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Abstract

This thesis describes the methods used to construct a pipeline for the automatic
and robust segmentation of adipose tissue in the abdominal region of human
men. The segmentation is done into 3 classes: subcutaneous adipose tissue,
visceral adipose tissue and other tissue.

The MRI data is preprocessed to remove the field of non-uniformity in intensity
levels that are present on MR images. A novel way of sampling the field is
introduced and the field is estimated using Thin Plate Splines.

The initial clustering of the data is done on the preprocessed data using Fuzzy
c-mean clustering. The results of the clustering are accurate partly due to a
successful preprocessing.

The segmentation of adipose tissue into the subcutaneous adipose tissue and
visceral adipose tissue classes is done using a combination of Active Shape Mod-
els and Dynamic Programming. This hybrid approach of combining the two
methods makes for a both robust and accurate segmentation.

No ground truth is available to verify the accuracy of the results against. The
results have however been found accurate by visual inspection of the results on
a large number of patients.
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Resumé

Denne rapport beskriver de metoder der er blevet brugt for a udvikle en pipeline,
der automatisk og robust kan segmentere fedtholdigt væv i maveregionen p̊a
mænd. Segmenteringen inddeler vævet i 3 klasser: subkutant fedtvæv, visceralt
fedtvæv og andet væv.

MRI dataen bliver preprocesseret for at fjerne det felt af ikke uniformitet i
intensiteter der er tilstede p̊a MR billeder. En ny metode til at sample dette
felt er introduceret og feltet bliver estimeret ved hjælp af thin plate splines.

Den første klassifisering af dataen bliver udført p̊a den preprocesserede data ved
at bruge Fuzzy c-mean clustering. Resultaterne af klassifiseringen er gode, til
dels p̊a grund af en succesrig preprocessering.

Segmenteringen af fedtholdigt væv ind i de 3 klasser, bliver gjort ved at anvende
en kombination af Active Shape Models og Dynamisk Programmering. Denne
hybride fremgangsmåde giver en b̊ade robust og nøjagtig segmentering.

Der er ingen reference resultater at sammenligne resultaterne fra den automa-
tiske metode med. Resultaterne er dog fundet nøjagtige ved visuel inspektion,
af de endelige resultater, p̊a en lang række patienter.
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Chapter 1

Introduction

This project has been done in collaboration with Kristian Wraae. Kristian
Wraae is a PhD student at ”Sygehus Fyn”. A short description of the back-
ground of the medical research project he is working on will first be given to
form a basis for understanding the motivation for this project. The projects
motivation in the context of the research project will then be described and
finally an overview of the thesis as a whole will be given.

1.1 Background

There is growing evidence that obesity is related to several metabolic dis-
turbances such as insulin resistance, impaired insulin secretion, non-insulin-
dependent diabetes mellitus (NIDDM), hypertension, dyslipidemia, cardiovas-
cular disease and in the case of the medical study, levels of free testosterone.

It is also becoming clearer that these disturbances are more closely correlated
with central (abdominal), rather than peripheral (gluteo-femoral) fat pattern. It
is therefore of clinical importance to be able to accurately measure abdominal fat
tissues and to be able to distinguish visceral adipose tissue from subcutaneous
adipose tissue.
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Different techniques are currently available including anthropometry (waist-hip
ratio, BMI), ultrasound, dual-energy-x-ray absorptiometry (DEXA), computer
tomography (CT) and magnetic resonance imaging (MRI).

These methods differ in terms of cost, reproducibility, safety and accuracy. The
anthropometric measures are easy and inexpensive to obtain but do not allow
direct quantification of visceral fat. Other techniques like CT will allow for this
distinction in an accurate and reproducible way but are not safe to use due to
the ionizing radiation used. MRI on the other hand does not have this problem
and will also allow a visualization of the adipose tissue.

The potential problems with MRI measures are linked to the technique by which
pictures are obtained. MRI does not have the advantage of CT in terms of direct
classification of tissues based on Hounsfield units and will therefore usually
require an experienced professional to visually mark and measure the different
tissues on each image making it a time consuming and expensive technique.

1.2 Motivation

The goal of this project is to develop a pipeline for automatic assessment of
Subcutaneous Adipose Tissue (SAT) and Visceral Adipose Tissue (VAT) using
MRI data. An accurate and robust method could potentially be an inexpensive
and fast way of assessing abdominal fat. The short term goal is to assist PhD
student Kristian Wraae at ”Sygehus Fyn” in assessing the distribution of adipose
tissue in 300 male patients.

1.3 Thesis overview

The thesis is structured into a number of chapters and appendices. The structure
is as follows.

• Chapter 2 gives a description of the MRI data used in the project. It
covers what parts of the data are used and gives a sample of the variation
of image structures that can be expected from patient to patient.

• Chapter 3 describes the method used to first sample and then remove
the bias field from the MRI data.

• Chapter 4 covers the initial classification of the preprocessed data.
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• Chapter 5 describes how the desired image structures of each patient are
found.

• Chapter 6 describes how an accurate outline of the image structures is
obtained.

• Chapter 7 covers the steps that are performed to get a final segmentation
from the image structure outlines.

• Chapter 8 gives a short evaluation of the final segmentation result.

• Chapter 9 is the conclusion.

• Appendix A contains an overview of the structure of the programs that
have been developed.

• Appendix B contains images of the data in the training set that are used
in Chapter 5

• Appendix C contains tables of the distribution of adipose tissue on a
large number of patients.

• Appendix D shows the end result of the segmentation on a large number
of patients.

At the end of each chapter the results of the described step will be evaluated
and the result of the step will be shown on a small number of patients.
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Chapter 2

The MRI data

The data set consists of MR image data from 300 patients. Only the T1 modality
is provided. Adipose tissue shows as high intensity on T1 weighted MR scans
and this modality is thus well suited for identifying regions of adipose tissue.
The resolution of each scan is 256 times 256. The images were delivered in
the DICOM format, which along with the MRI data contains a header with
information about the settings used in the image acquisition process.

2.1 The two Series

Two series of MR images have been recorded on each patient. The first series
consists of 15 MR scans beginning at the second lumbar vertebra. From the
second lumbar vertebra the scans are acquired at a thickness and spacing of 1
cm. That is, true volume data is available.

The second series consist of 5 scans of which only the middle scan is of interest in
the context of this project. The middle slice of this series is placed at the lower
limit of the fifth lumbar vertebra. For the remainder of the report each scan
will be denoted as a slice and a numbering will be given to each slice starting
at 1 for the slice at the second lumbar vertebra in the example of series 1.
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The individual pixels of each MR image will be denoted voxels since each pixel
of the image represent a 3-dimensional area in the patient. Note that in the
context of explaining methods that work on two dimensional data, not specific
to MR data, the term pixel will still be used to denote the smallest component
of an image.

The medical research project seeks to determine the volume and distribution of
adipose tissue in an anatomically bounded unit. The unit is bounded by the
second lumbar vertebra at the top and the fifth lumbar vertebra at the bottom.
Since this region has a different extend from human to human, a different number
of slices from series 1 will be needed to cover the anatomically bounded unit
for each patient. The number of slices to be used from each patient is decided
by adding slices from series 1 until the level of the middle slice from series 2
has been reached. The relative location of all slices are available in the DICOM
header. All slices outside the anatomically bounded unit are discarded. An
Illustration of the 2 series and the anatomically bounded unit can be seen on
Figure 2.1.

Figure 2.1: The principle of the anatomically bounded unit. Red lines represent
slices from series 2 and blue lines represent slices from series 1.

2.2 The segmentation tasks

The medical research project deals with two types of adipose tissue. The two
types are Subcutaneous Adipose Tissue denoted SAT and Visceral Adipose Tis-
sue denoted VAT. Figure 2.2 shows a slice of a patient that has been segmented
by hand by an expert. Note that the data is from another research project.
The segmentation is done into 5 main classes: subcutaneous, retroperitoneal,
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intraperitoneal, bone and muscle. The retroperitoneal and the intraperitoneal
areas are combined to form the region that will be denoted as VAT in this re-
port. The subcutaneous class corresponds to the area of the SAT. The task at
hand is to construct an automatic pipeline that can perform a classification of
all voxels in the anatomically bounded unit into the 3 classes: SAT, VAT and
other tissue.

Figure 2.2: A segmentation of a slice in the abdomen done by hand. Light
blue is the subcutaneous region, pink is the intraperitoneal region, yellow is the
retroperitoneal region, blue is bone and red is muscle tissue.

2.3 Image variation and quality

Figure 2.3 shows a sample of the variation and quality that can be expected
from the data. As can be seen the structure and quality of the images varies
greatly. The main challenge in creating an automatic pipeline for segmenting
the MRI data, is to create a solution that is robust across all possible variations
of the external and internal anatomy of the patients. To test the performance
of each step in the segmentation process a test set of 80 patients has been
collected. This set is chosen at random from the 300 patients in the data set.
After each segmentation step the performance on the patients in the test set
has been evaluated to ensure that all solutions are robust to the variation of the
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patients anatomy and the variation in image quality.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: An example of the variation in the data. The 6 images are slice 1
from patient: 5198, 5251, 5321, 5367, 5415 and 5480 from top to bottom left to
right.
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Chapter 3

Preprocessing

3.1 Bias field correction

A common problem when dealing with MR images, is the non uniformity in
the intensity of same tissue voxels across a slice. This field of biased intensity
values, denoted a bias field, usually varies slowly across an image and is caused
by poor radio frequency coil uniformity and patient anatomy both inside and
outside the field of view. The magnitude of this intensity variation is in the
10-20% range according to Sled and Zijdenbos [1].

The bias field has little impact on visual inspection and can even be hard to
notice with the human eye, but it is critical that same tissue voxels have similar
intensities across the image if intensity based classification techniques are to be
successful.

The fact that the bias field is attributed by the patients geometry and electrical
properties makes the field unique for each patient and thus impossible to predict.
Hence, a way of estimating the bias field is needed in order to be able to remove
it.

The MRI data used in this project have another source of non uniformity in
same tissue voxel intensities. This source appears as large peaks in the intensity
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of adipose tissue. These peaks are generally fast varying and appear most often
as a large wide peak at the bottom of the image or as smaller steeper peaks to
the left or right in the image. The peaks always appear over voxels with already
high intensities. Figure 3.1(a) shows an example of an image with the large peak
at the bottom, and Figure 3.1(b) shows an image with both a bottom and a right
peak. Note that the color map used for these images will be used throughout the
chapter when plotting images. The intensities in images will always be scaled
when plotting images. Thus, Red will always indicate the highest intensity in
the image and blue the lowest intensity.
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Figure 3.1: (a) An example of an image with a large intensity peak at the
bottom. The image is slice 1 from patient 5047. (b) An example of an image
with both a bottom intensity peak and a right intensity peak. The image is slice
7 from patient 4950.

After speaking with the medical staff at ”Sygehus Fyn” a possible source for this
non uniformity was given. The problem lies mainly in the fact that the study
includes some very obese patients and they have problems fitting correctly in
the scanner. These peaks are however present on all images in some form and
hence also on skinny patients. A more complete explanation might be that the
equipment is not properly calibrated and or faulty in some way or form. The
cause of the peak problem has not been further investigated and emphasis has
instead been put on removing the peaks.

Figure 3.2 shows histograms of the intensities in the image on Figure 3.1(a). By
inspecting the histogram on Figure 3.2(a) it is seen that the bias peak values
have much greater intensity values than the rest of the voxels. It is further
observed on Figure 3.2(b) that the bias peak intensity values are spread out
over a large range from about 1400 to 3000 in this case. Most of the voxels on
Figure 3.2(a) are located near or close to zero, these represent the large amount
of background present in the image. Figure 3.2(c) shows a closer inspection of
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the histogram in the range 200-1400. This range is where most of the desired
information is located, namely the fat and muscle tissue. It is desirable to be
able to identify two distinct peaks in this range, corresponding to the adipose
tissue and muscle tissue. A clear distinction of these two tissue peaks will greatly
improve the results of the intensity based classifier described in Chapter 4. As
can be seen this distinction is, at best, hard to do on the uncorrected image.
This is due to the slowly varying bias field across the image. It should be noted
that the value ranges for the histograms have been chosen by visual inspection
of Figure 3.2(a).
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Figure 3.2: (a) The full histogram of voxel intensities on slice 1 from patient
5047. (b) The same histogram in the value range 1400-3000. (c) The histogram
in the range from 200-1300

There are several problems that need to be addressed for the removal of the bias
field. The problems can be divided into two main areas.

• Finding voxels that should have the same intensity.
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• Estimating the field from the varying intensities of these voxels.

The next two sections will address each of the problems in turn.

3.2 Finding adipose tissue Voxels

Adipose tissue voxels are used for the bias field estimation since these are the
target for the segmentation task and they have the nice property of having
the highest general intensity values on T1 weighted MR images. A technique
which has been used for similar bias field correction tasks by Engholm et al. [2]
involves finding the outer edge of the patients body in the image and then expect
adipose tissue voxels to be the voxels on the immediate inside of this edge. This
technique works well on images where a significant amount of subcutaneous
adipose tissue is present along the entire outer edge of the patients body. This
technique fails however on the images used for this study. There are two reasons
for this. First, there are some very skinny men included in the study which have
next to no subcutaneous fat. This will cause the before mentioned method to
base the bias correction on voxels that will have a general lower intensity value
than true adipose tissue voxels, thus giving erroneous bias estimation. Second,
the bias peaks mentioned above will not be sampled sufficiently since the 2-
dimensional extent of the peaks will not be covered.

A new method for finding adipose tissue voxels is needed. This method should
be able to sample the intensity values of the large bias peaks, but also give
evenly distributed samples of adipose tissue voxel intensities across the entire
image. The method used for finding adipose tissue voxels that tries to fulfill
these goals is described below.

3.2.1 Methodology

The images contain a large amount of background voxels that contain no useful
information. The first task is thus to find a smaller region of interest (ROI)
where the search for adipose tissue voxels will be performed. The outline of
the patient is represented by low intensity background voxels on the outside
and high intensity skin/adipose tissue voxels on the inside. This means that the
gradient image will have high values on the outline of the patient. The outline is
easily found using simple dynamic programming, driven by high gradient values.
Dynamic programming is covered in detail in Chapter 6 and will therefore not
be covered further here. Figure 3.3(a) shows the outline found using dynamic
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programming. The inside of the outline is then filled to form the Region Of
Interest (ROI) mask showed on Figure 3.3(b).

(a) (b)

Figure 3.3: (a) The outline found using gradient driven dynamic programming.
(b) The ROI mask that has been constructed from the outline.

Inside the ROI all local intensity maxima are located. As can be seen on Fig-
ure 3.4 this yields points which clearly represent adipose tissue voxels but also
points which represent non adipose tissue voxels. These points thus needs to be
trimmed in a way that will only leave us with true fat voxels.

To trim out the non adipose tissue voxels two properties of the bias field and
adipose tissue voxels will be used. First, the bias field varies slowly across the
image (except for the bias peaks), this means that within a small subregion in
the image, adipose tissue voxels tend to have very similar intensities. Second,
adipose tissue voxels have the highest intensity values. This leads to the solution
to the problem: Divide the image into smaller regions and find the voxels in each
region which have high intensity values relative to the other voxels in the region.

In practice this is done by first creating the smallest box that contains the
entire ROI. This box is then further divided into smaller boxes. nr box rows
are created vertically and nc box columns are created horizontally. The boxes
overlap by or voxel rows and oc voxel columns. The principle is illustrated on
Figure 3.5. The nr and nc parameters need to be attuned to a size where it is
impossible or at least very unlikely, to find a location anywhere inside the ROI
where such a small box can be placed without it overlapping at least one high
intensity voxel. If this is not the case a small box could be placed in a region
with only low intensity non fat voxels, which would then be passed on as being
fat voxels for the purpose of the field estimation. For the MR image material
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Figure 3.4: All local intensity maxima in the image showed as red dots

in the study, parameter values of nr = 12 and nc = 8 give good results. Both
or and oc is set to 5 voxels.

For each small box the local maxima voxels that lie inside this box are retrieved.
Of these, the value of the voxel with the maximum intensity is stored in the
variable Imax. An intensity percentage threshold is defined pt. All retrieved
voxels that does not satisfy

Ij > Imax · pt
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(a) (b)

Figure 3.5: (a) The principle behind the box subdivision of the ROI, only 3
boxes are shown. (b) Up close version of (a), with the parameters shown. or
and oc are the overlap vertically and horizontally. nr and nc are the number of
boxes vertically and horizontally.

where Ij is the intensity of the j’th voxel inside the box, are discarded. pt = 0.85
was found to give good results. Figure 3.6 shows the points that are left after the
trimming. Some of these might look dubious in their location, but by inspecting
the zoomed in view on Figure 3.7 it is seen that these locations indeed correspond
to high intensity voxels.

Since the large bottom bias peak (see Figure 3.1(a)) is present on almost all
images, and always in the bottom subcutaneous adipose tissue layer, a dense
sampling of this area is desirable. The method that was first described and
discarded in Section 3.2 above is now used, but only in the lower part of the
image. In this lower part a thick subcutaneous adipose tissue layer is always
present. For each point on the outline of the ROI, the position of the maximum
intensity value between the outline and 10 pixels towards the center of the ROI
is sampled. The principle is shown on Figure 3.8. The result of adding these
points can be seen on Figure 3.9. These points are then added to the points
found using the local maxima method.

There is a few problems with the gathered points. They are not equally dis-
tributed, rather they tend to cluster together. Furthermore there are quite a
few points, which might give unnecessarily large computational load during the
field estimation. The points are further trimmed again using boxes. The box
containing the ROI is divided into 10 times 10 boxes, and all but the highest
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Figure 3.6: The points left after the points shown on Figure 3.4 have been
trimmed

intensity sample inside each box is trimmed away. This has the effect of putting
an upper bound of 100 on the number of points. It removes many points where
the points are tightly clustered and removes few or no points where the points
are sparse. The final result can be seen on Figure 3.10.
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Figure 3.7: Zoomed in view of the area below the spine on Figure 3.6

(a) (b)

Figure 3.8: (a) The principle of finding adipose tissue locations. (b) A zoomed
in view of the same image. The green star is the outline point of the ROI,
the blue dots are the 10 search points from the outline point towards the ROI
center. The red star is the maximum intensity voxel found.
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(a) (b)

Figure 3.9: (a) The extra fat pixel locations found using the outline inwards
search method. 3.9(b) A zoomed in view of the right part of 3.9(a). Note how
points are only added in the lower part of the image where a thick subcutaneous
layer of fat is always present.

Figure 3.10: The points left after adding the points from 3.6 and 3.9(a) and
subsequently spatially trimming these
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3.2.2 Results

Figure 3.11 and 3.12 show the end result on slice 1 and 7 from 5 patients.
Note that these patients are not chosen to have either a particular good or bad
result, they are simply the first 5 patients in the test set following patient 4950.

Overall the method gives a good sample of evenly distributed high intensity
voxels. The bottom bias peak is generally densely sampled but the side bias
peaks tend to only have a single sample at their top. This leads to some minor
problems later as will be described in the following section. A change that
would make the algorithm not trim away points in the vicinity of a peak could
be a solution to this. This however raises new problems of determining peak
locations and the algorithm might give bad results on future images without
any bias peaks. The algorithm described above will work equally well on future
data without the bias peaks.

Since the algorithm finds high intensity voxels in general, it will not only find
voxels that actually represent adipose tissue but also other tissue types that
have high intensity on T1 weighted MR scans. This will generally not influence
the bias estimation much since these voxels have intensity values close to the
adipose tissue voxel intensities. These tissue types will have to be segmented
using non threshold techniques and it is thus of little consequence that they
have the same intensity as true adipose tissue.
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(a) (b)

(c) (d)

(e)

Figure 3.11: The end results of the high intensity voxel finding algorithm. (a)
through (e) are slice 1 from patients 4951, 4952, 4953, 4954 and 4955.
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(a) (b)

(c) (d)

(e)

Figure 3.12: The end results of the high intensity voxel finding algorithm. (a)
through (e) are slice 7 from patients 4951, 4952, 4953, 4954 and 4955.
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3.3 Estimating the bias field

An evenly distributed sample of high intensity voxels have been extracted from
the original image. These voxels should all have the same intensity values if
the bias field was not present. In order to remove the bias field it must first be
known how it varies across the image. To model the field we fit an interpolated
smooth surface to the sampled high intensity voxels using thin plate splines.

3.3.1 Thin Plate Splines (TPS)

Thin plate splines were first introduced by Duchon [3] in 1976. An in depth
coverage of TPS on finding smooth interpolations of sparse data has been done
by Green and Silverman [4]. The idea behind TPS is to model the behavior of
infinitely thin plates of metal when forced through points in 3D space. Metal
plates forced through specific points in this way will exhibit minimum bending
energy. A mathematical formulation of the modelling of metal plates will thus
give us the interpolation between points with minimum bending energy. The
formulation of TPS carries over to N dimensional space. The theory will first
be formulated in 2D and then later be extended to 3D.

Assume N observations in R2, with each observation x having coordinates
[x1 x2]T and values z. We seek to find a function f , that describes a surface
that passes through these points with minimal bending energy. The problem is
formulated as

min
f

N∑

i=1

{zi − f(xi)}2 + λJ(f) (3.1)

where J(f) is a function for the curvature of f :

J(f) =
∫ ∫

R2

(
∂2f

∂x2
1

+
)2

+ 2
(

∂2f

∂x1x2

)2

+
(
∂2f

∂x2
2

)2

dx1dx2 (3.2)

λ is a parameter that penalizes for curvature. With λ = 0 there is no penalty
for curvature, this corresponds to an interpolating surface function where the
function passes through each observation point. At higher λ values the surface
becomes more and more smooth since curvature is penalized. For λ going to-
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wards infinity the surface will go towards the plane with the least squares fit,
since no curvature is allowed.

According to Green and Silverman [4] f is of the form

f(x) = β0 + βT1 x +
n∑

j

αjη(||x− xj||) (3.3)

where the η function is defined as

η(r) =
{
r2log(r2) , r > 0
0 , r = 0 (3.4)

We now have N equations, one for each observation, but we need to estimate
N + 3 variables. N variables αj , one variable β0 and two variables β1. The last
3 equations we get from the 3 linear constraints

N∑

j=1

αj =
N∑

j=1

αjxj1 =
N∑

j=1

αjxj2 = 0 (3.5)

that ensures that the J(f) function is finite. To solve the system of equations
we write the system on matrix form. First the matrices

P =
[

1 · · · 1
x1 · · · xN

]
(3.6)

and

Eij = η(||xi − xj ||) (3.7)

are defined. The system can then be written as

[
E + λI PT

P 0

] [
α
β

]
=
[
Z
0

]
(3.8)
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where Z = [z1 · · · zN ]T , α = [α1 · · ·αN ]T and β = [β0;β1]. The first line in the
matrix equation is the interpolation and smoothing equations and the second
line is the constraints. This matrix equation is solved with respect to α and
β. An estimate of the TPS at the location x can now be calculated using
Equation 3.3.

To extend the formulation above to 3D only slight changes are needed. We have
N observations in R3, with each observation x having coordinates [x1 x2 x3]T

and values z. The only major change to the formulation above is that 3.4
becomes

η(r) =
{
r3 , r > 0
0 , r = 0 (3.9)

everything else extends trivially to 3D.

3.3.2 Removing the bias field

The bias field is estimated at each voxel location in the patient volume. Having
obtained an accurate estimation of the bias field present on the data, the effect
of the bias field can now be removed. This is done by dividing the original
voxel intensity values with the value of the field estimate at the corresponding
locations.

Icorj =
Iorgj
Iestj

(3.10)

where Icorj is the corrected intensity value at location j, Iorgj is the intensity of
the voxel at location j and Iestj is the bias field estimate at location j. If the bias
field estimate is accurate this will yield values close to the 0 to 1 range. Due to
noise and inaccurate bias field estimates the actual range will differ slightly. an
inaccurate bias field estimate might cause for instance a high original intensity
value to be corrected using a too low bias estimate, resulting in a value higher
than 1.
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3.3.3 Effective degrees of freedom (dfλ)

Determining a good value for λ is an important task in order to estimate an
accurate bias field. On one hand the field should be slowly varying and rigid
to describe the general bias field and to lessen the effect of random noise on
the observations. On the other hand the field should be able to form surfaces
that can form a tight fit to the large bias peaks. There is however a problem in
determining a set value for λ for all bias fields across all images. Since a certain
value of λ will have a different smoothing effect on different observation sets. A
method independent of the overall intensity level of the sampled voxels is thus
needed to determine λ.

The notion of effective degrees of freedom (dfλ) is introduced. Hastie et al.
[5] describes a correspondence between λ and a measure similar to degrees of
freedom. This measure called effective degrees of freedom gives a more intuitive
description of the amount of curvature penalized. For instance dfλ = 3 would be
a plane for a 2D TPS, corresponding to 3 degrees of freedom. If dfλ equals the
number of observations the estimated field would be an interpolation passing
through all observation points.

Having estimated α and β, the estimate of the target function can be written
as

Ẑ =
[
E PT

] [α
β

]
=
[
E PT

] [E + λI PT

P 0

]−1 [Z
0

]
= Hλ

[
Z
0

]
(3.11)

We call Hλ the hat matrix since its the matrix that puts the ”hat” on Z. Hastie
et. al defines the effective degrees of freedom dfλ as the trace of the hat matrix

dfλ = tr(Hλsq) (3.12)

where Hλsq is the square part of Hλ that corresponds to the Z values. By
specifying dfλ instead of λ directly the rigidity of the field can now be specified.
dfλ can only be determined from a set λ value, thus numerical methods has to
be used to allow for the dfλ value to be specified as an argument. In practice
this has been done by a simple bisection algorithm that calculates dfλ from a
given start value of λ and then modifies λ depending on the value of dfλ this
results in.
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3.3.4 Retrieving intensity values

After inspecting histograms and images of MRI data from 80 patients in the
test set an interesting discovery was made. Voxels not located on bias peaks
always have intensity values below 1500 as was also hinted on Figure 3.2.
Since the peaks only cover voxels that already have high intensity, the locations
of all voxels with intensities above 1500 can simply be saved for further use
in the tissue classification. For use in the bias estimation all intensities from
the locations found above in section 3.2 are cut off at the 1500 level. Thus
intensities higher than the cutoff will have their intensity fixed at 1500 instead.
This greatly reduces the field estimation errors that are caused by too sparse
sampling near the base of the bias peaks or too rigid a field estimation.

The effect of the threshold cutoff on the sparse sampling problem is illustrated on
Figure 3.13. The figure shows the effect of applying the cutoff to the bias peaks.
This is a purely synthetic one dimensional example using an interpolating spline.
The corrected intensities are obtained by dividing the original intensities with
the estimated bias field, thus with a perfect field estimation all the corrected
intensities would have the value 1. By comparing 3.13(c) and 3.13(d) it is seen
that applying the threshold on the bias peaks gives corrected values closer to the
desired target value of 1. The problem is not completely eliminated by making
the cutoff, since there is still a fast change in curvature where the intensities
were cutoff, but the problem is greatly reduced.

To determine an optimal value of dfλ a parametric investigation of dfλ is per-
formed. Figure 3.14 shows part of the parametric investigation of the dfλ
parameter on slice 1 from patient 4950. It is seen from Figures 3.14(a)-(c) that
dfλ = 5 gives too rigid a field to be able to give a good bias estimate over the
cutoff peaks. The two peaks in the histogram are not clearly defined or well
separated. Furthermore the bias peaks are still clearly visible on the corrected
image (3.14(b)). As dfλ is increased the bias field estimate becomes faster vary-
ing and with greater curvature. Increasing the dfλ value from 80 to 160 gives
only minor improvements. After investigation of the full parametric investiga-
tion dfλ = 80 is chosen as a good weighting between having a fast varying field
that can fold around the bias peaks and still having some degree of curvature
penalization to get a good estimation of the slow varying part of the field.
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Figure 3.13: The principle behind the bias field estimation on a bias peak in one
dimension with and without a threshold applied at the value 1.2. On (a) and
(b) the red line is the voxel intensities, the green crosses are the sample points
and the blue line is the interpolating spline through these samples. (c) shows
the corrected intensities from the non threshold bias peak on (a). (d) shows the
corrected intensities from the threshold bias peak on (b).
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Figure 3.14: A parametric investigation of the dfλ parameter. The first column
shows the estimated bias field in the ROI. The second column shows the cor-
rected intensities and the final column is the histogram of intensities in row 2.
The four rows has dfλ values of 5, 20, 80 and 160 from top to bottom.
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3.3.5 Methodology

This section will recap all the methods described above and provide an overview
of what is being done in the bias correction pipeline.

• local high intensity voxels are found on all slices from one patient, using
the techniques described in Section 3.2.

• The intensity level is cut off at 1500, to remove the top of the bias peaks.

• The bias field is estimated over all voxels in the entire volume using thin
plate splines extended to 3 dimensions, as described in Section 3.3.1.

• The corrected volume is obtained by dividing the original volume data
with the estimated bias field. Described in Section 3.3.2

The estimation of the bias field could have been done slice by slice instead using
2-dimensional TPS. However, it seems intuitive to perform the bias correction on
the whole volume at once, since volume data is available. Furthermore the bias
field is expected to vary slowly between neighboring slices, just as it varies slowly
across voxels within a slice. This makes whole volume bias field estimation a
sensible choice.

3.3.6 Results

Examples of the final result of the bias correction on 3 different patients on
slice 1 and 7 can be seen on Figure 3.15 and Figure 3.16. It can be seen from
the before and after histograms that the highest valued peak, corresponding to
the adipose tissue voxels, is clearly identified on the histograms from all the
results. The peak representing muscle tissue is easily identified on the slice 1
results, however it is hard to distinguish on the slice 7 results. This is due to the
presence of more non adipose tissue with non uniform intensity values. However,
as the overall goal is to separate the adipose tissue from all other tissue, the lack
of a clear muscle peak in the histogram is of less importance. The important
result of the bias correction is that adipose tissue voxel intensities are clearly
distinguishable from the low intensity tissue. By visual inspection of the before
and after bias correction images it can be seen that the intensities in areas where
adipose tissue is expected have become much more uniform. Note that the scale
on the before and after bias correction images are different. The color of the
images can not be compared, only the uniformity of the intensities.
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It should be noted that the method for removing the bias field presented here
will work equally well on data with or without the large bias peaks present on
the data at hand. The method is thus robust with regards to future unseen data
that might exhibit new forms of bias field variation.

One of the major advantages the described sampling method has over similar
methods is that it also samples high intensity voxels from the interior of the
patient, thus allowing for a more accurate bias field estimation across the entire
ROI. One thing that could cause the method to fail, or at least give worse results,
would be the presence of noise with large variation. Since all voxels sampled
are local maxima, the sampled voxels will often be from a local peak in the
noise contribution. With too high variation in how large this noise contribution
is the bias field estimation will give bad results, since the sampled voxel does
not represent the local level of the bias field. This could possibly be fixed by
applying a smoothing filter to the data before sampling the voxel intensities,
but will introduce new problems by lowering the value of high intensity voxels
close to low intensity voxels.

Overall the method is robust and performs well. the bias estimates found are
not perfect but they are good enough to make the corrected data highly suitable
for an intensity based classification, as will be seen in Chapter 4.



3.3 Estimating the bias field 33

200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

(a)

200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

900

(b)

200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

(c)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

(d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

(e)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

(f)

50 100 150 200 250

50

100

150

200

250

(g)

50 100 150 200 250

50

100

150

200

250

(h)

50 100 150 200 250

50

100

150

200

250

(i)

50 100 150 200 250

50

100

150

200

250

(j)

50 100 150 200 250

50

100

150

200

250

(k)

50 100 150 200 250

50

100

150

200

250

(l)

Figure 3.15: The results of the bias correction on 3 patients. The 3 columns are
slice 1 from patients 4951, 4952 and 4953. The top row is the histogram of the
original image, these histograms are cropped in the same way as Figure 3.2(c)
to show the interesting range more clearly. The second row is the histograms
after the bias correction has been done. The lower range containing all the
background has been cropped away. The third row is the original biased image
and the last row is the image after the bias correction has been performed.
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Figure 3.16: The results of the bias correction on 3 patients. The 3 columns are
slice 7 from patients 4951, 4952 and 4953. The top row is the histogram of the
original image, these histograms are cropped in the same way as Figure 3.2(c)
to show the interesting range more clearly. The second row is the histograms
after the bias correction has been done. The lower range containing all the
background has been cropped away. The third row is the original biased image
and the last row is the image after the bias correction has been performed.



Chapter 4

Distinguishing adipose tissue
from other tissue

After having corrected for the bias field in Chapter 3 the data is ready to be
classified using an intensity based classifier. This chapter deals with determining
which voxels correspond to adipose tissue. The location and thus type of adipose
tissue will not be dealt with in this chapter.

Since only the T1-weighted images of the data has been provided for the project
multi modality classification techniques can not be used. The absence of ground
truth further limits the methods that can be used. A commonly used technique
such as artificial neural networks could have been a good technique if ground
truth had been available. The network could have been trained with inputs from
not only the current slice, but also the neighboring slices, thus incorporating
volume information in the classification.

Good results have often been achieved by using simple thresholding techniques,
and this is also the method that is used here. This method assigns labels to
voxels by comparing their intensity values to one or more intensity thresholds.
A single threshold segments the image into two classes, multiple thresholds can
be used to segment into more classes. These thresholds can be either static
or spatially varying. Since the spatial variation was handled with the bias field
correction non varying thresholds will be used. The thresholding technique used
will be point based and no information from its neighborhood will be used. The
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idea is that the spatial context will be applied using other techniques in later
chapters.

4.1 Fuzzy c-mean clustering

In order to determine the optimal threshold that will give the best segmentation
the technique of fuzzy c-mean clustering (FCM) is used. This technique is
described in [6] and was used by Positano et al. [7] to segment adipose tissue
on MRI data with good results.

The FCM algorithm does not directly determine a threshold that segments the
voxels. Instead it performs a fuzzy segmentation where each voxel has a fuzzy
membership function constrained to be between 0 and 1. This function reflects
the similarity between a given voxel and the typical data value of its class. For
instance, a membership value close to 1 means that the voxels intensity is close
to the centroid of that class.

The FCM algorithm is formulated as the minimization of the following objective
function.

JFCM =
∑

j∈Ω

C∑

k=1

uqjk||yj − vk||2 (4.1)

where j is a location in the image domain Ω, k is the class number, C is the
number of classes and q is a parameter greater than 1 that determines the
amount of fuzziness of the classification. ujk is the membership value at location
j for class k, yj is the intensity value at location j and vk is the centroid of class
k.

The minimization of JFCM is done by suitably selecting u and v using an iter-
ative process of evaluating the following equations:

vk =

∑
j∈Ω

uqjkyj

∑
j∈Ω

uqjk
(4.2)
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ujk =
||yj − vk||

−2
q−1

C∑
k=1

[
||yj − vk||

−2
q−1

] (4.3)

ujk is initialized with random values, but under the constraint that the sum of
the membership functions for each class for a given location is 1. That is, for
each j ∈ Ω

C∑

k=1

ujk = 1 (4.4)

The algorithm alternates evaluating equation 4.2 and 4.3 until the change, ∆J ,
in JFCM is suitably small.

Figure 4.1(a) shows the similarity measure as a function of voxel intensity for
each class for slice 1, patient 4950. This plot is superimposed on the histogram
of voxel intensities in the slice. It can be seen that the peak of the similarity
measure for each class is well separated and generally follows the 3 peaks in the
histogram. Note that the measuring on the y-axis for Figure 4.1(a) is number of
observations. The similarity measure has values between 0 and 1. Figure 4.1(b)
shows the convergence of the objective function Jfcm. The objective function
converges to a steady level after 8 iterations. After 18 iterations the change in
Jfcm is suitably small, meaning that the change is smaller than ∆J , and the
computation stops.

Figure 4.2 shows how the similarity measure behaves during the convergence.
At 0 iterations corresponding to the initialization all the similarity measures are
chosen at random. After two iterations the peaks of the 3 classes are still very
close together. After 4 iterations some separation of the 3 peaks start to become
clear, and after 8 operations it can be seen that the graphs start to resemble the
graphs on Figure 4.1(a). The algorithm will generally converge to a state where
the peaks of the similarity measure function are near peaks in the histogram
of the data intensities, and with maximum separation between the similarity
measure peaks.

Figure 4.3 shows an investigation of the effect of the q parameter. It is seen that
while the q parameter determines the shape of the similarity measure curves,
the intersection between the curves are unaffected. q = 2 is chosen for further
computations. The curves for q = 2 resembles gaussian distributed probability
curves, which can be exploited as described later. For q = 2 Equation 4.3
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Figure 4.1: (a) The similarity measure as a function of voxel intensity for each
class superimposed on the histogram of the image. Note that the similarity
function has values between 0 and 1. Data is slice 1 from patient 4950, C = 3
and q = 2. (b) The convergence of Jfcm.

becomes a calculation of squared distance measures, which is a commonly used
measure.

Three distinct classes are identified on the MR images. These classes are de-
noted background (low intensity), adipose tissue (high entensity) and other
tissue (medium intensity). Three classes are chosen because the histograms of
intensities on the images after the bias correction has 3 distinct peaks. This
makes the FCM algorithm with C = 3 a well suited classification method. The
similarity measure that was investigated above allows us to use two classification
schemes. Discrete classification and fuzzy classification.
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Figure 4.2: The similarity measure as a function of voxel intensity for each class
at different stages of convergence
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Figure 4.3: The Effect of varying the q parameter. From left to right, top to
bottom, the q values are 1.1, 1.5, 2 and 3. Data is slice 1 from patient 4950 and
C = 3
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4.1.1 Discrete classification

By using this classification scheme each voxel will be assigned the label that it
has the highest similarity with. This corresponds to setting a threshold at the
intersection between the similarity measure curves for each class. All the voxels
classified as adipose tissue in this way is simply counted to get a measure of the
ratio of fat in the specific slice. Let Mda be the measure of adipose tissue using
discrete classification, and n be the number of voxels in the the slice. The total
measure of adipose tissue is then:

Mda =
n∑

j=1

f(j) (4.5)

where

f(j) =
{

1 if (uja ≥ ujb) ∧ (uja ≥ ujo)
0 if (uja < ujb) ∨ (uja < ujo)

uja, ujo and ujb are the similarity measure at location j for the adipose tissue
class, other tissue class and background class respectively.

Figure 4.4 shows a color coded classification of the first slice from patient 4950,
both before and after the bias correction. The true value of the bias correction
can be seen here. The classification of the uncorrected image fails completely
while it gives a good result on the corrected image.

At times it might be more costly to classify a certain voxel to a wrong class than
to not have it classified at all. Instead of always assigning the class with the
highest similarity measure to a given voxel a threshold for the similarity measure
level needed can be used instead. using a similarity measure threshold higher
than 0.5 will make the voxels classified more probable of being the correct class.
Let εsm denote the similarity measure level threshold, then the new formulation
of f(j) becomes:

f(j) =
{

1 if uja ≥ εsm
0 if uja < εsm

Note that this method can only be used to segment into two classes, since the
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Figure 4.4: (a) and (b) are the MR images before and after the bias correction
on slice 1 from patient 4950. (c) is the classification of the uncorrected image
using FCM. C = 3 classes have been used and q = 2. (d) is the classification of
the corrected image using the same parameter values.

scheme only distinguishes between being a certain class and not being that
class. Figure 4.5 shows a classification of the adipose tissue class for different
values of εsm. As can be seen from the figure the changes in the classification of
adipose tissue are only minor for εsm in the 0.5-0.7 range. Only for εsm = 0.9
do large changes start to become evident. This is reassuring since it shows that
the classification of adipose tissue is robust to small changes in the intersection
location of the similarity measure curves. This way of doing a more certain
classification of the adipose tissue class will prove useful in a later chapter.
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Figure 4.5: The effect of varying the similarity measure value needed to classify
as adipose tissue. Red areas are adipose tissue classification and blue is non
adipose tissue. Data is from slice 1 from patient 4950, C = 3 and q = 2
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4.1.2 Fuzzy classification

By using fuzzy classification the similarity measure is used as a measure for the
degree of the partial volume effect. The partial volume effect is the effect on
the intensity of a voxel that different tissue types within a voxel volume gives.
This scheme will give a high similarity measure the interpretation that the voxel
contains almost pure fat, and a low similarity measure the interpretation that
the voxel contains a lot of non fat tissue. The total ratio of adipose tissue is then
calculated as the sum of the similarity measure for all voxels. Let Mfa denote
the measure of adipose tissue using fuzzy classification. The total measure of
adipose tissue is then:

Mfa =
n∑

j=1

uja (4.6)

It only makes sense to use this measuring scheme in areas that are known to
contain adipose tissue, since the similarity measure is not strictly zero even at
low intensity values. Figure 4.6(a) shows a fuzzy classification. The fuzzy clas-
sification generally resembles the discrete classification in its results. The fuzzy
classification gives high values where the discrete classification has classified the
voxel as adipose tissue. There is however a few problems where intensity arti-
facts from the original image or created by the bias correction are present. The
artifacts make the fuzzy classification give a voxel a smaller value where the
discrete classification classifies the same voxel as adipose tissue.

This method will not be used for this project. Since no ground truth is available
the accuracy of the results gotten from the fuzzy classification will be much
harder to estimate than the results from the discrete classification. Given that
the accuracy of the method could be verified, a comparison between the accuracy
of the discrete and the fuzzy classifications would be interesting.
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Figure 4.6: (a) The fuzzy segmentation of slice 1 from patient 4950. The in-
tensities in the image reflects the degree of the partial volume effect. (b) The
segmentation of the same image done using discrete segmentation.
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4.2 Results

Figure 4.7 and 4.8 show the result of the FCM classification on slice 1 and slice
7 from patients 4951, 4952 and 4953. The discreet classification scheme was
used with highest similarity (Equation 4.5). Without being an expert it is still
possible to get a good idea of the performance of the method by comparing
the classification to the bias corrected image. There is a good correspondence
between what voxels one would expect to be adipose tissue on the bias corrected
image and what voxels that gets classified as adipose tissue using the FCM
algorithm. An amount of voxels that clearly are neither Subcutaneous Adipose
Tissue (SAT) or Visceral Adipose Tissue (VAT) are classified as adipose tissue
by the FCM. The adipose tissue class will be further segmented into a SAT, a
VAT and a neither class in subsequent chapters. After showing the results to
Kristian Wraae he has assured that the classification generally performs very
well.

The method is completely automatic and very robust. Further more it requires
no data dependent parameters to be set. Thus the method should work equally
well on future data without any parameter adjustments. Overall the FCM
algorithm performs satisfactory.
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Figure 4.7: From top to bottom the data is slice 1 from patient 4951, 4952,
4953. The right column is the bias corrected image, the left column is the result
of the FCM classification. Blue is background, red is adipose tissue and green
is other tissue.
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Figure 4.8: From top to bottom the data is slice 7 from patient 4951, 4952,
4953. The right column is the bias corrected image, the left column is the result
of the FCM classification. Blue is background, red is adipose tissue and green
is other tissue.



Chapter 5

Finding image structures

In the previous chapter the segmentation of adipose tissue was done. However,
the distinction between Subcutaneous Adipose Tissue (SAT), Visceral Adipose
Tissue (VAT) and neither has yet to be made. To segment the VAT and SAT,
3 main separations must be made. Figure 5.1 shows a rough hand drawing of
the 3 outlines that are wanted. The first contour (red) separates the SAT area
from the background. The second contour (green) outlines the internal limit of
SAT. Finally the blue contour outlines the VAT area. The separation of the
SAT from the background was already done when finding the area of interest in
Section 3.2.1. The separation will however be performed again with a greater
level of robustness in the following chapters.

The segmentation approach that will be used can be described by 3 steps. The
first step is to obtain a rough estimation of points that mark the outline of the
3 contours. Secondly these points will be used to guide more precise contours
resembling the contours on Figure 5.1 (described in Chapter 6). Finally the
segmentation will be performed by using set operations and connectivity on
the areas enclosed by the 3 contours (described in Chapter 7). This chapter
describes the first step.
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Figure 5.1: The 3 desired separations. The Red outline is the external contour
of SAT, the green outline is the internal contour of SAT and blue is the contour
of the VAT area border.

5.1 Active Shape Models - (ASM)

Active shape models where introduced in the early 1990’es by Tim Cootes. It
has since then found wide applications in image analysis and computer vision.
The theory behind the implementation used for this project is based on an
overview article, Cootes [8].

The human brain can easily recognize known shapes in an image, just as it was
very trivial to draw the 3 contours on Figure 5.1 by hand. Active Shape Models
tries to mimic this ability. The approach is to build a model of the structure
that the computer should be able to recognize, by providing a training set of
typical images. By means of this training set a statistical model of the shape
and variation of the structure can be constructed. This model can then be used
to locate similar structures on unknown images.

5.1.1 Building the training set

The training set is a set of images that are representative for the variation of
structures across all images. These images are annotated with landmarks that
outline the structures that we wish to identify.

Good choices for landmarks are points that consistently can be located across
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images. These landmarks are placed by hand at locations where the structure
changes direction, or evenly distributed between such locations if the structure
consists of too few such locations. The structures that are sought for this project
are the outlines of the 3 curves from Figure 5.1. The outline of the external SAT
boundary and the internal SAT boundary is generally easy to identify, since a
major shift in intensity always is present at these boundaries. The outline of the
VAT area however has poor contrast in the upper part of its boundary and the
intensities in the border of this region generally show a high degree of variation.
This results in a choice to only landmark the lower well defined part of the VAT
area. Figure 5.2 shows the first annotated image included in the training set.
Note how the VAT area only has landmarks in the lower well defined part. The
complete annotated training set is presented in Appendix B.

Patient: 4950, Slice: 5

(a)

Figure 5.2: One of the images that make up the training set annotated with
landmark points. Red points are the external SAT outline, blue points are
internal SAT outline and green points describe the outline of the well defined
part of the VAT area.

The training set used for this project consists of 11 images. The images are
chosen to represent the typical variation of the structures on all images. The
outline of the external SAT border is annotated with 32 landmark points. The
outline of the internal SAT border is annotated with 40 landmark points and
the VAT area with 27 landmark points.
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5.2 Aligning the training set

Before statistical analysis can be performed on the landmark points the points
must be in the same co-ordinate frame, and variation due to global transforma-
tions such as rotation and scale must be removed.

Let a shape be defined as the n landmark points that define one or more struc-
tures. If the n points are d-dimensional we have nd elements. In 2D we thus
have n points (x1, y1) that we organize into a 2n vector:

x = (x1, . . . , xn, y1, . . . , yn)T

For a training set consisting of s images we have s such vectors. To align the
landmark points of the training set a simple iterative method is used.

1. Translate each example so that the center of gravity of its landmarks is at
the origin

2. Chose one example as a reference and use this as the initial estimate of
the mean shape. Scale the example landmark points so that |x̄| = 1.

3. Save this first mean shape estimate as x̄0 and let it define the default
reference frame.

4. Align all shapes with the current estimate of the mean shape.

5. Re-estimate the mean shape x̄0 from the aligned shapes.

6. Align the current estimate of the mean shape with |x̄0| and scale so that
|x̄| = 1.

7. If not converged return to 4.

Convergence is declared when the change to the mean shape does not change
considerably from one iteration to the other.

To align two 2D shapes q and r each centered around the origin we find a
rotation θ and a scale s, that minimizes the squared distance between q and the
rotated and scaled version of r.

min(|Ts,θ(q)− r|2) (5.1)
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The transformation that best aligns the shape q with the shape r is given by:

T

[
x
y

]
=
[
a −b
b a

] [
x
y

]
+
[
tx
ty

]
(5.2)

This is the transformation applied to each point (x, y) in the shape q. a and b
are defined as

a =
qT r
|q|2 (5.3)

b =

n∑
i=1

(xqiyri − xriyqi)
|q|2 (5.4)

xqi denotes the ith x-coordinate from shape q. tx and ty are the means of the
x and y-coordinates of r:

tx = r̄x (5.5)
ty = r̄y (5.6)

Figure 5.3 shows the mean shape of the training set. The shape contains the
landmarks for the external SAT border and the internal SAT border. The shape
is centered around the origin.
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Figure 5.3: The mean shape of the training set including landmarks from the
external SAT border and the internal SAT border.
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5.3 Modelling shape variation

We now have s sets of points xi that are aligned into a common co-ordinate
frame. These vectors of points form a distribution in nd dimensional space. We
seek to model this distribution so that new examples similar to those in the
training set can be generated and it can be decided if a given new shape is a
plausible one. That is, we seek a parameterized model of the form x = M(b)
that can be used to generate new vectors x by means of the parameters b.

In order to reduce the dimensionality of the problem from nd to something
more manageable, Principal Component Analysis (PCA) is applied to the data.
The data form a cloud of points in nd dimensional space. PCA computes the
main axis of the point cloud allowing for approximation of the original points by
means of these new axis. Thus reducing the dimensionality. The methodology
is as follows.

1. Compute the mean of the data:

x̄ =
1
s

s∑

i=1

xi (5.7)

2. Compute the dispersion matrix of the data:

D(x) =
1

s− 1

s∑

i=1

(xi − x̄)(xi − x̄)T (5.8)

3. Compute the eigenvectors, φi and corresponding eigenvalues λi of D(x).
These are then sorted in descending order λi ≥ λi+1.

Let Φ contain the t eigenvectors corresponding to the t largest eigenvalues. The
data in the training set, x can then be approximated by

x ≈ x̄ + Φb (5.9)

where Φ = (φ1|φ2| · · · |φt) and b is a t dimensional vector given by

b = ΦT (x− x̄) (5.10)
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b now defines a set of parameters of a deformable model. The shape can then
be varied by varying the elements of b using Equation 5.9. λi corresponds to
the variance of the ith parameter, bi, across the training set. By constraining
the parameter, bi, to be within 3 standard deviations (±3

√
λi) it is assured that

the shape generated is similar to those in the training set and thus a plausible
shape.

Since the total variance in the data equals the sum of the eigenvalues, we can
select the number of eigenvectors to use, t, so that a certain percentage of the
total variance is explained by the model. This proportion is set to 98% for any
computations in this report.

The ith principal axis is defined as the direction corresponding to the ith highest
eigenvector. The ith principal component is the projection of x on the ith

principal axis.

Figure 5.4 shows PCA applied on a 2D exmaple. Figure 5.4(a) shows how the
points in 2D can be approximated using a single principal component axis, p.
Figure 5.4(b) shows how x can be approximated by the nearest point x′ on the
principal axis. The approximation is computed as x′ ≈ x̄ + bp, where b is the
distance along the principal axis from the mean to the point on the principal
axis closest to x.

(a) (b)

Figure 5.4: The principle of the principal component analysis. See text above
for explanation.
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5.4 The two shapes

The landmarks annotated on the training set images are used to build two shape
models consisting of two different shapes.

1. Shape 1 are the points from the external SAT outline and the internal
SAT outline. The red and blue points on Figure 5.2.

2. Shape 2 are the points from the external SAT outline and the VAT area
outline. The red and green points on Figure 5.2

If the VAT area points where included in shape 1, to form one shape including
all points, the variation in the location of individual points would be relatively
low in comparison to the total variation of the shape. This would make the
points from the internal SAT outline govern the placement of the VAT area
points when applied to unknown images, thus making for a less accurate place-
ment of the VAT area points. The external SAT outline points are included in
both shapes to make the search for new points more robust. The outer SAT out-
line is generally quite trivial to find and it thus provides a degree of constraint
on the placement of the VAT area points and the internal SAT points. By mak-
ing two shapes in this way robustness is weighted versus accurate placement of
the internal SAT points and the VAT area points.

Figure 5.5 shows the effect of varying the model parameters on the model made
from shape 2. This corresponds to changing the bi parameters away from 0
one by one in Equation 5.9. The first few modes are often possible to give
a description of what kind of variation they govern. One might say that the
first mode governs the width of the area containing the spine. The second
mode seems to govern the overall shape of the external SAT points and also the
vertical relative placement of the VAT area points. Already at the 3rd mode the
variation starts to have a large degree of what seems like noise. It however still
seems to govern what could be interpreted as the height of the area containing
the spine.

Figure 5.6 shows a plot of the value of the first principal component versus
the value of the second principal component for shape 2 on each of the 11
images in the training set. Training image number 5, Figure 5.6(a), has a low
first principal component value and a very high second principal component
value. This falls well in line with the definitions of the first two modes that was
presented above, since image 5 has a wide spine area and the VAT area points
are relatively far away from the bottom of the external SAT points. Training
image 11, Figure 5.6(b), has a narrow spine area and the VAT area points are
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Figure 5.5: The effect of varying the parameter, bi, ±3
√
λi, for the first 3 modes

of the principal component analysis. The first row shows the first mode, the
second row shows the second mode and the third row shows the third mode.
The shape is shape 2, made up of the external SAT landmarks and the VAT
outline landmarks.

close to the bottom of the external SAT points. This falls well in line with the
description since training image 11 has a high first principal component value
and a low second principal component value.
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Patient: 5047, Slice: 4

(a)

Patient: 5954, Slice: 8
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Figure 5.6: (a) and (b) are training image number 5 and 11. (c) The first
principal component as a function of second principal component for each of
the 11 images in the training set. The shape used is made up of the external
SAT landmarks and the VAT outline landmarks.
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5.5 Finding shapes in unknown images

Given a rough starting approximation new model points can be found in an
unknown image. This is done by searching the area around each approximated
starting point for the pattern of intensity variation that best match the variation
of the model intensities around the same point.

In practice this is done by searching along profiles normal to the model boundary
at each model point. Figure 5.7 gives a stylistic presentation of the sampling
method.

Figure 5.7: The principle of the boundary sampling. A profile is sampled at
each model point normal to the model boundary. The blue quarter circle is the
wanted structure in the image

If the boundary of the model corresponds to an edge (fast intensity shift) new
points can simply be placed at the strongest edge. This is however not always
the case. The correct placement could be on a secondary edge or other image
structure. The correct profile structure to look for can be learned from the
training set. By constructing a statistical model of how the intensities varies
across profiles on the training set images, the profile locations that best match
the model can be identified. The following describes the approach used.

Suppose for a given point that samples along a profile k pixels to either side of
the point are taken. This gives 2k + 1 samples. This is done for each image in
the training set and the samples for the ith image are stored in the vector gi. To
reduce the effect of global intensity changes in the images the derivative along
the profile is computed and stored instead of the intensity value. The samples
are normalized by dividing through by the sum of absolute element values. Let
gij be the sample value at profile location j for image i.

gi −→
1∑
j |gij |

gi (5.11)
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This is done for each image. The assumption that these normalized samples have
a multivariate gaussian distribution is made, and their mean ḡ and covariance
Sg are estimated. A statistical model of the intensity profile along each point
in the shape is constructed in this way. The result is a model for the intensity
profile around each point. The quality of fit for a new sample, gs, to the model
is given by

f(gs) = (gs − ḡ)TS−1
g (gs − ḡ) (5.12)

This is the Mahalanobis distance of the sample from the model mean. The
Mahalanobis distance is linearly related to the log of the probability that gs is
drawn from the distribution. The minimization of f(gs) is thus equivalent to
the maximization of the probability that gs comes from the distribution.

To find the best location for new points along the profiles m pixels on either
side of the current profile location is sampled (m < k). The quality of fit is then
tested (Equation 5.12) at each at the possible 2(k −m) + 1 locations along the
sample profile. The location that gives the best match, corresponding to the
lowest value of f(gs), is chosen. This is done for all model points thus giving a
suggested location for the placement of new points in the unknown image.

The new points are aligned to the mean shape of the model as described in
Section 5.2 and are projected into model space using Equation 5.10. The varia-
tion is truncated to only allow plausible shapes by limiting b to be within plus
minus 3 standard deviations. Finally the points are converted back into normal
coordinate space using Equation 5.9. The Process is illustrated on Figure 5.8.

Figure 5.8: The effect of projecting into model space. The left illustration is the
shape found using the profile search method. These points are projected into
model space on the middle illustration. The last illustration shows a nearby
plausible shape after the truncation of b is made.

The method described above will need to be performed iteratively to get a good
result. The complete search algorithm for new points can be formulated as



62 Finding image structures

follows:

1. Initialize the iterations with a start guess of where the shape is believed
to be located.

2. Search the profiles about each start point to find the best nearby match
for new shape points in the image.

3. Align the new shape points with the mean shape.

4. Project the aligned points into model space.

5. Truncate the variation to only get plausible shapes.

6. Convert the points back to normal coordinate space.

7. Repeat from 2 with the new shape points as the start guess until a satis-
fying result is obtained.

5.6 Obtaining a good initialization

In order to be able to find a given structure in an unknown image a good
start guess must be made. This start guess must be close enough to the wanted
structure in the image that the profiles used to search for new points will overlap
the wanted structure. It is usually enough that the majority of the points will
have a profile that overlap the image structures. The projection into model
space will often ensure that the start points in the following iteration are closer
to the wanted structure in the image. To get a good start guess for the point
search in the MR image data the following approach is used.

The row and column limits of the external SAT outline is found by searching
through each row and column of the unknown image for a shift in intensity. This
intensity shift indicates a move away from low intensity background voxels. Let
Cj denote the column sum of intensities I at column j, and Ri the row sum of
intensities at row i. The limit for the intensity shifts Climit and Rlimit can be
formulation as

Climit = p ·max(C)
Rlimit = p ·max(R)
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where

Cj =
∑

i

Iij

Ri =
∑

j

Iij

p is the percentage of the maximum sum of intensities that is considered to
indicate a major intensity shift. Iij is the intensity value at column j and row
i. The limits of the SAT outline is found at the first and last column where
Cj > Climit and the first and last row where Rj > Rlimit. For the MR image
data p = 0.3 has been found to give good results.

Remember that the mean shape of the model is normalized and centered around
the origin. We seek a transformation that will scale and translate the mean shape
to match the limits on the unknown image found above. The scale parameters
for rows Sr and Sc are found by comparing the range of the unknown image
limits and the limits of the mean shape points. Let Ce,u be the end column limit
for the unknown image and Rs,m be the start row limit for the mean shape, then

Sc =
(Ce,u − Cs,u)
Ce,m − Cs,m

Sr =
Re,u −Rs,u
Re,m −Rs,m

The correct size of the mean shape is found by multiplying the row coordinates
of the mean shape by Sc and multiplying the column coordinates by Sr. The
row translation Tr is computed by finding the center of the unknown image
using the row limits. This gives

Tr =
Re,u −Rs,u

2

Since the center of the mean shape is based on a center of gravity calculation
the column center will not be halfway between the column limits. This is due
to the shapes only being symmetric for row coordinates. The column center is
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found by aligning the start limit of the mean shape with the start limit of the
unknown image.

Tc = Rs,u − ScRs,m

By applying the row and column translations Tr and Tc to the scaled mean shape
the transformation is done. Figure 5.9 shows an example of the initialization.

Figure 5.9: The automatic initialization of start guess points. The image is slice
4 from patient 4953

5.7 Applying ASM to the MRI data

Active shape models are used to drive a rough localization of the SAT and
VAT area borders. Only one model is made for each patient. Thus only one
slice will be used in the finding of structures. The idea is that the slices will
be segmented one by one and the results from one slice will be used to set up
constraints for the segmentation of the next. This approach exploits the fact
that the shape of the structures only change slowly from one neighboring slice
to another. To reduce the number of slices that any given segmentation will be
away from an ASM driven segmentation, the ASM is performed on the middle
slice of each patient. Recall that not all 15 slices are used on all patients to span
the anatomically bounded unit, thus the middle slice number will change from
one patient to another.
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The models of Shape 1 and Shape 2 are build with a profile sample width of
k = 20. The sample match width is set to m = 2 making for a 2m+ 1 = 5 wide
search window across the 2k + 1 = 41 wide profile sample. Figure 5.10 shows
an example of the ASM search iterations on slice 4 from patient 4955. Note
that since patient 4950 4951 and 4952 were used to train the model they will
no longer be used to show results. The start guess has been initialized badly
on purpose to give a more exciting example. Even though the initialization is
quite bad the majority of the points found with the profile search are still found
close to where they should be be on Figure 5.10(a). There are a few points
that are clearly placed wrongly, namely the blue points in the center of the
VAT area. Figure 5.10(b) shows how these points are projected into a plausible
model shape (the green points). The green points from Figure 5.10(b) become
the start guess for the next iteration and are thus the same as the red points
on Figure 5.10(c). On Figure 5.10(f) it is seen that after 20 iterations the green
points provide a good fit to the structures in the image that was sought. This
example gives a good sense of the degree of robustness the method has to a bad
start guess. As long as there is some amount of overlap between the start guess
and the wanted structures in the image, the algorithm will give a good fit to the
structures after a suitable number of iterations.

To determine when the ASM search algorithm has converged the following ap-
proach is used. For each profile search that is performed the distance of the
best matching location from the center of the profile is recorded. For instance
if the best matching profile search point is found directly on top of the start
point the recorded distance is 0. The iterations are stopped when pclose percent
of the points are found within a distance of dmax from the profile center. If this
criteria is never met the iterations are stopped after Nmax iterations have been
applied. For the MR image data the iterations are stopped if 90% of the points
are found within 2 pixels of the profile center, or if more than 20 iterations have
already been run.
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Iteration 1

(a)

Iteration 1

(b)

Iteration 2

(c)

Iteration 2

(d)

Iteration 20

(e)

Iteration 20

(f)

Figure 5.10: An example of an ASM search. The red points are the start guess
of the iteration and the blue points are the points found searching the profiles.
The green points are the end results after the projection into model space and
back. The figure shows results from iteration 1, 2 and 20. Note that the blue
points on the left and right column are the same.
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5.8 Results

Figure 5.11 shows the final result of the ASM search on the models build from
Shape 1 and Shape 2 on 3 patients. The external SAT outline has generally
been found quite well across all 3 images. The position of the points are generally
close to the edge of the external SAT outline. Figure 5.11(a) and (e) shows
how the internal SAT outline also has been found quite accurately with points
that are close to the edge of the structure in the image. On patient 4954,
Figure 5.11(c), the result is less accurate as the blue points do not follow the
wanted image edge on the middle right part of the image. This is mainly due to
one yellow point being matched to the an edge on the VAT area outline and thus
affecting the shape when the projection into model space is made. By looking at
the ASM search on the VAT area outline (the second column) it is seen that it
generally suffers from the same lack of accuracy that we saw on Figure 5.11(c).
It can be seen on Figure 5.11(f) that even though the yellow points mostly are
located on the edge of the wanted image structure the shape that is obtained
after the projection into model space does not fit well will the image structure.
This is due to the large variation in the shape of this image structure across
all images. Even though images with highly varying VAT outline structures are
included in the training set the VAT outline structure of the unknown image is
simply too different from the structures in the training images to form a good
fit.

With all the inaccuracies in mind the results are still well suited for the purpose
they are to serve. The shape points are not meant to be used as an exact outline
of the image structures. They are created to identify the general location of the
image structures and provide a guidance for a more accurate outlining of the
structures in the next chapter. While the ASM results for the VAT area outline
are not very accurate, they clearly identify the overall form and location of the
VAT area structure in the image.

The main strength of using ASM for this task is its degree of robustness. The
method is very robust to a bad start guess, mainly because the external SAT
outline is included in both models. The identification of the image structures is
never (did no occur in any of the over 80 patients used for testing) inaccurate
enough to be unsuitable for the further steps in the segmentation. The robust-
ness comes mainly from the fact that even though a number of points are found
at wrong locations during the profile search, they only affect the overall shape
output to a small degree.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: The results of the ASM search on 3 patients. The first column is
the model build from Shape 1. The second column is the model build from
Shape 2. Magenta dots are the profile search points from the external SAT
outline and yelloe dots are search points for the internal SAT and VAT area.
The final results of the 3 outlines are red, blue and green for the external SAT,
internal SAT and VAT respectively. The data are slice 4, 5 and 4 from patients
4953, 4954 and 4955 from top to bottom.



Chapter 6

Outlining image structures

In the previous chapter a rough outline of the SAT and VAT areas were found.
This chapter will describe the process used to get an accurate and robust outline
of the SAT and VAT areas using these rough outlines.

We seek a method that can follow the path described by these rough point
locations, but staying on the edge of the image structure accurately. The method
used will be that of Dynamic Programming (DP). An introduction to the method
will be given first, followed by a description of the transformations that are
needed to apply the method to the MR image data. Finally the segmentation
of the SAT and VAT outlines will be described in detail.

6.1 Dynamic Programming - DP

Dynamic Programming is a technique used to compute optimal paths in graphs.
A graph is a set of points called nodes connecter by a set of links that connect
the nodes. A path through a graph is the set of points that connects the start
node with the end node. The graphs used for DP are characterized by the links
being one directional (can only be traversed in one direction) and that the graph
contains no loops. That is you can only enter a given node once.
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Let there exist a matrix of values with i rows and j columns. Each location in
the matrix corresponds to a node, and links are constructed using the rule that
a node corresponding to row i and column j, denoted N(i, j), can only connect
to a node in column j + 1 at rows i − 1, i and i + 1. Figure 6.1 shows the
principle.

(a) (b)

Figure 6.1: (a) A matrix with values. (b) The DP graph corresponding to the
matrix.

Let further the value at each matrix location represent the static cost of the
corresponding node in the graph. The optimal path is then defined as the path
from any graph node at the first column in the matrix to any graph node at the
last column that has the lowest total cost. The total cost is the sum of all node
costs in the optimal path. Before the optimal path can be found the cumulative
cost matrix is computed. The cumulative cost matrix is computed as follows.

Start at the second column, the cumulative cost of node N(i, j) is computed for
each column as

Nc(i, j) = min(Nc(i− 1, j − 1), Nc(i, j − 1), Nc(i+ 1, j − 1)) +Ns(i, j)) (6.1)

where Ns(i, j) is the static cost of of node N(i, j). That is, any cumulative cost
at a given node is the lowest cumulative cost of the 3 nodes that connects to it
plus the static cost of the node itself. Figure 6.2(a) shows the cumulative cost
of the matrix from Figure 6.1(a). For each node a pointer to the predecessor
node with the lowest cost is saved. The optimal path is found by tracing back
through these pointers starting at the last row. Figure 6.2(b) shows the optimal
path of the example matrix.

To apply dynamic programming to find an optimal path in an image the values
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in the test matrix are simply replaced by the pixel values of the image. In
the programs used for this project dynamic programming has been used to
find paths with maximum cost instead of minimum cost. This has been more
intuitive to work with and all following results will be based on maximum cost
optimal paths.

The dynamic programming as presented here only finds optimal paths through
columns, thus in effect only a 1D search. The paths we seek are however the
outlines of the SAT and VAT areas and these are closed contours. To make the
data suitable for dynamic programming a spatial transformation is applied.

(a) (b)

Figure 6.2: (a) the accumulated cost matrix computed from the matrix on
Figure 6.1(a). (b) The optimal path through the matrix found by tracing back
through the cumulative cost matrix.

6.2 Transforming the MR image data

To transform the data to a form well suited for dynamic programming a po-
lar transformation is applied. The transformation is done by sampling along a
number of spokes evenly distributed on a circle. During the transformation the
samples along a spoke becomes a column in the transformed image matrix, one
column for each spoke. The principle is illustrated on Figure 6.3. The trans-
formation is defined by 3 parameters. The center of the circle xc, the radius of
the circle dc and the angular resolution of the spokes Ns. Note the coordinate
system used, shown on Figure 6.3(b). The first column in the transformed ma-
trix is thus from the spoke at 0, while the center column is from the spoke at
π. Samples are taken from the outside and in, meaning that the first row in
the transformed matrix corresponds to samples on the circle and the last row
corresponds to samples at the center of the original image. Since the sampling
location will not generally be in the center of a pixel, bilinear interpolation is
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used when extracting the intensities.

(a) (b)

(c)

(d)

Figure 6.3: (a) The principle of the sampling along spokes in a circle. 20 spokes
are shown (in red) and the circle (in blue) has a radius of dc = 95 pixels. (b)
The polar coordinate system. (c) The result of the transformation of the image
using Ns = 600 spokes. (d) The result of applying a difference filter to each
column.

The form of the image is now well suited for dynamic programming since the
wanted outlines can be traced as going from the first column to the last. The
values in the matrix are however not suitable. By applying a difference filter
across each column in the matrix a suitable image emerges. The difference
filter simply computes the difference between two neighboring rows in a column:
X(2)−X(1) X(3)−X(2)...X(dc)−X(dc − 1) where X(i) is the value at row
i of a given column. The result can be seen on Figure 6.3(d). In this filtered
image, edges that represent a move from high to low intensity will have a low
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value, and edges representing a move from low to high intensities will have a
high value. The vertical location of each column that best matches the SAT
and VAT borders can now be easily identified as ridges or valleys running from
left to right in the filtered image.

Because a connected circular contour in the image is sought it is important that
the optimal path found starts and ends on the same matrix row. To achieve
this, an amount of repetition is added at each end of the matrix. An example
can be seen on Figure 6.4. A repetition of 100 columns at each end of the
matrix ensures that the optimal path found will pass through the same row at
each end of the original matrix. All dynamic programming done for this project
incorporates a repetition of 100 columns at each end of the matrix. All results
shown will be of paths where the repetitions have been used but removed again
to show only the resulting path on the unique part of the matrix.

Figure 6.4: The transformed image with 100 columns of repetition added at
each end of the matrix. The blue lines mark the extend of the original matrix.

The use of dynamic programming has usually been coupled with the design of
domain-specific cost functions. This approach attempts to guide the dynamic
programming optimal path using a complex cost function that is the sum of
many individual terms. These terms include gradient terms, terms used to
control contour stiffness, terms used to attract the contour to certain intensity
levels as well as a number of imaginative domain specific terms. For instance
Aboutanos [9] uses a six term cost function. The problem with these many
terms are that they need to be carefully balanced against each other to give
good results, and might fail if for instance the global intensity level of the images
changes. The approach that will be used here will be to only use the gradient
as the cost function. The guidance of the dynamic programming will instead be
done by applying constraints to the path. This will happen through the use of
the shape points found in the previous chapter but also by other means as will
be described below. This will make the solution much more robust to global
intensity changes and images that generally are extraordinarily different from
the norm. In the following the approach used to find the outline of each of the
3 wanted image structure borders will be described individually. The external
SAT border the internal SAT border and the VAT area border.
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6.3 The external SAT border

The external SAT border is found by dynamic programming. The shape points
from shape 1, found using ASM, are used to define the transformation of the
original image. Note that only the first 32 points from shape 1 are used since
they mark the outline of the desired region. The center of the transformation
circle is set halfway between the extremities of the points that make up the
shape. Let Cs,Ce, Rs and Re be the start and end extremities of columns and
rows respectively for the shape points. The center of the transformation is then
found as

xc =
[

Ce+Cs
2

Re+Rs
2

]
(6.2)

The radius of the transformation is set at half the norm of the range of the
shape points:

dc = 0.5 · norm
(
Ce − Cs
Re −Rs

)
(6.3)

The angular resolution of the spokes is set at Ns = 720. The steps involved in
the constrained dynamic programming search can be seen on Figure 6.5. The
shape points are transformed with the image. The transformed points are used
as soft constraints, meaning that the path is not forced through each shape point
but rather highly encouraged to do so. This is done by adding a high value to the
cost of matrix indices that are close to or coinciding with the shape points. The
value added could for instance be 106, where the typical cost of a matrix value
is in the range [−1 : 1]. A range of row indices are used to form a constraint
range rc pixels on either side of of the shape point instead of a single constraint
point. The magnitude of the added cost should be several orders of magnitudes
higher than the typical cost of a matrix index. This will in effect ensure that
the optimal path always will pass through all constraints if not limited by the
connectivity in the matrix. Thus if two neighboring constraints are too far
apart that the path can not pass through them both, the optimal path will pass
through the constraint that gives the overall highest cost. An example of the
constraint ranges is shown on Figure 6.5(e). For all shape constraints rc = 7
has been used.

The external SAT border will generally be the most significant ridge in the
difference filtered image. The constraints are thus most often not needed to
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(a) (b)

(c)

(d)

(e)

(f)

Figure 6.5: (a) Slice 5 from Patient 4954. (b) The result of the dynamic pro-
gramming on the image. (c) The transformed image. (d) The transformed image
after the difference filter has been applied. (e) The constraints introduced by
the ASM. The red dots are the shape points, and the blue dots indicate the
range that the path is constrained to. (f) The optimal path found through the
transformed image using the constraints.

ensure that the correct ridge is found. This was used to identify the region of
interest during the bias correction stage where no constraints were available.
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The reason why this same outline is found again here using the constraints is
simply to add another level of robustness to the segmentation.

6.4 The internal SAT border

The internal SAT border is found in much the same way as the external SAT
border. The transformation is done using the 40 points from Shape 1 that
outline the internal SAT border, while assigning xc and dc in the same way
as for the external SAT border. The angular resolution of the spokes is set at
Ns = 720. Since the outline of the internal SAT area is a valley on the difference
filtered transformed images a simple sign change is done on the filtered images
before maximum cost dynamic programming is used.

To ensure that the path follows the wanted outline tightly a new set of con-
straints are introduced. The constraints utilize the classification that was al-
ready obtained from Chapter 4 (FCM). The idea is that the optimal path of the
internal SAT outline always will be at the immediate end of an extensive area
with adipose tissue.The FCM classification will be used to find these locations.
The constraint points are found in the following way.

1. Transform the classification map along with the image. The results can
be seen on Figure 6.6.

2. For each column in the transformed classification matrix find the first row
that corresponds to an adipose tissue classification. From this row location
search downwards in the column until the last uninterrupted adipose pixel
is found. Save this row number as rla.

3. If the next two underlying row indices (in the same column) following rla
are not classified as adipose tissue a hit is found and a constraint point is
added at rla and rla + 1. If one of the next two row indices in the column
are classified as fat no constraint is added.

The area close to the bellybutton has very bad image quality and thus gives a
possibly incorrect FCM classification. This results in classifications where the
SAT area and the VAT area are connected with adipose tissue classifications, see
Figure 4.7(e) for instance. Since the method for obtaining constraints described
above will give undesired results when used on these kinds of images the search
for constraints are not performed in this area. This corresponds to excluding
spokes from 3π/4 to 5π/4 (see Figure 6.3(b)). The constrains added in this way
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Figure 6.6: (a) The result of the FCM classification. Red is adipose tissue, green
is other tissue and blue is void. (b) The transformed classification image. The
data is slice 5 from 4954.

can be seen on Figure 6.7. The new constraints are used as soft constraints
together with the constraints from the shape points. Meaning that a high cost
(103 for instance) is added at the constraint locations. The cost added at the two
constraint types are balanced so that the shape point constraints have a much
higher value added than the new constraints. This in effect gives a priority
system where the path will follow the shape point constraints primarily, but
given that the new constraints are within the shape constraints the path will
follow the new constraints. The optimal path found on slice 5 from patient 4954
can be seen on Figure 6.7(b).

6.5 The VAT border

The dynamic programming is done on two different image transformations. One
with the center in the middle of the VAT area (the V ATdp) and another smaller
one with its center in the spine area (the SPdp). The points used as constraints
are the last 27 points from Shape 2. Figure 6.8 shows the constraint points used
for the V ATdp and the SPdp. Note that all points from the shape are not used,
since some of these will cause an overlap in constrains when the transformation
is applied.

The transformation parameters xc and dc for the SPdp are assigned in the same
way as for the SAT borders. For the V ATdp Rs (the start row index) is taken
from the internal SAT shape points. The computations of the parameters are
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Figure 6.7: (a) The new constraints that are added. The constraint points are
yellow dots. (b) The optimal path found using both the shape point constraints
and the new constraints. The data is slice 5 from patient 4954

otherwise the same. The angular resolution of the spokes is set at Ns = 600 for
the V ATdp and at Ns = 360 for the SPdp.

(a) (b)

Figure 6.8: (a) The 27 shape points that make out the VAT area outline. (b)
The points used for the two rounds of dynamic programming. Green points are
the constraint points for the V ATdp and the blue dot (located just over the top
most yellow point) is the center of the spokes transformation. Yellow points are
the constraint points for the SPdp and the red dot is the center of the spokes
transformation.
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Since only shape constraint points are available for the lower part of the VAT
area, a way of guiding the V ATdp path at the upper part is needed. By observing
the MR image data it is observed that the border of the VAT area always is
near the internal SAT border near the bellybutton. This is utilized to apply
a constraint to the optimal path. Within a given spokes range a valid path
location is defined as being a maximum of dmax pixels away from the internal
SAT border found above. A mask is created where valid path locations are
given the value 1 and invalid path locations are given the value 0. The valid
path locations mask is multiplied with the difference filtered image to give all
invalid locations the value 0. The method is shown on Figure 6.9. dmax = 8 is
used and the spokes range are those corresponding to the angular range of 3π/4
to 5π/4.

(a)

(b)

(c)

(d)

Figure 6.9: (a) The transformed image. (b) The transformed image with the
difference filter applied. (c) The mask with valid path locations shown as white.
(d) The difference filtered image multiplied with valid path locations mask.

To control the general direction of the optimal path in the lower area between
the shape constraint points one extra constraint point is added. This point is
the center of the SPdp transformation (the red point on Figure 6.8(b)). The
bottom yellow point on the same figure is the extra point added to the SPdp
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constraint points. This point is placed halfway between the center of the SPdp
transformation and the highest valued row index of the internal SAT path.
These last two constraint points are placed to make the path of the SPdp and
the V ATdp overlap. This will prove beneficial in the last part of the segmentation
process described in the next chapter. The results of the V ATdp and the SPdp
are shown on Figure 6.10.

Figure 6.10: The result of the SPdp and the V ATdp. yellow is the VAT outline
and green is the spine area outline. The image is slice 5 from patient 4954.
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6.6 Constraints on other slices

The methods described in the last 3 sections have all concerned finding border
outlines in a specific slice of the patient, where the shape points where available.
In the rest of the slices of the patient there are no shape points available though.
Instead the fact that neighboring slices are acquired only 10 millimeters apart is
used. The borders outlines of the image structures thus change little from one
neighboring slice to the next. This is utilized for constraining the paths in all
other slices of a patient. The approach is as follows:

1. Find the outlines of structures in the middle slice (Sm) of the anatomically
bounded volume using the shape point constraints as described above.

2. Use all the points that make up the outlines of Sm to form constraints for
finding paths in slice Sm − 1 and Sm + 1.

3. Keep propagating outwards from the middle slice while using constraint
points acquired from the neighboring slice until the start and end slice
is reached. That is, for a slice number Si where Si > Sm, constraints
are acquired from slice Si − 1. For a slice number Sj where Sj < Sm,
constraints are gotten from slice Sj + 1.

All the transformation parameters are computed from the constraint points in
the same way as for the middle slice. Instead of having just 32 constraint
points for the external SAT outline 720 are now available corresponding to the
spokes resolution of the external SAT outline in the neighboring slice. The
extra constraints that are applied for the middle slice are applied in exactly the
same way for the other slices and with the same settings. Figure 6.11 shows the
constraints and the resulting optimal paths on slice 6 from patient 4954.

It should be noted that another method for adding constraints on other slices
was planned at first, but had to be discarded due to time limitations at a late
stage. This method was based on building multiple shape models at 5 different
depth levels of the anatomically bounded unit. The constraint points for each
slice would then be calculated using the ASM model at the depth level that had
the closest distance to the depth level of the slice. The annotation of landmarks
on 11 images at 4 new depth levels is a big task and since the method used in
the project gives good results the time was better spent focusing on other parts
of the project. This does not mean that the method of using constraints from
the neighboring slices gives bad results. It would however have been the more
elegant solution to use the 5 levels of shape models and provide for another level
of robustness.
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Patient: 4954, Slice: 6

Figure 6.11: The outlines found on slice 6 from patient 4954 using the outlines
from slice 5 as constraints. Red is the external SAT outline, blue is the internal
SAT outline, yellow is the VAT outline, green is the spine area outline and
magenta are the constraint points.
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6.7 Results

The main advantage of using constraints to guide the dynamic programming is
that it adds some high level structural information about the shape of wanted
structures to an inherently low level method. Without the constraints the dy-
namic programming becomes easily breakable by strong edges in unexpected
locations. This is especially true given the overall structure of the MR image
data. It is not uncommon to see the desired outline have blurred edges while a
random void hole in the visceral area have a very strong edge. This will lead
to the optimal path passing along the strong edge of the random void hole in-
stead of the blurred outline of the desired edge. The shape points found using
ASM further makes for an easy and robust way of automatically setting the
parameters for the polar transformation of the images.

Figure 6.12 shows the result of the dynamic programming on patient 4953, 4955
and 4958. Note that these patients are not chosen because they give either
particularly good or bad results. They are the next numbered patients in the
test set following the patients that were used to train the shape models. The
external SAT outline (red) and the spine area outline (green) gives results that
closely match what would be expected by visual inspection. The outlines of the
internal SAT border is quite good overall except the area near the bellybutton.
The image quality in this area is very poor and suffers from noise, blurriness and
artifacts introduced by the image acquisition process. The poor quality results
in a general lack of clearly identifiable edges that the path can follow, or in some
cases strong edges introduced by artifacts. The result is that the outline of the
internal SAT border will be somewhat random in this area on some images, but
still constrained by the shape points. This effect translates over to the VAT
outline as well since it is constrained by the internal SAT outline in this area.

The results of the dynamic programming are generally good across the patients
in the test set and the method is robust. The main inaccuracies are tied to the
path of the internal SAT border near the bellybutton area.
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Patient: 4953, Slice: 4

(a)

Patient: 4953, Slice: 4

(b)

Patient: 4955, Slice: 4

(c)

Patient: 4955, Slice: 4

(d)

Patient: 4958, Slice: 5

(e)

Patient: 4958, Slice: 5

(f)

Figure 6.12: The outlines found on the middle slice of 3 patients. The first
column is the bias corrected images and the second column is the same images
with the outlines superimposed. Red is the external SAT outline, blue is the
internal SAT outline, green is the VAT outline and yellow is the spine area
outline.



Chapter 7

Set operations and
connectivity

The final segmentation of each slice into the 3 desired classes, SAT, VAT and
Other Tissue (OT from now on) will be described in this chapter. The approach
used combines the results from the FCM (Chapter 4) and the dynamic program-
ming (Chapter 6). First the set operations that are used will be described and
afterwards a description of how connectivity is utilized to improve the results
will be given.

7.1 Set operations

The 4 outlines found in the previous chapter, the external SAT outline, the
internal SAT outline, the VAT border outline and the spine area outline, are
used to construct 4 binary masks. Each mask is constructed by defining a
polygon that goes through each point that makes up an outline. All pixels
inside or on this polygon are given the value 1 and all pixels outside are given
the value 0. The result can be seen on Figure 7.1. The 4 masks will be denoted
MROI , MinSAT , MV AT and MSP for the external SAT outline, the internal
SAT outline, the VAT outline and the spine area outline respectively. The SAT
area and the VAT area masks can be extracted from these 4 masks using simple
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boolean operators.

Patient: 4954, Slice: 5

(a)

Patient: 4954, Slice: 5

(b)

Patient: 4954, Slice: 5

(c)

Patient: 4954, Slice: 5

(d)

Patient: 4954, Slice: 5

(e)

Figure 7.1: The construction of the 4 sets. (a) The outlines computed by
dynamic programming. (b) The region of interest (ROI) mask, MROI . (c) The
internal SAT mask, MinSAT . (d) The VAT mask, MV AT . (e) The spine area
mask, MSP

SAT

The SAT area is computed by using the exclusive or operator, XOR:

MS = XOR(MROI ,MinSAT )
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VAT

The VAT area is computed in three steps. First, the common area of MV AT

and MSP is computed:

Mcom = XOR(MV AT ,MSP )

Second, the area that is exclusive to MSP is computed:

Mex = AND(Mcom,MSP )

Finally the VAT area is computed:

MV = XOR(Mcom,Mex)

The resulting two masks are shown on Figure 7.2

Patient: 4954, Slice: 5

(a) (b)

Figure 7.2: (a) The bias corrected image. (b) The two masks created by the
set operations. The green area is the MS mask and the orange area is the MV

mask.

To get the initial segmentation of the slice the FCM classification (see Fig-
ure 7.3(a)) of the slice is combined with the two masks on Figure 7.2(b). Since
the outlines for the external and internal SAT were found to be both robust
and accurate all voxels that coincide with the MS mask are classified as being
SAT. Thus no consideration of FCM classifications is done in this area. The
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FCM classifications are however used indirectly since they were used to form
the constraints on the path of the internal SAT border. The FCM classification
will sometimes classify a small number of single voxels within the SAT area
as being a non adipose tissue class. This classification is generally wrong and
due to noise in the original image or shortcomings of the bias correction. By
assigning all voxels that coincides with the MS mask as SAT these erroneous
voxels are correctly classified.

To determining the classification of adipose tissue in the VAT area, the boolean
AND operator is used with the adipose tissue class of the FCM classification as
the first argument and the MV mask as the second argument. The result is that
all voxels classified as adipose tissue by the FCM classification that coincide
with the MV mask are classified as VAT. In contrast to what was done with
the SAT classification the FCM classification is heavily utilized here. This is
necessary since the MV mask only defines the outline of the VAT area. The
VAT area itself might contain only small amounts of adipose tissue. The result
of this initial segmentation is shown on Figure 7.3(b) for slice 5 of patient 4954.

(a) (b)

Figure 7.3: (a) The FCM classification of slice 5 from patient 4954. Blue is void,
red is adipose tissue and green is other tissue. (b) The initial segmentation. Dark
blue is void, light blue is other tissue classified by FCM, green is SAT, orange
is VAT and red is adipose tissue classified by FCM.

The result looks promising, but there are a few areas that could be improved.
The first troublesome area is indicated by the two arrows on Figure 7.3(b).
These side lobes of adipose tissue should be classified as VAT. This problem
originates from the dynamic programming where the optimal path is unable to
follow the outline here because no edge is present. The second troublesome area
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is indicated by the ellipse. Here two small areas have been wrongly classified
as VAT. The problem is due to the MV AT and MSP masks not having enough
overlap. This results in the MV mask being too large and thus some non VAT
voxels are included in the segmentation. The third troublesome area is indicated
by a box on the figure. This problem is less severe and consists of a number
of voxels near the internal SAT border that are classified as adipose tissue by
the FCM classifier. These should have been included in the SAT class. This
problem exist all along the internal SAT border but is most severe in the boxed
area.

7.2 Connectivity

By utilizing the structure of the FCM classified adipose tissue voxels a way to
rectify the three troublesome areas is sought. The structure property that is
utilized is that of connectivity.

Let two voxels be neighbors if they are located in the same image plane and
have either the same row number and neighboring column numbers or the same
column number and neighboring row numbers. Let two voxels of the same class
be connected if it is possible to reach voxel one from voxel two by only traversing
voxels of the same class that are all neighbors to an already traversed voxel.
This corresponds to normal 4-neighbor connectivity. A connectivity labelling
of a boolean class image is done by assigning each body of connected voxels a
unique class. A connected body is the collection of voxels that are all connected.

The boolean image is constructed from the FCM classification of the image
using a high εsm value. Recall that εsm was the parameter used to specify the
amount of similarity needed to classify a voxel as a certain class by the FCM.
By assigning εsm a value higher than 0.5 only voxels that are very similar to the
class centroid will be classified as that class. To form the boolean image needed
for the connectivity labelling FCM is performed on the image with εsm = 0.7 for
the adipose tissue class. The boolean image can be seen on Figure 7.4(a) The
reason the normal FCM classification is not used is that since the connectivity
labelling will be used to add voxels to the SAT and VAT classes, only voxels
that have a strong connectivity with these classes will be added. Furthermore,
all voxels added in this way are more likely to be true adipose tissue voxels. A
complete connectivity labelling (CLc) is constructed from this boolean image,
See Figure 7.4(b). Another reduced connectivity labelling (CLr) is constructed
as well where the boolean labels that do not coincide with the MinV AT mask
are removed. The reduced connectivity labelling can be seen on Figure 7.4(c).
Note how each body of connected voxels have a unique labelling corresponding
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to a unique collaring on the images. The 3 troublesome areas are corrected in
turn using this connectivity labelling.

(a) (b) (c)

Figure 7.4: (a) The labelling obtained by assigning all voxels with a similarity
measure higher than εsm = 0.7 to the adipose tissue class. (b) The connectivity
labelling of (a) denoted CLc. (c) the connectivity labelling of (a) after all voxels
not coinciding with the MinV AT mask have been removed, denoted CLr. The
data is slice 5 from patient 4954.

Adding the side lobes

First a mask that defines the area where the operation is valid is created, Mlobes.
The mask is needed since undesired bodies of connected voxels might otherwise
be added. The mask is constructed by excluding all voxels with a row number
lower than the minimum row number of the path of the spine area outline
that was computed previously (Section 6.5). Further voxels are excluded that
have column numbers between the column extremities of the spine area outline.
The mask is shown on Figure 7.5(a). The confines of the mask are chosen to
excluded all the small bodies of voxels below the spine area and the area near the
bellybutton that often has bad image quality. The operation that is performed
to add the side lobes is as follows:

1. For each body of voxels in CLr test if any voxels from this body are
included in the initial SAT classification.

2. If the test is positive add the voxels to the SAT class if they coincide with
the Mlobes mask defined above.
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In effect this identifies all bodies of voxels that have been cut away from the SAT
area by the MV mask and adds them to the SAT class if they match the mask
for the operation. The result of this operation can be seen on Figure 7.5(b).

(a) (b)

Figure 7.5: (a) The mask of the add side lobes operation. The mask is shown
in red. (b) The voxels added by the add side lobes operation. The voxels added
are shown in light blue
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Removing erroneous VAT voxels

A similar approach is used to remove the unwanted SAT classifications under
the spine area. A remove mask is defined (Mremove) by a polygon spanned
by four points. The upper two points are at the row location of the center
of the polar transformation for the spine area (See Section 6.5). The column
locations are the minimum and maximum column location of the spine area
outline respectively. The lower two points are the lower right and lower left
corner of the image respectively, see Figure 7.6(a). The confines of the mask are
chosen to only include the area below the spine area where small bodies of voxels
that are FCM classified as adipose tissue often are present. The operation that
is performed is very simple.

All bodies of small connected voxels in CLr that have already been classified
as VAT are removed if they coincide with the Mremove mask. A small body
is defined as a body consisting of less than 30 voxels. This works because the
adipose tissue surrounding the area under the spine is very homogeneous and
usually consists of bodies several hundred voxels in size. Thus any small body
in this area must be an unwanted VAT classification and can safely be removed.
The result can be seen on Figure 7.6(b).

(a) (b)

Figure 7.6: (a) The mask of the remove erroneous VAT operation. The mask
is shown in red. (b) The voxels removed by the operation. The voxels removed
are shown in light blue
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Adding small bodies of SAT voxels

The operation used to add the small bodies of adipose tissue near the internal
SAT border to the SAT class is very simple. It operates on CLr, but the bodies
are recalculated taking into account the changes that were made when the side
lobes were added. The operation adds small bodies from CLr to the SAT class
if these bodies coincide with a body in CLc where at least one of the voxels has
a SAT classification. In other words, it adds small bodies adipose tissue voxels
that got separated from the subcutaneous area by the MS mask to the SAT
class. A small area is defined as being a body of voxels consisting of less than
10 voxels. This will ensure that all the small bodies of voxels adjacent to the
internal SAT border are added to the SAT class. At the same time no big bodies
will be added. This is especially critical near the belly button area where large
bodies of voxels that are neither classified as SAT or VAT often are present.

(a) (b)

Figure 7.7: (a) The voxels added by the add small bodies operation. The voxels
added are shown in light blue. (b) The final segmentation after the operations
on all 3 troublesome areas have been performed. Dark blue is void, light blue is
muscle classified by the FCM, red is adipose tissue classified by the FCM, green
is SAT and orange is VAT.

After the 3 operations are carried out the final segmentation is the result. Fig-
ure 7.7(b) shows the end result on slice 5 on patient 4954. Note that the 3 final
segmentation classes: SAT, VAT and OT (Other Tissue) are extracted from the
final result in the following way. The SAT and VAT classes corresponds to the
SAT and VAT classes on Figure 7.7(b). The OT class is the combination of all
other classes inside the region of interest defined by the outline of the SAT area.
That is, the OT class is the combination of the dark blue, light blue and red
areas on Figure 7.7(b) inside the region of interest.



94 Set operations and connectivity

7.3 Results

The removal and adding of voxels to the SAT and VAT class does generally
give good results. The side lobes that can not be classified to VAT right away
by the set operations are added using the connectivity instead. This operation
has the potential to include large possibly unwanted bodies of voxels into the
VAT class. There are a number of factors that greatly lessen the likeliness of
this happening. First, the operation is only performed on a reduced area due
to the introduction of the Mlobes mask. Secondly, a FCM classification with a
high required similarity measure is used. This combined with the fact that only
4 neighborhood connectivity is used (and not 8) means that only voxel bodies
that are strongly connected with the main VAT area will be added. The side
lobes operation gives good results on the current data. Further constraints on
when the operation should be allowed might be needed if the quality of images
in future data should worsen significantly. The operations for the removal of
erroneous voxels from the VAT class and the adding of small bodies of voxels
to the SAT class are safe to use and give good results.

The final segmentation result on the middle slice of patient 4953, 4955, 4958
can be seen on Figure 7.8. The final segmentation result will be evaluated in
the following chapter.
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Patient: 4953, Slice: 4

(a)

Patient: 4953, Slice: 4

(b)

Patient: 4955, Slice: 4

(c)

Patient: 4955, Slice: 4

(d)

Patient: 4958, Slice: 5

(e)

Patient: 4958, Slice: 5

(f)

Figure 7.8: The results of the final segmentation on the middle slice of 3 patients.
The first column is the segmented image and the second column is the unaltered
original MR image.
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Chapter 8

Final results

Since no ground truth is available it is not possible to give a simple measure
for the overall accuracy of the results on all slices of all patients. Instead the
final segmentation result of the middle slice from all 80 patients in the test set
is included in Appendix D. Only the middle slice from each patient is presented
since presenting all slices of 80 patients would take up too much space. The
middle slice is the most important slice since it is the basis of the segmentation
of all other patient slices. Each segmentation result is presented next to the
biased original MR image. This allows for the robustness and accuracy of the
segmentation to be assessed as a whole, including the bias correction step.

By looking at the results as a whole, the results seem to be quite close to the
segmentation one might do if the task was to be performed manually. The writer
of this report is not trained in the manual segmentation of MR images, but
showing the final results to Kristian Wraae resulted in an enthusiastic response.

The segmentation has one main troublesome area. The area around the belly-
button has proven to be very hard to segment properly. This is due to the very
bad image quality that characterize this area. The area will often be one large
cluster of voxels classified as adipose tissue after the FCM has been done. This
area often extends well into both the subcutaneous and visceral area. This makes
it hard to separate these two regions even by visual inspection. Many different
methods have been tried to segment this area but none were found that worked
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better than letting the dynamic programming find the optimal path through
the area. Another problem is the adding of the side lobes with the connectivity
operation. This operation sometimes gives questionable results. As an example
the side lobes that are added on slice 5 from patient 4958 (See Figure 7.8(e))
can be discussed if they should be included as SAT tissue VAT tissue or neither.

The main strength of the segmentation lies in the robustness of the segmenta-
tion. Even though the accuracy varies from image to image the overall correla-
tion between the result of the automatic segmentation and the segmentation one
could imagine being done by hand seems high across all images in the test set.
This is partly attributed to a well working bias correction resulting in a good
FCM classification. Partly to the introduction of ASM acquired constraints to
the dynamic programming.

Appendix C contains the combined results for the distribution of tissue of all
slices in the anatomically bounded unit for each patient. The tables contain
information about the total volume of the anatomically bounded unit and the
distribution of tissue on the 3 classes: SAT, VAT and OT. These correspond to
the percentage of subcutaneous adipose tissue, visceral adipose tissue and other
tissue.



Chapter 9

Conclusion

This report has described an approach for implementing a pipeline for the au-
tomatic segmentation of adipose tissue in MRI data. The Segmentation was
done into the 3 classes: subcutaneous adipose tissue, visceral adipose tissue
and other tissue. The segmentation was done using a range of different image
analysis techniques.

A novel way of sampling high intensity voxels was developed. This method
samples high intensity voxels evenly distributed across the patients anatomy.
The method worked well in providing a good sampling of the bias field across
the entire volume.

The estimation of the bias field was done over the entire volume using Thin
Plate Splines extended to 3D. The method allows for a smoothing interpolating
surface. The degree of smoothing was controlled using the notion of effective
degrees of freedom. The bias correction was overall very successful in making
the intensities of adipose tissue across the image uniform.

The initial classification of each voxel was done using Fuzzy c-mean clustering.
This method proved to be very accurate in determining the threshold between
intensities of adipose tissue and intensities of other tissue when used on the
unbiased data. The method is completely automatic and finds the optimal
intensity threshold that best segments the data without any parameter tuning.
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The borders of the subcutaneous area and the visceral area were identified using
Dynamic Programming constrained by points acquired from an Active Shape
Model (ASM). The shape points acquired from the ASM were very robust in
outlining the general location of image structures but the points did not follow
the borders accurately. The Dynamic Programming is generally not very robust
but is quite accurate when it works. By combining the two methods a both
accurate and robust result was obtained where the weakness of one method is
covered by the strength of the other.

A last step was performed to improve a number of minor misclassifications
inherited from the Dynamic Programming result. The concept of connectivity
was used to add and remove voxels near the border of the class regions. The
technique introduced some potential inaccuracies but did overall improve the
result.

The complete pipeline is overall robust to the great variations of anatomy of the
patients. This is to a large degree attributed to the use of methods that require
a minimum of data specific parameters to be set.

Since no ground truth is available an exact measure for the accuracy of the final
results can not be given. The overall accuracy has however been assessed by
visual inspection of the results on over 80 randomly picked patients presented
in Appendix D. The results were found to be good and a positive response was
received from Kristian Wraae (The PhD student that will be using the results
to assess adipose tissue in his project).



Appendix A

Program overview

The program that performs the segmentation has been implemented using MAT-
LAB. This appendix will give an overview of the program structure. The most
important files and their functionality will be listed. These files are available on
the CD that accompanies the report. An indent indicates that the indented file
name is a subfunction of a file above.

mainPreprocess - sorts and orders all the DICOM files into a separate data
structure for each patient. The script calls correctbias3d when all data struc-
tures have been build.

correctbias3d - performs all the preprocessing for each patient by calling
findbiasfat and tpssmooth.

findbiasfat - finds the samples for each slice that are to be used to
estimate the bias field.
tpssmooth - calculates an estimate of the bias field by using the
samples from findbiasfat.

annotate - an interactive script that allows for the annotation of landmarks on
the training set. The building of the shape and intensity models can be initiated
from this script.
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buildgradientmodel - builds the model of the gradients along the pro-
files.

buildshapemodel - builds the model of the shape variation.

batchrun - performs the segmentation on all slices for each patient by calling
a number of subfunctions.

fuzzycmean - performs the fuzzy c-mean clustering on a slice.

fitshape - uses the shape model to find a number of points that outline
the desired image structures.

dpfromshape - performs the transformation of the image and finds the
optimal path using dynamic programming.

setoperations - performs the set operations and the connectivity opera-
tions.



Appendix B

The training set

Below are the 11 images that make up the training set. They are used to train
the model used by the Active Shape Model in Chapter 5.
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Patient: 4950, Slice: 5

(a)

Patient: 4951, Slice: 5

(b)

Patient: 4952, Slice: 5

(c)

Patient: 5003, Slice: 4

(d)

Patient: 5047, Slice: 4

(e)

Patient: 5051, Slice: 4

(f)

Figure B.1: images annotated with landmarks that make up the training set.



105

Patient: 5052, Slice: 4

(a)

Patient: 5097, Slice: 4

(b)

Patient: 5365, Slice: 4

(c)

Patient: 5485, Slice: 4

(d)

Patient: 5954, Slice: 8

(e)

Figure B.2: images annotated with landmarks that make up the training set.
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Appendix C

Volume results

Below are the results of the distribution of adipose tissue types in each patient
volume. The values are obtained by counting the total number of voxels of
each class for each slice in the anatomically bounded volume in each patient.
These numbers are then multiplied by the dimensions of each voxel to obtain the
volume results. The number of voxels in each class are computed from images
with the same labelling as the image in Appendix D. The distributions for SAT
and VAT are computed by counting the number of green and orange labels in
the segmentation results. The distribution of OT (Other Tissue) is computed
by counting all dark blue, light blue and red labels within the confines of the
patient boundary.
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Patient Total Volume (Liter) SAT VAT OT
4950 6.43 0.359 0.248 0.394
4951 5.85 0.301 0.222 0.476
4952 5.84 0.358 0.224 0.418
4953 4.60 0.308 0.202 0.490
4954 7.30 0.401 0.244 0.355
4955 4.76 0.266 0.201 0.533
4958 5.49 0.310 0.187 0.503
4996 11.57 0.207 0.322 0.470
4998 7.13 0.275 0.240 0.484
4999 5.38 0.237 0.172 0.591
5000 8.04 0.260 0.377 0.363
5003 4.98 0.214 0.385 0.401
5004 7.06 0.307 0.288 0.404
5045 4.61 0.220 0.251 0.529
5046 5.92 0.229 0.324 0.447
5049 5.31 0.403 0.199 0.397
5050 4.77 0.268 0.234 0.497
5051 5.31 0.217 0.360 0.423
5052 4.24 0.404 0.141 0.455
5094 7.26 0.333 0.280 0.388
5096 5.18 0.252 0.270 0.478
5097 4.43 0.209 0.223 0.567
5099 5.78 0.230 0.294 0.477
5100 6.55 0.236 0.291 0.473
5101 4.02 0.296 0.149 0.555
5145 5.20 0.187 0.349 0.464
5147 4.34 0.272 0.235 0.494
5149 5.77 0.301 0.316 0.382
5150 4.19 0.297 0.178 0.525
5197 7.00 0.333 0.219 0.448

Table C.1: The volume results of the segmentation for each patient. The first
column is the patient number. The second column is the total volume of the
anatomically bounded unit. The last three columns are the distribution of the
volume on the three classes SAT, VAT and OT (Other Tissue).
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Patient Total Volume (Liters) SAT VAT OT
5198 5.45 0.265 0.286 0.448
5247 7.07 0.411 0.232 0.357
5249 6.06 0.292 0.318 0.390
5251 4.83 0.334 0.234 0.432
5252 6.83 0.304 0.350 0.346
5254 5.11 0.255 0.212 0.533
5319 5.96 0.323 0.247 0.430
5321 4.85 0.252 0.276 0.472
5362 4.54 0.373 0.203 0.425
5365 3.65 0.250 0.257 0.493
5366 7.16 0.232 0.363 0.405
5367 6.62 0.289 0.295 0.417
5368 6.20 0.244 0.369 0.387
5371 6.80 0.383 0.235 0.381
5412 4.79 0.252 0.231 0.517
5415 5.70 0.264 0.343 0.393
5480 4.20 0.281 0.123 0.596
5482 5.39 0.232 0.314 0.453
5483 4.93 0.312 0.191 0.497
5484 4.55 0.287 0.228 0.485
5485 5.97 0.209 0.350 0.441
5486 4.87 0.380 0.190 0.430
5531 7.44 0.321 0.321 0.358
5533 5.75 0.327 0.295 0.378
5560 4.24 0.219 0.259 0.522
5565 7.79 0.354 0.248 0.399
5594 3.46 0.187 0.261 0.551
5598 5.97 0.299 0.232 0.469
5628 3.31 0.308 0.153 0.538
5631 2.94 0.179 0.253 0.568

Table C.2: The volume results of the segmentation for each patient. The first
column is the patient number. The second column is the total volume of the
anatomically bounded unit. The last three columns are the distribution of the
volume on the three classes SAT, VAT and OT (Other Tissue).
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Patient Total Volume (Liter) SAT VAT OT
5633 5.54 0.289 0.297 0.414
5718 4.20 0.295 0.186 0.519
5720 5.93 0.253 0.326 0.422
5721 4.93 0.313 0.229 0.458
5723 4.46 0.266 0.134 0.600
5725 6.55 0.219 0.386 0.394
5761 4.33 0.293 0.137 0.570
5763 4.77 0.266 0.221 0.513
5764 4.19 0.234 0.225 0.541
5765 5.58 0.322 0.218 0.460
5766 4.19 0.301 0.201 0.498
5768 4.69 0.273 0.176 0.550
5807 7.54 0.315 0.276 0.409
5846 6.40 0.257 0.303 0.440
5847 3.93 0.331 0.230 0.439
5849 4.69 0.348 0.176 0.476
5850 6.21 0.328 0.251 0.420
5885 4.62 0.270 0.241 0.490
5922 4.75 0.288 0.254 0.457
5924 5.47 0.334 0.266 0.400

Table C.3: The volume results of the segmentation for each patient. The first
column is the patient number. The second column is the total volume of the
anatomically bounded unit. The last three columns are the distribution of the
volume on the three classes SAT, VAT and OT (Other Tissue).
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Segmentation results

This appendix contains images of the results of the segmentation method de-
scribed in this report. The slices shown are the middle slice of all the 80 patients
in the test set. Each row of images consist of the segmentation result and the
original unaltered biased MR image from one patient. The color coding of the
segmentation is: green - SAT, orange - VAT, dark blue - void, light blue - other
tissue classified by the FCM method, red - adipose tissue classified by the FCM
method.
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Patient: 4950, Slice: 5

(a)

Patient: 4950, Slice: 5

(b)

Patient: 4951, Slice: 5

(c)

Patient: 4951, Slice: 5

(d)

Patient: 4952, Slice: 5

(e)

Patient: 4952, Slice: 5

(f)

Figure D.1: The final segmentation.
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Patient: 4953, Slice: 4

(a)

Patient: 4953, Slice: 4

(b)

Patient: 4954, Slice: 5

(c)

Patient: 4954, Slice: 5

(d)

Patient: 4955, Slice: 4

(e)

Patient: 4955, Slice: 4

(f)

Figure D.2: The final segmentation.
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Patient: 4958, Slice: 5

(a)

Patient: 4958, Slice: 5

(b)

Patient: 4996, Slice: 8

(c)

Patient: 4996, Slice: 8

(d)

Patient: 4998, Slice: 5

(e)

Patient: 4998, Slice: 5

(f)

Figure D.3: The final segmentation.
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Patient: 4999, Slice: 5

(a)

Patient: 4999, Slice: 5

(b)

Patient: 5000, Slice: 5

(c)

Patient: 5000, Slice: 5

(d)

Patient: 5003, Slice: 4

(e)

Patient: 5003, Slice: 4

(f)

Figure D.4: The final segmentation.
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Patient: 5004, Slice: 4

(a)

Patient: 5004, Slice: 4

(b)

Patient: 5045, Slice: 5

(c)

Patient: 5045, Slice: 5

(d)

Patient: 5046, Slice: 4

(e)

Patient: 5046, Slice: 4

(f)

Figure D.5: The final segmentation.
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Patient: 5049, Slice: 5

(a)

Patient: 5049, Slice: 5

(b)

Patient: 5050, Slice: 4

(c)

Patient: 5050, Slice: 4

(d)

Patient: 5051, Slice: 4

(e)

Patient: 5051, Slice: 4

(f)

Figure D.6: The final segmentation.
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Patient: 5052, Slice: 4

(a)

Patient: 5052, Slice: 4

(b)

Patient: 5094, Slice: 5

(c)

Patient: 5094, Slice: 5

(d)

Patient: 5096, Slice: 4

(e)

Patient: 5096, Slice: 4

(f)

Figure D.7: The final segmentation.
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Patient: 5097, Slice: 4

(a)

Patient: 5097, Slice: 4

(b)

Patient: 5099, Slice: 4

(c)

Patient: 5099, Slice: 4

(d)

Patient: 5100, Slice: 4

(e)

Patient: 5100, Slice: 4

(f)

Figure D.8: The final segmentation.
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Patient: 5101, Slice: 5

(a)

Patient: 5101, Slice: 5

(b)

Patient: 5145, Slice: 5

(c)

Patient: 5145, Slice: 5

(d)

Patient: 5147, Slice: 5

(e)

Patient: 5147, Slice: 5

(f)

Figure D.9: The final segmentation.
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Patient: 5149, Slice: 4

(a)

Patient: 5149, Slice: 4

(b)

Patient: 5150, Slice: 4

(c)

Patient: 5150, Slice: 4

(d)

Patient: 5197, Slice: 5

(e)

Patient: 5197, Slice: 5

(f)

Figure D.10: The final segmentation.
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Patient: 5198, Slice: 5

(a)

Patient: 5198, Slice: 5

(b)

Patient: 5247, Slice: 5

(c)

Patient: 5247, Slice: 5

(d)

Patient: 5249, Slice: 5

(e)

Patient: 5249, Slice: 5

(f)

Figure D.11: The final segmentation.
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Patient: 5251, Slice: 4

(a)

Patient: 5251, Slice: 4

(b)

Patient: 5252, Slice: 5

(c)

Patient: 5252, Slice: 5

(d)

Patient: 5254, Slice: 5

(e)

Patient: 5254, Slice: 5

(f)

Figure D.12: The final segmentation.
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Patient: 5319, Slice: 5

(a)

Patient: 5319, Slice: 5

(b)

Patient: 5321, Slice: 5

(c)

Patient: 5321, Slice: 5

(d)

Patient: 5362, Slice: 4

(e)

Patient: 5362, Slice: 4

(f)

Figure D.13: The final segmentation.
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Patient: 5365, Slice: 4

(a)

Patient: 5365, Slice: 4

(b)

Patient: 5366, Slice: 5

(c)

Patient: 5366, Slice: 5

(d)

Patient: 5367, Slice: 4

(e)

Patient: 5367, Slice: 4

(f)

Figure D.14: The final segmentation.
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Patient: 5368, Slice: 4

(a)

Patient: 5368, Slice: 4

(b)

Patient: 5371, Slice: 5

(c)

Patient: 5371, Slice: 5

(d)

Patient: 5412, Slice: 4

(e)

Patient: 5412, Slice: 4

(f)

Figure D.15: The final segmentation.
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Patient: 5415, Slice: 4

(a)

Patient: 5415, Slice: 4

(b)

Patient: 5480, Slice: 5

(c)

Patient: 5480, Slice: 5

(d)

Patient: 5482, Slice: 4

(e)

Patient: 5482, Slice: 4

(f)

Figure D.16: The final segmentation.
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Patient: 5483, Slice: 5

(a)

Patient: 5483, Slice: 5

(b)

Patient: 5484, Slice: 4

(c)

Patient: 5484, Slice: 4

(d)

Patient: 5485, Slice: 4

(e)

Patient: 5485, Slice: 4

(f)

Figure D.17: The final segmentation.
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Patient: 5486, Slice: 4

(a)

Patient: 5486, Slice: 4

(b)

Patient: 5531, Slice: 5

(c)

Patient: 5531, Slice: 5

(d)

Patient: 5533, Slice: 4

(e)

Patient: 5533, Slice: 4

(f)

Figure D.18: The final segmentation.
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Patient: 5560, Slice: 4

(a)

Patient: 5560, Slice: 4

(b)

Patient: 5565, Slice: 5

(c)

Patient: 5565, Slice: 5

(d)

Patient: 5594, Slice: 5

(e)

Patient: 5594, Slice: 5

(f)

Figure D.19: The final segmentation.
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Patient: 5598, Slice: 5

(a)

Patient: 5598, Slice: 5

(b)

Patient: 5628, Slice: 4

(c)

Patient: 5628, Slice: 4

(d)

Patient: 5631, Slice: 4

(e)

Patient: 5631, Slice: 4

(f)

Figure D.20: The final segmentation.
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Patient: 5633, Slice: 4

(a)

Patient: 5633, Slice: 4

(b)

Patient: 5718, Slice: 5

(c)

Patient: 5718, Slice: 5

(d)

Patient: 5720, Slice: 4

(e)

Patient: 5720, Slice: 4

(f)

Figure D.21: The final segmentation.
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Patient: 5721, Slice: 4

(a)

Patient: 5721, Slice: 4

(b)

Patient: 5723, Slice: 5

(c)

Patient: 5723, Slice: 5

(d)

Patient: 5725, Slice: 5

(e)

Patient: 5725, Slice: 5

(f)

Figure D.22: The final segmentation.
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Patient: 5761, Slice: 4

(a)

Patient: 5761, Slice: 4

(b)

Patient: 5763, Slice: 5

(c)

Patient: 5763, Slice: 5

(d)

Patient: 5764, Slice: 4

(e)

Patient: 5764, Slice: 4

(f)

Figure D.23: The final segmentation.
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Patient: 5765, Slice: 5

(a)

Patient: 5765, Slice: 5

(b)

Patient: 5766, Slice: 5

(c)

Patient: 5766, Slice: 5

(d)

Patient: 5768, Slice: 5

(e)

Patient: 5768, Slice: 5

(f)

Figure D.24: The final segmentation.
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Patient: 5807, Slice: 4

(a)

Patient: 5807, Slice: 4

(b)

Patient: 5846, Slice: 5

(c)

Patient: 5846, Slice: 5

(d)

Patient: 5847, Slice: 4

(e)

Patient: 5847, Slice: 4

(f)

Figure D.25: The final segmentation.
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Patient: 5849, Slice: 4

(a)

Patient: 5849, Slice: 4

(b)

Patient: 5850, Slice: 5

(c)

Patient: 5850, Slice: 5

(d)

Patient: 5885, Slice: 4

(e)

Patient: 5885, Slice: 4

(f)

Figure D.26: The final segmentation.
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Patient: 5922, Slice: 4

(a)

Patient: 5922, Slice: 4

(b)

Patient: 5924, Slice: 4

(c)

Patient: 5924, Slice: 4

(d)

Figure D.27: The final segmentation.
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