
Non-linear Global Optimization using Interval

Arithmetic and Constraint Propagation

Steffen Kjøller, Pavel Kozine, Kaj Madsen
Informatics and Mathematical Modelling, Technical University of Denmark

Lyngby, Denmark. km@imm.dtu.dk

Ole Stauning

Saxo Bank, Denmark

December 2005

Abstract

In this Chapter a new branch-and-bound method for global optimiza-
tion is presented. The method combines the classical interval global
optimization method with constraint propagation techniques. The lat-
ter is used for including solutions of the necessary condition f ′(x) = 0.
The constraint propagation is implemented as an extension of the au-
tomatic differentiation library FADBAD [24], which implements for-
ward and backward differentiation. Thus the user of the integrated
programme only has to implement the function expression.
For illustration purposes the performance is illustrated through a cou-
ple of numerical examples.

1 Introduction

We consider the problem of finding the global minimum of a function f :
D → R where D ⊆ R

n is a compact right parallelepiped parallel to the
coordinate axes:

x
∗ = argmin

x∈D
f(x) (1)

In the following a compact right parallelepiped parallel to the coordinate
axes is denoted a box.

1

Methods for solving global optimization problems have been investigated
for many years, see for instance [3], [5], [7], [19], [26]. For some classes
of problems, e.g. analytically defined functions with a modest number of
variables, interval methods have been very successful, [5].
In this chapter we describe a new branch-and-bound type method for solving
(1). The method is an extension of the classical interval global optimization
method (see for instance [5], [16], [25]), which is often denoted the Moore-
Skelboe algorithm. This method iteratively investigates sub-boxes of D using
monotonicity tests and interval Newton methods for reducing the set guar-
anteed to contain all solutions. The extension to be described uses constraint
propagation (CP) in each iteration to further reduce this set, without loosing
solutions. Such a combination has previously been used by several authors,
for instance [8], [4], [6], [14]. To the best of our knowledge we are the
first, however, to apply CP for finding rigorous bounds for the set of sta-
tionary points, i.e., enclosing the solutions to the non-linear set of equations
f ′(x) = 0.
In the classical interval global optimization method such an inclusion is also
applied, using some variation of the interval Newton method, [15]. However
the two inclusion methods CP and Newton are of quite different natures.
Under non-singularity conditions the classical (iterative) interval method for
solving non-linear equations has a quadratic asymptotic convergence rate,
however the initial box X(0) for the iteration often has to be quite narrow.
If a box X contains more than one solution then f ′′(x) is singular for some
x ∈ X, and then the interval Newton method cannot be applied.
The CP method for enclosing solutions to a set of non-linear equations is
normally not so sensitive to narrow starting boxes and to singularities in
f ′′. However its ultimate convergence rate is often slower than the interval
Newton method.
Therefore CP may be be used to provide an initial reduction whereas the
classical interval method provides the ultimate convergence.
We describe the two methods and their combination in Section 2. The im-
plementation and two numerical illustrations are described in Section 3.

2 Description of the method

The method is a combination of a version of the Moore-Skelboe algorithm
for interval global optimization and a version of the constraint propagation

2

method for solving a system of non-linear equations.
In Subsection 2.1 we describe the interval global optimization algorithm
which is a branch-and-bound algorithm combined with the Krawczyk
algorithm [10] for solving the non-linear equation f ′(x) = 0. In Subsection
2.2 the constraint propagation algorithm for finding bounds for the solutions
to f ′(x) = 0 is described, and in Subsection 2.3 this constraint propagation
algorithm is incorporated into the Moore-Skelboe algorithm.

2.1 The basic interval method

The algorithm is rigorous, i.e., it is guaranteed that all solutions are located.
It is a branch and bound type method. At any stage of the algorithm we
have the candidate set S. This is a finite set of sub-boxes S(k) ⊆ D having
the property that the set of solutions to (1), X∗, is contained in the union of
{S(k)}. The aim is to reduce the candidate set, and to do that, let F be an
interval extension of f (see [15]), and notice that

min
k

{L(S(k))} ≤ f ∗ ≤ min
k

{f(xk)} ≡ τ , (2)

where L(S(k)) is the lower bound of F (S(k)) and xk is a random point in S(k).
Therefore, if

L(S(k)) > τ , (3)

then S(k) can be discarded from the candidate set. Otherwise, we can get
sharper bounds by splitting S(k) into two smaller subregions. If n = 1 then
the splitting is done by simple bisection, and in multiple dimensions we bisect
in the direction of the largest component of the radius of S(k).
Suppose that we not only have access to the interval extension F , but also

to an interval extension F ′ of the gradient f ′ =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)

and the

Hessian f ′ =

(

∂2f

∂xi∂xj

)

. This information can be used in two ways:

1. Monotonicity. If 0 /∈
(

F ′(S(k))
)

i
, then f is monotone in the component

xi on the subdomain S(k). Therefore, we can reduce the ith component of the
interval vector S(k) to its lower (respectively upper) bound if

(

F ′(S(k))
)

i
> 0

(respectively
(

F ′(S(k))
)

i
< 0). Furthermore, if this reduced candidate is

interior to the original domain D, then we can discard it from S because all

3

components of the gradient at an interior minimizer are zero.

2. Stationary points. Since an interior minimizer is a solution of the
equation f ′(x) = 0 we can use an interval equation solver to locate this
minimizer. We prefer Krawczyk’s method, [1], [10], which is a version of the
interval Newton method based on the operator

K(x, X) ≡ x − H f ′(x) + (I − H J(X))(X − x) (4)

Here, x ∈ X, I = diag(1, . . . , 1) is the unit matrix, J is an interval extension
the Jacobian of f ′ (i.e., the Hessian f ′′) and H is an arbitrary matrix in R

n×n.
For efficiency reasons H should be chosen close to the inverse of f ′′(x).
K has the following properties

• If x∗ is a solution then x∗ ∈ X ⇒ x∗ ∈ K(x, X).

• If K(x, X) ⊆ X then there exists a solution x∗ in K(x, X).

Therefore the nested sequence

X(s+1) = X(s) ∩ K(x(s), X(s)) with x(s) ∈ X(s) s = 0, 1, . . . (5)

has the properties

• If x∗ ∈ X(0) then x∗ ∈ X(s) , s = 1, 2,

• If X(s) = ∅ then no solution exists in X(s), and thus no solution exists
in X(0).

Furthermore it has been proved that

• If {X(.)} is convergent to x∗ and f ′′(x∗) is non-singular then the rate
of convergence of (5) is quadratic.

Using (5) from X(0) = X = S(k) there are three possible results:

a) If X(s) = ∅ for some value of s then X contains no root.
If X is interior in D, then we can discard X from the
candidate set, otherwise we can reduce it to the union
of its non-interior edges.

b) {X(.)} converges to x∗. If (5) is stopped after iteration
number s then any solution contained in X is also con-
tained in X(s+1). Therefore X \X(s+1) can be discarded
from further search.

4

c) The iteration (5) stalls, maybe because X is too wide.
Use the splitting strategy to reduce the width.

Now we are ready to outline the algorithm. Let w(X) denote the width of
the interval X. We use the condition

w(S(k)) ≤ δ (6)

to decide when no further search should be done. Sub-boxes satisfying (6)
are stored in the result set R. S is the Candidate Set. τ is the threshold
value used in (2),(3), and we choose xk as the mid point of the interval S(k).
In each iteration we wish to pick the most promising box from S. This is
chosen as the interval S(k) which has the smallest lower bound L(S(k)).
For simplicity we assume that all minimizers are interior in D. Then the
algorithm has the following structure:

Algorithm MS:

S(1) := D
S := {S(1)}
τ := f(mid(S(1)))
while S 6= ∅ do

X := the most promising box in S
remove X from S
if Monotone(X) then { see 1. above }

R−X := ∅
else if (2a or 2b) then { see 2. above }

X is reduced to R−X
else { split }

R−X := (X1,X2) where X = X1 ∪ X2

end

{ R X contains 0, 1 or 2 elements }
with all Z ∈ R X

τ := min{τ, f(mid(Z))
if w(F (Z)) ≤ δ then R := R ∪ Z

else S := S ∪ Z
end

end { while }

5

This algorithm locates all solutions to (1), i.e., all solutions are contained in
R which is the union of sub-boxes each of which having width less than δ.
Algorithm MS has proven to be very efficient for problems with a rather
modest number of variables (up to 15-20, say). If the number of variables is
higher then the computing time may be severe since the worst case complexity
of the algorithm is exponential. Under special circumstances, however, the
algorithm may be efficient, even for a large number of variables.

2.2 Constraint propagation

Constrained propagation is here considered as an interval method for solving
equations, as described in [9] and [22]. It is used as a method to reduce the
set of possible candidates for a solution. The reduction is done rigorously,
i.e., the method guarantees that no solution contained in the candidate set
is lost.
The method is based on the sub-definite calculations. In order to solve a
desired equation or inequality, the constraint corresponding to the value of
the expression needs to be propagated through the expression. For instance,
if we wish to find which values of x ∈ R satisfy the inequality 3x − 2 ≥ 5
then the feasible interval of function values [5,∞] is propagated through the
expression 3x − 2 until the set of feasible values of x is calculated.

k-[5,+∞]

�
�
�
�

k*[7,+∞]

�
�
�
�

k3
A

A
A
A

kx [7/3,+∞]

A
A

A
A

k2

Figure 1 The calculus tree corresponding to 3x − 2. The initial bound on
the expression and the propagated bounds are shown as intervals.

6

Knowing the bounds of the whole expression, we first calculate the bounds of
3x and then the bounds of x. A very convenient way of illustrating how the
method works (and actually the way to implement it too) is by constructing
a calculus tree for the expression and propagating the constraint through
it, see Figure 1. The calculus tree is made in such a way that each node
corresponds to an operator in the expression of the function and each leaf in
the tree being either a variable or a constant.
The operators can be both binary and unary, i.e., the nodes of the tree can
have either one or two children.
In the context of global optimization constraint propagation is used to lo-
cate the set of stationary points, i.e., solving the equation f ′(x) = 0. This
equation is called the propagated constraint.
Thus the initial feasible set of function values, i.e., the interval attached to
the root of the calculus tree representing f ′(x), is [0, 0]. Furthermore, the
ranges of values for the independent variables are assigned. Finally interval
values of the other nodes are assigned; if nothing is known a priori then the
value [− inf, + inf] is assigned to these nodes. Thus, all nodes in the tree are
assigned an interval value. The constraint propagation method intends to
reduce the interval ranges without loosing any solution.
Based on the propagated constraint the method works by walking through
the calculation tree and updating the ranges of values attached to the nodes.
For each calculation the intersection with the previous range is used. The
method continues until no further changes in the values attached to the nodes
can be made. The method does not necessarily provide precise bounds for
the solutions, however no solution inside the initial interval of the variables
is lost.
Following [22] we base the propagation on a so-called code list. For each
node in the expression tree the code list displays the interaction between the
node and its neighbours. Thus each function in the code list consists of just
one operator, the one that defines the corresponding node in the tree, or its
inverse operator.
The technique is illustrated through the following example.

Example 1. We wish to solve the equation

(f ′(x) ≡) ex − x − 2 = 0 (7)

The calculus tree for the function ex − x− 2 is shown in Figure 2. Since the

7

exponential is positive the initial value of the corresponding node, denoted
by t1, is included in the interval]0, ∞]. Equation (7) implies that the node
denoted by t3 has the value 0 attached. The variables t2 and x are a priori
only known to belong to the real line [−∞, ∞].

k-[0,0]
t3

�
�
�
�

k-[−∞,+∞]
t2

�
�
�
�

ke[0,+∞]
t1

kx[−∞,+∞]

A
A

A
A

kx [−∞,+∞]

A
A

A
A

k2 [2,2]

Figure 2 Calculus tree for the function ex − x − 2 including the initial
intervals for the nodes. The node names t1, t2, t3 refer to the code list in
Table 1.

The code list corresponding to the calculus tree is the following:

f1 : t1 := exp(x) ∩ t1
f2 : x := ln(t1) ∩ x
f3 : t2 := (t1 − x) ∩ t2
f4 : t1 := (t2 + x) ∩ t1
f5 : x := (t1 − t2) ∩ x
f6 : t2 := (t3 + 2) ∩ t2
f7 : t3 := (t2 − 2) ∩ t3

Table 1 The code list for the function ex − x − 2.

As one can immediately see the code list is more than just another form for
writing the mathematical expression for the function. There are only three
operators in (7), however the code list consists of seven expressions. The
reason for it is that the functions f2, f4, f6 and f5 are inferred from f1, f3 and

8

Step Working Sub-definite values

num. function t3 t2 t1 x

0 [0,0] [−∞, +∞] [0, +∞] [−1000, +1000]
1 f6 [2, 2]
2 f5 [−2, 1000]
3 f4 [0, 1002]
4 f2 [−2, 6.91]
5 f1 [0.13, 1002]
6 f5 [−1.87, 6.91]
7 f4 [0.13, 8.91]
8 f2 [−1.87, 2.19]
9 f1 [0.15, 8.91]
10 f5 [−1.85, 2.19]
11 f4 [0.15, 4.19]
12 f2 [−1.85, 1.43]
13 f1 [0.15, 4.18]
14 f4 [0.15, 3.43]
15 f2 [−1.85, 1.24]

Table 2 The first fifteen steps for the example (7).

f7, thus giving the opportunity to move up and down the calculus tree and
propagate the constraint.
Now the idea is to reduce the intervals using the code list and the known
inclusions. This goes on until no further reduction takes place.
We start from below in the code list (Table 1) and move upwards: Since
t3 = 0 we obtain t2 = 2. Next f5 gives the interval]-2, ∞] for x. This implies
that t1 is reduced to]exp(-2),∞]=]0.135,∞] by f1. If we repeat this sweep
we obtain further reductions in t1 and x, however the rate of reduction is
rather slow.
In the global optimization problem (1) the variables are finitely bounded.
Therefore, let us repeat the example starting with finite bounds on x,
x ∈ [−1000, 1000]. Again we obtain t3 = 0 and t2 = 2 initially. Then
we obtain the values given in Table 2 (in order to be rigorous we round
intervals outwards).

In practice the code list is easily derived from the corresponding calculus tree.
The picture of the tree actually represents how the tree or DAG (Directed

9

Acyclic Graph) looks in our implementation. This is illustrated in Table 1
and Figure 2.
Schematically the constraint propagation method as described in [9], [22] is
the following:

Algorithm CP

1. Execute all the functions of the constructed code list.

2. If the value of any variable has been changed after the execution of
one of the functions, then mark all functions having this variable as an
argument.

3. If the set of marked functions is empty then stop.

4. Select and execute an arbitrary function from the set of marked func-
tions and go to 2.

The algorithm corresponds to going up and down the calculus tree, executing
the functions of the code list, until no more changes can be made in the node
values. As the propagation can go both upwards and downwards a node that
can tentatively be changed is included into the set of marked functions, the
active function set. It keeps the track of the updates of the node values.
The selection in (4) can be done in numerous ways. If a node value in the
calculus tree has been changed, then one could for instance update the val-
ues of its children or one could update the values of all of the neighbours of
the node. Such a small difference can play a big role in the performance of
constraint propagation, however it is not clear which choice is generally the
best.
However, our experience indicates that in connection with the global opti-
mization algorithm the most efficient is to perform only one sweep and stop,
i.e., in Example 1 we would stop after step number 5. This is because the
major changes often take place in the first sweep.

2.3 Algorithm MS extended with constraint propaga-

tion

The Krawczyk method (5) and the Algorithm CP both intend to solve a non-
linear set of equations (f ′(x) = 0). However they perform quite differently.

10

Krawczyk provides fast convergence to a narrow (machine precision) box
when the necessary condition is satisfied. Unfortunately the box X(0) often
has to be quite narrow around the solution in order for Krawczyk to converge.
The CP is normally not as quickly convergent as Krawczyk and the limit box
cannot be expected to be as narrow as that provided by Krawczyk, especially
when the function expression is complex. However CP does not necessarily
need a narrow initial box. Therefore CP may often be be used to provide
an initial reduction whereas Krawczyk provides the ultimate convergence.
CP may even reduce boxes with more than one stationary point. This is
demonstrated in Figure 3:

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

k=1

Figure 3 Contour plots. Constraint propagation tightening the box
[−2, 2] × [−2, 2] to a narrow box around the two stationary points marked
as dots.

Figure 3 shows the contour plot for the function

f(x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2 + 3

If we apply CP with the starting box [−2, 2]× [−2, 2], then the algorithm will
reduce the box to the small one, just containing the two stationary points.
These observations indicate that a combination of the two methods may
exploit the strong sides of each of them. Therefore we use Algorithm CP if
the Krawczyk method does not provide any reduction in Algorithm MS. In
other words we use both methods as root finding methods in Algorithm MS.
This is done by first employing one of them; if no progress has been made
then we apply the other. If the candidate has still not been reduced then it is
split into two. Thus the only difference compared with Algorithm MS is that
instead of one interval method for solving f ′(x) = 0 two interval methods
are tried.

11

The combined algorithm is the following:

Algorithm MSCP:

S(1) := D
S := {S(1)}
τ := f(mid(S(1)))
while S 6= ∅ do

X := the most promising box in S
remove X from S
if Monotone(X) then { see 1. in Subsection 2.1 }

R−X := ∅
else if (2a or 2b) then { see 2. in Subsection 2.1 }

X is reduced to R−X
else if (CP works) then

X is reduced to R−X
else { split }

R−X := (X1,X2) where X = X1 ∪ X2

end

{ R X contains 0, 1 or 2 elements }
with all Z ∈ R X

τ := min{τ, f(mid(Z))
if w(F (Z)) ≤ δ then R := R ∪ Z

else S := S ∪ Z
end

end { while }

3 Implementation and numerical results

Algorithm MSCP has been implemented in C++ using SUN’s Interval pack-
age (Suninterval). We have tested the programme on several problems. Here
we illustrate the results by two examples only.

3.1 Implementation

When implementing Constraint Propagation a tree-structure is used. In
fact, the constraint programming implementation is an extension of the au-

12

tomatic differentiation library FADBAD [2], [24], which implements forward
and backward differentiation. FADBAD has been extended in such a way
that the expression trees used to store functions and derivatives are reused
for implementing the constraint propagation.
Thus the integrated programme automatically calculates first and second
derivatives as well as the CP code, and the user only has to programme the
expression for f(x).
A discussion of some implementation issues can be found in [9], Section 7.
Here we shall only mention one difficulty which is connected with power
functions. We illustrate the problem by considering the square operator,
y = x2. The problem occurs because the inverse operator splits into two,
+
√

x and −√
x. Thus in such a case a more complicated tree structure is

needed which might give rise to exponential growth in the amount of space
needed to store the tree.

−10 −5 0 5 10

0

5

10

15

20

25

X
1

X
2

Y

X−axes

F(X)−axes

Figure 4 Illustration of the problem occurring when implementing the in-
verse of the function y = x2.

The situation is illustrated in in Figure 4. When intersecting the two new
intervals X1 = +

√
X and X2 = −

√
X with the previous interval value Xprev

we have the following three cases:
If Xprev ∩ X1 = ∅ then Xnew := Xprev ∩ X2, and no problem occurs.
If Xprev ∩ X2 = ∅ then Xnew := Xprev ∩ X1, and no problem occurs.
If Xprev ∩ X1 6= ∅ and Xprev ∩ X2 6= ∅ then Xnew splits into two unless
0 ∈ X. In order to avoid this problem we let Xnew be the hull of the two
non-empty intersections.
Our implementation can be formulated as follows:

Xnew := (Xold ∩ X1)
⋃

(Xold ∩ X2)

13

where
⋃

is the interval hull of the union.
This implementation is of course rigorous, however it is pessimistic, since
we throw away information by taking the hull. This may cause a slower
convergence rate of the CP algorithm, and a sharp implementation of inverse
power functions is planed in the future.

3.2 Some numerical tests

In order to investigate the efficiency of Algorithm MSCP it has been tested
on several problems. Some of these tests are described in [9] where different
variations of the implementation are examined.
The most important results of these tests are the following:

• Since Algorithm CP as described in Subsection 2.2 is running the same
simple equations in each CP iteration, it can be expected to provide
most of the reduction during the beginning. Does it matter whether
Algorithm CP is run until the end, where no further reduction of the
interval is possible (as it is described in Subsection 2.2), or is it better
to run Algorithm CP just once down the tree, i.e., to execute each
working function in the code list only once, as described in [14]?
On the test examples tried it turned out that Algorithm MSCP was
about twice as fast when the one-loop implementation of Algorithm
CP was used rather than running full CP in each iteration.

• Krawczyk’s method (4) was tested in a loop as described in (5) as
well as in just one iteration of (5). Like Algorithm CP Krawczyk’s
method gives the largest reduction in the first iteration. And on the
test examples tried in [9] it also turned out that Algorithm MSCP was
fastest when only one loop of (5) was used, rather than running full
iteration each time.

In the test examples below we have used these results: For (5) as well as for
Algorithm CP only one loop is run in each iteration of Algorithm MSCP.
The first illustration is the so-called Schwefel test problem [21] which is tested
for several values of n:

f(x) =

n
∑

i=1

{−xi sin(
√

xi)} D = [1, 500]n

14

Figure 5 shows the performance of the two algorithms for n =
1, 2, . . . , 18, 30. It is seen that although the computing time is ex-
ponential in n for both algorithms, Algorithm MSCP is far better
than Algorithm MS. The numbers of splits show the same tendency
as the CPU time. The computing times for n = 15 are approxi-
mately 10 hours for Algorithm MS and 18 seconds for Algorithm MSCP.

0 5 10 15 20 25 30
10

−2

10
0

10
2

10
4

Number of variables

T
im

e
in

 s
ec

on
ds

Time/Variables for the Schwefel problem

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

Splittings/Variables for the Schwefel problem

Number of variables

N
um

be
r

of
 s

pl
itt

in
gs

MS

MSCP

MS

MSCP

Figure 5 Plot showing the CPU times and the number of interval splits
when applying the two algorithms Algorithm MS and Algorithm MSCP to
the Schwefel problem for n = 1, 2, . . . , 18, 30.

15

Figure 5 illustrates some tendencies we also have seen in other examples:
The constraint programming is very efficient when power functions are in-
volved, and it is not so sensitive as Algorithm MS to an increasing number of
variables, i.e., the factor in the exponential growth is much smaller. In other
words: The more variables the better Algorithm MSCP compares with the
classical Algorithm MS.
It is easily seen that the number of splits in Algorithm MS cannot be less
than the number of splits in Algorithm MSCP. However, the amount of work
per split is higher for Algorithm MSCP, and we have seen examples where
the CPU time for the latter method is higher. This is for instance the case
for the so-called Levy function, [5], when the number of variables is less than
6. It is the following:

f(x) = sin(3πx1)+

n−1
∑

i=1

{(xi−1)2(1+sin2 (3πxi+1))}+(xn−1)(1+sin2 (3πxi+1))

where the initial box is D = [−5, 5]n. This function has a very large number
of local minimizers: For n = 5, 6, 7 it is approximately 105, 106, 108, respec-
tively. In this case the number of splits for Algorithm MSCP is about half of
the number of splits in Algorithm MS. The computing times for Algorithm
MS are 11, 83 and 537 seconds for n = 5, 6, 7, respectively, whereas the corre-
sponding computing times for Algorithm MSCP are 12, 80 and 330 seconds,
respectively.

We have made an experimental comparison with R. Baker Kearfott’s opti-
mization package GlobSol [8], release November 2003, which also uses a com-
bination of interval global optimization and constraint propagation. GlobSol
has a lot of features and is a much more complex programme than Algorithm
MSCP. Like Algorithm MSCP GlobSol includes automatic differentiation. In
order to make a fair comparison we used the mode in GlobSol where it is
assumed that no solution exists at the boundary of D.
In general it turned out that for many problems GlobSol was faster than
Algorithm MSCP. When power function are involved in calculating f , how-
ever, Algorithm MSCP is much faster than GlobSol. For problems where we
could increase the number of variables n, both programmes illustrated an
exponential growth similar to that displayed in Figure 5.
The two examples in this paper are typical for the comparisons: For the
Levy function, n = 7, GlobSol used 54 seconds to find the solution with

16

high accuracy whereas Algorithm MSCP used 5.5 minutes. For the Schwefel
problem Algorithm MSCP was much faster when n is large. For n = 10
GlobSol used 2.5 minutes to to find the solution with high accuracy whereas
Algorithm MSCP used 1 second. For n = 13 the CPU times were 50 minutes
for GlobSol and 6 seconds for Algorithm MSCP.

4 Conclusion

The classical interval global optimization algorithm has proved to be very
efficient for a large class of problems, especially when the number of vari-
ables is modest, [5]. We combine this method with constrained propagation,
as a tool for enclosing the set of stationary points. The combination has
been implemented and tested, and two typical test examples are displayed
in this chapter. An important fact that can be concluded from the tests
in [9] is, that the use of constraint propagation makes each iteration of the
global optimization algorithm more time consuming, however the number of
iterations and bisections is often reduced, sometimes drastically. This fact is
crucial when dealing with the problems with high number of variables.

References

[1] Ole Caprani, Kaj Madsen, and Hans Bruun Nielsen. Introduction to Inter-
val Analysis. Available at http://www2.imm.dtu.dk/pubdb/views/edoc
download.php/1462/pdf/imm1462.pdf,
Informatics and Mathematical Modelling, Technical University of Den-
mark, DK-2800 Lyngby, Denmark, 2002.

[2] G. Corliss, C. Faure, A. Griewank, L. Hascoët and U. Naumann (editors).
Automatic differentiation of algorithms . Springer Verlag, New York,
2002.

[3] R. Fletcher. Practical Methods of Optimization. Second Edition, John
Wiley and Sons, 1987.

[4] Laurent Granvilliers, Frédéric Benhamou, and Etienne Huens. Constraint
Propagation. Chapter 5, in ”COCONUT Deliverable D1 : Algorithms for

17

Solving Nonlinear Constrained and Optimization Problems : The State
of The Art.” The COCONUT Project, 2001.

[5] E. Hansen and G.W. Walster. Global Optimization using Interval Analy-
sis. Marcel Dekker Inc., New York, 2004.

[6] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica.
MIT Press, 1997.

[7] R. Horst, P.M. Pardalos and N.V. Thoai. Introduction to Global Opti-
mization. Nonconvex optimization and its applications Vol. 48, 2. edition,
Kluwer Academic Publishers, 2000.

[8] R. Baker Kearfott. The GlobSol Project.
http://interval.louisiana.edu/private/downloading instructions.html,
release date 22. november 2003.

[9] S. Kjøller and P. Kozine. Global Optimization using Constraint Propaga-
tion and Krawczyk’s method. Informatics and Mathematical Modelling,
Technical University of Denmark, DK-2800 Lyngby, Denmark, 2005.

[10] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nulstellen mit
Fehlerschranken, Computing 4, pp 187-201, 1969.

[11] K. Madsen. Real versus Interval Methods for Global Optimization.
Presentation at the Conference ’Celebrating the 60th Birthday of
M.J.D. Powell’, Cambridge, July 1996.

[12] K. Madsen and J. Z̆ilinskas. Testing of branch-and-bound methods for
global optimization. IMM-REP-2000-05, Department of Mathematical
Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark,
2000.

[13] K. Madsen and J. Z̆ilinskas. Evaluating performance of attraction based
subdivision method for global optimization. Second International Confer-
ence ’Simulation, Gaming, Training and Business Process Reengineering
in Operations’, RTU, Latvia, 38-42, 2000.

[14] F. Messine, Deterministic global optimization using interval constraint
propagation techniques. RAIRO Operations Research, 38, 277-293, 2004.

18

[15] R.E. Moore, Interval Analysis. Prentice Hall, Englewood Cliffs, N.J.,
1966.

[16] R.E. Moore. On computing the range of values of a rational function of
n variables over a bounded region. Computing 16, pp 1-15, 1976.

[17] A. Neumaier. Interval methods for systems of equations. Cambridge
University Press, 1990.

[18] A. Neumaier. Introduction to Numerical Analysis. Cambridge University
Press, 2001.

[19] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag,
1999.

[20] V.J. Rayward-Smith, S.A. Rush and G.P. McKeown. Efficiency consid-
erations in the implementation of parallel branch-and-bound. Annals of
Operations Research 43, 123-145, 1993.

[21] H. Schwefel. Numerical Optimization of Computer Models. John Wiley
and Sons, 1981.

[22] A. Semenov, Solving integer/real equations by constraint propagation.
Technical report, Informatics and Mathematical Modelling, Technical
University of Denmark, 1994.

[23] O. Stauning, Automatic Validation of Numerical Solutions. Technical
report, Informatics and Mathematical Modelling, Technical University of
Denmark, 1994.

[24] O. Stauning and C. Bendtsen, Flexible Automatic differentia-
tion using templates and operator overloading in ANSI C++.
http://www2.imm.dtu.dk/∼km/FADBAD/, Technical University of
Denmark, 2003.

[25] S. Skelboe (1974), Computation of rational interval functions . BIT 14,
pp 87-95.

[26] A. Törn and A. Z̆ilinskas, Global Optimization. Lecture Notes in Com-
puter Science, 350, Springer Verlag, 1987.

19

