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Abstract: Random numbers are used for a great variety of applications in almost any field of computer and

economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic

traffic modelling in operations research to photon and ray tracing in graphics.

The construction of a model or a solution method requires certain characteristics of the random numbers

used. This is usually a distribution classification, which the sequence of random numbers must fulfill; of these

some are very hard to fulfill and others are next to impossible. Today mathematics allows us to transform

distributions into others with most of the required characteristics. In essence, a uniform sequence which is

transformed into a new sequence with the required distribution. The subject of this article is to consider the

well known highly uniform Halton sequence and modifications to it. The intent is to generate highly uniform

multidimensional draws, which are highly relevant for todays traffic models.

This paper shows among others combined shuffling and scrambling seems needless, that scrambling gives

the lowest correlation and that there are detectable differences between random numbers, dependent on their

generation.

Keywords: Mixed Logit estimation, a priori distribution, random numbers, Halton numbers, Shuffled

Halton, Scrambled Halton, Leaped Halton.
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1 Introduction and background

A mixed logit model is a generalised member of the logit family, where one/ some of the coefficients are no

longer scalars; but rather stochastically distributed variables. Over recent years increased focus has been

put on how these variables could be described (which a priori distribution should be applied, could this be

estimated, could this be tested, etc).

Mixed logit models, ie. models including distributed components are today at the frontier of application and

development in transport modelling. The name Mixed Logit has for some years been used indiscriminately

with Error Component Models, Random Parameters Logit, Models with Stochastic (Distributed) Preferences

(Coefficients), Logit Kernel Models or Hybrid Choice models, for models where error components are added

to the traditional (linear) utility function. However, the name conventions Mixed logit models seems to have

taken the lead.

During the past 5 years the use of such models is growing rapidly, due to an increased access to software

(both commercially by Hague Consulting Group (Alogit4ec), the self-contained BioGeme [Bierlaire, 2002] and

shareware as Gauss code [Train, 2002]. In general, the method of Maximum Simulated Likelihood (MSL) is

applied, although this only optimises within a given a priori distribution of the error components.

When mixed models are estimated or used for forecasting, emphasis must be put on how the stochasti-

cally distributed terms are obtained as this may significantly impact the model results. The interesting

question of correlation between these error components, or the a priori assumption of shape of distribution

has been dealt with in [Sørensen, 2003a, Sørensen, 2003b, Sørensen, 2004]. Yet an unresolved questions is

that of how to generate the distributed terms.

This paper will focus on how random numbers can be generated, and the differences between these. First, the

theoretical framework is defined in section 2, different methods for single dimensional draws will be covered

in section 3, followed by multidimensional draws in section 4. Following this runtime analysis in section 6 will

preceed comparison of the numbers generated by means of correlation in section 7. This paper is concluded

in section 8.

2 Theoretical framework

In the following a general model is formulated, for which the empirical distribution of the stochastic coefficients

in an error components model can be determined. Let the utility function be specified as

Uji = Vji + νj (1)
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where Vji respective νj represents the explained respective the unexplained variation in the utility function

for choice of alternative i by individual j. The explained variation is often formulated as a linear relation,

i.e.
∑

k βkXjik where each attribute Xk is converted into an arbitrary measure utility. This framework is

(usually) operationalised by assuming that the unexplained part of the variation is described by some well-

known distribution (Extreme Value, type I (EVI) leads to the logit formulation). Estimation is performed by

means of maximum likelihood, where the estimates of the coefficients are conditional on the specification of

the utility function (which potentially transformed attributes are included) as well as the a priori (assumed)

distribution of the ν.

The expansion to the mixed logit framework1 corresponds to partitioning of the unexplained variation (the

ν) into a systematic (describable) and an unsystematic part. Formulated as in (1)

Uji = Vji(Xij) + ηjf(Xij) + εj, (2)

where ηj is the systematic part of the unexplained variation, while εj is the unsystematic part. Both the

deterministic part of the utility and the systematic part of the utility may be functions of the explanatory

variable (Xij), while the unsystematic part (ε) is (again) assumed to be EVI distributed; hence, estimation

by means of the logit framework is facilitated.

The elements of the matrix ξ are either assumed to follow a stochastic distribution with mean zero and

variance σ2
j or are identical 0 (fixed coefficients). Traditionally distributions suggested are the normal

([McFadden and Train, 2000]) and the lognormal ([Ben-Akiva et al., 1993], [Train, 1998]), though other dis-

tributions have been suggested which include the χ2 ([Nunes et al., 2001]), the uniform ([Revelt and Train, 2000])

and the triangular ([Revelt and Train, 2000], [Train, 2001]). Covariance between the stochastic elements of

ξ are allowed; though applications has been limited to the normal distribution. The un-systematic parts ε

are IID.

Key issues are to discover and apply the correct shape of the included distributions - including applica-

tion of a random number generator that does not bias the distribution.
1The ’Mixed Logit Framework’ refers to the Mixed Logit Model ([McFadden and Train, 2000]), Error Components Logit

([Ben-Akiva et al., 1993]), Logit Kernel ([Ben-Akiva et al., 2001]), Random parameters Logit ([Ben-Akiva et al., 1993]) and the

Hybrid Choice model [Ben, 2002].
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3 Drawing a single number

The problem of drawing a single number or a sequence of numbers from a uniform distribution is usually

solved by using the random number generator supplied by the computer2. Due to the nature of the im-

plementation it is called a pseudo random number generator. The name “pseudo” is chosen because of the

relatively high discrepancy, which is a measure of how close to uniform distribution the draws are.

High discrepancy means that the draw is far from uniform and low indicates the draw is close to uniform.

This discrepancy can be estimated by selecting a representative subinterval in the range from which the

sequence was drawn. The next step is to slide the subinterval through the draw range and for each position

where the number of draws in the subinterval change note the count. From the produced set of numbers

minimum and maximum is found. The discrepancy can then be described as the difference between these

numbers - i.e. if the difference is high so is the discrepancy.

Several approaches to calculating the discrepancy exist. These are interesting if you wish to estimate the

discrepancy of a known sequence. In this paper however we consider a special sequence generator, the Halton

generator, which by construction yields low discrepancy sequences.

Following the coverage of the pseudo random number draw we cover a widely used quasi random number

sequence called the Halton sequence and different variations hereof.

3.1 Pseudo random numbers

A pseudo random number is a general name for numbers generated to simulate uniform distribution draws

fast. The crucial characteristic is the speed they are produced at, and not their discrepancy, the deviation

from uniformity, as these usually are less important. Usually they are generated as

Xt+1 = mod(aXt + b, c) (3)

with proper choices of a, b and c. Further description can be found in eg. [Ross, 1997]. In fact, the discrepancy

is the reason why they are insufficient for model estimation.

Figure 1 shows how significant the discrepancy is. Even if the sequence is extended the discrepancy cannot

be neglected, as evident from the figure.

The fallacy is that the numbers are based on a predictable stateful draw that sacrifices uniformity and

randomness for speed. A newer approach to generating random numbers is based on entropy accummulation

and is primarily available under Unix based operating systems. Any bit read from the entropy device is

considered to be completely random and highly uniform, which can be translated into: given n-bits from
2More specifically by the operating system
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Figure 1: Visualization: discrepancy of the pseudo random draws
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Figure 2: Visualization: Discrepancy of the entropy based random draw.
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the stream, the number of zeros n0 equals the number of ones n1 as n = n0 + n1 goes to infinity. As with

pseudo random numbers the entropy numbers are based on a stateful approach. The major difference is

that the state is changed independently of the draw of a number. This, however, is not enough to guarantee

sufficiently low discrepancy.

Figure 2 shows the discrepancy of a 32-bit precision entropy draw. Due to the nature of the entropy generated

numbers performance cannot be directly measured, as the time it takes to generate a number is dependent

on the entropy of the system. It is thus of no use trying to compare the run times of the two, as the entropy

version uses events in the system and hardly any cpu-time as opposed the cpu intense calculations of the

standard random draw.

The key point in a sequence generator is not how uniform a single sequence is, but instead the worst discrep-

ancy of all sequences generated by it. The problem in the pseudo draws is that this worst case discrepancy

is completely unacceptable. This makes them theoretically useless eventhough practical examples show that

many of the generated sequences have a low discrepancy.

The need for a theoretical guarantee has lead to the invention of sequence generators ensuring a very good

worst discrepancy. One, among many of the low discrepancy sequence generators, makes the Halton sequences

and we thus call it the Halton generator.

Some of the following have already been covered in great detail in [Bhat, 2001] and [Bhat, 2003], but we

include it here as we consider a broader selection of Halton based sequences.

3.2 Standard Halton

Rather than ensuring that each number is equally random, the idea is that a sequence of numbers covers the

interval uniformingly.

This is where the Halton sequences comes into play. In technical terms is it called a reverse radix-based

sequence, where a radical inverse function is used to obtain the point in the interval corresponding to a

specific number [Kocis and Whiten, 1997].

Mathematically the nth number in the Halton sequence Φb is in [Hess and Polak, 2003] section 3.1 stated as:

Φb(n) =
∑

i

ai(n)b−i−1, where
∑
i=0

ai(n)bi = n (4)

Where b is the number generating the sequence and i is the level in the sequence. The problem is the deter-

mination of the ai(n) variables, and the sequences is thus much better described by an example.
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The sequence is constructed by continously subdividing the open ended unit interval [0, 1[. The first b

numbers – the first level – are simply nb−1, dividing the interval into b equally sized subintervals. The next

b2 − b numbers – the second level – divide each subinterval into b new equal sized intervals. After drawing b2

numbers the interval is divided into b2 equal sized intervals, which during the next b3− b2 (third level) draws

is further subdivided into b3 intervals, etc.

The sequence based on base number 2, is
{

0,
1
2
,
1
4
,
3
4
,
1
8
,
3
8
,
5
8
,
7
8
,

1
16

. . .

}

The sequence of the numbers is such that it is always the first of the widest subintervals that is divided into

two by specific proportions based on b.

A standard Halton sequence is far from random, but it is highly uniform as long as the number of draws

completes an entire level. In other words the sequence must be of length bn for n ∈ N to satisfy uniformity.

If this is not fulfilled the mean of the sequence is be biased towards zero. This is due to the division strategy,

where intervals closest to zero are divided first, according to the definition.

This is further strengthened by the first draw of 0, which is never balanced by a draw of 1. This is eas-

ily circumvented by simply discarding the 0 and thus using the sequence from the second element, whereby

the mean of the sequence E(·) = 1
2 .

3.3 Scrambled Halton

The scrambled Halton draw was invented to introduce some randomness into the sequences and, as we will

show a little later, alleviate correlation in multidimensional draws.

The idea is simply to permute the interval subdivision such that it is not the first of the widest inter-

vals but instead any one of the widest intervals still to be divided in this level, that is split.

The mathematics are given in [Hess and Polak, 2003] section 3.2 as follows:

Φb(n) =
∑

i

σb(ai(n))b−i−1
j , where

∑
i=0

ai(n)bi = n (5)

The only difference from equation (4) is the σb function which performs a permutation of all integers from 0

to b − 1
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It is defined above that the permutation function is the same for all levels and given a σ function as

[012] → [102] the sequence based on 3 becomes:
{

1
3
, 0,

2
3
,
4
9
,
1
9
,
7
9
,
5
9
,
2
9
,
8
9
,
13
27

. . .

}

Again the sequences are not random, but it is less obvious what the next number is due to the scrambling

function σ. It is still highly uniform as the numbers drawn are the same as for the standard Halton, but if a

sequence does not complete a level there is no guarantee that the mean E(·) = 1
2 .

The major difference is that the bias caused by incomplete levels is completely dependent on the scram-

bling function. Choosing a function like σ5 : [01234] → [21304] will ensure that the bias is minimized as the

interval divisions are performed symmetrically around 0.5.

3.4 Leaped Halton

To increase the degree of randomness the leaped Halton draw was invented. It again is based on the standard

Halton but instead of using all numbers only every lth number is used. As long as the number l is a prime

different from the prime base b it can be shown that the resulting draw is equally uniform. Refer to section

2.4 of [Kocis and Whiten, 1997] for further elaboration on this.

Furthermore it can be shown that the leaping can be considered as a scrambling and pertubation func-

tion that rather effectively removes the apparent predictability of the standard and scrambled Halton draws.

The drawback is the possible computational overhead of drawing n × l elements, instead of just n elements.

The first 10 numbers of the leaped Halton sequence based on b = 29 and l = 409 are;

0.08561237 0.20570749 0.45782935 0.94415515 0.43052196

0.91684776 0.40321456 0.88954037 0.37590717 0.86223297

with mean ≈ 0.557.

The problem is here that the leap length is constant, which means that while no numbers from the first

level are selected in the example above (297 − 296)/409 = 40721400 numbers from level 7 are selected in

strictly circular manner. The permutation and pertubation is thus most influencial when the number of

draws is relatively small.
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4 Multidimensional draws

When using multidimensional draws it is important that the different dimensions are uncorrelated - or rather,

controlled given that correlation is desired. If and only if they are uncorrelated and uniform, then the draw

will be uniform in the s-dimensional unit space [0, 1[s.

4.1 Linear draws

The straight forward approach to this is to draw anew for each dimension. As we focus on Halton draws,

any of the above can be used. For a 3 dimensional draw we can use three standard Halton sequences each

based on a different number b. However, this is not sufficient. Selection of these base numbers are highly

important and must be done with great care. The standard Halton sequence is cyclic and inappropriate base

numbers introduces high correlation between the dimensions; thus resulting in a non-uniform draw.

Figure 3 shows correlation between 2 standard Halton sequences.

Even choosing the numbers optimally will not result in a uniform multidimensional draw. The cycles of

the individual standard Halton sequences will combine into a supercycle, which will result in correlation.

The first or smallest step to overcome the correlation is to use the scrambled Halton instead. This dis-

rupts the cycles of the standard version, but again, dependent on the scrambling function, the cycles may

reappear in longer sequences. The correlation is significantly reduced, but has not been removed.

Similarly, using the leaped Halton might again reduce the correlation, but the computational overhead can

become a drawback.

To define the linear draw more strictly we can define the linear s-dimensional draw L
s, constructed by:

L
s(n) = {Σ1(n), Σ2(n), . . . ,Σs(n)}

where Σi(n) is the nth number in the ith sequence, which can be any sequence from a uniform draw.
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Figure 3: Visualization: The correlation for generator b1 = 11 and b2 = 13
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4.2 Shuffled draws

The problem above is that the number drawn for each dimension is drawn from the same sequence in every

draw. The idea in shuffled Halton draws is to permute or shuffle the sequences among the dimensions for

each draw.

The basic shuffled version proposed lately in [Hess and Polak, 2003] is based on standard Halton sequences

shuffled randomly among the dimensions at every draw. This disruption has impact on the correlation as it

no longer is exactly two dimensions that are strictly correlated. Instead the correlation might become more

or less as the correlated sequences are no longer bound to specific dimensions.

As above, the shuffled draw S can be described by:

S
s(n) = σsn (Σ1(n), Σ2(n), . . . ,Σs(n))

Where σsn is a function, that dependent on n, permutes the s elements.

A sequence of shufflings could be:

σ50(x0, x1, x2, x3, x4) = (x2, x1, x3, x0, x4)

σ51(x0, x1, x2, x3, x4) = (x4, x3, x1, x0, x2)

σ52(x0, x1, x2, x3, x4) = (x1, x4, x2, x3, x0)

5 Obtaining the results

The generation time is trivially acquired by examining the per process timing information upon inaugeration

and completion of the actual generation.

The correlation between two sequences are found by:

r(X, Y ) =
Cov(X, Y )

S(X) · S(Y )

Where Cov(·, ·) is the covariance and S(·) is the standard deviation:

Cov(X, Y ) = E [(X − E(X))(Y − E(Y ))] and S(X) =
√

Cov(X, X)

Two one dimensional sequences were defined as correlated if the numerical value of the correlation exceeded

2N−1/2, that is:

|r(X, Y )| >
2√
N

⇒ Sequences X and Y are correlated
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For the multidimensional draws the results are found by first generating a large set of sequences – 100 or

more. These were generated from the primes starting from 2. From this initial set of sequences Operations

Research was applied to to solve 2 different optimization problems:

1. Find the fixed subset of sequences (10, 20 or more) with the least correlation between all pairs

2. Find the maximum subset of sequences where none of the sequences are correlated with each other

Both problems are very difficult to solve. We have thus set an upper time limit on the applied solver (cplex).

The results are the best found solution within the 8 hour time limit we imposed. For almost all of the

small (100 and 200) initial sequence sets the results are optimal. As predicted the 500 sequence sets were

exponentially harder and the results are the best found when the time limit was exceeded.

6 Runtime analysis

As the basics of pseudo random and Halton sequences have been covered, we now turn to an interesting

question. Above the draws were seemingly made more and more perfect, but here we try to shed some light

on the implementation performance of the different draws.

As shown in [Bhat, 2001] and [Bhat, 2003] applying the Halton sequences through the Quasi-Monte Carlo

method to the mixed logit is highly effective. His research however only uses short sequences (25 to 150

numbers) and few dimensions (1 to 10). It is evident that the models applied in transportation research

will become increasingly complex and thus require substantially more from the random sequences used in

the estimation of the different models. We thus consider sequences of thousands numbers and up to 500

dimensions as the runtime issue will become even more important. Eventhough the numbers in some cases

can be generated a-priori many neglect the use of quasi random numbers due to the extra time it requires.

However comparing the runtime analysis in this paper with the effect on MAPE3 and RMSE4 in [Bhat, 2001]

and [Bhat, 2003] shows that neglecting Halton sequences is a poor disposition.

It must be mentioned that all benchmarks have been optimized and executed on the same uni-processor

linux box and the results are thus biased only by the hardware dependent performance of both pseudo ran-

dom and Halton sequences.

3Mean Absolute Percentage Error (MAPE)
4Root Mean Square Error (RMSE)
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Figure 4: Execution times for a) 1-D draws and b) 5-D draws using different shufflings. c) compares the

linear leaped Halton with different shuffling/scrambling combinations (eg full random scrambled means fully

shuffled randomly scrambled Halton)
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As expected figure 4 a) shows the the pseudo random draw is approximately three times faster than the

standard Halton. Leaping adds roughly 60% to the execution time and finally scrambling doubles it.

Inspecting the multidimensional draws in figure 4 b) the impression is much less different. The pseudo

random draw is fastest, but the difference is not as significant as with the unidimensional draws.

Adding shuffling to the pseudo random numbers is irrelevant which is why pseudo random numbers are

left out in figure 4 c). These compare the impact of adding shuffling to the draw. The “full” refers to full

permutation which is based on a slower, but theoretically sound, stateful approach consuming O(b) space

where as the “random” refers to a generic permutation based on projection requiring O(1) space.

It can be concluded that the performance impact of the full permutation as opposed to generic permu-

tation, is negligible and that the shuffling adds approximately 10 percent to the generation time of the fully

shuffled and scrambled sequence.

7 Correlation

To evaluate the influence of the shuffling, leaping or scrambling on a multidimensional draw several issues

have to be considered. First we consider the influence of leaping and scrambling compared to the length of

the sequence. After this we will attend to the multidimensional draws and shuffling.

Figure 5 indicates that the correlation generally is reduced as the sequences are extended. The problem

is that the reduction is less than n−2, which indicates that the significance of the correlation increases as the

sequences get longer.

There is one very important exception from the above rule; which is the illustrations in rows two and four

where the leaped sequences have been used. At a specific point the correlation suddenly starts increasing.

This is because the sequences were leaped with the same length and that this leap length becomes dominant

in the number generation. This increase happens much earlier for the highly correlated pairs than for the

less correlated pairs.

The small periodic “bubbles” on the standard graphs are caused by the cyclic nature of the Halton se-

quence.
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15



Dimensions: 200 Selection

draws: 1000 10 20 30 50

halton-linear 0.00617 ∼ 0.14617 ∼ 0.79661 0.96039

halton-shuffled ∼ 0.15547 ∼ 0.19574 ∼ 0.22030 ∼ 0.28451

leaped-linear ∼ 0.00931 ∼ 0.04764 ∼ 0.30843 0.94363

leaped-shuffled ∼ 0.06414 ∼ 0.09291 ∼ 0.11466 ∼ 0.14040

scrambled-linear ∼ 0.01485 ∼ 0.04588 ∼ 0.07084 ∼ 0.09108

scrambled-shuffled ∼ 0.02432 ∼ 0.04563 ∼ 0.06466 ∼ 0.10614

This table summarizes the result of optimization problem 1 with initial set size 200 and

sequence length of 1000. It can be seen that the lowest pairwise correlation is found

with standard halton sequences with out shuffling for the small set. In all other cases

scrambled halton sequences yeild the best result. This was also the case with all other

initial set sizes 100, 300, 500 and 1000.

Figure 6: Minimal correlation with preset number of generated sequences

The graphs show that the low correlated pair is relatively unaffected by choice of generation whereas the

highly correlated pair becomes better when using leaping, scrambling or both.

As leaping has the possible correlation increase we would recommend using the scrambled Halton sequences.

Figure 6 and figure 8 shows the main findings of the multidimensional tests. These were found by solving

the optimization problems described in section 5

Several guidelines can be deducted by inspecting the numbers.

First, increasing the number of initially generated draws does not reduce the correlation of the selected

set. Which means that the least correlated pair are found among the smaller primes. Second, scrambling is

the most effective measure to eliminate correlation in larger subset selections.
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Selection: 50 Dimensions

draws: 1000 100 200 300 500 1000

halton-linear ∼ 0.53868 0.96039 1.00000 1.00000 1.00000

halton-shuffled ∼ 0.12817 ∼ 0.28451 ∼ 0.32453 ∼ 0.31940 0.26208

leaped-linear ∼ 0.30618 0.94363 1.00000 ∼ 0.99348 1.00000

leaped-shuffled ∼ 0.08794 ∼ 0.14040 ∼ 0.18867 ∼ 0.20099 0.31337

scrambled-linear ∼ 0.06287 ∼ 0.09108 ∼ 0.10321 ∼ 0.10040 0.10532

scrambled-shuffled ∼ 0.06814 ∼ 0.10614 ∼ 0.09947 ∼ 0.10114 0.14266

This table shows the same results as figure 6, but the influence of the initial set size

is clearer here. The linear multidimensional draws shows that the solver is having an

increasingly hard time as the initial set size increases. This can be seen from the fact

that the correlation rises with the size of the initial set even though the initial set of

200 contains the sequences in the size 100 initial set.

The shuffled draws however shows that increasing the initial size tends to increase the

found correlation. This could be caused by the fact that the halton sequences of the

larger size initial sets are more correlated than the smaller initial sets.

Figure 7: Minimal correlation with preset selection size
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Maximal uncorrelated Dimensions

subset (draws: 1000) 100 200 300 500 1000

halton-linear 25 26 26 26 26

halton-shuffled 7 2 1 1 2

leaped-linear 30 31 32 32 33

leaped-shuffled 23 12 ≥ 6 3 2

scrambled-linear 49 67 ≥ 74 ≥ 84 ≥ 93

scrambled-shuffled 42 ≥ 62 ≥ 71 ≥ 82 ≥ 90

This table shows the results from optimization problem 2. It can easily be seen that

shuffling is deteriorating and that scrambling is significantly better if getting the max-

imum uncorrelated set is most important. The results where ≥ # is used means that

the solver reached the time limit before optimality, but had found a feasible solution

with # uncorrelated sequences. As the solver is highly efficient and quickly gets close to

optimality it is unlikely that sets with significantly more sequences exists in the initial

set.

Inspecting the subset sizes for the scrambled linear generator shows that it will be ex-

tremely demanding (huge initial set and very long computation time) to find a subset

of more than 100 uncorrelated sequences when using halton sequences.

Figure 8: Maximal sets
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A third observation, that is less obvious, is that the introduction of shuffling has negative impact on small

sets, while yielding lower correlation on large sets. The explanation for this is that the shuffling evens the

correlation among the generated sequences. In other words; it sacrifices the low correlation pairs in order to

get better high correlation pairs.

Furthermore it can be concluded that using both shuffling and scrambling seems needless as the scram-

bling leaves little room for improvement by the shuffling.

It can be concluded that standard Halton sequences are best for draws with less than approximately 15

dimensions. Further sequence inspection indicated that selecting bases among the first 40 primes is prefer-

able. From 15 to around 25 dimensions and limited length leaped Halton sequences should be used. For

draws of larger dimension scrambling is the most effective measure for reducing the correlation.

If uniform correlation is important, shuffling can be used to bring the pairwise correlation closer to aver-

age.

Appendices A.1, A.2, A.3 and A.4 gives visual examples on a highly correlated set.

8 Conclusion

Building from the standard Halton draw we have now been through the two other single dimension number

sequences: leaped and scrambled and we have discussed the multidimensional shuffling.

Several combinations of these have been compared and it can be concluded that the usage of the multi-

dimentional sequence must be considered when deciding how to generate the numbers.

As basic sequence the scrambled Halton sequence provide the least interdimensional correlation. Leaping

is also a possibility, but the leaping distances must be chosen carefully as they introduce correlation in long

sequences.

Shuffling does not guarantee a reduction in the correlation of a draw, but instead it evens the correla-

tion such that every pair of sequences in a multidimensional draw becomes closer to equally correlated.

Considering a single measure to avoid correlation it can be concluded scrambling gives lowest correlation

at the cost of slightly longer generation time.
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This paper has demonstrated that there are immediately unobservable – though detectable, differences be-

tween the performance of random numbers, contingent on their generation.

The differences in the uniformity and bias will inevitably impact the modelling of any model, where random

numbers are incorporated by use of simulation in the estimations as eg. the Mixed Logit estimation.

Coefficients estimated and even distributions thought valid for a given model may be impacted by the use of

different random number generators. The impact will be via the calibration, hence the estimation provided

an iterative method is applied for the estimation of the model.

Therefore, use of method for random number generation should actively be considered and at least, be

documented along with other model formulation considerations.
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A Example draws

A.1 The pseudorandom draw

Visualization of the linear combination where the sequences are statically assigned to dimensions.
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The shuffled approach where the sequences are shuffled at each draw.
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A.2 The standard Halton draw

Visualization of the linear combination where the sequences are statically assigned to dimensions.
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The shuffled approach where the sequences are shuffled at each draw.
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A.3 The leaped Halton draw

Visualization of the linear combination where the sequences are statically assigned to dimensions.
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The shuffled approach where the sequences are shuffled at each draw.
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A.4 The scrambled Halton draw

Visualization of the linear combination where the sequences are statically assigned to dimensions.
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The shuffled approach where the sequences are shuffled at each draw.
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