutions occurring by flipping any combination of two bits, to 1-optimal
neighborhood where a single bit is flipped
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is easily defined for combinatorial problems by the iteration where no better
solution is found in the entire neighborhood. This feature leads to the two
different versions implied in section 2.3.1. The greedy version accepts a new
solution x∗ as soon as it is better than the current best solution xh. This is
along the lines of the definition of the Descent Method in section 2.3.2. The
steepest descent searches the entire neighborhood and accepts the solution x∗

which improves the objective the most, given that such a solution exists. This
is easily done for a neighborhood defined by flipping exactly one of the bits in
a binary vector representing the solution. There is a finite (and small) number
of solutions in the neighborhood.

The definition of the neighborhood on continuous variables in section 2.3.2, is
inspired by the one used for Simulated Annealing by [17]. In this case there is an
infinite number of potential candidates. Thus, the whole neighborhood cannot
be searched. A compromise could be the combination of the steepest and the
greedy version, where a limited number of randomly chosen candidates from the
neighborhood are competing to be accepted as the best one. This approach is
suggested amongst others for a combinatorial problem by [2].

2.3.4 Summary of the Pros and Cons of Descent Methods

The main reason for using Descent Methods is the simplicity. The neighborhood
definition for continuous functions has some drawbacks when a steepest descent
is desirable. However, a far more serious drawback is the fact that the Descent
Method does not have the ability to escape local minima. If a local minimum
is reached the algorithm terminates by definition. On the other hand a Descent
Method can be useful for many problems where global optima is not necessary
or if few local minima exist. A random restart could to some extent improve
the issue of escaping local minima by given the procedure a number of chances
to find different local minima. The best local minimum would then be returned
after a number of random restarts.

2.4 Simulated Annealing

2.4.1 Metaphor

Simulated Annealing (SA) has its analogy to physics. Simulated Annealing was
first used to simulate the annealing procedure of steal or other metals as they are
cooled down in a heat bath. When heated to above the melting point the atoms
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of steal are disordered and moves out of the grid structure for solid metals. When
cooled down the atoms are again placed in an ordered structure. However, the
structure depend on the rate of cooling. The slower the lower the final energy
state of the structure is i.e. fast cooling will lead to a number of imperfections
in the structure of the steal[6]. This means the process actually get trapped at
a local energy minimum for fast decreases in temperature, whereas the global
minimum state is likely to be reached when the cooling is slow. The laws of
thermodynamics determines the probability of moving to a higher energy state
throughout the process. The probability is given by equation (2.1) [6], where
k is the Boltzmann constant, T is the temperature and ∆E is the difference in
energy between the two states.

p(∆E) = exp

(−∆E

k · T

)

(2.1)

This feature can be used in optimization where the usual goal is to reach the
global optimum instead of getting trapped at the first local optimum reached.
At least having the possibility to reach better local optima is crucial.

2.4.2 Simulated Annealing for Optimization of Continu-
ous Functions

Simulated Annealing can be seen as an extension of the descent methods.
Whereas the descent methods only accept an improved solution, i.e. a solu-
tion with a lower objective value, Simulated Annealing can also accept and
move to a solution with a higher objective value with a certain probability. The
probability of accepting a given worse solution x∗ than the current solution
x(h) at iteration h is described by an interpretation of equation (2.1) where
∆E = f(x∗) − f(x(h)), see equation (2.2)

p
(

f(x(h+1)) = f(x∗)
)

= exp

(

− f(x∗) − f(xh)

k · T

)

, f(x∗) > f(x(h)) (2.2)

As for the annealing process of metals, the results of Simulated Annealing
depend on the cooling rate.

For continuous functions a possible layout of Simulated Annealing procedure is
given by pseudocode 2.4.1 The parameters α, β, ǫ, d and T are assumed to be
initialized at the start of the procedure. As for descent methods a new candidate
solution is generated by letting x∗ = x(h) +d ·z where z is a symmetric vector of
uniformly distributed random numbers with mean zero, pseudocode 2.4.1 line
4. If the candidate solution x∗ has a lower objective value than the overall best
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solution x(h,best); the overall best solution is updated for the following iteration,
line 5–9. In the case where the candidate solution has a lower objective value
than the current solution, a descent move is made in order to reach the candidate
solution, line 10–11. On the other hand if the objective of the candidate is
larger than the one of the current solution; an ascent move is accepted with the
probability described by line 14, where the Boltzmann constant is replaced by
a normalizing constant c. Note the exponential expression is also simplified in
relation to equation (2.2). Thermal equilibrium is reached by the while loop in
line 3, since the loop only continues as long as the overall best solution improves
at least every N moves. Note that the while loop is considered to hold for all
h smaller than N since the solution x(h−N,best) will not be defined in that case.
In the outer while loop the temperature and step size are decreased, line 24–25.
This process continues as long as the temperature is above a certain threshold
ǫ, line 2. Finally, the overall best solution is returned, line 27.

Pseudocode 2.4.1 Procedure SA()

1: x
(0) = x

(0,best) = random solution
2: while T > ǫ do

3: while f(x(h,best)) < f(x(h−N,best)) do

4: x
∗ = x

(h) + d · z
5: if f(x∗) < f(x(h,best)) then

6: x
(h+1,best) = x

∗

7: else

8: x
(h+1,best) = x

(h,best)

9: end if

10: if f(x∗) < f(x(h)) then

11: x
(h+1) = x

∗

12: else

13: draw random χ from uniform interval [0; 1]

14: if χ < 1
c

exp
“

f(x(h))−f(x∗)
T

”

then

15: x
(h+1) = x

∗

16: else

17: x
(h+1) = x

(h)

18: end if

19: end if

20: h = h + 1
21: end while

22: x
(1) = x

(h,best)

23: h = 1
24: T = αT, 0 < α < 1
25: d = βd , 0 < β < 1
26: end while

27: return x
(h,best)
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As the temperature decreases over each iteration of the outer loop the right
hand side of the expression in line 14 pseudocode 2.4.1 approaches zero. Thus,
the probability of accepting ascent moves decreases. At high temperatures a
local minimum is easily escaped and the algorithm moves around large parts of
the search space whereas a local minimum for low temperatures is only rarely
escaped. The expectation is that for low temperatures the search is concentrated
close to the global minimum. Thus, the property of intensification in a local
area is desirable at that point4.

2.4.3 Variations of Simulated Annealing

Simulated Annealing for continuous functions described in section 2.4.2 allows
an ascent move with a certain probability although a descent move might be
possible in the neighborhood of the current solution. The reason is that the con-
tinuous nature makes it impossible to compare all solutions in a neighborhood
as it is done for combinatorial optimization problems. A way to get around
this drawback is described by [17] who combines Simulated Annealing with a
Nelder-Mead simplex algorithm.

Several versions of Simulated Annealing exist. The main differences are in the
definitions of the acceptance functions and neighborhoods. A basic approach
where the normalizing constant is omitted is referred to by [6]. An approach
called adaptive Simulated Annealing (ASA) is described by [16] who has devel-
oped the fast annealing (FA) further.

2.4.4 Summary of the Pros and Cons of Simulated An-
nealing

Simulated Annealing is another easy-to-implement metaheuristic. Basically it is
a descent method added a probabilistic acceptance function. This makes Simu-
lated Annealing able to escape local minima. Because of this ability combined
with the intensification provided by cooling Simulated Annealing is likely to
reach better local optima than by using a descent method from a random start-
ing point. In fact Simulated Annealing have the advantage over other methods
by its relation to thermodynamic theory. In theory a cooling schedule can be
made to guarantee asymptotic convergence [6]. However, the convergence turns
out to require exponential solution times according to problem size in practice.

4The relation between convergent/divergent thinking and diversification/intensification is
described in section 4.3
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2.5 Nelder–Mead Simplex

2.5.1 Metaphor

The Nelder–Mead simplex should not be mistaken for the well known simplex
algorithm developed for linear programming by Dantzig. The Nelder–Mead is
a direct search method. Thus, it can be viewed as another interpretation of the
Hill Climber metaphor.

2.5.2 Nelder–Mead for Optimization of Continuous Func-
tions

In the Nelder–Mead procedure the simplex consists of exactly n + 1 solution
vectors xk, k = 0, . . . , n, where n is the number of decision variables or length of
the solution vector. Letting each of the n + 1 solutions represent a point in the
search space will form a geometrical object in n dimensions called the simplex.
Each operation of the Nelder–Mead simplex procedure is performed on an entire
solution vector. As an analogy to the evolutionary algorithms the simplex in the
Nelder–Mead procedure can be viewed as a population of individuals. However,
the number of individuals are n + 1 in this case.

The Nelder–Mead simplex procedure is given by pseudocode 2.5.1. The pro-
cedure takes an initial simplex as argument and returns the best solution in a
another final simplex, line 34 pseudocode 2.5.1. The parameters ρ, χ, γ and σ
are assumed initialized at the start of the procedure. The parameters should
satisfy:

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1

In fact a common universal choice of parameters are according to [19] :

ρ = 1, χ = 2, γ = 1
2 and σ = 1

2

The Nelder-Mead procedure runs until a stopping criterion is satisfied, line 1.
The stopping criterion is usually connected to a measure of how far the simplex
has moved from one iteration to the following. Each iteration starts by ordering
the solutions in the simplex increasingly by the objective values, line 2. Secondly
the centroid x̄ is calculated based on the average of the n best solution points,
i.e. all points except the worst xn+1, line 3. In order to accept a new solution
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into the simplex a reflection point xr of the worst point is calculated, line 4.
The reflection point is illustrated by figure 2.1(a). If the objective value of
the reflection point is in between the objective value of the best point and the
objective value of the second to worst point the reflected point is accepted right
away, line 5–6. In case the objective value of the reflection point is strictly
less than the objective of the best point in the simplex a new expansion point
xe is calculated, line 8–9. The expansion point is illustrated by figure 2.1(b).
The better of the reflection and the expansion point is accepted to the simplex
on expense of the worst point xn+1, line 10–14. If the objective value of the
reflection point is larger than the second to worst point xn in the simplex a
contraction is performed, line 15. In case the reflection point has an objective
that is strictly smaller than the objective of the worst point a contraction point
xc situated outside the simplex is calculated, line 16–17. The outside contraction
point is illustrated by figure 2.2(a). The contraction point is only accepted on
expense of the worst point if it has an objective smaller than the reflection
point, line 18–19. Otherwise the simplex is shrinked, line 21. The shrink sub-
procedure is given by pseudocode 2.5.2 in section 2.5.2.1. In case the reflection
point has an objective at least as large as the worst point the contraction point
xcc placed inside the simplex is calculated, line 23–24. The inside contraction
point given by figure 2.2(b) is only accepted if the objective is strictly smaller
than the worst objective, line 25–26. Otherwise the simplex is shrinked, line 28.
The Nelder–Mead procedure returns the solution point from the final simplex
which has the smallest objective value, line 34.

X

X worst

X r

(a) Reflection point

X

X worst

X e

(b) Expansion point

Figure 2.1: Reflection and expansion in the Nelder–Mead simplex
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X

X worst

X c

(a) Outside contraction
point

X

X worst

Xcc

(b) Inside contraction point

Figure 2.2: Contraction in the Nelder–Mead simplex

2.5.2.1 The Shrink Procedure

The shrink procedure is also referred to as multi-contraction. A shrink procedure
is given by pseudocode 2.5.2. Only the best point x1 is kept in a shrink step,
line 1 pseudocode 2.5.2. The following n points are moved closer to the best
point, line 2–4. Figure 2.3 illustrates the simplex before and after a shrink.

X best

Figure 2.3: Shrinking simplex

A slightly simpler version of the Nelder–Mead simplex is described by [3] who
utilize it in a combined tabu search approach. The method described by [3] does
not differ between a reflection point better or worse than the second to worst
point, i.e. only one type of contraction is performed.
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Pseudocode 2.5.1 Procedure Nelder–Mead(Simplex)

1: while termination criterion not satisfied do

2: Order Simplex = {x1, . . . ,xn+1} such that f(x1) ≤ f(x2) ≤, . . . ,≤ f(xn+1)
3: x̄←

Pn
k=1

1
n
· xk

4: xr ← x̄ + ρ(x̄− xn+1)
5: if f(x1) ≤ f(xr) < f(xn) then

6: Simplex← {Simplex\{xn+1}} ∪ {xr}
7: else

8: if f(xr) < f(x1) then

9: xe ← x̄ + χ(xr − x̄)
10: if f(xe) < f(xr) then

11: Simplex← (Simplex\{xn+1}) ∪ {xe}
12: else

13: Simplex← (Simplex\{xn+1}) ∪ {xr}
14: end if

15: else

16: if f(xr) < f(xn+1) then

17: xc ← x̄ + γ(xr − x̄)
18: if f(xc) ≤ f(xr) then

19: Simplex← (Simplex\{xn+1}) ∪ {xc}
20: else

21: Simplex ← Shrink(Simplex,σ)
22: end if

23: else

24: xcc ← x̄− γ(x̄− xn+1)
25: if f(xcc) < f(xn+1) then

26: Simplex← (Simplex\{xn+1}) ∪ {xcc}
27: else

28: Simplex ← Shrink(Simplex,σ)
29: end if

30: end if

31: end if

32: end if

33: end while

34: return({xk|min f(xk),xk ∈ Simplex})

Pseudocode 2.5.2 Procedure Shrink(Simplex,σ)

1: NewSimplex ← {x1}
2: for k = 2 to n + 1 do

3: vk ← x1 + σ(xi − x1)
4: NewSimplex ← NewSimplex ∪ {vk}
5: end for

6: return(NewSimplex)
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2.5.3 Pros and Cons of the Nelder–Mead Simplex Proce-
dure

The Nelder–Mead simplex procedure is a direct search method as mentioned
earlier. This means that the simplex will converge to a final non-improving sim-
plex since each iteration in the Nelder–Mead procedure has to satisfy a descent
condition. A drawback comparing to many metaheuristics is the inability to
escape a local minimum. Furthermore the Nelder–Mead simplex is not proved
to converge to a minimum for higher dimensions than one. In fact, according
to [19] a family of strictly convex functions and starting conditions exist where
the Nelder–Mead procedure is converging to a non-minimum in two dimensions.
However, the Nelder–Mead simplex is very popular for optimizing continuous
functions. This might be due to the ability of initially producing steeply de-
scending moves in practice. Furthermore, each descending move does typically
only require one or two function evaluations. Thus, the procedure is fast and
can perform well. On the other hand the drawback that not even a local mini-
mum can be guaranteed calls for hybridization with other metaheuristics which
is often the case.

2.6 Tabu Search

2.6.1 Metaphor

A metaphor describing Tabu Search (TS) can be derived from the Hill Climber
metaphor used for descent methods. Whereas the Hill Climber (maximization)
would never make a step bringing the individual lower, i.e. away from the peak
(local optimum) this is not the case for Tabu Search. The individual in Tabu
Search can be seen as having a memory of already visited places – the tabu
list. If a peak is already reached no steps can be made to bring the individual
higher. In this case a downhill step can be made if it brings the individual to
an unvisited place not on the list. After some time an already visited place is
forgotten, i.e. deleted from the tabu list. Afterwards that place can be visited
again.

The idea is to utilize the memory in order to leave a peak. The motivation to
leave is to find an even higher peak, i.e. the property of escaping local optimum.
The tabu list is used to control the way to leave a local optima whereas for
Simulated Annealing this is done by the probability function determined by the
energy function of annealing.
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The word tabu means something that is banned or prohibited. A definition of
tabu from Cassels Concise Dictionary is:

1. something which is very strongly disapproved of in a particular society etc.

Thus, the word tabu is related to a certain interpretation of something in soci-
ety more than as the memory of an individual. However, having a list of tabus
implies having a memory.

2.6.2 Tabu Search on Continuous Problems

As it seems simple to reject a solution to a combinatorial problem if it is in-
cluded in the tabu list, this is not the case for continuous problems. As for other
metaheuristics a random candidate solution within a neighborhood can be de-
fined. If this solution has an objective value higher than the current solution
(minimization), the decision whether to accept it or not is based on the content
of the tabu list. However, rather than checking if the solution is already tabu
it should be checked if the solution is within a certain distance of a solution in
the tabu list. A TS algorithm with this property called Enhanced Continuous
Tabu Search (ECTS) is given by [24].

2.6.2.1 The ECTS Procedure

An overview of the procedure of the ECTS is presented in pseudocode 2.6.1. As
for the previous section x represents a solution point in the continuous solution
space. The parameters occurring in the following are assumed to be initialized
at the start of the procedure.

At first a number Ns of initial solutions x∗i are generated. This is done at
random, line 2–3 pseudocode 2.6.1. The solution with the lowest objective
value is at all times saved as x, whereas the remaining solutions are inserted in
the tabu list (TL), line 4–9. The final x of the initialization step is inserted in
an empty promising list (PL), line 11.

After the initial solution generation the actual search runs until a stopping cri-
terion is satisfied, line 12. This criterion would typically be the number of
iterations or the amount of CPU-time spend. Each iteration starts by generat-
ing a number n of neighboring solutions to the current solution x, line 13. A
description of the GenerateNeighbors procedure is given in section 2.6.2.2. For
each neighbor it is checked whether the neighbor solution N i is within a dis-
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tance rtabuball of any solution xTL in the tabu list, line 14–15. Furthermore it is
checked whether the neighbor solution is within a distance rpromball of any solu-
tion xPL in the promising list. The neighbor solution is rejected in either case,
leaving only neighbor solutions that has at least a certain distance to already
visited solutions, i.e. solutions in tabu and promising lists. The new solution
is chosen from the remaining neighbors as the solution with the lowest objec-
tive value, although it is not necessarily lower than the one from the preceding
iteration, line 19–27.

The last part of the procedure starts by identifying the solution x in the promis-
ing list that has the lowest objective value, line 30–35. The most promising of
the promising solutions so to say. A local minimization procedure starts from
this solution. As indicated by line 36 the local minimization procedure could be
the Nelder–Mead simplex described in section 2.5 page 10.

2.6.2.2 Neighbor Generation in the ECTS

The n neighboring solutions Sm, m ∈ {1, . . . , n} can be generated randomly
within n hyper rectangles each defined below as:

1. having the center in the current solution x

2. having N dimensions, where N is the number of decision variables in the
continuous optimization problem.

3. having the side length 2·hm defined by hn−m+1 = hn

2m−1 , ∀m ∈ {1, 2, . . . , n},
where hn is a parameter initialized by the user.

An example of the hyper rectangles in the two dimensional case, i.e. the number
of decision variables is two, is illustrated by figure 2.4. As indicated by figure 2.4
the number of neighboring solutions is three and only one solution lies within two
adjacent rectangles. In order to obtain this property, the randomly generated
solutions should be chosen with care. To view a detailed description of how to
choose the randomly generated solutions see [24].

2.6.3 Variations of Tabu Search

Whereas the Tabu Search is widely used in combinatorial optimization only a
few persons have applied it to optimization of continuous functions according
to [18, 14]. However, several interpretations of the Tabu Search metaphor exists
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Pseudocode 2.6.1 Procedure TS()

1: TL = ∅

2: for i = 1 to i = Ns do

3: x
∗i =random solution

4: if f(x∗i) < f(x) then

5: TL = TL
S

{x}
6: x = x

∗i

7: else

8: TL = TL
S

{x∗i}
9: end if

10: end for

11: PL = {x}
12: while termination criterion not satisfied do

13: S = GenerateNeighbors(x, n)
14: for i = 1 to i = n do

15: if x
TL ∈ TL exists | (rtabuball > |Si−x

TL|) or x
PL ∈ PL exists | (rpromball >

|Si − x
PL|) then

16: S = S\{Si}
17: end if

18: end for

19: x = S1

20: for i = 2 to i = |S| do

21: if f(Si) < f(x) then

22: TL = TL
S

{x}
23: x = Si

24: else

25: TL = TL
S

{Si}
26: end if

27: end for

28: PL = PL
S

{x}
29: end while

30: x = PL1

31: for i = 2 to i = |PL| do

32: if PLi < x then

33: x = PLi

34: end if

35: end for

36: NelderMead(x)

for continuous functions. A Directed Tabu Search (DTS) is presented by [14].
Comparing the ECTS by [24] the DTS utilizes even more lists, subroutines and
strategies. The DTS generates trial points in the whole search space based on a
diversification scheme whenever the Tabu Search does not produce any improve-
ment otherwise . The diversification scheme roots in a visited region list storing
previously visited regions of the search space. Another difference between the



18 Overview of Metaheuristics

h
3

1
h

h
2

x
S

S

S

2

3

1

Figure 2.4: The Hyper rectangles in Two Dimensions, Where Three Neighboring
Solutions are Created

two procedures is the ability of the DTS to direct the neighborhood search out of
so called semi tabu regions, i.e. the regions surrounding the tabu regions defined
by a ball with a certain radius rtabuball. A crucial difference between the two
is that DTS uses a local minimization technique like the Nelder–Mead or the
Adaptive Pattern Search (APS) to conclude the neighborhood search at each
iteration.

The similarities between the two are also clear. Both procedures define a tabu
region for all dimensions around each point in the tabu list. Both make some
kind of exploration of the neighborhood around the current solution. Further-
more the entire search procedure is finished by a local minimization technique
like a version of the Nelder–Mead simplex, described in section 2.5 page 10 or a
quasi-Newton approach.

A third approach to use Tabu Search for optimizing continuous problems is
described by [18]. The approach called Memory Tabu Search (MTS) considers
a move tabu if it is within a certain distance of the current solution or even if
the objective value is not lowered more than a certain fixed value or a certain
percentage. This means only improving moves are allowed in contrary to the
two other procedures.
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2.6.4 Summary of the Pros and Cons of Tabu Search

The Tabu Search is a fast metaheuristic for combinatorial problems because it
is easily evaluated whether a solution is included in the tabu list or not. For
continuous functions more calculations has to be made in order to produce a new
solution. Examples of such calculations could be the distance and generation
of search directions. This is of course time consuming on the negative side.
Although, a lot less function evaluations are made comparing to population
based approaches, as seen from [24], competitive results are reached. The major
drawback comparing to any other non-memory based metaheuristic is the need
of allocating memory for saving solutions that might represent a considerable
amount of data. This is in some implementations avoided by saving the move
from one solution to another, referred to as attribute based memory in [11].
However, this is complicated for continuous functions and is not seen in any of
the referenced papers.

2.7 Swarm Intelligence

The second category of metaheuristics presented in this thesis is based on Swarm
Intelligence (SI) or Multi Agent Systems (MAS). The characteristic of Swarm
Intelligence is the use of decentralized individual agents interacting with each
other [25]. The artificial agents in Swarm Intelligence optimization are created
by analogy to social insects and animals from nature e.g. bees, wasps, ants,
termites, birds and fishes.

2.8 Ant Colony

2.8.1 Metaphor

The Ant Colony (AC) metaheuristic belongs to the category of Multi Agent
Systems or Swarm Intelligence. The relation to the metaphor is rather strong.
The idea is to let several agents try out various solutions and intensify the search
in the promising regions.

A characteristic of Swarm Intelligence in general and ant colony in particular is
that the movement of one agent, in this case an ant, is highly dependent on the
movement of the previous ants. In an ant colony the search for food is done by a



20 Overview of Metaheuristics

number of scout-like ants [25]. When succeeding in finding food these ants leave
a trail of the chemical substance pheromone that can be tracked by other ants.
The cooperation between the ants in the ant colony is divided into a feedback
mechanism and an updating mechanism. The feedback mechanism means that
ants are more likely to choose a path with a high concentration of pheromone
than a path with lower concentration of pheromone. The updating mechanism
means that the amount of pheromone on a particular path increases by each ant
traversing. Furthermore, the decrease of pheromone due to evaporation over
time causes a negative updating.

A single ant can be viewed as a reactive agent since it follows a trail until it
comes upon an intersection. When having the possibility to choose from two
or more paths the ant will choose the one with the highest concentration by a
higher probability. However, in artificial systems the agents often behave slightly
different. The agents in artificial Swarm Intelligence and ant colonies can be
either reactive or intelligent. The intelligent agent is characterized by having a
goal or objective of its own. An example of such a property is seen in the Ant
Colony Optimization (ACO) of the the combinatorial travelling salesman prob-
lem (TSP). When an ant has to choose which city to visit next on the travelling
salesman tour it could consider, not only the concentration of pheromone left
on the paths to possible cities, but also the distance to each city. That means
the probability of choosing a path is increased by one objective; to choose the
path that has the highest concentration, and decreased by another objective; to
make the greedy choice of the shortest path (edge) to the next city. Thus, a
weighting of the two objectives has to be made.

2.8.2 Ant Colony Optimization of Continuous Functions

The Ant Colony Optimization is intuitively well suited for combinatorial prob-
lems, due to the fact that an ant has to choose between two or more existing
paths. Each path represent a solution component, i.e. a city in the travelling
salesman problem, an item in the knapsack problem (KP) etc. In fact it is diffi-
cult to choose over continuous variables because of the obvious problem of how
to distribute the pheromone trails in the continuous search space. The authors
in [8] go as far as claiming that Ant Colony Optimization is suited for discrete
problems alone. However, methods of applying ant colony to optimization of
continuous functions do exist. Perhaps the most obvious way to get around this
is to use discretization.

In this thesis an approach suggested by [1] is presented. This version of Ant
Colony Optimization is a hybrid method utilizing genetic operations, see section
2.10 page 25, rather than a strict ant colony. In this approach the ant colony
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is only used for local optimization whereas a genetic algorithm is suggested to
make a global search, i.e. the genetic algorithm determines the location of the
nest and thereby the starting point of the Ant Colony Optimization. Other
simpler methods like Descent Methods or other metaheuristics described in this
thesis, could also be used to locate the nest. Thus, in the following is focused on
the ant colony part of the approach to solve continuous functions. In pseudocode
2.8.1 the details of the local Ant Colony Optimization are presented. Each ant

k represents a solution vector x
(t)
k at a given time t. The parameters mentioned

in the following are assumed initialized at the start of the procedure.

Figure 2.5: The initial search directions in a two dimensional nest neighborhood

The initial search directions represented by the vectors d
(0)
j are defined with

equal length R∗ in line 2. The search directions are as far apart as possible and
cover all dimensions. An example of initial search directions in a two dimensional
search space is given in figure 2.5. In this case the j’th search direction is defined
by dj = (sin(j/m · 2π), cos(j/m · 2π)) ·R∗, where m is the total number of ants

and search directions. In line 3–5 each ant k is sent in a search direction d
(t)
j .

For simplicity the number of ants m and search directions are assumed to be
equal. If the number of ants were larger than the number of search directions,
the ants should be sent in a search direction according to a probability function.
As seen below this is the case for the following steps. The ants are sent out
in search directions that are adapted at each step until a stopping criterion
is satisfied. This criterion is the maximum number of time steps T and/or a
minimum relative improvement of the best objective value, line 6. In line 8–10
the new pheromone trail is updated for each of the m directions. The updating is
combined from an evaporation process and an adding process. The evaporation
is defined by the relative evaporation constant ρ, where (1 − ρ) is the amount
of pheromone evaporated. The amount of new pheromone is determined by
equation (2.3).

∆τ
(k,t)
j =

{

1

f(x
(t)
k

)
· const if ant k travels direction j

0 otherwise
(2.3)
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Meaning that if an ant k travels in the direction j the amount of pheromone
laid by the ant k on the direction j is proportional to the fitness5 of the solution

represented by the ant. Each ant k (line 11) is sent into a search direction d
(t)
j

by a probability given by equation (2.4), line 15–19.

P
d

(t)
j

=
τ
(t)
j

P

m
i=1 τ

(t)
i

(2.4)

The probability is defined by the relative amount of pheromone on each search
direction. Thus, the larger amount of pheromone on a search direction the larger
the probability of sending an ant in the direction. Note that more ants can be
sent into the same search direction in this way. It should be emphasized that
the ants do not stop after reaching the destination of the search direction. A
random step ∆(t, R) is added, line 16–18. The random step lies within the range
[0; R], where R is the search radius. As seen from the definition in line 17 the
probability of ∆(t, R) being close to zero increases by increasing t. This can
be seen as a kind of intensification of the search over time. The parameter b
determines the degree of non-uniformity of the random step.

The search directions are adapted at the end of each time step. The j’th search

direction for the next time step d
(t+1)
j is set to point to the location of the best

ant in the current time step that has been travelling the direction d
(t)
j . Figure 2.6

illustrates the updating of two search directions in the two dimensional search
space, where the search radius R is shown as a shaded circular region.

(a) Before adaption (b) Adaption (c) After adaption

Figure 2.6: Adaption of two search directions

5the fitness is in this case the reciprocal of the objective value
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Pseudocode 2.8.1 Procedure ACO()

1: t← 0
2: define initial search directions d

(t)
j ,∀j ∈ {1, . . . , m} with equal length

3: for k = 1 to m do

4: x
(t)
k ← nest + d

(t)
j ,∀j = k

5: end for

6: while termination criterion not satisfied do

7: t← t + 1
8: for j = 1 to m do

9: τ
(t)
j ← ρ · τ

(t−1)
j +

Pm
k=1 ∆τ

(k,t)
j

10: end for

11: for k = 1 to m do

12: draw random χ from uniform interval [0; 1[
13: j ← 1
14: while x

(t)
k is not defined do

15: if
Pj−1

i=1 τ
(t)
i ≤ χ ·

Pm
i=1 τ

(t)
i <

Pj
i=1 τ

(t)
i then

16: draw random r from uniform interval [0; 1]

17: ∆(t, R)← R(1− r(1−t/T )b

)

18: x
(t)
k ← nest + d

(t)
j + ∆(t,R)

19: end if

20: j ← j + 1
21: end while

22: end for

23: for j = 1 to m do

24: d
(t+1)
j ← v(nest,x

(t)
k )|{min f(x

(t)
k )∀x

(t)
k defined by d

(t)
j }

25: end for

26: end while

27: return x
(t)
k |{min f(x

(t)
k ),∀k, t}

2.8.3 Variations of Ant Colony Optimization

The approaches to Ant Colony Optimization of continuous functions are very
different. However, a similarity of many algorithms is the hybrid approach where
ant colony is merged with another methodology in order to work for continuous
problems. Where [1] used a genetic algorithm to locate the nest a more merged
approach is presented by [4] who use crossover and mutation in order to develop
the ants. A third hybridized approach by [10] merges the properties of ant colony
and local search using the Powell Method. Discretization of the search space is
used by [22] which makes the ant colony metaphor more directly interpretable.

The probability of the ants choosing a direction in the approach presented in
this thesis rely only on the amount of pheromone. Thus, the ants are acting
as reactive agents. It turns out that the agents of Ant Colony Optimization
described by [4, 10, 1, 22, 28] are all reactive. However a continuous approach
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suggested by [9] introduces heuristic distance information which is used by the
ants. Taking the distance information into account the ants in [9] can be de-
scribed as intelligent.

2.8.4 Pros and Cons of Ant Colony Optimization

The main drawback of Ant Colony Optimization of continuous functions is prob-
ably related to high consumption of resources due to the parallel calculations
of many ants and poor convergence. The ant colony needs to search for good
solution throughout the neighborhood of many paths – both promising and less
promising because it can only be guaranteed that an ant will not use a path
when all the pheromone has evaporated. This feature on the other hand ensures
the diversity of the search i.e. the ant colony is not likely to get trapped in a
local minimum.

Most ant colonies for continuous problems are poorly described. Often a great
effort is made to explain the well known approach of ant colony for combinatorial
problems. The extension to the continuous functions often lack information of
the exact procedures. This could perhaps be seen as a sign that the ant colony
is difficult to adapt to continuous functions.

For combinatorial problems the heuristic distance function is of great importance
e.g. the travelling salesman problem where the probability of choosing a city
is increased for nearby cities. The ability of utilizing intelligent agents are
important for the results of the procedure. Keeping this in mind a drawback
of the ant colony for continuous function optimization is the lack of intelligent
agents.

2.9 Evolutionary Algorithms

In this section a group of metaheuristics called Evolutionary Algorithms (EA)
is presented. The main characteristic of Evolutionary Algorithms is the evolve-
ment of a population of individuals. In most cases the individuals create new
offspring through crossover operations and mutation. Some categorise meta-
heuristics within Swarm Intelligence as Evolutionary Algorithms. However, in
this thesis a distinction is made because, in Swarm Intelligence the following
populations are not necessarily offspring of the current population. Further-
more the main characteristic of Swarm Intelligence is agents reaction to actions
of other agents.
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2.10 Genetic Algorithms

2.10.1 Metaphor

The Genetic Algorithms (GA) are like other Evolutionary Algorithms based
on the metaphor of natural evolution or Darwinian evolution[12]. Evolution is
based on three fundamental principles according to Darwin: replication, varia-
tion and natural selection [20]. In nature asexual reproduction by cell division
is an example of replication, where one individual produces an identical copy
of itself. However, this process can not go on in nature without any variation
introduced by mutation of genes. Another type of variation is sexual repro-
duction where two individuals produce offspring which has a recombination of
genetic material from the two parents. This can be described as crossover of
genes or rather, crossover of chromosomes containing a set of genes. The proba-
bility that an individual will survive to reproduce itself can be described as the
fitness, i.e. the higher fitness the higher probability of reproduction or survival
of the fittest . The natural selection can be seen as an optimization procedure
where the fitness is maximized.

2.10.2 Genetic Algorithms for Optimization of Continu-
ous Functions

For combinatorial optimization the solution is often directly represented by a
binary bit vector. The simplest way to introduce mutation is to flip a number of
bits. Crossover is easily done by recombining two bit vectors in a way, that parts
of the vector of the offspring is identical to one parent vector and the rest is
identical to the bit vector of the other parent. For continuous variables this pro-
cedure has to be modified. The procedure described in the following is slightly
modified version of the one used by [17] for optimization of econometric func-
tions. Again a solution in the continuous search space is defined by the vector x

where x = (x1, x2, . . . , xn) and the xi’s are coordinates of real valued variables
and n is the number of variables. However, the solution x is also represented
by a binary bit vector a called an individual. The individual is a concatenation
of all the genes ai, i.e. a = a1a2 · · · an. Thus, each gene ai represents a solution
coordinate xi. The genes ai are made of bits: ai = (ai,1, ai,2, . . . , ai,m) where
m is the number of bits6. The relation between the coordinate value xi and
the gene bit value ai is determined by equation (2.5) where the coordinate is

6meaning the total number of bits in the bit vector a is equal to n · m
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constrained by ui ≤ xi ≤ vi.

xi = ui +
vi − ui

2l − 1

m
∑

j=1

ai,j2
j−1 (2.5)

This binary representation of the coordinate values result in a discretization of
the search space. A way to make the discretization adaptive could be to adapt
lower and upper limits (ui and vi). Intensification would be done by decreasing
the gap vi − ui at an interval of a number of generations.

The procedure of the Genetic Algorithm is outlined in pseudocode 2.10.1. The
parameters described in the following are assumed initialized at the start. The
initial population of λ individuals is defined in line 2–6 pseudocode 2.10.1. All
bits of all λ new individuals a(k,t) at time t = 1 are chosen at random with equal
probability between zero and one, line 4. Until a stopping criterion is satisfied
the generations continues to evolve, line 7. The stopping criterion could be a
maximum number of iterations or a minimal improvement of the objective value
f(x(k,t)) over a number of iterations. For each generation the individuals of the
next population are selected, line 8. The generation counter is increased in
line 9, meaning that the next generation becomes the current generation. Then
the population is replaced by its offspring, line 10. Finally the members of the
population have a risk of mutating, line 11. The procedure returns the solution
with the lowest objective value considering all individuals in all generations, line
13. The output is not guaranteed locally optimal by the framework described
here. Thus, a local optimization procedure as the Nelder-Mead simplex can be
utilized for this purpose.

Pseudocode 2.10.1 Procedure GA
1: t← 1
2: Populationt ← ∅

3: for k = 1 to λ do

4: a
(k,t) ← random bit vector

5: Populationt ← Populationt ∪ {a
(k,t)}

6: end for

7: while Termination criterion not satisfied do

8: Populationt+1 ← Selection(Populationt)
9: t← t + 1

10: Populationt ← Reproduction(Populationt)
11: Populationt ← Mutation(Populationt)
12: end while

13: return x
(k,t)|{min f(x(k,t)),∀k, t}
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2.10.2.1 Selection

The selection procedure is shown in pseudocode 2.10.2. The procedure runs
through all λ individuals of the next population, line 1 pseudocode 2.10.2. The
h’th individual a(h,t) of the current population survives to become the k’th
individual a(k,t+1) of the new population at a probability Pa(h,t) proportional to
its relative fitness, line 5–6. The probability in the fitness proportionate selection
is given by equation (2.6).

Pa(h,t) =
−f(x(h,t)

∑λ

l=1 −f(x(l,t))
(2.6)

Note that the fitness values of all individuals of a population has to be positive.
If this is not the case the values should be shifted by adding a constant. The
selection procedure allows for an individual to become a member of the new
population several times. The higher the fitness the higher the probability of
being represented more than once in the new population.

Pseudocode 2.10.2 Procedure Selection
1: for k = 1 to λ do

2: draw random χ from uniform interval [0; 1[
3: h← 1
4: while a

(k,t+1) is not defined do

5: if
Ph−1

l=1 −f(x(l,t)) ≤ χ ·
Pλ

l=1−f(x(l,t)) <
Ph

l=1−f(x(l,t)) then

6: a
(k,t+1) ← a

(h,t)

7: end if

8: h← h + 1
9: end while

10: end for

2.10.2.2 Reproduction

The reproduction procedure within the Genetic Algorithm is presented in pseu-
docode 2.10.3. The individuals of the population are put into a random order
and a set of offspring is initialized, line 1–2 pseudocode 2.10.3. Until the number
of individuals amongst offspring |Offspring| is the same as the population size
λ new offspring are produced, line 4. A pair of parents α = a(k mod λ,t) and
α = a((k+1) mod λ,t) are chosen from the population at a probability Pcrossover

for increasing k, line 6–8. The pairing can be seen as random since the order-
ing of the population is random. A new offspring is produced by the crossover
operator on the parents α and β, line 9. The crossover operator produces two
offspring as described by table 2.1 and returns one of them with equal proba-
bility. The parents are shown in the first row and the offspring in the second.
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The two offspring are produced by a one-point crossover procedure, i.e. by cut-
ting both parents’ concatenated string of genes at a position pos and putting
together the first pos bits from parent α with the last n · m − pos bits from
parent β and vice versa. The integer pos is chosen at random between 1 and
n · m. When enough offspring is produced the current population is replaced
by its offspring, i.e. generational replacement where no parents survive, line 13
pseudocode 2.10.3.

Pseudocode 2.10.3 Procedure Reproduction

1: order Populationt at random
2: Offspring← ∅

3: k← 1
4: while |Offspring| < λ do

5: draw random χ from uniform interval [0; 1]
6: if χ < Pcrossover then

7: α← a
(k mod λ,t)

8: β ← a
((k+1) mod λ,t)

9: Offspring← Offspring ∪ {Crossover(α, β)}
10: end if

11: k ← k + 1
12: end while

13: Populationt ← Offspring

First Individual Second Individual

α1·1 α1·2 . . . αpos αpos+1 . . . αn·m β1·1 β1·2 . . . βpos βpos+1 . . . βn·m

α1·1 α1·2 . . . αpos βpos+1 . . . βn·m β1·1 β1·2 . . . βpos αpos+1 . . . αn·m

Table 2.1: The Crossover procedure

2.10.2.3 Mutation

The mutation procedure is described in pseudocode 2.10.4. The procedure is
basically running through all n · m bits of all λ individuals, line 1 and 2 in
pseudocode 2.10.4. By a low probability Pmutation the bit is mutated, i.e. flipped
to the opposite binary bit, line 5.

2.10.3 Variations of Genetic Algorithms

The main difference in Genetic Algorithm approaches to optimization lie in the
sub procedures. The strategy described in section 2.10.2.1 - for selecting parents
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Pseudocode 2.10.4 Procedure Mutation
1: for k = 1 to λ do

2: for g = 1 to n ·m do

3: draw random χ from uniform interval [0; 1]
4: if χ < Pmutation then

5: FlipBit a
(k,t)
g

6: end if

7: end for

8: end for

to reproduce - is based on a fitness proportionate selection. This resembles the
way to select directions in the ant colony optimization in section 2.8.2 page 22.
When the variance of fitness values is small the fitness proportionate selection
is close to random. Other strategies avoiding this are tournament selection and
rank based selection [20]. In tournament selection the individual with the high-
est fitness is chosen from a pool of a number of randomly selected individuals.
In rank based selection the individual ak is chosen according to its rank k in
the population, i.e. the population is ordered for increasing fitness.

The parents are replaced completely by their offspring in the procedure in section
2.10.2.2, i.e. generational replacement. Another way to replace parents is the
steady state selection [20] where only some of the parents are replaced by a
number of offspring lower than the population size. This can be the worst
parents, the oldest parents or randomly chosen parents. On the other hand,
parents can be allowed to compete with the offspring in a temporary pool of
both offspring and parents.

As mentioned in section 2.10.2.2 the crossover operator used is a one-point
crossover. Alternatives are a two-point crossover or a generalized k-point crossover
where the bit strings are cut at k different positions chosen at random. The off-
spring is combined by assembling parts from the two cut parents in turn.

An alternative to the bit flip mutation suggested in section 2.10.2.3 is the in-
version operator [20]. Inversion is applied by choosing a bit substring of the
individual at random. The substring is then reversed in order to mutate the in-
dividual. This kind of mutation could change a single individual a lot if applied
whereas, the bit flip mutation is only likely to change an individual a lot if the
probability of mutation is high. On the other hand, if probability of mutation
is low the inversion operator is likely to leave the individual unchanged.
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2.10.4 Pros and Cons of Genetic Algorithms

The main problem with the Genetic Algorithm described here is the discretiza-
tion of the search space. Depending on the structure this could shut of access
to many locally and maybe globally optimal solutions. Usually it is important
for a metaheuristic to be able to search the whole search space. A solution to
this problem is to make the discretization adaptive in some way, as suggested
earlier. Comparing to many other procedures there is an extra step of going
from the individual - represented by a bit string - to the solution - represented
by a vector in the continuous search space - before calculating the objective
value. If this detour is costly in computational time is a question perhaps to be
answered by testing. Since the Genetic Algorithms are not neighborhood based
diversity is easily obtained by the crossover and mutation operators. However,
the lack of ability to search a local neighborhood for better solutions means that
good local optima could be overlooked even if these are close to individuals in
the population.

2.11 Evolution Strategies

2.11.1 Metaphor

The metaphor of Evolution Strategies (ES) is closely related to that of Genetic
Algorithms in section 2.10.1 page 25. The difference lie in the representation of
an individual, population, parent and offspring as described below.

2.11.2 Evolution Strategies for Optimization of Continu-
ous Functions

Unlike the Genetic Algorithms the individuals in the Evolution Strategies are
represented by floating point vectors. Thus, the individual can directly represent
a solution x = (x1, x2, . . . , xn) in the continuous search space, where n is the
number of variables. The variables of the solution can be interpreted as the
genes of the individual. Each variable xi is constrained by ui ≤ xi ≤ vi. The
k’th individual in a population is combined by a pair of vectors (x(k,t), σ(k,t)),
where x(k,t) is a solution in the search space at time t and σ(k,t) is a vector

of standard deviations at time t. That means x
(k,t)
i one type of genes whereas

σ
(k,t)
i is another.
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The framework describing the Evolution Strategies is very similar to that of
Genetic Algorithms. Only, the selection procedure is made after creating off-
spring and letting them mutate. In contradiction to the Genetic Algorithms
individuals are not selected to produce offspring, with a probability accord-
ing to their fitness. The Evolution Strategies procedure is seen in pseudocode
2.11.1. The initial population is chosen at random, line 3–11 pseudocode 2.11.1.
Each gene xk

i of the k’th individual is set at random between an upper vi and
lower bound ui, line 5–6. The deviation is likewise initialized at random in
the interval between zero and σmax, line 7–8. The main loop of the Evolution
Strategies runs until a stopping criterion is satisfied. This could be a minimum
improvement ǫ of the objective value of the best individual over two generations,

i.e. f(x
(k,t−1)
best ) − f(x

(k,t)
best ) < ǫ, a maximum number of iterations or both. The

genetic evolution is repeatedly utilizing reproduction of a population followed
by mutation and finally a selection procedure, line 13–15. At the termination of
the algorithm the solution with the lowest objective value is returned. It is only
necessary to regard the current iteration when looking for the fittest individual
due to the selection procedure which is described later in section 2.11.2.3 and
2.11.3.

Pseudocode 2.11.1 Procedure ES
1: t← 1
2: Populationt ← ∅

3: for k = 1 to µ do

4: for i = 1 to n do

5: draw random χ from uniform interval [0; 1]

6: x
(k,t)
i ← ui + χ(vi − ui)

7: draw random φ from uniform interval [0; 1]

8: σ
(k,t)
i ← φ · σmax

9: end for

10: Populationt ← Populationt ∪ {(x
(k,t), σ(k,t))}

11: end for

12: while Termination criterion not satisfied do

13: Offspringt ← Reproduction(Populationt)
14: Offspringt ← Mutation(Offspringt)
15: Populationt+1 ← Selection(Populationt, Offspringt)
16: t← t + 1
17: end while

18: return x
(k,t)|{min f(x(k,t)),∀k}
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2.11.2.1 Reproduction

The reproduction procedure is given by pseudocode 2.11.2. The reproduction
procedure works by creating λ new offspring, line 2 pseudocode 2.11.2. An
offspring is produced by first choosing two parents at random from the current
population, line 5. All n pair of genes are crossed over between the two parents
k and m. Each pair of genes γl

i is taken from either of the parents at an equal
probability of 50%, line 6–9. The offspring γl is inserted into the population of
offspring, line 12. An alternative crossover operator is given by table 2.2. Instead
of making a clone of a pair of genes in one parent this operator recombines the
genes. As seen from the last line of table 2.2 the genes of the offspring is the
average values of the genes of the two parents.

Pseudocode 2.11.2 Procedure Reproduction

1: Offspringt ← ∅

2: for l = 1 to λ do

3: draw two integers k and m at random from interval {1, 2, . . . , µ}
4: for i to n do

5: draw random χ from uniform interval [0; 1[
6: if χ < 0.5 then

7: γl
i ←

`

(x
(k,t)
i )(σ

(k,t)
i )

´

8: else

9: γl
i ←

`

(x
(m,t)
i )(σ

(m,t)
i )

´

10: end if

11: end for

12: Offspringt ← Offspringt ∪ {γ
l}

13: end for

First Parent Second Parent
“

`

xk
1 , xk

2 , . . . , xk
n

´

,
`

σk
1 , σk

2 , . . . , xk
n

´

” “

`

xm
1 , xm

2 , . . . , xm
n

´

,
`

σm
1 , σm

2 , . . . , xm
n

´

”

“

`

(xk
1 + xm

1 )/2, (xk
2 + xm

2 )/2, . . . , (xk
n + xm

n )/2
´

,
`

(σk
1 + σm

1 )/2, (σk
2 + σm

2 )/2, . . . , (σk
n + σm

n )/2
´

”

Table 2.2: Alternative crossover procedure for ES

2.11.2.2 Mutation

The vector of standard deviations σ(k,t) is used in the mutation procedure given
by pseudocode 2.11.3. Each pair of genes in each individual amongst all the
offspring is mutated, line 1–2 pseudocode 2.11.3. At first the i’th gene - related
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to the standard deviation - is mutated according to line 3. The exponential
factor can be seen as a way to intensify the search procedure where the τ ′ and
τ are depending on the procedure. Secondly, the i’th gene related to the value
of the solution variable is mutated by adding a normally distributed random
number with expectation zero and mean σ′

i, line 4. The mutation of the standard
deviations is an option which can be used to control the relative “amount” of
mutation of the solution coordinate. On the other hand, if the “amount” of
mutation applied by the operator should be the same throughout the algorithm
one can decide only to apply mutation to the genes related to the value of
the solution variable. Contrary to the Genetic Algorithms a low probability
Pmutation is not defined in the standard Evolution Strategies. This is due to the
fact that mutation is the main source of diversity in Evolution Strategies [17].

Pseudocode 2.11.3 Procedure Mutation
1: for l = 1 to λ do

2: for i = 1 to n do

3: σ′

i ← σ
(l,t)
i exp(τ ′N(0, 1) + τNi(0, 1))

4: x
(l,t)
i ← x

(l,t)
i + N(0, σ′

i)
5: end for

6: end for

2.11.2.3 Selection

The last part of the Evolution Strategies is the selection of individuals to sur-
vive to the next generation. All parents in the population and all offspring are
competing on an equal basis for survival. The selection procedure is given by
pseudocode 2.11.4. The selection chooses µ individuals for survival, line 4. At
all time the best individual - with the lowest objective value - is chosen from
the temporary population of both parents and offspring, line 5. The individ-
ual is removed from the temporary population and inserted into the surviving
population, line 6–7.

Pseudocode 2.11.4 Procedure Selection
1: Populationtemp ← Populationt ∪Offspringt

2: Populationt+1 ← ∅

3: Let β ∈ Populationtemp

4: for k = 1 to µ do

5: (x(k,t), σ(k,t))← β|{min f(β),∀β ∈ Populationtemp}

6: Populationtemp ← Populationtemp\{(x
(k,t), σ(k,t))}

7: Populationt+1 ← Populationt+1 ∪ {(x
(k,t), σ(k,t))}

8: end for
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2.11.3 Variations of Evolution Strategies

As for the Genetic Algorithms the variations within Evolution Strategies lie
in the different sub procedures. An alternative crossover operator is already
described for the reproduction procedure in section 2.11.2.1. As described in
section 2.11.2.2 the mutation operator can be applied to only the values of the
solution variables instead of both to solution variables and standard deviations.
Another possibility is to use the exponential function on an alternative func-
tion than the τ ′N(0, 1) + τN(0, 1). Various possibilities exist when it comes to
the selection strategies. The strategy in section 2.11.2.3 can be described as
a (λ + µ)–strategy which means that the µ fittest survivors for reproduction
are chosen from a temporary population of the λ offspring and µ parents all
together. A direct consequence of this selection strategy is the possibility for
a very fit individual to survive for several generations on the expense of some
offspring. An alternative selection strategy is the (λ, µ)–strategy where the µ
fittest survivors for reproduction is chosen amongst the λ offspring. For this to
work the number of offspring has to be strictly larger than the number of parents
in the population7. The (λ, µ)–strategy was used in the Genetic Algorithm de-
scribed in section 2.10.2.1. As for other strategies these can be combinations of
the two opposite strategies described above. A compromise could be to let par-
ents compete with the generation of their own children only or an upper bound
could be set on the number of parents allowed to survive each generation.

2.11.4 Pros and Cons of Evolution Strategies

An obvious strength of the Evolution Strategies for continuous functions is that
it is easily utilized. No detours have to be made in order to adapt Evolution
Strategies to this field of optimization in contrary to many other metaheuristics
developed for combinatorial optimization. In fact, the Evolution Strategies were
first developed for this kind of optimization of continuous variables by Rechen-
berg and Schwefel according to [20]. Comparing the Genetic Algorithms and the
Evolution Strategies it is seen that the Genetic Algorithms are easily applied to
the combinatorial nature of some problems whereas, the Evolution Strategies are
easily applied to problems that are defined over continuous variables. However,
this does not directly imply that either one is faster at finding good close-to-
optimal solutions to some problems but according to [17] the Genetic Algorithms
were performing worst on optimization of econometric functions compared to
simulated annealing and evolutions strategies.

7for λ < µ the population size would decrease and for λ = µ there would be no fitness
based selection
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2.12 Memetic Algorithms

2.12.1 Metaphor

The metaphor of Memetic Algorithms (MA) is somehow related to that of the
Genetic Algorithms and Evolution Strategies. However, a number of important
differences exist. The Memetic Algorithms are based on the concept of cultural
evolution contrary to that of genetic evolution. The meaning of cultural evolu-
tion is that cultural information is transmitted in an evolutionary process. The
objects to hold this information are called memes which is short for the Greek
word mimeme [20]. Memes can be viewed as ideas, skills or ways of doing things
and are transmitted to other individuals by imitation. In this way cultural evo-
lution is much faster than the process of genetic evolution. Perhaps the most
crucial difference between the genetic evolution and the cultural evolution is
that in the latter an individual have the possibility of recombining memes and
introducing an innovative component before passing the memes on to others.
From an optimization point of view the innovation can be introduced by some
sort of improvement heuristic such as local search or Descent Methods. With
this in mind a Memetic Algorithm can be viewed as a hybrid Genetic Algo-
rithms utilizing local search [8, 20]. Comparing to genetic evolution the cultural
evolution is a goal oriented process where each individual acts consciously by
doing improvements.

2.12.2 Memetic Algorithms for Optimization of Continu-
ous Functions

The idea of the Memetic Algorithm described in this section comes from the
procedure presented by [20]. However, due to the fact that Merz optimize
combinatorial problems the sub procedures are carried out differently. In fact
notation and sub procedures used in the following are closely related to that
of Evolution Strategies described in section 2.11. The difference is that the
components of an individual x(k,t) are regarded as memes not genes, i.e. the

memes are given by x
(k,t)
i where 1 ≤ i ≤ n and n is the number of memes

and t is the time or generation number. The index k describes the place of the
individual in the population and is bounded by the number of individuals µ in
the population.

The procedure for the Memetic Algorithm is given by pseudocode 2.12.1. The
lower and upper limits ui and vi are assumed to be initialized together with the
maximum standard deviation σmax at the start of the procedure. The initial
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population is created almost in the same way as for the Evolution Strategies
except from that a local search is applied to each individual before inserting
it into the initial population, line 10–11 pseudocode 2.12.1. For all µ individ-

uals each n memes x
(k,t)
i is set at random in the search space, line 4–6. As

for now the local search procedure can be thought of as the Descent Method
from section 2.3.2. The Memetic Algorithm continue to evolve the population
until a stopping criterion is satisfied, line 11. As for Evolution Strategies this
criterion could be related to a minimum improvement of the objective value or
a maximum number of iterations. A reproduction procedure is used in each
generation, line 14. Mutation is allowed over a temporary population of both
the current population and the offspring from reproduction, line 16. Each iter-
ation is concluded by selecting the population of the next generation, line 18.
The selection of survivors is done amongst the current population, its offspring
from reproduction and the mutated temporary population, line 17. Finally the
individual with the lowest objective value in the final population is returned,
line 21. Because of the selection strategy described in section 2.12.2.3 the fittest
individual is to be found in the final population.

Pseudocode 2.12.1 Procedure MA
1: t← 1
2: Populationt ← ∅

3: for k = 1 to µ do

4: for i = 1 to n do

5: draw random χ from uniform interval [0; 1]

6: x
(k,t)
i ← ui + χ(vi − ui)

7: draw random φ from uniform interval [0; 1]

8: σ
(k,t)
i ← φ · σmax

9: end for

10: x
(k,t) ← LocalSearch(x(k,t), σ(k,t))

11: Populationt ← Populationt ∪ {(x
(k,t), σ(k,t))}

12: end for

13: while Termination criterion not satisfied do

14: Offspringt ← Reproduction(Populationt)
15: Populationtemp ← Populationt ∪Offspringt

16: Populationmutated,t ← Mutation(Populationtemp)
17: Populationtemp ← Populationt ∪Offspringt ∪ Populationmutated,t

18: Populationt+1 ← Selection(Populationtemp)
19: t← t + 1
20: end while

21: return x
(k,t)|{min f(x(k,t)),∀k}

In the Memetic Algorithm by [20] the use of a meta-mutation is suggested
in order to update the population after selection, in case the population is
converged. The meta-mutation takes care of mutating all individuals except the
best one in the population. The procedure can be seen as a way to diversify
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the search after the population has automatically converged. The reason meta-
mutation is not described in pseudocode 2.12.1 is the lack of evidence of the
automatic convergence of a population based on continuous variables. After all
the convergence is highly dependant on the local search procedure. Furthermore
[8] who use Memetic Algorithms for optimization of continuous functions do not
describe a similar meta-mutation. Thus, the meta-mutation is left as an open
question to be answered by testing of different versions of Memetic Algorithms.

2.12.2.1 Reproduction

The reproduction procedure of the Memetic Algorithm is given by pseudocode
2.12.2. It is closely related to that of Evolution Strategies with the important
difference of applying local search to each offspring γl before it is accepted to the
population of offspring, line 12-13 pseudocode 2.12.2. The number of offspring
to be created is denoted λreproduce, line 2. Exactly like the Evolution Strategies
the offspring is made by crossover of two parents chosen at random, line 3. All
memes γl

i are taken from either one of the parents by equal probability, line
5–9. Again the alternative crossover operator defined by table 2.3 can be used

Pseudocode 2.12.2 Procedure Reproduction

1: Offspringt ← ∅

2: for l = 1 to λreproduce do

3: draw two integers k and m at random from interval {1, 2, . . . , µ}
4: for i to n do

5: draw random χ from uniform interval [0; 1[
6: if χ < 0.5 then

7: γl
i ←

`

(x
(k,t)
i )(σ

(k,t)
i )

´

8: else

9: γl
i ←

`

(x
(m,t)
i )(σ

(m,t)
i )

´

10: end if

11: end for

12: γl ←LocalSearch(γl)
13: Offspringt ← Offspringt ∪ {γ

l}
14: end for

instead. The memes are chosen as the average of the two memes of the two
parents.
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First Parent Second Parent
“

`

xk
1 , xk

2 , . . . , xk
n

´

,
`

σk
1 , σk

2 , . . . , xk
n

´

” “

`

xm
1 , xm

2 , . . . , xm
n

´

,
`

σm
1 , σm

2 , . . . , xm
n

´

”

“

`

(xk
1 + xm

1 )/2, (xk
2 + xm

2 )/2, . . . , (xk
n + xm

n )/2
´

,
`

(σk
1 + σm

1 )/2, (σk
2 + σm

2 )/2, . . . , (σk
n + σm

n )/2
´

”

Table 2.3: Alternative crossover procedure for MA

2.12.2.2 Mutation

The mutation procedure for Memetic Algorithms is defined by pseudocode
2.12.3. The mutation operator is applied to λmutate individuals, line 1 pseu-
docode 2.12.3. The integer m is chosen at random between one and µ+λreproduce

which is the number of individuals in the temporary population consisting of
both parents and offspring. Each memes of the individual x(m,t) in the tem-
porary population is added a normally distributed random number with the

standard deviation σ
(m,t)
i and the expected value zero, line 4. Local search is

applied to the resulting individual before it is added as a new individual βl to
the mutated population, line 6–7. Note that the standard deviation is not self
adapted by default as for Evolution Strategies. Thus, the standard deviation
for the new individual is inherited from the mutated individual, line 6.

Pseudocode 2.12.3 Procedure Mutation
1: for l = 1 to λmutate do

2: draw an integer m at random from interval {1, 2, . . . , µ + λreproduce}
3: for i = 1 to n do

4: x
(l,t)
i ← x

(m,t)
i + N(0, σ

(m,t)
i )

5: end for

6: βl ← LocalSearch
`

(x(l,t)), (σ(m,t))
´

7: Populationmutated,t ← Populationmutated,t ∪ (βl)
8: end for

2.12.2.3 Selection

The selection procedure given by pseudocode 2.12.4 does not differ from the
one suggested for Evolution Strategies. For Memetic Algorithms the temporary
population contains the current population, the offspring created by recombi-
nation and local search together with the mutated population which is also
exposed to local search. Thus, the number of individuals in the temporary pop-
ulation used for selection becomes µ + λreproduce + λmutate. Individuals for the
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next population is selected on the basis of their fitness. This implies that the
µ best individuals are put into the population of the next generation, line 3–7
pseudocode 2.12.4. The procedure works by repeatedly selecting the individual
with the minimum objective value from the temporary population, line 4. Then
the individual is removed from the temporary population and inserted into the
next generation, line 5–6. This selection is a (λ + µ)-strategy where λ is equal
to λreproduce + λmutate. The parents are competing on equal basis with the
offspring produced by recombination, mutation and possibly both.

Pseudocode 2.12.4 Procedure Selection
1: Populationt+1 ← ∅

2: Let α ∈ Populationtemp

3: for k = 1 to µ do

4: (x(k,t), σ(k,t))← α|{min f(α),∀α ∈ Populationtemp}

5: Populationtemp ← Populationtemp\{(x
(k.t), σ(k,t))}

6: Populationt+1 ← Populationt+1 ∪ {(x
(k,t), σ(k,t))}

7: end for

2.12.3 Variations of Memetic Algorithms

The possibility of using a meta-mutation procedure after conversion of the pop-
ulation is described in section 2.12.2. It deserves to be mentioned again as a
possible variant of Memetic Algorithms.

The local search suggested in the Memetic Algorithm could resemble the Descent
Methods described in section 2.3.2. However, the local search procedure is
utilized at initialization and throughout both the reproduction and mutation
procedure at each iteration. Thus, it is desirable to make it fast. Because
the Descent Method is time consuming in this sense a simpler version of local
search is likely to perform better. A simple and fast local search could use
the framework of the Descent Method but terminate as soon as an improved
solution is found. In fact this framework is suggested by [8].

As described in the previous sections variations of Genetic Algorithms and Evo-
lution Strategies could be based on different selection strategies. Likewise,
Memetic Algorithms can utilize different selection strategies or combinations
of these.
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2.12.4 Pros and Cons of Memetic Algorithms

The most obvious advantage of the Memetic Algorithms is the combination of
nice properties from both traditional Evolutionary Algorithms and point-to-
point neighborhood heuristics. At the same time the Memetic Algorithms get
rid of the compromising drawback of the traditional Evolutionary Algorithms;
namely the lack of ability to look for a better solution in the local neighborhood
of an individual.

A negative property of Memetic Algorithms could be the relatively time con-
suming loops consisting of both reproduction and local search together with
mutation and local search.

2.13 Iterated Local Search

2.13.1 Metaphor

The Iterated Local Search (ILS) is based on two metaphors. The local search
used in Iterated Local Search is based on the hill climbing metaphor. It re-
sembles any other local search or descent method that will terminate in a local
optima. The local search procedure is iterated. Rather than choosing the start-
ing points at random for each new iteration the starting point is found by the
mutation operator known from other Evolutionary Algorithms. However, the
Iterated Local Search cannot be described as a population based method since
the algorithm operates on a single solution only, i.e. a single agent approach.

The Iterated Local Search can be viewed as a special instance of the Memetic
Algorithm. The Memetic Algorithm can act as an Iterated Local Search when
the population size is equal to one and the number of offspring to be reproduced
λreproduce is equal to zero [20].

2.13.2 Iterated Local Search for Optimizing Continuous
Functions

Since the Iterated Local Search is a special case of the Memetic Algorithm the
pseudocode is also similar. The procedure is given by pseudocode 2.13.1. The
initial solution is created in line 3–6, pseudocode 2.13.1. The box constraints
given by ui and vi respectively are set prior to the procedure. The steps of
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mutation and local search are repeated until a stopping criterion is satisfied,
line 9. The mutation process of the Iterated Local Search is similar to that of
Evolution Strategies given by pseudocode 2.11.3 on page 33. The only difference
is that the mutation works on a single individual instead of a whole population.
The local search sub procedure also works on an individual solution and is
similar to any local search. The new solution - generated by mutation and local
search - is only kept until the next generation if the objective value is improved,
line 10–13. Otherwise, the current solution is kept until the next generation,
line 14–15. At the end the best solution is returned, line 19.

Pseudocode 2.13.1 Procedure ILS
1: t← 1
2: for i = 0 to n do

3: draw random χ from uniform interval [0; 1]
4: xt

i ← ui + χ(vi − ui)
5: draw random φ from uniform interval [0; 1]
6: σt

i ← φ · σmax

7: end for

8: x
t ← LocalSearch(xt, σt)

9: while termination criterion not satisfied do

10: (x′, σ′)← Mutate(xt, σt)
11: x

′ ← LocalSearch(xt, σt)
12: if f(x′) < f(xt) then

13: x
t+1 ← (x′, σ′)

14: else

15: x
t+1 ← (xt, σt)

16: end if

17: t← t + 1
18: end while

19: return x
t

2.13.3 Variations of Iterated Local Search

Since the Iterated Local Search can already be seen as a special case of the
Memetic Algorithm not many changes can be applied within the relatively nar-
row framework. However, the initialization of the standard deviation σi could
be fixed to a number σmax instead of being random. This would make sense
because there is only one individual and it makes the standard deviation more
directly controllable by the parameter σmax.
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2.13.4 Pros and Cons of Iterated Local Search

The Iterated Local Search is more dependent on the starting point than a pop-
ulation based algorithm since a population based approach is more likely to
explore the search space more due to the multiple starting points. Depending
on the problem structure this drawback could have more or less serious conse-
quences. What makes the Iterated Local Search interesting is the lower time
consumption than the general Memetic Algorithm. By limiting the local search
to few descending steps the sub procedure becomes fast. The only operator
applied for each iteration is the mutation which is also fast. Therefore, the
Iterated Local Search can perform very fast iterations.

It is hard to say whether the Iterated Local Search will converge enough. The
mutation operator can be seen as a way of defining a neighborhood in the
continuous search space given by the standard deviation. This resembles very
much the definition of neighborhood in the Descent Methods and Simulated
Annealing. However, for combinatorial problems a local search would choose
the best neighbor whereas a bit flip mutation would still be random. Thus, it
makes more sense to differ between mutation and local search for combinatorial
problems than for continuous functions. A possible way around this could be to
restrict the local search to a Nelder–Mead algorithm or to allow any mutation
although the offspring turns out to be a less fit individual than the parent.



Chapter 3

Comparing and Choosing
Metaheuristic

3.1 Summary

This chapter deals with the comparison of the metaheuristics and the selection
of one for implementation. The comparison is based on the description in the
previous chapter focusing on how the metaheuristics are adapted to optimization
of continuous functions. To aid the selection process a modified SWOT analysis
is made for each of the methods. The steps carried out in this chapter are a
convergent part of the overall solution process.

3.2 Comparison Scheme of the Metaheuristics

The comparison scheme given by table 3.1 should give an overview of how well
the metaheuristics are adapted to continuous function optimization. The state-
ments are implicitly written in the chapter describing the metaheuristics and
are based on various papers given in the bibliography. However, table 3.1 is an
attempt to quantify the properties to make way for direct comparison. The first
line illustrates whether the metaheuristic take advantage of a point-to-point im-
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provement heuristic. Only the Genetic Algorithm and the Evolution Strategies
do not use neighborhood search. Second, it is seen that the Genetic Algorithm,
Evolution Strategies, Memetic Algorithm and Iterated Local Search uses the
property to evolve populations over generations. In the third line the Nelder–
Mead simplex is shown to be the only method to use the geometrical properties
of the solution points in the search space. The Nelder–Mead procedure moves
each new point in the direction where a possible improvement of the objective
value could be expected. The idea can be compared to interpolation and extrap-
olation. A judgement of how well the metaheuristic is suited for optimization
of continuous functions is given in line four. Each method is ranked from one
to three. The value three means that the metaheuristic is either developed for
continuous optimization directly or it is extremely easy to adapt. A ranking of
two is somewhat intermediate but can be adapted quite easily. If the heuris-
tic only has a value of one it reflects that the method has little to do with
the original metaheuristic for combinatorial problems and is only adapted by
applying many extra sub-procedures. It can be questioned whether the actual
goal of developing such methods is to find the best solution easily or just to
adapt a certain predefined heuristic to the area of continuous functions opti-
mization. Line five presents a somewhat subjective judgement of the quality
of the different descriptions given in different papers. The ranking is based on
a study of the literature in the bibliography. The last line states whether the
metaheuristic is able to escape a local minimum. Only the Descent Methods
and the Nelder–Mead simplex are unable of that.

M e t a h e u r i s t i c s

DM SA NM TS AC GA ES MA ILS
1 Utilization of neighborhood search

√ √ √ √ √ √ √

2 Utilization of evolutionary evolvement
√ √ √ √

3 Utilization of geometrical simplex
√

4 Simplicity in adaption to continuous functions 3 3 3 1 1 2 3 3 3
5 Quality of the descriptions in other literature ? 3 3 2 1 3 3 2 ?
6 Ability to escape local minimum

√ √ √ √ √ √ √

Table 3.1: Comparison scheme of the nine metaheuristics

3.3 SWOT Analysis

The comparison scheme presented in table 3.1 might provide an overview of the
basic properties of the metaheuristics. However, it says little about the actual
advantages and drawbacks of each metaheuristic. To give a more in dept analysis
of the methods, a modified SWOT analysis is made for each metaheuristic. The
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modification consists of emphasizing the opportunities with a main focus on
possibilities of guiding the search procedure in a divergent way. The primary
goal of the SWOT analysis is to assist in selecting the metaheuristic with the best
possibilities of implementing a divergent/convergent search strategy. However, a
secondary goal is to find other opportunities, threats, strengths and weaknesses
and combine or solve these. The reason for the modification is that the selection
of a metaheuristic should mainly rely on the number of opportunities and their
character, such as the strengths and weaknesses are highly individual to each
procedure and does not call for direct comparison.

3.3.1 Descent Methods

The first SWOT analysis given by table 3.2 considers the Descent Methods. As
a direct search method the procedure does not have many opportunities of using
divergent thinking. However, it can be used as a fast way of improving solutions
developed by other metaheuristics. Note that the Nelder–Mead simplex - which
is another direct search method - is not presented in a SWOT matrix. It can
be assumed to have some of the same strengths, weaknesses, opportunities and
threats as the Descent Methods. However, it might be a stronger procedure to
find a pure local minimum because of the geometrical simplex properties.

3.3.2 Simulated Annealing

The Simulated Annealing presented in table 3.3 uses a somewhat simple frame-
work. It is definitely worth using the Simulated Annealing to optimize continu-
ous functions because of its simplicity, capability of escaping local minima and
the overall convergence. However, it does not provide many tools for diversifi-
cation1 and intensification.

3.3.3 Tabu Search

The Tabu Search is seen in various version. As presented by the SWOT analysis
in table 3.4 the search can be quite diverse, but this method also has a limited
amount of possible tools for diversification/intensification.

1see section 4.3 for the connection between diversification/intensification and diver-
gent/convergent thinking
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Descent Methods Opportunities Threats
- use for improving other
metaheuristics

- few possible variations in
the simple framework

- easy to combine with other
metaheuristics

- getting trapped in local
minimum
- can choose poor neighbor-
hood solution when better
exists
no “intelligent” way of con-
tinuing search from local
minimum

Strengths
- fast iterations - possible to implement as

part of other metaheuristics
- let other methods handle
the “intelligent” search ap-
proach

- relatively fast convergence utilize few iterations for fast
improvement of solution

- simple
Weaknesses
- cannot escape local min-
ima

-utilize random restart

- few ways to control diver-
sification
- diversification does not
make sense because DM
cannot escape local optima

Table 3.2: SWOT matrix on Descent Methods
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Simulated Anneal-
ing

Opportunities Threats

- Parameters T and d

can control diversifica-
tion/intensification

- requires more running
time than DM to perform
better than DM

- use of local search in com-
bination with other meta-
heuristics

- can accept ascent move
when descent move is pos-
sible
- can accept poor descent
move when better is possi-
ble
- if only a few iterations
of some neighborhood based
search is desired, one is bet-
ter of with DM

Strengths
- fast iterations - Provide good results as

stand-alone metaheuristic
- useful for functions with
multiple optima

- convergence is proofed obtains good solution rela-
tively fast

- able to escape local mini-
mum
- tested on continuous func-
tions
Weaknesses
- returns best solution
slower than DM

- can provide good solu-
tions without being com-
bined with other meta-
heuristics

Table 3.3: SWOT matrix on Simulated Annealing
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Tabu Search Opportunities Threats
- very diverse search - does not exclude tabu so-

lution forever
- several versions exists for
continuous problems

exclude candidates close to
tabu solution

- hyper rectangles al-
low for intensifica-
tion/diversification

- possibly exclude global or
local minimum

Strengths
- memory to save good and
bad solutions

- local search could be ap-
plied from all the solutions
in the promising list

- might not find close to op-
timal solution but can find
several good starting points
for local search

- promising list
- does not get trapped in lo-
cal minimum
Weaknesses
- use and updating of mem-
ory

- use local search on one or
more of the most promising
points

- possibility of finding good
solution in previously ex-
cluded part of search space

- does not return local min-
imum

Table 3.4: SWOT matrix on Tabu Search
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3.3.4 Ant Colony Optimization

The Ant Colony presented by table 3.5 is an intriguing metaphor, but the ver-
sions provided for continuous functions have obvious drawbacks. Furthermore,
practically no tools are seen to guide the search in either divergent or convergent
ways.

Ant Colony Opportunities Threats
- speed of MAS can be im-
proved by parallel program-
ming

- most versions for continu-
ous functions are poorly de-
scribed in papers

- hybridization in different
ways

- large effort spend on less
promising neighborhoods
before convergence
- ants are highly dependant
on the choices of previous
generations

Strengths
MAS ⇒ diversity - good performance when

parallelized
- will converge to the best
local minimum found

- ants highly dependant on
the choices of previous gen-
erations

- high probability of reach-
ing good local optima

Weaknesses
- relatively slow convergence
to local minimum

- a good quality metaheuris-
tic could be designed by a
combination of AC and an-
other metaheuristic

- tune parameters and
choices in order to inten-
sify fast allowing for fast
convergence

- the specific version pre-
sented here is only suitable
for local optimization

- speed up AC to allow for
more iterations of above ly-
ing metaheuristic

- no “intelligent” greedy
agents

Table 3.5: SWOT matrix on Ant Colony

3.3.5 Genetic Algorithms

The SWOT matrix for the Genetic Algorithm is given by table 3.6. The Ge-
netic Algorithm has a few ways of controlling diversification and intensification.
It is widely used for combinatorial problems, but compared to the Evolution
Strategies - which is also capable of different divergent and convergent steps -
it is hard to see the advantage of the binary approach.
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3.3.6 Evolution Strategies

The Evolution Strategies presented in table 3.7 are designed for optimization of
continuous functions. It is an evolutionary approach like the Genetic Algorithms
with at least as many tools for diversification and intensification.

Genetic Algorithms Opportunities Threats
- control diversity by muta-
tion

- overlooking minimum so-
lutions close to individual

- control diversifica-
tion/intensification by
selection strategy, crossover
and mutation

- (λ + µ)–strategy will con-
verge population fast

- can be hybridized
Strengths
-convergence by survival of
the fittest

- adapt search procedure
throughout the run of the
algorithm

- can be combined with LS
in order to look for better
individuals

- well described -make the iterations fast
- widely used
- mutation and recombina-
tion
- binary operators allow for
fast operations
Weaknesses
- discretization of the solu-
tions

- combine with LS in order
to improve final solution

- could be made to converge
fast by selection strategy

- integer approach to op-
timization of continuous
functions

- early interruption would
allow for combinations with
other algorithms

- no improvement of indi-
vidual
- does not find local mini-
mum
- convergence by survival of
the fittest

Table 3.6: SWOT matrix on Genetic Algorithms
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Evolution Strategies Opportunities Threats
- control diversifica-
tion/intensification by
selection strategy, crossover
and mutation

- overlooking minimum so-
lutions close to individual

- can be hybridized - (λ + µ)–strategy will con-
verge population fast

Strengths
- developed for continuous
functions

- adapt search procedure - force converging and early
interruption could make ES
fast enough to be a sub pro-
cedure on a hybrid algo-
rithm

- works well
- convergence by survival of
the fittest
- no discretization
- well described
Weaknesses
- no improvement of indi-
vidual

- combine with LS in order
to improve final solution

- could be made to converge
fast by selection strategy

- does not find local mini-
mum

- early interruption would
allow for combinations with
other algorithms

- convergence by survival of
the fittest

Table 3.7: SWOT matrix on Evolution Strategies
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3.3.7 Memetic Algorithms

The Evolution Strategies and the Memetic Algorithm are closely related. It
is seen from the SWOT matrix in table 3.8 that the possibility of innovation
and improvement in the population based approach makes way for even more
ways to guide the search. The Memetic Algorithms is clearly the metaheuristic
considered in this thesis with the most potential for adapting the divergent and
convergent thinking into the search strategy.

3.3.8 Iterated Local Search

The Iterated Local Search procedure presented by table 3.9 is related to the
Memetic Algorithm. It does not have advantages over other versions of Memetic
Algorithms except it might perform faster iterations. On the other hand several
of the opportunities related to divergent and convergent thinking are lost in
comparison to the Memetic Algorithm.

3.4 Conclusion

The Memetic Algorithm is selected as the main procedure for implementation
and testing. The choice is mainly based on the opportunities presented by
the SWOT analysis, but is also affected by the good score in the comparison
scheme in table 3.1. The Nelder–Mead simplex is chosen as the direct search
heuristic to guarantee a local optimum after each run of the Memetic Algorithm.
Furthermore, the simplicity of the Simulated Annealing is seen as an important
factor for a possible hybridized approach. In section 5.2 the final version of the
Memetic Algorithm is presented together with a hybridized version which uses
the Simulated Annealing for parameter optimization.
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Memetic Algo-
rithms

Opportunities Threats

- easily applied to continu-
ous functions by using pro-
cedures from ES

- (λ + µ)–strategy will con-
verge population fast

- control diversifica-
tion/intensification by
mutation, meta-mutation
and crossover

- LS could require much
computational time leaving
little time for the evolution-
ary process

- control diversifica-
tion/intensification by
selection strategy and
self-adaptation
- could be hybridized
- use different kinds of LS
- intensify by changing LS
method or iterate longer in
LS

Strengths
- convergence by survival of
the fittest

- allows for many possible
ways of adjusting the search
process

- meta-mutation and muta-
tion can be used in order to
prevent a population from
converging

- no discretization - could be utilized as reac-
tive search strategy

- powerful hybrid by using
LS

- focus can shift from evo-
lutionary process to intense
neighborhood based LS

- finds local optimum
- mutation, meta-mutation
and crossover
Weaknesses
- convergence by survival of
the fittest

- meta-mutation and muta-
tion can be used in order to
prevent a population from
converging

- interrupt the LS in most
iteration(of evolutionary
process) to make the
procedure fast

- LS for each individual
for both mutation and
crossover operations for
each iteration is computa-
tionally costly

Table 3.8: SWOT matrix on Memetic Algorithms
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Iterated Local
Search

Opportunities Threats

- use different LS - hard to tell mutation of a
single individual apart from
LS

- intensify by changing LS
or iterate longer

- only very similar ap-
proaches to converging, i.e.
less mutation by auto adap-
tation on standard devia-
tion and smaller neighbor-
hood

- control diversification by
mutation
- could be combined with
more extensive LS after fi-
nal iteration

Strengths
- faster iterations than MA - few iterations of LS

throughout the procedure
allows for ultra fast meta-
heuristic

- implementation of ILS
with Nelder–Mead as LS

- computational time used
for LS is not that crucial
when there is only one in-
dividual

- the fast version could yield
good local minima

- finds local minimum
- mutation
Weaknesses
- few instruments (param-
eters) for adjusting the
search process

- accept that ILS is quite
random on continuous func-
tions and run Nelder–Mead
to improve best local min-
ima

- not population based
- just an extreme case of MA

Table 3.9: SWOT matrix on Iterated Local Search



Chapter 4

Divergent and Convergent
Thinking as Part of a Creative

Approach

4.1 Summary

In this chapter the creative problem solving process based on divergent and con-
vergent thinking is presented in section 4.2. The concept of divergent/convergent
steps is taken to the implementation level in section 4.3 by incorporating diver-
sification and intensification in the search strategy of the Memetic Algorithm.

4.2 The Process

The process of finding good solutions to multi-modal continuous functions is
designed by a creative approach. The main idea is to use divergent and conver-
gent thinking repeatedly and interactively. The outline of the entire process is
given by figure 4.1.
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for metaheuristics
in litterature

Describing
how to use the
metaheuristics
on continuous
functions

Brainstorm
on guiding
tools

implementing
guiding tools

Choosing a
metaheuristic
to implement

Choosing
promising
methods

Searching

Choosing and

Figure 4.1: The outline of the solution process

This process initiated by the aims formulated in the introduction, i.e. to design a
method capable of optimizing continuous functions and even black box problems
that are not defined mathematically.

A number of divergent and convergent phases are used as part of a creative
problem solving process. According to [26, 27] it is recommendable to start
each step of a creative problem solving process by divergent thinking followed
by convergent thinking. The brainstorming session is a typical example of di-
vergent thinking. Properties like deferring judgement, combining and quantity
is essential for divergent thinking. Structure and systematic approaches are
typical for the convergent steps.

The first step approaching the solution in this thesis is divergent in its nature
by searching for a large amount of papers and literature in which continuous
functions are being solved. Secondly, some metaheuristics based on metaphors
from nature are chosen for further investigation in a convergent step. The rea-
son for choosing Descent Methods, Nelder–Mead Simplex, Simulated Annealing,
Tabu Search, Ant Colony Optimization, Genetic Algorithms, Evolution Strate-
gies, Memetic Algorithms and Iterated Local Search is that these metaheuristic
have either been adapted to solve continuous problems or proved promising in
the area of continuous function optimization by the documentation found for
combinatorial problems.

The following step contains a detailed description of how to use the metaheuris-
tics on continuous functions. The description based on various papers and lit-
erature presents different variations, ideas and possible approaches of utilizing
each metaheuristic. Thus, the descriptions can be viewed as a number of par-
allel divergent steps underlying an overall structure determined by the previous
convergent step. Pros and cons are also touched upon in the description in or-
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der to make way for a selection process. By convergent thinking the memetic
algorithm is chosen for implementation based on a comparison scheme and a
modified SWOT analysis. As mentioned in chapter 3 the main objective of
the selection of the memetic algorithm is the extensive possibilities of guid-
ing the search strategy in a divergent and convergent way. In that way the
divergent/convergent solution process is continued in the test runs of the meta-
heuristic. In order to decide how the search process of the memetic algorithm
should be guided or controlled a brainstorming session is made to come up with
a number of suggestion. Only the best suggestions are chosen for implemen-
tation in another convergent step. The following section deals with the details
of divergent and convergent thinking in the search strategy. Section 4.3 will
also deal with the important factors considered when choosing the best guiding
tools.

4.3 Divergent and Convergent Thinking as Part
of the Search Strategy

In the previous section it is described how a creative solution process is cre-
ated by repeatedly using divergent and convergent steps in order to approach
the solution. In this section, the continuation of the process - into the search
strategy of the metaheuristic in order to obtain better solutions - will be de-
scribed. Basically, Descent Methods can be seen as a way to utilize a convergent
strategy. Descent Methods only accept a solution that is closer to minimum.
Each descending step is narrowing down the possibilities of a new descending
step. At last no descending steps remain. This way the search is converging
to a local minimum. Most metaheuristics have some mechanism to escape a
local minimum. This can be seen as a divergent step. However, letting the
convergent steps of minimization interact with the divergent steps provided by
the metaheuristic in a static way might not be a good idea. Consider Simulated
Annealing which has a higher probability to escape a local minimum in the start
of the search process than in the end. This has proved useful according to both
practical tests and thermodynamic theory. The process of making it less likely
to escape local minima throughout the search is referred to as intensification.
Intensification can be seen as an overall convergent strategy.

Taking this a bit further it could be useful to change strategy throughout the
search in a way that both convergent and divergent strategies are utilized re-
peatedly. An argument for letting this happen is of course that the convergent
strategy aids the search for a local minimum, whereas the divergent strategy
makes it possible to escape local minima in the search for better local minima.
Consider the reason for escaping on the way to a local minimum. The strat-
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egy may be divergent in the beginning of a search procedure in order to escape
local minima. However, a convergent strategy is needed to reach each of these
possible local minima. A useful property of getting close to the local minimum
by a convergent strategy before escaping by a divergent strategy is to obtain
the actual value of the objective in the local minimum. This way a possible
global minimum is not lost because of a too divergent initial strategy. In other
words the dilemma of escaping a local minimum before reaching it is that the
global minimum might be lost. Likewise, finding a low valued local minimum
after utilizing a convergent strategy does not exclude the possibility of switch-
ing to another divergent strategy to check for an even lower local minimum. By
this reasoning repeatedly shifting between convergent and divergent strategies
should be attempted.

Furthermore, the structure of the search space could call for a change of strategy
on different levels. Consider a function given by figure 4.2. A search procedure
allowing for maximum two consequently ascent moves might be able to find all
local minima in the first “valley” given the step size in the middle of the figure.
However without diversification the global minimum in the second “valley” can-
not be reached. In this case diversification could be obtained by enlarging the
step size or increasing the number of allowed ascent moves. In the following the
process of going from a divergent search strategy to a convergent search strat-
egy is referred to as intensification whereas, going from convergent to divergent
strategy is referred to as diversification. In other words, convergent thinking is
represented in the metaheuristic as intensification and divergent thinking ap-
pears by diversification.

f(x)

x

GM

LM

LM
LM LM LM

LM

LM

LM LM

Valley 1 Valley 2

Peak

Stepsize

Figure 4.2: Example of search space structure
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4.3.1 Controlling Diversification and Intensification

In order to utilize the features of divergent/convergent thinking in the meta-
heuristic search it is necessary to clarify how intensification and diversification
is controlled. Thus, a brainstorming session is made focusing on intensifica-
tion and diversification in memetic algorithms. The brainstorming session is
focused on any tools making diversification or intensification possible, but also
on conditions that could be useful in order to trigger either diversification or
intensification. The list created by the brainstorm is given by table 4.1.

Some of the tools given by table 4.1 are chosen for implementation. The primary
factor for choosing the tools is the estimated effect on either intensification or di-
versification. However, it is also considered which of the tools can be intuitively
explained more clearly. The chosen tools are divided into four groups that are
described in the following. The first group contains the threshold ǫ representing
the minimal difference in the objective value of individuals in a population. This
group represents an overall convergent strategy. The second group contains the
local search step size which is a predominately convergent strategy that is broken
by diversification when the step size is increased. Third is meta-mutation which
is indeed a type of diversification. Fourth is a repeatedly divergent/convergent
strategy based on two different search strategies together with an increase and
decrease in the number of mutated and reproduced individuals.

4.3.2 Overall Intensification

The threshold ǫ is the minimal difference which is allowed in the objective value
of the best individual and the individual ranked µ

2 th best, where µ is the popu-
lation size. Minimal allowed difference means the minimal difference that does
not result in a meta-mutation step. Thus, the threshold is closely connected to
the diversification described in section 4.3.4. The simple updating of the thresh-
old is given by pseudocode 4.3.1. The decrease of the threshold can be seen as
intensification for each generation. The intensification is illustrated by figure
4.3. The use of the threshold in section 4.3.4 means that a smaller threshold
would allow the individual that is in the middle of the ranked population to
have an objective value closer to that of the best individual. If the two objec-
tive values where too close it would result in meta-mutation (diversification).
Therefore, the idea of decreasing the limit is actually intensification. On the
other hand, as a result of other convergent properties in the metaheuristic the
population is more likely to contain more individuals with the same objective
value in the end of the search than in the beginning of the search. From that
point of view the decreasing threshold can be viewed more like an adaptation
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• dynamic population size (µ)

• meta-mutation

• random restart

• maximum number of identical individuals

• dynamic mutation size λmutation

• dynamic reproduction size λreproduction

• no improvement of best individual

• number of iterations without improvement of best individual

• (λ + µ)–strategy (intensification)

• (λ, µ)–strategy (diversification)

• number of local search iterations

• dynamic local search step size

• different strategies for the mutation operator

• maximum standard deviation σmax in the mutation

• minimal improvement of best individual

• self adaptation of the standard deviation σ

• minimal distance between individuals in the search space

• change between diversification/intensification according to fixed interval

• minimal difference in the objective value of individuals in one population
(ǫ)

Table 4.1: Brainstorm on diversification/intensification

than an intensification.

Pseudocode 4.3.1 Controlling ǫ

1: ǫt ← ǫt−1 · decǫ, where decǫ ∈]0; 1[



4.3 Divergent and Convergent Thinking as Part of the Search Strategy 61

ε

Figure 4.3: The overall convergence by decreasing threshold ǫ

4.3.3 Predominately Intensification

The local search step size is decreased in every generation (iteration) in order
to intensify the search if the best individual is improving. However, in case the
best individual in a generation has not got a lower objective value than the best
individual in the generation before the intensification is broken by a divergent
step. The intensification and diversification is given by the lines in pseudocode
4.3.2. Given that the best individual improves, the step size is decreased in each
generation, line 1–2. In case the best individual is not improving the step size
is increased instead, line 3–4. The intensification which is from time to time
broken by diversification is illustrated graphically by figure 4.4.

Pseudocode 4.3.2 Controlling StepSize

1: if f(x(best,t)) < f(x(best,t−1)) then

2: StepSizet ← StepSizet−1 · dec, where dec ∈]0; 1[
3: else

4: StepSizet ← StepSizet−1 · inc, where inc > 1
5: end if

4.3.4 Diversification by Meta-mutation

The meta-mutation is a somewhat drastically divergent step. It mutates all
individuals except the best. The meta-mutation procedure is given by pseu-
docode 4.3.3. Meta-mutation is carried out in case at least one of the following
two conditions given by line 2 holds. One, the difference between the objective
value of the best individual and the individual on the µ

2 th place of the ranked
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StepSize

Figure 4.4: The predominant convergence of the local search stepsize

population is below a certain threshold ǫ1. Two, the diversity of the population
is below a specified minimum diversity. For this purpose the diversity of the
population is calculated as the sum of differences over all variables between the
best solution and all of the remaining 66 % of the best solutions. Meta-mutation
is carried out by mutating each gene of all individuals except the best, line 3–4.
The actual mutation of the gene is done by adding a normally distributed num-

ber with mean zero and standard deviation k · σ(l,t)
i , where kscale is a constant

determining how diverse the meta-mutation should be and σ
(l,t)
i is a genetic

property initialized by the memetic algorithm.

Pseudocode 4.3.3 Procedure Meta-mutation
1: Populationt ← Ranked(Populationt)
2: if f(x(best,t)) + ǫ ≥ f(x(µ/2,t)) or Diversity(Populationt) < minDiversity then

3: for All x
(l,t) ∈ Populationt\{x

(best,t)} do

4: for i = 1 to n do

5: x
(l,t)
i ← x

(l,t)
i + kscale ·N(0, σ

(l,t)
i )

6: end for

7: x
(l,t) ← LocalSearch(x(l,t), σ(l,t))

8: end for

9: end if

The diversification caused by meta-mutation after the population is converged
is illustrated by figure 4.5. It is seen that the population slowly converges over
several steps to a certain extinct. Meta-mutation is then triggered causing the
population to diverge rapidly in one step. As implied by figure 4.5, the diversity
of the population never becomes as large as the initial diversity. A further
illustration of the diversity is given by figure 4.6, which is based on the output
from optimizing the Branin2 function given in appendix 9.2. The figure shows

1ǫ is decreased as described earlier in section 4.3
2The reason for using the Branin function for illustrative purposes is that it only has two
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the converged population as blue circles each representing an individual. The
green crosses represent individuals in the population after meta-mutation and
one step of local search. Although a little hard to tell, it can be seen from the
illustration that exactly one circle contains a cross. That individual is the best
individual who is not mutated. Figure 4.6 also illustrates the fact that meta-

Figure 4.5: The divergence caused by meta-mutation

mutation does not result in a population as diverse as the initial population. In
the example all individuals lie within the range (x1, x2) ∈ ([2.5; 4.0], [1.8; 2.8])
even though the search space of the Branin function is much larger. The main
reason for this is obviously that meta-mutation should make some connection to
the converged population instead of just initialize another random population.
Another reason is that meta-mutation is always followed by a local search step
as well as any other mutation and reproduction procedure is followed by local
search.

A Further Remark to the Diversity One might argue that the meta-
mutation should cause the individuals to be spread around the entire search
space. The argument not to do that is that meta-mutation is not a random
restart. One could argue further that another diversification procedure as the
random restart could be utilized parallel to the meta-mutation for even harder
diversification. The argument not to let the Memetic Algorithm or any other
metaheuristic restart and initialize all over again is that restart can be seen
as cheating when considering a test setup as follows. For testing purposes the
algorithm would indeed run more than once, but only taking the best out of a
number of solutions does not give a very good comparison to other heuristics.
Throwing away the average would be throwing away information. This might
yield the result that two algorithms seem equally good although they might
produce very different averages in the long run. One might ask what testing
has to do with the internal procedures of the algorithm. If there is time to
restart the algorithm within each run this could be done, but then the maximum

variables which suits a two dimensional illustration well



64 Divergent and Convergent Thinking as Part of a Creative Approach

2.5 3 3.5 4
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

X1

X
2

Figure 4.6: The population before and after meta-mutation

running time might as well be cut down. After all, there is always the possibility
of running the algorithm a number of times in the test phase. For real-life
problems one would surely take the best solution, which might imply that the
less good solutions are unnecessary. However, this does not change the fact that
for testing purposes it is easier to compare algorithms by the average and the
deviation than by the best objective solely.

4.3.5 Dynamic Number of Mutations and Reproductions

The final group of tools to control the search procedure is perhaps the most
important as it calls for changes in the selection strategy influencing the search
to a large extinct. The selection strategy used for diversification is the (λ, µ)–
strategy whereas, the (λ+µ)–strategy is used for intensification. The strategies
are both described in section 2.11.3. The (λ, µ)–strategy selects the next gener-
ation amongst the offspring and mutated individuals only. The (λ+µ)–strategy
is clearly more convergent as it allows parents to compete with the offspring.
Another tool for intensification is to adjust the number of offspring produced
from reproduction and mutation. It might be trivial to see that a larger number
of mutations is a divergent change whereas, a larger number of reproductions
between parents is a less clear convergent step. Reproduction does after all in-



4.3 Divergent and Convergent Thinking as Part of the Search Strategy 65

troduce diversity into a population of parents. On the other hand, the offspring
is an exact mixture of the two parents. However, different from both parents,
the offspring does lie somewhere in between the parents. It is decided that the
divergent steps should increase the number of mutations λmutation on the ex-
pense of the number of reproductions λreproduction. The convergent steps should
make the opposite changes.

The divergent and convergent steps are given by pseudocode 4.3.4. For every
tinterval generation the procedure shifts between tinterval consecutive generations
of diversification or intensification, line 1 pseudocode 4.3.4. The diversifica-
tion/intensification process based on the fixed interval tinterval is illustrated by
figure 4.7. In case of diversification, the mutation rate is increased and the
reproduction rate is decreased by one, line 2–3. Furthermore the temporary
population used for selection includes only the offspring from reproduction to-
gether with the mutated individuals, line 7. On the other hand, the reproduction
rate is increased whereas, the mutation rate is decreased by one when intensi-
fication appears, line 10–11. As for the original procedure described in section
2.12.2, the selection is based on both parents, offspring and mutated individuals,
line 15. Note that the mutation rate as well as the reproduction rate is in fact
bounded by a lower value in order not to make λmutate and λreproduce negative.

Pseudocode 4.3.4 Procedure DivInt
1: if t mod (2 · tinteval) ≥ tinterval then

2: λmutate ← λmutate + 1
3: λreproduce ← λreproduce − 1
4: Offspringt ← Reproduction(Populationt)
5: Populationtemp ← Populationt ∪Offspringt

6: Populationmutated,t ← Mutation(Populationtemp)
7: Populationtemp ← Offspringt ∪ Populationmutated,t

8: Populationt+1 ← Selection(Populationtemp)
9: else

10: λreproduce ← λreproduce + 1
11: λmutate ← λmutate − 1
12: Offspringt ← Reproduction(Populationt)
13: Populationtemp ← Populationt ∪Offspringt

14: Populationmutated,t ← Mutation(Populationtemp)
15: Populationtemp ← Populationt ∪Offspringt ∪ Populationmutated,t

16: Populationt+1 ← Selection(Populationtemp)
17: end if

To illustrate a part of the progress of the search procedure another output
based on the Branin function is presented in figure 4.8. The blue line illustrates
the objective value of the overall best individual as the generations evolve. The
current best objective is given by the red line. Black blocks on the horizontal axis
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Figure 4.7: The shifting between convergent and divergent selection strategy

show the diversification interval whereas the generations in between the black
blocks utilize intensification. In this particular example the interval tinterval is
set to nine generations. It is seen that the objective value of the current best
individual is able to either increase, decrease or stay the same. However, the
current best can only increase its objective value in the divergent steps above
the black blocks. The reason for this is the ability of survival of the fit parents
when subject to intensification, and the inability of survival of a parent in case
of diversification no matter fitness.

Figure 4.8: The progress of the search procedure



Chapter 5

The Final Algorithm and
Implementation

5.1 Summary

In this chapter the procedure of the final metaheuristic is outlined. Furthermore,
a summary of the object oriented JAVA-implementation is given with reference
to the source code in appendix .9.

5.2 The Final Memetic Algorithm

The procedure of the final Memetic Algorithm is a product of the general pro-
cedure given by section 2.12.2 and the divergent and convergent strategies de-
veloped in section 4.3. Although the procedure has close similarities to the
general algorithm, crucial differences exist. Thus, the final procedure will be
described in detail with special focus on the various parameters affecting the
search strategy.
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5.2.1 Parameters

All the parameters are given by the first column of table 5.1. In the second
column a short description is made. Some parameters are adapted to the search
space either in general or for each dimension of the solution. The third column
denote the parameters subject to adaptation by a

√
. The maximum running

time will be highlighted as a parameter in the pseudocode, because it is an input
to the procedure defined before each run. However, it is not contained in the
table since, it is not a parameter that calls for adjustment in any way. The
maximum running time is set to 5000 ms for all tests, except when utilizing
external simulations (section 6.3).

Parameter Description Adaptation
µ The population size
λreproduce The initial number of offspring
λmutate The initial number of mutated individuals
tinterval Generations between diversification/intensification
tinit Initial number of diversification generations
σmax The maximum standard deviation for mutation procedure

√

StepSize The initial step size for the local search procedure
√

dec The factor decreasing the local search step size dec ∈]0; 1[
inc The factor increasing the local search step size inc > 1
ǫ The threshold value which can trigger the meta-mutation

√

decǫ The factor decreasing epsilon at each generation decǫ ∈]0; 1[
minDiversity The minimum diversity of the individuals of the population

√

kscale The scale of the population’s diversity after meta-mutation
√

LSsteps The number of local search steps performed
LSmax−try The maximum number of candidates in a local search step
θdiversity Best part of the population considered θdiversity ∈ [1; µ]

Table 5.1: Parameters of the Memetic Algorithm

5.2.2 Algorithm

The procedure of the Memetic Algorithm is described below in detail, assisted
by a pseudocode. The pseudocode uses a color coding where, the parts identical
to the general algorithm from section 2.12.2 is given in black. The new parts
related to divergent and convergent thinking introduced in section 4.3 are given
in blue. Finally, are the parameters in red and the parts not mentioned earlier
are typed in green.
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The main part of the final Memetic Algorithm is given by pseudocode 5.2.2.
The first twelve lines are similar to that of the original procedure. Each of the
µ individual of the population are initialized in all dimensions, line 3–9 pseu-
docode 5.2.2. The individuals are improved by local search before being added
to the population, line 10–11. The stopping criterion of the final procedure
is specifically defined to be a maximum running time maxruntime given by the
difference between the start time and the current time, line 13.

At an interval of tinterval the algorithm switches between diversification and
intensification. However, in case of the first tinit generation intensification will
be used, line 14. The intensification step increases the number of mutations by
one on the expense of the number of reproductions, line 15–16. Furthermore,
selection for the next generation is only based on the offspring from reproduction
and the mutated individuals, line 20–21. In case of diversification, the number of
offspring is increased and the number of mutations is decreased by one, line 23–
24. The next population is chosen amongst both parents, offspring and mutated
individuals, line 28–29.

5.2.2.1 Meta-mutation

Meta-mutation is performed under either one of two conditions. First, in case
the objective value of the best individual is not lower than the objective value
ranked µ

2 from the best, within a certain threshold ǫ. Second, in case the
diversity of the ranked population is less than a specified value minDiversity,
line 32. The diversity is defined by pseudocode 5.2.1 as the sum over all n
dimensions of the absolute value of the difference between the solution of the
best individual and the solution of the first θdiversity of the ranked individuals.
As seen from pseudocode 5.2.1 the definition of diversity does not consider
the objective values, only the distance in the search space between the best
individual and the surrounding individuals.

Pseudocode 5.2.1 Procedure Diversity

1: Diversity←
Pθdiversity

k=1

Pn
i=1 |x

best,t
i − x

k,t
i |

2: return Diversity

The meta-mutation updates all individuals except the best, line 33. Each gene is
modified by adding a normally distributed random number with mean zero and
a scaled version of the standard deviation given by the genes of the individual,
line 34–35. Each mutated individual is eventually improved by local search, line
37.
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The step size is either decreased of increased depending on the improvement
of the best individual in the current generation, line 40–44. Furthermore the
threshold is decreased as part of an overall convergent strategy, line 45. Finally,
the n + 1 best individuals of the ranked population are utilized to find a local
minimum by the Nelder–Mead simplex procedure, line 48–53. The overall best
solution is returned in line 54. The Nelder–Mead procedure is identical to the
original described in section 2.5. Even the parameters are set to the common
universal.

5.2.2.2 Local Search

The local search procedure used after each mutation, reproduction and meta-
mutation step is given by pseudocode 5.2.3. The local search performs a limited
number of steps LSsteps before terminating, line 1 pseudocode 5.2.3. The pro-
cedure keeps modifying the solution as long as a candidate solution has a worse
objective value than the current solution and a maximum number of trials is
not reached, line 3. The candidate is created by adding a random step to each
dimension of the current solution, line 4–6. The standard deviation is dupli-
cated from the current solution, line 7. In case a better candidate is found the
current solution is updated.
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Pseudocode 5.2.2 Procedure MA
1: t← 1
2: Populationt ← ∅

3: for k = 1 to µ do

4: for i = 1 to n do

5: draw random χ from uniform interval [0; 1]

6: x
(k,t)
i ← ui + χ(vi − ui)

7: draw random φ from uniform interval [0; 1]

8: σ
(k,t)
i ← φ · σmax

9: end for

10: x
(k,t) ← LocalSearch(x(k,t), σ(k,t))

11: Populationt ← Populationt ∪ {(x
(k,t), σ(k,t))}

12: end for

13: while Time(0) - Time(t) < maxruntime do

14: if t mod (2 · tinterval) ≥ tinterval or t < tinit then

15: λmutate ← λmutate + 1
16: λreproduce ← λreproduce − 1
17: Offspringt ← Reproduction(Populationt)
18: Populationtemp ← Populationt ∪Offspringt

19: Populationmutated,t ← Mutation(Populationtemp)
20: Populationtemp ← Offspringt ∪ Populationmutated,t

21: Populationt+1 ← Selection(Populationtemp)
22: else

23: λreproduce ← λreproduce + 1
24: λmutate ← λmutate − 1
25: Offspringt ← Reproduction(Populationt)
26: Populationtemp ← Populationt ∪Offspringt

27: Populationmutated,t ← Mutation(Populationtemp)
28: Populationtemp ← Populationt ∪Offspringt ∪ Populationmutated,t

29: Populationt+1 ← Selection(Populationtemp)
30: end if

31: Populationt ← Ranked(Populationt)
32: if f(x(best,t))+ ǫ ≥ f(x(µ/2,t)) or Diversity(Populationt) < minDiversity then

33: for All x
(l,t) ∈ Populationt\{x

(best,t)} do

34: for i = 1 to n do

35: x
(l,t)
i ← x

(l,t)
i + kscale ·N(0, σ

(l,t)
i )

36: end for

37: x
(l,t) ← LocalSearch(x(l,t), σ(l,t))

38: end for

39: end if

40: if f(x(best,t+1)) < f(x(best,t)) then

41: StepSizet+1 ← StepSizet ·dec, where dec ∈]0; 1[
42: else

43: StepSizet+1 ← StepSizet ·inc, where inc > 1
44: end if

45: ǫt ← ǫt−1 · decǫ, where decǫ ∈]0; 1[
46: t← t + 1
47: end while

48: Populationt ← Ranked(Populationt)
49: PopulationNM ← ∅

50: for k = 1 to n + 1 do

51: PopulationNM ← PopulationNM ∪ {x
k,t}

52: end for

53: x
best ← Nelder–Mead(PopulationNM )

54: return x
best
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Pseudocode 5.2.3 Procedure LocalSearch
1: for Step = 0 to LSsteps do

2: count← 0
3: while f(xcandidate) ≥ f(xcurrent) and count < LSmax−try do

4: for i = 1 to n do

5: draw random χ from uniform interval [−0.5; 0.5]
6: xcandidate

i ← xcurrent

i + stepSize · χ
7: σcandidate

i ← σcurrent
i

8: end for

9: end while

10: if f(xcandidate) < f(xcurrent) then

11: x
current ← x

candidate

12: end if

13: end for

14: return x
current

5.2.2.3 Reproduction

The reproduction procedure used in the Memetic Algorithm is given by pseu-
docode 5.2.4. This sub procedure is identical to that of the original Memetic
Algorithm already described. The individual for reproduction are chosen at ran-
dom from the population, line 3 pseudocode 5.2.4. Each gene is taken from one
of the parents by equal probability, line 5–9. Each offspring is finally improved
by a local search, line 12.

Pseudocode 5.2.4 Procedure Reproduction

1: Offspringt ← ∅

2: for l = 1 to λreproduce do

3: draw two integers k and m at random from interval {1, 2, . . . , µ}
4: for i to n do

5: draw random χ from uniform interval [0; 1[
6: if χ < 0.5 then

7: γl
i ←

`

(x
(k,t)
i )(σ

(k,t)
i )

´

8: else

9: γl
i ←

`

(x
(m,t)
i )(σ

(m,t)
i )

´

10: end if

11: end for

12: γl ←LocalSearch(γl)
13: Offspringt ← Offspringt ∪ {γ

l}
14: end for
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5.2.2.4 Mutation

The mutation procedure is applied to λmutate random individuals of the tempo-
rary population, line 1–2 pseudocode 5.2.5. Each gene is mutated by adding a
normally distributed random number with mean zero and a standard deviation
given by the gene of the individual, line 3–4. The mutated individuals are also
subject to a local search improvement, line 6–7.

Pseudocode 5.2.5 Procedure Mutation
1: for l = 1 to λmutate do

2: draw an integer m at random from interval {1, 2, . . . , µ + λreproduce}
3: for i = 1 to n do

4: x
(l,t)
i ← x

(m,t)
i + N(0, σ

(m,t)
i )

5: end for

6: βl ← LocalSearch
`

(x(l,t)), (σ(m,t))
´

7: Populationmutated,t ← Populationmutated,t ∪ (βl)
8: end for

5.2.2.5 Selection

The selection procedure given by pseudocode 5.2.6 is also identical to that of
the original algorithm described in section 2.12.2. The new population is simply
chosen as the µ best individuals, i.e. the individuals with the lowest objective
values in the temporary population. The different selection strategies relies on
which temporary population is subject to selection. In this way the selection
strategy is chosen in the main procedure described in section 5.2.2

Pseudocode 5.2.6 Procedure Selection
1: Populationt+1 ← ∅

2: Let α ∈ Populationtemp

3: for k = 1 to µ do

4: (x(k,t), σ(k,t))← α|{min f(α),∀α ∈ Populationtemp}

5: Populationtemp ← Populationtemp\{(x
(k.t), σ(k,t))}

6: Populationt+1 ← Populationt+1 ∪ {(x
(k,t), σ(k,t))}

7: end for
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5.2.3 Automatic Parameter Finding

As seen from table 5.1 the Memetic Algorithm ends up with quite a large number
of parameters. Some parameter settings might produce good solutions whereas,
others might lead to poor results. A parameter tuning is made as the first part
of the results in section 6.1. However, an alternative solution to this problem
allowing for discovery of good solutions is also developed. Another metaheuris-
tic is used to keep track of the results of the Memetic Algorithm subject to
changes in the parameter values. The metaheuristic on top should be allowed
to keep good results, but also to escape non-improving results as an “innova-
tive” step. Thus, the metaheuristic should be capable of escaping local minima.
On the other hand, it is desirable to keep it simple with regard to the number
of function evaluations and the number of parameters in order to make it easy
to decide the parameter values of the new metaheuristic running on top. For
this purpose the Simulated Annealing is used. The procedure is identical to
that of section 2.4.2. Figure 5.1 illustrates the framework of the metaheuristics
and the original problem given by a continuous function. Each function eval-
uation of the Simulated Annealing running on top of the Memetic Algorithm
returns the average objective value of a specified number of runs of the Memetic
Algorithm. A solution considered by the Simulated Annealing consists of a
number of parameter values for the Memetic Algorithm. The parameters and
the boundaries defining the search space are given by table 5.2. The choice of

Average
Objective

Parameter
Values

SA
MA

Problem
Function
Black Box

evaluation
MA

Output

Solution

Objective

Input
SA−evaluation

Figure 5.1: The framework of metaheuristics and the problem

boundaries and fixed parameters reflect the choice made for parameter tuning.
In section 6.1 the reason for setting some parameters to a fixed value is given.
To allow all parameters to move around the continuous search space the value
of µ, λreproduce, λmutate and tinterval are rounded at each function evaluation.

The combined version of a Simulated Annealing running on top of the Memetic
Algorithm and the Nelder–Mead simplex should not only be seen as an attempt
to find optimal parameter values for the normal algorithm in section 5.2.2. The
intension is rather to find optimal values to the original continuous function
by other means. The parameter values passed from the Simulated Annealing
to the Memetic Algorithm are not interesting as such. However, the values
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Parameter Search space
µ [15;30]
λreproduce [15;55]
λmutate [15;55]
tinterval [5;9]
tinit 7
σmax [0.1;0.3]
StepSize 0.09
dec [0.8;0.9]
inc [1.03;1.09]
ǫ [0.01;0.02]
decǫ [0.4;0.7]
minDiversity 0.1
kscale 6.0
LSsteps 1
LSmax−try 50
θdiversity 0.66

Table 5.2: Parameters being variables

lead to the discovery of the best solution with the lowest average objective
value. An argument that the parameter values themselves are not interesting
is the crucial difference between the nature of a normal optimization task and
the task faced by the Simulated Annealing. The function evaluation of the
Simulated Annealing cannot even be seen as a black box function. Parameter
values leading to a specific average value when evaluated are not guaranteed to
lead to that specific average value in other cases. Using the metaphor of a black
box; the input to the box does not necessarily yield the same output always.
However, considering the original problem given by a continuous function this
does not matter. One is only interested in the best solution and the objective
value of that solution.

5.3 Implementation

The implementation of the program is done in the JAVA programming language
and the source code can be found in appendix .9. The implementation consists
of the following five files/objects:

1. The MainClass.java is the main file. The program is started by this file
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which also includes the loops for parameter tuning and testing. Main-

Class.java is included in appendix .10.

2. In appendix .14 the SA.java file contains the Simulated Annealing proce-
dure used for improving the parameters and the output from the Memetic
Algorithm.

3. The MA.java given by appendix .11 contains the core of the program. All
sub procedures of the Memetic Algorithm and the Nelder–Mead simplex
are implemented here.

4. The DataObject.java holds the data to be processed by the program. This
file takes care of reading problem instances from some problems e.g. the
function matrices of the Hartmann functions. Furthermore, it reads the
output data from simulations of external programs which are considered
as black boxes to the optimization algorithm. Finally, this file contains a
number of objective functions used for solution evaluation of each problem.

5. The LogFile.java handles the logging of the results achieved by the opti-
mization procedure. This file is also used for writing the input data for
external simulations, i.e. output from the optimization procedure is input
to the external program and vice versa.

In MA.java a population of the Memetic Algorithm is represented by a three
dimensional object in the program. A vector of variable size holds a number of
individuals. Each individual is represented by three arrays containing the genes
representing the solution, the genes representing the standard deviation and the
objective value if the individual is already evaluated by the DataObject.java.
The reason for attaching the objective value to the memory of each individual
is the costly process of evaluating the solution. This is especially important due
to the long running time of the external simulation program.



Chapter 6

Results

This chapter presents the different results. The first section describes the pa-
rameter tuning of the Memetic Algorithm on a subset of functions to be opti-
mized. The mathematically defined test functions are given in appendix 9.2 and
the tests based on the Memetic Algorithm are compared to that of the Directed
Tabu Search (DTS) by [14]. The results from the combined Simulated Annealing
and Memetic Algorithms are also described although not directly comparable.

In section 6.3 a problem considering an external simulation model of groundwa-
ter flow is described. Finding parameters to the external simulation is an exam-
ple of a black box optimization problem. The results of applying the Memetic
Algorithm and the creative search strategy to this problem are compared to
manual calibration in section 6.3.

6.1 Parameter Tuning

In order to test the Memetic Algorithm the parameters should be tuned. This
is done by testing different parameter combinations on a subset of the math-
ematically defined non-linear continuous functions. For representative testing
another subset is used. However, the functions considered can be quite different
in nature and the parameters can therefore be quite far from optimal for some
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problems. This is the trade off when an algorithm and parameter setting ca-
pable of solving various problems is wanted. Although the external simulation
model in section 6.3 is not even a mathematically defined function it utilizes the
same parameter settings with only a couple of necessary changes1.

The different values used for parameter tuning are given by table 6.1. Due to
the number of parameters the number of different combinations have to be re-
stricted. Thus, the parameters assumed to have the least effect on the search
are fixed to a reasonable value. The total number of possible combinations is
2700. The parameter values are all within the intervals used as the search space
for the simulated annealing in section 5.2.3. The µ values are not allowed to
exceed 30 because the selection procedure becomes less significant the larger µ
gets. Furthermore the minimum number of reproduced and mutated individuals
should at least be as high as the maximum number of selected individuals for
the (λ, µ)–strategy. The interval tinterval between diversification and intensifi-
cation is minimum five, since it is considered difficult to trace the effect of a
lower number of steps. The reason not to let the interval be too large is that a
number of diversification/intensification steps should be allowed before termi-
nation, even if iterations are time consuming. The number of initial steps tinit

of diversification is fixed to seven. The idea is to guarantee a divergent search
in the start of the procedure. The number could be higher but as seen from
section 4 the population can then converge in other ways.

The maximum standard deviation σmax is restricted to three possible values
relative to the search space. The step size is increased and decreased as described
earlier. Therefore, the initial value is less important and is fixed to only one
possible value. The relative decrease and increase of the step size is likewise
fixed. The threshold ǫ is allowed to take one of three possible values. No matter
which initial threshold is used the relative decrease is fixed to 0.65 in order for ǫ
to approach zero relatively fast. Fixing the minimum diversity to 0.1 has shown
by trials to produce meta-mutation steps relatively often throughout the search
procedure for different problems. An example of the improvement and steps of
the search procedure can be seen from appendix .14. Fixing the scale kscale of
the meta-mutation to six is done based on plots similar to figure 4.5 on page 63,
illustrating the diversity of the population before and after meta-mutation.

The number of local search steps LSsteps is set to one. The main reason for al-
lowing only one step is that local search is utilized at every iteration in any other
operation than the selection procedure. This means that the time consumption
of the overall procedure is highly dependant on the time consumption of the
local search. On the other hand, it is important to have at least one local search
step because it hybridizes the evolutionary algorithm as described earlier. The

1The population sizes have to be decreased in order to obtain results in reasonable time
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maximum number of trials in the local search procedure LSmax−try is fixed to
50. This value should not have significant influence on the search procedure in
practice. It is there to make sure the local search procedure will terminate in
case it is at a local minimum. However, for time consuming function evaluations
it is desirable to decrease this value not to waste time. In fact LSmax−try is fixed
to ten for the optimization of the external ground water simulation. The idea
is that the possibility of finding an improved solution past the tenth trial is low
if no improved solution could be found within ten trials.

The last parameter θdiversity representing the part of the population which is
considered in the diversity function is fixed to 66 % . The thought behind this
is that the function obviously has to take a number of individuals into account.
To measure if the population is completely converged all individuals would have
to be taken into account. On the other hand, if the best part of the population
is converged there might not be much innovation from that part anymore. Thus,
it is desirable to introduce metamutation when only the best has converged. In
this case θdiversity is set to the best 66 % of the individuals.

Parameter Setting
µ 15, 20, 25, 30
λreproduce 15,25,35,45,55
λmutate 15,25,35,45,55
tinterval 5,7,9
tinit 7
σmax 0.1,0.2,0.3
StepSize 0.09
dec 0.9
inc 1.03
ǫ 0.01, 0.015, 0.02]
decǫ 0.65
minDiversity 0.1
kscale 6.0
LSsteps 1
LSmax−try 50
θdiversity 0.66

Table 6.1: Parameter tuning values

The parameter tuning is based on the Branin function and the Shekel4,7 function
described in appendix 9.2. Each of the parameter combinations is tested by
five runs of each of the two functions. Each run is stopped after five seconds.
A success rate is calculated by dividing the number of successful runs by the
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total number of five runs, i.e. runssuccess

5 . A successful trial run is defined by
the criterion in equation (6.1), as a run that has a final objective f(x) value
within some range of the objective value of the optimal solution f(x∗). The
optimal objective values for each function are given in appendix 9.2. The success
criterion in equation (6.1) is identical to that of [14].

|f(x∗) − f(x)| < 10−4 · |f(x∗)| + 10−6 (6.1)

An average error is defined by equation (6.2) as the average relative gap between
the objective value of the optimal solution and the objective value of the final
solution in each successful run.

Avg.Err. =

∑5
i=1

∣

∣
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, where equation 6.1 holds for xi (6.2)

Finally a standard deviation δ is defined by equation (6.3) based on the successful
runs.
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, where equation 6.1 holds for xi(6.3)

The results of the parameter tuning are displayed by table 6.2. The table con-
tains the 35 best parameter combinations when ordering the results primarily
by the success rate, then by the average error and finally by the standard devi-
ation. The success rate, average error and standard deviation are all calculated
as averages of the tests based on the Branin and the Shekel4,7 functions. Similar
tables of each test individually are given in appendix 1 and 2. The parameter
settings are given by the first six columns of table 6.2. The parameter settings
in the first line are chosen for the test runs in section 6.2. The best parameter
combination with a success rate of 0.9 has a lower average error than the best
parameter combination with a success rate of 1.0. However, the success rate is
prioritized higher than the average error. Thus, the parameter values for the
test runs are fixed to:

µ = 30, λreproduce = 15, λmutate = 55, σmax = 0.2, ǫ = 0.02 and tinterval = 9(6.4)

6.2 Mathematically Defined Functions

The Memetic Algorithm with a divergent/convergent search strategy is tested
on five continuous functions defined by appendix 9.2. Each test consists of 100
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µ λrep λmut σmax ǫ tinterval Suc.rate Avg. Err. δ
30 15 55 0.2 0.02 9 1 3.89322E-13 6.81674E-13
25 15 55 0.2 0.015 5 1 8.65132E-13 1.55604E-12
30 15 55 0.1 0.02 9 1 8.15837E-07 1.63167E-06
30 25 15 0.2 0.02 9 1 4.98201E-06 9.51869E-06
30 25 55 0.2 0.01 7 1 7.3299E-06 1.46598E-05
30 25 55 0.2 0.02 7 1 8.65236E-06 1.73047E-05
25 15 55 0.2 0.01 5 1 9.84034E-06 1.96807E-05
30 15 55 0.3 0.01 5 0.9 5.28488E-14 6.09323E-14
20 15 25 0.3 0.02 5 0.9 6.72776E-14 5.14056E-14
30 15 55 0.3 0.02 7 0.9 1.15345E-13 8.65234E-14
30 15 45 0.3 0.01 9 0.9 4.22961E-13 4.9642E-13
30 25 35 0.1 0.015 7 0.9 4.47037E-13 6.20104E-13
25 15 45 0.2 0.02 5 0.9 5.91155E-13 5.31764E-13
25 15 55 0.3 0.01 7 0.9 6.18099E-13 6.09032E-13
30 15 35 0.3 0.01 5 0.9 1.18239E-12 1.87658E-12
30 15 55 0.3 0.015 9 0.9 2.64346E-12 2.60625E-12
30 25 45 0.1 0.02 5 0.9 2.69456E-12 3.70756E-12
25 15 45 0.2 0.015 5 0.9 8.05097E-12 1.6029E-11
25 25 55 0.1 0.02 5 0.9 8.684E-12 1.26644E-11
25 15 25 0.2 0.01 7 0.9 3.10471E-09 6.20683E-09
25 15 35 0.3 0.015 9 0.9 9.53204E-09 1.90632E-08
25 15 55 0.1 0.02 7 0.9 1.96331E-08 3.92623E-08
30 15 15 0.2 0.01 7 0.9 3.16276E-08 5.47807E-08
25 15 35 0.3 0.015 7 0.9 3.27701E-08 6.55368E-08
25 15 25 0.1 0.015 7 0.9 4.42212E-08 8.84421E-08
25 15 45 0.2 0.015 9 0.9 9.39116E-08 1.87823E-07
20 15 15 0.1 0.02 5 0.9 1.01425E-07 2.02849E-07
25 25 55 0.2 0.01 5 0.9 8.87306E-07 1.14535E-06
30 55 55 0.1 0.015 9 0.9 1.28656E-06 2.22838E-06
30 25 25 0.2 0.02 7 0.9 1.36503E-06 2.3643E-06
30 35 35 0.1 0.01 5 0.9 1.48768E-06 2.57684E-06
25 15 25 0.3 0.01 9 0.9 1.79613E-06 3.59225E-06
25 15 55 0.3 0.015 5 0.9 3.49946E-06 6.99892E-06
25 15 15 0.1 0.01 9 0.9 3.56838E-06 7.13676E-06
25 25 25 0.1 0.02 7 0.9 3.73326E-06 3.80177E-06

...
...

...
...

...
...

...
...

...

Table 6.2: Parameter tuning based on Branin and Shekel4,7 functions
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runs of five seconds. The success rate, average error and standard deviation are
defined in the same way as it is for the parameter tuning in section 6.1. The
test problems and optimal solutions given by appendix 9.2 are taken from the
problems described by [14]2.

The Memetic Algorithm utilizes the Nelder–Mead simplex for local optimization
at the end of each run. The results are compared to the Directed Tabu Search by
[14] that also utilizes the Nelder–Mead simplex for local optimization. The suc-
cess rate and average error over 100 runs is given for each of the five problems for
both algorithms in table 6.3. Furthermore, the standard deviation is calculated
for the Memetic Algorithm. The results cannot be compared directly since the
running time of the DTSNMS is not fixed3. Different stopping criterion related
to the improvement of the algorithm are used instead. Thus, the DTSNMS by
[14] is allowed to use more computational time on the hard problems than the
easier problems. However, the Memetic Algorithm can be considered converged
after five seconds. In that way the results in table 6.3 can be seen as the best
success rate and average error of the two metaheuristics. The success rates are
seen to be very similar for the two algorithms for all functions except from the
Easom function where the Memetic Algorithm has a success rate of 0.65 against
0.30 for the DTSNMS. The average error is lower for the Memetic Algorithm
than for the DTSNMS in case of the Shekel4,10 and the Hartmann3,4 function.
On the other hand the DTSNMS performs better than the Memetic Algorithm
in case of the Shekel4,5, the Hartmann6,4 and the Easom function. Comparing
the mean success rate and mean average error over all the test problems the
algorithms are seen to perform similar with a slight advantage to the Memetic
Algorithm.

MANMS DTSNMS

Function Suc.rate Avg. Err. δ Suc.rate Avg. Err.
Shekel4,5 0.38 1.E-06 7.E-06 0.39 7.E-07
Shekel4,10 0.23 4.E-08 2.E-07 0.22 1.E-05
Hartman3,4 0.99 1.E-06 1.E-06 0.97 2.E-06
Hartman6,4 0.64 3.E-06 1.E-05 0.68 2.E-06
Easom 0.65 7.E-06 2.E-05 0.30 5.E-09

0.58 2.E-06 8.E-06 0.51 3.E-06

Table 6.3: Results from tests

In order to fulfill the condition of a successful trial in equation (6.1) on page
80, the objective value has to be close to the optimal value. In that way a

2See appendix 9.2 for a description of two inconsistencies
3Even if the computational time was fixed the results could not be directly compared if

the tests were not performed on the same computer
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successful run is very likely to be within the reach of the global optimum by
means of local minimization. Thus, the success rate is considered the primary
measure of performance in the tests since a low average error of the successful
runs is a matter of letting the local minimization technique run for a longer time
in order to further approach the optimal solution.

The results of the combined algorithm with a Simulated Annealing on top of the
Memetic Algorithm are given by table 6.4. These results do not call for direct
comparison with the results of the Memetic Algorithm itself. The success rate
and the average error given by table 6.4 is based on five runs of the Memetic
Algorithm. However, it should be noticed that it is the best five runs found by
letting the Simulated Annealing search for the best parameters as described in
section 5.2.3. Since the results can be seen as the best of a number of overall
trials, it is not surprising that the success rates are higher than those of table
6.3. On the other hand the Simulated Annealing procedure is a substitution for
the parameter tuning. It should be noticed that the results in table 6.4 do not
rely on manual parameter tuning of the Memetic Algorithm prior to the tests.

SA(MANMS)
Function Suc.rate Avg. Err.
Shekel4,5 0.40 3.E-04
Shekel4,10 0.80 7.E-05
Hartman3,4 1.00 6.E-07
Hartman6,4 1.00 4.E-11
Easom 1.00 0.E+00

0.84 7.E-05

Table 6.4: Results from tests with SA on top of MA

The results obtained in this section should not be seen as an attempt to prove
that the Memetic Algorithm with a divergent/convergent search strategy works
better or worse than the Directed Tabu Search used for comparison. It is simply
a matter of verifying that the algorithm works very well for non-linear continuous
multi-modal functions. In section 6.3 an optimization problem within parameter
calibration of a groundwater model is solved. The application to that particular
real-life problem calls for time consuming runs of the algorithm because of the
time consuming simulation model to predict the groundwater flow. Thus, it is
preferable to evaluate the performance of the metaheuristic by mathematically
defined functions first.
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6.3 Groundwater Simulations

The case represented in this section is taken from groundwater modelling. The
difference between the multi-modal continuous functions solved in section 6.2
and the multi-modal continuous real-life problem in this section is the evaluation
process of each solution. Whereas each solution to e.g. the Branin function could
be evaluated by a mathematically defined function implemented as part of the
metaheuristic this is not the case here. The objective function is well defined as
seen later in section 6.3.1.2. However, the objective function relies on the output
from a simulation process depending on the trial solution. Thus, each evaluation
cannot be described by a mathematically defined equation. It should rather be
seen as a black box function since the details of the complicated simulation
process in the external software does not need to be known. In other words, the
relation between the solution input and the objective output is hidden by the
simulation model.

6.3.1 Problem Overview

The case used in this thesis is based on a groundwater simulation model of
the area (catchment) Hjordkær in Sønderjylland. The groundwater model is
developed at Niras R̊adgivende ingeniører og planlæggere A/S for their customer
Sønderjyllands Amt and is available to the public. The model is developed for
the Modflow-2000 simulation software using the GMS Modflow 5.1 interface for
monitoring and manipulating the model.

The general aim of a groundwater model is to monitor groundwater resources
as these can be difficult to observe in nature because observation wells have to
be dug in order to measure the groundwater level, i.e. the hydraulic head given
in meters. One of two complications by digging a well is the restrictions on
where to set it up. The other problem is the influence caused by the well itself
on the observations. In that sense the groundwater model substitutes manual
observations that are difficult or even impossible to make.

The groundwater model used in this thesis simulates the hydraulic head (ground-
water level) in twelve horizontal geological layers divided into a number of cells
placed in a horizontal grid. Based on a simulation the different levels of hy-
draulic head can be monitored in each layer. An example of the hydraulic head
levels in the Hjordkær catchment is given by the red curves in figure 6.1.
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Figure 6.1: Groundwater monitoring provided by the model

6.3.1.1 Calibration Parameters

The groundwater simulation model is influenced by sixteen parameters in total.
Specific for each of the twelve layers is a horizontal hydraulic conductivity Kh

and a vertical hydraulic conductivity Kv, both given in m/s. In this model
the horizontal hydraulic conductivity is specified by a parameter for each of
the twelve layers. The vertical conductivity is linked through the anisotropy α
which is a factor so that α = Kh

Kv
. The anisotropy is specified by two parame-

ters in this model – one for layers containing sand αsand and another for clay
αclay. Finally two parameters L1 and L2 called lenses are specified. The lenses
describes the horizontal conductivity of a specific part of a layer. The calibra-
tion intervals for the sixteen parameters are given by table 6.5. The interval
for the horizontal conductivity for the six layers containing clay differs from
those containing sand. The intervals are based on those used for the manual
calibration. However, the intervals for the automatic calibration are enlarged
slightly to allow for a larger search space. It is seen that the lower limit for the
horizontal conductivity of the layers containing sand actually equals the upper
limit of the horizontal conductivity of clay. This, and the relatively large lower
limit4 (10−10) of the horizontal conductivity of layers with clay is due to the

4When comparing to the values in the literature where the lower limit is likely to be 10−13



86 Results

fact that layers containing clay can be quite sandy in the area of Sønderjylland.

Parameter Interval
K1,sand . . . K6,sand ∈ [10−6; 10−3]
K1,clay . . . K6,clay ∈ [10−10; 10−6]
αsand ∈ [8; 10]
αclay ∈ [8; 10]
L1 ∈ [10−6; 10−3]
L2 ∈ [10−6; 10−3]

Table 6.5: Intervals for calibration parameters

6.3.1.2 Objective Function

In order to calibrate the model a definition of how well the model performs has
to be given. In this case an objective function in should measure the closeness
of the simulated hydraulic head and the observed hydraulic head in a number
of observation points. For this purpose data from eleven observation wells are
accounted in the model. The placement of the wells are given by black dots
in the example in figure 6.1, page 85. Two versions of the objective function
are used. The simple version is an average of the absolute difference between
the observed and simulated head given by equation (6.5) where the k an index
describing the wells, xk is the simulated hydraulic head at well k, and yk is the
observed hydraulic head at well k.

Avg.Err. =
1

Nobs

Nobs
∑

k=1

|xk − yk|, Nobs = 11 (6.5)

Another objective function that enforces greater punishment of relatively large
gaps between simulated and observed values is the root mean square error
(RMSE) which is used by [7]. However, where [7] describes the RMSE across
different time steps it is only used across different observation wells here. The
RMSE which is used as an objective function is given by equation (6.6).

RMSE =
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√
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(xk − yk)2, Nobs = 11 (6.6)
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6.3.1.3 Test Setup

For the mathematically defined functions each evaluation of a solution in the
Memetic Algorithm only required a call of an internally defined objective func-
tion. The procedure is more complicated when an optimization of the parame-
ters for the groundwater simulation is made. According to [13] the parameters
are taken as input by Modflow-2000 through an LPF-package which reads an
LPF-file as input. Furthermore, the observed and simulated hydraulic head
in each observation well is written as output to a “ OS”-file by Modflow-2000
according to [15].

In order for the optimization to work the Memetic Algorithm needs to communi-
cate with Modflow-2000 at each function evaluation. The procedure performed
at each evaluation is illustrated by figure 6.2 where the steps given by the arrows
in the clockwise loop are performed after each other. The sixteen parameter val-
ues are represented by an individual in the Memetic Algorithm. The parameters
are written to the LPF-file by the Memetic Algorithm and the Modflow-2000
simulation software is started by the Memetic Algorithm. Modflow-2000 reads
the parameters from the LPF-file. After simulation terminates the simulated
and observed hydraulic head is written to the “ OS”-file which is taken as input
by the evaluation function that calculates the objective value by a RMSE or an
average error. The Memetic Algorithm waits for the Modflow-2000 simulation
process to finish at each evaluation since the simulation can be seen as part of
the evaluation process.

Each Modflow-2000 simulation is running the groundwater model which is given
by several external files. The geological model setup defines amongst other
things the number of layers, the thickness and whether it consists of sand or
clay. Furthermore the Modflow-2000 software reads the observed hydraulic head
values in each well from an external file as indicated by figure 6.2. The setup of
the groundwater model used in this thesis is manipulated by the graphical GMS
5.1 Modflow interface. As described earlier the model is not developed by the
author of this thesis and the geological setup is out of the scope of this thesis.

Model def.
Layers
Wells etc.

MA MF2KLPF−file

_OS−file
Function

Objective Simulation

Model

Obs. Head

Figure 6.2: Test setup
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6.3.2 Numerical Results and Interpretation

Each Modflow-2000 simulation is running for 40 to 150 seconds on the computer
used for testing5. Due to the time consuming simulation process directly related
to any evaluation of an individual in the Memetic Algorithm the maximum
running time can obviously not be limited to five seconds. Instead the number of
generations is limited to 60. To speed up the evolutionary process the population
size is decreased. Thus, a µ value of nine is used whereas both λmutate and
λreproduce are set to seven. The maximum number of unsuccessful trials in the
local search procedure is limited to 10. All other parameters are fixed to the
values found by parameter tuning of the Branin and the Shekel4,7 functions in
section 6.1. The parameter values are given by equation (6.4), page 80.

Four tests are performed. Each test consists of one run of the Memetic Algorithm
terminating after 60 generations and a local Nelder–Mead simplex optimization.
The first two tests considers the data from ten observation wells. Since it was
found that one observation well was not consistent with the remaining ten that
observation well was discarded in the manual calibration. Thus, that specific
well is also discarded for the objective function in two of the tests. The first
objective function is the absolute average error between observed and simulated
hydraulic head and the second objective is the RMSE of observed versus simu-
lated hydraulic head. The third objective function considers the average error
of all eleven wells whereas the fourth objective function is the RMSE over all
wells. The objective values of the final solution in all four versions are compared
to the objective value of the manually calibrated equivalent in table 6.6.

The first line of numbers in table 6.6 are based on the manually calibrated
model. The average error and the RMSE over the ten observations and the
eleven observations respectively are given by the values in bold. In the left side
of the table the objective function is given for the automatic calibration.

The second line of numbers is based on optimization of the average error of
the observation set including ten wells. In the second line of numbers both
the average error and the RMSE is given based on the ten observation wells.
In this case the average error is given in bold since it is used as the objective
function. The RMSE is calculated based on the final solution. The bottom line
indicates that the average error of 0.144 is an improvement of 3% compared to
the manually calibrated model.

The third line of is based on the optimization of the RMSE of the observation
set including ten wells. The value in bold is the objective value of the RMSE

5The processor used for testing the groundwater parameter estimation problem is an Intel
Celeron M 1.5 GHz with 1024 MB RAM
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and the calculated average error based on ten observations is given next to the
RMSE. The RMSE of 0.182 is seen to be an improvement of 7% compared to the
manually calibrated model. Furthermore, the calculated average error based on
the solution obtained by using the RMSE as objective is given. The calculated
average error turns out to be as good as when the average error itself was the
objective.

The fourth line of numbers is based on an optimization where the average error
based on eleven wells is the objective function. The objective value is given
in bold and the calculated RMSE based on eleven observations is also given.
This time the average error turns out to have increased by 5 % compared to the
manually calibrated model.

In the fifth line the RMSE is used as objective function based on observations
from eleven wells. The objective value of 0.595 given in bold is an improvement
of 3% compared to that of the manually calibrated model. Furthermore, the
calculated average error when using the RMSE as objective is seen to be be-
low the average error when this was actually the objective. The fact that the
RMSE is better when the average error is the objective can seem a bit strange.
However, it should be noted that the optimization function which can be seen
as a black box has multiple minima. By metaheuristic optimization it cannot
be guaranteed which one of many good local minima is found. This depends on
the search space and can even variate from one run to another.

The fact that using the RMSE as objective yields a lower average error than
using the average error itself (and vice versa), might be explained by the different
structures of the search space which could make one solution easier to find than
another. On the other hand, the tests are based on only one run for each
objective function. Thus, the properties of the two local minima could also be
coincidental. The RMSE is seen to minimize the average error at least as much
as the average error it self for both test sets. Thus, the results indicate that the
RMSE provides a search space structure where the Memetic Algorithm finds
low minima, more easily than for the average error objective.

The four solutions are given by the parameter values in table 6.7. From an
optimization point of view the values might not be very interesting. However,
a few conclusions can be drawn from the solutions. In the first sand layer and
the first sand lens results given in bold show hydrological conductivities on
the lower boundary of the solution space. This implies that the objective value
might be lowered by enlarging the solution space for that layer. Hydrologically
this could mean that the conductivity in the first layer is a bit lower than first
anticipated. The second interesting observation is that all conductivities except
one are above 10−8, i.e. the lower part of the solution space of the conductivity
of clay is not utilized. This can be interpreted as if the clay layers have a
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10 Observations 11 Observations
Avg. Err. RMSE Avg. Err. RMSE

Method Obj. function
1 Manual 0.148 0.195 0.311 0.613

2 Auto Avg10 obs. 0.144 0.209
3 Auto RMSE10 obs. 0.144 0.182

4 Auto Avg11 obs. 0.325 0.588
5 Auto RMSE11 obs. 0.315 0.595

Improvement 3% 7% -5% 3%

Table 6.6: Groundwater Modelling Results

large conductivity compared to the norm. However, this is not surprising when
considering that real clay is relatively sparse in Sønderjylland.

Parameter/Objective Avg10 obs. RMSE10 obs. Avg11 obs. RMSE11 obs.

K1,sand 1.00E-6 6.03E-4 1.90E-6 1.00E-6

K2,sand 1.12E-4 4.88E-4 7.14E-4 6.61E-4
K3,sand 6.65E-4 5.05E-4 3.73E-4 9.33E-4
K4,sand 3.02E-4 3.09E-5 7.65E-5 5.81E-4
K5,sand 2.13E-6 7.82E-5 5.30E-4 3.40E-5
K6,sand 2.75E-5 1.65E-4 2.95E-4 3.31E-4
K1,clay 4.47E-7 1.06E-7 3.77E-7 9.87E-7
K2,clay 5.13E-8 7.93E-7 4.11E-7 2.49E-7
K3,clay 5.36E-7 2.93E-7 6.40E-8 1.00E-10
K4,clay 9.77E-7 9.34E-8 1.80E-8 2.41E-7
K5,clay 7.79E-7 1.04E-7 4.52E-7 7.57E-7
K6,clay 6.12E-7 1.33E-7 8.00E-7 3.69E-7
αsand 9.03 8.34 8.30 9.20
αclay 11.00 8.63 10.62 9.51
L1 4.52E-5 2.14E-4 4.18E-4 1.00E-6

L2 5.33E-5 1.23E-4 4.54E-5 2.18E-4

Table 6.7: Parameter values representing the four solutions

6.3.3 Concluding Remarks on Results

The improvements compared to the manually calibrated model shown by three
out of four tests indicate that using the metaheuristic optimization is an advan-
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tage in the area of groundwater modelling. The optimization procedure is in
that way capable of replacing or assisting weeks of problematic manual calibra-
tion procedures. In case of the observation set based on ten wells the Memetic
Algorithm even proved superior to the manual calibration.
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Chapter 7

Discussion

The results based on optimization of the mathematically defined functions in
section 6.2 can be seen as a verification that the algorithm yields competitive
results. It is seen that the Memetic Algorithm by its divergent/convergent search
strategy finds the optimal solution by at least as large a success rate and average
error as the DTSNMS by [14] which also utilizes a type of divergent/convergent
search strategy.

The optimization of parameters for the groundwater problem shows that the
Memetic Algorithm can be used for optimization of a black box problem. This
kind of problem can be very complicated and can call for time consuming eval-
uations as it is seen in section 6.3. The results indicate that the automatic
parameter optimization by the Memetic Algorithm can replace time consum-
ing manual calibration. With one exception the solution found by the Memetic
Algorithm is better than the solution found by manual calibration.

In case even better results are needed a two step approach could be taken. After
one optimization run a number of parameters could be fixed. A second run would
then be able to perform a more thorough metaheuristic search on the remaining
parameters. For groundwater modellers, another approach could be to fix some
of the parameters based on qualified assumptions. This would allow for a smaller
search space which in the end makes the job of the metaheuristic easier. No
matter what approach is used. The use of the metaheuristic optimization within
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groundwater modelling will save time compared to the entirely manual approach.

Due to the time consuming simulation process a typical run of the algorithm
takes three days when optimizing the groundwater simulation model. The key
to shortening the running time is to allow for more groundwater simulations at
the same time. Thus, parallelization would improve running time. Since it was
possible to obtain the results without utilizing parallel programming no efforts
has been made in this thesis to parallelize the algorithm. Further work could
deal with this issue.

When considering that the groundwater simulation problem is a black box from
the metaheuristics point of view, a number of other application areas appear.
The black box problem could be anything in the range from econometric prob-
lems as presented by [17] to the adaptation of the side winding locomotion of
a simulated snake-like robot presented by [23] or a third problem. Common to
the problems that the Memetic Algorithm in this thesis directly apply to is the
use of a continuous search space, i.e. the solution variables taken as input by the
black box is defined in the continuous space. Furthermore, the output from the
black box which is used to calculate the objective is also continuously defined.
When the constraints on the solution variables are simply box constraints defin-
ing an upper and lower limit of the variables the algorithm is directly applicable.
For more complicated constraints the metaheuristic implementation has to be
adjusted.

The Memetic Algorithm is applied to a groundwater simulation model in 6.3.
The results show that the metaheuristic is valuable for optimization of param-
eters in the groundwater simulation model. In three out of four cases the pa-
rameters found by the Memetic Algorithms outperforms those found by manual
calibration. However, the real bonus is considered to be the amount of time
saved for problematic manual calibration. A groundwater modeller can use the
saved time for other tasks while the metaheuristic is determining the parameter
values. As the Memetic Algorithm is basically capable of solving a black box
problem it can also be applied to many other problem areas in the future.



Chapter 8

Conclusion

The problem solving process in this thesis utilizes both creative thinking and
soft operations research methods. An algorithm is developed using creativity
in the form of divergent and convergent thinking merged with metaheuristic
optimization.

The purpose of this thesis is to design an algorithm capable of optimizing multi-
modal continuous functions. Even black box functions should be solved by
the designed method. As seen from chapter 6 the results provide evidence
that the final metaheuristic can both optimize mathematically defined multi-
modal functions and the parameter calibration of the groundwater simulation
problem. The groundwater simulation model provide output that is optimized
in a RMSE and average error objective function. The simulation itself is seen
as a black box function. Time has only allowed for applying the metaheuristic
method to the single area of groundwater modelling within what is considered
black box functions. However, the metaheuristic method is not affected by the
model behind the optimization problem. The only requirement for a simulation
model within any application is the possibility of manipulating input parameters
(e.g. by external files) from the metaheuristic implementation. Thus, several
application areas should be possible. This part of the purpose is achieved.

Another aim of the thesis - stated in the introduction - is to merge the field
of creative thinking and the use of soft operations research with metaheuristic
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methods and mathematical optimization. By viewing the solution process it
is seen that both rational thinking and creativity is used. The description of
the metaheuristics is based on rational thinking whereas, the brainstorming
on guiding tools for the search strategy introduces creativity. Furthermore,
soft operations research methods are used in the form of a SWOT analysis for
decision support. In this way creative thinking is used for the design process.
Each part of the process can be seen as either a divergent or a convergent step
as described by section 4.3. Thus, the aim of merging creative thinking and
metaheuristic optimization has succeeded.

The last goal of utilizing creative thinking in the search strategy and implemen-
tation of the final algorithm has succeeded. The guiding tools affect the search
strategy in a divergent and convergent way. The divergent steps are meant for
escaping local minima whereas, the convergence allow for minima to be discov-
ered. The switching between strategies is triggered partly by changes in the
objective function, but also by the diversity of the population and an iteration
counter. All together this make up a divergent/convergent strategy. However,
other aspects of creative thinking could also be used in the search strategy for
future setups.



Chapter 9

Evaluation

9.1 A Study of the Design Process

This section provides an insight in the creative thinking of the design process of
this thesis. Parts of the process is viewed in retrospect on a higher level. The
author of the thesis is viewed as a designer going through a process.

As described earlier the aim of this thesis has been to optimize multi-modal
continuous functions amongst black box functions. Furthermore, the purpose
has been to merge the area of creative thinking and soft operations research
methodology with the mathematical optimization represented by the mathe-
matical problems and the metaheuristic method. On this basis, at least two
criteria for an acceptable outcome can be formulated for the project:

1. Design of an algorithm that is capable of optimizing continuous multi-
modal functions even when the evaluation of the objective is considered a
black box.

2. Utilization of creative thinking and soft operations research methods.

This formulation can be seen as a fixed criteria specified by an external client
prior to the design process. With these criteria in mind, two important parts
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of the design process is focused upon. In the following, the reasoning behind
the design process is presented, followed by an interpretation of each of the two
design strategies.

9.1.1 Choosing a Metaheuristic

A metaheuristic provides a way to search the solutions space. It requires the pos-
sibility to evaluate a solution by an objective function rather than the expression
of the objective function itself. That metaheuristics work well for combinatorial
problems does not necessarily mean that these are directly applied to contin-
uous functions. Thus, a description of how to adapt various metaheuristics to
continuous functions is given in this thesis. Besides finding out how to apply
the metaheuristics, a detailed insight in the advantages of some metaheuristics
over others is given. This is used to compare the metaheuristics.

In order to choose a metaheuristic further comparison is needed. A SWOT ma-
trix is made for each metaheuristic. Apart from assisting in the design process
the SWOT analysis also accommodates the criteria of using soft OR methods.
In order to allow for creative divergent and convergent thinking in the search
strategy of the algorithm the SWOT analysis is modified to focus on the op-
portunities in this area. Finally, the Memetic Algorithm is chosen based on its
superior possibilities of a divergent/convergent search strategy.

9.1.1.1 Strategy

The strategy is described by applying a model presented by [5] to the design
process. The process starts by the highest goals of the designer represented
by the upper left corner of figure 9.1. In this case the use of a metaheuristic
method is rather a high level goal of the designer than a direct demand given
by the predefined criteria (purpose of the project). There is no evident conflict
between the high level goal and one of the criteria. However, there is a potential
conflict between the metaheuristic optimization method and the criteria of using
or combining with soft OR methods. The problem is framed at the intermediate
level by the designer. The algorithm has to work for continuous problems. Thus,
all the metaheuristics are described for continuous functions. The framing is
matched by the choice/design of one method capable of satisfying the predefined
criteria. At the lower level a modified SWOT analysis is used as a first principle
in order to bring the process from the problem frame in the left side to the
solution concept in the right side of figure 9.1. Note, at the lower level there is
no conflict between the SWOT analysis and the predefined criteria at the high
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level.

Modified SWOT

Got to work for continuous functions

Metaheuristics
Optimize continuous multi−modal black box
Utilize creative thinking as part of the solution

Choose/design one method

First Principle

Predifined CriteriaHighest goal

Figure 9.1: First part of the design process

9.1.2 Designing the Final Algorithm

The designing of the final algorithm is based on the Memetic Algorithm chosen
earlier. The design should fulfill the predefined criteria of being able to optimize
continuous multi-modal functions and utilize creative thinking. The main issue
of the multi-modal functions is the possibility for the algorithm to get trapped
in local minima. On the other hand, the search has to converge to a minimum
by some strategy.

A creative process usually starts by divergent thinking followed by convergent
thinking. In order to escape local minima creative thinking must be used in this
form. The divergent steps make it possible to escape local minima whereas, the
convergent steps approach minima. Thus, diversification and intensification is
implemented in the final algorithm for guidance. The result not only meets the
criteria of being able to optimize multi-modal functions. The implementation
of guidance also accommodates the predefined criteria of merging the solution
method with creative thinking.

9.1.2.1 Strategy

The designing of the final algorithm is initialized by the desire of the designer to
use divergent/convergent thinking in the search strategy. This is represented by
the upper left corner of figure 9.2. At first divergent/convergent thinking in the
search strategy seems to be conflicting with the predefined criteria of designing
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an algorithm for mathematical functions. However, in the intermediate level
the problem is framed. The search has to be guided. At the lower level the first
principle of guiding is used to escape local minima. The solution concept of
implementing diversification and intensification is used to escape local minima
and converge respectively as seen form the intermediate level of figure 9.2, right
side.

First Principle

Predifined CriteriaHighest goal

Optimize continuous multi−modal black box
Utilize creative thinking as part of the solution

Use divergent/convergent thinking

Got to guide the search

Use guiding to
escape local min.

Implementation of dynamic div/int in algorithm

Figure 9.2: Second part of the design process

9.2 Evaluation of the Design Process

The design of the algorithm emerges from the potential conflict between the
highest goal of the designer and the fundamental predefined criteria. Compared
to the conflict presented in three case studies of professional designers by [5],
the conflict in the design process of this project seems less evident. This can be
explained partly by the following reasons:

1. The relatively long period of six months used for conducting the thesis. As
a result the design process is broken down to more parts whereas, the two
most important design strategies are represented in section 9.1. Each part
of the design process emerges from the previous part. Thus, the highest
goal of the designer at each stage of the design process develops. In that
sense, the highest goal is influenced by what is possible and what is not in
the previous part of the design process. The conflict between the highest
goal and the predefined criteria is therefore less evident.

2. The design process of professional designers provide better understanding
and insight in the process than the design process of a M.Sc. student.
This is due to the cognitive strategy of trained designers might appear
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more clear. The designers are professionals within their specific field of
innovation whereas, a M.Sc. student can be considered an amateur in
designing and in the application field.

3. Obvious similarities appear between the design processes described by
[5] and the creative design in this thesis. However, a main difference is
that the awareness of the process in this thesis is quite high whereas,
professional designers focus mucm more on the product. The divergent
and convergent steps are often caused by intuition and are not explicitly
formulated. Furthermore, the purpose of the product is very specific in
case of the three professionals. In the Master thesis the purpose is put
together of more goals that are supposed to lead to an interesting project
altogether.

The first point raises the question whether the creative design process is in-
fluenced negatively by having more time available. Think of another creative
method, brainstorming is usually conducted over relatively few minutes in or-
der to enhance spontaneous creativity. This is of course in contrast to rational
thinking processes where more time usually contributes positively to the process
and the outcome.
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Mathematically Defined Test
Functions

Note that two inconsistencies appear between the functions used in this thesis
and the functions given by [14]. The optimal solution and objective value of the
Hartmann6,4 function used in this thesis is set to the best solution found by 100
five-second-runs of the Memetic Algorithm, since the best value found is lower
than the optimal value given by [14]. Furthermore, in order to get the right
results the β values in any of the Shekel functions in this thesis are multiplied
by 1

4 compared to those of [14]. The objective value that is obtained by inserting
the optimal solution given by [14] to the Shekel function given by [14] differs by
almost a hundred percent from the objective value given by [14]. However, with
the corrected β values the results are correct. This implies that it is a matter
of a simple typing error.

.1 The Branin Function

Definition:

Branin(x) = (x2 −
5

4π2
x2

1 +
5

π
x1 − 6)2 + 10(1 − 1

8π
) cos(x1) + 10

Search space: x1 ∈ [−5; 10], x2 ∈ [0; 15]
Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475)
Objective value of global minima: Branin(x∗) = 0.397887
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.2 The Shekel4,5 Function

Definition:

Shekel4,5(x) = −
5

∑

j=1

[

4
∑

i=1

(xi − Cij)
2 + βj

]

−1

, β =
1

40
[1, 2, 2, 4, 4]T ,

C =









4.0 1.0 8.0 6.0 3.0
4.0 1.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 3.0
4.0 1.0 8.0 6.0 7.0









Search space: xi ∈ [0; 10], i = 1 . . . , 4
Global Minimum: x∗ = (4, 4, 4, 4)
Objective value of global minimum: Shekel4,5 = −10.1532

.3 The Shekel4,7 Function

Definition:

Shekel4,7(x) = −
7

∑

j=1

[

4
∑

i=1

(xi − Cij)
2 + βj

]

−1

, β =
1

40
[1, 2, 2, 4, 4, 6, 3]T ,

C =









4.0 1.0 8.0 6.0 3.0 2.0 5.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0
4.0 1.0 8.0 6.0 3.0 2.0 3.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0









Search space: xi ∈ [0; 10], i = 1 . . . , 4
Global Minimum: x∗ = (4, 4, 4, 4)
Objective value of global minimum: Shekel4,7 = −10.4029
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.4 The Shekel4,10 Function

Definition:

Shekel4,10(x) = −
10
∑

j=1

[

4
∑

i=1

(xi − Cij)
2 + βj

]

−1

, β =
1

40
[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T,

C =









4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6









Search space: xi ∈ [0; 10], i = 1 . . . , 4
Global Minimum: x∗ = (4, 4, 4, 4)
Objective value of global minimum: Shekel4,10 = −10.5364

.5 The Hartman3,4 Function

Definition:

Hartmann3,4(x) = −
4

∑

i=1

αi exp
[

−
3

∑

j=1

Aij(xj − Pij)
2
]

, α = [1, 1.2, 3, 3.2]T ,

A =









3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35









, P = 10−4 ·









6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828









Search space: xj ∈ [0; 1], j = 1, 2, 3
Global minimum: x∗ = (0.114614, 0.555649, 0.852547)
Objective value of global minimum: Hartmann3,4(x

∗) = −3.86278

.6 The Hartman6,4 Function

Definition:

Hartmann6,4(x) = −
4

∑

i=1

αi exp
[

−
6

∑

j=1

Bij(xj − Qij)
2
]

, α = [1, 1.2, 3, 3.2]T ,
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B =









10 3.0 17 3.05 1.78.0
0.05 10 17 0.1 8.0 14
3.0 3.51.7 10 17 8.0
17 8.0 0.05 10 0.1 14









, Q = 10−4 ·









1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381









Search space: xj ∈ [0; 1], j = 1, . . . , 6
Global minimum: x∗ = (0.200858, 0.150132, 0.478654, 0.276525, 0.311913, 0.65702)
Objective value of global minimum: Hartmann6,4(x

∗) = −3.33539215295

.7 The Easom Function

Definition:

Easom(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2) (1)

Search space: xi ∈ [−100; 100], i = 1, 2
Global minimum: x∗ = (π, π)
Objective value of global minimum: Easom(x∗) = −1
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.8 The Shekel4,7 Function

µ λrep λmut σmax ǫ tinterval Suc.rate Avg. Err. δ
30 15 55 0.2 0.02 9 1 7.78644E-13 1.36E-12
30 15 15 0.2 0.01 7 1 1.50914E-12 2.97E-12
25 15 55 0.2 0.015 5 1 1.73026E-12 3.11E-12
30 15 55 0.1 0.02 9 1 1.63167E-06 3.26E-06
30 25 15 0.2 0.02 9 1 9.96402E-06 1.90E-05
30 25 55 0.2 0.01 7 1 1.46598E-05 2.93E-05
30 25 55 0.2 0.02 7 1 1.59565E-05 3.19E-05
25 15 55 0.2 0.01 5 1 1.96807E-05 3.94E-05
30 15 55 0.3 0.01 5 0.8 1.05698E-13 1.22E-13
25 15 45 0.2 0.015 5 0.8 1.24993E-13 1.03E-13
20 15 25 0.3 0.02 5 0.8 1.34555E-13 1.03E-13
30 15 55 0.3 0.02 7 0.8 2.3069E-13 1.73E-13
20 15 15 0.1 0.02 5 0.8 3.26826E-13 3.99E-13
25 15 35 0.3 0.015 7 0.8 4.03665E-13 5.23E-13
25 15 35 0.3 0.015 9 0.8 7.59349E-13 8.75E-13
30 15 45 0.3 0.01 9 0.8 8.45922E-13 9.93E-13
25 15 55 0.3 0.01 7 0.8 8.84342E-13 5.13E-13
30 25 35 0.1 0.015 7 0.8 8.94075E-13 1.24E-12
25 15 45 0.2 0.02 5 0.8 1.18231E-12 1.06E-12
25 15 15 0.3 0.015 5 0.8 1.19204E-12 1.23E-12
25 15 55 0.3 0.015 5 0.8 1.46115E-12 1.46E-12
30 15 15 0.1 0.015 9 0.8 1.615E-12 2.70E-12
25 15 45 0.2 0.015 9 0.8 1.64386E-12 2.05E-12
25 15 25 0.1 0.015 7 0.8 2.24936E-12 3.72E-12
30 15 35 0.3 0.01 5 0.8 2.36479E-12 3.75E-12
30 25 45 0.1 0.02 5 0.8 3.27799E-12 3.75E-12
25 15 15 0.1 0.01 9 0.8 4.05663E-12 5.25E-12
30 15 55 0.3 0.015 9 0.8 5.28692E-12 5.21E-12
25 15 25 0.3 0.01 9 0.8 1.01318E-11 1.21E-11
25 15 25 0.2 0.01 7 0.8 1.03432E-11 1.55E-11
25 25 55 0.1 0.02 5 0.8 1.71971E-11 2.50E-11
25 15 55 0.1 0.02 7 0.8 2.67425E-11 4.58E-11
25 25 55 0.2 0.01 5 0.8 1.75433E-06 2.25E-06
30 55 55 0.1 0.015 9 0.8 2.5731E-06 4.46E-06
30 25 25 0.2 0.02 7 0.8 2.73006E-06 4.73E-06

...
...

...
...

...
...

...
...

...

Table 1: Parameter tuning based on the Shekel4,7 function
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.9 The Branin Function

µ λrep λmut σmax ǫ tinterval Suc.rate Avg. Err. δ
15 15 15 0.1 0.01 9 1 0 0.00E+00
15 15 15 0.3 0.015 5 1 0 0.00E+00
15 15 15 0.3 0.015 7 1 0 0.00E+00
15 15 25 0.1 0.01 5 1 0 0.00E+00
15 15 25 0.1 0.015 5 1 0 0.00E+00
15 15 25 0.1 0.015 9 1 0 0.00E+00
15 15 25 0.1 0.02 5 1 0 0.00E+00
15 15 25 0.1 0.02 7 1 0 0.00E+00
15 15 25 0.1 0.02 9 1 0 0.00E+00
15 15 25 0.2 0.015 7 1 0 0.00E+00
15 15 25 0.2 0.015 9 1 0 0.00E+00
15 15 25 0.3 0.015 5 1 0 0.00E+00
15 15 25 0.3 0.015 7 1 0 0.00E+00
15 15 25 0.3 0.02 5 1 0 0.00E+00
15 15 25 0.3 0.02 7 1 0 0.00E+00
15 15 35 0.1 0.01 9 1 0 0.00E+00
15 15 35 0.1 0.015 9 1 0 0.00E+00
15 15 35 0.1 0.02 7 1 0 0.00E+00
15 15 35 0.1 0.02 9 1 0 0.00E+00
15 15 35 0.2 0.01 5 1 0 0.00E+00
15 15 35 0.2 0.015 5 1 0 0.00E+00
15 15 35 0.3 0.015 9 1 0 0.00E+00
15 15 45 0.1 0.01 5 1 0 0.00E+00
15 15 45 0.1 0.01 7 1 0 0.00E+00
15 15 45 0.1 0.015 7 1 0 0.00E+00
15 15 45 0.2 0.02 5 1 0 0.00E+00
15 15 45 0.3 0.02 7 1 0 0.00E+00
15 15 45 0.3 0.02 9 1 0 0.00E+00
15 15 55 0.1 0.01 9 1 0 0.00E+00
15 15 55 0.1 0.015 7 1 0 0.00E+00
15 15 55 0.1 0.015 9 1 0 0.00E+00
15 15 55 0.2 0.01 5 1 0 0.00E+00
15 15 55 0.2 0.01 7 1 0 0.00E+00
15 15 55 0.2 0.015 9 1 0 0.00E+00
15 15 55 0.2 0.02 5 1 0 0.00E+00

...
...

...
...

...
...

...
...

...

Table 2: Parameter tuning based on the Branin function
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Source Code of
JAVA–Program

.10 The Main File (MainClass.java)

import java.util.Date;
import java.lang.*;

/*
* The main class, execution starts here.
*/

class MainClass
{

/*
* main. . . ya know. . . 10

*/
public static void main(String args[ ])

{
// Starting parameter tuning procedure
// parameterTuning();
//}

// Starting simulated annealing
//SA sim = new SA();
// sim.start(5000); 20

//}

System.out.println("Starting program");
// optimal objective value for comparison
double optVal= 0.397887; //-10.40294;
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int runs = 1;
double deviation;
String testname;
// logfilename 30

String logname = "Hartmann3_4";
String [ ] probfiles = new String[10];
double[ ] stat = new double[runs];
double bestRun = 10;
double avgSucces = 0;
double runSucces = 0;
double devSucces = 0;

for (int y = 1; y<= 10; y++) {
testname = logname+y+".txt"; 40

probfiles[y−1] = testname;
}

// for(int i = 0; i < probfiles.length; i++){
// Statistic filename

testname = "statfile_hartmann" + ".log";
MA meme = new MA(testname, "hartmann64.txt");
meme.avgBest = 0;
for(int r=0; r < runs; r++) {

testname = probfiles[1] + "_progress_" + r + ".log"; 50

stat[r] = meme.start(new Date(), testname,1,5000,0.23,30,15,55,0.2,0.09,0.02,0.03,0.9,0.65, 0.1, 9);
System.out.println(stat[r]);

}
deviation = 0;
devSucces=0;
avgSucces=0;
runSucces=0;
for(int r=0; r < runs; r++) {

deviation += Math.pow(stat[r]−meme.avgBest/(double)runs,2);
if (stat[r] < bestRun) { 60

bestRun = stat[r];
}
//if(stat[r] < -3.3){
if(Math.abs(optVal − stat[r]) < 0.0001*Math.abs(optVal) + 0.000001){

avgSucces += stat[r];
runSucces++;

}
}
for(int r=0; r < runs; r++) {

if(Math.abs(optVal − stat[r]) < 0.0001*Math.abs(optVal) + 0.000001){ 70

//if(stat[r] < -3.3){
devSucces += Math.pow(stat[r]−avgSucces/(double)runSucces,2);

}
}
devSucces = Math.sqrt(devSucces/runSucces);
deviation = Math.sqrt(deviation/runs);
LogFile statlog2 = new LogFile(logname+".log", true);
statlog2.write(bestRun + " avgSuc= " + avgSucces/runSucces + " SucRate= "+ runSucces/runs

+ " devSuc= " + devSucces + " " + meme.avgBest/runs + " " + deviation + " " + meme.staIter/runs + "\n");
statlog2.saveAndClose(); 80

// Futher statistical work is done in Excel
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meme.avgBest = 0;
meme.staIter = 0;
bestRun = 0;

}

// Parameter tuning procedure
public static long parameterTuning(){
System.out.println("Starting program"); 90

long runtime = 0; //parameterTuning();
double optVal= 0.397887; //-10.40294;

int runs = 5;
double deviation;
String testname;
String logname = "Hartmann3_4";
String [ ] probfiles = new String[10];
double[ ] stat = new double[runs];
double bestRun = 10;
double avgSucces = 0; 100

double runSucces = 0;
double devSucces = 0;
for (int y = 1; y<= 10; y++) {

testname = logname+y+".txt";
probfiles[y−1] = testname;

}
testname = "statfile_hartmann" + ".log";
MA meme = new MA(testname, "shekel47.txt");
meme.avgBest = 0;
int[ ] muArray = {15, 20, 25, 30}; 110

int[ ] lambdaRarray = {15, 25, 35, 45, 55};
int[ ] lambdaMarray = {15, 25, 35, 45, 55};
double[ ] sigmaMaxArray = { 0.1, 0.2, 0.3};
double[ ] epsilonArray = {0.01, 0.015, 0.02};
int[ ] iDivIntArray = {5,7,9};
for(int f=0; f< muArray.length; f++){

for(int g=0; g< lambdaRarray.length; g++){
for(int h=0; h< lambdaMarray.length; h++){

for(int i=0; i< sigmaMaxArray.length; i++){
for(int j=0; j< epsilonArray.length; j++){ 120

for(int k=0; k< iDivIntArray.length; k++){
// fixed double[ ] stepSize =

for(int r=0; r < runs; r++) {
testname = probfiles[1] + "_progress_" + r + ".log";
stat[r] = meme.start(new Date(), testname,1,5000,0.23,muArray[f],lambdaRarray[g],

lambdaMarray[h],sigmaMaxArray[i],0.09,epsilonArray[j],0.03,0.9,0.65, 0.1, iDivIntArray[k]);
System.out.println(stat[r]);

}
// reset statistics
deviation = 0; 130

devSucces=0;
avgSucces=0;
runSucces=0;
for(int r=0; r < runs; r++) {

deviation += Math.pow(stat[r]−meme.avgBest/(double)runs,2);
if (stat[r] < bestRun) {



XII Source Code of JAVA–Program

bestRun = stat[r];
}
//if(stat[r] < -3.3){
if(Math.abs(optVal − stat[r]) < 0.0001*Math.abs(optVal) + 0.000001){ 140

avgSucces += stat[r];
runSucces++;

}
}
for(int r=0; r < runs; r++) {

//if(stat[r] < -3.3){
if(Math.abs(optVal − stat[r]) < 0.0001*Math.abs(optVal) + 0.000001){

devSucces += Math.pow(stat[r]−avgSucces/(double)runSucces,2);
}

} 150

devSucces = Math.sqrt(devSucces/runSucces);
deviation = Math.sqrt(deviation/runs);
LogFile statlog2 = new LogFile(logname+".log", true);
statlog2.write(bestRun + " avgSuc= " + avgSucces/runSucces + " SucRate= "+ runSucces/runs

+ " devSuc= " + devSucces + " " + meme.avgBest/runs + " " + deviation + " " + meme.staIter/runs + " "

+ muArray[f]+ " " + lambdaRarray[g]+ " " +lambdaMarray[h]+ " " +sigmaMaxArray[i]+ " "

+epsilonArray[j]+ " " +iDivIntArray[k] + "\n");
statlog2.saveAndClose();
// Futher statistical work is done in Excel
// Reset calculations 160

meme.avgBest = 0;
meme.staIter = 0;
bestRun = 10;

}
}

}
}

}
}
// Close all for loops 170

return runtime;
}
//}

}

.11 The Memetic Algorithm (MA.java)

import java.util.*;
import java.lang.*;

public class MA
{

//private LogFile progress;
private DataObject data;
private Random rand;
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private String statfilename;
10

static public double avgBest = 0;
static public int staIter = 0;

/*
* Create a new DataObject from the file named ’filename’ and
* initialize the pseudo random number generator
*/

public MA(String statfile, String datafile)
{

data = new DataObject(datafile); 20

rand = new Random();
statfilename = statfile;

}

/*
* Start the MA algorithm. Use ’runfilename’ to log the
* values of key variables in each iteration. .
*/

public double start(Date startTime, String runfilename, int iter, double maxRunTime, double alpha, 30

int my, int lambdaR, int lambdaM, double sigmaMax, double stepSize, double epsilon, double stepSizeInc,
double stepSizeDec, double epsilonDec, double minDiverse, int intervalDivInt)

{

// Read upper and lower bounds
double bounds[ ][ ] = data.getBounds();
// Adapt epsilon (minimum increment)
epsilon = epsilon*(bounds[0][1]−bounds[0][0]);
// define global step size for self adaptation of strategy parameter
double tauM = alpha/(Math.sqrt(2*my)); 40

// define local step size for selfadaptation of strategy parameter
double tau = alpha/(Math.sqrt(2*Math.sqrt(my)));
double[ ][ ] bestSolution;
int nIterations=0;
//data.evaluations = 0;
int noImp = 0;
int stratPar= 8;
//std::Vector<std::Vector<T> > myVector;
double lambdaRbackup = lambdaR;
double lambdaMbackup = lambdaM; 50

Vector<double[ ][ ]> testPop = new Vector<double[ ][ ]>();
Vector<double[ ][ ]> nextPop = new Vector<double[ ][ ]>();
Vector<double[ ][ ]> offSpring = new Vector<double[ ][ ]>();
Vector<double[ ][ ]> populationR = new Vector<double[ ][ ]>();
Vector<double[ ][ ]> populationM = new Vector<double[ ][ ]>();
Vector<double[ ][ ]> tempPopulation = new Vector<double[ ][ ]>();
// Prepare the log file and initialize the population
LogFile runlog = new LogFile(runfilename);
LogFile poplog = new LogFile("popfile.m");
int startPos=0; 60

double bestObj = 0;
double[ ][ ] bestIndividual;
bestIndividual = new double[3][data.getDimension()];
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// start the main MA loop
Date now = new Date();
// initial population
double bestChange = 0;
nextPop = initializeVector(my,sigmaMax,stepSize);
bestObj = nextPop.firstElement()[2][0];
bestSolution = nextPop.firstElement(); 70

while(now.getTime()−startTime.getTime() < maxRunTime) {
//while(nIterations < 60){

// Reproduction
offSpring = reproduction(nextPop,lambdaR,my,stepSize);
nextPop.addAll(offSpring);
// Mutation
//plotPop(poplog,nextPop);
populationM = mutation(nextPop,lambdaM,stepSize,tauM,tau);
nextPop.addAll(populationM);
//plotPop(poplog,nextPop); 80

// Selection
nextPop = selection(nextPop,my,startPos);
// Update LS step size
stepSize = stepSize*stepSizeDec;
// Update epsilon (least improvement)
epsilon = epsilon*epsilonDec;

// Calculate change in variables

bestChange=0; 90

for(int i=0; i< data.getDimension(); i++){
for(int k=1; k< 0.66*(my); k++){
bestChange += Math.abs(bestSolution[0][i]−nextPop.elementAt(k)[0][i])/((bounds[i][1]−bounds[i][0]));
}

}

// Divergent / Convergent Properties (if new best is not very better than old best)
// old new

if((bestObj) <= (nextPop.firstElement()[2][0]) ){
noImp=1; 100

stepSize = stepSize*(1.0+ stepSizeInc);
}
else{

noImp=0;
}

// Update overall Best
if((nextPop.firstElement()[2][0]) < bestObj){

bestObj = (nextPop.firstElement()[2][0]);
bestSolution = nextPop.firstElement(); 110

}
// (In Case no Real Improvement has occured the last x iterations)
// Shift between diversification intensification
//if(noImp == 1 | | nIterations < 7){
if(nIterations % (2*intervalDivInt) >= intervalDivInt | | nIterations < 7){

runlog.write("diversification " + nIterations++ + " " + bestObj + " "

+ (nextPop.firstElement()[2][0]) + " " + (nextPop.elementAt(my/2)[2][0]) + "\n");
startPos = my;
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if(lambdaM < lambdaMbackup + 5){
lambdaM++; 120

lambdaR−−;
}

}
else{

runlog.write("intensification " + nIterations++ + " " + bestObj + " "

+ (nextPop.firstElement()[2][0]) + " " + (nextPop.elementAt(my/2)[2][0])+ "\n");
startPos = 0;
if(lambdaM > lambdaMbackup − 5){

lambdaM−−;
lambdaR++; 130

}
}
// In Case population has converged
if(bestChange < minDiverse | | nextPop.firstElement()[2][0] >= nextPop.elementAt(my/2)[2][0] − epsilon){

plotPop(poplog,nextPop);
runlog.write("Meta-mutation \n");
nextPop = metamutation(nextPop,stepSize,poplog);
nextPop = selection(nextPop,my,0);
plotPop(poplog,nextPop);

} 140

now = new Date();
}
// Create population of “dimension”+1 individuals for NM simplex
Vector<double[ ][ ]> PopNM = new Vector<double[ ][ ]>();
// Add best solution as vertex after being local searched ones
double[ ][ ] firstIndividual = LocalSearch1(bestSolution,stepSize);
PopNM.addElement(firstIndividual);
// Add the next “dimension-2” solutions
for(int l=1; l < data.getDimension(); l++){ 150

PopNM.addElement(nextPop.elementAt(l));
}
// Add last solution to PopNM
int count=data.getDimension();
while((nextPop.elementAt(count)[2][0]) <= (nextPop.firstElement()[2][0]) && count < my−1){

count++;
}
//System.out.println(data.evaluations);
PopNM.addElement(nextPop.elementAt(count));
// Utilize Nelder-Mead 160

bestIndividual = NM(PopNM,runlog);
// Test the best point given in the report
double[ ][ ] givenBest = new double[3][4];
givenBest[0][0] = 4;
givenBest[0][1] = 4;
givenBest[0][2] = 4;
givenBest[0][3] = 4;
//givenBest[0][4] = 0.311652;
//givenBest[0][5] = 0.657300;

String txt = " "; 170

for(int i = 0; i<data.getDimension(); i++){
txt += " " + round(bestIndividual[0][i],6);

}
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txt += "\n";
for(int i = 0; i<data.getDimension(); i++){

txt += " " + round(nextPop.firstElement()[0][i],6);
}

// Save and close the logfile
poplog.saveAndClose(); 180

runlog.saveAndClose();

bestObj = (bestIndividual[2][0]);
// For parameter tuning and testing
avgBest += bestObj;
staIter += nIterations;

// Append some stuff to the statistics file.
LogFile statlog = new LogFile(statfilename, true);
statlog.write(iter + " " + " " + " " + (nIterations−1) + " " + bestObj + "\n"); 190

statlog.saveAndClose();

return bestObj;
}

private void plotPop(LogFile poplog, Vector<double[ ][ ]> population){
String varName = "st = [";
for(int i = 0 ; i < data.getDimension(); i++){

varName = "st" + varName;
poplog.write(varName); 200

for(int numero = 0; numero < population.size(); numero++){
poplog.write(" " + population.elementAt(numero)[0][i]);

}
poplog.write("]; \n");

}
poplog.write("plot(stst,ststst,’o’) \n \n");

}

private double[ ][ ] NM(Vector<double[ ][ ]> population, LogFile runlog){
double ro = 1.0; 210

double chi = 2.0;
double gamma = 0.5;
double sigma = 0.5;
double epsilon = 0.0000001001;
int counter = 0;
int iDimension = data.getDimension();
double[ ][ ] lastPoint;
lastPoint = population.lastElement();
double lastPointObj = (lastPoint)[2][0];
double[ ][ ] nextLastPoint; 220

nextLastPoint = population.firstElement();
double[ ][ ] pointR;
double[ ][ ] pointE;
double[ ][ ] pointC;
double[ ][ ] pointCC;
double pointRobj = lastPointObj;
double pointEobj = lastPointObj;
double pointCobj = lastPointObj;
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double pointCCobj = lastPointObj;
for(int q=0; q < population.size(); q++){ 230

runlog.write(" " + (population.elementAt(q)[2][0]) + " " + population.size() + " " + iDimension + "\n");
}
while(nextLastPoint[2][0] < ((lastPoint[2][0]) − epsilon )){
runlog.write("inde her ! \n");
lastPoint = population.firstElement();
for(int h=0;h<30;h++){

for(int q=0; q < population.size(); q++){
runlog.write(" " + (population.elementAt(q)[2][0]) + " " + population.size() + " \n");

}
runlog.write("Counter = "+ counter + "\n"); 240

pointR = reflect(population,ro);
pointRobj = pointR[2][0];
if(pointRobj < (population.elementAt(iDimension−1)[2][0])){

if(pointRobj >= (population.firstElement()[2][0])){
population = accept(population,pointR);
runlog.write("accept reflected point \n");

}
else{

pointE = expand(population,pointR,chi);
pointEobj = pointE[2][0]; 250

if(pointEobj < pointRobj){
population = accept(population,pointE);
runlog.write("accept expanded point"+ "\n");

}
else{

population = accept(population,pointR);
runlog.write("accepted reflected point R less than E"+ "\n");

}
}

} 260

else{
if(pointRobj < (population.elementAt(iDimension)[2][0])){

pointC = contractOut(population,pointR,gamma);
pointCobj = pointC[2][0];
if(pointCobj <= pointRobj){

population = accept(population,pointC);
runlog.write("Accept contracted point on the outside"+ "\n");

}
else{

population = shrink(population,sigma); 270

runlog.write("Shrink POP = no accepted points (out)"+ "\n");
}

}
else{

pointCC = contractIn(population,gamma);
pointCCobj = (pointCC[2][0]);
if(pointCCobj < (population.elementAt(iDimension)[2][0])){

population = accept(population,pointCC);
runlog.write("Accept contracted point on the inside"+ "\n");

} 280

else{
population = shrink(population,sigma);
runlog.write("Shrink POP = no accepted points (in)"+ "\n");
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}
}

}
counter++;

}
nextLastPoint = population.firstElement();
} 290

runlog.write("R" + (population.firstElement()[2][0]) + "\n");
return population.firstElement();

}

private Vector<double[ ][ ]> accept(Vector<double[ ][ ]> population, double[ ][ ] newVertex){
int indexMax=population.size()−2;

population.removeElementAt(indexMax+1);
double newVertexObj = (newVertex[2][0]);
for(int i=indexMax; i >= 0; i−−){

if(newVertexObj >= (population.elementAt(i)[2][0])){ 300

population.insertElementAt(newVertex,i+1);
return population;

}
else if(i==0){

population.insertElementAt(newVertex,0);
return population;

}
}
//population.insertElementAt(newVertex,0);
return population; 310

}

private Vector<double[ ][ ]> shrinkAccept(Vector<double[ ][ ]> population, double[ ][ ] newVertex){
int indexMax=population.size();
double newVertexObj = (newVertex[2][0]);
for(int i=0; i < indexMax; i++){

if(newVertexObj < (population.elementAt(i)[2][0])){
population.insertElementAt(newVertex,i);
return population;

} 320

else if(i==indexMax−1){
population.addElement(newVertex);
return population;

}
}
//population.addElement(newVertex);
return population;

}

private double[ ][ ] reflect(Vector<double[ ][ ]> population, double ro){ 330

int indexMax=population.size()−1;
int iDimension = data.getDimension();
double[ ][ ] centroid = new double[3][iDimension];
double[ ][ ] pointR = new double[3][iDimension];
double[ ][ ] lastVertex = population.lastElement();
for(int j=0; j < indexMax; j++){

for(int i=0; i < iDimension; i++){
centroid[0][i] += (population.elementAt(j)[0][i])/((double)indexMax);
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}
} 340

for(int i=0; i < iDimension; i++){
pointR[0][i] = centroid[0][i] + ro*(centroid[0][i]−lastVertex[0][i]);

}
pointR[2][0] = data.evalSolution(pointR);
return pointR;

}

private double[ ][ ] expand(Vector<double[ ][ ]> population, double[ ][ ] pointR, double chi){
int indexMax=population.size()−1;
int iDimension = data.getDimension(); 350

double[ ][ ] centroid = new double[3][iDimension];
double[ ][ ] pointE = new double[3][iDimension];
for(int j=0; j < indexMax; j++){

for(int i=0; i < iDimension; i++){
centroid[0][i] += (population.elementAt(j)[0][i])/((double)indexMax);

}
}
for(int i=0; i < iDimension; i++){

pointE[0][i] = centroid[0][i] + chi*(pointR[0][i]−centroid[0][i]);
} 360

pointE[2][0] = data.evalSolution(pointE);
return pointE;

}

private double[ ][ ] contractOut(Vector<double[ ][ ]> population, double[ ][ ] pointR, double gamma){
int indexMax=population.size()−1;
int iDimension = data.getDimension();
double[ ][ ] centroid = new double[3][iDimension];
double[ ][ ] pointC = new double[3][iDimension];
for(int j=0; j < indexMax; j++){ 370

for(int i=0; i < iDimension; i++){
centroid[0][i] += (population.elementAt(j)[0][i])/((double)indexMax);

}
}
for(int i=0; i < iDimension; i++){

pointC[0][i] = centroid[0][i] + gamma*(pointR[0][i]−centroid[0][i]);
}
pointC[2][0] = data.evalSolution(pointC);
return pointC;

} 380

private double[ ][ ] contractIn(Vector<double[ ][ ]> population, double gamma){
int indexMax=population.size()−1;
int iDimension = data.getDimension();
double[ ][ ] lastVertex = population.lastElement();
double[ ][ ] centroid = new double[3][iDimension];
double[ ][ ] pointCC = new double[3][iDimension];
for(int j=0; j < indexMax; j++){

for(int i=0; i < iDimension; i++){
centroid[0][i] += (population.elementAt(j)[0][i])/((double)indexMax); 390

}
}
for(int i=0; i < iDimension; i++){
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pointCC[0][i] = centroid[0][i] − gamma*(centroid[0][i]−lastVertex[0][i]);
}
pointCC[2][0] = data.evalSolution(pointCC);
return pointCC;

}

private Vector<double[ ][ ]> shrink(Vector<double[ ][ ]> population, double sigma){ 400

int indexMax=population.size();
int iDimension = data.getDimension();
Vector<double[ ][ ]> nextPop = new Vector<double[ ][ ]>();
double[ ][ ] firstVertex = population.firstElement();
nextPop.addElement(firstVertex);
double[ ][ ] newVertex = new double[3][iDimension];
for(int j=1; j < indexMax; j++){

for(int i=0; i<iDimension ; i++){
newVertex[0][i] = firstVertex[0][i] + sigma*(population.elementAt(j)[0][i]−firstVertex[0][i]);

} 410

newVertex[2][0] = data.evalSolution(newVertex);
nextPop=shrinkAccept(nextPop,newVertex);

}
return nextPop;

}

public static double round(double val, int places) {
long factor = (long)Math.pow(10,places);

// Shift the decimal the correct number of places 420

// to the right.
val = val * factor;

// Round to the nearest integer.
long tmp = Math.round(val);

// Shift the decimal the correct number of places
// back to the left.
return (double)tmp / factor;

} 430

private Vector<double[ ][ ]> selection(Vector<double[ ][ ]> population, int mu,int startPos){
Vector<double[ ][ ]> SelPop = new Vector<double[ ][ ]>();
int iDimension = data.getDimension();
//Create mutated population of
double[ ][ ] candidate;
int canIndex = 0;
candidate = new double[3][iDimension];
for(int k=0; k<mu; k++){

candidate = population.elementAt(startPos); 440

canIndex=startPos;
for(int l=startPos+1; l<population.size(); l++){

if((population.elementAt(l)[2][0]) < (candidate[2][0])){
candidate = population.elementAt(l);
canIndex = l;

}
}
SelPop.addElement(candidate);
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population.removeElementAt(canIndex);
} 450

return SelPop;
}

private Vector<double[ ][ ]> metamutation(Vector<double[ ][ ]> population, double stepSize, LogFile poplog){
Vector<double[ ][ ]> populationM = new Vector<double[ ][ ]>();
int iDimension = data.getDimension();
//Create mutated population of
populationM.addElement(population.firstElement());
double[ ][ ] individual;
individual = new double[3][iDimension]; 460

for(int l=1; l<population.size(); l++){
individual = mutate2(population.elementAt(l));

for(int h=0; h<2; h++){
individual = LocalSearch1(individual,stepSize);

}
populationM.addElement(individual);

}
plotPop(poplog,populationM);
return populationM;

} 470

private Vector<double[ ][ ]> mutation(Vector<double[ ][ ]> population, int lambdaM,
double stepSize, double tauM, double tau){

Vector<double[ ][ ]> populationM = new Vector<double[ ][ ]>();
int iDimension = data.getDimension();
//Create mutated population of
double[ ][ ] individual;
individual = new double[3][iDimension];
for(int l=0; l<lambdaM; l++){

individual = population.elementAt(rand.nextInt(population.size())); 480

individual = mutate(individual, tauM, tau);
for(int h=0; h<1; h++){

individual = LocalSearch1(individual,stepSize);
}
populationM.addElement(individual);

}
return populationM;

}

private double[ ][ ] mutate(double[ ][ ] individual, double tauLocal, double tauGlobal){ 490

int iDimension = data.getDimension();
double[ ][ ] mutatedIndividual = new double[3][iDimension];
double randVar= rand.nextGaussian();
double randVar2 = rand.nextGaussian();
for(int i=0; i<iDimension; i++){

mutatedIndividual[1][i]= individual[1][i];
// Mutation of Gene
mutatedIndividual[0][i]= individual[0][i] + (mutatedIndividual[1][i])*randVar;

}
mutatedIndividual[2][0] = data.evalSolution(mutatedIndividual); 500

return mutatedIndividual;
}
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private double[ ][ ] mutate2(double[ ][ ] individual){
int iDimension = data.getDimension();
for(int i=0; i<iDimension; i++){

individual[0][i]= individual[0][i] + 6*(individual[1][i])*(Math.random()−0.5);
}
individual[2][0] = data.evalSolution(individual);
return individual; 510

}

private Vector<double[ ][ ]> reproduction(Vector<double[ ][ ]> population, int lambdaR, int mu, double stepSize){
Vector<double[ ][ ]> populationR = new Vector<double[ ][ ]>();
int iDimension = data.getDimension();
//Create population of offspring
double[ ][ ] individual;
individual = new double[3][iDimension];
for(int l=0; l<lambdaR; l++){

int parent1 = rand.nextInt(mu); 520

int parent2 = rand.nextInt(mu);
individual = crossOver1(population.elementAt(parent1),population.elementAt(parent2));
for(int h=0; h<1; h++){

individual = LocalSearch1(individual,stepSize);
}
populationR.addElement(individual);

}
return populationR;

}
530

private double[ ][ ] crossOver1(double[ ][ ] parent1, double[ ][ ] parent2){
int iDimension = data.getDimension();
double[ ][ ] offspring = new double[3][iDimension];
//offspring = parent1;
for(int i=0; i<iDimension; i++){

if(Math.random() < 0.5){
offspring[0][i] = parent2[0][i];
offspring[1][i] = parent2[1][i];

}
else{ 540

offspring[0][i] = parent1[0][i];
offspring[1][i] = parent1[1][i];

}
}
offspring[2][0] = data.evalSolution(offspring);
return offspring;

//return parent1;
}

private Vector<double[ ][ ]> initializeVector(int popSize, double sigmaMax, double stepSize){ 550

Vector<double[ ][ ]> population = new Vector<double[ ][ ]>();
int iDimension = data.getDimension();
double bounds[ ][ ] = data.getBounds();
double[ ][ ] individual;
individual = new double[3][iDimension];
for(int k=0; k<popSize; k++){

for(int i=0; i<iDimension; i++){
individual[0][i] = bounds[i][0] + Math.random()*(bounds[i][1]−bounds[i][0]);
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individual[1][i] = (bounds[i][1]−bounds[i][0])*sigmaMax*Math.random();
} 560

individual[2][0] = data.evalSolution(individual);
for(int h=0; h<1; h++){
individual = LocalSearch1(individual,stepSize);
}
population.addElement(individual);

}
return population;

}

private double[ ][ ] LocalSearch1(double[ ][ ] individual, double stepSize){ 570

double stepSizeBackup = stepSize;
double bounds[ ][ ] = data.getBounds();
double[ ][ ] candidate;
int iDimension = data.getDimension();
candidate = new double[3][iDimension];
// First LS step
for(int i=0; i<iDimension; i++){

// Assure Individual is not out of bounds
if(individual[0][i] > bounds[i][1]){

individual[0][i] = bounds[i][1]; 580

}
if(individual[0][i] < bounds[i][0]){

individual[0][i] = bounds[i][0];
}
// Make a candidate
candidate[0][i] = individual[0][i] + (bounds[i][1]−bounds[i][0])*stepSize*(Math.random()−0.5);
// Assure candidate is within search space
if(candidate[0][i] > bounds[i][1]){

candidate[0][i] = bounds[i][1];
} 590

if(candidate[0][i] < bounds[i][0]){
candidate[0][i] = bounds[i][0];

}

candidate[1][i] = individual[1][i];
}
candidate[2][0] = data.evalSolution(candidate);
int counter = 0;
// Following LS steps
while((candidate[2][0]) >= (individual[2][0]) && counter < 50){ 600

for(int i=0; i<iDimension; i++){
// make candidate

candidate[0][i] = individual[0][i] + (bounds[i][1]−bounds[i][0])*stepSize*(Math.random()−0.5);
// make sure candidate is in search space
if(candidate[0][i] > bounds[i][1]){

candidate[0][i] = bounds[i][1];
}
if(candidate[0][i] < bounds[i][0]){

candidate[0][i] = bounds[i][0];
} 610

}
candidate[2][0] = data.evalSolution(candidate);
counter++;
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stepSize = stepSize*0.6;
}
stepSize=stepSizeBackup;
if(counter >= 50){

return individual;
}
return candidate; 620

}

}

.12 The Data Input and Evaluation Object (DataOb-
ject.java)

import java.io.*;

/*
* The data object contains the problem data to be worked on.
*/

class DataObject
{

private int nItems, capacity;
private int[ ] FixedWeightArray;
private double[ ][ ] ProfitMatrix; 10

//private int[ ][ ] ProfitMatrix;
private StreamTokenizer st;
private boolean endOfLine = false;

// public int iterator = 0;
private double[ ][ ] MatrixA;
private double[ ] VectorAlpha;
private double[ ][ ] MatrixP;
private int iDimension;
private int jDimension; 20

private double lBound;
private double uBound;

/*
* Init data object based on the data in ’filename’
*/

public DataObject(String filename)
{

//readAndParseFile2(filename); 30

// This is only for Branin specifically
jDimension = 16;

}

/* Bounds for Branin function
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public double[ ][ ] getBounds()
{

double temp[ ][ ];
temp = new double[jDimension][2];
temp[0][0] = -5.0; 40

temp[0][1] = 10.0;
temp[1][0] = 0.0;
temp[1][1] = 15.0;
return temp;

}
*/
// Bounds for hydraulic conductivity for ground water simulation
public double[ ][ ] getBounds(){

double temp[ ][ ];
temp = new double[jDimension][2]; 50

temp[0][0] = 0.000001; // HK 101 Sand
temp[0][1] = 0.001;
temp[1][0] = 8.0; // VANI 201
temp[1][1] = 12.0;
temp[2][0] = 8.0; // VANI 202
temp[2][1] = 12.0;
temp[3][0] = 0.000001; // HK 103 Sand
temp[3][1] = 0.001;
temp[4][0] = 0.000001; // HK 303
temp[4][1] = 0.001; 60

temp[5][0] = 0.000001; // HK 105 Sand
temp[5][1] = 0.001;
temp[6][0] = 0.0000000001; // HK 104 Ler
temp[6][1] = 0.000001;
temp[7][0] = 0.000001; // HK 305
temp[7][1] = 0.001;
temp[8][0] = 0.000001; // HK 107 Sand
temp[8][1] = 0.001;
temp[9][0] = 0.0000000001; // HK 106 Ler
temp[9][1] = 0.000001; 70

temp[10][0] = 0.0000000001; // HK 111 Ler
temp[10][1] = 0.000001;
temp[11][0] = 0.000001; // HK 112 Sand
temp[11][1] = 0.001;
temp[12][0] = 0.0000000001; // HK 110 Ler
temp[12][1] = 0.000001;
temp[13][0] = 0.000001; // HK 109 Sand
temp[13][1] = 0.001;
temp[14][0] = 0.0000000001; // HK 108 Ler
temp[14][1] = 0.000001; 80

temp[15][0] = 0.0000000001; // HK 113 Ler
temp[15][1] = 0.000001;
return temp;

}

public int getDimension()
{

jDimension = 16;
return jDimension;

} 90
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/* Bounds for Hartmann and Shekel functions
public double[ ][ ] getBounds()
{

double temp[ ][ ];
temp = new double[jDimension][2];
for(int i=0; i < jDimension; i++){
temp[i][0] = lBound;
temp[i][1] = uBound;
} 100

return temp;
}

public int getDimension()
{
return jDimension;
}
*/

/*
* evaluates the solution and returns the corresponding profit. 110

* An infeasible solution is indicated by a return value of
* “infinity”.
*/

// Easom
public double evalSolution2(double[ ][ ] solution){

double objective =0;
objective = −(Math.cos(solution[0][0]))*Math.cos(solution[0][1])

*Math.exp(−Math.pow((solution[0][0]−Math.PI),2)−Math.pow((solution[0][1]−Math.PI),2)); 120

return objective;
}

// eval som for Branin functions

public double evalSolution3(double[ ][ ] solution)
{

double objective = 0;
objective = Math.pow(solution[0][1]−(5/(4*Math.pow(Math.PI,2)))*Math.pow(solution[0][0],2) 130

+(5/Math.PI)*solution[0][0] − 6,2) + 10*(1−1/(8*Math.PI))*Math.cos(solution[0][0]) + 10;
return objective;

}

// Evaluate Shekel functions
public double evalSolution4(double[ ][ ] solution)
{

double objective = 0;
for(int i=0; i<iDimension; i++)

{ 140

double evalSum = 0;
for(int j=0; j<jDimension; j++)

{
evalSum += (Math.pow((solution[0][j]−MatrixA[i][j]),2) + VectorAlpha[i]) ;

}
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objective += Math.pow(evalSum,−1);
}

return −objective;
}

150

// eval sol for Hartmann functions
public double evalSolution5(double[ ][ ] solution)
{

double objective = 0;
for(int i=0; i<iDimension; i++)

{
double evalSum = 0;
for(int j=0; j<jDimension; j++)

{
evalSum = evalSum + MatrixA[i][j]*Math.pow((solution[0][j]−MatrixP[i][j]),2) ; 160

}
objective = objective − VectorAlpha[i]*Math.exp(−evalSum);

}
return objective;

}

// evaluates solution by RMSE or average gap between obs and simulated values
public double evalSolution(double[ ][ ] solution){

double RMSE = 0.0;
double[ ][ ] observations; 170

// Delete old backup
String s =null;
File f1 = new File("lpf_backup.txt");
File f2 = new File("hjordkaer_20lag_5.lpf");
boolean success = f2.renameTo(f1);
if(!success){

System.out.println("can’t rename");
}
// (Copy lpf file to lpf backup)
// Write the parameters to the parameter file 180

writeParameterFile("hjordkaer_20lag_5.lpf", solution);
// Delete lpf backup
File f3 = new File("lpf_backup.txt");
f3.delete();
// Run the MODFLOW Simulation
System.out.println("Starting a simulation");
//data.toPrint(solution);
try{

Process p = Runtime.getRuntime().exec("mf2k hjordkaer_20lag_5.mfn"); //Step 1 and 2
BufferedReader stdInput = new BufferedReader(new InputStreamReader(p.getInputStream())); 190

BufferedReader stdError = new BufferedReader(new InputStreamReader(p.getErrorStream()));
System.out.println("here:\n");
while((s = stdInput.readLine()) != null){

System.out.println(s);
}
System.out.println("errors:\n");
while((s = stdError.readLine()) != null){

System.out.println(s);
}
p.waitFor(); // wait for external program to close 200
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stdInput.close();
stdError.close();
p.destroy();
System.out.println("Simulation OK");

}catch (IOException e) {
System.out.println("Error - Cannot simulate " + e);

}
catch(InterruptedException e){
System.out.println("Cannot wait " + e);
} 210

// Read the output i.e. the simulated head and the observed head
observations = readObsFile("hjordkaer_20lag_5._os");
// Calculate the RMSE based on the two head observations
int nrOfObs = observations[0].length;
int dim = observations.length;
for(int nr=0; nr < nrOfObs; nr++){

if(observations[1][nr] == 1.0){
observations[1][nr] = 10.0;

}
//if(nr != 1){ 220

RMSE += Math.pow((observations[0][nr]−observations[1][nr]),2);
//RMSE += Math.abs(observations[0][nr]-observations[1][nr]);
//}

}
RMSE = Math.sqrt(RMSE/(nrOfObs));
//RMSE = RMSE/(nrOfObs);
System.out.println("Obj = " + RMSE);
return RMSE;

}
230

public void writeParameterFile(String filename, double[ ][ ] solution)
{

LogFile fileCopy = new LogFile(filename);
double temp;
String fileReader = "o";
String line;
String lineStart;
String lineEnd;
int counter = 0; 240

DataInputStream dis = null;
/* Manually calibrated solution
double[ ][ ] solution = new double[3][jDimension];
solution[0][0] = 0.0008;
solution[0][1] = 10.0;
solution[0][2] = 10.0;
solution[0][3] = 0.0008;
solution[0][4] = 0.0002;
solution[0][5] = 0.0008;
solution[0][6] = 0.0000005; 250

solution[0][7] = 0.00005;
solution[0][8] = 0.00001;
solution[0][9] = 0.00000001;
solution[0][10] =0.00000001;
solution[0][11] =0.00001;
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solution[0][12] =0.00000001;
solution[0][13] =0.00001;
solution[0][14] =0.00000001;
solution[0][15] =0.00000001;
*/ 260

// solution[16] =1;
//solution[17] =1;

// Open the file
//openFile2(“lpf backup.txt”);
try{

File f = new File("lpf_backup.txt");
FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DataInputStream(bis); 270

} catch(IOException e){
System.err.println("Cannot read file");

}

fileReader = nextLine(dis);
while(fileReader != null){

if(fileReader.startsWith("HK_")){
lineStart = fileReader.substring(0,10);
lineEnd = fileReader.substring(fileReader.length()−2,fileReader.length());
if(counter < jDimension){ 280

line = String.valueOf(solution[0][counter]);
}

else{
line = (fileReader.substring(10,fileReader.length()−2)).trim();

}
if(!lineEnd.startsWith(" ")){

line += " ";
}
fileCopy.write(lineStart + line + lineEnd + "\n");
counter++; 290

}
else{

if(fileReader.startsWith("VANI_")){
lineStart = fileReader.substring(0,14);
lineEnd = fileReader.substring(fileReader.length()−2,fileReader.length());
if(counter < jDimension){

line = String.valueOf(solution[0][counter]);
}
else{

line = (fileReader.substring(14,fileReader.length()−2)).trim(); 300

}
if(!lineEnd.startsWith(" ")){

line += " ";
}
//System.out.println(lineStart + line + lineEnd);
fileCopy.write(lineStart + line + lineEnd + "\n");
counter++;

}
else{

fileCopy.write(fileReader + "\n"); 310
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}
}
fileReader = nextLine(dis);

}
//Close the updated file
fileCopy.saveAndClose();
//Close the original file

try{
dis.close();

} catch(IOException ioe){ 320

}
}

public double[ ][ ] readObsFile(String filename){
String fileReader = "o";
double temp;
int nrOfObs = 11;
DataInputStream dis = null;
// Open the file
try{ 330

File f = new File(filename);
FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DataInputStream(bis);

} catch(IOException e){
System.err.println("Cannot read file");

}

// allocate observation matrix
double[ ][ ] headSimObs = new double[2][nrOfObs]; 340

for(int nr=0; nr < nrOfObs ; nr++){
// Read next line
fileReader = nextLine(dis);
try{
headSimObs[0][nr] = Double.valueOf((fileReader.substring(1,18)).trim()).doubleValue();
headSimObs[1][nr] = Double.valueOf((fileReader.substring(18,34)).trim()).doubleValue();}
catch(IndexOutOfBoundsException e){

System.out.println("string not long enough");
} 350

}
try{

dis.close();
} catch(IOException ioe){
}
toPrint(headSimObs);
return headSimObs;

}

private void toPrint(double[ ][ ] headSimObs){ 360

int nrOfObs = headSimObs[0].length;
int dim = headSimObs.length;
for(int nr=0; nr < nrOfObs ; nr++){

for(int i=0; i < dim; i++){
System.out.print(headSimObs[i][nr] + " ");
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}
System.out.print("\n");

}
}

370

//* This function is able to read data for Hartmann functions
//

private void readAndParseFile2(String filename)
{

double temp;

// Open the file
openFile(filename);

// Set end-of-line as tokens 380

st.eolIsSignificant(true);

while (endOfLine != true) {
nextNumber();

}

// Unset end-of-line as tokens
st.eolIsSignificant(false);

iDimension = (int)nextNumber(); 390

jDimension = (int)nextNumber();

lBound = (double)nextNumber();

uBound = (double)nextNumber();

// Allocate memory.
MatrixA = new double[iDimension][jDimension];
MatrixP = new double[iDimension][jDimension]; 400

VectorAlpha= new double[iDimension];

for(int i=0; i<iDimension; i++) {
for(int j=0; j<jDimension; j++) {
MatrixA[i][j] = (double)nextNumber();
}

}

for(int i=0; i<iDimension; i++) {
for(int j=0; j<jDimension; j++) { 410

MatrixP[i][j] = (double)((double)nextNumber()/10000);
}

}
for(int i=0; i<iDimension; i++) {

VectorAlpha[i] = (double)nextNumber();

}
//System.out.println(toString());

}
420
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/*
* Get the next number from the open file
*/

private String nextLine(DataInputStream dis){
String line = "EOF";
try{line=dis.readLine();}
catch(IOException e)

{ 430

System.err.println("Failed to get next line");
}

return line;
}

private double nextNumber()
{

try{ st.nextToken(); }
catch(IOException e)

{ 440

System.err.println("Error: Failed to get next number. Is the file open?");
}

if(st.ttype == StreamTokenizer.TT EOF)
{

System.err.println("Error: End of file reached");
}

if(st.ttype == StreamTokenizer.TT EOL)
{

endOfLine = true;
} 450

return st.nval;
}

private String nextWord()
{

try{ st.nextToken(); }
catch(IOException e)

{
System.err.println("Error: Failed to get next number. Is the file open?");

} 460

if(st.ttype == StreamTokenizer.TT EOF)
{

System.err.println("Error: End of file reached");
return "9.9999";

}
if(st.ttype == StreamTokenizer.TT EOL)

{
endOfLine = true;

}
if(st.ttype == StreamTokenizer.TT NUMBER){ 470

return String.valueOf(st.nval);
}
if(st.ttype == StreamTokenizer.TT WORD){

return st.sval;
}
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return "\n";
}
/*
* Open the file and create a StreamTokenizer so we can get tokens from the file.
*/ 480

private void openFile(String filename)
{

try{ st = new StreamTokenizer(new FileReader(filename)); }
catch(FileNotFoundException e)

{
System.err.println("File \"" + filename + "\" not found");
System.exit(0);

}
} 490

/*
* Convert the data object to a string. Used as a debug function to help
* check and visualize the matrix. Quite slow when displaying lots of data.
*/

public String toString()
{

String output = iDimension + " x " + jDimension + "\n";
output += "The search space is bounded by the following box constraints: \n"; 500

output += "Lower Bound=" + lBound + " Upper Bound=" + uBound + "\n";
output += "\n A= \n";

// matrix
for(int i=0; i<iDimension; i++)

{
for(int j=0; j<jDimension; j++)

output += " " + MatrixA[i][j];
output += "\n";

} 510

output += "\n P= \n";
for(int i=0; i<iDimension; i++)

{
for(int j=0; j<jDimension; j++)

output += " " + MatrixP[i][j];
output += "\n";

}
output += "\n alpha= ";
for(int i=0; i<iDimension; i++)

{ 520

output += " " + VectorAlpha[i];
}

return output;
}

}



XXXIV Source Code of JAVA–Program

.13 The Documentation File (LogFile.java)

import java.io.*;

/*
* This is a logfile class
*/

class LogFile
{

private BufferedWriter file;
private String filename;

10

/*
* Open a file called ’filename’, ready for writing.
*/

public LogFile(String filename)
{

openFile(filename, false);
}

20

/*
* Open a file called ’filename’, ready for writing/appending.
*/

public LogFile(String filename, boolean append)
{

openFile(filename, append);
}

/* 30

* Open a file called ’filname’, ready for writing/appending.
* If the append flag is false the file is truncated when opened,
* if it is true, writing will start at the end of the file.
*/

private void openFile(String filename, boolean append)
{

try

{
this.filename = filename;
file = new BufferedWriter(new FileWriter(filename, append)); 40

}
catch(IOException ioe)
{

System.err.println("Error: Unable to open file \"" + filename + "\"");
}

}

/*
* Flush the write buffer and close the file. 50

*/
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public void saveAndClose()
{

try

{
file.close();

}
catch(IOException ioe)
{

System.err.println("Error: Unable to close file \"" + filename + "\""); 60

}
}

/*
* Write ’str’ to the open file.
*/

public void write(String str)
{

try 70

{
file.write(str);

}
catch(IOException ioe)
{

System.err.println("Error: Unable to write to file \"" + filename + "\"");
}

}
}

.14 The Simulated Annealing (SA.java)

import java.util.*;
import java.lang.*;

public class SA
{

//private LogFile progress;
private DataObject data;
private Random rand;
private String statfilename;

10

static public double avgBest = 0;
static public int staIter = 0;

/*
*/

public SA()
{

rand = new Random();
}
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20

public void start(double maxRT){
System.out.println("started");
LogFile SAlog = new LogFile("sa_progress.log");
System.out.println("Starting program" + (int)(2.6));
//long runtime = parameterTuning();
double[ ][ ] ulLimits= {

{ 0.15, 0.25}, // 1 alpha
{ 15.0, 30.0}, // 2 mu
{ 15.0, 55.0}, // 3 lambda R 30

{ 15.0, 55.0}, // 4 lambda M
{ 0.1, 0.3}, // 5 sigmaMax
{ 0.09, 0.09}, // 6 stepSize
{ 0.01, 0.02}, // 7 epsilon
{ 0.03, 0.09}, // 8 Step size increase in percent
{ 0.8, 0.9}, // 9 Step size decrease in percent
{ 0.4, 0.7}, // 10 epsilon decrease in percent
{ 0.1, 0.1}, // 11 Minimum relative difference of a converged population
{ 5.0, 9.0}}; // 12 Interval between intensify/diversify

40

// Temperature
double temp = 100.0;
// Step size d
double d = 0.1;
// Treshold
double tresHold = 0.5;
// percentage update of temperature
double alpha=0.9;
// percentage update of stepsize
double beta=0.99; 50

// Number of allowed iteration without improvement
int nR = 10;
// initial solution
double[ ] solution = new double[ulLimits.length];
for(int i=0; i < ulLimits.length; i++){

solution[i] = ulLimits[i][0] + Math.random()*(ulLimits[i][1]−ulLimits[i][0]);
}
double[ ] currentObj = getObj(maxRT, solution[0], (int)solution[1], (int)solution[2], (int)solution[3],

solution[4], solution[5], solution[6], solution[7], solution[8], solution[9], solution[10], (int)solution[11]);
// Candidate solution 60

double[ ] candidate = new double[ulLimits.length];
// candidate objective
double[ ] candObj = currentObj;
// Best solution
double[ ] bestSol = solution;
// Vector of last nR best objectives
Vector<double[ ]> bestSolObj = new Vector<double[ ]>();
bestSolObj.addElement((currentObj));
while(temp > tresHold){

System.out.println("her " + bestSolObj.size()); 70

while((double)bestSolObj.firstElement()[0] > (double)bestSolObj.lastElement()[0] | | bestSolObj.size() < 10){
System.out.println("ups");
SAlog.write((double)bestSolObj.lastElement()[0] + " " + (double)bestSolObj.lastElement()[1]

+ " " + currentObj[0] + " " + bestSol[0] + " " + (int)bestSol[1] + " " + (int)bestSol[2] + " "
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+ (int)bestSol[3] + " " + bestSol[4] + " " + bestSol[5] + " " + bestSol[6] + " " + bestSol[7] + " "

+ bestSol[8] + " " + bestSol[9] + " " + bestSol[10] + " " + (int)bestSol[11] + "\n" );
// Make new candidate
for(int i=0; i<ulLimits.length;i++){

candidate[i] = solution[i] + d*(Math.random()−0.5)*(ulLimits[i][1]−ulLimits[i][0]);
// make sure candidate is within allowed range 80

if(candidate[i] > ulLimits[i][1]){
candidate[i] = ulLimits[i][1];

}
if(candidate[i] < ulLimits[i][0]){

candidate[i] = ulLimits[i][0];
}

}
candObj = getObj(maxRT, candidate[0], (int)candidate[1], (int)candidate[2], (int)candidate[3],

candidate[4], candidate[5], candidate[6], candidate[7], candidate[8], candidate[9], candidate[10], (int)candidate[11]); 90

// Check if candidate is better than current BEST
if(candObj[0] < (Double)bestSolObj.lastElement()[0]){

bestSolObj.addElement((candObj));
bestSol=candidate;

}
else{

// Otherwise best sol (and) obj remains the same
bestSolObj.addElement(bestSolObj.lastElement());

}
if(candObj[0] < currentObj[0]){ 100

currentObj = candObj;
solution = candidate;

}
else{

if(Math.random() < 0.1*Math.exp((currentObj[0]−candObj[0])/temp)){
currentObj = candObj;
solution = candidate;

}
}
while(bestSolObj.size() > 10){ 110

bestSolObj.removeElementAt(0);
}

}
currentObj = bestSolObj.lastElement();
solution = bestSol;
temp = temp*alpha;
d = d*beta;
bestSolObj = new Vector<double[ ]>();
bestSolObj.addElement((currentObj));

} 120

SAlog.saveAndClose();
System.out.println(currentObj);

}

private double[ ] getObj(double maxRunTime, double alpha, int my, int lambdaR, int lambdaM,
double sigmaMax, double stepSize, double epsilon, double stepSizeInc, double stepSizeDec,
double epsilonDec, double minDiverse, int intervalDivInt){

double optVal = −3.335352;
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int runs = 5; 130

double deviation;
String testname;
String logname = "Hartmann3_4";
String [ ] probfiles = new String[10];
double[ ] stat = new double[runs];
double bestRun = 100;
double runSucces = 0;

for (int y = 1; y<= 10; y++) {
testname = logname+y+".txt"; 140

probfiles[y−1] = testname;
}

// for(int i = 0; i < probfiles.length; i++){
testname = "statfile_hartmann" + ".log";
MA meme = new MA(testname, "hartmann64.txt");
meme.avgBest = 0;
for(int r=0; r < runs; r++) {

testname = probfiles[1] + "_progress_" + r + ".log";
//stat[r] = meme.start(new Date(), testname,1,0.18,1500,30,25,25,0.2,0.09,0.01,0.03,0.985,0.5, 0.05, 8); 150

stat[r] = meme.start(new Date(), testname, 1, maxRunTime, alpha, my, lambdaR,
lambdaM, sigmaMax, stepSize, epsilon, stepSizeInc, stepSizeDec, epsilonDec, minDiverse, intervalDivInt);

}
runSucces=0;
deviation = 0;
for(int r=0; r < runs; r++) {

deviation += Math.pow(stat[r]−meme.avgBest/(double)runs,2);
if (stat[r] < bestRun) {

bestRun = stat[r];
} 160

if(Math.abs(optVal − stat[r]) < 0.0001*Math.abs(optVal) + 0.000001){
runSucces++;

}
}
deviation = Math.sqrt(deviation/runs);
LogFile statlog2 = new LogFile(logname+".log", true);
statlog2.write(bestRun + " " + meme.avgBest/runs + " " +

deviation + " " + meme.staIter/runs + "\n");
statlog2.saveAndClose();
// Futher statistical work is done in Excel 170

// meme.avgBest = 0;
meme.staIter = 0;
//bestRun = 0;
//return bestRun
double[ ] retVal = new double[2];
retVal[0] = meme.avgBest/runs;
retVal[1] = runSucces/runs;
return retVal;

} 180

}
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diversification 0 -3.681262028487361 -3.681262028487361 -1.7693714445311552

diversification 1 -3.681262028487361 -3.638973210671149 -2.5147728504834497

diversification 2 -3.796259787322114 -3.796259787322114 -2.8838142332329126

diversification 3 -3.796259787322114 -3.7902787722085796 -3.4135538747983865

diversification 4 -3.8040448460099507 -3.8040448460099507 -3.5395915118995354

diversification 5 -3.832261160787402 -3.832261160787402 -3.7141782990881627

diversification 6 -3.8328090841937184 -3.8328090841937184 -3.8071914541760634

intensification 7 -3.8443415261397744 -3.8443415261397744 -3.814033961087362

intensification 8 -3.8443415261397744 -3.8443415261397744 -3.8345540873888613

diversification 9 -3.8471125006811606 -3.8471125006811606 -3.838976171364568

diversification 10 -3.8472130431959046 -3.8472130431959046 -3.832363544040683

diversification 11 -3.847215678227104 -3.847215678227104 -3.8333466715092763

diversification 12 -3.847215678227104 -3.846672733308896 -3.829188554083683

diversification 13 -3.8477911709298596 -3.8477911709298596 -3.8339432527064328

diversification 14 -3.8482309415219462 -3.8482309415219462 -3.823665263519541

diversification 15 -3.853259195954801 -3.853259195954801 -3.823647442097851

diversification 16 -3.853259195954801 -3.8481795062222566 -3.82137686530419

diversification 17 -3.853259195954801 -3.8495740556911495 -3.8009416931129554

intensification 18 -3.853259195954801 -3.8494593539261466 -3.8102567660558497

intensification 19 -3.853259195954801 -3.8494655213033795 -3.831739690394253

intensification 20 -3.853259195954801 -3.8494655213033795 -3.8373803794131005

intensification 21 -3.853259195954801 -3.8494655213033795 -3.8395206649444957

intensification 22 -3.853259195954801 -3.8494655213033795 -3.8410926302269117

intensification 23 -3.853259195954801 -3.8494655213033795 -3.843922672841333

intensification 24 -3.853259195954801 -3.8508404439727433 -3.8457725530789464

intensification 25 -3.853259195954801 -3.8508404439727433 -3.8479499635418857

intensification 26 -3.853259195954801 -3.851159715414616 -3.849260963117441

diversification 27 -3.853259195954801 -3.851683082342535 -3.8496937505522277

diversification 28 -3.853259195954801 -3.850934761761458 -3.84931352100595

diversification 29 -3.853259195954801 -3.8528694019354695 -3.8436506815214315

diversification 30 -3.853259195954801 -3.8529479185629714 -3.8431700433671763

diversification 31 -3.853259195954801 -3.852078706672963 -3.838374064205776

diversification 32 -3.853259195954801 -3.8524239197036434 -3.8375940222816913

diversification 33 -3.853259195954801 -3.8516091032842543 -3.838854819678817

diversification 34 -3.853259195954801 -3.851995751907993 -3.8298101071552666

diversification 35 -3.853259195954801 -3.8523856752612455 -3.8301439932876686

intensification 36 -3.8549799554971873 -3.8549799554971873 -3.8084354198808024

intensification 37 -3.8564962598147585 -3.8564962598147585 -3.847692624745898

intensification 38 -3.8564962598147585 -3.8564962598147585 -3.8499566272388566

intensification 39 -3.8564962598147585 -3.8564962598147585 -3.8510780035169994

intensification 40 -3.8564962598147585 -3.8564962598147585 -3.85199953942076

intensification 41 -3.8577250539214543 -3.8577250539214543 -3.8528313521811084

intensification 42 -3.8577253090299477 -3.8577253090299477 -3.8550243220770226

intensification 43 -3.859200986352953 -3.859200986352953 -3.856477512648243

intensification 44 -3.859200986352953 -3.859200986352953 -3.8571739659829656

diversification 45 -3.859200986352953 -3.859200986352953 -3.857725176259774

diversification 46 -3.859200986352953 -3.8589896775317474 -3.8574194540755005

diversification 47 -3.859200986352953 -3.859133882563256 -3.8524925712428155

diversification 48 -3.8594702310955804 -3.8594702310955804 -3.853071165178392

diversification 49 -3.8594702310955804 -3.858268359647633 -3.8524874112859875

diversification 50 -3.8605068953775885 -3.8605068953775885 -3.853037085720738

diversification 51 -3.8605068953775885 -3.8588491984567543 -3.844197641071765

diversification 52 -3.8605068953775885 -3.857759576399526 -3.842075210087038
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diversification 53 -3.861322498542325 -3.861322498542325 -3.8499594896623113

intensification 54 -3.861322498542325 -3.861187559638028 -3.8474875819415453

intensification 55 -3.861322498542325 -3.861187559638028 -3.856405820962126

intensification 56 -3.86186604086796 -3.86186604086796 -3.857660841981647

intensification 57 -3.8620552560388886 -3.8620552560388886 -3.8597359106375584

intensification 58 -3.8620552560388886 -3.8620552560388886 -3.860471965143944

intensification 59 -3.862530353041458 -3.862530353041458 -3.8610058366776965

intensification 60 -3.862530353041458 -3.862530353041458 -3.861601477595949

intensification 61 -3.862674469567937 -3.862674469567937 -3.8620130175660714

intensification 62 -3.862695339148372 -3.862695339148372 -3.862308714474091

Meta-mutation

diversification 63 -3.862695339148372 -3.862695339148372 -3.8156873673764458

diversification 64 -3.862699505950367 -3.862699505950367 -3.8346789555072087

diversification 65 -3.862699505950367 -3.853564476528409 -3.822162631378787

diversification 66 -3.862699505950367 -3.850850909878009 -3.8242222305782003

diversification 67 -3.862699505950367 -3.858748997594951 -3.83254333395067

diversification 68 -3.862699505950367 -3.856465195804008 -3.8385976331151204

diversification 69 -3.862699505950367 -3.8562771819912807 -3.834010050935867

diversification 70 -3.862699505950367 -3.856476488855182 -3.83269090787001

diversification 71 -3.862699505950367 -3.854789594187423 -3.825616986642957

intensification 72 -3.862699505950367 -3.8624012179891585 -3.8421009411647944

intensification 73 -3.862699505950367 -3.8624012179891585 -3.8522374331108793

intensification 74 -3.862699505950367 -3.862426829594594 -3.853901038801508

intensification 75 -3.862699505950367 -3.862426829594594 -3.855935222915714

intensification 76 -3.862699505950367 -3.862426829594594 -3.8579319268060313

intensification 77 -3.862699505950367 -3.862695507878561 -3.8588801833588864

intensification 78 -3.862699505950367 -3.862695507878561 -3.8618585295925767

intensification 79 -3.862699505950367 -3.8626955079982896 -3.8624012182202456

intensification 80 -3.862699505950367 -3.8626989162510297 -3.8624116349815667

diversification 81 -3.862699505950367 -3.8626989162510297 -3.862565034408558

diversification 82 -3.8627306636397982 -3.8627306636397982 -3.862422815751877

diversification 83 -3.8627649490556006 -3.8627649490556006 -3.8620364805954903

diversification 84 -3.8627649490556006 -3.86269190689199 -3.860129343551247

diversification 85 -3.8627649490556006 -3.8626985386797923 -3.8490639443535253

diversification 86 -3.8627649490556006 -3.8627183289377705 -3.855597512458891

diversification 87 -3.8627649490556006 -3.8627270784644567 -3.853286805919417

diversification 88 -3.8627649490556006 -3.8627053991826212 -3.853250967801506

diversification 89 -3.8627649490556006 -3.8625141304263804 -3.8573233321704357

intensification 90 -3.8627649490556006 -3.8626112016477707 -3.844817239845896

intensification 91 -3.8627649490556006 -3.862705511038773 -3.855562971521127

intensification 92 -3.8627649490556006 -3.862705511038773 -3.858313972477987

intensification 93 -3.8627649490556006 -3.862707090490137 -3.859911966951706

intensification 94 -3.8627649490556006 -3.862707090490137 -3.8613230917678703

intensification 95 -3.8627649490556006 -3.8627265112838076 -3.862524862543828

intensification 96 -3.8627649490556006 -3.862762650483876 -3.862589431711628

intensification 97 -3.8627649490556006 -3.862762650483876 -3.8626635741852753

intensification 98 -3.8627649490556006 -3.8627626545433356 -3.86268816800021

Meta-mutation

diversification 99 -3.8627649490556006 -3.8627626545433356 -3.778198386001907

diversification 100 -3.8627649490556006 -3.8587081850965403 -3.8250086628183455

diversification 101 -3.8627649490556006 -3.8594179285830275 -3.833247606266683

diversification 102 -3.8627649490556006 -3.8608353998088454 -3.8276344441123653

diversification 103 -3.8627649490556006 -3.86099680403775 -3.830461823949748

diversification 104 -3.8627649490556006 -3.860997619430284 -3.833906005414652

diversification 105 -3.8627649490556006 -3.8572116102441125 -3.829320815976491

diversification 106 -3.8627649490556006 -3.846874624862612 -3.821053115327693

diversification 107 -3.8627649490556006 -3.848549173981322 -3.8203379602341694

intensification 108 -3.8627649490556006 -3.8415362358698615 -3.824086479952527

intensification 109 -3.8627649490556006 -3.8483291986014305 -3.8367815445872537

intensification 110 -3.8627649490556006 -3.8483291986014305 -3.840057852694451

intensification 111 -3.8627649490556006 -3.8483291986199686 -3.841878742042075

intensification 112 -3.8627649490556006 -3.8487784484161622 -3.843751257435822

intensification 113 -3.8627649490556006 -3.849688390084099 -3.8456988599689748

intensification 114 -3.8627649490556006 -3.8513273157195096 -3.848180468918093

intensification 115 -3.8627649490556006 -3.8513273157198595 -3.8486197579622066

intensification 116 -3.8627649490556006 -3.852244424684365 -3.8489781527572786

diversification 117 -3.8627649490556006 -3.852244424684365 -3.849688390084099

diversification 118 -3.8627649490556006 -3.852486081956358 -3.8490925214206415

diversification 119 -3.8627649490556006 -3.8517082370428923 -3.846501249308255

diversification 120 -3.8627649490556006 -3.854601329338985 -3.8457877669619642

diversification 121 -3.8627649490556006 -3.8546030910385563 -3.842167417156847

diversification 122 -3.8627649490556006 -3.8542921720417036 -3.8454565576323008

diversification 123 -3.8627649490556006 -3.852346281157936 -3.8451439903186317

diversification 124 -3.8627649490556006 -3.853909826103859 -3.8424039721770695

diversification 125 -3.8627649490556006 -3.853911456421052 -3.8191829202674556

intensification 126 -3.8627649490556006 -3.850935846308492 -3.8285485592013577

intensification 127 -3.8627649490556006 -3.855209103399663 -3.847002082696562

intensification 128 -3.8627649490556006 -3.8555417223896202 -3.8481976348962914

intensification 129 -3.8627649490556006 -3.855541722389936 -3.850842204000201

intensification 130 -3.8627649490556006 -3.855542215231163 -3.8516245831125473

intensification 131 -3.8627649490556006 -3.855542215231163 -3.8529619300268747

intensification 132 -3.8627649490556006 -3.856146266776749 -3.85494860111595

intensification 133 -3.8627649490556006 -3.8562062543551843 -3.8554268218168493

intensification 134 -3.8627649490556006 -3.8566077249125925 -3.855625132098489

diversification 135 -3.8627649490556006 -3.8568500193009054 -3.855880538112715

diversification 136 -3.8627649490556006 -3.8568500193017385 -3.855625126820425

diversification 137 -3.8627649490556006 -3.8566411822306517 -3.8536048917475982



XLI

diversification 138 -3.8627649490556006 -3.8575175178758117 -3.851650155960237

diversification 139 -3.8627649490556006 -3.856804561809514 -3.8373137176304732

diversification 140 -3.8627649490556006 -3.8579422103970473 -3.8352113089112567

diversification 141 -3.8627649490556006 -3.8583640181176944 -3.850712143387714

diversification 142 -3.8627649490556006 -3.8559517187419754 -3.8428522391158584

diversification 143 -3.8627649490556006 -3.8574392461409444 -3.831472499453096

intensification 144 -3.8627649490556006 -3.8590835480182326 -3.8329565855143315

intensification 145 -3.8627649490556006 -3.8590914820876416 -3.8511372654838887

intensification 146 -3.8627649490556006 -3.8590914820876416 -3.855073158807381

intensification 147 -3.8627649490556006 -3.860398928835998 -3.856621164047267

intensification 148 -3.8627649490556006 -3.8603991783287626 -3.8586019281033024

intensification 149 -3.8627649490556006 -3.861635547550804 -3.8590836575732235

intensification 150 -3.8627649490556006 -3.861635547550804 -3.8591197726983397

intensification 151 -3.8627649490556006 -3.8616355475508133 -3.860399270122861

intensification 152 -3.8627649490556006 -3.861674679782309 -3.860424753490347

diversification 153 -3.8627649490556006 -3.861830292081393 -3.8610824372664982

diversification 154 -3.8627649490556006 -3.8616747209646514 -3.860426920569499

diversification 155 -3.8627649490556006 -3.8615449384842644 -3.8565144800969104

diversification 156 -3.8627649490556006 -3.8616974314197456 -3.8565580131180193

diversification 157 -3.8627649490556006 -3.861251309652175 -3.8503171236947757

diversification 158 -3.8627649490556006 -3.860484182381296 -3.8471768360577023

diversification 159 -3.8627649490556006 -3.8615758518264034 -3.830543254651835

diversification 160 -3.8627649490556006 -3.8606321027802717 -3.8486832323039195

diversification 161 -3.8627649490556006 -3.8616502646948256 -3.8501664022917526

intensification 162 -3.8627649490556006 -3.8616865085577277 -3.8511343123081216

intensification 163 -3.8627649490556006 -3.8616865247584062 -3.858961055187735

intensification 164 -3.8627649490556006 -3.861918274599446 -3.859950929451119

intensification 165 -3.8627649490556006 -3.861918274599446 -3.860463247857864

intensification 166 -3.8627649490556006 -3.8619182769435025 -3.860808533948493

intensification 167 -3.8627649490556006 -3.8626404273881105 -3.861428983354762

intensification 168 -3.8627649490556006 -3.8626404273881105 -3.8617241731610035

intensification 169 -3.8627649490556006 -3.8626404273881105 -3.8617743291686057

intensification 170 -3.8627649490556006 -3.8626404273881105 -3.861918274599446

diversification 171 -3.8627649490556006 -3.8626404273881105 -3.861998500873717

diversification 172 -3.8627649490556006 -3.862663322351086 -3.8619381779682582

diversification 173 -3.8627649490556006 -3.8626298130471364 -3.857425227171921

diversification 174 -3.8627649490556006 -3.8624286729889468 -3.853534148295095

diversification 175 -3.8627649490556006 -3.8627609621207415 -3.85446639080233

diversification 176 -3.8627649490556006 -3.862243620615494 -3.853918364537944

diversification 177 -3.8627649490556006 -3.860669797834591 -3.8399853817443557

diversification 178 -3.8627649490556006 -3.861943207929431 -3.8383235056799734

diversification 179 -3.8627649490556006 -3.8619432079294316 -3.833477584005102

intensification 180 -3.8627649490556006 -3.8586189985994195 -3.8326652553177585

intensification 181 -3.8627649490556006 -3.8622076698516534 -3.850294033203766

intensification 182 -3.8627649490556006 -3.86220767079147 -3.8550171491188285

intensification 183 -3.8627649490556006 -3.86220767079147 -3.8586189985994195

intensification 184 -3.8627649490556006 -3.862246542365326 -3.860333560483872

intensification 185 -3.8627649490556006 -3.862715676608429 -3.861429838757764

intensification 186 -3.8627649490556006 -3.862715676608429 -3.861728916551624

intensification 187 -3.8627649490556006 -3.862715676608429 -3.8619518882383184

intensification 188 -3.8627649490556006 -3.862715676608429 -3.8622076698516534

diversification 189 -3.8627649490556006 -3.862715676608429 -3.8622076707914705

diversification 190 -3.8627649490556006 -3.862722176367945 -3.86220767061313

diversification 191 -3.8627649490556006 -3.8627221765315194 -3.8604150398021635

diversification 192 -3.8627649490556006 -3.862720118275616 -3.85988303604147

diversification 193 -3.8627649490556006 -3.8626540332472254 -3.857489934123318

diversification 194 -3.8627649490556006 -3.8625106985216067 -3.846686143030864

diversification 195 -3.8627649490556006 -3.86261221720728 -3.8505288736692695

diversification 196 -3.8627649490556006 -3.8626457354268373 -3.8539691071842768

diversification 197 -3.8627649490556006 -3.8623214619683894 -3.85150449302364

intensification 198 -3.8627649490556006 -3.8621464911217873 -3.8482858778066134

intensification 199 -3.8627649490556006 -3.8621464911217873 -3.8547043677906614

intensification 200 -3.8627649490556006 -3.8621464911217873 -3.8598891181745323

intensification 201 -3.8627649490556006 -3.8621464911217873 -3.861130382405082

intensification 202 -3.8627649490556006 -3.862146491293218 -3.8615427982229362

intensification 203 -3.8627649490556006 -3.8623998657728085 -3.861632849519676

intensification 204 -3.8627649490556006 -3.8623998657728085 -3.8617583660938273

intensification 205 -3.8627649490556006 -3.8625662414232305 -3.8621790826815423

intensification 206 -3.8627649490556006 -3.8625662414232305 -3.862263183479744

diversification 207 -3.8627649490556006 -3.8625662414232305 -3.862320993508626

diversification 208 -3.8627649490556006 -3.8624656445063525 -3.8622515566405533

diversification 209 -3.8627649490556006 -3.8623873705166196 -3.8613616122918044

diversification 210 -3.8627649490556006 -3.862534663122469 -3.8606019361153354

diversification 211 -3.8627649490556006 -3.862534663122469 -3.8453257382492994

diversification 212 -3.8627649490556006 -3.862631448360035 -3.8537467349496324

diversification 213 -3.8627649490556006 -3.862243944320033 -3.852170230333846

diversification 214 -3.8627649490556006 -3.862321295803061 -3.8531709017979274

diversification 215 -3.8627649490556006 -3.862554068118302 -3.853125014215401

intensification 216 -3.8627649490556006 -3.862666886038779 -3.8567842203480387

intensification 217 -3.8627649490556006 -3.862683259436941 -3.8600239267868313

intensification 218 -3.8627649490556006 -3.862683259451617 -3.862065005713279

intensification 219 -3.8627649490556006 -3.862683259451617 -3.862357791386031

intensification 220 -3.8627649490556006 -3.862683259451617 -3.862455073769196

intensification 221 -3.8627649490556006 -3.862683259451617 -3.862536521658029

intensification 222 -3.8627649490556006 -3.8627127658335327 -3.862610486726722

intensification 223 -3.8627649490556006 -3.8627319837339384 -3.862648061082176

intensification 224 -3.8627649490556006 -3.8627409253781106 -3.8626668860799613



XLII Example of Progress Logfile

diversification 225 -3.8627649490556006 -3.8627409253781106 -3.8626813877068913

diversification 226 -3.8627649490556006 -3.8627298392606106 -3.862666886050242

diversification 227 -3.8627649490556006 -3.86272788874159 -3.861131469008799

diversification 228 -3.8627649490556006 -3.86272788874159 -3.85101538213551

diversification 229 -3.8627649490556006 -3.862506877407904 -3.853683904202377

diversification 230 -3.8627649490556006 -3.8627451636096013 -3.8404831152425265

diversification 231 -3.8627649490556006 -3.8627067288476327 -3.849439921721639

diversification 232 -3.8627649490556006 -3.862101829035096 -3.8519008922446805

diversification 233 -3.8627649490556006 -3.8627056367338652 -3.842309559877364

intensification 234 -3.8627649490556006 -3.862723971535523 -3.834718397390105

intensification 235 -3.8627649490556006 -3.862723971535523 -3.853802934507303

intensification 236 -3.8627649490556006 -3.8627239715446273 -3.86115982669605

intensification 237 -3.8627649490556006 -3.8627364636633033 -3.8621588217480065

intensification 238 -3.8627649490556006 -3.8627364636633033 -3.862464101582196

intensification 239 -3.862767025331113 -3.862767025331113 -3.8625818202936495

intensification 240 -3.8627732654328635 -3.8627732654328635 -3.8627081298458448

Meta-mutation

intensification 241 -3.8627732654328635 -3.8627732654328635 -3.781032626195846

intensification 242 -3.8627732654328635 -3.8627732654328635 -3.8435474790143545

diversification 243 -3.8627732654328635 -3.8627732654328635 -3.852544554479699

diversification 244 -3.8627732654328635 -3.861292324461449 -3.8545819416063236

diversification 245 -3.8627732654328635 -3.8610476955682365 -3.8470532722737865

diversification 246 -3.8627732654328635 -3.860047051803857 -3.8453796293951457

diversification 247 -3.8627732654328635 -3.8615371312755866 -3.8485061165011034

diversification 248 -3.8627732654328635 -3.8609799841887247 -3.85132557342046

diversification 249 -3.8627732654328635 -3.8610086472727314 -3.8524731984293106

diversification 250 -3.8627732654328635 -3.860974646078504 -3.841167046289962

diversification 251 -3.8627732654328635 -3.860315543692912 -3.84324612641738

intensification 252 -3.8627732654328635 -3.861642598722168 -3.842822987316158

intensification 253 -3.8627732654328635 -3.8616425987347784 -3.854303201447289

intensification 254 -3.8627732654328635 -3.8616425987347784 -3.858043278461197

intensification 255 -3.8627732654328635 -3.8626520805320963 -3.859546763488804

intensification 256 -3.8627732654328635 -3.8626520805320963 -3.8599393569414358

intensification 257 -3.8627732654328635 -3.8626520805320963 -3.86144741329037

intensification 258 -3.8627732654328635 -3.862652080532668 -3.861653684193627

intensification 259 -3.8627732654328635 -3.8626746480257332 -3.8618906288595625

intensification 260 -3.8627732654328635 -3.862705924228458 -3.861948985925701

diversification 261 -3.8627732654328635 -3.862705924228458 -3.862360138594953

diversification 262 -3.8627732654328635 -3.862660818389763 -3.8618531735539054

diversification 263 -3.8627732654328635 -3.8626897134070504 -3.8618224431344776

diversification 264 -3.8627732654328635 -3.862658453980605 -3.860389941515278

diversification 265 -3.8627732654328635 -3.862540737735843 -3.856482918288128

diversification 266 -3.8627732654328635 -3.862525471737062 -3.8564681274884673

diversification 267 -3.8627732654328635 -3.86262385340038 -3.8522804326924587

diversification 268 -3.8627732654328635 -3.8625136785207226 -3.848416069014406

diversification 269 -3.8627732654328635 -3.862599277003464 -3.8449773149786255

intensification 270 -3.8627732654328635 -3.862646444750642 -3.8438508592451255

intensification 271 -3.8627732654328635 -3.862646444750642 -3.8592492347619736

intensification 272 -3.8627732654328635 -3.862646444750642 -3.8616939944407767

intensification 273 -3.8627732654328635 -3.862646444750642 -3.861929561068909

intensification 274 -3.8627732654328635 -3.862646444750642 -3.862106255207964

intensification 275 -3.8627732654328635 -3.862646444750642 -3.8624496265284005

intensification 276 -3.8627732654328635 -3.8626791348894542 -3.8625588258979935

intensification 277 -3.8627732654328635 -3.862701375959105 -3.862620352677812

intensification 278 -3.8627732654328635 -3.862701375959105 -3.8626417332704204

diversification 279 -3.8627732654328635 -3.8627561145607827 -3.8626772702300034

Meta-mutation

diversification 280 -3.8627732654328635 -3.8578412257551564 -3.6700092289588566

diversification 281 -3.8627732654328635 -3.8608671587632526 -3.843972880461969

diversification 282 -3.8627732654328635 -3.8593035806757525 -3.8468352874717224

diversification 283 -3.8627732654328635 -3.860283532686663 -3.845096168334763

diversification 284 -3.8627732654328635 -3.8616363396579096 -3.8426600064073084

diversification 285 -3.8627732654328635 -3.860241800357167 -3.840775354043296

diversification 286 -3.8627732654328635 -3.858318772892204 -3.8420792223563414

diversification 287 -3.8627732654328635 -3.860522250460611 -3.8460814280576354

intensification 288 -3.8627732654328635 -3.8597017870311268 -3.848990206602185

intensification 289 -3.8627732654328635 -3.8597017870311268 -3.8529383924185914

intensification 290 -3.8627732654328635 -3.8597017870311268 -3.8555522348311544

intensification 291 -3.8627732654328635 -3.8597017870311268 -3.8572184436267962

intensification 292 -3.8627732654328635 -3.862059574504023 -3.858033267169283

intensification 293 -3.8627732654328635 -3.8625654719472964 -3.8593670030602567

intensification 294 -3.8627732654328635 -3.8625654719472964 -3.8597017870311268

intensification 295 -3.8627732654328635 -3.8625654719472964 -3.8602256030710342

intensification 296 -3.8627732654328635 -3.862565471947609 -3.86135812195858

diversification 297 -3.8627732654328635 -3.862573230740878 -3.862059574504023

diversification 298 -3.8627732654328635 -3.862715977634627 -3.862021412555435

diversification 299 -3.8627732654328635 -3.862715724665037 -3.8611163638903716

diversification 300 -3.8627732654328635 -3.8625427921905673 -3.8523506731424626

diversification 301 -3.8627732654328635 -3.8626645569142024 -3.8508527426353605

diversification 302 -3.8627732654328635 -3.8627333158847366 -3.8403249210301458

diversification 303 -3.8627732654328635 -3.8627386677185838 -3.839117872855096

diversification 304 -3.8627732654328635 -3.8626253071225563 -3.8401658162699084

diversification 305 -3.8627732654328635 -3.862503122609448 -3.847934311597886

intensification 306 -3.8627732654328635 -3.8616436750848258 -3.83619321133194

intensification 307 -3.8627732654328635 -3.8617048741623723 -3.8501258083719585

intensification 308 -3.8627732654328635 -3.86205942822681 -3.8602931729375936

intensification 309 -3.8627732654328635 -3.8625995594213296 -3.861116393259123



XLIII

intensification 310 -3.8627732654328635 -3.8626222295602597 -3.8616436750848258

intensification 311 -3.8627732654328635 -3.8626222295602597 -3.8620238562429368

intensification 312 -3.8627732654328635 -3.862630697368122 -3.8621947975472617

intensification 313 -3.8627732654328635 -3.862630697368122 -3.862401002231243

intensification 314 -3.8627732654328635 -3.8627230693985726 -3.862536760197365

diversification 315 -3.8627732654328635 -3.8627230693985726 -3.8625784030809562

diversification 316 -3.8627732654328635 -3.862761377877809 -3.8625181174216814

diversification 317 -3.8627732654328635 -3.862761377877822 -3.8529366103324967

diversification 318 -3.8627732654328635 -3.862761377877822 -3.860484246612233

diversification 319 -3.8627732654328635 -3.862752312325328 -3.8527920736893244

diversification 320 -3.8627732654328635 -3.8623893944404037 -3.8446246922856107

diversification 321 -3.8627732654328635 -3.8624738144027995 -3.852827292733535

diversification 322 -3.8627732654328635 -3.862263818991372 -3.8507317877744

diversification 323 -3.8627732654328635 -3.8619332247244698 -3.8502300485125014

intensification 324 -3.8627732654328635 -3.8625753048304468 -3.854165690786324

intensification 325 -3.8627732654328635 -3.8625753048304468 -3.8596136565073693

intensification 326 -3.8627732654328635 -3.8625753048304468 -3.861200978822319

intensification 327 -3.8627732654328635 -3.8626013126527985 -3.862056852927066

intensification 328 -3.8627732654328635 -3.862653873529507 -3.862200000286176

intensification 329 -3.8627732654328635 -3.8626957756991835 -3.8623956858615145

intensification 330 -3.8627732654328635 -3.8626957756991835 -3.8624820461658915

intensification 331 -3.8627732654328635 -3.8626957756991835 -3.8625033487911926

intensification 332 -3.8627732654328635 -3.86272789441194 -3.8626013126527985

diversification 333 -3.8627732654328635 -3.86272789441194 -3.862634606707353

diversification 334 -3.8627732654328635 -3.86272789441195 -3.862596224179577

diversification 335 -3.8627732654328635 -3.862661295349831 -3.859132585106321

diversification 336 -3.8627732654328635 -3.862731423926936 -3.8588202835540004

diversification 337 -3.8627732654328635 -3.862607979219858 -3.8549040280570788

diversification 338 -3.8627732654328635 -3.862616689152808 -3.8602259343371186

diversification 339 -3.8627732654328635 -3.862621825144499 -3.8603121188458664

diversification 340 -3.8627732654328635 -3.8625683006235643 -3.8574058009603913

diversification 341 -3.8627732654328635 -3.862735416681378 -3.8540681362239972

intensification 342 -3.8627732654328635 -3.86255288880323 -3.848431587356031

intensification 343 -3.8627732654328635 -3.86255288880323 -3.8575396511396405

intensification 344 -3.8627732654328635 -3.86255288880323 -3.861867604012487

intensification 345 -3.8627732654328635 -3.86255288880323 -3.862146748214489

intensification 346 -3.8627732654328635 -3.8626018561113544 -3.8623067256787933

intensification 347 -3.8627732654328635 -3.8626536466090644 -3.8624210140369235

intensification 348 -3.8627732654328635 -3.8627299614058392 -3.8624973786215047

intensification 349 -3.8627732654328635 -3.8627299614058392 -3.862533720163433

intensification 350 -3.8627732654328635 -3.8627378491781483 -3.86257696966569

diversification 351 -3.8627732654328635 -3.8627378491781483 -3.862615545524732

diversification 352 -3.8627732654328635 -3.8627299614058392 -3.8625550696074553

diversification 353 -3.8627732654328635 -3.8627140587914184 -3.8553547833814514

diversification 354 -3.8627732654328635 -3.862649777990826 -3.8404438089034105

diversification 355 -3.8627732654328635 -3.862508375538929 -3.8433213370279677

diversification 356 -3.8627732654328635 -3.8622415003606174 -3.848946524312233

diversification 357 -3.8627732654328635 -3.8612934382377406 -3.832443997544317

diversification 358 -3.8627732654328635 -3.860762488112802 -3.8263862999414258

diversification 359 -3.8627732654328635 -3.861561238994229 -3.835563934386332

intensification 360 -3.8627732654328635 -3.860518250813348 -3.841986692584116

intensification 361 -3.8627732654328635 -3.860518250813361 -3.8546922978398457

intensification 362 -3.8627732654328635 -3.861136710544767 -3.8577587263932562

intensification 363 -3.8627732654328635 -3.861136710544767 -3.8595251353907303

intensification 364 -3.8627732654328635 -3.861986069013537 -3.860518250813348

intensification 365 -3.8627732654328635 -3.861986069013537 -3.860769661910121

intensification 366 -3.8627732654328635 -3.862323515540633 -3.8612678910388776

intensification 367 -3.8627732654328635 -3.862387333130604 -3.861972204801399

intensification 368 -3.8627732654328635 -3.8627152574495067 -3.8620944320154726

diversification 369 -3.8627732654328635 -3.8627152574495067 -3.862268423294374

diversification 370 -3.8627732654328635 -3.8625677610089237 -3.862087215257533

diversification 371 -3.8627732654328635 -3.862561936902693 -3.8492167502835817

diversification 372 -3.8627732654328635 -3.8626664453172266 -3.855613475988918

diversification 373 -3.8627732654328635 -3.862683501703142 -3.8530954619124835

diversification 374 -3.8627732654328635 -3.8624072617557097 -3.8469902554400215

diversification 375 -3.8627732654328635 -3.8624072617557097 -3.8469233314142777

diversification 376 -3.8627732654328635 -3.862411746572832 -3.8494681319521784

diversification 377 -3.8627732654328635 -3.8625852364545454 -3.849344486089001

intensification 378 -3.8627732654328635 -3.862553672313437 -3.856033829292233

intensification 379 -3.862775711978461 -3.862775711978461 -3.860705254669844

intensification 380 -3.862775711978461 -3.862775711978461 -3.8616845499887194

intensification 381 -3.862775711978461 -3.862775711978461 -3.862223559624892

intensification 382 -3.862775711978461 -3.862775711978461 -3.86253304604472

intensification 383 -3.862775711978461 -3.862775711978461 -3.862543097056002

intensification 384 -3.862775711978461 -3.862775711978461 -3.862606573780833

intensification 385 -3.862775711978461 -3.862775711978461 -3.8626577943501537

intensification 386 -3.862775711978461 -3.862775711978461 -3.862694039889467

diversification 387 -3.8627773705217203 -3.8627773705217203 -3.862726531270345

Meta-mutation

diversification 388 -3.8627773705217203 -3.8072647970002285 -3.574636166130348

diversification 389 -3.8627773705217203 -3.8598156709909333 -3.7871240362150456

diversification 390 -3.8627773705217203 -3.857808352202146 -3.8199529944078536

diversification 391 -3.8627773705217203 -3.857151118554522 -3.830042954937978

diversification 392 -3.8627773705217203 -3.8583205736826547 -3.833366053596279

diversification 393 -3.8627773705217203 -3.857910416715074 -3.8427620304905914

diversification 394 -3.8627773705217203 -3.8579631491495103 -3.8403958263439266

diversification 395 -3.8627773705217203 -3.859913301290792 -3.826909145324955



XLIV Example of Progress Logfile

intensification 396 -3.8627773705217203 -3.8618427018952106 -3.8186012582982762

intensification 397 -3.8627773705217203 -3.8618427018952106 -3.846874214748304

-3.8627773705217203 4 3

-3.857045380162298 4 3

-3.8568992708262915 4 3

-3.856262958608811 4 3

inde her !

-3.8627773705217203 4

-3.857045380162298 4

-3.8568992708262915 4

-3.856262958608811 4

Counter = 0

accept reflected point

-3.8627773705217203 4

-3.861016155802022 4

-3.857045380162298 4

-3.8568992708262915 4

Counter = 1

accept reflected point

-3.8627773705217203 4

-3.8627010255198133 4

-3.861016155802022 4

-3.857045380162298 4

Counter = 2

Accept contracted point on the outside

-3.8627773705217203 4

-3.8627010255198133 4

-3.8614632703635894 4

-3.861016155802022 4

Counter = 3

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627010255198133 4

-3.8623378849082375 4

-3.8614632703635894 4

Counter = 4

Accept contracted point on the outside

-3.8627773705217203 4

-3.8627010255198133 4

-3.8625917210985934 4

-3.8623378849082375 4

Counter = 5

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627010255198133 4

-3.8626743855919083 4

-3.8625917210985934 4

Counter = 6

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627414162055755 4

-3.8627010255198133 4

-3.8626743855919083 4

Counter = 7

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627560128175333 4

-3.8627414162055755 4

-3.8627010255198133 4

Counter = 8

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627683079425417 4

-3.8627560128175333 4

-3.8627414162055755 4

Counter = 9

Accept contracted point on the inside

-3.8627773705217203 4

-3.862769251738787 4

-3.8627683079425417 4

-3.8627560128175333 4

Counter = 10

Accept contracted point on the outside

-3.8627773705217203 4

-3.8627725256466596 4

-3.862769251738787 4

-3.8627683079425417 4

Counter = 11

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627757909887483 4

-3.8627725256466596 4

-3.862769251738787 4

Counter = 12

Accept contracted point on the inside

-3.8627773705217203 4

-3.862776428683439 4



XLV

-3.8627757909887483 4

-3.8627725256466596 4

Counter = 13

Accept contracted point on the outside

-3.8627773705217203 4

-3.862776789518642 4

-3.862776428683439 4

-3.8627757909887483 4

Counter = 14

Accept contracted point on the inside

-3.8627773705217203 4

-3.862777235221715 4

-3.862776789518642 4

-3.862776428683439 4

Counter = 15

Accept contracted point on the inside

-3.8627773705217203 4

-3.862777235221715 4

-3.8627771905114896 4

-3.862776789518642 4

Counter = 16

Accept contracted point on the inside

-3.8627773705217203 4

-3.8627772799314104 4

-3.862777235221715 4

-3.8627771905114896 4

Counter = 17

Accept contracted point on the inside

-3.862777378484978 4

-3.8627773705217203 4

-3.8627772799314104 4

-3.862777235221715 4

Counter = 18

Accept contracted point on the inside

-3.862777382657238 4

-3.862777378484978 4

-3.8627773705217203 4

-3.8627772799314104 4

Counter = 19

Accept contracted point on the inside

-3.8627773870883626 4

-3.862777382657238 4

-3.862777378484978 4

-3.8627773705217203 4

Counter = 20

Accept contracted point on the inside

-3.8627774056427855 4

-3.8627773870883626 4

-3.862777382657238 4

-3.862777378484978 4

Counter = 21

Accept contracted point on the inside

-3.8627774056427855 4

-3.8627774053483765 4

-3.8627773870883626 4

-3.862777382657238 4

Counter = 22

Accept contracted point on the inside

-3.8627774056427855 4

-3.862777405572773 4

-3.8627774053483765 4

-3.8627773870883626 4

Counter = 23

Accept contracted point on the inside

-3.8627774056427855 4

-3.862777405572773 4

-3.8627774053483765 4

-3.862777405264587 4

Counter = 24

Accept contracted point on the inside

-3.8627774094013017 4

-3.8627774056427855 4

-3.862777405572773 4

-3.8627774053483765 4

Counter = 25

Accept contracted point on the inside

-3.8627774100204664 4

-3.8627774094013017 4

-3.8627774056427855 4

-3.862777405572773 4

Counter = 26

accept reflected point

-3.8627774100204664 4

-3.8627774094013017 4

-3.8627774067280525 4

-3.8627774056427855 4

Counter = 27



XLVI Example of Progress Logfile

Accept contracted point on the inside

-3.8627774100204664 4

-3.862777409783273 4

-3.8627774094013017 4

-3.8627774067280525 4

Counter = 28

Accept contracted point on the outside

-3.8627774100204664 4

-3.862777409783273 4

-3.8627774095253313 4

-3.8627774094013017 4

Counter = 29

accept reflected point

R-3.8627774100204664
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