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Abstract

An imaging technology called Optical Coherence Tomography (OCT) has among
other places found its application within ophthalmology. OCT can produce high-
resolution cross sectional images of the internal microstructure of the retina. In
this thesis methods to reduce noise in OCT will be investigated. OCT images
are in particular affected by a type of noise called speckle that arise due to in-
terference. Three different types of diffusion are applied to single OCT images
to test its ability to reduce noise. None of the diffusion methods produce satis-
factory results, so an iterative method is developed that averages images taken
of the same retinal location. Each image is registered vertically and horizontally
to a template, before averaging is done. The method is robust to parametrical
changes, and the average image has significantly less noise than the originals.

Retinal OCT images taken of a pathology called macular hole, are investigated to
estimate descriptive parameters that could be relevant in evaluating the current
state of the pathology. Different descriptors are evaluated pre- and postopera-
tive. These descriptors are to be used in a case study at Herlev Hospital, where
different surgical techniques to treat macular hole are evaluated. The descrip-
tors can be extracted once a set of transitional layers have been located. They
are found automatically or semi-automatically. If these layers are determined in
OCT images scanning the retina at different locations, the neuroretinal thick-
ness can be represented as a surface map or 3D surface, in this way visualizing
the entire retina instead of slices of it.

Key words: OCT, optical coherence tomography, speckle, macular hole, regular-
ized dynamic programming, retinal layers, image registration, diffusion, active
contours, snakes
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Resumé

En visualiseringsteknologi kaldet optisk kohærens tomografi (OCT) har blandt
andet fundet sin anvendelse inden for oftalmologien. OCT kan producere højoplø-
selig tværsnitsbilleder af den indre mikrostruktur af nethinden. I denne rapport
vil metoder til at reducere støj i OCT blive undersøgt. OCT billeder er i særde-
leshed p̊avirket af en type støj kaldet speckle, som opst̊ar p̊a grund af interferens.
Tre forskellige typer diffusion er anvendt p̊a enkelte OCT billeder for at teste
deres evner til at reducere støj. Ingen af diffusionsmetoderne giver et tilfredsstil-
lende resultat, s̊a en iterativ metode er udviklet, som producerer et gennemsnit
af billeder taget af den samme nethinde position. Hvert billede er registreret ver-
tikalt samt horisontalt til en template, før gennemsnittet er taget. Metoden er
robust overfor ændringer i parametrene, og gennemsnitsbilledet har signifikant
mindre støj end de oprindelige.

OCT billeder taget af en patologi kaldet maculahul er undersøgt for at estimere
deskriptive parametre, som kan være relevante til at evaluere stadiet af pa-
tologien. Forskellige deskriptorer er evalueret præ- og postoperativt. Disse
deskriptorer skal anvendes i et casestudie p̊a Herlev Amtssygehus, hvor forskel-
lige operationsteknikker til at behandle maculahul undersøges. Deskriptorerne
kan bestemmes n̊ar et sæt af overgangslag er lokaliseret i billedet. Lagene er fun-
det automatisk eller semiautomatisk. Hvis disse lag er lokaliseret i OCT billeder,
der skanner nethinden forskellige steder, kan nethindens tykkelse repræsenteres
som et tykkelseskort eller 3D-overflade, og p̊a den måde visualisere hele nethin-
den i stedet for tværsnit af den.

Nøgleord: OCT, optisk kohærens tomografi, speckle, maculahul, regulariseret
dynamisk programmering, nethindelag, billedregistrering, diffusion, aktive kon-
turer, snakes
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Chapter 1

Introduction

For a number of serious eye diseases, the pathological changes are localized in
the retina, ie. the back of the eye where the light is focused. This is the case
for diabetes and glaucoma, but also less known diseases such as macular hole,
where a rupture happens in the central part of the retina. Since this is where our
sharpest vision is localized, a macular hole leads to a significant loss of vision,
including the ability to read on the affected eye. It is estimated that the disease
affects 1500 Danes a year [1].

At the ophthalmological department at Herlev Hospital there is a center for
surgical treatment of macular hole. It is one of the leading departments in
Denmark with approximately 100 surgeries a year.

Surgery is currently the only way to treat a macular hole that does not close
spontaneously. It was discovered in 1999 as reported in [2] that peeling of the
internal limiting membrane (ILM) on the retina has been found to be a way
to stimulate the wound healing. It is an extremely difficult procedure, but it is
made easier for the surgeons if the membrane is stained with the dye indocyanine
green (ICG). There are concerns that ICG may be toxic to the retina, but on
the other hand if the ILM is not peeled, there is a significantly higher risk of
the hole not closing. [3].
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The rate of hole closures is about 80%, when no peeling is done, and close to
100% when the ILM is peeled. Many experience an improvement in the visual
acuity, but for a part this does not happen, even though the hole has been closed.
The reason for this discrepancy between the anatomical and functional result
has not been understood and there is a need for predicting who will benefit from
an operation.

It is imperative that the surgeons have all relevant information available about
the patients condition before deciding whether or not to operate. This is where
a method called OCT finds its application. OCT stands for ”Optical Coherence
Tomography” and is a technique that was developed in the early nineties, first
reported in [4]. It is an imaging technology that produces high-resolution cross
sectional images of the internal microstructure of living tissue. OCT has many
similarities with ultrasonic imaging, with a major difference in source, where
coherent light is used instead of ultrasound.

The OCT system currently used at Herlev Hospital is a third generation product
from Zeiss, called StratusOCT. All OCT images in this thesis have been taken
with this system.

Two Ph.D. students at Herlev Hospital are currently performing a randomized
case study of different surgical techniques when treating a macular hole. Half of
the patients will have the ILM peeled, and the other half will not. A significant
evaluation method is OCT. To quantitatively be able to evaluate the changes
occurring in the retina, it is relevant to look at several measurable descriptors
in the OCT images. Deciding which descriptors could be interesting has been
done in collaboration with the two Ph.D. students at Herlev Hospital. As a part
of this thesis, software has been developed that finds these relevant descriptors
automatically or semi-automatically. This software is to be used as a tool for
these Ph.D. students during their following data analysis.

When making decisions based on an OCT image, it is of course beneficial to have
as little noise as possible in the image. This can reduce the uncertainty when
classifying a given pathology, but also lead to the visualization of minute details
and new insight. The amount of noise can be reduced even without altering the
system. This has been seen in a method developed at Risø based on averaging
several OCT images [5]. This way a type of noise known as speckle is significantly
reduced. This method does not work satisfactory on OCT images of macular
holes, so a new method to reduce speckle will be developed. Two approaches
will be taken to achieve this. One being processing a single image, and thereby
improving the quality, the other being an extension of the method developed at
Risø, where several images of the same area are combined to produce a single
image.
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The primary goal for the two Ph.D students at Herlev Hospital is to evaluate
the surgical results achieved with ICG assisted ILM peeling, vs. no peeling.
But during the case study insight about the pathogenesis of macular hole may
be gained. This could for instance be about which macular holes spontaneously
regress and which does not. Then surgery could be performed earlier in the ones
not expected to regress, and later in the ones that may regress.

1.1 Thesis Overview

This thesis is separated into four natural parts.

Part I - Background introduces OCT, the eye and dynamic programming

Part II - Image Enhancement describes the enhancement of OCT images
by use of diffusion and averaging of multiple images

Part III - Applications describes the extraction of the pre- and postoperative
descriptors and the interpolation of the retinal thickness

Part IV - Discussion sums up the thesis

1.2 Nomenclature

The most significant variables used in this thesis are listed below:

d(i, j) Distance to (i, j), ie. minimum length of paths ending at (i, j)
Eext External energy of snake
Eint Internal energy of snake
Esnake Energy of snake, ie. sum of Eext and Eint
I(i, j, t) Image - row, column, time
M Number of columns
N Number of rows
p Order of path, ie. max. vertical change between adjacent points
P Path through an image
Raibj (m) Raw cross-correlation of column i in a and j in b with shift m
V oli Estimate of volume of macular hole based on i OCT scans
λ Regularization parameter in regularized dynamic programming
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1.3 Abbreviations

All abbreviations used in this thesis are listed below:

CNR Contrast to Noise Ratio
ICG Indocyanine Green
ILM Internal Limiting Membrane
IS/OS Inner and Outer Photoreceptor Segments
OCT Optical Coherence Tomography
Pre-OMaH Tool Pre-Operative Macular Hole Tool
Post-OMaH Tool Post-Operative Macular Hole Tool
RNFL Retinal Nerve Fiber Layer
RPE Retinal Pigment Epithelium
SNR Signal to Noise Ratio



Part I

Background





Chapter 2

Optical Coherence
Tomography

The development of the laser in the 1960’s gave the physicians a new surgical
instrument. But most of the applications so far have not taken advantage of the
coherent properties of the laser, ie. it emits photons with the same wavelength,
phase and direction. Instead the laser is often used as a lighting or heating
source [6]. There are exceptions to this, and one of these is optical coherence
tomography (OCT), a high resolution cross-sectional imaging method. It has
the abilities to achieve a probing depth exceeding 2cm in transparent tissue, such
as the eye, and it is possible to visualize structure 1-2mm beneath the surface
in highly scattering tissues like skin [7]. This is possible with a transverse and
longitudinal resolution of a few micrometers [4].

The technique was extended for the first time from the 1D case of optical
coherence-domain reflectometry to 2D in 1991 as reported in [4]. Lately it has
been extended to the 3D case [8],[9], but the 3D-method has not been considered
ready for market, since no products have been launched yet.

A schematic OCT scanner is shown in figure 2.1. The central part is a fiber optic
Michelson interferometer, which is illuminated by a low-coherent, broadband
light source. The sample is placed at the end of one interferometer arm, and
a reference mirror at the other. The source field is split into a sample field Es
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Figure 2.1: Schematic OCT scanner. The source light is split into a sample and
a reference beam. Reflections from the two are combined and detected by a
photodiode.

and a reference field Er. After scattering back from some point in the sample,
the modified sample field E′s mixes with Er in the detector. This intensity Jd
depends linearly on the real part of the cross-correlation between E′s and Er.

Jd = 〈|Ed(τ)|2〉 = 0.5(J ′s + Jr) +Re〈E∗r (t+ τ)E′s(t)〉 (2.1)

Where J ′s and Jr are the mean intensities returning from the sample and ref-
erence arm of the interferometer. The first term on the right hand side in
equation 2.1 is of no interest, but the second term depends on the optical time
delay τ set by the position of the reference mirror. It is the term that carry
information about the tissue structure. The interference patterns formed de-
pends on the temporal and spatial coherence of E′s and Er. The interferometer
functions as a cross-correlator, and the amplitude of the interference signal after
integration on the detector provides a measure of the amplitude of the cross-
correlation, ie. it functions as a measure of a high reflection or back-scattering
at the current depth.

When the light source satisfies the quasimonochromatic condition, ie. its cen-
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ter frequency greatly exceeds its bandwidth, the correlation amplitude can be
expressed as

Re〈E∗r (t+ τ)E′s(t)〉 = |G(τ)|cos(2πν0τ + φ(τ)) (2.2)

Where |G(τ)| and φ(τ) are respectively the argument and phase of the complex
temporal coherence and ν0 is the center frequency of the source. The complex
temporal coherence does besides the sample also depend on the spectral shape
of the source. Broadband sources are desirable in OCT systems, since they
produce interference patterns of short temporal and spatial extent[6].

The OCT scanner performs multiple longitudinal scans at a series of lateral
locations to provide a 2D map of reflection sites in the sample. This is analogous
to ultrasonic pulse-echo imaging (B-mode scanning), with a major difference in
choice of source. This analogy has caused an analogy in terminology. An OCT
image is called a B-scan, and a single longitudinal scan is referred to as an
A-scan.

2.1 Speckle

As previously mentioned OCT is a method that relies on measuring the temporal
and spatial coherence of the signal reflected or backscattered from the sample. In
a highly scattering sample such as tissue, the coherence is also what gives rise to
speckle, a type of noise that reduce contrast and make boundaries between highly
scattering structures difficult to distinguish. The noise arise from interference
between coherent waves backscattered from nearby scatterers in the sample.

An interference pattern showing speckle is shown in 2.2(a). The image shows
the reflection from a stationary titanium block. An image with limited speckle
is shown in 2.2(b). The image is taken of the same block, but this time the block
was in motion. When the block is moving, the speckle pattern is changing, and
the 0.1s integration time has reduced the effect significantly.

The effect of speckle is well known in ultrasonic and radar imaging. It occurs
when waves from a coherent source encounters scatters separated by distances
near that of the coherence length of the source. Speckle is not truly a noise in
the typical sense. It is signal dependent and it carries information about the
sample being imaged.

Explained in greater detail, the intensity detected is a function of both the
phase and the amplitude of the complex temporal coherence, as was seen in
equation 2.2. It is the sensitivity to the phase that makes OCT susceptible to
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(a) Significant speckle (b) Limited speckle

Figure 2.2: (a) shows a speckle filled interference pattern. The image shows the
reflection from a stationary titanium block. (b) shows very limited speckle. The
image is taken of the same block, but this time the block was in motion. When
the block is moving, the speckle pattern is changing, and the 0.1s integration
time has reduced the effect. From [10].

the effect of speckle. When the sample is a tissue containing several layers of
scatterers φ(τ) can no longer be treated as a deterministic variable because the
spatial coherence is lost through random scattering [11].

The shape of a coherent wave entering a tissue and being scattered back, will
be affected by multiple forward scattering on the way forward and back and
multiple backscattering in the tissue at the probing distance. Both of these
scattering types effects the shape of the returning wave, and create localized
regions of constructive and destructive interference, seen as speckle in the image.

These two effects are what have been believed to be the primary reason for
speckle formation in OCT images. A study [12] indicates that multiple scattered
light loses its coherence, such that the speckle formation mostly comes from the
superposition of several slightly scattered waves. No matter which part is the
dominating, the effect is obvious.

Ways to reduce the effects of speckle can be split into polarization diversity,
frequency compounding, spatial compounding and image postprocessing. The
first three methods are not possible without changing the apparatus. Some
of the image postprocessing methods that have been applied are median filter,
iterative deconvolution methods [13], wavelet filtering [14], [15], rotating kernel
transformation [16] and other adaptive smoothing methods [17].

Another way of suppressing the effect of noise is to average a number of measure-
ments, the underlying assumption being that the noise is stochastically varying
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in the measurements taken. This would be equivalent to spatial compounding,
without having control of the minute shifts occurring between each scan. How-
ever as was seen in figure 2.2, a physical change of the apparatus relative to
the sample is needed to change the speckle pattern. This is why taking two
images consecutively and averaging these will reduce the effect of speckle more
than taking two A-scans at a time and averaging these, since minimal movement
of the sample occurs in the brief time between two A-scans are taken, and no
movement of the apparatus has happened.
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Chapter 3

The Eye

The human eye is the organ that gives us the sense of sight. Most of the
structure is devoted to the one task of focusing light onto the retina. All of the
individual components through which light travels within the eye before reaching
the retina are transparent, minimizing dimming of the light. The cornea and
lens focus light rays onto the retina. This light causes chemical changes in the
photosensitive cells of the retina, the products of which trigger nerve impulses
that travel to the brain.

The following section has been written mostly based on a text from [18]. When
reading this section, it can be beneficial to look at figure 3.1 to visualize where
the different parts of the eye are located. Light enters the eye from an external
medium, passes through the cornea, into the anterior chamber filled with water.
Most of the light refraction occurs at the cornea which has a fixed curvature.
The iris, between the cornea and the lens, is a colored ring of muscle fibres.
Light must pass though the center of the iris, the pupil. The lens is a convex
shaped disk which focuses light onto the retina. The cavity of the eye behind
the lens is called the vitreous body. It is a clear gelatinous substance that lets
light through to the retina.

Wrapped around the vitreous body are three layers of tissue that maintains the
shape of the eye. The outermost is the sclera which gives most of the eye its
white color. It protects the inner components of the eye. On the inner side of
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Figure 3.1: Cross-sectional view of the human eye. Adapted from a drawing
from Øjenforeningen.

the sclera is the choroid which contains blood vessels that supply the retinal
cells with necessary oxygen and removes the waste products of respiration. The
choroid gives the inner eye a dark color, which prevents disruptive reflections
within the eye. The innermost layer of the eye is the retina, containing the
photosensitive rod and cone cells, and neurons. The retina is less than 0.5mm
thick.

The retina is a relatively smooth layer. It does however have two points at which
it is different: the optic nerve head and the fovea. The optic nerve head is the
point on the retina where the optic nerve pierces the three previously named
layers to connect to the nerve cells on the top of the retina. No photosensitive
cells exist at this point. The fovea is the center of the macula lying directly
opposite the lens. The fovea is a dip in the retina and is densely packed with
cone cells. It is largely responsible for color vision in humans, and enables high
acuity that eg. is necessary when reading.

The retina can be visualized with OCT. An example can be seen on figure 3.2.
The width of the image is 6mm and the height is 2mm. It is a straight line
scan through the fovea, the cup in the middle of the image. It is exported from
StratusOCT, and no postprocessing has been done except for the colormap,
ranging from dark blue, where no light is reflected to red with high reflectance.
A few of the layers that can be seen in the image have been marked with
arrows. Starting from the top, the retinal nerve fiber layer (RNFL) can be seen
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Figure 3.2: Straight line scan through the fovea of an individual with no patholo-
gies in the eye. Arrows indicate, starting from the top: RNFL, outer nuclear
layer and RPE.

distinctly on the right side of the image. This is because the optic nerve head is
located on this side, and all the nerve fibers runs to the optic nerve head. The
hyporeflective layer marked with the second arrow is the outer nuclear layer
consisting of the cell bodies of rods and cones. The hyperreflective layer marked
with the last arrow is actually two layers, the bottom and most prominent one
being the retinal pigment epithelium (RPE), marking where the neuroretina
ends, and the top one is believed to be the junction between the inner and
outer photoreceptor segment (IS/OS). See eg. [19] for a further discussion of
visualizations in retinal OCT imaging.

3.1 Macular Hole

For a number of serious eye pathologies, the changes are localized in the retina.
As examples can be mentioned diabetes and glaucoma, but also less known
pathologies such as macular hole. It is a disease where a rupture happens in the
macula, and a hole down to the RPE is formed. An OCT image of a macular
hole can be seen in Figure 3.3.
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Figure 3.3: Straight line scan through the fovea of an individual with a macular
hole. The photoreceptor layer has ruptured in the fovea, and separated from
the RPE.

Since the macula is where our sharpest vision is located, a macular hole gives a
significant loss of vision, including the ability to read on the affected eye. It is
estimated that the disease affects approximately 1500 Danes a year [1]. In rare
cases a macular hole can develop because of trauma, but in most cases they are
idiopathic. Since the early nineties it has been possible to treat a macular hole
with advanced surgery, but a part of the patients does not regain their visual
acuity.

A macular hole develop through several stages, starting with an impending
hole. About half of the impending holes regress spontaneously, and the other
half progress to full thickness macular holes if not treated. The macular hole
stages were originally hypothesized by Gass [20] in 1988. Since the development
of OCT, Gass’ theory has been revised. The currently believed development of a
macular hole is shown in figure 3.4. The diagrams are copied from [1]. A sketch
of a normal fovea as seen from an OCT is shown in diagram A. The border of
the vitreous body is drawn as a dotted line. An impending hole can be seen in
diagram B. There is perifoveal detachment of the vitreous body, and a cystic
space in the inner part of the fovea. Diagram C shows a stage 2 macular hole.
A fully developed stage 3 macular hole can be seen in diagram D. The roof of
the foveal cyst is suspended in front of the macular hole. Diagram E shows a
stage 4 macular hole with complete posterior vitreous detachment. In the early
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stages the individual does not notice the pathology, but if the condition gets
worse, the individual will experience image distortion and the ability to read
will be affected.

Figure 3.4: Typical macular hole development. Diagram A: Normal fovea as
seen from an OCT. The border of the vitreous body is drawn as a dotted line.
Diagram B: An impending hole can be seen. There is perifoveal detachment of
the vitreous body, and a cystic space in the inner part of the fovea. Diagram
C: Stage 2 macular hole. Diagram D: A fully developed stage 3 macular hole.
The roof of the foveal cyst is suspended in front of the macular hole. Diagram
E: Stage 4 macular hole with complete posterior vitreous detachment. Copied
from [1].

The etiology of macular holes is not completely known, but it is believed that it
is due to traction in the vitreous body on the fovea and some kind of degenerative
dissolution of the inner retinal layers in the fovea [21]. Recently a hydrodynamic
model that balances fluid flow in the hole with fluid pumped across the RPE has
been suggested [22]. It implies that the relief of traction alone is not sufficient in
closing macular holes, unless it is accompanied by a reduction in hole diameter.
This is currently achieved by injection of a gas in the back of the vitreous that
applies pressure on the macula.

The loss of visual acuity when having a macular hole, is because the photorecep-
tors in the fovea are missing. There are indications that the missing photorecep-
tors are not lost, but have been moved peripherally away from the hole, where
they still function, but with reduced effect. This causes the photoreceptors to
project the visual field abnormally, so the affected individual will experience a
severe distortion as well as a reduced visual acuity of everything seen at the
central field of vision.

3.1.1 Treatment

An operation is currently the only way to treat a macular hole that does not
close spontaneously. The aim is to close the hole and hopefully thereby improve
the visual acuity and reduce the distortion. The operation requires removal of
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the vitreous lying in front of the macular hole. It was discovered in 1999 as
reported in [2] that peeling of the ILM on the retina has been found to be a
way to stimulate the wound healing in the macula. It is an extremely difficult
procedure, but it is made easier for the surgeons if the membrane is stained
with the dye ICG. Currently, ICG assisted ILM peeling is the preferred method
for stage 3 and 4 macular holes in many Scandinavian vitreoretinal centres [1].
But there are concerns that ICG dye may be toxic to the RPE, but on the other
hand if the ILM is not peeled, there is a significantly higher risk of the hole not
closing. [3].

At the end of surgery, the back of the vitreous is filled with an inactive gas
that is absorbed over the next couple of weeks. Currently the operation must
be followed by a period of several days, where the individuals face must be
kept facing downwards several hours a day, so the gas filling presses against the
macula.

The rate of hole closures is about 80%, when no peeling is done and close to
100% when the ILM is peeled. Many experience an improvement in the visual
acuity, but for some this does not happen, even though the hole has closed. This
discrepancy can not be explained and there is a need for predicting who will
benefit from an operation and when it should be performed.

The treatment of macular holes has developed rapidly since surgeons have
started treating it less than 20 years ago, but since the pathology is not com-
pletely understood, there might be basis for improvements of the treatment
over the coming years. These improvements will come from insight that may be
gained from studies such as the one being performed at Herlev Hospital.
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Dynamic Programming

Dynamic programming is a method for finding the shortest path between two
sets of pixels. Its general principles was first introduced by Bellman in [23].
Some of the advantages of dynamic programming are that it is simple to pro-
gram, efficient computationally and finds the optimal path. But it has the
shortcoming of not allowing any smoothness constraints on its path. An exten-
sion was introduced in [24], which applied a penalty depending on the shape of
the contour. To maintain optimality it was an iterative process. The method
was adapted by Buckley in [25], where a method for finding smooth shortest
paths across images was introduced. In the paper the method is referred to
as ”regularised shortest-path extraction”, but I will refer to it as ”regularized
dynamic programming”.

First the standard dynamic programming algorithm will be described. Dynamic
programming has been extensively used for finding the shortest path on a rect-
angular grid. The shortest path is defined as the path that minimizes the sum of
the weights of the arcs on the path. The path must always go from one layer to
the following layer. Explained on an image, it means that the path must move
from one column to the next in the case where we are interested in a solution
from one side to the other. The procedure is symmetric in the sense that a
left-to-right search gives the same result as a right-to-left, when the shortest
path is unique.
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For every pixel in an image with N rows and M columns, let I(i, j) be the grey
value of the pixel located at (i, j). A path P of order p from the left side of the
image to a point on the right side of the image (L,M) is a set of M pixels

P = {(i1, 1), . . . , (iM ,M)}, (4.1)
with 1 ≤ ic ≤ N for c = 1, . . . ,M,

and |ic+1 − ic| ≤ p,
for c = 1, . . . ,M − 1.

The last pixel must of course be the point, so iM = L. Explained in words, P
is a set of pixels, one pixel in each of the M columns, with the last one being
(L,M). The points have pth-order connectivity. If p = 1, the path is an 8-
connected set. The length of a path P is defined as the sum of the pixelvalues
in the path

M∑
c=1

I(ic, c). (4.2)

The shortest path going from one side of the image to the other is the path that
minimizes equation 4.2. To help find this path a distance d(i, j) is introduced
for every (i, j) as the minimum length of all paths going from the left side of
the image and ending at (i, j). For the trivial case j = 1 there is only one path
ending at the pixel, the single pixel path P = {(i, 1)}, so

d(i, 1) = I(i, 1), for all i = 1, . . . , N. (4.3)

This is extended to other columns recursively by use of the connectivity con-
straint. For a given position (i, j) the path must come from one of the 2p+1 clos-
est points located on the previously column, ie. (i+k, j−1) where −p ≤ k ≤ p.
This is true for all j ≥ 2. The minimum distance to reach a given point can
therefore be written as

d(i, j) = I(i, j) + min
k:|k|≤p

d(i+ k, j − 1), (4.4)

which along with the initial condition, equation 4.3, enables a recursive calcu-
lation of d(i, j) for all i and j. The value of k that leads to a minimum should
be stored for later backtracking of the optimal path

k(i, j) = argmin
k:|k|≤p

d(i+ k, j − 1). (4.5)

Once the right side of the image is reached, the length of the shortest path can
be found

min
1≤i≤N

d(i,M), (4.6)

and the last point on the path is the point (̂iM ,M) that achieves the minimum.
The path that led to this minimum value can now be backtracked starting with
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îM−1 = îM+k(̂iM ,M). This can be repeated for every column îj−1 = îj+k(̂ij , j)
until the left side of the image is reached and the entire path is known. The
computational cost of the algorithm is O((2p+ 1)NM).

The standard method is tested on a section of a concentric shaped OCT image
taken around the fovea. We are not interested in a particular path, just a
continuous path that follows the dark parts of the image the best. Figure 4.1(a)
shows the original image, and figure 4.1(b) shows the path found with dynamic
programming with p = 1. For higher values of p, the path becomes more rough,
since the continuity constraint is reduced. The path is already fairly rough and in
this implementation there is no way of constraining with respect to smoothness.
If the algorithm is extended to regularized dynamic programming this can be
achieved.

4.1 Regularized Dynamic Programming

In regularized dynamic programming a penalty that is proportional to a measure
of the roughness of the path is added to the length of the path. The roughness
of a path P = {(i1, 1), . . . , (iM ,M)} is defined as [25]

M−1∑
c=2

(ic−1 − 2ic + ic+1)2. (4.7)

This leads to a new definition of the length of path P

M∑
c=1

I(ic, c) + λ

M−1∑
c=2

(ic−1 − 2ic + ic+1)2, (4.8)

where λ is a regularization constant. The optimal path is still where the length
is minimized.

If d(i, j) was defined the same way as for standard dynamic programming, op-
timality would not be guaranteed since it is not certain that the path, which
minimizes the length to a given point will minimize a longer path, since its
total roughness contribution is unknown. Therefore we need to define d(i, j, k)
as the length of the shortest path to reach point (i, j) via (i + k, j − 1), for
k = −p, . . . , p.
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(a) Original image
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(b) Dynamic programming with p = 1

Figure 4.1: A concentric scan around the fovea is used for testing dynamic
programming vs. regularized dynamic programming. The original image is
shown in (a). The shortest path found with dynamic programming with p = 1
is shown in (b). The path is fairly rough and there is no way of constraining
with respect to smoothness.
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The new initialization equation is

d(i, 2, k) = I(i, 2) + I(i+ k, 1), (4.9)

which holds for i = 1, . . . , N and k = −p, . . . , p when the pixel positions are
within the allowed intervals.

A path from (i, j) via (i+ k, j − 1) must pass through (i+ k+ l, j − 2) for some
−p ≤ l ≤ p. This gives a roughness contribution of λ(l − k)2. The extension of
the recursion formula is then going to be

d(i, j, k) = I(i, j) + min
l:|l|≤p

(d(i+ k, j − 1, l) + λ(l − k)2), (4.10)

with which it is possible to calculate all values of d(i, j, k). Again the values
that leads to a minimum is stored for later backtracking

l(i, j, k) = argmin
l:|l|≤p

(d(i+ k, j − 1, l) + λ(l − k)2). (4.11)

When backtracking, the last point and the direction it came from is found as

(̂iM , k̂M ) = argmin
(i,k)

d(i,M, k). (4.12)

The last point on the optimal path is, (̂iM ,M). The second to last point is also
known (̂iM−1,M − 1), where îM−1 = îM + k̂M . The rest of the points on the
optimal path can be calculated as îj−1 = îj + k̂j with k̂j = l(̂ij+1, j + 1, k̂j+1).
The computational cost of the regularized version of dynamic programming is
O((2p+ 1)2NM).

The regularized dynamic programming algorithm has been tested on the image
shown in figure 4.1(a). The result with a fairly large λ, one half of the interval
between the maximum and minimum pixelvalues, and p = 1 is shown in fig-
ure 4.2(a). The apparent roughness of the shortest path is small as expected,
since the length is minimized according to 4.8. This does not mean that a
smooth path has been found though. A piecewise linear path has been found.
This is because the only allowed slopes are 0 and ±1. A gradual change in slope
would be a more desirable result.

Increasing p is not going to improve the result, since still no slopes between 0
and 1 will be allowed. If on the other hand the image is subsampled with a
factor q vertically, and p is increased by the same factor, suddenly q − 1 slopes
between 0 and 1 will be permissible. The maximum allowed slope will stay
the same, but the allowed slopes will be subsampled by a factor q. This trick
is fairly expensive computationally though. If p = 1, the computational cost,
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(a) Regularized dynamic programming
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(b) Regularized dynamic programming on changed resolution

Figure 4.2: In (a) regularized dynamic programming with λ equal to half of the
interval between the maximum and minimum pixelvalue has been tested on the
image shown in 4.1(a). The path is not smooth though, it is piecewise linear.
This is because the only allowed slopes are 0 and ±1. In figure (b) the horizontal
resolution has been decreased by a factor 4, before the optimal path was found.
The effective λ is the same as in (a). The improvement of the smoothness of
the shortest path is significant.
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of subsampling vertically by a factor of 2, will increase p and M by a factor
of 2, which leads to a computational increase compared with non-subsampled
regularized dynamic programming by a factor of 50

9 ≈ 5.6. Subsampling with a
factor of 4, will increase the computational cost with a factor of 36.

Instead of subsampling vertically with a factor q, a reduction in the horizontal
resolution by a factor q, while increasing p by the same factor, will lead to the
same increase in allowed slopes. This requires a fairly large horizontal resolution
to begin with, compared with the structure you want to find. But if this is the
case the method improves the result, with minimum increase in computation
time. A reduction in horizontal resolution by a factor 2 will increase p, but
also reduce M . If p = 1 the increase in computation will for q = 2 be a factor
25
18 ≈ 1.4.

The result of decreasing the horizontal resolution by a factor 4, is shown in
figure 4.2(b). This way four positive slopes less than or equal to one are allowed.
The effective λ is maintained by reducing the used λ by a factor of 4. The
increase in computation is a factor 2.3 compared with the result in figure 4.2(a),
but the improvement of the smoothness of the shortest path is also significant.
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Part II

Image Enhancement





Chapter 5

Single Image

5.1 A-scan Alignment

During the second or so it takes to record an OCT image, vertical shifts in the
image occurs. This is due to minor movements of the individuals eye on the
scale of tenth of millimeters. These movements are, as to some degree can be
seen on figures 3.2 and 3.3, slowly varying from A-scan to A-scan. The reason
that no discontinuities are seen in the images is not that it never happen, but
simply that it is common practise for the ophthalmologist to discard the image,
and takes a new one instead if it occurs.

With the term ”alignment”, I will refer to the process of adjusting every A-scan
in an image such that it seems as if the structure in the image is horizontal.
This is not a true representation of the retina, since it is located on a sphere, but
given that the scans are normally 6mm wide, compared with the eye diameter
of about 25mm, it is a fair approximation.

It should be noted that the aim of alignment is not to align the top layer. If this
was the goal, an active contour could be used to find the top layer as reported
in [26] for OCT images. The aim is to reduce the vertical movements that has
happened, and align the dominating structure, thereby hopefully making the
image look closer to reality.
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There are several other reasons for aligning the images before further processing.
If we want to apply a filter with horizontal components we need to know the
horizontal neighbors or a likely candidate. Another reason is that if we want to
measure a relative distance between two points a distance on an aligned image
is certainly more accurate than measuring on the original image. A third is that
the horizontal structure now lines up, and the problem of registering two images
horizontally and vertically can be done independently. Since it is assumed that
a horizontal structure exists the vertical registration can be done without having
registered the images horizontally. Once this have been achieved, the structure
in the images that is not horizontal layers stabilizes the horizontal registration.

There exist several methods for alignment of noisy 1D signals. In [27] and [28]
methods based on centroid measurements, normalized integrals and correlation
are presented. In [27] the method that gave the best result for all noise levels
was complete cross-correlation and for low noise levels the result of an iterative
cross-correlation method was very close. If the task at hand is to align two
1D signals the complete cross-correlation method dictates estimating the best
possible relative shift for every two signals where one or both of the two is
involved, not just for the two at hand. Based on these relative shifts we estimate
the relative shift between the two signals that minimize the least squares.

If we want to estimate the relative shift for two adjacent A-scans, and not include
any other A-scans, the complete cross-correlation method is based on only one
possible relative shift and therefore is the same as just doing cross-correlation
between the two A-scans. This is the method adopted for aligning two adjacent
A-scans.

I will extend the notation used in chapter 4 for 2D signals such that element
(i, j) of image k is expressed as Ik(i, j). In this way, the raw cross-correlation
for A-scan or column i of image a and column j of image b is defined as

Raibj (m) =
N−m∑
n=1

Ia(n+m, i)Ib(n, j) m ≥ 0, (5.1)

and for negative m

Raibj (−m) = Rbjai(m) m < 0. (5.2)

Where the relative shift m lies in the interval −N < m < N where N is the
number of rows.

To align an image, the cross-correlation between every A-scan and the previous
A-scan is maximized. Since the relative shifts are assumed continuous the max-
imum allowed vertical shift is set to 10 pixels. The procedure for finding the



5.1 A-scan Alignment 31

optimal shift mopt is for a given A-scan j in image k therefore

mopt = argmax
m

Rkj−1kj (m) for − 10 ≤ m ≤ 10. (5.3)

This is done for every A-scan except the first, 1 < j ≤ M , where M is the
number of A-scans in an image. The procedure gave reasonable results, the
overall structure was aligned. But the procedure was susceptible to noise, in
such a way that A-scans would fluctuate a few pixels up and down. Therefore
A-scan j − 1 was replace by the mean of the previous 10 aligned A-scans, to
minimize the small scale variation. The results of aligning the OCT images in
figures 3.2 and 3.3 can be seen on figures 5.1 and 5.2.
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Figure 5.1: The image in figure 3.2 has been aligned by maximizing the cross-
correlation between every A-scan and the mean of the aligned previous 10 A-
scans. The dominant structure in the image, the RPE, is now horizontal in the
image.

It could be argued that when the shift is based on several previous columns,
complete cross-correlation can be implemented. But in this case we actually are
more interested in aligning the current A-scan to the overall previous structure,
not just to the previous noisy A-scan. So in this case this method gives the
result we are interested in.

Another way to make the procedure less susceptible to noise could be to apply
a low pass filter on every A-scan, but it has not been necessary, since the result
is satisfactory.
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Figure 5.2: The image in figure 3.3 has been aligned by maximizing the cross-
correlation between every A-scan and the mean of the aligned previous 10 A-
scans. The alignment seems to be a compromise between aligning the RPE and
the hyperreflective top of the RNFL.

5.2 Diffusion Methods

The physical phenomenon diffusion is the spontaneous spreading of for instance
heat or particles. It is a consequence of the continuity equation, which ensures
the conservation of a property. If used in images the average intensity is con-
served, but the distribution of pixelvalues will change, depending on the type
of diffusion.

As mentioned in section 2.1 about speckle, several postprocessing methods to
reduce the effect of speckle in OCT images have been used. In the following
three types of diffusion filtering will be tested on the OCT retinal image with a
macular hole shown in figure 5.2.

There are two different goals with the filtering. Beside the obvious one of pro-
ducing a more accurate and easily interpretable result it is also to produce an
image that is easily registered when looking at several images of same area. This
is important if we want to reduce noise by averaging. This will be investigated
in chapter 6. The accuracy of the different methods will be tested quantita-
tively by comparing the result against an estimate of ground truth, achieved by
averaging several noisy images.



5.2 Diffusion Methods 33

5.2.1 Linear Isotropic Diffusion

The simplest type of diffusion is the linear isotropic. Isotropic meaning that the
diffusion is independent of direction. It is described on an image I0(x, y) by a
set of derived images I(x, y, t) by the following equation

∂I

∂t
= c∆I, I|t=0 = I0, 0 < c ∈ R (5.4)

where ∆ is the laplacian. This may, as pointed out in [29], equivalently be
viewed as convolving the original image with a Gaussian kernel G(σ) of standard
deviation of

√
2t, when c = 1, so

I(x, y, t) = I0(x, y) ∗G(
√

2t). (5.5)

One problem when using linear diffusion is that edges are smoothed along the
flow over time. As a consequence the zero crossings of the second derivative,
which indicate the locations of edges, vary over time. To overcome this prob-
lem Perona and Malik proposed a nonlinear diffusion in [30], called anisotropic
diffusion, described by

∂I

∂t
= ∇ · (c(|∇I|)∇I), c(·) > 0 (5.6)

where ∇ is the gradient operator and the diffusion coefficient c is a decreasing
function of the gradient. This leads to a relation between the magnitude of
the gradient in a given direction and the amount of smoothing done in this
direction, ie. it is anisotropic. The greater the magnitude, the less smoothing
is done. This diffusion method has not been tested, since the next presented is
an extension and seems to have proven its superiority.

5.2.2 Complex Diffusion

The process of diffusion can be generalized further. Gilboa suggested in [29] a
way to do complex diffusion. It is similar to anisotropic diffusion, except that
I and c are complex, and the diffusion filter is a function of the imaginary part
of I.

∂I

∂t
= ∇ · (c(Im(I))∇I). (5.7)

For an appropriate choice of the function c(·) this will lead to the imaginary part
of I converging towards the laplacian of the image. The reason for choosing the
laplacian instead of the gradient as an indication of the location of the edges,
is that the laplacian is high at the endpoints of a ramp, and not within, which
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leads to better smoothing within the ramp. One problem with the anisotropic
diffusion has been a staircasing effect, ie. the edges are enhanced. This is
overcome with the choice of the diffusion coefficient being a function of the
laplacian in complex diffusion. For this reason it is also called Ramp Preserving,
when

c(Im(I)) =
eiθ

1 + ( Im(I)
kθ )2

, (5.8)

where k is a threshold parameter, and θ is the phase angle that should be small,
θ << 1. It can be shown that for a small θ an approximation to the diffusion
will be

Re(
∂I

∂t
) ≈ Re(∆I), (5.9)

Im(
∂I

∂t
) ≈ Im(∆I) + θRe(∆I), (5.10)

which means that the real part of I is dominated by a linear diffusion process
and the imaginary part is affected by both the imaginary and real part. Since I
is real at t = 0, it will approximate the laplacian of the image, and Im(∆I) can
be regarded as a smoothing term. The derivation and implementation can be
seen in [29]. The article also has visual comparisons between the effect of the
anisotropic diffusion and complex diffusion on different images.

These basic diffusion equations can of course be extended with other well known
schemes. Anisotropic diffusion has been combined with a multiscale laplacian
pyramid approach, which in [31] has been demonstrated to reduce speckle better
than a wavelet domain speckle reduction technique reported in [32].

5.2.3 Coherence Enhancing Diffusion

Another way to extend the diffusion equations is to incorporate coherence in-
formation, ie. the local structure and direction of the local structure. This can
be done by replacing the diffusion coefficient by an appropriate 2 × 2 diffusion
tensor D as is done by Weickert in [33]

∂I

∂t
= ∇ · (D(I)∇I). (5.11)

Before describing how the diffusion tensor is defined, the structure tensor needs
to be introduced. Let Iσ = I0 ∗ G(σ) be a slightly smoothed version of the
original image, the symmetric and positive semi-definite matrix

Jρ(∇Iσ) = (∇Iσ∇ITσ ) ∗G(ρ) (5.12)
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is called the structure tensor. The first element is the second order derivative in
the first direction, the second and third element is ∂2I

∂x∂y and the fourth element
is the second order derivative in the second direction. The reason for the first
convolution is to reduce noise before determining the derivatives. The second
convolution, which should have a larger standard deviation than the first, is for
finding the local orientation at an appropriate scale.

The two eigenvalues λ1 > λ2 of the structure tensor are used as indicators
of local structure in the image with respect to the eigendirections e1 and e2.
The direction e1 is where there is the greatest local variation. That means
the direction e2 can be used as an estimate of the direction with the greatest
coherence, and the value κ = (λ1−λ2)2 is used as a measure of how well defined
the direction of the coherence is.

The diffusion tensor D which indicates the strength and orientation of the dif-
fusion can now be defined

D =
(
α 0
0 α

)
if λ1 = λ2 else (5.13)

D = (e1, e2)
(
α 0
0 α+ (1− α)e−κ0/κ

)
(e1, e2)T , (5.14)

where α is a small positive constant and κ0 is a cutoff parameter for well defined
orientation. It is noted that the diffusion tensor has the same eigenvectors as
the structure tensor. Almost no diffusion is done in the direction with a high
structural variation. α was introduced, besides theoretical reasons, to make sure
that the diffusion process never stops even if the structure becomes isotropic.

5.2.4 Test Parameters

In the following complex diffusion and coherence enhancing diffusion will be
evaluated against linear isotropic diffusion, on an appropriate test image and
all methods will be tested on a noisy OCT image of the retina. To evaluate the
performance quantitatively the signal to noise ratio (SNR) is calculated. It will
be defined as

SNR =
N∑

i=1

M∑

j=1

I(i, j)2

/
N∑

i=1

M∑

j=1

(Î(i, j)− I(i, j))2, (5.15)

where I and Î are the original image and the denoised image respectively. We
are interested in suppressing speckle noise but still preserve edges of the original
image, since boundaries in OCT images often are the regions of interest. In order
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to evaluate the methods abilities to preserve edges, a parameter β originally
defined in [34] is also determined. The closer β is to unity, the better the edges
are preserved

β =
Γ(∆I −∆I,∆Î −∆Î)√

Γ(∆I −∆I,∆I −∆I) · Γ(∆Î −∆Î ,∆Î −∆Î)
, (5.16)

where ∆I and ∆Î are the highpass filtered versions of I and Î respectively,
obtained with a 3× 3 standard approximation of the laplacian operator, and

Γ(Ia, Ib) =
N∑

i=1

M∑

j=1

Ia(i, j) · Ib(i, j). (5.17)

5.2.5 Test of Complex Diffusion

To test the implementation of the complex diffusion method, a test image of
100 × 100 has been constructed. It has linearly varying pixelvalues in one di-
rection and quadratic in the other direction, Itest(r, c) = r + c2

90 , except for the
10 border pixels where Itest = 10 and a diagonal line where Itest = 180. The
test image is shown in figure 5.3(a). From this test image a noisy one has been
constructed as

Inoisy = (1 + nm)Itest + na, (5.18)

where nm are realizations of a gaussian with zero mean and a standard deviation
of 0.1 and na are realizations of a gaussian with zero mean and a standard devi-
ation of 10. The noisy test image is shown in figure 5.3(b). Linear diffusion and
complex diffusion have been tested with different parameters, but only one of
the best results achieved with each method is shown in figures 5.3(c) and 5.3(d).
With linear diffusion the edges degrade rapidly, so a compromise between noise
reduction and edge preservation is achieved with a standard deviation of σ = 1.
The method yields a SNR of 53.9 and β = 0.41. A satisfactory result is achieved
with complex diffusion when k = 0.05 and after 20 iterations. For this instance
and every instance run on OCT images, θ in equation 5.8 is kept at π

30 and the
incremental timesteps 0.2. This gives a SNR of 69.2 and β = 0.74.

The result achieved with complex diffusion is significantly better than what
linear diffusion produces. The edges are sharper, and the slowly varying re-
gions are better smoothed. This is reflected in the β and SNR, where both are
significantly better for complex diffusion.

The only thing not completely satisfactory is the smoothing and lack of lightness
preservation of the white diagonal line. The reason the method has problems
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(a) Original test image
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(b) Noisy test image
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(c) Result of linear diffusion
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(d) Result of complex diffusion

Figure 5.3: The noisy test image is denoised by linear diffusion with σ = 1 and
complex diffusion with k = 0.05 and 20 iterations. Complex diffusion clearly
does a better job at preserving edges and smoothing the continuous areas. The
only thing not completely satisfactory is the smoothing and lack of lightness
preservation of the white diagonal line.

right here is probably due to the multiplicative noise and high pixelvalues that
gives a significant noise level when looking at the absolute values of the noise.

5.2.6 Test of Coherence Enhancing Diffusion

If coherence enhancing diffusion is tested on the same image, the strength of
the method would not be apparent, so an image of a fingerprint is used as a
test image instead. This is because enhancement of fingerprints is one area the
method has proven its worth. To calculate the two parameters, SNR and β, it
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is necessary to have a golden standard to measure up against. Since such an
image is not available in the case of the fingerprint image, these values are not
calculated. The original fingerprint image is shown in figure 5.4(a), the result
achieved by linear isotropic diffusion and coherence enhancing diffusion can be
seen in figure 5.4(c) and 5.4(d), respectively.
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(a) Original test image
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(b) Greatest variation orientation
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(c) Result of linear diffusion
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(d) Result of coherence enhancing diffusion

Figure 5.4: The fingerprint image in (a) is denoised by linear diffusion with
σ = 1 and coherence enhancing diffusion with no σ, ρ = 10, 10 iterations and κ0

set to the 25% quantile of κ. The result really shows how coherence enhancing
diffusion smoothes discontinuities across the coherence direction, but maintains
the sharpness between light and dark lines. The orientation of the eigenvector
corresponding to the largest eigenvalue of the structure tensor is shown in (b).
Red is horizontal and green is vertical and the diagonals are black and yellow.

By visual inspecting figure 5.4(d), it can really be seen how well coherence
enhancing diffusion works in the case of images with a high directional coher-
ence. Discontinuities in the coherence direction are smoothed, but the sharpness
between light and dark lines perpendicular to the coherence direction is main-



5.2 Diffusion Methods 39

tained. The orientation of the eigenvector corresponding to the largest eigen-
value of the structure tensor is shown in 5.4(b). Red is horizontal and green is
vertical and the diagonals are black and yellow. The parameters used in this
case is no σ, ρ = 10, 10 iterations of timestep 1 and κ0 set to the 25% quantile
of κ. For this test and all applications on OCT images, α = 0.001 and timesteps
are set to 1.

5.2.7 Test on OCT image

In the case of OCT images, a speckle free image is needed as a golden standard.
Since such an image is not available, a result of averaging 11 registered images
of the same region of a retina with a macular hole is used. The procedure
will be explained in section 6 and the result is shown in figure 6.9 on page 55.
It is obvious that noise due to speckle is significantly reduced compared with
figure 5.2.

The two parameters SNR and β have been calculated for four values of the stan-
dard deviation for the linear isotropic diffusion. For higher standard deviations
both of the parameters decrease in value, and the denoised image deteriorates.
The parameters have been calculated for four different values of complex diffu-
sion and two values for coherence enhancing diffusion.

Method SNR β
No filtering 8.056 0.496

LID σ = 1 19.972 0.293
σ = 2 27.607 0.091
σ = 3 31.495 0.045
σ = 4 32.475 0.030

CD k = 0.05, iterations = 4 20.794 0.367
k = 0.5, iterations = 9 27.756 0.095
k = 1, iterations = 20 31.707 0.052
k = 1, iterations = 30 32.638 0.042

CED σ = 1, ρ = 10, κ0 = 10% quant, ite = 30 22.044 0.253
σ = 3, ρ = 10, κ0 = 10% quant, ite = 30 24.532 0.205

Table 5.1: Values of SNR and β achieved with different parameters for linear
isotropic diffusion, complex diffusion and coherence enhancing diffusion.

The denoised images when using complex diffusion can be seen on figure 5.5.
The denoised images achieved with linear isotropic diffusion are not shown, since
they are visually similar to what is achieved with complex diffusion, in the way
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(a) k = 0.05, iterations = 4
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(b) k = 0.5, iterations = 10
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(c) k = 1, iterations = 25
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(d) k = 1, iterations = 40

Figure 5.5: Denoised images achieved with complex diffusion with four different
sets of parameters. The results are very similar to what is achievable with linear
isotropic diffusion.

that the denoised image achieved with σ = 1 is similar to 5.5(a), σ = 2 is
similar to 5.5(b), σ = 3 is similar to 5.5(c) and σ = 4 is similar to 5.5(d). As
seen in table 5.1 it is possible to produce denoised images with complex diffusion
that have higher SNR and β for every integer value of the standard deviation
with linear isotropic diffusion. But it is also noted that the improvement is
minimal, especially when visually inspecting the results. The resulting images
achieved with complex diffusion are very similar to what can be achieved with
linear isotropic diffusion. This may be because gaps in hyperreflective areas that
diffusion should flow across have the same properties as actual hyporeflective
areas that should be preserved. If the method can not distinguish between the
two, none or both of the two cases will be diffused, and none of the possibilities
are satisfactory.
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The SNR and β referred to here should be taken with some caution, since
as previously mentioned no absolute noise free image was available. But the
average image used as ground truth has significantly less noise than one of the
originals.

Since two variables have been adjusted instead of one, the implementation of
complex diffusion is not as intuitive and easy as linear isotropic diffusion. But
in general the higher k and iterations, the more smoothing is done.

When adjusting σ and ρ for the coherence enhancing diffusion method, it is
seen that it is very hard for it to pick up the appropriate coherence directions
in the noisy OCT image. If σ, controlling the noise suppression smoothing, is
increased above three, the borders lying between the edemas, ie. the large non
reflecting areas in the retina, tend to be diffused in a wrong direction and hence
disappear. This is of course not acceptable. If σ is too small, the estimated
coherence direction tend to be vertical for almost the entire image, as is seen
in figure 5.6(c). This is because each A-scan is highly correlated locally even as
an original image. The SNR values for coherence enhancing diffusion are not
impressive. This can partially be because of the sometimes wrongly estimated
coherence orientation, but also since very little general smoothing is done in
places that are close to isotropic. This leads to a larger SNR than an image
with the average value in all the pixels in the isotropic area would.

In figure 5.6(b) a more general horizontal structure is found within the retina,
but there are still a few places of an estimated vertical coherence direction, eg. in
the top right part of the retina where a structure is created that is questionable.
This ability, even though the images created are pleasing to look at is simply not
acceptable if an ophthalmologist should use the image for diagnosis. Coherence
enhancing diffusion is not tested as a preprocessing step for registration of several
images, primarily because of its ability to generate coherent structures that most
likely is due to noise.

5.2.8 Conclusion

It is possible to increase SNR by more than a factor of four with the use of
diffusion. You might even say that the images looks visually more pleasing for
the human eye, but there are limitations when only one image is available. With
complex diffusion the results are only marginally better than what is achieved by
simple gaussian filtering. With coherence enhancing diffusion, the problem arise
that coherence directions can be forced where none exists. When evaluating the
three diffusion methods, the conclusion can be drawn that the noise due to
speckle is not significantly reduced, without compromising the image in other
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(a) σ = 1, ρ = 10, κ0 = 50% qua, ite = 20
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(b) σ = 3, ρ = 10, κ0 = 50% qua, ite = 20
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(c) Greatest variation orientation for (a)
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(d) Greates variation orientation for (b)

Figure 5.6: Denoised images achieved with coherence enhancing diffusion with
two different sets of parameters are shown in the top two images. The orientation
of the eigenvector corresponding to the largest eigenvalue of the structure tensor
is shown below each image. With the parameters used in the left case, almost
the entire image is estimated to have a vertical coherence. The image is therefore
smoothed in this direction. With a larger σ, the structure tensor is estimated
from an image where more details have been smoothed, which leads to a higher
degree of what would be classified as correct horizontal structure.

ways. One problem is that the speckle plays a dual part in OCT, it is a source
of noise, but it is also a carrier of the signal [11], and it is not an easy task
to distinguish between the two effects. But if more than one image of a given
area is available, they can be combined to reduce the noise without significantly
smoothing the signal as shall be seen in the next section.



Chapter 6

Multiple Images

The idea behind averaging several images comes from the fact that uncorrelated
noise will be reduced, when several samples are averaged. If a set of signals with
uncorrelated gaussian noise is averaged, the standard deviation of the average
of the signals is reduced a factor of the square root of the number of signals,
compared to one of the original signals. Any correlation between the noise in the
signals will reduce this effect. The speckle pattern will not change if no changes
in the measuring geometry has happened, but since small movements occur in
the eye relative to the apparatus, as was discussed in section 2.1, a large part
of the correlation in the speckle is lost. In addition it must not be forgotten
that any uncorrelated noise not due to speckle that exists in the image will be
reduced significantly by averaging.

6.1 Registration

Averaging of the images will not make any sense before they are registered. The
term vertical registration will refer to the process of registering every A-scan in
an image to the corresponding A-scan in another image. The shifts that need
to be applied to every A-scan need not be the same. By horizontal registration
will be meant the process of shifting the entire image horizontally to match with
another image. Every row must be shifted the same amount.
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When a retinal OCT image is being taken of a retina, the individual focus on a
red dot. This makes it easier for the ophthalmologist to set the image plane right
through the center of the fovea. Therefore only limited horizontal movement
is seen between images taken of an individual without any pathologies. This
is not the case when dealing with an individual with a macular hole, since it
can be virtually impossible for them to focus on the red dot. This causes an
increase in the variation of the location of the image plane. The variation has
been illustrated in figure 6.1 that shows the location of three OCT B-scans on
the back of the eye. If the desired plane is the one indicated by the red line,
then a scan taken at the green location is of limited use, and must be removed
from the set, if a significant reduction in noise is wanted. But if the points of
interest is located at the center of the red line, the scan located at the blue line
can still be of use if it is registered horizontally with respect to the image plane.

Figure 6.1: Three different located OCT B-scans on the back of the eye. If the
desired scan is the one indicated by the red line, then a scan taken at the green
location is of limited use. But the scan located at the blue line can still be of
use if it is registered horizontally with respect to the image plane.

6.1.1 Vertical Registration

It will now be assumed that all the images in the set are lying on approximately
the same plane, ie. we are allowing translations such as the one occurring
between the red and blue line, but not red and green line. The process of
registering two OCT images will be illustrated with the two images shown in
figure 6.2(a) and 6.2(b).

One way to register these two images vertically would be to maximize the cross-
correlation for every two corresponding A-scans. This can be illustrated in what
will be called energyspace, which for every column is defined as the negative
cross-correlation between the corresponding two A-scans in the images a and b
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(a) Image 1
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(b) Image 2
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(c) Aligned image 1
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(d) Aligned image 2

Figure 6.2: Image (a) and (b) shows two OCT images taken of the same retinal
location. Image (c) and (d) are aligned versions of (a) and (b) respectively.

that needs to be vertically registered. The energyspace is based on the cross-
correlation as follows

ε(m, j) = −Rajbj (m), (6.1)

where ε is calculated for every possible shift −N < m < N and every A-scan
1 ≤ j ≤M .

For the two aligned versions of figure 6.2(a) and 6.2(b) shown in figure 6.2(c)
and 6.2(d) the energyspace is shown in figure 6.3(a). A point in energyspace
ε(r, c) correlates negatively with how likely a vertical shift of r pixels between
columns c is. At the dark positions there is a large correlation between the two
A-scans. The structure of the two images can be recognized in energyspace. The
horizontal line at around 1100, which corresponds to a shift of little less than
100 applied to figure 6.2(d), is where the two images line up. The lines above
and below is where the RPE in one image line up with the RNFL in the other.
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One thing worth noting is that the top and bottom of energyspace is very light,
since there is almost no correlation. This means that there is no chance that a
solution close to the top or bottom will be found. Using the cross-correlation
without normalizing with the size of the overlapping interval has shown to be
very robust.
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(a) Energyspace
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(b) Naive solution

Figure 6.3: Image (a) shows energyspace between image 6.2(c) and 6.2(d). It
is defined as the negative cross correlation between the corresponding A-scans
in the images. In image (b) a naive solution to the vertical registration problem
is shown.

The naive implementation of taking the maximum correlation for every A-scan
corresponds to the solution shown with the green line in figure 6.3(b). The
method is sensitive to noise in two ways. It allows very sudden changes in the
shifts from A-scan to A-scan, as can be seen one place in the figure, and it
fits to noise on a small scale, which can be seen on the roughness of the green
curve. The first problem can be fixed the same way as was done when aligning
an image, by only allowing a certain maximum change from A-scan to A-scan,
but the other problem can not as easily be fixed.

The solution in energyspace we are interested in, is a solution that is smooth. We
want to utilize the horizontal structure that exists in the images and therefore
also in energyspace. This can be achieved by finding the shortest path from one
side of energyspace to the other with constraints on the curvature.

Since we assume inherent horizontal structure in the images, two images that
have not been horizontally registered can still be vertically registered. This will
give a first estimate of the vertical shifts that needs to be applied to each column
to register the two images.
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Finding the shortest path has been implemented with regularized dynamic pro-
gramming, which was described in chapter 4. It finds the optimal path through
energyspace crossing the image from one side to the other, with constraints on
the shape of the path. These constraints makes the difference, when comparing
the method with standard dynamic programming. As was discussed in chap-
ter 4, the regularized version will have smoother solutions depending on the
regularization constant λ and how energyspace is sampled. A result with λ = .1
and p = 1 is shown in figure 6.4(a). The shortest path is smooth and close to
horizontal, indicating that the two images have been aligned well.

50 100 150 200 250 300 350 400 450 500

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) Regularized dynamic programming
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Figure 6.4: The shortest path achieved with regularized dynamic programming
with λ = .1 and p = 1 is shown in (a). The path is smooth and close to
horizontal, indicating that the two images have been aligned well. In (b) is
shown a closer look at the central part of the path. A significant change in
energyspace values column to column can be seen, but the minimum values are
close to lined up.

The method has been tested with different values for λ, p and different rescalings,
but visual comparison leads to the two initial conclusions that rescaling does
not improve the result and there is no reason for increasing p beyond 1. The
reason that pixel subdivision does not improve the result may be because the
path changes gradually with a low degree of horizontal correlation, which means
that no large part of the path with low slope is needed. Horizontal subsampling
may be a good idea, if there is a high degree of noise variation column to column.
As can be seen in figure 6.4(b), where the central part of the shortest path is
shown, there is a high degree of variation in pixelvalues column to column, but
the minimum values tend to lie in the same vertical locations. The constraints
on the path is enough to eliminate the noise effects. Finally the reason that
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higher values of p does not improve the result is since the change in direction in
the optimal path happens gradually as well, and there is no need for allowing
larger slopes.

Registering the image shown in 6.2(d) to the one in 6.2(c), and averaging the two
gives the noise reduced image shown in figure 6.5. Compared with the original
images, there is a reduction in noise, eg. in the RPE. But there is also a prob-
lem. Looking at the sides of the hole, it can be seen that the two images are not
horizontally registered. The images must therefore also be horizontally shifted
accordingly. The predecessor method to the one described in this chapter, de-
veloped by Jørgensen [5] did not incorporate this. This was at the time not
necessary, since the pathologies being investigated, had less horizontal variation
than patients affected by a macular hole. This larger variation is, as previously
mentioned, because it is difficult for the patients to focus on a dot, while the
image is taken, since their central vision is impaired.
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Figure 6.5: Average of the two images 6.2(c) and 6.2(d) after vertical regis-
tration. Compared with the original images, there is a significant reduction in
noise. But looking at the sides of the hole, it can be seen that the two images
are not horizontally registered.

6.1.2 Horizontal Registration

As previously described in the first part of section 6.1 the images are normally
close to being horizontally registered, unless a pathology affects the visual acuity
in the macular area, which is the case with macular holes. Since we assume
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no movements have happened except in the longitudinal direction during the
recording of the image, only one horizontal shift needs to be estimated, this is
again done by maximizing cross-correlation, this time horizontal. The images
are transposed, this way the indices of aT and bT corresponds to rows and not
columns in the original images.

max
m

N∑
r=1

RaTr bTr (m) (6.2)

Again the cross-correlation is robust, but a larger shift means that parts of the
images will not be included. This was not a problem when registering vertically,
since almost no signal existed at the top and bottom. If this is not corrected, the
optimal shift will be biased toward no shifts, so to overcome this, the unbiased
estimator is used. This means a factor 1

M−|m| is multiplied to equation 6.2. The
unbiased estimator can be unstable for extreme shifts, so m is only searched in
the interval −100 < m < 100, which is more than sufficient for any realistic case.
The average of the two images 6.2(c) and 6.2(d) after vertical and horizontal
registration is shown in 6.6. Image 6.2(d) is shifted 9 pixels to the left. The
relative limited shift makes a significant change to the resultant image. The
edges of the hole are much sharper and the hyperreflective point to the far left
can be localized. The roof of the foveal cyst suspended above the hole, is not
vertically aligned though. This can not be achieved with the current method,
since the RPE in the same A-scans are aligned. To improve this a stretching of
the A-scans is needed. This will not be investigated, since there is no physical
evidence of this happening. The reason for the not aligned roof is probably due
to actual movement of the roof or the scans have not been taken in the exact
same plane as shown in figure 6.1.

6.2 Procedure

It has now been shown how two images can be registered. In this section the pro-
cedure is extended to any number of images by iteration. The entire procedure
is for clarity shown in the flowchart in figure 6.7.

An estimate of the registration of image one and two can be determined as de-
scribed in the previous section. The mean of the two registered images is used
as a template for image three. The procedure is repeated, until all images have
been included. This is what is marked with a box as the first iteration. The
second iteration consists of re-registering every image to the template, without
updating the template. The reason for this is that each image is registered
according to the same template, which means the correlations found in energys-
pace can be compared between the images. This is used when the final noise
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Figure 6.6: Average of the two images 6.2(c) and 6.2(d) after vertical and hori-
zontal registration. The relative limited shift makes a significant change to the
resultant image.

reduced image is being produced, which is the weighted mean of all the original
images registered according to the second iteration. What weights to use will
be looked at later on.

6.2.1 Test of Procedure

When the text in a box in flowchart 6.7 is followed by an asterisk, it means that
a test at this point has been performed. The procedure has been tested in three
ways.

• Different types of prefilters

Since one of the conclusions in section 5.2 was that linear and complex
diffusion produced very similar results, it is of minor importance which
one is being tested. Because of the ease of interpretation and the speed
of the method, linear diffusion is tested. Coherence enhancing diffusion is
not tested as a prefilter, since it had an ability to create structures that
may not be present, which could lead to a less correct registration. The
method have been tested without prefiltering, and with a gaussian filter
with standard deviation equals to 1, 2 and 3.



6.2 Procedure 51

Set and align

start image

Filter start

image*

Set template to

start image

Set and align

new image

Filter new
image*

Register new

image vertically
with template*

Register new

image
horizontally with

template

Set template to
mean of

registered

images

Include new

image?

Yes

No,
set

current
image

to
first

image

Register current

image vertically
with template*

Register current

image
horizontally with

template

Produce final
image*

Current
image equal to

last image?

Yes

No,
increment

current
image

Start
First iteration

Second iteration

Figure 6.7: Flowchart of the procedure of registering several images and pro-
ducing a final noise reduced result.

• Different shape constraint in regularized dynamic programming

The location of the shortest path in energyspace depended on the regu-
larization constant λ. The method has therefore been tested for λ equal
to 0, 0.1 and 0.5, where 0 is equal to dynamic programming without reg-
ularization. The method has also been tested with a different horizontal
scale factor q, where the horizontal resolution has been reduced a factor
of 2.

• Different weights when producing resultant image

When the resulting image is produced, each column in the images can be
weighted according to how much it correlates with the template. These
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values are known from the values in energyspace the shortest path crosses.
The method has been tested with no weights, ie. taking the mean of the
registered images, weights equal to the correlation with the template and
the squared correlation.

To reduce the number of runs performed during the test, a standard setting has
been used, and only one parameter has been changed at a time. The standard
setting is using no prefilter, λ = 0.1 with no change in resolution and averaging
the registered images, ie. no final weights.

The test has been performed on two data sets. One is a set consisting of 18
image with a macular hole. The image used throughout this chapter comes
from this set. Only 11 of the images have been used in the test. All of these
images have a visible roof of the foveal cyst suspended in front of the macular
hole, and this is taken as an indication of they are lying in the same plane. The
other set consists of 14 images, where all of them were used. This image set
is taken 5 weeks after operation, and looks to a layman similar to retinal OCT
images without any pathologies. The images have a much greater variation
in the horizontal shift than would be the case for images without pathologies
though.

To evaluate the methods, a contrast to noise ratio (CNR), inspired by [35], of
a part of the final images produced are calculated, and the images are visually
inspected.

If two adjacent classes a and b are outlined in an image, one can define the
contrast C as

C = (Īa − Īb)2, (6.3)

where Īk refers to the mean of pixels in class k. A common squared standard
deviation for the two classes can be expressed as

σ2
0 =

1
N0

∑
(I0 − Ī0)2 (6.4)

=
1

2Na

∑
(Ia − Īs)2 +

1
2Nb

∑
(Ib − Īb)2 (6.5)

=
1
2
σ2
a +

1
2
σ2
b , (6.6)

if the two classes are of the same size, which is the case in the following. The
determined CNR is therefore

CNR =
2(Īa − Īb)2

σ2
a + σ2

b

. (6.7)
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If two noisy classes are found this will affect the denominator, and the CNR
will therefore decrease. If too much smoothing has been done, the transition
between the two classes is less sharp. This will affect both the numerator and
the denominator such that the CNR decreases. It is therefore expected that this
measure will be able to reward both less noise and a sharp transition.

The two adjacent classes that have been used is the RNFL, and the vitreous
body lying above. The transition has been determined with regularized dynamic
programming. The two classes are sampled from 80 columns, 10 pixels for each
column. The used part of the macular hole image can be seen in figure 6.8(a) and
the used part from the postoperative macular hole can be seen in figure 6.8(b).
The images shown are for the standard setting. The transition lines between
the two classes are shown on both images.
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(b) Postoperative macular hole

Figure 6.8: The resulting images of the macular hole has had the part shown
in (a) cut out. The border has been found and the 10 pixels lying above and
below the line have been used as the two classes in the CNR. The same has been
done for the postoperative macular hole in (b).

The CNR is listed in table 6.1. Producing these values, it was seen that the val-
ues are susceptible to small changes in the location of the transition line. When
interpreting the numbers, care must therefore be taken not to over interpret
minor variation in CNR.

When visually inspecting the two sets, it is very hard to see a significant change.
But one conclusion can be made upon closer inspection. This is that a greater
prefiltering leads to a worse horizontal registration. This makes sense, since
upon filtering the edges wash away, and minute changes have less effect.

When looking at the CNR values, the first conclusion that can be made is that
some prefiltering leads to a higher CNR. It seems as if a standard deviation of
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Method CNRset1 CNRset2
standard settings (ss) 11.3 16.8

ss with σ = 1 12.1 17.1
ss with σ = 2 12.6 17.8
ss with σ = 3 12.1 17.3
ss with λ = 0 11.4 19.1

ss with λ = 0.5 10.3 17.3
ss with λ = 0 and q = 2 12.2 16.7

ss with λ = 0.1 and q = 2 11.5 18.6
ss with λ = 0.5 and q = 2 10.6 18.0

ss with proportional weights 11.3 16.6
ss with squared weights 11.3 16.2

Table 6.1: CNR is listed for the 11 test cases, for each of the two test sets.

σ = 3 reduces CNR, though, so a value less than 3 is optimal, as expected from
the visual inspection.

Using a high value for the regularization constant λ seems to constrain the final
shifts in such a way that CNR decreases. It may even seem as if no regularization
is needed. But a small regularization maintains the horizontal correlation in the
produced image, so it is preferred. It is hard to say anything conclusive about
reducing the resolution before finding the optimal path. It does not seem to
make a significant change. The same seems to be the case for weighting the
columns according to their correlation with the template, when the final result
is produced. There is a slight tendency that the more the columns are weighted
the lower the CNR.

In general the procedure is very robust to noise in the original images. This can
be seen since no prefiltering is necessary. It is can also be seen from the fact
that the regularization parameter λ, does not have to be included to achieve a
satisfactory result.

The final result where a gaussian prefilter with σ = 1 has been used, λ = 0.1
and the columns have not been weighted are shown in 6.9 and 6.10(b). The
noise reduction is very significant when compared to one of the original images,
as shown in 5.2 and 6.10(a). A few details worth mentioning are the layers in
general are easily discernable compared to the original images, where some of
the layers are not even perceived. There is also a hyperreflective area on the
left side of the RNFL in figure 6.10(b) that might not have been noticed in the
original image. This area would disappear if no horizontal registration had been
done.
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Figure 6.9: Averaging of 11 images a gaussian prefilter with σ = 1 has been
used, λ = 0.1 and the columns have not been weighted. The noise reduction is
very significant when compared to one of the original images, as shown in 5.2.

6.2.2 Noise and Number of Images

Taking an OCT image does not take many seconds, but to minimize the time
spend by the ophthalmologist and patient on taking images, it is relevant to
know how many images is needed to produce a satisfactory result, or if the im-
provement stops as a function of images included. For this reason, the resulting
image will now be investigated as a function of number of OCT images used.

The CNR is also used to evaluate the final images. The same parts of the images
are used as shown in 6.8. For illustration purposes the parts have been shown
for the original OCT images in figure 6.11.

The CNR values are listed in table 6.2. As expected there is a significant increase
in CNR when including the first couple of images. This effect seem to wear off
when 8-10 images have been included. The same is seen visually. Average images
for different number of images included can be seen in figure 6.12. It is even hard
to see the improvements from 6.12(e) to 6.12(f), where seven and nine images
are used respectively. The same variation in CNR, as was previously discussed,
due to minor changes in the location of the transition line is also present in
these values. Too much should therefore not be put in a variation of one or so
in CNR.
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(a) Original image
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(b) Average image

Figure 6.10: An aligned OCT image of an individual who previously had a
macular hole is shown in (a). Image is taken 5 weeks after operation. Average
of 14 images with σ = 1, λ = 0.1 and no weights is shown in (b). The noise
reduction is very significant. The hyperreflective area on the left side of the
RNFL is an example of a detail almost not noticeable in the original images.
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(a) Macular hole
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(b) Postoperative macular hole

Figure 6.11: The part of all the resulting images of the macular hole has had
the part shown in (a) cut out. The border has been found and the 10 pixels
lying above and below the line have been used as the two classes in the CNR
measure. The same has been done for the postoperative macular hole in (b).

Nr. of images used CNRset1 CNRset2
1 4.7 4.2
2 5.8 6.9
3 7.1 10.6
4 8.9 11.7
5 8.0 13.4
6 10.0 16.0
7 10.0 16.8
8 10.7 16.8
9 11.4 17.5
10 11.4 16.4
11 12.1 16.5
12 17.3
13 17.9
14 17.8

Table 6.2: CNR is listed as a function of images used to produce the average
image, for each of the two test sets.
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(a) Average of 2 images
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(b) Average of 3 images
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(c) Average of 4 images
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(d) Average of 5 images
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(e) Average of 7 images
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(f) Average of 9 images

Figure 6.12: The resulting image is shown as a function of images included. The
original image can be seen in figure 5.2 and the one produced when 11 images
are used in figure 6.9.
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6.3 Conclusion

A procedure to register a set of OCT images taken of the same retinal location
has been presented. The images are not horizontally aligned, which would nor-
mally be the case for retinal OCT images. This is because the macular area
is affected by the pathology, and the patient can not focus on the red dot in
the scanner, which leads to horizontal shifts. This off course also leads to shifts
perpendicular to the image plane, but if this shift is too significant, the images
must be removed from the dataset before the procedure is started.

The procedure includes one image at a time. First vertical then horizontal
registration is done. Due to the horizontal structure it can be assumed that
a fairly close to optimal vertical registration is done, although the images are
not horizontally registered. Once every image is included, the registration is
repeated to the average image, to fine tune the result. The resulting image has
significantly less noise than the originals, and details can often be seen that are
not apparent in the originals.

Another way to visualize the significant reduction in noise is by looking at a
single A-scan as is done in figure 6.13. The red line through the two images
indicate the location of the A-scans that are shown to the right. It seems as
if the noise reduction has come at the prize of decreasing the height of the
peaks. This is a consequence of the averaging of several noisy signals, but it is
not known what the true peak heights are, or whether they are closer to the
resulting peaks. The original peak values could be due to multiplicative noise.

The procedure has been tested with different parameter settings. The resulting
images have been inspected visually, and by measuring the CNR for a part of
the RNFL and above lying vitreous body. The resulting images produced with
different parameters were very similar, so was the CNR values.

When calculating CNR as a function of number of images averaged, the improve-
ment is significant up to about 8-10. If minute details needs to be investigated,
taking more images and discarding any that seems to be shifted perpendicular
to the image plane is recommendable.

The method with the chosen parametrical settings have been tested on 7 sets of
images. From each set between 10 and 13 images have been used to produce the
final image. One set is of a healthy individual, 3 sets have a preoperative macular
hole and 3 sets are postoperative images of a macular hole. In Appendix B one
initial image, an aligned version of the initial image and the average image for
each set are shown. When looking at the resulting images it seems as if all of
the used images have been registered correctly both horizontally as vertically.
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Figure 6.13: Single A-scans are shown to the right of the corresponding image.
The red line through the two images indicate the location of the A-scans. It
seems as if the noise reduction has come at the prize of decreasing the height of
the peaks. This is a consequence of the averaging of several noisy signals, but
it is not know what the true peak heights are, or whether they are closer to the
resulting peaks or not.

When looking at the sides of a macular hole in an average image, they appear
slightly blurred, this is sometimes also the case with a cystic space. This is not
due to a registration error, but because of small perpendicular shifts between
the images in the set. These shifts often happen when dealing with macular
holes, as previously explained, because visual acuity in the fovea is poor. It is
also noticeable in one of the postoperative images, shown in figure B.5. This
explanation corresponds well with the fact that this person has the worst visual
acuity of the three postoperative cases tested.
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Adjusting the parameters made no significant changes. This can be a sign of
the robustness of the method, or that the task could be solved with a simpler
method, or both. A less robust method of taking the maximum correlation for
each A-scan would in some cases do satisfactory. Most of the columns would be
registered correctly. One reason for this is that the used imagesets have fairly
distinct layers. This is not the case for the imageset shown in Appendix C
consisting of 11 images, where a less robust implementation fails in registering
the images, but the method of tracking a shortest path in energyspace succeeds.
So in the case of the macular hole images presented, it can be said that the task
at hand is manageable and the method is robust, in a way that it can handle
sets of images with less contrast than the ones presented. This is a quality
that should not be underestimated, since other pathologies exists that leads to
images with lower contrast than is the case for a macular hole.
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Part III

Applications





Chapter 7

Pre-Operation

A macular hole typically develop through stages. The further a hole progress
the worse the expected postoperative visual acuity is. But when for instance
comparing two stage 3 holes, it is not well know what to look for. An obvious
choice is the ”size” of the hole. But what is a good measure of the ”size”? Total
volume, height, maximum width or something else? In [36] a few descriptors
based on the configuration of the macular hole are investigated. The investi-
gated descriptors were height, minimum width and base width of the hole. The
measure that had the best correlation with postoperative visual acuity was the
height of the hole divided by the base width of the hole.

There is a great interest in estimating these descriptors and others automatically
or semi-automatically from an OCT image. If the retinal surface is found, the
three sizes height, minimum and maximum width of the hole can be determined.
The previously mentioned base diameter would very often be equivalent to the
maximum width. But the difference between the two is that maximum width
is well defined, compared to the base diameter, that needs to be measured at a
small but self defined height above the base of the hole.

Another feature that can be calculated if the retinal surface is known, is the
area of the hole, and thereby an estimate of the total volume as well.
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Another interesting feature to determine is the thickness of the neuroretina.
The neuroretina refers to the retina excluding the RPE. That means it starts
at the transition between the vitreous body and the RNFL, and ends where the
photoreceptors and the RPE connects. Since it can be very hard to locate the
precise location where the RPE starts, I will measure the thickness down to the
bottom of the outer nuclear layer, lying above the hyperreflective layer, ie. the
IS/OS and RPE. In the following a reference to the neuroretinal thickness will
refer to this thickness. Due to the difficulty in determining the true transition,
this approximation is often used.

When having a macular hole, the neuroretina is often swelled with liquid around
the fovea. The degree of swelling can be estimated from the neuroretinal thick-
ness, but a value that gives an overall estimate is the neuroretinal area in the
image.

When looking at an aligned OCT image of a normal individual, it has naturally
been aligned to the RPE since it is the dominating reflecting layer. When looking
at an aligned macular hole such as the one in figure 6.9 this is not the case. The
alignment is a compromise between aligning the RPE and the outer retinal
layers. If the image should be aligned to the RPE, it can be done if the RPE is
located. The image should not be aligned to the top of the hyperreflective layer,
since the IS/OS is present in the outer parts of the image, but not the foveal
area. All the descriptors can be calculated and produced when the location
of the top and bottom of the neuroretina are known. The central location of
the RPE needs to be known as well, if an image aligned to the RPE should be
produced.

7.1 Hyperreflective Layer

In this section an automated method to determine the center of the RPE and
top of the hyperreflective layer will be described. It starts with finding the
location of the center of the RPE with regularized dynamic programming. The
top is found by searching in a modified gradient image with regularized dynamic
programming above the central location.

Before any analysis is done, the image is gaussian filtered with a standard devi-
ation of σ = 1. This reduces the noise, especially in the gradient image, which
will be used later on. The location of the RPE can be found as the shortest
path in the negated intensity image. There should be no chance of finding the
location of the top of the retina, since that path would have a part going through
background pixels where the hole is located, and generally the RPE has higher
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intensities than the top of the retina.

A typical OCT image, is aligned to the hyperreflective layer consisting of the
RPE and IS/OS. This is because it is the dominant horizontal structure in the
image, and several of the other layers lies parallel to it. This is not the case
of images with macular holes. The alignment is a compromise between the
RPE and the top layers of the retina, with the RNFL being the most reflective.
This can be changed if the location of the image is aligned to the found central
RPE location. The comparison between a macular hole image, and a normal or
postoperative macular hole image should in this way be easier.

The top of the hyperreflective layer is found as the shortest path in the 50 pixels
above the central line in the negated vertical gradient image. To allow several
slopes the image has been reduced in its horizontal resolution, and the allowed
vertical change has been increased, as described in section 4.1, before searching
for the shortest path. The result is shown in figure 7.1, for one preoperative
image and an average generated from 11 images, in the local area lying around
the RPE. The top is marked with a red line. Most of the red line is not visible,
since it is lying at the same location as a path that has been marked with black,
which will be described shortly.

This procedure fails on some occasions. This is where it jumps down and locates
the top of the RPE instead of the IS/OS. An extra energy term could be added
that penalized lower lying pixels, but this could also shift the location of the
shortest path upwards in the cases where the top has been correctly found.
Therefore another approach is taken to fix this problem. The top of the IS/OS
is expected to lie between 20 and 30 pixels above the central line, and the top of
the RPE is expected to lie below 20 pixels. If there is a peak higher than 25% of
the highest value in the gradient image, lying in the interval 20-30 pixels above
the central line, it and its vertical vicinity is reduced in the space regularized
dynamic programming searches, thus attracting the shortest path.

The path found searching in the negated gradient image where these rewards
have been added, is shown with the black line. It can be seen in figure 7.1 that
it pulls the path upwards to correctly find the top of the IS/OS on the right
side in 7.1(a). But generally it is located at the same position as the original
red line. If the method for some reason fails, guidance points that attracts the
path are needed by the user.
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Figure 7.1: Two sections of images with a macular hole. (a) is an original image,
and (b) is one generated from 11 images. The central location of the RPE is
marked with blue, and the shortest path found in the negated gradient image
is marked with red. To correctly find the top of the IS/OS, pixels with a high
gradient lying in the interval 20-30 pixels above the central line are rewarded.

7.2 Surface of Neuroretina

The path of a correctly found surface of the retina of a macular hole does not
move from one column to the next as is the case when dealing with a retina with
no macular hole. If the surface should be correctly found in the macular hole,
the dynamic programming algorithm should not be used. A different approach
is to use a parametric snake, or active contour.
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An active contour is a curve that is initialized in the image, and deforms under
the influence of forces. It is an iterative process, that falls into a local energy
minimum. A traditional snake is a curve of length one, v(s) = [x(s), y(s)], s ∈
[0, 1] that minimizes the sum of two types of energy

Esnake =
∫ 1

0

Eint(v(s)) + Eext(v(s))ds. (7.1)

The internal energy depends solely on the shape of the snake. It is often com-
posed of a first and second-order term controlled by the two parameters α and
β that does not have to be constants, but is often chosen as such, and an extra
constraint term. The only extra constraint term I will mention is a balloon force
that for a closed curve exerts a force in the normal direction of the curve. This
could for instance ensure that the curve does not shrink into a point, or ensure
a higher captive range. The force is controlled by the constant γ.

Eint =
1
2

(α|v′(s)|2 + β|v′′(s)|2) + γn · v(s) (7.2)

The external energy can depends on the image values. It is often constructed
such that the snake is attracted to edges, where the numerical gradient or
squared gradient are obvious choices. The gradient is often calculated on a
gaussian filtered image to reduce the level of noise in the gradient, and improve
the snakes captive range. The force is controlled by the constant δ.

Eext = −δ|Gσ ∗ ∇I(x, y)|2 (7.3)

For further information and how to implement a snake see for instance [37].

Since the surface of the retina is not a closed curve, the snake is adapted, such
that it always starts at one side of the image and ends at the other side. This
way the snake will never shrink into a point, but the balloon force is included
anyway to ensure that the snake extends to all the corners in the macular hole.
This is done by letting the balloon force be directed perpendicular to the snake in
the downwards direction. This only gives good results if the snake is initialized
above the border it should fall to rest on.

In figure 7.2 two different initializations and the resulting snakes are shown.
With the same choice of parameters, the snake seem to fall to rest at the same
location. It is also possible to generate a snake that falls to rest correctly in the
macular hole from a straight line lying above the retina, but this requires a high
γ-value, which makes the final location of the snake in the macular hole extends
into the retina on the sides fairly often. An initialization as in 7.2(a) or better
is recommended.
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(a) Initial points
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(b) Found surface
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(c) Initial points
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(d) Found surface

Figure 7.2: Two different initializations are shown to the left, and the resulting
snakes are shown to the right. Both initializations gives a satisfactory result.
If the parameters are altered significantly, the edges of the hole are not found
correctly though.

A classic problem with snakes is that there are so many parameters to adjust.
this is also the case with this implementation, where five parameters exists
besides the initialization. But once the method has been adjusted once to an
OCT image, limited adjustment is needed.

The two cases from figure 7.1 are shown with the neuroretina marked and aligned
to the center of the RPE in figure 7.3. The average image is the image used for
determining the hole descriptors the in next section.
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(a) One image of macular hole
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(b) Average image of macular hole

Figure 7.3: The images have been aligned to the central part of the RPE instead
of the standard procedure with maximizing correlation. This way comparison
with a non-macular hole image is easier, since the alignment is the same. The
top and bottom of the neuroretina have been marked in the images.

7.3 Determining Hole Descriptors

Once the location of the top and bottom of the neuroretina have been found it
is just a matter of writing a robust code that can handle the variation in the
shapes to extract the hole descriptors. I will describe the principles I have used
to find the descriptors. In the following will be referred to figure 7.4, where the
descriptors are shown.

The first thing determined is the point of overflow in the hole. This is marked
with the green horizontal line. This is the lowest of the highest points on the
left and right side. Once this point has been determined, the width of the hole
as a function of the row can be calculated. The minimum is marked with the
top horizontal arrow, and the maximum that must lie below the minimum, is
marked with the bottom arrow. The height of the hole can vary depending on
where it is measured, so it is decided that it is measured at the central point
at the minimal width of the hole. This way a point to center the hole has also
been determined.

In this case the overflow happens at row 522, the minimum and maximum width
are 60pixels = 0.70mm and 117pixels = 1.37mm, the height of the hole at the
central row 238 is 217pixels = 0.42mm.
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Figure 7.4: The point of overflow is marked with a horizontal line. The three
hole descriptors marked with arrows, are the minimum width, the maximum
width and the height of the hole.

From the surface of the retina and the overflow point, the area inside the macular
hole can be determined as the points lying inside the polygon consisting of the
points on the surface starting and ending at the vertical position of the point of
overflow. The area has been marked with black in figure 7.5. In this case the
area of the macular hole is 0.41mm2. The neuroretinal area is 1.54mm2. This is
not an extreme value for the neuroretinal area, but considering the macular hole
is present, it means that the neuroretina outside the macular area is significantly
swelled.
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Figure 7.5: The top and bottom of the neuroretina is outlined, and the area of
the macular hole has been marked with black. In this case the area inside the
hole is 0.41mm2.



7.4 Thickness of Neuroretina 73

From the area of the hole, an estimated volume can be calculated. It is calculated
as if the hole is circular symmetrical about the central point, and each side
contribute with π radians.

With cylindrical coordinates the estimated volume can be calculated as

Vol1 =
∫

A

1dΩ =
∫ π

2

0

∫ h

0

∫ r1(z)

0

% d%dzdφ+
∫ π

π
2

∫ h

0

∫ r2(z)

0

% d%dzdφ

=
π

2

∫ h

0

r1(z)2 + r2(z)2dz (7.4)

where h is the height of the macular hole and r1(z) and r2(z) are the distances
from the center to the left and right side respectively. This gives a total esti-
mated volume of the hole of 1.23 · 106voxels = 0.33mm3

This can be extended to give a better estimate of the volume, if the shape and
size of the hole is known for six radial scans through the fovea at different angles,
as will be shown in section 9.2.

7.4 Thickness of Neuroretina

For a pathology called macular edema, where a swelling is occuring inside the
retina, a good way to get an overview of the extent of the edema is to plot a 2D
surface that represents the thickness of the neuroretina. This can be generated
from a set of scans into the retina, where the thickness of the neuroretina has
been outlined on each. A typical procedure is six radial scans running through
the fovea. Looking at a set of retinal thickness’, it is not easy to visualize the
actual location and extent of the edema, a surface plot helps with this.

Since a macular hole often is accompanied with a significant swelling in the
retina, such a visualization may be of interest. It has been decided that the
neuroretinal thickness should be represented as zero where it has been detached
from the RPE. This way there is no ambiguity of where the detachment is
happening. The retinal thickness for the average image of the macular hole
is plotted in red in figure 7.6. The original shape of the retina can be seen in
green. It lies behind the red curve outside the hole. A normal retinal thickness is
plotted in blue. The thickness is measured in pixels. The swelling in the macular
area is so significant, that the neuroretina has almost doubled its thickness at
the thickest points.
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Figure 7.6: The retinal thickness for the average image of the macular hole is
plotted in red. The original shape of the retina can be seen in green. It lies
behind the red curve outside the hole. A normal retinal thickness is plotted in
blue. The thickness is measured in pixels. The swelling in the macular area
is so significant, that the neuroretina has almost doubled its thickness at the
thickest points.

If the neuroretinal thickness is found for a set of images running through the
fovea, a 2D-surface of the thickness can be generated as will be investigated in
section 9.1.

To sum up, it is possible to automatically determine the top of the hyperreflec-
tive layer and the top of the neuroretina semi-automatically. From these all
relevant hole descriptors can be determined. The procedure can be done on
a single image, but using an averaged image instead makes the method more
robust.

7.5 Pre-OMaH Tool

The procedure to extract the relevant preoperative descriptors have been im-
plemented in Borland C++ Builder. A screen shot is shown in figure 7.7. The
top of the hyperreflective layer has been found automatically, and the top of
the neuroretina has been found on the basis of ten points provided by the user.
Once these two lines have been found, the program determines the height and
the minimum and maximum width of the hole, the area of the retina, the area
of the hole, and the estimated volume of the hole.
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The two main users opinion about the two programs developed can be read in
section 8.4, where the postoperative program is presented.

Some of the variables have been locked at appropriate values for clearness. The
only variable that can be altered by the user are β, γ and δ for the active contour
when locating the top of the retina, and a smoothing parameter for the top of
the hyperreflective layer. A short user manual for Pre-OMaH Tool is provided
in Appendix F, and a copy of the program is provided on the enclosed CD along
with two image examples.

Figure 7.7: Screen shot from Pre-OMaH Tool. All the relevant descriptors have
been determined.



76 Pre-Operation



Chapter 8

Post-Operation

If a macular hole is operated, the custom procedure used at Herlev Hospital is
to have a follow up inspection of the eye after 3 month and then again after
6 and 12 month. At each of these consultations the visual acuity is measured,
and a couple of examinations are performed, among these is the taking of OCT
images. Two procedures are recorded. One is 6 radial scans through fovea, with
π
6 radians in between. This gives a good overall impression of the foveal area.
And the other is taking several images at the same location through the fovea.
This is for producing one combined image with reduced noise.

One follow up OCT image is shown in figure 8.1(b), where comparison to a
normal subject, shown in figure 8.1(a), is possible. There are several things to
look for when assessing the outcome of the operation. First of all it should be
mentioned that the hyperreflective top layer on the right of the normal individual
is not one. This is the RNFL, and it is thicker here because it is close to
the optical nerve head. That means the image is taken at an angle close to
horizontal, and the thickened RNFL indicate the nasal direction.

Three factors that may indicate a loss of visual acuity in the fovea will be
mentioned in the following. These factors can be seen even more easily on the
averaged image consisting of the image in figure 8.1(b) and 13 others taken of
the same retinal area shown in 6.10(b).
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(a) Normal eye
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(b) Postoperative eye

Figure 8.1: The images shows an OCT image of a normal individual and one
having had macular hole surgery. Three factors that indicate loss of visual
acuity in the fovea are: Thinning of the hyperreflective layer, larger foveal dip
and increased intensity of the outer nuclear layer in the fovea.
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It can be seen that the hyperreflective layer in the fovea has decreased in thick-
ness. It consists not only of the RPE as previously mentioned, but also of the
IS/OS. The IS/OS is the thin hyperreflective layer at the top that in the normal
eye separates itself from the RPE in the foveal area. In the postoperative image
this layer has completely disappeared in the foveal area. This indicates that the
photoreceptors may have died in the detachment period.

The ”foveal dip” is significantly deeper in the postoperative image. Since the
significant layer present in the fovea lying above the IS/OS is a part of the
photoreceptors called the outer nuclear layer, it indicates that not only the
IS/OS has disappeared but the photoreceptors have also shrunk or completely
disappeared. This of course is not a good sign. These two features have been
investigated before in [38], where there were indications of the IS/OS thickness
correlated with visual acuity but not the foveal thickness.

The last factor that indicates a significant loss of visual acuity in the postoper-
ative image is the increased intensity of the outer nuclear layer in the fovea. It
can be seen, and even better in figure 6.10(b) that the layer in the fovea lying
above the RPE has a heightened intensity when compared to the non foveal area
in the same image, or the foveal area in the normal eye. This could mean that
instead of being rejuvenated photoreceptors it may be scar tissue.

It would be beneficial to be able to determine these three factors quantitatively,
preferably automatic. The next sections describes a procedure that does just
that.

8.1 Thickness of Hyperreflective Layer

In this section an automated method to determine the top and bottom of the
hyperreflective layer will be described. It is very similar to the method in sec-
tion 7.1, but a few differences exists. An approximate location of the hyper-
reflective layer can be easily found as the maximum of the horizontally summed
image. A more accurate location is determined with regularized dynamic pro-
gramming. The actual top and bottom is found by searching in the gradient
image with regularized dynamic programming above and below the central lo-
cation.

In figure 8.2 is shown the horizontal sum of the two images in 8.1. The blue is
the normal eye. It can be seen the first peak is wider for the normal individual
due to the RNFL. But the height of this peak does not even get close to the
height of the peak corresponding to the RPE. An enhanced RNFL will of course
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never be present in both sides of the image, so a robust initial guess of the
location of the center of the RPE in an aligned OCT image of the retina is at
the maximum of the horizontally summed intensities. This could not be done
on the macular hole images, since they were not aligned with the hyperreflective
layer.
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Figure 8.2: The two graphs are the horizontal sums of the pixel values of the
two images in 8.1. The blue is the normal eye. A robust initial guess of the
location of the center of the RPE is at the maximum of the horizontally summed
intensities.

Before further analysis is done, the image is gaussian filtered with a standard
deviation σ = 1. The horizontal estimate is used to locate a part of the image
that contains the hyperreflective layer. In this part of the image, regularized
dynamic programming is applied to find the shortest path in the negated images,
such that the solution found is the approximate location of the center of the
RPE. The reason for not using the horizontal line to divide the top from the
bottom is that the image may not be perfectly aligned to the RPE and the
reason for using it at all is that it speeds up the process, when an approximate
location of the RPE is known.

The central line found this way is shown for three cases in 8.3. The line is shown
in blue, and the horizontal line found as the maximum of the horizontal sum of
the image is shown in red.

Once the central line is found the image is split in two parts one above and one
below the line. The top of the hyperreflective layer is found as the shortest path
in the negated vertical gradient image above the line, and the bottom is found
as the shortest path in the vertical gradient image below the central line. The
result is shown in figure 8.3 marked with black lines. The result can be seen on
the full image on figure 8.5 as well. To allow several slopes the image has been
reduced in its horizontal resolution, as described in section 4.1.
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(c) Average of 14 postoperative macular hole

Figure 8.3: Three cases where the thickness of the hyperreflective layer should
be located. The initial horizontal line found as the maximum of the horizontal
sum of the image is shown in red. The central line located in the area around
the red line is shown in blue. The top of the hyperreflective layer is found as
the shortest path in the negated vertical gradient image above the line, and the
bottom is found as the shortest path in the vertical gradient image below the
central line. They are both shown with black lines.
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Looking at 8.3(b), it is obvious that the initial horizontal line can not be used
for dividing the image in two and expect to have the bottom edge of the RPE
lying below, since the black line crosses the red line twice. This happens at the
far left side for the averaged image as well. This image has been better aligned,
because of the less noise present in the image. There are places, where the
bottom line gets very close to the blue line as well, but if the shape constraints
are not considered, it should never reach it, since the blue line indicates the
pixel maximum, and the black the minimum of the vertical gradient.

In figure 8.4, the three corresponding thickness’ of the hyperreflective layer are
plotted. The thickness measured on the normal eye is plotted in green, from
one image of the postoperative macular hole is plotted in blue and from the
averaged postoperative macular hole is plotted in red. As expected the red and
blue has a dip in the center. They follow each other very well, except for the
right side, where the blue increases significantly. This can be observed on the
image as well, where the bottom line lies too far down. This is not a significant
error for two reasons. First of all the region of interest is the center compared
with the thickness lying up to 2µm (170 horizontal pixels) from the center and
the method is primarily expected to be used on averaged images, where it has
no problem locating the edges.
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Figure 8.4: The thickness of the hyperreflective layer found for the three cases
in figure 8.3 are plotted in pixels. The thickness measured on the normal eye is
plotted in green, from one image of the postoperative macular hole is plotted in
blue and from the averaged postoperative macular hole is plotted in red. The
red and blue follow each other very well, except for the right side, where the
blue increases significantly.

The only thing it can affect is when trying to estimate the width of a possible
atrophy, ie. shrinkage of the hyperreflective layer. A simple way is to calculate
the average thickness of the outer one mm, and define a location as atrophic
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if it is less than two thirds of this value. This gives an estimate width of the
atrophy as 1.41mm for the average image and 1.75mm from one image, where
the discrepancy is of course due to the difference in the right side.

A problem that could be expected to occur in some images is that the path may
lie at the top of the RPE instead of the IS/OS, as happened with the macular
hole. The same approach as was used in that case could be implemented, but
the necessity of this has so far seemed to be minimal.

8.2 Thickness of Neuroretina

Since the transition between the photoreceptor layer and the IS/OS already
has been determined, all that needs to be done to find the thickness of the
neuroretina is to locate the top of the neuroretina. This can be achieved the
same way as finding the top and bottom of the hyperreflective layer, by use of
regularized dynamic programming. When locating the top of the neuroretina,
a larger vertical change must be allowed, to properly locate the foveal dip.
The result of searching the negated gradient of the image above the top of the
hyperreflective area with an allowed vertical change of three, and subsampling
horizontally by a factor of two is shown in figure 8.5. The previously determined
borders lying at the top and bottom of the hyperreflective layer are also shown.
The result is very satisfactory even on an image that is not an average of several
images.
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(a) Normal eye
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(b) Postoperative macular hole

Figure 8.5: The top of the neuroretina is outlined, along with the top and
bottom of the hyperreflective layer. The hyperreflective layer consists of the
IS/OS and the RPE.
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The thickness of the neuroretina for the same three cases used in figure 8.4 are
plotted in 8.6. The normal case in green has a significantly thicker foveal dip,
as was visually observed as well. The thickness of the neuroretina from the
averaged image and that of one image lies very close as hoped. The thickness
measured from one image is less smooth because of the significantly higher noise
level in the image. But it seems as if it is not necessary to average several images
to measure the thickness of the neuroretina.
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Figure 8.6: The thickness of the neuroretina for the same three cases used in
figure 8.4. The normal case in green has a significantly thicker foveal dip, as
was visually seen as well. The thickness of the neuroretina from the averaged
image and that of one image lies very close as hoped. The thickness measured
from one image is less smooth because of the significantly higher noise level in
the image.

Another descriptor that can be evaluated is the neuroretinal area. It indicates
whether the neuroretina has swelled or shrunk. The estimated areas are for the
normal case 1.54mm2, the average image 1.32mm2 and the one image 1.33mm2.
The postoperative retina has shrunk significantly as can also be observed in
figure 8.6.

If the neuroretinal thickness is found for a set of images running through the
fovea, a 2D-surface of the thickness can be generated as will be investigated in
section 9.1.
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8.3 Intensity of Outer Nuclear Layer

When the top and the bottom location of the neuroretina is known, it is fairly
straightforward to sample the outer nuclear layer. The only thing that needs
to be decided is how wide the sampling should be, and how close to the hyper-
reflective layer the sampling should start. It should not start right above the
transition line, first of all to get away from the gradient located at the edge, but
also because a thin layer called the external limiting membrane lies between the
IS/OS and the outer nuclear layer. It is only slightly more reflective than the
outer nuclear layer, but never the less it should not be sampled.

It is estimated that the external limiting membrane is approximately 10 pixels
wide, so starting the sampling 15 pixels above the transition line is appropri-
ate. A sampling height of 15 pixels gives an acceptable compromise between
not entering the next layer (the outer plexiform layer), and sampling a sufficient
amount of pixels to reduce noise. If the foveal dip is so deep that it enters
the sampled area, samples are only taken for those pixels belonging to the neu-
roretina of course. The average intensity for each 15 vertical pixels selected
as a function of column number is shown in figure 8.7(a) for the averaged and
non-averaged image of a postoperative macular hole. The normal case is not
plotted for clarity, but it is approximately as noisy as the blue line and fluctu-
ating around 0.15. The non-averaged image seems to be a noisy version of the
averaged image.

In figure 8.7(b) the intensities are shown, after filtering with a gaussian filter
with σ = 10. The non-averaged approaches the averaged, but there is still a
higher degree of fluctuation. A common characteristic for the two curves are
that they peak where the foveal dip is located in the image.

To sum up, it is possible to automatically determine the thickness of the hy-
perreflective layer and the neuroretina as well as the local intensity of the outer
nuclear layer for a normal retina or a postoperative macular hole. It can be
done on a single image, but using an averaged image instead reduces the noise
in the results significantly.
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(a) Intensities
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(b) Intensities filtered

Figure 8.7: The intensities of the outer nuclear layer for the same three cases
used in figure 8.4. (a) shows the measured intensities where each point on the
graph is an average of 15 pixels. The normal case is not plotted for clarity. The
non-averaged image semm to be a noisy version of the averaged image. In (b)
the intensities are shown, after filtering with a gaussian filter with σ = 10.
The non-averaged approaches the averaged, but there is still a higher degree
of fluctuation. A common characteristic for the two curves are that they peak
where the foveal dip is located in the image.

8.4 Post-OMaH Tool

The procedure to extract the relevant postoperative descriptors have been im-
plemented in Borland C++ Builder. A screen shot is shown in figure 8.8. All the
three layer have been found automatically. On the basis of these three lines, the
thickness of the neuroretina and hyperreflective layer are sampled at predefined
locations, and the width of a possible atrophy is estimated along with the neu-
roretinal area. The intensity of the outer nuclear layer is estimated in the fovea
and on the side by sampling two squares instead of producing a graph. The two
squares are shown in the image with a slight green and red enhancement.

The only variable that can be altered by the user are smoothing parameters
for each of the three lines. But the main way to affect the location of transi-
tional layers are off course by clicking on the image, and thereby lowering the
path cost at and around the given location. The program has been tested on 6
different images, from 6 different postoperative cases. The results can be seen
in Appendix E. A short user manual for Post-OMaH Tool is provided in Ap-
pendix G, and a copy of the program is provided on the enclosed CD along with
two image examples.
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Figure 8.8: Screen shot from Post-OMaH Tool. All the relevant descriptors have
been determined.

The two main users of Pre-OMaH and Post-OMaH Tool have been asked for
their opinion about the two programs. The comment received about the appli-
cability and prospects of the programs was:

”Programmerne har gjort det muligt at hente langt flere oplysninger ud fra
helt almindelige undersøgelsesdata end det hidtil har været muligt med det
kommercielt tilgængelige software. S̊aledes har programerne gjort det muligt at
kvantificere en række forhold i nethinden som ikke tidligere har været gjort til
genstand for systematisk undersøgelse1.”

The comment received about the actual implementation was:

”De omfattende algoritmer er gjort tilgængelige i et brugervenligt program som
efter kort introduktion kunne anvendes2.”

1In English: The programs have made it possible to extract more information from typical
examination data than so far have been possible with commercially available software. Thus,
the programs have made it possible to quantify a number of conditions in the retina that
previously have not been the subject of systematic examination

2In English: The extensive algorithms are made available in a userfriendly program that
after a brief introduction could be used
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Only positive response was received, so it seems as the dialogue throughout
the project from when deciding which descriptors should be determined to the
introduction to the actual implementations has been satisfactory.



Chapter 9

Beyond One Slice

Up to this point the actual location of the scans investigated have not been
used. This is because if just one scan is available it is as good as impossible to
say anything about the part of the retina lying outside the scan. If several scans
are available the relative location between them becomes of interest, so features
of the intermediate tissue can be estimated by interpolating features from the
scans.

This approach will in the following sections be applied to six radial scans run-
ning through the fovea. This is a standard scan procedure in the StratusOCT
apparatus, but the general ideas can of course be applied to any number of scans
of any shape.

9.1 Surface Mapping

It can be very useful to generate a surface map representing the neuroretinal
thickness for a large part of the back of the eye in the case of a pathology
called macular edema. When looking at the retina through the lens it can be
hard to see which areas are swelled. With a surface map of the neuroretinal
thickness the ophthalmologist can visualize the size, shape and location of the
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swelling. When focusing on applications within macular holes, this can be used
to visualize the swelling around a macular hole, but it can also be used to
evaluate if the neuroretinal thickness postoperative has dropped below normal
in the foveal area.

The method to generate the surface will not be discussed in detail, it will just be
briefly explained in the following. First the neuroretinal thickness is found for
a set of radial scans running through the fovea, normally six, with a difference
in angle of π

6 radians. These points are mapped back to their original position
on the retina. So a surface needs to be generated from a set of known thickness
points located as shown in figure 9.1.
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Figure 9.1: Known point locations projected on a plane.

This can be done by triangulating the convex hull, ie. the smallest convex region
enclosing all the points. A standard method is the Delaunay triangulation. The
points lying within a given triangle are then interpolated from the known corner
points. This method is not very robust to noise though, since the surface is
forced through all points. As will be seen shortly this is generally not a problem
in our case. But if the scans are not aligned at the intersections of the scan
lines, the method produces almost useless results.

The surface of the neuroretinal thickness is shown for four different cases in
figure 9.2. The colormap used is the same as used by Zeiss in their StratusOCT.
Since it is so commonly used by ophthalmologists it has become their colormap
of choice. It is shown below the surface maps. The diameter for all surfaces
is 6mm. Figure 9.2(a) shows a normal eye with the fovea in the center, and a
slightly thicker right side than left, indicating that this is the side the optical
nerve head is located in the surface map. Figure 9.2(b) shows a macular edema,
where it can be seen that there actually are two different swellings. One is
getting very close to the fovea, and the other is slightly smaller and further
away.
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(a) Normal eye (b) Macular edema

(c) Macular hole (d) Postoperative macular hole

(e) Colormap in µm

Figure 9.2: The surface of the neuroretinal thickness is shown for four different
cases. (a) shows a normal eye with the fovea in the center. (b) shows a macular
edema, where two different swellings are apparent. A macular hole is shown
in (c), where the thickness has been set to zero for places where the retina is
detached from the RPE. There is a significant swelling outside the detached
area. The last case in (d) is a postoperative image of a macular hole. It seems
as if the entire area is thinner than the normal case, especially the fovea.
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A macular hole is shown in 9.2(c), where the thickness has been set to zero
for places where the retina is detached from the RPE. This creates artifacts at
the borders. The significant swelling around the hole is apparent, but the only
information you can get about the actual hole from this is the size.

The last case shown in 9.2(d) is a postoperative image of a macular hole. The
fovea is significantly thinner, and it seems as if the entire area is thinner than the
normal case. Whether this is significant of course needs further investigation,
but the overall impression is a depleted neuroretina.

If the top border of the retina and the transition between the the outer nuclear
layer and the IS/OS are known, the thickness of the neuroretina can be plotted.
If it has been found for a set of radial images, a surface can be interpolated. It
is very useful in the case of macular edemas, where one case has been shown,
but it does not provide any information about a macular hole except the size of
the detachment. If the surface of the neuroretina is reconstructed in 3D, more
information would be available as will be shown in the next section. Postoper-
ative cases can be investigated for whether the foveal pit lies too deep in the
retina, and if the entire neuroretina is depleted.

9.2 3D Reconstruction

Another way to visualize the neuroretinal thickness in figure 9.2 is to plot a
surface in 3D. In the normal or postoperative case, it is a different way of
representing the same data, but in the case of a macular hole, where the thickness
no longer is a function of the location on the retina, it gives a huge advantage,
since the shape of the hole can now be visualized.

To generate the surfaces, a method called radial basis function has been used,
it is a natural way to interpolate scattered data, particularly when the data
samples do not lie on a regular grid and when the sampling density varies [39].

A Toolbox for Matlab from FarField Technology called FastRBF has been used
to generate the surfaces. Three cases can be seen in figure 9.3. The same col-
ormap used in figure 9.2 has been used to represent the neuroretinal thickness.
The points used to generate the surfaces has been plotted with blue crosses.
When comparing the normal eye to the postoperative macular hole, the same
observations as was made when looking at the surface map can be seen. The
foveal pit is deeper for the postoperative case, and the entire surface seem de-
pleted.
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(a) Normal eye

(b) Macular hole

(c) Postoperative macular hole

Figure 9.3: The points used to generate the surfaces has been plotted with blue
crosses. When comparing the normal eye to the postoperative macular hole, the
same observations as was made when looking at the surface map can be seen.
The foveal pit is deeper for the postoperative case, and the entire surface seem
depleted. When looking at the macular hole, the bottom shape of the hole can
be observed.
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When looking at the macular hole, the bottom shape of the hole can be seen
in 9.3(b). If the point of view is moved downward, the entire shape of the hole
can be seen as shown in figure 9.4. The minimum and maximum size of the hole
can be observed when inspecting the surface from top and bottom respectively,
but the 3D cup is now also available, which has not been the case in any of the
previous methods.

Figure 9.4: The point of view has been moved downward, when compared
to 9.3(b), so the entire shape of the hole can now be seen.

In equation 7.4 the volume of the hole was estimated from one scan. Since
six radial scans and six corresponding cup shapes now are available, a better
estimate of the volume can be made. If the same approach is used, by assuming
circular symmetry about the central point, and letting each side contribute with
π
6 radians, the estimated volume is going to be

Vol6 =
π

12

∫ h

0

12∑

i=1

ri(z)2dz =
1
6

6∑

j=1

Vol1(j) (9.1)

Where j is the radial scan number. So the estimate based on 6 scans is just the
average of the six volume estimates based on one scan at a time. For the case
visualized Vol6 = 0.29mm3 with a standard deviation of 0.07 among the six Vol1
estimates. This is a fairly high standard deviation, which can be attributed to
two types of variation. The first being actual shape variation in the macular
hole, and the other being due to off-centered scans and not correctly found
surfaces. An off-centered scan would lead to a larger estimated volume. The
volume estimate could therefore be expected to be slightly biased, if the scans
are not correctly centered.

The neuroretinal thickness can be visualized in 3D by a surface. In the normal
or postoperative case, it is a different way of representing the same data, but
in the case of a macular hole it gives a huge advantage, since the shape of the
hole can now be inspected. The six available scans also gives a better estimate
of the volume of the cup.
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Chapter 10

Discussion

In the next sections part II and III of the project will be summarized and
concluding remarks are given.

10.1 Image Enhancement

Imaging methods relying on measuring coherent signals can be affected by in-
terference and therefore speckle. In chapter 5 three different types of diffusion
were applied to OCT images, to examine how effective they each were to reduce
speckle.

The simplest type was linear isotropic diffusion, which is equivalent to a con-
volution with a Gaussian kernel. The result is of course a gradual smoothing
of the initial image. The effect of speckle disappears, but so do details in the
image. Very similar results were seen with complex diffusion. With coherence
enhancing diffusion, smoothing was sometimes done perpendicular to the actual
layers, which lead to new structures being formed that were not present in the
original image.

None of the diffusion methods produced satisfactory results, so the conclusion
was made that more than one image of the same area would be necessary to
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reduce speckle without compromising the image in other ways.

When more than one image is available, they can be averaged to reduce noise, in
particular the effect of speckle. This was investigated in chapter 6. Since minor
movement in the head lead to varying shifts in the A-scans, a robust registration
of the images is necessary before averaging. The vertical and horizontal registra-
tion is done independently. This is possible when horizontal layers, such as the
ones in the retina, are present in the image. The vertical registration is based
on finding a shortest path by use of regularized dynamic programming through
an energyspace based on correlation. A constant horizontal shift is assumed for
each image. This one value is found by maximizing correlation.

The averaging method was tested with different settings, but it only had minor
effects on the resulting images. This is taken as a sign of the robustness of the
method. When combining several images, a significant reduction in speckle is
seen, which can make details visible that were not noticeable in the original
images. The reduction in noise seemed to wear off when 8-10 images were
included.

10.2 Applications

To extract the relevant descriptors in a preoperative image, as was done in
chapter 7, it was necessary to find the location of the top of the neuroretina
and the top of the hyperreflective layer consisting of the IS/OS and RPE. The
last one is found automatically by regularized dynamic programming in the
gradient image. The surface of the neuroretina is found semi-automatically with
a snake locked to the sides of the image. A few points lying above the surface
is provided by the user to ensure the necessary robustness of the method. From
the knowledge of the position of these layers, all relevant hole descriptors can
be estimated. These are, the center height of the hole, minimum and maximum
width of the hole, the hole area and volume and the retinal area.

When looking at a postoperative image, where the macular hole has closed, as
was the case in chapter 8, the location of the same two layers are of interest,
but also the bottom of the hyperreflective layer. Since the hole has closed, all
three can be found automatically with regularized dynamic programming. The
interesting descriptors are in this case the thickness of the hyperreflective layer,
the thickness of the neuroretina, the width of a possible atrophy, the retinal
area and the intensity of a marked section of the outer nuclear layer.
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If several OCT scans have been taken at different retinal locations, it is pos-
sible to interpolate the neuroretinal thickness found from each scan into an
approximate surface. Examples of this is shown in chapter 9. When the data is
represented in this way, a swelling or thinning in the neuroretina is visualized
in an intuitive way. The shape of a macular hole can not be represented in
this way without loosing some of its shape information. But if the neuroretina
instead is reconstructed as a 3D surface, this information is maintained, and it
is possible to visualize a 3D cup representation of the macular hole.

10.3 Conclusion

OCT is still a technique in development. Alterations such as new lightsources
can improve the produced image significantly. These improvements are often
the result of new technology being used, at the cost of the final price of the
product. If a method based solely on image processing can produce a next
generation resulting image from images taken from what is currently a standard
apparatus, it would be of great interest.

One way this seems to be achievable is by reducing the effect of speckle in OCT
images. In this thesis three different types of diffusion have been applied to
OCT images. None of the diffusion methods produced satisfactory results, so
an iterative method was developed that averaged several images. Each image is
aligned and registered vertically and horizontally to a template, before averaging
any images. The method is robust to parametrical changes, and the average
image has significantly less noise than the originals.

The extraction of relevant descriptors from pre- and postoperative OCT images
of retinas with a macular hole have also been examined. The descriptors can be
extracted from the location of transitional layers. They are found automatically
or semi-automatically. If these layers are known for several slices located at
different retinal positions, the neuroretinal thickness can be represented as a
surface map or 3D surface, in this way visualizing the entire retina instead of
slices of it. The software developed throughout the course of this project is to be
used in a case study at Herlev Hospital, where different surgical techniques to
treat macular hole are evaluated. The study will hopefully lead to new insight
about the optimal treatment and pathogenesis of a macular hole.
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Appendix A

Matlab Code Overview

Relevant code from chapter 5 to 9 has been supplied on the enclosed CD. The
scripts are briefly described. For more information see the appropriate file. If a
script uses any functions it is mentioned.

Chapter 4

• snake=DynProgReg(X, lambda, p, RescaleType, q)
Regularized dynamic programming on energyspace X

Chapter 5

• imout=AlignImByCorr(IM)
Aligns image such that the correlation between columns are maximized
uses: shift

• imout=LinearDiffusion(IM, sigma)
Linear diffusion by gaussian filtering

• imout=ComplexDiffusion(IM, ang, k, mu, N)
Ramp preserving complex diffusion
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• imout=CoherenceDiffusion(IM, sigma1, sigma2, fractileK, N)
Coherence enhancing diffusion
uses: makeColorMap

• out=shift(in, nbr)
shifts column according to nbr

• makeColorMap
Makes colormap for orientation image

Chapter 6

• AverageRunner
Aligns and registers images and produces average image
uses: DynProgReg, AlignImByCorr and shift

Chapter 7

• FindSurfacesMH
Locates center and top of hyperreflective layer automatically and finds top
of retina with active contour initialized from points provided by user
uses: DynProgReg, shift, ParamSnake, FreeHandSnake and DrawSnake

• DetermineHoleParameters
Determines descriptors for macular hole
uses: DrawSnake and shift

• v=ParamSnake(IMres, v, iterations, alpha, beta, delta, gamma)
Active contour, where endpoints are kept on sides of image
uses: balloon, parameterize and DrawSnake

• DrawSnake(v, color)
Draws snake on figure

• v=FreeHandSnake(go)
Get points from user by clicking on figure

• v=parameterize(x, y, N)
Returns N equally spaced points on line through points

• Fb=balloon(v)
Returns inwards normal to every points

• [v2 sizev2]=interpolatePoints(v, nr)
Interpolates v such that all points returned are connected
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Chapter 8

• FindRPEDynProg
Locates top and bottom of hyperreflective layer
uses: DynProgReg

• FindRetinaTop
Locates top of retina and calculate descriptors
uses: DynProgReg

Chapter 9

• MapSurface
Maps surface from six radial scans
uses: convertVto3D

• prepRBF
Generates 3D points for RBFtest
uses: DrawSnake, balloon, parameterize

• RBFtest
Generates 3D surface by radial basis functions
uses: FastRBF Toolbox

• [x y z]=convertVto3D(v)
Returns 3D coordinates from six radial scans
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Appendix B

Test of Averaging Method

The method to reduce noise by averaging several images presented in chapter 6
has been tested on 7 sets of OCT images. From each set between 10 and 13
images have been used to produce the final image. One set is of a healthy
individual, 3 sets have a preoperative macular hole and 3 sets are postoperative
images of a macular hole. One initial image, an aligned version of the initial
image and the average image for each set are shown in this chapter.

For a general discussion of the images see section 6.3.
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Figure B.1: Healthy individual.
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Figure B.2: Macular hole set 1.
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Figure B.3: Macular hole set 2.
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Figure B.4: Macular hole set 3.
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Figure B.5: Postoperative macular hole set 1.
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Figure B.6: Postoperative macular hole set 2.



114 Test of Averaging Method

Figure B.7: Postoperative macular hole set 3.



Appendix C

Registration Failure

In the following an imageset consisting of 11 images taken of the same retinal
location is used to show a registration failure with a less robust method. One of
the original images are shown in figure C.1. On the left side of the macula the
RNFL and the RPE are very distinct but on the right side there is a pathology
that affects the retina.

The left side is handled well by a method that maximizes the correlation for
every A-scan, but it can not handle the right side, where wrong vertical shifts
are estimated as seen in C.2. Horizontal discontinuities occur in the structure
of the image. With a regularized dynamic programming method in energyspace
the right side of the image is registered much better, shown in figure C.3. The
method gives no discontinuities in the horizontal structure due to the continuity
constraint in energyspace.
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Figure C.1: One image from an imageset consisting of 11 images taken of the
same retinal area. On the left side of the macula the RNFL and the RPE are
very distinct but on the right side there is a pathology that affects the retina.
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Figure C.2: A method that maximizes the correlation for every A-scan has been
used to register an imageset. The left side is handled well, but it can not handle
the right side, where wrong vertical shifts are estimated.
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Figure C.3: Regularized dynamic programming in energyspace has been used to
register the imageset. the right side of the image is registered better than the
simple implementation, shown in figure C.2. The method gives no discontinuities
in the horizontal structure due to the continuity constraint in energyspace.
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Appendix D

Test of Pre-OMaH Tool

The Pre-OMaH Tool has been tested on six very different macular hole cases.
The images have not been chosen for their high quality, they should represent
typical images that have not been averaged. The robustness of finding the top
of the hyperreflective layer and in particular the top of the retina is to be tested.
For all the images, between 12 and 17 points have been given by the user just
outside the retina to initialize the active contour.

For all 6 test images, the top of the hyperreflective layer only needed assistance
in case 3. Locating the top of the retina was harder as expected. The top of the
retina on test images 1-3 have been found without significant adjustment on the
force parameters, but test image 4 and 5 had so narrow macular holes that the
bending force parameter needed to be reduced significantly to locate the borders
of the hole. The same was necessary for test image 6, where the lid of the hole
is still attached on the right side of the image. The contrast is so poor in test
images 5 and 6 that the balloon force also needed to be reduced significantly, or
else the snake would not be stopped by the borders of the retina.

For some of the images a significant parameter tuning was required to locate the
top of the retina. This was because of narrow macular holes or a low contrast.
Never the less, satisfactory solutions have be found for all images. The contrast
of the images can be increased when using an average image instead of a single
image, thus reducing the time spend on adjusting parameters, and hopefully
also finding an even better solution.
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(a) Preoperative test image 1

(b) Preoperative test image 2

Figure D.1: Preoperative test image 1 and 2.
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(a) Preoperative test image 3

(b) Preoperative test image 4

Figure D.2: Preoperative test image 3 and 4.
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(a) Preoperative test image 5

(b) Preoperative test image 6

Figure D.3: Preoperative test image 5 and 6.



Appendix E

Test of Post-OMaH Tool

To test Post-OMaH Tool, six different postoperative cases have been used. No
averaging of images have been done prior to analysis. The aim of this test is not
to try to evaluate whether or not an atrophy is present that is up to the experts
to decide. Instead it is to find out how much assistance is needed to locate the
three layers.

The layers seen on the test images 1-3 have been located automatically without
any assistance. In test image 4 the bottom of the RPE was not correctly found,
it needed a few points to pull the path closer to the actual location. In test image
5 the top of the hyperreflective layer, was on the left side located at the top of
the RPE. This was corrected by a few of points. Test image 6 was chosen for
its lack of contrast on the right side, and the top of the hyperreflective layer fell
to the top of the RPE as expected. The top of the retina also needed assistance
in the far right side.

In general the algorithms succeeds when the image has a high contrast at the
transitions that should be located, in particular between the RPE and choroid.
But even with a severely degraded image as test image 6, a qualified initial guess
was given that could be pulled toward the preferred location with a limited set
of points provided by the user.
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(a) Postoperative test image 1

(b) Postoperative test image 2

Figure E.1: Postoperative test image 1 and 2.
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(a) Postoperative test image 3

(b) Postoperative test image 4

Figure E.2: Postoperative test image 3 and 4.
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(a) Postoperative test image 5

(b) Postoperative test image 6

Figure E.3: Postoperative test image 5 and 6.



Appendix F

User manual for Pre-OMaH
Tool

In order to be able to determine the relevant preoperative descriptors, the top
of the hyperreflective layer and the the retina must first be located. The pro-
cess implemented in Pre-OMaH Tool will be described in the following. For a
screenshot of Pre-OMaH Tool see figure 7.7.

• Loading an image

Before loading an image, choose whether or not the loaded image should
be aligned, and whether this should be done to the RPE, or simply by
correlating the A-scans, by un/checking the boxes. Two types of image
can be loaded, either a .bmp grey-scale image or a .raw exported from
StratusOCT.

• Hyperreflective layer

Once the image is shown, choose how much postoperative smoothing
should be done on the path found as the the top of the hyperreflective
layer. Press ”Calculate”, and the top of the hyperreflective layer is lo-
cated. You will be prompted whether or not you are satisfied with the
result. If you are not, provide points for problematic areas, and press
”Calculate”. This process can be repeated, until the result is satisfactory.
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• Top of retina

Provide an initial path lying just outside the actual surface, by clicking
on the image, starting from the left. The first and last point will be
connected with a horizontal line to the sides. Press ”Calculate”, and
evaluate whether or not the result is satisfactory. If not adjust the three
parameters appropriately, and provide a new initial path. Once the top is
found correctly, all descriptors are calculated and marked on the image.
They are explained below. The image with lines drawn on can be saved,
and the descriptors can be saved to a text file.

Height - Height of the macular hole in the center in µm.

Min. Width - The minimum width of the macular hole in µm.

Max. Width - The maximum width of the macular hole in µm. The maximum
widht must lie below the minimum width.

Area of retina - Area lying between the top of the retina and the top of the
hyperreflective layer located in mm2.

Area of hole - Area of the hole in mm2, where the top is defined as where
liquid poured into the hole would overflow.

Volume of hole - The volume in mm3 of the object produced by rotating the
macular hole around the center line.
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User manual for Post-OMaH
Tool

To determine the relevant postoperative descriptors, the different layers must
first be located, along with where the ONL should be sampled. The process
implemented in Post-OMaH Tool will be described in the following. For a
screenshot of Post-OMaH Tool see figure 8.8.

• Loading an image

Before loading an image, choose whether or not the loaded image should
be aligned, by un/checking the box. Two types of image can be loaded,
either a .bmp grey-scale image or a .raw exported from StratusOCT.

• Hyperreflective layers

Once the image is shown, choose how much postoperative smoothing
should be done on the three paths found. Press ”Calculate”, and the top
and bottom of the hyperreflective layer is located. You will be prompted
whether or not you are satisfied with the result. If you are not, provide
points for problematic areas, first top, then center and bottom of hyper-
reflective layer, pressing ”Calculate” between each. This process can be
repeated, until the result is satisfactory.



130 User manual for Post-OMaH Tool

• Top of retina

The top of the retina is then found, and points can be provided in the
same way as for the hyperreflective layer, if the result is not satisfactory.

• Sampling the ONL

Once the top is found correctly, the areas to calculate the center and side
intensity of the ONL should be chosen by selecting two corners in the
rectangle in the center and two corners in the rectangle on the side. All
descriptors are then calculated. They are explained below. The image
with lines drawn on can be saved, and the descriptors can be saved to a
text file.

Retinal Thickness - Neuroretinal thickness in µm, sampled at predefined lo-
cations ranging from 2mm to one side to 2mm on the other side.

Hyperref. layer - Thickness of the hyperreflective layer in µm, sampled at
predefined locations ranging from 2mm to one side to 2mm on the other side.

Intensities - Relative intensity of the two selected rectangles in the fovea and
on the side, and the ratio of the two.

Std - Standard deviation of the pixels selected to be sampled for the ONL.

Atrophy width - Width of the estimated atrophy in µm, marked in green on
the image.

Retinal Area - Area lying between the top of the retina and the top of the
hyperreflective layer located in mm2.



Bibliography

[1] Jakob Friis Morten la Cour. Macular holes: classification, epidemiol-
ogy, natural history and treatment. Acta Ophthalmologica Scandinavica,
80(6):579–587, 2002.

[2] SA. Madreperla and BW. II McCuen. Macular Hole. Pathogenersis, Di-
agnosis and Treatment, chapter Internal limiting membrane removal in
surgery for full-thciness macular holes, pages 125–146. Boston: Butter-
worth Heinemann, 1999.

[3] H. Logan Brooks. Macular hole surgery with and without internal limiting
membrane peeling. Ophthalmology, 107(10):1939–1948, 2000.

[4] David Huang, Eric A. Swanson, Charles P. Lin, Joel S. Schuman,
William G. Stinson, Warren Chang, Michael R. Hee, Thomas Flotte, Ken-
ton Gregory, Carmen A. Puliafto, and James G. Fujimoto. Optical coher-
ence tomography. Science, 254(5035):1178–1181, 1991.

[5] Thomas Martini Jorgensen, Bjarne Ersboll, Birgit Sander, and Michael
Larsen. Reducing speckle noise in retinal oct images by aligning multiple
b-scans. Progress in Biomedical Optics and Imaging - Coherence Domain
Optical Methods and Optical Coherence Tomography in Biomedicine VIII
and Proceedings of SPIE - The International Society for Optical Engineer-
ing, 5316:205–213, 2004.

[6] J.M. Schmitt. Optical coherence tomography (oct): a review. Selected
Topics in Quantum Electronics, IEEE Journal on, 5(4):1205 –1215, 1999.



132 BIBLIOGRAPHY

[7] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P.
Lin, C. A. Puliafito, and J. G. Fujimoto. Optical coherence tomography of
the human retina. Arch Ophthalmol, 113(3):325–332, 1995.

[8] Egbert Lenderink. Optical coherence tomography for three-dimensional
imaging of skin features. Proceedings of SPIE - The International Society
for Optical Engineering, 3567:70–77, 1999.

[9] C.K. Hitzenberger, P. Trost, Pak-Wai Lo, and Qienyuan Zhou. Three-
dimensional optical coherence tomography of the human retina in vivo by
high-speed transversal scanning. Proceedings of the SPIE - The Interna-
tional Society for Optical Engineering, 5316(1):7–11, 2004.

[10] Oregon medical laser center,
http://omlc.ogi.edu/news/jan98/gallery jan98.html.

[11] J.M. Schmitt, S.H. Xiang, and K.M. Yung. Speckle in optical coherence
tomography: an overview. Proceedings of SPIE - The International Society
for Optical Engineering, 3726:450–461, 1999.

[12] Yuan An, JianQuan Yao, and RuiKang Wang. Analysis of speckle in optical
coherence tomography. Proceedings of SPIE - The International Society for
Optical Engineering, 4916:245–250, 2002.

[13] Stephane Paes, Seon Young Ryu, Jihoon Na, EunSeo Choi, Changsu Lee,
and Byeong Ha Lee. Combined applications of iterative deconvolution
methods and adaptive speckle filters for optical coherence tomography. Bio-
photonics, 2004. APBP 2004. The Second Asian and Pacific Rim Sympo-
sium on, pages 137–138, 2004.

[14] H. Choi, T.E. Milner, and A.C. Bovik. Speckle noise reduction and seg-
mentation on polarization sensitive optical coherence tomography images.
Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th
Annual International Conference of the IEEE, pages 1062–1065 Vol.2, 2003.

[15] Desmond C. Adler, Tony H. Ko, and James G. Fujimoto. Speckle reduc-
tion in optical coherence tomography images by use of a spatially adaptive
wavelet filter. Optics Letters, 29(24):2878–2880, 2004.

[16] J. Rogowska and M.E. Brezinski. Evaluation of the adaptive speckle sup-
pression filter for coronary optical coherence tomography imaging. Medical
Imaging, IEEE Transactions on, 19(12):1261 –1266, 2000.

[17] D.C. Fernandez. Delineating fluid-filled region boundaries in optical coher-
ence tomography images of the retina. Medical Imaging, IEEE Transactions
on, 24(8):929–945, 2005.

[18] Dr. john grohol’s psych central, http://psychcentral.com/psypsych/eye.



BIBLIOGRAPHY 133

[19] B Sander, M Larsen, L Thrane, J L Hougaard, and T M Jorgensen. En-
hanced optical coherence tomography imaging by multiple scan averaging.
British Journal of Ophthalmology, 89(2):207–212, 2005.

[20] JD Gass. Idiopathic senile macular hole: its early stages and pathogenesis.
Arch Ophthalmol, 106:629–639, 1988.

[21] W.E. Smiddy and H.W. Flynn. Pathogenesis of macular holes and thera-
peutic implications. American Journal of Ophthalmology, 137(3):525–537,
2004.

[22] J. Wender, T. Iida, and L.V. Del Priore. Morphologic analysis of stage 3
and stage 4 macular holes: Implications for treatment. American Journal
of Ophthalmology, 139(1):1–10, 2005.

[23] R E Bellman. Dynamic Programming. Princeton University Press, 1957.

[24] A.A. Amini, T.E. Weymouth, and R.C. Jain. Using dynamic programming
for solving variational problems in vision. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 12(9):855–867, 1990.

[25] Michael Buckley and Jean Yang. Regularised shortest-path extraction.
Pattern Recognition Letters, 18(7):621–629, 1997.

[26] Thomas Martini Jorgensen, Jakob Thomadsen, Lars Thrane, and Peter E.
Andersen. Dynamic contour model for aligning and segmenting oct b-scans.
Coherence Domain Optical Methods and Optical Coherence Tomography in
Biomedicine IX and Progress in Biomedical Optics and Imaging - Proceed-
ings of SPIE, 5690:480–485, 2005.

[27] K.J. Coakley and P. Hale. Alignment of noisy signals. Instrumentation and
Measurement, IEEE Transactions on, 50(1):141 –149, 2001.

[28] R. Jane, H. Rix, P. Caminal, and P. Laguna. Alignment methods for averag-
ing of high-resolution cardiac signals: a comparative study of performance.
Biomedical Engineering, IEEE Transactions on, 38(6):571–579, 1991.

[29] G. Gilboa, N. Sochen, and Y.Y. Zeevi. Image enhancement and denoising
by complex diffusion processes. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(8):1020–1036, 2004.

[30] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 12(7):629 –639, 1990.

[31] Xiaohui Hao, Shangkai Gao, and Xiaorong Gao. A novel multiscale nonlin-
ear thresholding method for ultrasonic speckle suppressing. Medical Imag-
ing, IEEE Transactions on, 18(9):787 –794, 1999.



134 BIBLIOGRAPHY

[32] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy. A versatile wavelet
domain noise filtration technique for medical imaging. Medical Imaging,
IEEE Transactions on, 22(3):323–331, 2003.

[33] Joachim Weickert. Coherence-enhancing diffusion of colour images. Image
and Vision Computing, 17(3-4):201–212, 1999.

[34] F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom. Image enhance-
ment based on a nonlinear multiscale method. Image Processing, IEEE
Transactions on, 6(6):888–895, 1997.

[35] Xiaomei Song, Brian W. Pogue, Shudong Jiang, Marvin M. Doyley, Hamid
Dehghani, Tor D. Tosteson, and Keith D. Paulsen. Automated region de-
tection based on the contrast-to-noise ratio in near-infrared tomography.
Applied Optics, 43(5):1053–1062, 2004.

[36] S. Kusuhara, M.F. Teraoka Escano, S. Fujii, Y. Nakanishi, Y. Tamura,
A. Nagai, H. Yamamoto, Y. Tsukahara, and A. Negi. Prediction of post-
operative visual outcome based on hole configuration by optical coherence
tomography in eyes with idiopathic macular holes. American Journal of
Ophthalmology, 138(5):709–716, 2004.

[37] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models.
International Journal of Computer Vision, 1(4):321–31, 1987.

[38] N. Villate, J.E. Lee, A. Venkatraman, and W.E. Smiddy. Photoreceptor
layer features in eyes with closed macular holes: Optical coherence tomog-
raphy findings and correlation with visual outcomes. American Journal of
Ophthalmology, 139(2):280–289, 2005.

[39] FarField Technology. FastRBF Toolbox, 2004.


