
METHODS FOR HIERARCHICALNETWORK DESIGN

Tommy Thomadsen

LYNGBY 2004MASTER THESIS13/02
IMM

Printed by IMM, DTU

iii
Prefa
e
This M.S
. thesis is the �nal requirement for obtaining the degree: Master of S
ien
e in Engineering.The thesis des
ribe work
arried out in the period from 1st of September 2001 to 31st of January2002. The work was
arried out at the Operations Resear
h se
tion at the Institute of Informati
sand Mathemati
al Modeling, DTU. Supervisor is Professor Jens Clausen.

Tommy ThomadsenLyngby, January 31th 2002

iv
Abstra
t
This thesis investigates hierar
hi
al networks. We start by
onsidering tele
ommuni
ation networkswhere hierar
hies exists. Tele
ommuni
ation networks
an be modeled as
apa
itated networks;hen
e the hierar
hi
al networks are de�ned based on the
apa
itated networks.A mathemati
al model is set up for a two level version of the hierar
hi
al network problem andthe hierar
hi
al network problem is solved to optimality for up to 15 nodes and heuristi
ally forup to 100 nodes.The optimal solution algorithm is a bran
h-and-bound algorithm and the heuristi
 solution algo-rithm is a simulated annealing algorithm. They both solve the hierar
hi
al network problem bysolving a number of
apa
itated networks and aggregating the results.Performan
e is measured for di�erent versions of both algorithms, and the quality of the heuristi
solutions are estimated by
omparing these with optimal solutions when these
an be found.We
on
lude, that hierar
hi
al networks using
apa
itated networks as the underlying network type
an be meaningfully des
ribed and optimized. When solved heuristi
ally, rather large networks(up to 100 nodes)
an be handled easily.Keywords: Hierar
hi
al Networks, Topologi
al Networks, Multilevel Networks, Capa
itated Net-works, Multi
ommodity Flow, Network Design, Operations Resear
h, OR, Heuristi
s

v
Contents
Abstra
t iv1 Introdu
tion 12 Hierar
hi
al Networks in Tele
ommuni
ation 32.1 Why do we have hierar
hies? . 53 Foundation and De�nitions 63.1 Data . 63.2 De�nitions . 73.2.1 Node Level . 73.2.2 The Group . 73.2.3 The Con
entrator Node . 73.2.4 The Hierar
hi
al Network . 73.2.5 The Hierar
hi
al Network Problem . 83.3 Demand Paths . 83.4 Capa
ity . 94 The Non-Hierar
hi
al Network Problem 104.1 Mathemati
al Model . 104.1.1 De�nitions . 104.1.2 Data . 104.1.3 De
ision Variables . 114.1.4 Obje
tive Fun
tion . 114.1.5 Constraints . 11

CONTENTS vi5 Optimal Solution of the NHNP 135.1 Bran
h and Bound . 135.2 Representation . 135.3 Bran
h . 145.4 Cal
ulating �ow-
ost & dete
ting ex
eeded
apa
ity 145.5 Bounding . 165.5.1 Setup-
ost Bound . 165.5.2 Flow-
ost Bound . 165.5.3 Preventing Cy
les . 175.6 Extensions . 186 Heuristi
 Solution of the NHNP 196.1 Che
king whether a Feasible Solution Exists . 196.2 Finding an Initial Tree Solution . 206.3 Finding Demand Paths . 206.4 Finding an Edge to Add . 206.5 Lo
al Sear
h . 227 The Hierar
hi
al Network Problem 237.1 Mathemati
al Model . 237.1.1 De�nitions . 237.1.2 Data . 237.1.3 De
ision Variables . 247.1.4 Obje
tive Fun
tion . 247.1.5 Group & Con
entrator Constraints . 247.1.6 Tree Constraint . 257.1.7 Flow Constraints . 267.1.8 Capa
ity Constraints . 277.2 Number of Edges . 277.3 Solving Dire
tly . 287.4 Extensions . 288 Solution Strategies for the Hierar
hi
al Network Problem 308.1 Bran
h and Bound Strategy . 308.2 Phase Divided Strategy . 31

CONTENTS vii9 Optimal Solution of the HNP 339.1 Representation . 339.2 Solution Algorithm . 349.2.1 Cal
ulating NHNP data from HNP data . 349.2.2 Aggregating NHNP Solutions to attain Solution for HNP 369.3 Redu
ing Sear
h Spa
e . 369.4 Reusing Se
ondary Group Solution Values . 369.5 Using the solution value for the HNP as bound in the NHNP 379.6 Non-Trees . 3810 Heuristi
 Solution of the HNP 3910.1 The Algorithm . 3910.2 Representation . 4010.3 Neighbourhood . 4010.3.1 Limiting Neighbourhood . 4010.3.2 Cy
ling Neighbourhood . 4110.3.3 An Alternative Neighbourhood . 4110.4 Evaluation Fun
tion . 4210.5 Initial Solution . 4210.5.1 Random Initial Solution . 4210.5.2 Simple Low Valued Initial Solution . 4310.5.3 Find Low Valued Initial Solution using Assignment 4310.5.4 Sele
ting Initial Con
entrators . 4310.5.5 Assignment of Nodes to Groups . 4410.5.6 Resele
ting Con
entrators . 4410.5.7 Modifying Solutions to obtain Feasibility 4410.5.8 Con
luding Remarks on the Initial Solution 4610.6 A

ept Fun
tion . 4610.6.1 Random Generation . 4710.7 Stopping Criteria . 4710.8 Initial Temperature . 4710.9 Cooling Rate . 4810.10Saving Solutions for Se
ondary Groups . 49

CONTENTS viii11 Tools and Data-�les 5111.1 Overview . 5111.2 Graph Generator . 5211.3 HNP Files . 5311.4 CPLEX Solution . 5311.5 Solution Files . 5311.6 Visualizing Solutions . 5412 Performan
e Tests 5512.1 Problem Instan
es Used . 5512.2 Testing . 5712.3 Performan
e Tests of the Optimal Solution Algorithm 5812.3.1 Bounds . 5812.3.2 Reuse of Group Solutions . 6012.3.3 Limit on Group Size . 6012.3.4 Bound Using Best HNP . 6212.3.5 Dependen
y on the Total Amount of Demand 6212.3.6 Setup-Cost/Flow-Cost ratio e�e
t on the Flow Bound 6312.3.7 Capa
ity In�uen
e on Flow Bound . 6412.4 Performan
e Tests of the Heuristi
 Algorithm for NHNP 6512.4.1 Lo
al Sear
h . 6512.4.2 Path Assignment to Demand . 6612.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 6812.5.1 The Value of the Initial Solution Compared with the Final Solution 6812.5.2 Finding Initial Solution for Heuristi
 Solution of NHNP 6912.5.3 E�e
t of Reusing Cal
ulated Group Solutions 6912.5.4 Limit Neighbourhood . 7112.5.5 Cy
led and Random Neighbourhood . 7212.5.6 Measure Fun
tion Value at ea
h Iteration 7312.5.7 Number of Groups . 7512.5.8 Dependen
y on Demand . 7712.6 Quality of Heuristi
 Solutions . 78

CONTENTS ix13 Con
lusion 8013.1 Outlook . 81Bibliography 82

1
Chapter 1Introdu
tion
Previously, the hierar
hi
al network problem has been des
ribed as that of �nding the least
ost,two-level hierar
hi
al network, where the network must in
lude a primary path from a predeter-mined starting node to a predetermined terminus node [10℄. Some arti
les have followed up on theissue, e.g. [8, 9, 19, 20℄.In this thesis an entirely new de�nition of hierar
hi
al networks is introdu
ed. The de�nition ismotivated by tele
ommuni
ation networks whi
h are ordered in hierar
hies of groups of telephoneswit
hes. The hierar
hies are generally appli
able to networks, however.The thesis has starting point in the following questions:

• What are hierar
hies in networks?
• How
an networks
ontaining hierar
hies be optimized?To answers these questions, we start by
onsidering tele
ommuni
ation networks, where hierar
hiesexist. Sin
e tele
ommuni
ation networks
an be modeled as
apa
itated networks, we
onsider
apa
itated networks in parti
ular and de�ne hierar
hies in this
ontext.Capa
itated networks are notoriously di�
ult to optimize [12℄, and sin
e this is the kind of networkswe work with, no optimal solution is likely to be attained for large networks. Hen
e we aim forobtaining e�
ient heuristi
s, whi
h give high quality solutions. For problems with few nodes,though, the problem is solved to optimality.We start out by des
ribing tele
ommuni
ation networks (
hapter 2), and de�ne hierar
hies and thehierar
hi
al network problem (HNP) (
hapter 3). The HNP is solved by solving a number of non-hierar
hi
al network problems (NHNP's), i.e. HNP's with no hierar
hies. Therefore we des
ribeand solve these problems at �rst (
hapter 4 to 6).Thereafter we introdu
e hierar
hies in the NHNP to obtain HNP (
hapter 7) and solve the HNPoptimally and heuristi
ally (
hapter 8 to 10). Sin
e solving the HNP is done by solving a numberof NHNP's, the major problem
onsidered is that of handling the hierar
hies.Designing tele
ommuni
ation networks is a strategi
 planning pro
ess, thus we assume that thetime allowed to solve the hierar
hi
al network problem is in the order of hours. Real world tele
om-muni
ation networks have hundreds of telephone swit
hes and are usually divided into 3 or 4 levels.The networks we solve
ontain up to 100 nodes, involving 2 hierar
hies, whi
h
orrespond roughlyto the size of the top two hierar
hies of tele
ommuni
ation networks.In
hapter 11 tools for generating and managing networks whi
h are used when testing the algo-rithms are des
ried. The performan
e is measure for di�erent versions of both the optimal and the

2heuristi
 algorithm. The heuristi
 solutions are
ompared with the exa
t solutions when these
anbe found. This is done in
hapter 12.Implemented
ode and data used for testing are available from the author on request.

3
Chapter 2Hierar
hi
al Networks inTele
ommuni
ation
A tele
ommuni
ation network
onsists of
ables (opti
al or ele
tri
al wires) and swit
hing andmultiplexing equipment lo
ated at telephone swit
hes (or ex
hanges)
onne
ting subs
ribers andother swit
hes.The network is usually divided into three levels (in some
ases more levels) - a national, regionaland lo
al level. The national level
onne
ts regional areas and the regional levels
onne
t lo
alareas. National, regional and lo
al areas
ontain a number of lo
al swit
hes, and subs
ribers are
onne
ted dire
tly to a lo
al swit
h. Regional swit
hes are also always lo
al swit
hes.When a subs
riber dials a number to another subs
riber, the other subs
riber is lo
ated, and a pathis set up between the two subs
ribers. Whi
h route to
hoose is programmed into the swit
hingequipment, and thus setting up a path merely
onsists of reserving a fra
tion of the
apa
ity forthe
all. This is done using signalling paths in the network.If two subs
ribers are
onne
ted to the same lo
al swit
h or to lo
al swit
hes, whi
h
an
onne
twithout using regional swit
hes, su
h a
onne
tion is used, and regional and national swit
hes arenot used.If the subs
ribers are
onne
ted to the same regional swit
h or regional swit
hes, whi
h
an
onne
twithout using national swit
hes, the
all will only o

upy
onne
tions to the regional swit
h andto the subs
riber (see �gure 2.1).If subs
ribers are
onne
ted to di�erent national swit
hes a
all will have to go through both lo
al,regional and national swit
hes (see �gure 2.2).Mu
h of the tra�
 in the network is in fa
t data transmission, but the distin
tion between lo
al,regional and national transmission is still valid though the tra�
 pattern may di�er.Cables and the equipment fa
ilitating
ommuni
ation over the
ables (in the following just
ables)have di�erent
osts and
apa
ities. In parti
ular,
ables of type STM-1
an
arry e.g. 63 2Mbitlines, and lines with more
apa
ity than STM-1 has
apa
ity that grows with a fa
tor 4 as intable 2.1. A good rule of thumb when
omparing pri
es is that setting up a
able with 4 times asmu
h
apa
ity doubles the pri
e, for the equipment.The pri
e of establishing a
onne
tion depends mainly on the
ost of digging down a
able and thepri
e of the equipment fa
ilitating
ommuni
ation. The physi
al
able used for di�erent
apa
itiesare usually the same.

4

Cable

Cable used for call

National center

Local center

Regional center

Subscriber

Subsriber participating in call

Figure 2.1: Example of a regional
all - some additional swit
hes and
onne
tions are shown
Cable

Cable used for call

National center

Local center

Regional center

Subscriber

Subsriber participating in call

Figure 2.2: Example of a national
all - some additional swit
hes and
onne
tions are shownType Capa
ity �Pri
e�STM-1 63×2Mbit 155Mbit 1STM-4 4×155Mbit 620Mbit 2STM-16 4×620Mbit 2,5Gbit 4STM-64 4×2,5Gbit 10Gbit 8Table 2.1: Cable types and equipment
ostsUsually higher-level swit
hes (e.g. national swit
hes) use
onne
tions with high
apa
ities, butthere is no dire
t dependen
y between swit
h level and
onne
tion type used. Thus high
apa
ity
onne
tions
an be established between lo
al swit
hes, if e.g. a
ustomer has a need for a parti
ularlyhigh
apa
ity
onne
tion between two pla
es.The network in
orporates a high degree of redundan
y to prote
t against failures. There are e.g.always 2 regional swit
hes in a lo
al area. In the lo
al area, the lo
al swit
hes may be
onne
tedin some kind of mesh stru
ture. Alternatively they may also be
onne
ted on a line, where the
ir
uit allowing one broken
onne
tion is established through the regional swit
hes (see �gure 2.3).Lo
ation of swit
hes,
ables and
apa
ity limits, is in pra
ti
e histori
ally determined and has beendetermined and
hanged as the network evolved. The network
ontinuously evolves, new
ablesand swit
hes are added to the network, and repla
ement of existing equipment with higher
apa
ity

2.1 Why do we have hierar
hies? 5
Indirect connection through higher level

Cable

Local center

Regional center

Figure 2.3: Prote
tion in lo
al areasequipment is done frequently.If a network were to be built from s
rat
h, it would probably look very di�erent from the
urrentnetwork. This is so sin
e the need for
apa
ity has
hanged over time, and thus an optimal lo
ationof swit
hes and
ables at some point in time may
urrently not be optimal.The lo
ation of new swit
hes, new
ables and upgrade of swit
hes to in
rease
apa
ity over
ablesis of major
on
ern, but also determining how an optimal solution would look like, if starting froms
rat
h, would add information to the de
ision pro
ess.2.1 Why do we have hierar
hies?In tele
ommuni
ation networks, di�erent
able
apa
ities and hierar
hies in part exist in order toallow
heap, low
apa
ity
onne
tions where su�
ient, while allowing higher
apa
ity
ables to beused where required.In a sense this is not the reason for having hierar
hies, sin
e this is what di�erent
able
apa
itiesgive us, not the hierar
hies. What the hierar
hies
ontribute with here is instead an organizationalelement, that is, it divides the network into areas whi
h
an be handled and
omprehended by sta�who maintains and modify the network.A related question is: Should hierar
hies and edge
apa
ities be tied together? That is,
an a
able of e.g. type STM-64 be used between e.g. two lo
al swit
hes, or are
ables of this type usedbetween national swit
hes only?In tele
ommuni
ation networks, this is not the
ase. Of
ourse there is a tenden
y to have high
apa
ity
ables in higher levels (e.g. national level), but it is not a must. In some
ases high
apa
ity
ables are set up if the
apa
ity is needed regardless that it
onne
ts e.g. only lo
al
entrals.In this proje
t edge
apa
ities and group levels are tied together. Also prote
tion against failuresis not
onsidered. The hierar
hi
al network is de�ned and des
ribed in the next
hapter.

6
Chapter 3Foundation and De�nitions
In this
hapter hierar
hi
al networks and useful terms regarding the hierar
hi
al networks are de-�ned. The des
ription takes its starting point in tele
ommuni
ation networks, though di�eren
esexist. The most notify worthy is the in
lusion of a �ow-
ost, whi
h is not present in tele
ommu-ni
ation networks. Flow-
ost is, however, a well-known and
ommonly used
on
ept in networkmodeling in general and hen
e has been in
luded.3.1 DataThe hierar
hi
al network problem
onsist of a number of matri
es giving demand,
ost for settingup an edge and
ost for using the edge. The
osts are denoted setup-
ost and �ow-
ost respe
tively.The di�erent types of levels of edges are numbered from 1 to L (indi
ated by l) 1 is the highestlevel (
orresponding to national level in tele
ommuni
ation networks). The matri
es are shown inthe following table:
D Demand for ea
h pair of nodes.
CSl, 1 ≤ l ≤ L Cost for setting up an edge of level lbetween any pair of nodes.
CFl, 1 ≤ l ≤ L Cost per unit �ow of a level l edgebetween any pair of nodes.Thus for ea
h level we have a setup-
ost matrix and a �ow-
ost matrix, and thus for ea
h edge asetup-
ost and a �ow-
ost exists for ea
h level.Demand, setup-
ost and �ow-
ost are all undire
ted. The demand is des
ribed with an origin-destination matrix and is in some
ontexts denoted
ommodity. Basi
ally it is a request for
apa
ity between node i and node j of the given value.The
apa
ities, whi
h are the same for edges of the same level, are:
Capl Capa
ity of level l edge.Some demands or a setup-
ost and �ow-
ost pair may be ex
luded - e.g. if there is no demandbetween two nodes or if it is not relevant to
onsider an edge between two nodes.The hierar
hi
al network design problem is that of �nding the minimum
ost subset of the possibleedges and assigning a path to ea
h demand, su
h that the
apa
ities of ea
h edge is not violated.The solution should be a �hierar
hi
al network�, whi
h will be de�ned shortly in se
tion 3.2.4. Tode�ne a hierar
hi
al network, we need some additional
on
epts.

3.2 De�nitions 73.2 De�nitions3.2.1 Node LevelThe level of a node is the highest level (lowest number) of any edge in
ident to the node.3.2.2 The GroupLevel l groups are the sets of
onne
ted
omponents of the subgraph indu
ed by level l edges andnodes of higher levels than l, (i.e the level number ≤ l).Usually we only speak of a group if it has more than a single node, but the de�nition does notrequire it to be so. In hiera
hi
al networks, groups of single nodes exist, if a node of level l(1 ≤ l < L) has no nodes of level l − 1
onne
ted.For an example of the
on
epts see �gure 3.1. All groups ex
ept the level 1 group is depi
ted. Thelevel 1 group
ontains exa
tly the three level 1 nodes.
Level 2 node

Level 3 node

Level 1 node

Level 2 edge

Level 1 edge

Level 3 edge

Level 2 group

Level 3 group

Figure 3.1: Example of node level and groups.3.2.3 The Con
entrator NodeWe say that a node is
on
entrator node for a group, if it is in the group and has higher level thanthe group.A node
an be
on
entrator node in more groups, but if so, the groups have di�erent levels. Anexample of this is the top left level 1 node in �gure 3.1. This node is
on
entrator node for a level2 and a level 3 group (whi
h
ontains the
on
entrator itself only).3.2.4 The Hierar
hi
al NetworkA hierar
hi
al network is a subset of edges, su
h that:
• There is at most one edge between two nodes.

3.3 Demand Paths 8
• The network is
onne
ted, hen
e there must exist a path from any node to any other node.The path may use edges of all levels.
• There are no edges with a lower level than both of its endpoints.
• A group has exa
tly one
on
entrator node, ex
ept the highest level group whi
h has none.The last implies that a path from a node to any higher level node will have to pass through oneparti
ular node, namely the
on
entrator node of the group to whi
h the node belongs.3.2.5 The Hierar
hi
al Network ProblemThe hierar
hi
al network problem is de�ned as that of �nding the minimum
ost hierar
hi
alnetwork, whi
h allows for routing demand (as de�ned in the demand matrix, D) in the networkwithout ex
eeding the
apa
ity limits of the edges. This in
ludes �nding paths for ea
h demand,sin
e this is not in general simple.The Hierar
hi
al Network Problem is abbreviated HNP. A Non-Hierar
hi
al Network Problem,whi
h is a HNP with one level only is abbreviated NHNP.The NHNP is similar to the �Capa
itated Network Design Problem� des
ribed in e.g. [12℄ and [14℄.3.3 Demand PathsGiven an edge sele
tion, the path ea
h demand takes should be determined. Given an edge sele
-tion, and the fa
t that the solution is a hierar
hi
 network, the sequen
e of groups traversed by ana
y
li
 path between two nodes is, however, unique. We say that hierar
hi
al networks are treeswith respe
t to groups, where the highest level group may be
onsidered the root.That the sequen
e of groups traversed by an a
y
li
 path between two nodes is unique
an be seenfrom the following:Starting from the lowest layer (highest numbered), the level L groups are indu
ed by level L edges,and nodes of higher level, i.e. all nodes. Hen
e we have a division into sets, and ea
h set
ontainsexa
tly one higher level node (sin
e it is a hierar
hi
al network), i.e. the
on
entrator node. The
on
entrator nodes all have level L − 1 or higher.Level L − 1 groups are indu
ed by level L − 1 edges and nodes of level L − 1 or higher. Hen
ethe nodes whi
h are a subset of the
on
entrator nodes of level L. Ea
h level L − 1 group hen
e
onne
ts as many level L groups as there are nodes in the group, and ea
h path in this part ofthe network is unique with respe
t to the groups traversed, sin
e ea
h group
ontains exa
tly one
on
entrator.In general any level l− 1 groups are indu
ed by level l− 1 edges and nodes of level l− 1 or higher.Assuming nodes of levels lower than or equal to l
an be rea
hed from exa
tly one of the nodes oflevel l−1 or higher, paths are unique with respe
t to group and sin
e there is only one
on
entratorin ea
h group,
onne
ting the groups by level l − 1 groups will maintain that the groups traversedbetween two nodes are unique.Hen
e re
ursively, paths in a hierar
hi
al network are unique with respe
t to groups.Within a group several paths may exist between two nodes. An example of this
an be seen forthe top left level 2 group in �gure 3.1. Hen
e determining a path between two nodes
an be doneby �nding the unique sequen
e of groups to be traversed and for ea
h group determining the pathto take in this group.

3.4 Capa
ity 93.4 Capa
ityEnsuring that
apa
ity limits are not ex
eeded
an be done for ea
h group in turn as des
ribed inthe following.For a parti
ular group, we remove all edges within the group, i.e. edges with both ends in
ident tonodes in the group. Then we will have exa
tly as many
omponents as we had nodes in the group,and ea
h
omponent
ontains exa
tly one node from the group. As an example, the right-mostlevel 2 group in �gure 3.1 is
onsidered. In �gure 3.2 the group edges have been removed.
Level 2 node

Level 3 node

Level 1 node

Level 2 edge

Level 1 edge

Level 3 edge

Level 2 group

Level 3 group

Nodes in the treated group

Figure 3.2: Edges removed from right-most level 2 group.A demand matrix for the group
an then be built by
onsidering ea
h pair of nodes in the group(the squares in �gure 3.2) in turn. For a given pair of nodes, the total demand between them is
al
ulated by �rst identifying the
omponents they are in. The total demand between the twonodes is then the sum of demand between all pairs of nodes, where one node is in one of theidenti�ed
omponents and the other node is in the other
omponent.Thus for ea
h group we now have a NHNP, whi
h
an be solved and
apa
ities
an be
he
ked. Ifdone for ea
h group, and no
apa
ities are ex
eeded, the hierar
hi
al network is feasible.The solution of the NHNP is the subje
t of the following 3
hapters.

10
Chapter 4The Non-Hierar
hi
al NetworkProblem
In this
hapter a mathemati
al model de�ning the Non-Hierar
hi
al Network Problem is des
ribed.The de�nition is motivated by tele
ommuni
ation networks, but not limited to these. E.g. �ow-
ostis introdu
ed, though it is not used in tele
ommuni
ation networks.The NHNP problem solution is used as a building blo
k in the solution to the HNP problem. Thisdes
ription should ease understanding of the mathemati
al model for the HNP, whi
h follows in
hapter 7.As mentioned earlier, the Non-Hierar
hi
al Network Problem is similar to the �Capa
itated NetworkDesign Problem� des
ribed in e.g. [12℄ and [14℄. These problems are in general NP-hard due to the
apa
ities [12℄, and hen
e this is also the
ase for the NHNP.4.1 Mathemati
al Model4.1.1 De�nitions
V Set of all nodes.
E Set of all edges.
i, j, k, l ∈ V - Nodes.
ij, i ∈ V, j ∈ V, i < j ∈ E - Undire
ted edges.We need the
on
ept of a
ut in a network. It is denoted (following [6℄) δ(A), where A ⊆ V , andis de�ned as the set of all edges whi
h have an endpoint in A and an endpoint in V \A.4.1.2 Data
csij , i < j Cost of setting up an edge between i and j.
cfij , i < j Cost per unit �ow on the edge between i and j.
dij , i < j Undire
ted demand between i and j.
cap Capa
ity of edges (the same for all edges).

csij is denoted the setup-
ost and cfij is denoted the �ow-
ost.

4.1 Mathemati
al Model 11We assume that the data are demand-
onne
ted, that is no
ut exists with demand equal to zero.Hen
e to ful�ll demands, the solution must be
onne
ted as well. For most real world networksand tele
ommuni
ation networks in parti
ular, this is a reasonable assumption.4.1.3 De
ision Variables
xij ∈ {0, 1} 1 if there is an edge between i and j,

(i < j) 0 otherwise.
fijkl ≥ 0 Amount of �ow on edge i to j resulting from

(i < j, k < l) demand between nodes k and l.4.1.4 Obje
tive Fun
tionThe
ost of a network is the sum of
osts of setting up edges and the sum of all �ow through edges:
min

∑

i,j,i<j

csij · xij +
∑

i,j,i<j,k,l,k<l

cfij · fijkl (4.1)The �rst part of the obje
tive fun
tion is denoted the total setup-
ost and the se
ond part isdenoted the total �ow-
ost.4.1.5 ConstraintsTree ConstraintWhen solving optimally we require solutions to be trees, this is done to ease the solution pro
ess.When solving heuristi
ally this
onstraint is relaxed.Sin
e
onne
tivity is assumed, the following is enough to ensure tree solutions:
∑

i,j,i<j

xij = |V | − 1 (4.2)When the only solutions
onsidered are trees, the �ow-variables (i.e. fijkl)
an be uniquely de-termined sin
e paths are unique. In this
ase they are bookkeeping variables and not de
isionvariables. If the tree
onstraint is relaxed, the �ow-variables are de
ision variables.Flow ConstraintsRe
all that fijkl is the amount of �ow on the edge between i and j resulting from demand betweennode k and node l. A �ow is an assignment of values to the fijkl variables, whi
h does not violateany
onstraints in this subse
tion.The
onstraints are introdu
ed one type at a time.First of all, if an edge is used (i.e. fijkl > 0), then there should be an edge between i and j(i.e. xij = 1). fijkl is required to be nonnegative, and assuming M is larger than any possibleassignment to f , the following
onstraints
an be used:
∀i, j, k, l, i < j, k < l : M · xij ≥ fijkl (4.3)

4.1 Mathemati
al Model 12The amount of �ow in
ident to node i and node j resulting from demand ij must equal the valueof the demand between i and j:
∀i, j, i < j :

∑

k,i<k

fikij +
∑

k,i>k

fkiij = dij (4.4)
∑

k,k<j

fkjij +
∑

k,k>j

fjkij = dij (4.5)For all demands between node k and node l, the total �ow in
ident to other nodes i, i 6= k, i 6= lresulting from demand kl should equal zero (if i is not on the path between k and l) or two timesthe required demand (if i is on the path between k and l). That is, either of the following 2
onstraints must hold:
∀k, l, k < l, i ∈ V \{k, l} :

∑

j∈V,i<j

fijkl +
∑

j∈V,j<i

fjikl = 0 (4.6)
∑

j∈V,i<j

fijkl +
∑

j∈V,j<i

fjikl = 2dkl (4.7)This means that �ow resulting from a demand between a �xed pair of nodes, is on one path, i.e.the �ow is not split. For trees this is trivially so, sin
e for a pair of nodes there is exa
tly one path.Introdu
ing either-or-
onstraints is
omputationally expensive if solving the mathemati
al modeldire
tly (e.g. by CPLEX), sin
e this introdu
es a binary variable for ea
h pair of
onstraints. Hen
ethis is one of the reasons, the problem
annot be solved dire
tly for more than a few nodes.Capa
ity ConstraintsCapa
ity
onstraints ensure, that no edge has more �ow than its
apa
ity allows. This
an beexpressed as:
∀i, j, i < j : cap · xij ≥

∑

k,l,k<l

fijkl (4.8)This makes equation 4.3 unne
essary, sin
e if for a given i,j equation 4.8 holds, then so doesequation 4.3.Noti
e that, sin
e we assume there exists no
ut with demand equal to zero, equation 4.8 ensurethe network is
onne
ted.An alternative formulation that does not use the
al
ulated �ow but instead use
uts is the follow-ing:
∀S, ∅ ⊂ S ⊂ V :

∑

ij∈δ(S)

dij ≤
∑

ij∈δ(S)

xij · cap (4.9)The formulation requires that �ow
an split, and is not suitable for implementation, sin
e thenumber of
onstraints grows exponentially with the number of nodes.

13
Chapter 5Optimal Solution of the NHNPIn this
hapter an algorithm for solving the NHNP to optimality is presented. The algorithm isused in solution strategies when solving the HNP, and thus understanding and being able to solvethe NHNP is
ru
ial when solving HNP.5.1 Bran
h and BoundThe optimal solution strategy used is a bran
h and bound s
heme based on Kruskal's minimumspanning tree (MST) algorithm [7℄. The des
ribed solution strategy will allow trees only. Treeshave in general lower setup-
ost than non-trees, hen
e trees are among the
heap solutions for agiven NHNP. Allowing trees only does limit the solution spa
e, hen
e a feasible tree solution maynot exist though a non-tree solution exists. However, solving the NHNP for trees shows to be
omputationally demanding and sin
e we suspe
t it to be even more
omputationally demandingfor non-trees, it will be solved heuristi
ally instead.Noti
e that the NHNP without
apa
ity limits and no �ow-
ost is in fa
t the MST problem. Ifwe allow for
apa
ity limits, but no �ow-
ost, a MST is a lower bound on the solution value. Infa
t if a MST is feasible, it is the optimal solution. Thus it seems reasonable to base a solutionalgorithm, and the bran
hing order in parti
ular, on an MST algorithm.Kruskal's MST algorithm
onsiders all edges ordered in in
reasing order of
ost, and
hoose eitherto in
lude or ex
lude the
urrent edge from the MST. The edge is in
luded in the MST, if it doesnot introdu
e a
y
le, otherwise it is ex
luded. Sin
e the network is undire
ted, this is equivalentto determining if the two endpoints of the edge are in the same
omponent. If they are not in thesame
omponent they are in
luded in the MST, and the two
omponents are merged.The idea of the bran
h and bound pro
ess is to imitate this pro
essing, ex
ept that when the MSTalgorithm
hoose to in
lude the edges, two
ases are
reated, one in whi
h the edge is in
luded inthe solution and one in whi
h it is not.5.2 RepresentationThe NHNP
onsists of some data whi
h are not
hanged, that is setup-
ost, �ow-
ost and demandfor all pairs of nodes whi
h are represented as matri
es. Also we need the number of nodes, edge
apa
ity and initially we
reate a list of edges, whi
h is sorted in in
reasing order of setup-
ost,giving the order in whi
h edges are
onsidered.

5.3 Bran
h 14A parti
ular instan
e of a partial solution is
alled a Net obje
t. The Net obje
t
ontains, for ea
hedge, a spe
i�
ation of whether the edge is in
luded in the solution. In fa
t three
ases exist: Theedge is in
luded in the solution, the edge is ex
luded, or it is unde
ided. This is maintained ina matrix so that the state of an edge
an be easily
he
ked and updated. Initially all edges areunde
ided.Sin
e we require solutions to be trees we maintain disjoint sets representing
omponents (asKruskal's MST algorithm does). In this way it is easy to
he
k if an edge
an or
annot beused, sin
e if the two edge endpoints are in the same
omponent it
annot be used. This is usedwhen bran
hing.5.3 Bran
hSolving a parti
ular Net obje
t is done by bran
hing on an unde
ided edge, hen
e
reating two newNet obje
ts, one where the edge is in
luded in the solution, and one where the edge is ex
luded.The edge to bran
h on is the minimum setup-
ost edge with endpoints in two di�erent
omponents.Finding this edge is done by iterating through the list of edges
al
ulated initially. The iteratorposition is re
orded and given to the newly
reated Net obje
ts, su
h that iteration
an be
ontinuedfrom the point where the edge is found.The order in whi
h the solution instan
es are
onsidered is by depth-�rst, and of the two possibil-ities, we
hose �rst the one where an edge is in
luded in the solution. Doing the exa
t opposite,that is
hoosing �rst the one where an edge is ex
luded from the solution works mu
h worse, andthe usual idea of
hoosing �rst the one with the lowest bound value, does at least not work better.Measuring the number of bran
hes needed for a few examples using the �in
luded edge �rst� and�lowest bound �rst� -strategies, indi
ates that the �in
luded edge �rst� -strategy works marginallybetter, sin
e it require marginally fewer bran
hes. In the
urrent implementation, there is also anoverhead from handling the �lowest bound �rst� -strategy, hen
e the �in
luded edge �rst� -strategyis used.When adding an edge, this results in an immediate
ost in
rease, namely the setup-
ost of the edge.The total
ost of all edges in the
urrent solution is kept so that it
an be used when
al
ulating thebound. Hen
e the
ost is updated when an edge is added, i.e. the
ost is
al
ulated in
rementally.The same goes for �ow-
ost, sin
e if an edge is added this result in an immediate
ost in
reaseresulting from demands, both through the added edge, but also through other edges. If a pathexists between node i and j this is the path, whi
h will be used for the �nal solution, sin
e solutionsare trees only. Hen
e the �ow-
ost
an be
al
ulated when a path exists and reused in followingbran
hes. This is des
ribed in the next se
tion.5.4 Cal
ulating �ow-
ost & dete
ting ex
eeded
apa
ityWe keep the value of the total �ow-
ost and update it ea
h time an edge is added. When updatingthe total �ow-
ost, we traverse a path for ea
h demand if a path exists and if it has not beentraversed previously. Hen
e when V − 1 edges has been added all �ow-
osts for ea
h demand hasbeen
al
ulated on
e and the path traversed on
e.We keep a �ow-matrix giving the amount of �ow on ea
h edge, in order to be able to
he
k if the
apa
ity of any edge is ex
eeded. Sin
e we traverse ea
h demand path exa
tly on
e, this matrixis updated at the same time and the
apa
ity is
he
ked. If the
apa
ity is ex
eeded an infeasiblesolution has been generated, and the bran
h is fathomed.

5.4 Cal
ulating �ow-
ost & dete
ting ex
eeded
apa
ity 15To speed up path pro
essing, we keep a su

essor-matrix (or prede
essor-matrix sin
e the networkis undire
ted), whi
h gives for any pair of nodes i and j the next node n on the path from i to
j, if su
h one exists. When traversing a path, this information is used re
ursively, so that the thefollowing node on the path from i to j is the next node on the path from n to j until the noderea
hed is j.Figure 5.1 gives an example of a network whi
h has been partially
onne
ted, and indi
ates anedge whi
h is to be added.

New edge

1

7

2 3

6

5

4

set i

set j

Existing edge

Figure 5.1: Example network used to exemplify how the su

essor-matrix and the �ow-matrix isupdated.Figure 5.2 gives the su

essor-matrix for the example network. Updates resulting from the newedge is indi
ated in bold. Su

 1 2 3 4 5 6 71 1 22 1 23 3 4 4 4 44 3 4 5 5 55 4 4 5 6 76 5 5 5 6 57 5 5 5 5 7Figure 5.2: Su

essor-matrix for the example networkIf no path exists from node i to j, then the
orresponding entry in the su

essor-matrix is empty.In the example, e.g. entry [1, 3] is empty sin
e no path exists between node 1 and 3.When an edge kl is added, the two
omponents
ontaining k and l denoted set k and set l arere
orded. Then the su

essor-matrix is updated by updating all entries
orresponding to nodes iand j, where either i ∈ set k and j ∈ set l or vi
e versa.Assume i ∈ set k and j ∈ set l, the symmetri

ase is handled the same way.The update use the fa
t, that for two nodes in the same
omponent, the path between the twonodes is known. Hen
e �nding the path from node i to node j
onsist of the path from node ito node k, edge kl and the path from node l to node j. The two paths are both known from theexisting su

essor-matrix, and may
onsist of no edges if i = k or j = l.Hen
e an update is done as follows: If i = k, then entry [i, j] in the su

essor-matrix is updated to
l. Correspondingly if j is l, [j, i] is updated to k. In the example this
orresponds to, when edge4-5 is added, updating e.g. entry [5, 3] to 4.On the other hand if i 6= k, then entry [i, j] in the su

essor-matrix is updated to the value ofentry [i, k], and when j 6= l, entry [j, i] is updated to the value of entry [j, l]. In the example this
orresponds to, when edge 4-5 is added, updating e.g entry [7, 3] to 5, whi
h is the value of entry
[7, 5].

5.5 Bounding 16Figure 5.3 shows the �ow-matrix for the example network. dij is demand between node i and j,and added demand is indi
ated in bold. The �ow is only
al
ulated in the lower left half of thematrix, sin
e the �ow is undire
ted, so less than half of the �ow matrix is used.Flow 1 2 3 4 5 6 712 d1234 d34 + d35

+d36 + d375 d35 + d36

+d37 + d45

+d46 + d476 d56 + d67

+d36 + d467 d57 + d67

+d37 + d47Figure 5.3: Flow-matrix for the example networkWhen an edge ij is added, all demands for whi
h a path did not exist previously, but now existsbe
ause of edge ij are added to the �ow-matrix. This is exa
tly all demands represented by allpairs of nodes where one is in set i and the other one in set j.For ea
h of these demands the value of the demand is added along the path they use. The path isfound using the su

essor-matrix.In the example edge 4-5 is added, hen
e the demands to update are 3-5, 3-6, 3-7, 4-5, 4-6 and 4-7.For e.g. demand 3-5 the demand value d35 is added along the path from 3 to 5, that is edges 3-4and 4-5. The same is done for the other demands.5.5 BoundingThe bound
onsists of two parts, the setup-bound and the �ow-bound. The bounding pro
edurereturns either a lower bound on the solution value, an exa
t solution, or it notes that the
urrentedge sele
tion result in an infeasible solution. If the solution is feasible and |V | − 1 edges has beensele
ted, the solution value is immediately given, sin
e as des
ribed above, the solution value is
al
ulated in
rementally ea
h time an edge is added. This in
remental value is used for both thesetup-bound and the �ow-bound. If the solution is feasible, and less than |V | − 1 edges has beensele
ted, the bound is
al
ulated.5.5.1 Setup-
ost BoundThe setup-bound part
onsist of the setup-
ost of edges whi
h has already been added and theminimum sum of setup-
osts required to
onne
t the remaining
omponents. The bound is
al
u-lated by �nding an MST with respe
t to setup-
osts using edges between
omponents only. The
apa
ity limits and the �ow-
ost are ignored. If the remaining edges
annot result in a
onne
tednetwork, the solution is infeasible, whi
h is dete
ted.5.5.2 Flow-
ost BoundThe �ow part of the in
rementally
al
ulated solution value
orrespond to those demands ij, wherea path exists between node i and j, sin
e we look for tree solutions only. Hen
e for those demands

5.5 Bounding 17the exa
t solution value is used. For demands lk where no su
h path exists, we bound by
al
ulatingthe minimum �ow-
ost path from node l to k using edges, whi
h have not been expli
itly ex
ludedfrom the solution.An example of the �ow-bound is shown in �gure 5.4.
21

34

edge 1−3 is excluded from the
solution and hence is removed.

1−2 1−3 1−4 2−3 2−4 3−4

3

2

3

4
3

Not yet decided

Part of solution

Flow−cost on edges

Demand paths

Figure 5.4: Example on �ow-boundIn the example edge 1-3 is ex
luded from the solution, edge 1-2 and 1-4 are in
luded in the solution,and for the rest of the edges, it has not been de
ided whether they are in the solution. Demandswhere a path exists using edges whi
h are in the solution use this path, i.e. demands 1-2, 1-4 and2-4. For the rest of the demands a shortest path is found and used as bound, where the path useedges that are in the solution, and edges that are yet unde
ided. Hen
e demand 1-3 use the path1-4-3, demand 2-3 use path 2-3 and demand 3-4 use path 3-4.As mentioned bran
hing
onsists of either in
luding an edge or ex
luding an edge from the solution.In the
ase where an edge is in
luded in the solution, the �ow-bound does not
hange, sin
e thesame edges are available when bounding. However, sin
e an edge is added, some demands are nowin
luded in the in
rementally
al
ulated exa
t solution value, and hen
e should be ex
luded fromthe bounding. Thus the
al
ulated bounds for ea
h demand are saved, and reused if the demandis not in
luded in the in
rementally
al
ulated exa
t solution value.5.5.3 Preventing Cy
lesThe
al
ulated �ow-bound does in some
ases use edges, whi
h
an immediately be seen to introdu
e
y
les. Sin
e it is a bound
al
ulation, this does not invalidate the bound, but on the other handthe bound
ould be improved by disallowing this.For a given bran
h some edges are in
luded and some are ex
luded. Consider a shortest path usedas bound for a demand in this bran
h. If adding all edges on the path results in a
y
le, then thebound
an be improved (assuming the shortest path is unique). This
an be done, sin
e
y
lesare not allowed in the �nal solution. Thus for this bran
h, a �nal solution will not
ontain all theedges of the bound path, hen
e an alternative bound path should be used.

5.6 Extensions 18Ea
h time a bound is
al
ulated, this should be
he
ked and a minimum
ost alternative pathwhi
h does not introdu
e
y
les should be found. In general this is not possible to do fast, andhen
e no gain
an be foreseen. In the
ase where one edge introdu
e the
y
le, it
an be done fast.An example of this is shown in �gure 5.5.
Path

Edge in solution

1 2

3

4

5

Edge not in solution but on bound path

Figure 5.5: Example on a path
ontaining an edge, whi
h alone introdu
e a
y
leAssume the path used to bound a �ow-
ost for the demand 1-5 is the path indi
ated by the dashedlines in the �gure. If the edges represented by the dashed lines were added to the solution, a
y
le would be introdu
ed (2-3-4-2), hen
e a better bound on the �ow-
ost
an be attained bydisallowing this path.In this
ase the
y
le is introdu
ed by one edge namely edge 2-4, whi
h
onne
ts two nodes whi
hare already
onne
ted, and hen
e the nodes are in the same
omponent. Information on
omponentsare available, sin
e disjoint sets are maintained representing the
omponents. Hen
e when buildingthe path used for bounding, and at some point edge ij is to be added to the path, we
he
k thatnode i and j is not in the same
omponent. If i and j is in the same
omponent, an alternativeedge is found.This interfere with the reuse of the �ow-bound des
ribed in se
tion 5.5.2. The reuse of the �ow-bound required that adding an edge
ould not
hange the value of the �ow bound. The �ow-bound
an
hange now, sin
e adding an edge may invalidate the
hoi
e of other edges, hen
e the �ow-bound
an be improved.Whether it is worth updating the �ow-bound or reusing it is un
lear, but no matter what, addingthis fun
tionality seems to slow the pro
essing down. Sin
e introdu
ing
he
ks for
y
les in general(i.e. that multiple edges introdu
e
y
les) would be more time-
onsuming, and the quality of thebound
annot be expe
ted to improve a

ordingly, this has not be tried.5.6 ExtensionsThe most important extension is to get rid of the tree-requirement. Solving to optimality usingthe above s
heme
ould not be done immediately, sin
e
y
les would be allowed in the network.Hen
e demand paths are not unique, and whi
h path to take would have to be de
ided. Buildinga bran
h-and-bound algorithm to do this
ould be done by, in addition to bran
hing on whetheran edge is in the solution or not, in
lude bran
hes on whether an edge is used on the path for agiven demand.This would in
rease the
omputation time
ompared to allowing solutions to be trees only. Sin
ethe
omputation time is high already, this will not be pursued when solving to optimality. Insteadthe problem is solved for non-trees heuristi
ally. This is des
ribed in the following
hapter.

19
Chapter 6Heuristi
 Solution of the NHNP
In this
hapter a heuristi
 solution algorithm for the NHNP is presented. The algorithm is guar-anteed to �nd a feasible solution, if one exists, but the found solution is usually not optimal. Thesolution algorithm is used when solving the HNP and will be run many times, hen
e it has to berather fast.The algorithm is outlined in �gure 6.1.Che
k that a feasible solution existsFind an initial tree solution whi
h has low setup-
ostwhile solution is infeasible doAdd edgeFind demand pathsend whileRun lo
al sear
hFigure 6.1: Heuristi
 solution algorithm for the NHNPThe major di�eren
e from the optimal solution is that we allow non-trees. Doing this, we will haveto determine for ea
h demand whi
h path it takes, i.e. the fijkl variables are de
ision variables.The phases in the �gure are des
ribed in the following se
tions.6.1 Che
king whether a Feasible Solution ExistsNote that we assume a
omplete network, and that �ows
annot split. Hen
e
he
king that afeasible solution exists
an be done by
he
king that no demand exists, whi
h is larger than theedge
apa
ity. If this is the
ase, then the solution
ontaining all edges between nodes and withea
h demand ij taking the path
onsisting of exa
tly edge ij is feasible.On the other hand, if a demand larger than the edge
apa
ity exists, this demand
annot evenleave the node, sin
e no edges exist with high enough demand, and we do not allow demands tosplit.

6.2 Finding an Initial Tree Solution 206.2 Finding an Initial Tree SolutionThe initial solution found is an MST with respe
t to setup-
osts. For networks where the setup-
osts
ontribute signi�
antly to the obje
tive fun
tion value
ompared to the �ow-
ost, this is areasonable
hoi
e. Tele
ommuni
ation networks
an be modeled reasonably without any �ow-
ost,hen
e at least in this
ase it is reasonable, in fa
t as mentioned in se
tion 5.1, if there is no �ow-
ostand the found MST is feasible, then the MST is an optimal solution.6.3 Finding Demand PathsGiven an edge sele
tion, an assignment to the �ow variables is sought whi
h is feasible and has alow total �ow-
ost. The variable assignment is found (if one exists) indire
tly by �nding the pathea
h demand takes.This is equivalent, sin
e if paths are assigned for ea
h demand, the �ow variable assignment
anbe found by for ea
h demand and for ea
h edge in the path, to set the
orresponding �ow variableequal to the value of the demand. On the other hand, given a �ow variable assignment, ea
h pathfor ea
h demand
an be found by
onsidering the values of the �ow variables for the
orrespondingdemand. One variable for ea
h edge exists, and given the equations 4.4, 4.5, 4.6 and 4.7, thepositive variables
orrespond to a path.Cal
ulating the optimal assignment is
omputationally expensive, and sin
e this is done manytimes a heuristi
 solution approa
h is used.The demand paths are assigned by
onsidering demands in de
reasing order of value. This is donethis way, sin
e high value demands are more expensive to reroute than low value demands. Forea
h demand ij, the shortest feasible path between i and j is found. This is done by �rst �ndingthe shortest path between i and j.If this path is not feasible, the �rst edge where the edge
apa
ity would be ex
eed if the demandwere added is identi�ed. The path should not use this edge, hen
e it is temporarily removed fromthe network, and the shortest path between i and j is found again. This is
ontinued until eitherthe demand
an be added along the found path or no path exists between i and j. In both
asesthe temporary edges are added again.If a feasible path was found, demand is added, and pro
essing is
ontinued for the rest of thedemands. If no feasible path was found, the edge with ex
eeded
apa
ity found in the originalnetwork is re
orded. This edge will be relieved by adding another edge as des
ribed in the followingse
tion.6.4 Finding an Edge to AddThe edge to add should relieve the edge with ex
eeded
apa
ity found above.The edge to add is found by
onsidering all edges whi
h are not part of the solution in in
reasingorder of setup
ost. For ea
h edge ij we
he
k if the
urrent path for demand ij uses the edge withex
eeded
apa
ity, if so this is the edge we add.There is no guarantee that su
h an edge exists, a situation whi
h arises in pra
ti
e. An exampleof the situation, where no edge is immediately found is shown in �gure 6.2.Demands are ordered a

ording to value, depi
ted in the left
olumn in the �gure. One edge withex
eeded
apa
ity exists, edge 1-2. Edge 1-2 is used by demand 1-2 and demand 1-3 only. The

6.4 Finding an Edge to Add 21
1−3
3−4

1−2

2−4
2−3
1−4

6
7

5

1
2
2

1−2−3
3−1−4

1−4
2−3
2−3−1−4

1−2

21

34 Edge capacity is 10

10

11

9
7

Demand Value Path

Total demand on edgesFigure 6.2: Relieve-edge
annot be immediately found
orresponding edges 1-2 and 1-3 are both part of the solution, hen
e it is not immediately possibleto �nd an edge, whi
h will relieve 1-2.We
an, however make sure that su
h an edge exists, by requiring that if edge ij is in the solutionthen demand ij uses the path
onsisting of edge ij only. Consider the edge with ex
eeded
apa
ity
kl. Sin
e no demand exists with value larger than the
apa
ity, at least two demands use this edge,one is the kl demand, and assume the other demand is mn. Then edge mn is not in the solution,otherwise demand mn would use edge mn, and hen
e adding edge mn would relieve edge kl.Hen
e what we will do if no edge
an be found, whi
h relieves the edge with ex
eeded
apa
ity isto �rst assign the path
onsisting of edge ij to demand ij for whi
h edge ij exists. Then the abovepath assignment s
heme is used, and an edge is found. In fa
t doing this may result in a feasiblesolution without adding any edges, simply by
onsidering the paths in another way.Using this algorithm would for the example result in the paths depi
ted in �gure 6.3.

1−2 5 1−2
1−4 2 1−4
2−3 2 2−3

1−3 6 1−3

21

34 Edge capacity is 10

10

Demand Value Path

6

13
2

2−4 1 2−1−4
3−4 7 3−1−4

Total demand on edgesFigure 6.3: Relieve-edge is guaranteed to existIn fa
t the edge with ex
eeded
apa
ity identi�ed is no more edge 1-2 but edge 1-3, and sin
edemand 3-4 use edge 1-3, and edge 3-4 is not in the solution, edge 3-4 is the edge to add.We might be tempted to simply use this s
heme all along, instead of waiting till the �rst s
hemefails. The thing is of
ourse, that in general the �rst s
heme is better than the se
ond one in thesense that it has a higher
han
e of �nding a feasible assignment, and that it also in general �nds

6.5 Lo
al Sear
h 22lower valued path assignments. This is supported by experiments in se
tion 12.4.26.5 Lo
al Sear
hWhen a good initial solution is found, we run a lo
al sear
h algorithm modifying the solution ifan improvement is immediately possible. The algorithm has been run with two neighbourhoods, asimple and an extended neighbourhood.The simple neighbourhood
onsist of solutions whi
h
an be rea
hed by either adding or removingan edge. The extended neighbourhood allows in addition a swap of edges, i.e. one edge is addedand another one is removed.For the simple neighbourhood, the lo
al sear
h runs as follows: For all possible edges try to addthe edge, if the edge is not part of the solution, and remove the edge if it is part of the solution.Test if the solution is feasible and better than the
urrent solution. If so the neighbour-solutionbe
omes the
urrent solution, and all neighbour-solutions are
he
ked for this new
urrent solution.This
ontinues until no feasible and better solutions exist.The e�e
t using this neighbourhood is mainly to remove unne
essary edges added in earlier stepsof the algorithm.The extended algorithm is used the same way, only now swaps of edges are
onsidered as well.Using the simple and espe
ially the extended neighbourhood in
rease the runtime severely (seese
tion 12.4.1). To avoid getting into problems with runtime, the extended neighbourhood is usedonly for networks with up to 10 nodes, and the simple neighbourhood is used for networks withup to 15 nodes.This is a way of
ontrolling the time used but a very in�exible one, in the sense that it is notpossible to
ontrol exa
tly how mu
h time is spent on ea
h group. As an example, solving anetwork
ontaining 10 nodes takes approximately 1 se
ond using the extended neighbourhoodwhereas solving a network
ontaining 11 nodes takes approximately 0.1 se
onds using the simpleneighbourhood (see se
tion 12.4.1). Also the solution quality drops a

ordingly. Hen
e it maybe bene�
ial to have groups with nodes 10
ompared with having groups with 11 nodes, simplybe
ause an algorithm �nding better solutions is used for solving groups with 10 nodes.Another possibility
ould be to use a simulated annealing approa
h using the simple neighbourhood,but allowing for a

epting marginally worse solutions. This way the runtime
ould be
ontrolledbetter, and more solutions may be rea
hable.

23
Chapter 7The Hierar
hi
al Network Problem
7.1 Mathemati
al ModelIn the following the mathemati
al model de�ning the hierar
hi
al network problem is des
ribed.The model involves only two levels referred to as the primary (highest level - level 1) and se
ondarylevel.The solution network will
onsist of one primary group and a number of se
ondary groups. Allgroups mentioned in this
hapter are se
ondary groups, and thus this is not always expli
itly stated.Also
on
entrator nodes in the resulting network are exa
tly the primary nodes, and thus theseterms
an be used inter
hangeably.Solving the HNP in polynomial time would make the NHNP solvable in polynomial time as well,sin
e the NHNP is a spe
ial
ase of the HNP (�divide� a network into 1 group). Sin
e the NHNPis NP-hard (see
hapter 4) so is the HNP.7.1.1 De�nitions
V Set of all nodes.
E Set of all edges.
i, j, k, l ∈ V - Nodes.
ij, i ∈ V, j ∈ V, i < j ∈ E - Undire
ted edges.
h, 1 ≤ h ≤ G Groups.7.1.2 Data
G Number of groups in the network.
cs1ij , i < j Cost of setting up a primary edge between i and j.
cs2ij , i < j Cost of setting up a se
ondary edge between i and j.
cf1ij , i < j Cost per unit �ow of a primary edge between i and j.
cf2ij , i < j Cost per unit of of a se
ondary edge between i and j.
dij , i < j Undire
ted demand between i and j.
cap1 Capa
ity of primary edges.
cap2 Capa
ity of se
ondary edges.As for the NHNP, we assume that the data are demand-
onne
ted (no
ut exists with demandequal to zero), and thus to ful�ll demands, the solution must be
onne
ted as well.

7.1 Mathemati
al Model 24Usually (e.g. for tele
ommuni
ation networks), the setup-
ost for primary edges are higher thanfor se
ondary edges, i.e. cs1ij > cs2ij and the �ow-
ost for se
ondary edges are higher than forprimary edge, i.e. cf1ij < cf2ij . The model does not require it to be this way, but all testednetworks have these
hara
teristi
s.7.1.3 De
ision Variables
x1ij ∈ {0, 1} 1 if there is a primary edge between i and j,

(i < j) 0 otherwise.
x2ij ∈ {0, 1} 1 if there is a se
ondary edge between i and j,

(i < j) 0 otherwise.
tik ∈ {0, 1} 1 if node i is
on
entrator node in group k,0 otherwise.
gik ∈ {0, 1} 1 if node i is in group k,0 otherwise.
f1ijkl ≥ 0 Amount of �ow on edge i to j resulting from demand

(i < j, k < l) between nodes k and l on a primary edge.
f2ijkl ≥ 0 Amount of �ow on edge i to j resulting from demand

(i < j, k < l) between nodes k and l on a se
ondary edge.The group (g) and
on
entrator (t) variables are in a sense bookkeeping variables, though a se-le
tion of edges (x) and �ow assignment (f) does not give a unique assignment to the group and
on
entrator variables. But if edges are sele
ted and �ow assigned, it as matter of sele
ting whi
hgroups are assigned whi
h numbers, and this is unimportant. In fa
t the obje
tive value is de-termined from the �ow and setup variables only, hen
e the assignment to group and
on
entratorvariables does not matter as long as a feasible assignment exists.7.1.4 Obje
tive Fun
tionThe
ost for a given network is the total
ost of setting up edges, and the sum of all �ow throughedges:
min

∑

i,j,i<j

cs1ij · x1ij + cs2ij · x2ij +

∑

i,j,i<j,k,l,k<l

cf1ij · f1ijkl + cf2ij · f2ijkl (7.1)As for the NHNP, the �rst part of the obje
tive fun
tion is denoted the total setup-
ost and these
ond part is denoted the total �ow-
ost.7.1.5 Group & Con
entrator ConstraintsBetween two nodes there
an be one edge only, either a primary or a se
ondary edge but not both:
∀i, j, i < j : x1ij + x2ij ≤ 1 (7.2)A node is in exa
tly one group:

∀i :
∑

1≤h≤G

gih = 1 (7.3)

7.1 Mathemati
al Model 25Ea
h group has exa
tly one
on
entrator node:
∀h(1 ≤ h ≤ G) :

∑

i

tih = 1 (7.4)A node
an only be
on
entrator in one group:
∀i :

∑

h

tih ≤ 1 (7.5)If there is a primary edge between i and j (x1ij = 1), then node i and j are both primary nodes(∑h tih = 1,
∑

h tjh = 1).
∀i, j, i < j : x1ij ≤

∑

h

tih (7.6)
∀i, j, i < j : x1ij ≤

∑

h

tjh (7.7)If i is a
on
entrator/primary node (∑h tih = 1), then there is a primary edge in
ident to i(∑j,i<j x1ij +
∑

j,i>j x1ji).
∀i :

∑

h

tih ≤
∑

j,i<j

x1ij +
∑

j,i>j

x1ji (7.8)If a node is
on
entrator/primary in a group, then it is in the group as well.
∀i, h : tih ≤ gih (7.9)If a node i
an be rea
hed from j via a se
ondary link then i and j are in the same group.

∀i, j, h, i < j : x2ij + gih ≤ gjh + 1 (7.10)
∀i, j, h, i < j : x2ij + gjh ≤ gih + 1 (7.11)As mentioned earlier, some solutions are equal, i.e. have the same edges and �ows sele
ted andhen
e the same obje
tive fun
tion value. The
on
entrator sele
tion and group division is alsogiven, the only di�eren
e is the group numbers, whi
h are di�erent. We do not
are what groupnumbers are and do not distinguish between those solutions.7.1.6 Tree ConstraintSo far the model allows solutions, whi
h are not trees (they have to be
onne
ted though). When�nding �ow variables it is, however, a major advantage to
onsider trees only, sin
e given a solution,the �ow
an be determined uniquely. When solving optimally, we will only do it for tree solutions,or equivalently (sin
e
onne
tivity is required), the number of edges should be |V | − 1:

∑

i,j,i<j

x1ij + x2ij = |V | − 1 (7.12)When heuristi
ally this
onstraint is relaxed, and hen
e when solving heuristi
ally, it is not enoughto �nd the edge-variables (x1 and x2), �ow-variables (f1ijkl and f2ijkl) will also have to bedetermined.

7.1 Mathemati
al Model 267.1.7 Flow ConstraintsWe
onsider at set of
onstraints, whi
h determines the amount of �ow on edges.A �ow is an assignment of values to the variables f1ijkl and f2ijkl, whi
h does not violate any
onstraints mentioned in this subse
tion (7.1.7). Re
all that f1ijkl is the �ow on a primary edgebetween i and j resulting from demand between k and l, likewise for f2ijkl.First of all, if an edge is used (i.e. f1ijkl > 0 or f2ijkl > 0), then there should be a primary edge(if f1ijkl > 0) or a se
ondary edge (if f2ijkl > 0) between i and j (i.e. x1ij = 1 or x2ij = 1respe
tively).
f1ijkl and f2ijkl should be positive or zero, and assuming M is larger than or equal to any possibleassignment to f1 and f2, the following
onstraints
an be used:

∀i, j, i < j :

∀k, l, k < l : M · x1ij ≥ f1ijkl (7.13)
∀k, l, k < l : M · x2ij ≥ f2ijkl (7.14)The amount of �ow in
ident to node i and node j resulting from demand between i and j mustequal the demand between i and j:

∀i, j, i < j :
∑

k,i<k

(f1ikij + f2ikij) +
∑

k,i>k

(f1kiij + f2kiij) = dij (7.15)
∑

k,k<j

(f1kjij + f2kjij) +
∑

k,k>j

(f1jkij + f2jkij) = dij (7.16)For all demands between node k and node l, the total �ow in
ident to other nodes i, i 6= k, i 6= lresulting from demand ij should equal zero (if i is not on the path between k and l) or two times therequired demand (if i is on the path between k and l). That is either of the following 2
onstraintsmust hold:
∀k, l, k < l, i ∈ V \{k, l} :

∑

j∈V,i<j

(f1ijkl + f2ijkl) +
∑

j∈V,j<i

(f1jikl + f2jikl) = 0 (7.17)
∑

j∈V,i<j

(f1ijkl + f2ijkl) +
∑

j∈V,j<i

(f1jikl + f2jikl) = 2dkl (7.18)As for the NHNP formulation, this means that �ow resulting from a demand of
apa
ity betweena �xed pair of nodes, is on one path, i.e. the �ow is not split. For trees this is trivially so, sin
efor a pair of nodes there is exa
tly one path. In fa
t f1ij and f2ij are bookkeeping variables asopposed to de
ision variables, when the tree
onstraint is used. If non-trees are allowed, f1ij and
f2ij are in fa
t de
ision variables, but with this formulation, the �ow still
annot split.If solved dire
tly by e.g. CPLEX, the either-or formulation
an be handled as follows: Introdu
ea binary variable for ea
h new pair of
onstraints temp#. Then the following
onstraints areequivalent with equation 7.17 and equation 7.18:

7.2 Number of Edges 27
∀k, l, k < l, i ∈ V \{k, l} :

∑

j∈V,i<j

(f1ijkl + f2ijkl) +
∑

j∈V,j<i

(f1jikl + f2jikl) = 2dkl · temp# (7.19)Introdu
ing binary variables are always
omputationally expensive, thus this formulation
annotbe expe
ted to be useful for solving large instan
es of the HNP.7.1.8 Capa
ity ConstraintsCapa
ity
onstraints ensure, that no edge has more �ow than its
apa
ity allows. This
an beexpressed as:
∀i, j, i < j : cap1 · x1ij ≥

∑

k,l,k<l

f1ijkl (7.20)
∀i, j, i < j : cap2 · x2ij ≥

∑

k,l,k<l

f2ijkl (7.21)This makes the
onstraints 7.13 and 7.14 redundant, sin
e if 7.20 and 7.21 are ful�lled then so are7.13 and 7.14.The
apa
ity
onstraints also ensure
onne
tivity, sin
e we assume there exists no
ut where theamount of demand
rossing the
ut is equal to zero.An alternative formulation, that does not use the
al
ulated �ow is:
∀s, ∅ ⊂ s ⊂ V :

∑

ij∈δ(s)

dij ≤
∑

ij∈δ(s)

x1ijcap1 + x2ijcap2 (7.22)This formulation require the
onstraints 7.13 and 7.14.As for the NHNP, this formulation requires that �ow
an split, and is not suitable for implemen-tation, sin
e the number of
onstraints grows exponentially with the number of nodes.In the following implementations the �rst formulation is used (i.e. equation 7.20 and 7.21), i.e. �owis
al
ulated to ensure that
apa
ities are not ex
eeded.7.2 Number of EdgesThe number of primary and se
ondary edges are given by:
∑

i,j,i<j

x1ij = G − 1 (7.23)
∑

i,j,i<j

x2ij = |V | − G (7.24)Assuming the tree
onstraint holds.

7.3 Solving Dire
tly 28This
an be seen from the following:Equation 7.4 say that ea
h group has exa
tly one
on
entrator node, and sin
e there are G groups,there are G
on
entrator or primary nodes.Sin
e the graph as a whole is a tree (V − 1 edges are sele
ted (equation 7.12) and the graph is
onne
ted (equation 7.20, 7.21 and network is demand-
onne
ted)), the subgraph
onsisting ofprimary nodes and edges
onne
ting the nodes is a forest (in
luding the tree
ase). Thus there
anbe no more than G − 1 edges.On the other hand assume there were less than G − 1 edges. If so, all primary nodes
annot bedire
tly
onne
ted, thus the subgraph
ontains at least two trees (i.e. the subgraph is a forest butnot a tree). In the original graph the two trees must have been
onne
ted via a se
ondary edges,sin
e the graph as a whole is a tree. But equation 7.10 and 7.11 state that if a se
ondary node
onne
ts two nodes, then they are in the same group. Thus we have two primary nodes in the samegroup, whi
h
annot be the
ase be
ause of equation 7.4. Thus there are exa
tly G − 1 primaryedges, and the remaining |V | − G edges are of
ourse se
ondary.An important fa
t, whi
h follow from the proof is that the subgraph
onsisting of primary nodesis a tree.7.3 Solving Dire
tlyObviously the problem
annot be solved dire
tly for more than a few nodes, sin
e the number of
onstraints grows exponentially in the number of nodes. In order to make sure that the mathe-mati
al model stems with what is our understanding of hierar
hi
al networks, (i.e. as des
ribed in
hapter 3), it is however solved for problems with few nodes. This is done by generating an input�le to CPLEX, whi
h
ontains all
onstraints.A program generating input �les to CPLEX from a de�nition �le has been implemented. Solvingfor small networks (up to about 8 nodes and 3 groups) gives reasonable results, i.e. �tting ourunderstanding of hierar
hi
al networks, hen
e groups are divided, edges are sele
ted within groupsand not between groups and so on. Also sin
e
omparing results (i.e. the optimal solution found)with solutions found by other solution algorithms des
ribed in the following gives su�
ing results,the mathemati
al model seems to des
ribe the desired hierar
hi
al network problem.Both versions of the
apa
ity
onstraints are used, and test samples with 7 and 8 nodes seems toindi
ate that they perform similarly, though more
onstraints are generated in the
ut formulation(i.e. equation 7.22). Sin
e the number of
uts grows exponentially with the number of nodes,whereas the number of
onstraints using the �ow version (i.e. equation 7.20 and 7.21) grows onlylinearly with the number of edges, the �ow version is expe
ted to perform best.7.4 ExtensionsThe mathemati
al model as des
ribed in this
hapter allows two levels only. Hen
e an extensionwould be to allow an arbitrary number of levels. This
ould be done by introdu
ing a level indexto the data variables, setup-
ost(c), �ow-
ost(cf),
apa
ity(cap) and number of groups (G). Thatis the number of groups at ea
h level would have to be spe
i�ed. At the moment we only requirethe number of se
ondary groups to be spe
ify, sin
e the number of primary groups is trivially one.The number of level l + 1 nodes must be ≥ the number of level l nodes.The de
ision variables for edges (x), �ow (f),
on
entrators (t) and groups (g) should be indexedby a level as well. There should be a number of group variables for ea
h level
orresponding to

7.4 Extensions 29how many groups are required, de�ned by G.The obje
tive fun
tion should sum over the level variable instead of having two separate termsfor the primary and se
ondary edges. Tree-, �ow- and
apa
ity-
onstraints
an be extended bysumming over the level variable in the same way.In general the group- &
on
entrator-
onstraints
an be extended by modifying
onstraints su
hthat they should hold for groups of level l or
on
entrators of level l, whi
h should e done for alllevels. Hen
e this will result in roughly the number of levels times as many
onstraints.Another extension would be to allow G to be unknown, that is the mathemati
al model should beformulated su
h that any number of groups is allowed. This
ould be done by having a numberof group variables equal to the number of nodes (instead of exa
tly G group variables) and thenallow groups to be empty.The extensions are not in
luded, �rst of all be
ause the mathemati
al model des
ribed above ishard enough to solve as it is. If the mathemati
al model mentioned above
an be solved, then theextensions
ould be added.

30
Chapter 8Solution Strategies for theHierar
hi
al Network Problem
In this
hapter two solution strategies are presented. The �rst one, �the bran
h and bound strategy�,is built dire
tly on the bran
h and bound solution algorithm to NHNP des
ribed in
hapter 5. Itworks with edges, and operates only impli
itly with groups,
on
entrator nodes and hierar
hies.The se
ond solution strategy, �the phase divided strategy� divides the pro
ess into phases. Thisallows for
on
eptual abstra
tion of the problem and division of the solution development, sothat phases
ould potentially be improved one at a time. The phases are of
ourse interrelated,so
hanging one phase a�e
t others. This strategy shows to be parti
ularly suited for heuristi
solution algorithms.Thus the �rst strategy is potentially the most e�
ient, sin
e it looks at the problem from an overallperspe
tive, but it is very hard to work with. On the other hand the se
ond strategy is easier towork with, but may be less e�
ient be
ause of abstra
tion. In following
hapters we will workwith the se
ond strategy, that is the phase divided strategy.8.1 Bran
h and Bound StrategyThis strategy generalize the bran
h and bound solution algorithm for the NHNP des
ribed in
hapter 5. It sele
ts edges, so a solution is an assignment to the binary x1ij and x2ij variables. Asfor the NHNP solution algorithm paths and �ow is
al
ulated in
rementally, and disjoint-sets aremaintained representing
omponents.The strategy generate solutions as done for the NHNP, only now there is two passes of the edges,where the �rst pass sele
ts the primary edges, and the se
ond pass sele
ts the se
ondary edges.The generated solutions all
omply with all
onstraints de�ning the HNP, ex
ept for the
apa
itywhi
h is
he
ked separately.The strategy �rst sele
ts G − 1 primary edges, in
luding update of the disjoint-sets representing
omponents and �nd paths and �ow. Ea
h sele
tion of an edge is a bran
h, hen
e to sub-
ases are
reated as for the NHNP algorithm.As stated in se
tion 7.2, the primary edges must form a
onne
ted subgraph. This
an be ensuredas follows.Re
ord whi
h nodes have a primary edge in
ident to them and thus are primary, and re
ord the

8.2 Phase Divided Strategy 31number of primary
omponents (i.e.
omponents
ontaining a primary node). Also re
ord thenumber of sele
ted edges. Ea
h time an edge is added and
omponents are merged, the re
ordedinfo is updated.The number of primary
omponents is updated as follows. If two primary
omponents are merged,the number of primary
omponents is de
reased. If two non-primary
omponents are merged, thenumber of primary
omponents is in
reased, and �nally if a primary and a non-primary
omponentis merged, the number of primary
omponents is maintained.When G− 1 primary edges have been added, the number of primary
omponents shall be 1, sin
ethen all primary edges are in the same
omponent and thus they form a subtree.Sin
e the number of primary sets
an only de
rease with one for ea
h new edge, a generated solutionmust
omply with:
G − 1 − numberOfPrimaryComponents≥ numberOfSele
tedEdgesHen
e it makes sure, that if at some point an edge is added edges
an be sele
ted su
h that the�nal primary edge sele
tion is a
onne
ted subgraph. If adding an edge results in a solution whi
hdoes not
omply with this inequality, the solution it is not generated.When the primary edges has been generated, the pro
ess
ontinues from beginning again, onlynow we sele
t se
ondary edges, and edges whi
h are sele
ted as primary are not
onsidered.The setup-
ost and �ow-
ost is
al
ulated in
rementally as for the NHNP, ex
ept that the valueand
apa
ity of an edge depend on whether it is a primary or se
ondary edge.Choosing to sele
t primary edges before se
ondary edges, has lower runtime than the opposite.This may be be
ause of the primary edges having a higher setup-
ost, and thus pla
ing primaryedges gives a better (higher value) bound.Finally we note that the group numbers are not uniquely determined, but as said earlier, we donot
are what number ea
h group has.The strategy has been implemented in Java with su

ess. It is, however, not suitable for a heuristi
implementation, and sin
e this is what we aim for, it is not used any further. Solutions found hasbeen
ompared with solutions found by the optimal algorithm based on the following solutionstrategy, i.e. it is made sure that the same optimal solutions are found.8.2 Phase Divided StrategyThe phase divided strategy divides the solution pro
ess into 4 phases:1. Divide into groups2. Choose
on
entrator nodes3. Sele
t edges in ea
h group (in
luding primary group)4. Assign paths to demandsOne way to divide into groups and
hoose
on
entrator nodes is simply to try all possibilities.When solving optimally this is what we will do. This works for smaller networks, but for largernetworks the amount of possibilities gets so large, that it is not possible to do this.It is also possible to �nd a division of nodes into groups and sele
tion of
on
entrator nodesheuristi
ally. Measuring the quality of a group division and
on
entrator sele
tion is hard though,

8.2 Phase Divided Strategy 32sin
e the obje
tive fun
tion value does not depend dire
tly on how groups are divided but on whi
hedges are sele
ted, and how mu
h �ow is on ea
h edge. Thus it would be ni
e to have an evaluationfun
tion, whi
h gives an estimate on the quality of the group division and
on
entrator sele
tion.Ultimately the evaluation fun
tion should equal the obje
tive fun
tion, but
al
ulating the exa
tvalue is slow for large networks.The third phase is to sele
t the edges, su
h that the obje
tive value is minimized. Ea
h group
anbe optimized in turn (in
luding the primary group), i.e. we have to solve G+1 NHNP's with dataderived from the HNP. The data
an be derived as initially des
ribed in se
tion 3.4 and furtherspe
i�ed in se
tion 9.2.1 .The fourth phase involves assigning a path to ea
h demand. This is not relevant in the optimal
ase, sin
e we
onsider trees only. When solving heuristi
ally, the assignment has already beendes
ribed in
hapter 6 for the NHNP. Assigning paths to demands one group at a time a
tuallysolves the problem, sin
e paths are unique with respe
t to groups, and hen
e the paths in thenetwork is made uniquely from the paths in the groups (see se
tion 3.3 and 9.2.2).The optimal solution algorithm des
ribed in
hapter 5 to solve the NHNP problems
an only beused for networks of sizes up to about 7-8 nodes in a reasonable time. Thus if solving networks oflarger sizes, i.e. groups exist with more than 7-8 nodes, heuristi
s will have to be applied as well.The heuristi
 used �nds an MST, and if this MST is not feasible, the MST is modi�ed (i.e. edgesare added) until the MST is feasible.The phase divided strategy will be used to solve the HNP both optimally (for small networks) andheuristi
ally in the two following
hapters.Solving the HNP this way, allows for repla
ing the NHNP solution algorithm easily, sin
e there isa
lear distin
tion between phases. Hen
e if an alternative solution algorithm where developed oradopted this
ould be immediately done using this strategy.

33
Chapter 9Optimal Solution of the HNPThis
hapter des
ribes an algorithm, whi
h solves the HNP to optimality. It is based on the phasedivision strategy, and thus have four phases. The �rst and se
ond phase are simple, namely try allpossibilities of group division and
on
entrator sele
tion.The third and fourth phase use the solution algorithm for the NHNP (des
ribed in
hapter 5) tosolve ea
h group to optimality. This
an be done sin
e the optimal solution of the HNP is theunion of the optimal solutions of the groups.9.1 RepresentationA solution is represented as two arrays of length |V|, a group array and a
on
entrator array. Thegroup array is an integer array giving group numbers for ea
h node and the
on
entrator arrayis a binary array where entries are true if the node is
on
entrator otherwise false. The groupnumbers are 0 to G − 1, and at least one node has to be in ea
h group. Also ea
h group hasexa
tly one
on
entrator; thus G entries in the
on
entrator array are true, and the nodes whi
hare
on
entrator nodes have di�erent group numbers.The group-numbers do not matter so given this representation some solutions are symmetri
al- two solutions are symmetri
al, if the groups are divided the same way, and the same nodesare
on
entrator nodes, but group-numbers di�er. To avoid generating symmetri
al solutions werequire, that if node number i has group-number h, then for all groups with numbers 0 ≤ g < h,at least one node j exist with group-number g, su
h that j < i. In this
ase the group numberassignment is valid.This ensures that no symmetri
al solutions exists, sin
e the group number
an be uniquely deter-mined. This
an be done by assigning group numbers to nodes in order of node number. The nodenumber 0 is given group number 0. Re
ursively node number i is given number g if a node j withnumber j < i is in the same group as node i and j has group number g.If no node with number < i exists whi
h is in the same group as i, then i is assigned group number
h where h is the least group number larger than all group numbers assigned to nodes with number
< i. i
annot be assigned a group number whi
h is smaller than h, sin
e it is not in the same groupas any of the nodes with number < i, and if assigned an unassigned group number less than h, thegroup assignment would not be valid.On the other hand i
annot be assigned a larger number, sin
e if so either there is not enoughgroup numbers or a group number assigned later is smaller than this, and hen
e is not a validgroup number assignment. Thus the group numbers are unique.

9.2 Solution Algorithm 34The sear
h spa
e is all possible valid assignments to the group- and
on
entrator-arrays.This representation does not allow for some of the nodes to be either not assigned to a group orunde
ided whether they are
on
entrators. The representation
an easily be extended though, bysimply allowing a spe
ial marker to be assigned as either group number or
on
entrator whi
hindi
ated that it is yet unde
ided.9.2 Solution AlgorithmAll possible group divisions and
on
entrator sele
tions are generated. For ea
h group division and
on
entrator sele
tion, the determination of the solution value is done by determining the solutionvalue for ea
h group in turn. Solving the groups is done as des
ribed in
hapter 5, hen
e the onlything left is to determine how data are
omputed for the groups, and how the solutions to thegroups are aggregated again to attain the solution for the entire network.9.2.1 Cal
ulating NHNP data from HNP dataGiven a group-division and a
on
entrator-sele
tion, most of the data
an be immediately extra
tedfrom the HNP problem - the number of nodes is the number of nodes in the group, edge
apa
ity,setup-
osts and �ow-
osts depend only on the group being primary or se
ondary.The demand-matrix
annot be determined immediately, sin
e for the primary group, the demandis a sum of demands between nodes, and likewise for se
ondary groups, a demand between a nodein the group and a node outside the group is repla
ed with demand between the
on
entrator andthe node. This is des
ribed in detail in the following.The demand matrix is generated by
onsidering all pairs of nodes in the HNP. An example of anetwork where group division and
on
entrator sele
tion is known, is shown in �gure 9.1. The�gure is used to exemplify the following dis
ussion.
Concentrator node

Secondary node

Secondary group
6

7

2

3

54

1

Figure 9.1: Example of a network where groups are known and
on
entrators are sele
tedThe primary group
onsists of all
on
entrators, hen
e an entry in the demand matrix exists forea
h pair of
on
entrator nodes. The values of the demand matrix is determined by
onsidering allpairs of nodes. If two nodes are in di�erent se
ondary groups, the
on
entrators of the two groupsare identi�ed. The demand between the two nodes is then added to the entry in the demand matrix
orresponding to the two
on
entrator nodes.E.g. the demand between node 2 and 3 in �gure 9.1, is added to the demand between
on
entrator

9.2 Solution Algorithm 35nodes 1 and 5, sin
e the path from 2 to 3
onsists of the subpaths from 2 to 1, from 1 to 5 in theprimary group, and �nally from 5 to 3.If nodes are in the same group, their
ommuni
ation does not go through the primary group, andthus is not added to the demand matrix. The resulting demand matrix for the primary group isshown in �gure 9.2. Demands for a node pair i, j, i < j is denoted by dij , and sin
e demand isundire
ted less than half of the demand matri
es are used.1 5 715 d13 + d14 + d15

+d23 + d24 + d257 d16 + d17 d36 + d37 + d46

+d26 + d27 +d47 + d56 + d57Figure 9.2: Demand-matrix for the primary groupThe demand matrix for se
ondary groups has an entry
orresponding to ea
h pair of nodes in thegroup. Ea
h pair of nodes is
onsidered, and demand is added, if one or both nodes are in thegroup, otherwise it is not. If both nodes are in the group, the demand is added between the twonodes. If one node is in the group only, the demand is added from this node to the
on
entratornode, sin
e this is part of the entire path.The resulting demand matri
es for the se
ondary groups are shown in �gure 9.3(a), 9.3(b) and 9.4.1 212 d12 + d23 + d24

+d25 + d26 + d27(a) Top left group 6 767 d16 + d26 + d36

+d46 + d56 + d67(b) Top right groupFigure 9.3: Demand-matrix for the two top groups3 4 534 d345 d13 + d23 + d35 d14 + d24 + d45

+d36 + d37 +d46 + d47Figure 9.4: Demand-matrix for the bottom middle groupIf we
onsider the demand between node 2 and 3 again, this demand is added in both the top leftgroup between node 1 and 2, and in the bottom middle group between node 3 and 5. For e.g.demand 34, the demand is added to edge 34 only, and sin
e neither node 3 nor 4 is
on
entratorthis is the only demand on this edge.The nodes are renumbered in the groups, su
h that iterating through the nodes of a group issimple. In pra
ti
e two arrays are built and kept, one whi
h maps the node number in a group toa node number in the full network and one whi
h maps the other way. Hen
e a demand matrix isbuilt, whi
h
ontains exa
tly the ne
essary nodes, i.e. the nodes in the group.Sin
e the �ow- and setup-
osts are used often, it may make sense to
opy them, su
h that nomapping between group numbers are ne
essary. On the other hand the mapping is so simple thatit ought not be ne
essary to
opy them. Experiments show that there is a marginal di�eren
e only,but pre-
opying the data tend to be fastest, hen
e this is done.

9.3 Redu
ing Sear
h Spa
e 369.2.2 Aggregating NHNP Solutions to attain Solution for HNPWhen the solutions to the NHNP's are found, the solution to the HNP is feasible if all NHNP'sare feasible, and the solution value is simply attained by adding the solution value for ea
h of thegroups. The sele
tion of edges is immediately attainable from the edges whi
h are sele
ted in thegroups.Finding the �ow is done by �nding the paths to ea
h demand (this is equivalent - see se
tion 6.3).The path for a demand ij
onsist of up to three parts. Assume I is
on
entrator of the group iis in and J is
on
entrator for j and I 6= J , then the path
onsist of the path from i to I, thepath from I to J and �nally the path from J to j. This information is simply extra
ted from thesolution to the NHNP's if the paths has to be found. If I = J , i.e. nodes are in the same se
ondarygroup, then the path is simply taken from the solution to the parti
ular NHNP.9.3 Redu
ing Sear
h Spa
eThe algorithm basi
ally has the following problems:
• The number of di�erent groups in
reases exponentially with the number of nodes.
• The solution time for a group (a NHNP) in
rease exponentially with the number of nodes,be
ause the number of
onstraints in
rease exponentially with the number of nodes.Thus when adding a node to a problem, the number of di�erent groups at least doubles, and thenew groups are larger and thus more di�
ult to solve.Measurements show that though there are many more small groups, the large groups take mosttime to solve. Thus, the size of networks, whi
h
an be handled,
an be in
reased by limiting thesize of groups allowed. This is done by
he
king that ea
h group has sizes less than a predeterminedvalue.Doing this does not help mu
h in it self, sin
e now the �rst issue
omes into play - now it is thenumber of di�erent groups that is the problem. This is
onsidered in the following se
tion.9.4 Reusing Se
ondary Group Solution ValuesSin
e all group divisions and
on
entrator sele
tions are tried, a lot of se
ondary groups are
al
u-lated more than on
e. In �gure 9.1 if we
hange the
on
entrator node in the group
onsisting ofnodes 1 and 2 from 1 to 2, the solutions of the two other se
ondary groups are not
hanged. Thusthe solution value for a group and sele
ted
on
entrator
an be saved when it has been
al
ulated,so that it
an be reused later.This is done by maintaining an array of �oats, where ea
h possible se
ondary group has an entry.There are 2|V | possible subsets of a size |V | network, but the solution to a se
ondary group alsodepends on the sele
tion of
on
entrator. Thus there are less than |V | × 2|V | possible solutions.It is important that the solution value
an be found fast if it has been
al
ulated, thus there haveto be a simple mapping from a se
ondary group des
ription to an entry in the array. The mappingused is to take a binary array of length |V |, where element i is 1 if node i is in the set, otherwisezero. This binary array is then read as a binary number, and multiplied with |V | and the nodenumber of the
on
entrator node is added to obtain the index in the array.Thus ea
h time a se
ondary group is to be
al
ulated, we
he
k the array to see if the value haspreviously been
al
ulated, and if so, we simply use the value, otherwise we
al
ulate it and re
ord

9.5 Using the solution value for the HNP as bound in the NHNP 37the solution value. If the group is infeasible, this is re
orded as well.A lot of the entries in the array are not used, sin
e some indexes represents groups whi
h are notgenerated (e.g. the group
onsisting of all nodes) or a group with invalid
on
entrator sele
tion (i.e.the
on
entrator is not in the group). For small networks (e.g. about 10 nodes) it is not a problem,sin
e the total allo
ation for 10 nodes is 210 · 10, i.e. 10Kbytes times the size of a �oat. The sizegrows exponentially though, and for 20 nodes the allo
ation required is 20Mbytes times the sizeof a �oat. We
annot solve su
h large networks to optimality anyway, so it is not a problem untilheuristi
s are applied, where hashing will be used to redu
e the amount of memory required.It should be remarked that keeping results for primary groups makes no sense, sin
e they
annotbe reused (at least not entirely), whi
h
an be seen from the following. If the se
ondary groups arenot exa
tly the same between instan
es, the minimum
ost is not the same for sure. If the onlydi�eren
e between two solutions is the sele
tion of
on
entrators, then the amount of �ow betweengroups is the same, but the
ost between
on
entrators is
hanged, hen
e the total
ost
hanges.Combined with limiting the allowed size of groups, this does in fa
t give a very high improvementin performan
e - see se
tion 12.3.3.9.5 Using the solution value for the HNP as bound in theNHNPSin
e solving in the third and fourth phase
onsist of optimizing independent groups, it may bethe
ase that the sum of solution values of some of the groups have su
h a high solution value,that the
omplete solution will not be optimal. In this
ase there is no need to solve the remaininggroups.This
an be generalized, su
h that when one or more groups are solved we sum the solution-valuesand
ompare with the best known solution value for the HNP. This di�eren
e is used as initialbound for a remaining group, sin
e if no better solution value
an be attained for this group, the
urrent group-division and
on
entrator-sele
tion is not optimal.This strategy may interfere with the above �reuse of
al
ulated group-data�-s
heme, but only if asolution is not found. In this
ase, we
annot be sure whether a solution exist, sin
e we did notallow for investigating all possibilities, but if a solution is found it is optimal and
an be reused asusual.In the
urrent set up, where all possibilities are tried in a random order (i.e. nothing is done tobuilt promising groups), a substantial speedup
annot be expe
ted, sin
e good solutions are usuallynot found at �rst. Hen
e bounding should be used on partially divided groups and/or
on
entratorsele
tions, sin
e this
an guide us towards a good solution initially.The solution time for NHNP's in
rease exponentially with the number of nodes in the network (seese
tion 9.3), hen
e it may be bene�
ial to
onsider groups with few nodes �rst, sin
e they
an be
omputed fast.Another strategy is to
al
ulate the solution values for the se
ondary groups, and then use thebounding on the primary group only, sin
e this solution value is never reused anyway. If this isdone, a small performan
e improvement is a
hieved. This
an probably be improved even more,if the groups with few nodes were
al
ulated �rst, and the bounding on partial group-divisionsand/or
on
entrator-sele
tion were used. Possibly it is not ne
essary to bound, but only make surethat group divisions whi
h look promising are generated �rst.

9.6 Non-Trees 389.6 Non-TreesAllowing for non-trees to be solutions in
reases the number of feasible solutions, and all previouslyfeasible solutions are still feasible. Hen
e HNP's whi
h had no feasible solution previously, maynow have a feasible solution.Allowing for non-trees to be solutions would not alter anything for the HNP part of the solutionalgorithm. Hen
e if a new solution algorithm for NHNP's, whi
h allow for non-trees were developed,HNP's
ould be solved immediately as well.

39
Chapter 10Heuristi
 Solution of the HNP
In this
hapter a heuristi
 solution algorithm for the HNP is presented. The algorithm is based onsimulated annealing (SA) and the solution of NHNP's. For an introdu
tion to SA see e.g. [17℄.10.1 The AlgorithmThe basi
 idea of the algorithm is to generate an initial solution, and then modify the initial solutionto obtain better solutions using SA. The SA algorithm is
hara
terized by a

epting solutions whi
hhave higher values than the
urrently best known solution (denoted worse solutions). As a generallya

epted rule of thumb, between 30% and 70% of the worse solutions should be a

epted when thealgorithm is started (and temperature is high), and no worse solutions should be a

epted whenthe algorithm �nishes (and the temperature is low).The SA algorithm is sket
hed in �gure 10.1.

current = Initial feasible solution
best = current
t = Initial Temperaturedo

t = update(t)do
nbh = neighbour(current)until feasible(nbh)if eval(nbh) < best(current)
best = nbhif eval(nbh) < eval(current)
current = nbhelseif a

ept(t, eval(nbh), eval(best))
current = nbhuntil stop-
riteriaFigure 10.1: SA algorithm for solving HNPThe algorithm
ontains an inner loop whi
h �nds a feasible neighbour-solution and an outer loopwhi
h loops until the stop-
riteria is true. The algorithm keeps two solutions, namely the best andthe
urrent solutions. The best solution should not be ne
essary, sin
e the
urrent solution should

10.2 Representation 40preferably end with the best solution anyway. This is however not always the
ase, usually be
ausethe sele
ted parameters are not advantageous, sometimes also be
ause of
oin
iden
es. Hen
e thebest solution is used as a guideline for �nding good parameters. The solution value of a solutionis determined using the eval fun
tion.The initializations
onsist of determining an initial solution and the initial temperature. The tem-perature is updated for ea
h iteration using the update fun
tion. The temperature a�e
ts the
han
e of a

epting a worse solution. This is determined by the a

ept fun
tion, whi
h based onthe solution values and the temperature determine if a neighbour-solution is a

epted.The algorithm is des
ribed in detail in the following se
tions.10.2 RepresentationA solution is represented as for the optimal
ase, i.e. two arrays, one giving group numbers andone spe
ifying whi
h nodes are
on
entrators. The only di�eren
e is that there are no limits on therepresentation involving the group numbers. Sin
e we will not go through all possible solutions,there is no reason to do that.Given an solution in this representation, G + 1 NHNP's
an be generated as des
ribed in se
-tion 9.2.1. The representation
ontains nothing about �ow. Instead information about �ow is keptin ea
h of the NHNP's. By saving ea
h NHNP problem, �ow information
an be reused.10.3 NeighbourhoodTwo types of neighbour-solutions are used:Con
entrator-Neighbour Sele
t another
on
entrator in a groupGroup-Neighbour Move non-
on
entrator node to another groupThe number of neighbour-solutions is large - there are |V | − G
on
entrator-neighbour-solutions,sin
e this is the number of non-
on
entrator nodes. The number of group-neighbour-solutions is
(|V | − G) · (G − 1), sin
e ea
h non-
on
entrator node
an be moved to any of the other groups.Too many neighbour-solutions exist hen
e the neighbourhood is limited.10.3.1 Limiting NeighbourhoodTo redu
e the number of possible neighbour-solutions to the ones that seems most likely to bebetter, we limit the number of group-neighbour-solutions. The solution possibilities we would liketo get rid of are those that have groups, whi
h are s
attered in spa
e, sin
e those kind of groupsusually have high setup-
osts.For a given group the nodes to move to the group is limited to be only the ⌈|V |/G⌉ nodes, whi
hare
losest to the
on
entrator node of the group, i.e. has the lowest setup-
ost to the
on
entrator.Also the nodes
onsidered are in another group and are not
on
entrator nodes. This limit theneighbourhood to
ontain solutions only, whi
h seem to be
lose and thus redu
e setup-
ost. Sin
ethere are G groups this amount result in up to |V |/G ·G = |V | group-neighbours, whi
h is roughlyas many as there are
on
entrator-neigbours. Thus the two types of neighbour-solutions haveroughly the same "priority".

10.3 Neighbourhood 41This also limits the number of solutions
onsidered, sin
e solutions with se
ondary edges betweenwidely separated nodes (i.e. high-
ost edges in between) will never be generated ex
ept if generatedas initial solution.10.3.2 Cy
ling NeighbourhoodThe neighbour fun
tion returns a neighbour-solution, to the
urrent solution. The returned neighbour-solution depends on the previous invo
ations of the neighbour fun
tion. The neighbour solutionsare
y
led, i.e. �rst the
on
entrator-neighbours are
onsidered and then the group-neighbours are
onsidered, but a
ross invo
ations of the neighbour fun
tion.In ea
h of the two groups of neighbour-solutions,
y
ling is also done. The
on
entrator-neighboursare simply
onsidered in turn starting at the lowest numbered node. If this node is not
on
entratorit is made
on
entrator, otherwise the next node is
onsidered until a non-
on
entrator node isfound whi
h is made
on
entrator. The state is saved su
h that when the fun
tion is invoked thenext time, the node
onsidered is the node following the node whi
h was made
on
entrator. Inea
h
y
le a total of |V | − G
on
entrator-neighbours are
onsidered.The group-neighbours are
y
led in groups, su
h that one group is
onsidered during one invo
ationof the neighbour fun
tion. Next time the next group is
onsidered an so forth. This is done |V |/Gtimes for ea
h group, su
h that a total of V group-neighbours are
onsidered in ea
h
y
le.During one invo
ation, the ⌈|V |/G⌉ nodes
losest to the
on
entrator node of the group and notalready in the group are found, and one is pi
ked at random. Pi
king one at random seems towork better than �nding the best valued or
losest, whi
h will limit the neighbourhood sear
hedeven more.An alternative to
y
ling the neighbourhood as des
ribed above, is to pi
k the neighbour solutionat random from all the possible neighbour-solutions. Doing this is simpler, the runtime is similarand a small improvement in the solution quality has been measured. Hen
e this should probablybe done instead. The quality of the solutions are measured in se
tion 12.5.5.10.3.3 An Alternative NeighbourhoodAnother type of neighbour-solution is to swap nodes between groups, hen
e maintaining the size ofgroups. Every non-
on
entrator node
an be swapped with any other non-
on
entrator node wherethe two nodes are not in the same group, hen
e there are (

|V |−G
2

) neighbour-solutions ex
ept forthe pairs of nodes whi
h are in the same group. If groups are of equal size there are G×
(

|V |/G−1
2

)of them, whi
h for |V | = 100 and G = 10 result in 3645 neighbours. This is too many solutions to
onsider, hen
e the neighbourhood must be redu
ed.This redu
tion
an be a
hieved by limiting the swaps
onsidered to only one swap for ea
h pairof groups, sele
ting the nodes whi
h are
losest to the other group. This way the number ofneighbour-solutions is redu
ed to (

G
2

) and may be lower if one or more groups have size 1, in whi
h
ase they do not have any non-
on
entrator nodes.A modi�
ation of the mathemati
al model allowing for dividing the network into any number ofgroups, would require us to
hange the neighbourhood, su
h that the number of groups
ould
hange. This
an be a
hieved by having neighbour-solutions, of groups whi
h were merged or split.

10.4 Evaluation Fun
tion 4210.4 Evaluation Fun
tionThe evaluation fun
tion used is the obje
tive fun
tion value,
al
ulated group-wise, that is theobje
tive value is the sum of values of groups (see se
tion 9.2.2). The feasibility
he
k is also
arried out the same way - ea
h group is
he
ked for feasibility, and if all groups are feasible, thenso is the entire solution.The
hosen evaluation fun
tion does not allow for infeasible solutions. Hen
e the initial solutionshould be feasible. It may be a good idea to allow for evaluation of infeasible solutions,
al
ulatingthe value e.g. as des
ribed in the following.The infeasibility of a solution is due to one or more group solutions being infeasible. Hen
e feasiblegroups
an
ontribute to the obje
tive value as usual.An infeasible group has at least one demand with value larger than the
apa
ity of edges (seese
tion 6.1). For ea
h of those demands ij, we require demand ij to use edge ij as the only �owedge and ignore the
apa
ity limit for that edge. Otherwise the group is solved as usual. Theex
eeded
apa
ity result in a penalty, whi
h relate to how mu
h the
apa
ity is ex
eeded and tothe size of the group.The
ost should be so high that it does not pay o� to end up with an infeasible solution but onthe other hand so low, that it
an be a

epted during the SA algorithm, su
h that other parts ofthe solution spa
e
an potentially be rea
hed.Doing this would mean that it was not ne
essary to �nd an initial solution, sin
e this
ould be doneby the SA algorithm. There may be other bene�ts that
annot be immediately foreseen, but themodi�
ation has not been made. Instead the initial solution is found using algorithms des
ribedin the following se
tion.10.5 Initial SolutionIn most
ases an initial solution
an be easily found using one of the methods des
ribed in thefollowing. Hen
e the problem is merely that of �nding an initial solution, whi
h imply that theSA algorithm �nds a good solution. In general this
annot be done and in parti
ular it does notne
essarily imply, that the initial solution should be of low value, but it may be bene�
ial. Hen
ethis is what we will aim for when building the algorithms.Finding the initial solution is done in two phases. The �rst phase �nds a low
ost initial solution,whi
h ignore
apa
ities, hen
e it may be infeasible. The se
ond phase makes the solution feasibleif ne
essary. The �ow-
ost is ignored, so in fa
t the solution is low
ost with respe
t to setup-
ost.If the �ow-
ost dominates the
ost of the network, the des
ribed algorithms will probably notperform well.The �rst phase is tried in three di�erent variants, des
ribed in the following subse
tions followedby a subse
tion
ontaining a des
ription on how feasibility is obtained, i.e. the se
ond phase.The three variants all divide the network into equally sized groups (i.e. groups of size |V |/G), sin
ethis division tends to have least
ost and also has a good
han
e of being feasible. If not, only fewof the groups tend to be infeasible.10.5.1 Random Initial SolutionA random initial solution is built using the algorithm in �gure 10.2. The algorithm is mainly usedfor
omparison with the other algorithms to see if there is any bene�t from using these.

10.5 Initial Solution 43for grp = 0 to |V | − 1Choose one node n at random, whi
h is in no groupAllo
ate n to group number (grp (mod G))Figure 10.2: Finding initial solution - Random10.5.2 Simple Low Valued Initial SolutionThis algorithm builds groups in a greedy way to minimize setup-
ost for the group
onsidered atthe moment. The algorithm is shown in �gure 10.3.for grp = 0 to G − 1Choose one node c at random, whi
h is in no groupAllo
ate c to group grp and sele
t c as
on
entratordoFind node j
losest to c whi
h is in no groupAllo
ate j to group grpuntil |V |/G nodes are in group grpFigure 10.3: Finding initial solution - SimpleFirst a previously unsele
ted node is pi
ked at random and made
on
entrator. Then the nodeswhi
h are
losest to the
on
entrator, are put in the same group as the
on
entrator. This is notthe same as the group having the minimum setup-
ost, whi
h would rather be found by buildinga minimum spanning tree algorithm, but it is a good estimate.The groups whi
h are built �rst has the best
han
e of having a low setup-
ost, sin
e they
an
hose from more nodes to be in
luded in the group. On the other hand, the groups built last maynot be able to �nd
lose nodes (i.e. nodes with low setup
ost to the
on
entrator), sin
e these mayalready be allo
ated to other groups. This is what the next variant of the algorithm addresses.10.5.3 Find Low Valued Initial Solution using AssignmentThis version of �nding a low valued initial solution,
onsist of three phases:
• Sele
t (initially)
on
entrator-nodes as widely separated nodes
• Assign remaining nodes to the
on
entrators
• Resele
t
on
entrator nodes as
lose nodesAs opposed to the previous version, we try to minimize the setup-
ost of the groups in general, notjust for the group we are working with at the moment. The hope is of
ourse that this will give abetter initial value,10.5.4 Sele
ting Initial Con
entratorsThe nodes sele
ted as
on
entrators are nodes, whi
h are widely separated. In general it does notmake sense to
hoose
on
entrators as separated nodes, but initially they are only used to identifya starting point for building the groups. The two
on
entrators
hosen �rst are the two nodeswhi
h are separated the most, i.e. the two nodes that de�ne the diameter of the network. Thenext node sele
ted as
on
entrator is the node that has the longest distan
e to the already sele
ted
on
entrators on average. This is
ontinued until G nodes have been sele
ted as
on
entrators

10.5 Initial Solution 4410.5.5 Assignment of Nodes to GroupsThe sele
ted
on
entrators represent a group ea
h. Remaining nodes is distributed evenly betweenthe groups, i.e. the groups should
ontain |V |/G nodes ea
h if |V | ≡ 0 (mod g), or at most ⌈|V |/G⌉nodes if |V | 6≡ 0 (mod g). This is denoted the group-size.The problem is solved as an assignment problem, assigning ea
h non-
on
entrator node to a
on-
entrator (and hen
e indire
tly a group). A standard assignment problem assigns exa
tly onefa
ility to exa
tly one lo
ation. In order to have equal many fa
ilities and lo
ations we
opy the
on
entrators, su
h that there is group-size− 1 number of
opies of ea
h
on
entrator.There should be equally many non-
on
entrator nodes and sin
e we have G groups, there shouldbe G times the group-size − 1 non-
on
entrator nodes. There may be fewer if |V | 6≡ 0 (mod g),in whi
h
ase we add dummy nodes. The dummy nodes
an be assigned to any
on
entrator forfree. Sin
e more dummy variables
an be assigned the same
on
entrators, the size of some groupsmay be mu
h less than the upper bound on the size of groups. This is not a problem though, sin
efeasibility depends mostly on that no large groups are generated, and if groups are made small itis be
ause it pays of.The pri
es we use in the assignment problem are the setup-
osts between
on
entrators and nodes.This way the total distan
e between
on
entrators and nodes are minimized, and not, as would bepreferred, the total
ost, i.e. the sum of
osts of the MST's of ea
h group.10.5.6 Resele
ting Con
entratorsGiven the group division, we re
onsider the
hoi
e of
on
entrators. The initial
hoi
e of
on
en-trator was made su
h that the
on
entrators were separated. This will have a high setup-
ost forthe primary group, hen
e a new sele
tion is made.The
on
entrators sele
ted should be
lose in order to minimize setup-
ost, hen
e we start outby
hoosing the two nodes, whi
h are
losest, but are in di�erent groups as
on
entrator nodes.Continuing from this sele
tion, we sele
t the node whi
h are not in any of the groups of the alreadysele
ted
on
entrators, with the least setup-
ost distan
e to the
on
entrators on average. This is
ontinued until G
on
entrators are sele
ted.10.5.7 Modifying Solutions to obtain FeasibilityIf a solution is infeasible, at least one group is infeasible. If the primary group is infeasible, nodeswith high demand between them are moved su
h that they are in the same group. This will redu
ethe demand �owing in the primary group. If a se
ondary group is infeasible, it may be the
asethat sele
ting another
on
entrator will solve the problem. This is so if a single node has a highdemand out of the group, hen
e making the node the
on
entrator will relieve the highest loadededge. If this is not enough to ensure feasiblity of the group, one or more nodes are moved toanother group to de
rease demand in the group.The algorithm for making the primary group feasible is shown in �gure 10.4.Given the group division and
on
entrator sele
tion, the required demand for the primary groupis
al
ulated as des
ribed in se
tion 9.2.1. Then a node pair in the primary group is identi�ed,whi
h has higher demand than the
apa
ity of primary edges (if su
h one exists). As mentionedin se
tion 6.1, if the primary group is infeasible su
h a demand exists and vi
e versa. Hen
e
he
king whether the primary group is feasible and if not, �nding a node pair with too highdemand is
ombined and done by
he
king that all demands in the primary group does not ex
eedthe
apa
ity.

10.5 Initial Solution 45while primary group is infeasibleFind node pair i and j whi
h has a demand that is too high
i and j represents two se
ondary groups, A and BFind the node k in either A or B (assume it is in group A),whi
h has the highest total demandto nodes in the other group (i.e. B)move k to group B.Figure 10.4: Making primary group feasibleIf a node pair i and j is found in the primary group with demand larger than the
apa
ity, thetwo se
ondary groups they represent are identi�ed, denoted A and B. The nodes in A and Bare
onsidered. For the nodes in group A the required demand to nodes in group B is measured.This is done symmetri
ally for the nodes in group B, and the node with the highest demand isidenti�ed. This node is moved to the other group (e.g. if the node is in group A then it is movedto group B and vi
e versa).In most
ases, this relieve the amount of demand on edges, but the algorithm may loop forevermoving the same node ba
k and forth between the same two groups. This has not been a problem,but if it shows to be a problem, this
an be easily solved by introdu
ing some kind of randomnessin the algorithm, su
h that it is not ne
essarily the node with the highest demand whi
h is moved,but one of the nodes with a high demand.When the primary group is feasible, we try to make the se
ondary groups feasible if ne
essary.This algorithm is shown in �gure 10.5.while any group infeasibleMake primary group feasibleFor ea
h node �nd demand out of se
ondary groupFind se
ondary group whi
h is infeasibleFind the node with the highest demand out of group - node iif i is not
on
entratorMake i
on
entratorelseFind the non-
on
entrator node with the highest demandout of group - node jMove j to other group sele
ted at randomFigure 10.5: Making se
ondary group feasibleSele
ting whi
h group to move a node to is
hosen at random, but involves the size of the group.The
han
e of
hoosing a given group is inverse proportional to its size su
h that the
han
e of
reating large groups is small.Ea
h iteration starts out by ensuring that the primary group is feasible. Then demand out ofgroups is
al
ulated, and a group is identi�ed whi
h is infeasible. In this group the node withhighest demand out of the group is
onsidered. If this node is not the
on
entrator, it is made
on
entrator. Measuring the demand out of the group is roughly the same as �nding the highestdemand in the group assuming demand out of the group is in general more signi�
ant than internalin group. Hen
e sele
ting the
on
entrator to this node will relieve the group of one of the highestdemands.If the highest demand node is already
on
entrator, the node with the highest demand, whi
h isnot the
on
entrator is moved to another group
hosen at random as des
ribed above. This remove

10.6 A

ept Fun
tion 46the highest demand node pair from the group.Termination is ensured by limiting the number of
hanges whi
h are allowed to 500. Running 500iterations takes fairly short time, and it seems to be enough to �nd a feasible solution if one exists.If none
an be found this is simply reported.10.5.8 Con
luding Remarks on the Initial SolutionIn fa
t it does not matter mu
h whi
h s
heme is
hosen, the pri
e di�eren
e is not high on the�nal solution found using the SA algorithm, though the initial solution values may di�er mu
h (seese
tion 12.5.2). The initial solution values are
ompared with the �nal solutions in se
tion 12.5.1.Yet another alternative has in fa
t also been tried. This algorithm starts out by minimizing theprimary setup-
ost, and builds groups using minimum spanning trees. The groups built haveunequal size, and hen
e the
han
e of �nding an initially infeasible solution is large. In fa
tthe found solution may be useless sin
e the se
ond phase basi
ally breaks down the good valuedsolution to obtain feasibility. Hen
e unless the demand is so low that �nding an initial solution isnot di�
ult, this alternative version does not �nd good initial solutions.10.6 A

ept Fun
tionThe a

ept fun
tion determines whether a worse solution should be a

epted or not. The
han
eof whether a neighbour-solution is a

epted depend on the temperature. The SA algorithm startsout at a high temperature and lowers the temperature as it runs, hen
e lowering the temperatureshould lower the
han
e of a

epting a worse solution.The di�eren
e in solution value between the
urrent solution and the neighbour-solution value alsoin�uen
e the
han
e of a

epting a worse solution. If the di�eren
e is low, there should be a higher
han
e of a

epting a worse solution than if the di�eren
e is high.In [17℄ it is suggested that the fun
tion in equation 10.1 is used
ompared with a uniformly dis-tributed number between 0 and 1. If the
al
ulated value is larger than the randomly foundnumber, the neighbour-solution is a

epted.
p =

1

1 + exp(val
temperaure)

(10.1)We require val and temperature to be positive, sin
e this gives fun
tion values between 0 and 1.
val is the
al
ulated di�eren
e between the solution values in per
ent as given in equation 10.2.

val =
eval(nbh) − best(current)best(current)

(10.2)The di�eren
e is
al
ulated in per
ent of the solution value to avoid dependen
e on the
osts inan instan
e of the HNP. The
al
ulated per
entage does depend on the number of nodes, sin
eneighbour-solutions
onsisting of moving one node or sele
ting a new
on
entrator in one groupin�uen
es the obje
tive value relatively more in a network with few nodes than in a network withmany nodes.

10.7 Stopping Criteria 47Equation 10.1 has the desired
hara
teristi
s - if val is in
reased, the fun
tion value de
rease, andit has a lower
han
e of being greater than the randomly
al
ulated number and thus a

epting aworse solution. Also as temperature is lowered, the fun
tion value de
rease, and hen
e there is alower
han
e of a

epting a worse solution at lower temperatures.10.6.1 Random GenerationThe random generation used is the standard Random.h library, whi
h if fed with the same seedprodu
es the same sequen
e of random numbers between runs. The seed used is
onstant in orderto be able to reprodu
e results whi
h fa
ilitates easy debugging.10.7 Stopping CriteriaThe stopping
riteria used is a sliding window stopping
riteria, i.e. when no new solution has beena

epted in 200 iterations, the algorithm is terminated.In some situations it has been the
ase that the inner loop in the algorithm (see �gure 10.1), whi
h�nds a feasible solution
annot �nd any feasible solution. This situation arises only if the totaldemand in the network is high, and also seems to require that the group-neighbours are limitedas des
ribed in se
tion 10.3.1. Given this, the algorithm will never get out of the inner loop, andhen
e will not terminate.To make sure the algorithm terminates we
ount the number of infeasible solutions found, andif this ex
eeds 500, we simply stop the algorithm. An alternative would be to not limit thegroup-neighbours, in whi
h
ase more solutions
an be rea
hed and hen
e there is a better
han
eof �nding feasible solutions. This
ould be done dynami
ally, if more than e.g. 100 neighboursolutions had been tried and none were feasible. The problem does not arise often though, so thishas not been tried in pra
ti
e. However it would be a good idea to implement and easy it seems.The total number of iterations (in the outer loop) is
ounted, and usually it is in the order of 3000.10.8 Initial TemperatureChoosing initial temperature and
ooling rate in general whi
h gives good results is not easy.Usually a parti
ular problem instan
e is investigated and the parameters are adjusted a

ordingly.Sin
e we test for many instan
es this is not a possible way to do it, thus we �nd the parametersfor problem instan
es in general.Care have been taken to make sure that the
hoi
e of temperature does not depend on the edge
osts, i.e. if the same fa
tor is multiplied on ea
h edge
ost, using the same temperatures shouldgive the same results. This is a
hieved by
al
ulating the
ost di�eren
e between the
urrent- andthe neighbour-solution in per
ent rather than real
osts in the a

ept fun
tion (see equation 10.2).The number of nodes in the network, though, in�uen
e the temperature, sin
e the number ofnodes in�uen
e the
al
ulated deviation. For e.g. small networks moving a node from one group toanother may a�e
t the obje
tive fun
tion value relatively more than moving a node between twogroups in a large network, sin
e less of the network is potentially a�e
ted.Thus for large networks, the initial temperature should be lower than for small networks, sin
e the
al
ulated val is probably lower for larger networks (see equation 10.1).

10.9 Cooling Rate 48As mentioned a general rule of thumb is that at the initial temperature, between 30% and 70% ofworse solutions should be a

epted, hen
e this is aimed for. Given the a

ept fun
tion, experimentsshow that this is the
ase at approximately the temperature 0, 75× |V |−0.25, so this value is used.The initial temperature is depi
ted in �gure 10.6 as fun
tion of the number of nodes in the network.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

10 20 30 40 50 60 70 80 90 100

In
iti

al
 te

m
pe

ra
tu

re

Number of nodes in networkFigure 10.6: Initial temperature as fun
tion of the number of nodes in the networkThe �gure shows, that using this fun
tion to determine the initial temperature, the initial temper-ature is lower for large networks as wanted.Experiments have been
arried out modifying the initial temperature, but there does not seemto be any general improvement by lowering or raising the
oe�
ient or the fa
tor in general. Ifmodi�ed dramati
ally, su
h that e.g. the temperature is
lose to zero or very large (in reality lo
alsear
h and random sear
h respe
tively) the performan
e drops.In fa
t the temperature also depends on the number of groups, but no meaningful dependen
e havebeen identi�ed.10.9 Cooling RateThe
ooling rate or update fun
tion is
hosen to be a fa
tor, by whi
h the temperature from thelast iteration is multiplied. The fa
tor should be low su
h that random walk in the sear
h spa
eis allowed, but also there is no reason for wasting time
he
king solutions totally at random. Thefa
tor is
onstru
ted as a fun
tion of the number of nodes, sin
e as des
ribed above the temperaturedepends on the number of nodes.The fa
tor is
hosen su
h that it allows for approximately 1000 iterations to be run when
onsidering10 node networks, and 3000 iteration to be run when
onsidering 100 node networks. Experimentsshow that this is approximately at the point where in
reasing the number of iterations does notgive any improvement in solution quality, and if the number of iterations is de
reased (at least forthe large networks) the solution quality de
rease as well.The fa
tor used is 0.9978−0.0015×|V |−0.5. The update fa
tor is depi
ted in �gure 10.7 as fun
tion

10.10 Saving Solutions for Se
ondary Groups 49of the number of nodes in the network.

0.9971

0.9972

0.9973

0.9974

0.9975

0.9976

0.9977

10 20 30 40 50 60 70 80 90 100

U
pd

at
e

fa
ct

or

Number of nodes in networkFigure 10.7: Update fa
tor as fun
tion of the number of nodes in the networkThe �gure shows, that using this fun
tion to determine the update fa
tor, the update fa
tor islarger for networks with many nodes than for networks with few nodes. Hen
e the temperaturede
rease slower for networks with many nodes than for networks with few nodes. In fa
t testsindi
ate that the temperature de
rease for networks with many nodes should be even slower, hen
ethe update fa
tor should be in
reased for networks with many nodes (see se
tion 12.5.6).10.10 Saving Solutions for Se
ondary GroupsThe solution value of a se
ondary group depends only on what nodes are in the group and whi
hnode is the
on
entrator, it does not matter how the rest of the nodes are divided, and whi
h nodesare
on
entrators in other groups. For HNP's whi
h are to be divided into at least 3 groups, theneighbour-solutions of a solution has at least one group in
ommon with the solution. Thereforethere is no need to re
al
ulate the solution value of at least this group - the solution value
an bereused.The Simulated Annealing algorithm may also return to previously
onsidered solutions due to thebuilt in possibility of a

epting worse solutions. In this
ase it is also possible to reuse values for
al
ulated groups.The number of groups generated is fairly small -
he
king one neighbour-solution will generateeither one (in
ase of
on
entrator
hange) or two (in
ase of node move) new groups, and in some
ases the groups are known already. If around 3000 HNP solutions are
onsidered (whi
h is realisti
in the
urrent implementation), the maximum number of groups is 6000.As mentioned in se
tion 9.4 we
annot simply index all possible groups into an array, sin
e thesize is too large. Instead hashing is used to save all
al
ulated solution values. Open hashing isused, i.e. a linked list of elements is asso
iated with ea
h index in the hash-table, and sin
e thehash-table it self does not take up mu
h spa
e (ea
h element is a 32 bit pointer), we allo
ate morethan enough spa
e (i.e. 20000 elements) to redu
e the
han
e of hitting the same index.

10.10 Saving Solutions for Se
ondary Groups 50Spa
e is not everything, it is also important, that the hash-fun
tion
hosen does not give the samehash-values for the groups
onsidered. Instan
es are represented as binary arrays of length |V|,whi
h
ontain 1 if a node is in the group and 0 otherwise. The
on
entrator, c of the group is alsoused, i.e. a number between 0 and G − 1. The hash fun
tion used is shown in equation 10.3.
n · G + c (mod hashtablesize) (10.3)n is the binary array read as a number and
 is the
on
entrator number.The e�
ien
y of the hash-fun
tion has not been measured systemati
ally, but for a few examplesthe number of
on�i
ts has been measured, and in the examples it works well, even though morethan hashtablesize/2 elements are put in the hash-table. Few equal hash-values are
omputed andthe hash-values
omputed more than on
e, are not generated more than a few times.

51
Chapter 11Tools and Data-�les
Generation of random HNP's, solution of the HNP's by CPLEX or the developed HNP solvers andthen �nally visualizing the found solutions graphi
ally have required development of tools. Thetools work on �les
ontaining data for HNP's. The tools and data-�les are des
ribed in this
hapter.In addition to this, tools (s
ripts and make �les) have been used, e.g. for ease of development andperforman
e tests. These tools will not be des
ribed any further.11.1 OverviewThe �les all des
ribe one instan
e of the HNP, and are identi�ed by their extensions. The �les are:.ran Foundation for generation of HNP, i.e. number of nodes and groups and amount of totaldemand..xy HNP des
ribed by points in a x-y grid and demand between ea
h pair of nodes..net HNP des
ribed by setup-
ost, �ow-
ost and demand between any pair of nodes..lp Input �le for CPLEX, whi
h
ontains
onstraints..mst Solution �le output from CPLEX, giving values of ea
h de
ision variable..sol Solution �le giving obje
tive value, primary and se
ondary edges and for ea
h edge the �owon the edge.The developed tools are the following:RanToXy Generate random HNP problem in .xy format following spe
i�
ation in a .ran �le.XyToNet Convert HNP problem des
ribed by a .xy �le to a .net �le.NetToCplex Convert HNP problem des
ribed by a .net �le to a .lp CPLEX input �le.MstToSol Convert a solution-�le generated from CPLEX to a .sol solution �le.ShowGraph Given a .xy �le and a .sol �le, draw graph in a x-y grid.The tools are implemented using Java. The data-�les-�ow and the tools are depi
ted in �gure 11.1.Data-�les are in re
tangles and tools are in re
tangles with rounded edges. The tools SolveExa
tand SimAnn are the developed solution programs, whi
h solve the HNP optimally and heuristi
allyusing simulated annealing respe
tively. CPLEX version 7.0 is used.

11.2 Graph Generator 52
.ran

RanToXy

.xy

XyToNet

.net

NetToCplex

.lp

CPLEX

.mst

MstToSol

.sol

ShowGraph

SolveExactSimAnn

Figure 11.1: Tools and data-�les11.2 Graph GeneratorThe RanToXy tool generates a HNP instan
e by setting up a x-y grid, and pla
ing nodes randomlyin the grid. Nodes
annot be in the exa
t same position in the grid, hen
e if a node is alreadywhere a new node is to be pla
ed, a new position is generated.The total demand in the network is
ontrolled by a parameter(denoted the wished total demand)supplied in the .ran �le. Initially the demand is generated by �rst generating a number givingthe amount of demand ea
h node generates. Then demands are assigned values equal to the sumof the two endpoint nodes of the demand. The total sum of demand in the network is
al
ulatedas well. This
al
ulated total demand is not equal to the wished total demand, hen
e we multiplyea
h demand by the same fa
tor, su
h that the total demand is as wished. The fa
tor is the wishedtotal demand divided by the
al
ulated total demand.Other s
hemes are possible, e.g.
ompletely random, i.e. ea
h parameter (e.g. se
ondary �ow-
ost between two nodes) with no relationship to e.g. se
ondary �ow-
ost. Also demands
an begenerated only for some of the node pairs, but for tele
ommuni
ation networks it seems fair thatall nodes
ommuni
ate with ea
h other.The grid based graph generator has mainly been
hosen for its simpli
ity and its ease of visualiza-tion. The question is whether the networks generated are representative for the networks whi
h areto be solved for real world appli
ations. Tele
ommuni
ation networks are swit
hes and
ables in aplane, but the setup-
ost does not depend only on the distan
e, i.e.
ost of digging down a
able,but also on buying
ommuni
ation equipment, whi
h
an handle
ommuni
ation on
ables. Thepri
e of
ommuni
ation equipment is
ertainly not linear in distan
e but would rather be modelled

11.3 HNP Files 53as a �xed
ost independent of distan
e.For the
arried out tests the grid based graph generator fully su�
es, regardless it does not modeltele
ommuni
ation networks exa
tly.11.3 HNP FilesThe .ran, .xy and .net �les des
ribe a HNP. They are text �les, where ea
h line
ontain a stringexplaining what data is next and the data. The order of the lines is important, the �rst string ofea
h line is ignored by the tools reading and writing the �les, it is only there to allow humans toread and modify the �les.The three �les all
ontain the number of nodes, number of groups,
apa
ity of primary and se
-ondary edges and the maximum number of nodes in ea
h group. The .ran �les additionally
ontains the size of the grid to pla
e the nodes in, minimum and maximum demand and
ost fora unit-distan
e of primary and se
ondary �ow- and setup-
ost.The .xy �les
ontain the generated demand and the position of nodes, instead of a minimumdemand and a maximum demand.The .net �les
ontain a des
ription of networks, whi
h do not require a grid, instead the setup-
ostand �ow-
ost for primary and se
ondary edges are spe
i�ed for ea
h pair of nodes.The grid des
ription is suitable for visualizing networks, sin
e distan
es are proportional to thesetup-
ost and the �ow-
ost (and primary and se
ondary
osts are also proportional), but theyalso prevent the des
ription of networks where this proportionality does not exist. In general thisis not preferable, hen
e the solution algorithms do not use the grid des
ription, but the generaldes
ription.11.4 CPLEX SolutionIf CPLEX is used to solve HNP's, .lp �les, listing obje
tive fun
tion and
onstraints are required..lp �les and hen
e the
onstraints are generated by NetToCplex.CPLEX allows for outputting a .mst �le, whi
h gives the value of ea
h de
ision variable. This �le
an be
onverted to a .sol �le, whi
h
ontain an extra
t of the .mst �le giving obje
tive valueand primary and se
ondary edges. This is done by MstToSol.11.5 Solution FilesSolution �les .sol
ontain obje
tive value, primary and se
ondary edges the amount of �ow onea
h edge. Sin
e the path for ea
h demand is not stored in the �le, the values of the �ow-variables
annot in general be determined. If the solution is a tree, the paths
an be easily found, sin
e pathsare unique in trees. If the solution is not a tree, additional information is needed to
onstru
t thepaths. At runtime paths are
onstru
ted for ea
h group, hen
e this information
an be re
orded,in fa
t at the moment it is possible to get this information for the �nal found solution written tothe s
reen. From this the full paths
an be
onstru
ted as des
ribed in se
tion 3.3.

11.6 Visualizing Solutions 5411.6 Visualizing SolutionsShowGraph is used to visualize solutions. ShowGraph requires a .xy �le giving the
oordinates ofea
h node in the grid and a .sol �le. Hen
e the solution is drawn by setting up a grid, pla
ingnodes, and drawing primary edges in red, and se
ondary edges in bla
k. The primary nodes(
on
entrator nodes) are all nodes with an in
ident primary edge, and sin
e ea
h group
ontainsexa
tly one
on
entrator node, a group
an be identi�ed by �nding all nodes, whi
h
an be rea
hedby following se
ondary edges starting out at a
on
entrator node.

55
Chapter 12Performan
e Tests
12.1 Problem Instan
es UsedAn HNP instan
e as de�ned by a .ran �le determines number of nodes, number of groups,
apa
ityof primary and se
ondary edges, primary and se
ondary �ow-
ost and setup-
ost for edges relativeto the edge length and a value determining the total amount of �ow in the network.The generated problem instan
es are mostly based on how tele
ommuni
ation networks works(des
ribed in se
tion 2). But sin
e �ow-
osts are zero in tele
ommuni
ation networks, and �ow-
ost is in
luded in the de�nition of HNP, �ow-
ost will be in
luded in the problem instan
es used.For equipment
ost and �digging down a
able�
ost in tele
ommuni
ation networks, it seemsthat only �digging down a
able� depends on the distan
e. In the generated problem instan
es,setup-
osts are proportional to the distan
e.All the generated problem instan
es use the values in table 12.1 unless otherwise stated.Parameter ValuePrimary edge
apa
ity 400Se
ondary edge
apa
ity 100Primary setup-
ost for unit distan
e 400Se
ondary setup-
ost for unit distan
e 200Primary �ow-
ost for unit distan
e 1Se
ondary �ow-
ost for unit distan
e 2Grid size - X 100Grid size - Y 100Table 12.1: Parameters for the data setFirst we remark that the two grid parameters only in�uen
e the obje
tive value of the networkproblem not the problem it self. The grid is used for
al
ulating distan
es, and sin
e all
ostsare relative to the distan
e, modifying the grid will for a given solution
hange the value of theobje
tive fun
tion but not the solution. The parameters are set to 100.The
apa
ity values relate to the demand and the �ow-
ost. If the
apa
ity is in
reased by a fa
tor,the demand is in
reased by the same fa
tor and the �ow-
osts are de
reased by the same fa
tor;the problem only di�ers by the same fa
tor in the obje
tive value. The ratio between the edge
apa
ities, however is �xed to 4, sin
e this is the
ase for tele
ommuni
ation networks. Capa
ityis set to 400 for the primary edges and 100 for se
ondary edges.

12.1 Problem Instan
es Used 56The setup-
osts and �ow-
osts are
hosen, su
h that they have equal impa
t on the obje
tivefun
tion value. Also, sin
e the ratio between equipment
osts on di�erent levels is 2 in tele
om-muni
ation networks we will use this for the setup-
ost as well (primary is highest), and the ratiobetween the �ow-
osts is also set to 2, but here the se
ondary is highest. We set the primary�ow-
ost to be 1 and the se
ondary �ow-
ost to be 2.Given these values, the setup-
ost
ontributes to the obje
tive value with at least the same amountas the �ow-
ost. This is so sin
e to use an edge the setup-
ost of the edge has to be paid, andthe maximum amount of �ow-
ost to pay is the
apa
ity times the �ow-
ost, whi
h is exa
tly thevalue of the setup-
ost in both the primary and the se
ondary
ase.We therefore have three parameters to
ontrol, namely the number of nodes, the number of groupsand the maximum demand. The number of groups is set to approximately √

|V |, usually a bitbelow.The total amount of demand a network
an
arry depends heavily on the number of nodes, soit does not make sense to test networks with di�erent number of nodes with the same demand.Instead we
reate three groups, where the total demand is light, medium and heavy respe
tively.The groups are found by experimentally generating networks with di�erent number of nodes, anddi�erent amount of demand.The medium group should have a demand amount, su
h that tree solutions exist, but are not foundby the heuristi
. For networks whi
h
an be solved optimally, the optimal tree solution is foundto ensure that one exists. For networks with more nodes, the heuristi
 solutions are investigated,and the total demand is sele
ted su
h that heuristi
 solutions are not trees but relatively few extraedges are in the solution.The found solutions are plotted and smoothed, whi
h gives the demand for the medium group.The demand of the light group is 50% of the medium group, and the heavy group has a totaldemand value of 30% more than the medium group for networks with 4-14 nodes, 40% higher fornetworks with 15-40 nodes and 50% more for networks with 45-100 nodes. The demand is redu
edbelow 50% for networks with few nodes, sin
e otherwise the heuristi

annot �nd feasible solutionsat all.The test instan
es generated have between 5 and 100 nodes, and instan
es are for few nodesgenerated with gaps between number of nodes of only 1, ending with gaps of 10 at the 100 nodeinstan
e. More networks with few nodes are generated sin
e they are the ones whi
h
an be solvedoptimally, and for the heuristi
 they do not take mu
h time to solve.The total demand for the groups are depi
ted in �gure 12.1.We test the NHNP algorithm by it self, hen
e we need to generate NHNP instan
es. This
orre-sponds to HNP problems where the number of groups is 1. Hen
e we reuse the above generateddata-sets, but require the number of groups to be 1. The generated instan
es have between 4 and20 nodes, in gaps of 1. The demand is depi
ted in �gure 12.2.Using the same demand amounts as for the HNP's may be a problem, sin
e the demand amountwere
hosen su
h that network with hierar
hies
ontained trees. Sin
e we do not have any high
apa
ity edges in the tested NHNP problem, the demand may be too high. On the other handwe have more possibilities of edges so a feasible solution probably exists when allowing non-treesbut tree solutions are unlikely to exist. The tests we
arry out are tests of the heuristi
 solutionalgorithm where non-trees are allowed, hen
e this should not be a problem.Generating the networks is done by RanToXy des
ribed in se
tion 11.2.Usually we generate 5 instan
es with the same number of nodes, groups and demand, i.e. the same.ran �le is used. The results reported are averages on the 5 instan
es.

12.2 Testing 57

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100

D
em

an
d

va
lu

e

Number of nodes

Demand as function of number of nodes

light group
medium group

heavy group

Figure 12.1: Amount of demand in networks for test of HNP

100

200

300

400

500

600

700

800

900

1000

1100

4 6 8 10 12 14 16 18 20

D
em

an
d

va
lu

e

Number of nodes

Demand as function of number of nodes

light group
medium group

heavy group

Figure 12.2: Amount of demand in networks for test of NHNP12.2 TestingThe tests are divided into four se
tions, test of the optimal solution algorithm, test of the heuristi
NHNP solution algorithm, test of the heuristi
 HNP solution algorithm and �nally
omparison ofheuristi
 solution values with the optimal solutions.The di�erent versions of the algorithms are in most
ases implemented by using #define's. If e.g.a parti
ular bound is used in pla
e of another, this
an be
ontrolled by de�ning a single parameter

12.3 Performan
e Tests of the Optimal Solution Algorithm 58and re
ompiling.Times has been measured by
alls to getrusage, whi
h gives the system time and user time spentby the program as opposed to real time. The user time is reported, whi
h is by far the mostsigni�
ant. The reported time in
lude everything the program does, in
luding output of resultsand log-generation. Log generation is, however set to a minimum.Tests are run on a SUN Blade 1000 with 2 750 MHz pro
essors and 2Gb ram or on anotherSUN ma
hine with 12 pro
essors and 12Gb, whi
h seems to solve problems approximately 5 timesslower than the SUN Blade (Exa
t information is unfortunately not available). For a given test-runthe di�erent instan
es are of
ourse run on the same ma
hine, but results
annot ne
essarily be
ompared a
ross test-runs. In most
ases the heuristi
 algorithm has been run on the SUN Bladeand the optimal algorithm has been run on the slow ma
hine.The programs do not use mu
h ram - in most
ases below 5Mb. The ma
hines were used by otherpeople while testing, but sin
e the time measured is the CPU time used, this has little (if any)in�uen
e.The tests are run from what is
onsidered normal, i.e. as des
ribed in the previous
hapters. Ifdeviating from this, it will be stated expli
itly.In most
ases we will run di�erent versions of the algorithm, whi
h may and may not �nd di�erentsolutions. The solution with the best value is used as referen
e point, and
omparison is then donewith respe
t to this best found solution. Hen
e at least one of the versions of the algorithm willhave a deviation equal to 0, though better solutions probably exist.12.3 Performan
e Tests of the Optimal Solution AlgorithmThis se
tion
ontains tests of the optimal solution algorithm. In most
ases, the maximum numberof nodes in networks are 9 or 10. In pra
ti
e it is possible to �nd solutions for networks with morethan 10 nodes, but sin
e we run tests on many instan
es the time required to solve the problemsis substantial and does not
ontribute noteworthy to the dis
ussion, hen
e it has not been done.12.3.1 BoundsTo measure the e�e
t of using bounds, di�erent versions of the optimal solution algorithm havebeen run on the standard test-sets. The test instan
es have been run in the standard setup up,where all bounds are used, and in a version where the setup bound is not used and a version wherethe �ow bound is not used (see se
tion 5.5).When the tests are run, the number of Net obje
ts generated is
ounted and the runtime ismeasured. A bran
h
reates up to two Net obje
ts, and ea
h is bounded, hen
e this is the numberof times the bound value is
al
ulated. This
ount indi
ates how good a bound is, but if the boundtakes too mu
h time to
ompute, the total runtime may in
rease though the number of Net obje
tsde
rease.In �gure 12.3 the runtime of the normal algorithm is
ompared with the runtime of the algorithmwithout use of the setup-bound.Surprisingly there is only little improvement. The number of Net obje
ts is only redu
ed with1%, hen
e no major improvement is a
hieved, but the bound is fast to
ompute so the runtime isroughly the same regardless of if the bound is used.In �gure 12.4 the runtime of the normal algorithm is
ompared with the runtime of the algorithmwithout use of the �ow-bound.

12.3 Performan
e Tests of the Optimal Solution Algorithm 59

0.001

0.01

0.1

1

10

100

1000

10000

100000

5 6 7 8 9 10

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes

Runtime

Normal
No setup bound

Figure 12.3: Runtime with and without using setup bound

0.001

0.01

0.1

1

10

100

1000

10000

100000

5 6 7 8 9 10

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes

Runtime

Normal
No Flow bound

Figure 12.4: Runtime with and without using �ow boundUsing the �ow bound in
rease the runtime severely. The number of generated Net obje
ts isredu
ed by only 3%, hen
e the gain from the redu
ed number of obje
ts is so low, that it does noteven
ome
lose to make up for the time spent on
al
ulating the bound. This
omes as a surprise- in fa
t early performan
e tests showed, that the �ow-bound
ontributed to an improve in theruntime.

12.3 Performan
e Tests of the Optimal Solution Algorithm 6012.3.2 Reuse of Group SolutionsReuse of group data are very important for in
reasing the performan
e of the algorithm. It redu
esthe amount of time spent on solving single NHNP's, sin
e already
al
ulated values are reused. Theruntimes have been measured for the standard test-set, where demand is medium, for networks ofsize up to 9. Finding the solution for the 10 node networks took more than 4 hours when reuseof group solutions was used. The solutions are not found without reuse of group solutions, sin
ethe expe
ted runtime is 7 hours,
al
ulated from the di�eren
e in runtimes for the networks with9 nodes. Results are shown in �gure 12.5.

0.001

0.01

0.1

1

10

100

1000

5 5.5 6 6.5 7 7.5 8 8.5 9

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes

Runtime

Normal
No reuse of groupdata

Figure 12.5: Runtime with and without reuse of group dataThe graph shows that as expe
ted, the algorithm performs substantially faster. The runtime isredu
ed with approximately 40%.12.3.3 Limit on Group SizeWhen solving a HNP to optimality, the time spent on solving groups with many nodes is mu
hhigher than the time spent on solving groups with few nodes (see se
tion 9.3). This is so though fewgroup-divisions exist where one group is large and also few possible large groups exist
omparedwith the number of medium sized groups. Nevertheless mu
h time is spent on the large groups,and also this statement is true regardless of whether reuse of group data are used or not.In order to be able to �nd solution values for larger networks and in order to speed up pro
essing,limiting the maximum size of groups is
onsidered. In some
ases it may even be a natural partof the spe
i�
ation of a problem instan
e, sin
e it may be the
ase that too large groups are notinteresting. Also it is often not the
ase that the optimal solution is among the solutions were largegroups exist, but it
annot be known for
ertain.We run tests using the medium demand test set and �nd solutions using max group size on 5,6 and 7 nodes. 5 instan
es of ea
h network is solved. The result is shown in �gure 12.6 whereruntime is depi
ted as a fun
tion of the number of nodes in the network, for ea
h of the three limitgroups and the normal way, i.e. no limit is used.

12.3 Performan
e Tests of the Optimal Solution Algorithm 61

0.001

0.01

0.1

1

10

100

1000

10000

100000

4 6 8 10 12 14 16

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes

Runtime

Normal
Limit groupsize to 7
Limit groupsize to 6
Limit groupsize to 5

Figure 12.6: Runtime as fun
tion of number of nodes in networkAll networks are divided into 3 groups ex
ept for the 15 node networks whi
h are divided into 4groups. Hen
e limiting the group size to 5 nodes does not make a di�eren
e for networks with 7nodes or less, sin
e no valid group division
an be made
ontaining groups of size larger than 5.The same foes for the other limit groups, thus tests are run only for networks of size larger thanor equal to the sele
ted limit plus 3.The solution value is investigated to
he
k that the optimal solution is found. For networks of sizeup to 10 nodes, the optimal solution is found in all
ases. For 11 nodes an upwards, the optimalsolution is unknown, hen
e instead we
ompare the solutions found using di�erent limits on thegroup size.For all the networks with 11 nodes, the solutions are in all
ases the same regardless of the limitused. For two networks with 12 nodes, using limit 7 instead of 6 improve the solution found by lessthan 1%. The same solutions for the 3 remaining 12 node networks are found using either limit6 or 7. The di�eren
e between using limit 5 and 6 is a bit higher - one solution for the 12 nodenetworks is the same using either limit 5 or 6, and for the remaining four 12 node networks, thesolution value found using limit 5 is less than 5% higher than the solution found using limit 6.No solutions are found for the generated networks of size 13. The runtime drops (at least for limit5) in
reasing network size from 12 to 13 nodes. The explanation seems to be that using su
h a lowlimit, also limit the minimum size of groups indire
tly. For a network with 13 nodes, no groups ofsize less than 3
an be used, sin
e all nodes are to be put in a group, hen
e having a group of sizee.g. 2 will result in that one of the remaining groups have more than 5 nodes. Hen
e fewer groupdivisions are possible and the runtime drops.For the size 14 networks, 2 feasible (out of 5) solutions are found using limit 5 and 6. The solutionsfound using limit 5 is approximately 10% worse than the solutions found using limit 6. The reasonis that for network with 14 nodes divided into 3 groups with a maximum group size of 5, the onlypossible group sizes are 4 and 5. Hen
e a lot of solution possibilities are
ut away.The 15 node network is divided into 4 groups, hen
e the found solution may be better than for the14 node network, sin
e there are still room for small groups. The solution
annot be found usinghigher limits, though, so there is no solutions to
ompare with.

12.3 Performan
e Tests of the Optimal Solution Algorithm 6212.3.4 Bound Using Best HNPThe best known solution to the HNP problem
an with solution values for some of the
al
ulatedgroups be used as at least an initial bound (see se
tion 9.5). The bound is only used when
al
ulating the solution value for the primary group, and as dis
ussed, additional use of this bound
ould be added when
al
ulating the solution value for the se
ondary groups as well.To see if it is worth trying this, we will test what e�e
t using the bound has on the runtime at the
urrent form. Figure 12.7 shows the runtime with and without using this way of bounding.

0.001

0.01

0.1

1

10

100

1000

10000

100000

5 6 7 8 9 10

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes

Runtime

Bound using HNP solution value
No bound using HNP solution value

Figure 12.7: Runtime with and without using best HNP as boundThe �gure shows, that only marginal improvements are a
hieved, but additional improvement
anbe expe
ted if used on the se
ondary groups.12.3.5 Dependen
y on the Total Amount of DemandIn this se
tion, the runtime is
onsidered in relation to how mu
h the total demand is in networks.The hypothesis is, that with high demand, the bounds do not fun
tion well, sin
e it is hard toeven �nd a solution, and even harder to �nd a good one, thus it does not matter mu
h that agood bound value
an be
al
ulated. In parti
ular if a solution does not even exist the bounds
al
ulated are useless.In the bran
h and bound pro
ess, the amount of demand on ea
h edge is
al
ulated iteratively andit is
he
ked that this amount does not ex
eed the
apa
ity (see se
tion 5.4). In networks withheavy demand, this enables us to fathom more solutions than in networks with light demand, hen
ethe networks with heavy demand bene�ts more from this than the networks with light demand.The runtimes for the di�erent demand groups are shown in �gure 12.8.This shows that for light demand, the solution is found faster than for medium and heavy demand.For the heavy demand group, no solution at all is found, sin
e no tree-solution exist. Here a smallimprovement is attained
ompared with the medium demand group. As des
ribed above, this is

12.3 Performan
e Tests of the Optimal Solution Algorithm 63

0.001

0.01

0.1

1

10

100

1000

10000

100000

5 6 7 8 9 10

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes

Runtime

Light demand
Medium demand

Heavy demand

Figure 12.8: Runtime for instan
es with di�erent total demand amountprobably be
ause of the iteratively
al
ulated demand of edges and
omparison of
apa
ities whi
hdete
ts fairly qui
kly that an edge ex
eeds
apa
ity if demand is heavy in the network.12.3.6 Setup-Cost/Flow-Cost ratio e�e
t on the Flow BoundThe �ow-
ost bound did not work well, in fa
t the runtime in
reased using it (see se
tion 12.3.1).The generated test instan
es have �ow-
ost lower than or equal to the setup-
ost (see se
tion 12.1).The
ontribution of
ost in the solution value from setting up edges is usually mu
h higher thanthe
ontribution from �ow though.In this se
tion we will measure the e�e
t of the �ow bound for di�erent setup-
ost/�ow-
ost ratios.The setup-
ost/�ow-
ost ratio is de�ned as the setup-
ost for an edge divided by the �ow-
ost foran edge times the
apa
ity. Hen
e this is two di�erent measures but they are of
ourse related.In the test data used so far this ratio is the same for both the primary and the se
ondary edges(namely 1). The same ratio for the primary and se
ondary edges is used in this test as well.The ratio is
ontrolled by modifying the setup-
ost, and thus if primary setup-
ost is
hanged by afa
tor, the se
ondary setup-
ost is
hanged with the same fa
tor, su
h that the setup-
ost/�ow-
ostratio is the same for both primary and se
ondary edges.The runtime is measured for 5 instan
es of a HNP with 9 nodes, demand is medium and theruntimes reported are averages. The result is shown in �gure 12.9.The �gure shows the runtime as a fun
tion of the �ow-
ost/setup-
ost ratio, and two versions ofthe algorithm are used, one whi
h use the �ow bound and another one, whi
h does not. It doesnot seem that the ratio has any in�uen
e on whether the �ow bound should be used.

12.3 Performan
e Tests of the Optimal Solution Algorithm 64

100

150

200

250

300

350

400

450

0.01 0.1 1 10

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Setup-cost/Flow-cost ratio

Runtime

Flow bound used
No flow bound used

Figure 12.9: Flow bound dependen
y on the setup-
ost/�ow-
ost ratio12.3.7 Capa
ity In�uen
e on Flow BoundThe �ow bound performs di�erently depending on the
apa
ity. The
apa
ity has been varied fora network with 8 nodes, the result is shown in �gure 12.10.

0

2

4

6

8

10

12

14

16

18

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Primary capacity

Runtime

Flow bound used - normal
No flow bound

Figure 12.10: Flow bound dependen
y on the
apa
ityThe
apa
ity of the se
ondary edges is one fourth of the primary
apa
ity. The �gure shows, thatif the
apa
ity is above 600 and �xing the demand and
osts at their
urrent values, the �ow boundshould be used, whereas if it lower than 600, the �ow bound should not be used to obtain the best

12.4 Performan
e Tests of the Heuristi
 Algorithm for NHNP 65performan
e. Sin
e the standard test sets use a
apa
ity of 400, the �ow bound should not havebeen used, sin
e a better performan
e would have been obtained without it.12.4 Performan
e Tests of the Heuristi
 Algorithm for NHNPIn this se
tion the NHNP algorithm is tested separated from the HNP algorithm.12.4.1 Lo
al Sear
hThe e�e
t of running lo
al sear
h with the two neighbourhoods are measured and
ompared withnot running lo
al sear
h at all. The simple version of lo
al sear
h has the neighbourhood
onsistingof solutions where an edge is either added or removed, and the neighbourhood of the extendedversion allows in addition for swapping edges, i.e. an edge is added and one is removed (seese
tion 6.5).The tests are run on the medium demand group, and results are depi
ted in �gure 12.11 showingdeviation from the best solution, and �gure 12.12 shows the runtime.

0

2

4

6

8

10

12

14

16

18

20

4 6 8 10 12 14 16 18 20

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Deviation in percent from best found solution

No Local Search
Simple Local Search

Extended Local Search

Figure 12.11: Deviation from the best solution with and without lo
al sear
h with varying neigh-bourhoods.As expe
ted the extended algorithm obtains the best solutions, whereas its runtime in
reasessubstantially with the number of nodes. When used as a subroutine in solving HNP's, the runtimefor both the fast and the extended version ex
eed what we
onsider reasonable for networks withmore than 15 nodes. Also solving networks with more than 10 nodes takes too mu
h time usingthe extended version.Thus when used as a subroutine, the neighbourhood used depend on the number of nodes in thenetwork. Up to 10 nodes, the extended neighbourhood is used, between 11 and 15 nodes, thesimple neighbourhood is used, and if networks with more than 15 nodes are to be solved, no lo
alsear
h is used at all.

12.4 Performan
e Tests of the Heuristi
 Algorithm for NHNP 66

0.001

0.01

0.1

1

10

100

1000

4 6 8 10 12 14 16 18 20

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes in network

Runtime

No Local Search
Simple Local Search

Extended Local Search

Figure 12.12: Runtime with and without lo
al sear
h with varying neighbourhoodsIf the extended neighbourhood is used regardless of group sizes, the HNP algorithm will in some
ases not �nish in reasonable time, sin
e mu
h time is spent solving a single group. Runs have beenseen where less than 500 iterations of the simulated annealing were run, but the runtime ex
eeded10 hours.The exa
t
hoi
e of where to use whi
h neighbourhood
an be used to
ontrol the amount of timespent on a NHNP, and then indire
tly the total runtime of the HNP algorithm. But as mentionedin se
tion 6.5, the idea of swit
hing neighbourhood at a �xed number of nodes is rather in�exible.An alternative algorithm whi
h allow more
ontrol is a simulated annealing algorithm. It would beeven better to use an algorithm, whi
h
ould �nd a lower bound on a NHNP fast. This algorithm
ould be used by the HNP algorithm as des
ribed in the following.Assume the HNP algorithm at some point has a
urrent best solution and has sele
ted a neighboursolution. The neighbour solution modi�es either one or two se
ondary groups and the primarygroup
ompared with the
urrent best solution. In order to �nd out whether the neighbour solutionis better than the
urrent best solution, it may not be ne
essary to
al
ulate the value of theneighbour solution, a lower bound may su�
e, if it is higher than the value of the
urrent bestsolution. In this
ase it is not better than the
urrent solution, and it may be dis
arded (possiblya

epted anyway be
ause of inherent randomness in the HNP algorithm).The bound value of the neighbour solution
an be
al
ulated by summing the value of the groupswhi
h are unmodi�ed from the
urrent best solution, and
al
ulating lower bounds on the remaininggroups.12.4.2 Path Assignment to DemandIn se
tion 6.4 we argued that the paths should be assigned to demands in order of demand, whi
h isdenoted the normal algorithm. Possibly paths should be assigned to demands ij where edge ij wasin
luded in the solution before assigning paths to remaining demands in order of demand, whi
h isdenoted the simple algorithm. This was done to make sure a relieve edge exists (see se
tion 6.4).

12.4 Performan
e Tests of the Heuristi
 Algorithm for NHNP 67In most
ases su
h an edge exists anyway but this is not good enough, we require that if a solutionexists, then a solution has to be found and hen
e a relieve edge should exist. Thus two optionsexists. Use the simple algorithm or try assigning paths to demands in order of demand (i.e. thenormal algorithm) and if at some point no relieve edge exists, restart using the simple algorithm(see se
tion 6.4).Both algorithms have been run on the standard test set of NHNP's. The solution values andthe runtimes are
ompared, sin
e both may be in�uen
ed. The test is run with medium demandand 5 instan
es are generated for ea
h network size. The results are shown in �gure 12.13 and�gure 12.14.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes in network

Runtimes

Normal
Simple

Figure 12.13: Runtime for the two versions of the path assignmentWe have tested using the two di�erent neighbourhoods in the lo
al sear
h depending on the numberof nodes in the network as des
ribed in se
tion 12.4.1. This is the reason the runtime in
rease withthe number of nodes until from 10 to 11 nodes where the runtime drops, in
rease until 15 nodesand drops again and �nally in
rease from 16 nodes and upwards.In general it does not seem to be the
ase that one of the algorithms are faster than the other,though for networks with less than 11 nodes, the normal version of the algorithm seems to befastest, and for networks with more than 15 nodes the simple version is fastest. A
onservative
on
lusion is that the runtime of the algorithm depends entirely on the neighbourhood
hosen.The deviation is shown for single instan
es, and for ea
h number of nodes 5 points exist for ea
halgorithm (i.e. normal and simple). Many of the points has 0 deviation and hen
e falls at the samepoint. In most
ases the normal version of the path assignment algorithm performs better thanthe simple version, ex
ept for the single network with 17 nodes, where the deviation is 19% fromthe solution found with the simple version of the algorithm.It also seems, that when using some sort of lo
al sear
h (for up to 15 nodes), the normal versionis the best, hen
e a
on
lusion is that whi
h algorithm to use (the normal or the simple one)depends on whether lo
al sear
h is used. The
hoi
e may also depend dire
tly on the size of thenetworks
onsidered, but sin
e the
hoi
e of algorithm does not seem to matter mu
h, this idea isnot pursued.

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 68

0

2

4

6

8

10

12

14

16

18

20

4 6 8 10 12 14 16 18 20

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Deviation in percent from best found solution

Normal
Simple

Figure 12.14: Deviation for the two versions of the path assignment algorithm12.5 Performan
e Tests of the Heuristi
 Algorithm for HNPIn this se
tion we test the simulated annealing algorithm whi
h solves the HNP. The performan
e ofthe simulated annealing depends
riti
ally on the
hoi
e of parameters for the simulated annealing.Usually they are modi�ed for one parti
ular problem instan
e, but this is not possible in pra
ti
efor all the generated test instan
es, sin
e there are too many. Instead we will use the parametersspe
i�ed in se
tion 10.8 and 10.9 for all tests.12.5.1 The Value of the Initial Solution Compared with the Final Solu-tionOne possibility to solve a HNP is to run a greedy heuristi
 as the ones whi
h are used to �ndthe initial solution. The heuristi
s used for �nding the initial solution are not optimized to �ndthe best valued solution, but rather to �nd a feasible solution whi
h is a good foundation for thesimulated annealing algorithm. Nevertheless
omparing the initial solution with the �nal solution
an give an idea on how well the simulated annealing algorithm performs.The initial solution is found in three di�erent ways using the three algorithms random, simple andassignment (see se
tion 10.5). The tests are run on the medium demand test set, 1 instan
e ea
h.Using the three algorithms we �nd an initial solution and re
ord the value of the initial solution.For all three runs we also re
ord the �nal solution, and sele
t the best of the tree. For theses fourgroups, the solution values are depi
ted in �gure 12.15.As expe
ted the solution values are best for the assignment algorithm and worst for the randomalgorithm. For networks with more than 15 nodes, the minimum improvement from using theassignment algorithm to the �nal solution is 7%, and the best improvement is for the 100 nodenetwork whi
h is 18%.

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 69

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 10 20 30 40 50 60 70 80 90 100

S
ol

ut
io

n
V

al
ue

Number of nodes in network

Initial Solution Value

Random
Simple

Assignment
Best solution found

Figure 12.15: Solution value as fun
tion of number of nodes for the three initial solution algorithms
ompared with the best solution12.5.2 Finding Initial Solution for Heuristi
 Solution of NHNPFinding an initial solution has an e�e
t on how good a solution we end up with. But it is notne
essarily the
ase that the least
ost solution is the best to start out with. In this se
tion wetest what e�e
t the three algorithms for �nding the initial solution has on the �nal solution. Thethree s
hemes are a random initial solution a simple low valued solution and a low valued solutionfound using the assignment algorithm (se
tion 10.5).The three algorithms are run on the standard test-set, one instan
e and medium demand. Theruntime of the three algorithms is in the order of se
onds, hen
e sin
e the runtime of the simulatedannealing algorithm is mu
h higher, the runtime of the algorithms for �nding the initial solutiondoes not matter mu
h.The solution value is depi
ted in �gure 12.16 showing the deviation from the best solution as usual.There is no general
on
lusion from this - the random way of �nding the initial solution may bebetter than the found low valued solution. The simple way of �nding the initial solution seemmarginally better than the others, but the di�eren
e is small, and sin
e only one instan
e is runfor ea
h depi
ted point it may not be the
ase in general.12.5.3 E�e
t of Reusing Cal
ulated Group SolutionsReusing
al
ulated solution values for groups by saving them in a hash table gives an enormousspeed up as we shall see shortly. Also the speedup is higher for networks with many groups andhen
e many nodes, at least for the test-set. The saved
al
ulated solution values for groups areusually reused in neighbour-solutions, and in fa
t modifying a solution
hange either one or twose
ondary groups plus the primary group. Hen
e for the largest networks whi
h are divided into 9groups, a redu
tion of the runtime
an be expe
ted to be on at least 70% for the largest networks.The runtime with and without reuse of group values are measured by running tests on the standard

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 70

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Initial solution - Deviation from best found solution

Random
Simple

Assignment

Figure 12.16: Solution value deviation for the three versions of the initial solution �nder algorithmtest-set, one instan
e for ea
h and medium demand. The solution value is the same, sin
e no othermodi�
ations are done to the algorithm. The runtime is shown in �gure 12.17.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes in network

Runtime

Reuse of group data
No reuse

Figure 12.17: Runtime with and without reuse of solution values for se
ondary groupsAs expe
ted the runtime de
rease is high, more than a 70% runtime improvement is a
hieved in thelarge networks. As mentioned the improvement is better the more groups the network is dividedinto, whi
h is a good thing, sin
e these are the networks whi
h take substantial time to solve.

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 7112.5.4 Limit NeighbourhoodIn se
tion 10.3 we des
ribed the neighbourhood. The neighbourhood was limited by, for a givengroup,
onsidering only the |V |/G
losest nodes whi
h are not in the group. In this se
tion weinvestigate how removing this limitation a�e
ts runtime and solution quality.The performan
e tests have been run on the data-set with medium demand and one instan
e onlyfor ea
h. Two versions have been run, one where the neighbourhood is limited and one where it isnot. The runtimes are shown in �gure 12.18 and the deviations are shown in �gure 12.19.

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes in network

Runtimes

No limit on neighbourhood
Neighbourhood limited

Figure 12.18: Runtime for �nding HNP with and without limitation on neighbourhoodThe runtime is higher when there is no limit on the neighbourhood - up to 50% higher for thelarge networks. Some of the in
reased runtime stems from an in
reased number of iterations, butthis
annot explain all of the in
rease in runtime. When no limit on the neighbourhood is used,the number of group-neighbours
onsidered is higher than the number of
on
entrator neighbours(see se
tion 10.3). For the
on
entrator-neighbours, more groups
an be reused than for the group-neighbours, hen
e sin
e we
onsider more group-neighbours the runtime is higher.In general the limited neighbourhood �nds better solutions than the
ase where the neighbourhoodis not limited. The zig-zag stru
ture of the graph stems from the number of groups whi
h arein the network. In the data-set the number of groups is 4 for 20 and 25 nodes and 5 for 30and 35 nodes and so forth up to 9 groups in the network with 100 nodes. Variations on this isinvestigated in se
tion 12.5.7. From the
urrent data an immediate
on
lusion is, that the limitedneighbourhood �nds better solutions than the unlimited neighbourhood for higher values of therelationship between the number of nodes in the network and the number of groups.Though using the unlimited neighbourhood performs better than the limited one in some
ases,depending on the number of groups, it seems safe to
on
lude that the limited one should be used,sin
e it is faster and the quality of the solutions on average are mu
h better than the
orrespondingsolutions found with the unlimited neighbourhood.

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 72

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Deviation

No limit on neighbourhood
Neighbourhood limited

Figure 12.19: Deviation in solution value for �nding HNP with and without limitation on neigh-bourhood12.5.5 Cy
led and Random NeighbourhoodIn this se
tion we
ompare
y
ling the neighbourhood with sele
ting neighbour-solutions at random(see se
tion 10.3.2). The solution value has been measured, and the deviation is
al
ulated as usual.The test has been run using the medium demand test set, and three instan
es for ea
h. The resultis shown in �gure 12.20.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Deviation in percent from best known solution

Cycling neighbourhood
Selecting neighbour-solutions at random

Figure 12.20: Deviation between
y
ling neighbourhood and sele
ting neighbour-solutions at random

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 73In all
ases ex
ept for the networks with 7 nodes, the average deviation is less than 5%. For thelarge networks with between 50 an 90 nodes sele
ting neighbour-solutions at random performs thebest. But it
an also be seen (sin
e none has deviation zero) that at least in one of the three testedinstan
es,
y
ling the neighbourhood found the best solution. I.e. for e.g. the 3 instan
es with50 nodes, neither
y
ling the neighbourhood nor sele
ting neighbour-solutions at random has anaverage deviation equal to zero. Hen
e ea
h of the two must have found the best solution at leaston
e ea
h.Hen
e it is hard to say whi
h is best, but in these parti
ular test instan
es the random neighbour-hood performed marginally better.12.5.6 Measure Fun
tion Value at ea
h IterationThe simulated annealing algorithm should initially start out by sear
hing the sear
h spa
e atrandom - it should a

ept solutions with higher obje
tive fun
tion values than the
urrent. In theend of the run, no solutions with higher solution values should be a

epted.To
he
k that this
orresponds to the way the algorithm works, the solution value at ea
h iterationis re
orded, and the best solution is re
orded. The obje
tive fun
tion value is plotted for ea
hiteration for a network with 10 nodes and a network with 100 nodes. The demand is medium. Thetests were run when �nding the simulated annealing parameters, and in parti
ular the �gures 12.21and 12.22 shows some old results, found with other simulated annealing parameters.

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

220000

0 200 400 600 800 1000 1200 1400 1600 1800

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Iteration

Objective function value as funciton of iteration number

Current solution
Best solution

Figure 12.21: Obje
tive fun
tion value for network with 10 nodes - old versionIn both
ases, as expe
ted the obje
tive fun
tion value varies most in the beginning and vary lessas the temperature de
rease. Hen
e in this sense it seems that the algorithm performs as desired.But for the network with 10 nodes, it seems that the temperature is too high initially, sin
e anumber of worse solutions are a

epted initially, su
h that the algorithm es
aped the seeminglygood lo
al minimum. This was generally the
ase for small networks, hen
e the initial temperaturewas lowered for small networks.For the network with 100 nodes, it seems that a low temperature was rea
hed too early, sin
e after2500 iterations (out of 4000), the algorithm did not a

ept many higher
ost solutions. Sin
e this

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 74

600000

650000

700000

750000

800000

850000

900000

950000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Iteration

Objective function value as funciton of iteration number

Current solution
Best solution

Figure 12.22: Obje
tive fun
tion value for network with 100 nodes - old versionwas the
ase for most large networks, the update fa
tor was in
reased, su
h that the temperaturedid not de
rease as fast as before. This was done for large networks only.The networks solved with the modi�ed algorithm are shown in �gure 12.23 and 12.24.

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

0 200 400 600 800 1000 1200 1400 1600

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Iteration

Objective function value as funciton of iteration number

Current solution
Best solution

Figure 12.23: Obje
tive fun
tion value for network with 10 nodes - old versionWhen solving the network with 10 nodes, the method now returns to the best solution and improvethis. When solving the 100 nodes network, the same problem to some extent exists though nowfewer iterations is used to attain roughly the same result. Hen
e the update fa
tor
ould in this
ase probably be in
reased even more, at least it
ould be tried.

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 75

600000

650000

700000

750000

800000

850000

900000

950000

0 500 1000 1500 2000 2500 3000 3500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Iteration

Objective function value as funciton of iteration number

Current solution
Best solution

Figure 12.24: Obje
tive fun
tion value for network with 100 nodes - old versionThe parameters for the simulated annealing algorithm were tested by modifying single parametersand re
ording the �nal solution value, but no pattern was seen in the results, hen
e in generalit is hard to �nd the best parameters. Thus if a single problem instan
e is solved, and �ndinga good solution is important, the solution quality
an probably be improved by trying di�erentparameters.12.5.7 Number of GroupsIn the entire de�nition of hierar
hi
al networks and the implementation of the algorithms, we haveassumed that the number of groups was sele
ted and spe
i�ed by the user. Another possibility isthat the number of groups is found by the algorithm. It is unknown whether the limitation onthe number of groups to
onsider is a severe limitation, i.e. how mu
h the solution value di�ers forsolutions with di�erent number of groups.Given a problem instan
e, the solution value
an be found for a division into a di�erent numberof groups by simply running the algorithm several times, spe
ifying di�erent number of groups.This is done for 3 problem instan
es generated from the medium demand set with 10, 50 and 100nodes. The runtime for the di�erent instan
es is shown as a fun
tion of the number of groups in�gure 12.25. The obje
tive fun
tion value is shown as a fun
tion of the number of groups in thenetworks in �gure 12.26.The runtimes for the networks with 10 nodes does not immediately seem to follow a pattern. Oneexplanation
ould be that large groups are the most time
onsuming to solve. For the networkdivided into 2 groups all divisions have a se
ondary group of size 5 or more, whereas when dividedinto 4 groups, no size 5 groups arise. When dividing into 5 groups, the primary group is a 5 nodegroup, hen
e the time grows as well. Some of the results
ould also be due to pure
oin
iden
e -only one instan
e is solve for ea
h point.For the networks with 50 nodes, the runtime is lowest for the network divided into 7 groups(ignoring the division into 11 & 12 groups), whi
h again stems from that if the network is divide

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 76

1

10

100

1000

10000

2 4 6 8 10 12 14

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of groups in network

Runtime

n=10
n=50

n=100

Figure 12.25: Runtime as a fun
tion of number of groups in network

100000

200000

300000

400000

500000

600000

700000

2 4 6 8 10 12 14

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Number of groups in network

Objective function value

n=10
n=50

n=100

Figure 12.26: Obje
tive fun
tion value as a fun
tion of number of groups in networkinto fewer groups, se
ondary groups are in general large, and on the other hand if the network isdivided into more groups, then the primary group is large, and the runtime in
rease.The division of the solution into 11 & 12 groups have a lower runtime, sin
e the neighbourhoodused in the lo
al sear
h is redu
ed for groups of size larger than 10 nodes (see se
tion 12.4.1) andthe primary group is
al
ulated for ea
h iteration and thus have major in�uen
e on the runtime.For the network with 100 nodes, the same explanations are valid as for the network with 50 nodes.

12.5 Performan
e Tests of the Heuristi
 Algorithm for HNP 77The obje
tive value seems to drop as the number of groups in
rease. For the problem instan
eswith 50 and 100 nodes, investigation of the solutions shows, that if the network is divided into fewgroups, the demand
annot be satis�ed unless many edges are added, i.e. many more than simply
onne
ting the nodes is required.Sin
e the setup-
ost for primary edges is only double of the setup-
ost of se
ondary edges and the
apa
ity of primary edges is 4 times the
apa
ity of se
ondary edges, we get �more
apa
ity for thesame money� if using the primary edges. This be
omes apparent for the solutions to the problemsdivided into many groups. In this
ase more primary edges are sele
ted, but the total number ofedges is mu
h lower than when the same network is divided into few groups.For the networks with 100 nodes, when going from 10 to 11 groups, the obje
tive fun
tion value doesnot drop
orrespondingly. The same explanation as for the runtime is valid - the neighbourhoodis redu
ed for the lo
al sear
h of the primary group, hen
e the solution does not have su
h a goodvalue as it probably
ould have had if the extended neighbourhood was used.12.5.8 Dependen
y on DemandIf the demand is low in the network, then so is the �ow-
ost and the
han
e of ex
eeding
apa
itieson edges. Finding the initial solution to a NHNP is done by �nding a MST minimizing the setup-
ost, hen
e the initial solution is suspe
ted to be better and found faster for networks with lightdemand than for networks with heavy demand. This is what is veri�ed in this se
tion.The tests are
arried out using the standard test-set for the three demand groups light, mediumand heavy. The runtimes are depi
ted in �gure 12.27.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100

M
ea

su
re

d
ru

nt
im

e
in

 s
ec

on
ds

Number of nodes in network

Runtimes

Light demand
Medium demand

Heavy demand

Figure 12.27: Runtimes for �nding solution to HNP for networks with light, medium and heavydemandThe �gures show, that the runtime is lower for the lightly loaded networks
ompared to the mediumand high loaded networks. This is expe
ted, sin
e assigning paths to demands depend heavily onthe amount of demand whi
h are to be assigned paths. If many edges are to be added, this
annotbe easily handled by the �rst phase of the path assigner, hen
e the se
ond part will have to look

12.6 Quality of Heuristi
 Solutions 78at many neighbour solutions, regardless of whether the simple or the extended neighbourhood isused.12.6 Quality of Heuristi
 SolutionsFor HNP networks with up to 10 nodes, we
an �nd the optimal tree-solution. For networks withup to 15 nodes we
an �nd some solutions by limiting the maximum size of groups. Hen
e thesesolutions are used as referen
e for
omparison with the heuristi
 solutions. The heuristi
 solutionsare found using the standard set up of the heuristi
 algorithm.The measured quality of the solutions are shown in �gure 12.28 for light demand test set and�gure 12.29 for medium demand test set.

-6

-4

-2

0

2

4

6

8

4 6 8 10 12 14

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Deviation in percent from optimal tree solution

Figure 12.28: Deviation from the optimal tree solution - light demandNote that the heuristi
 solution
an be better than the �optimal� solution, sin
e the optimal solutionis restri
ted to tree solutions. This is indi
ated as negative deviation.Five instan
es for ea
h network size is generated. For the light demand networks tree solutions
anbe found for all networks, whi
h is not the
ase for medium demand networks. For some networkstree solutions
annot be found either be
ause they do not exist, or be
ause group sizes are limited.These networks are not in
luded in the �gure. For the medium demand networks, a tree solution
ould not be found in 7 out of the 40 networks with 12 nodes or less, and only 4 solutions are foundfor the networks with 13 to 15 nodes.As a passing remark this does not
orrespond with how we de�ned the demand sets sin
e themedium demand networks were de�ned as networks with a demand su
h that a tree solutionexisted. The reason that this happens is partly a
oin
iden
e - the exa
t demand between nodepairs are generated but also the total demand is probably estimated too high. The demand wasestimated by
onsidering example networks solved heuristi
ally. If the heuristi
 solution had onlyfew more extra edges than the number of nodes, it was assumed that a tree solution existed.Obviously this is not true in all
ases.

12.6 Quality of Heuristi
 Solutions 79

-20

-15

-10

-5

0

5

10

4 6 8 10 12 14 16

D
ev

ia
tio

n
in

 p
er

ce
nt

Number of nodes in network

Deviation in percent from optimal tree solution

Figure 12.29: Deviation from the optimal tree solution - medium demandSome heuristi
 solutions have the same solution value as the optimal tree solution, hen
e it is notpossible to distinguish between points representing one and points representing more instan
es.Another way to get an idea of how well the heuristi
 solution algorithm performs is to state thenumber of times the heuristi
 solution algorithm �nd the same solution as the optimal solutionalgorithm. For the light demand networks, this is the
ase for 19 out of 50 networks, most of themfor the networks with few nodes. For the medium demand networks, the same solution is found in10 out of 37 networks.For the light demand networks, the heuristi
 solutions are in most
ases worse than the optimalsolutions. This agrees with that the demand is light, hen
e the setup-
ost dominates the solutionvalue, and sin
e the minimum setup-
ost attainable is a tree, a tree solution has a low total
ostvalue. All heuristi
 solutions have
osts within 8% of the optimal tree solution.For the medium demand networks many heuristi
 networks have a lower value than the optimal treesolution. This is of
ourse so sin
e the demand is higher than for the low
ost, hen
e situations arisein whi
h it is
heaper to have a non-tree than a tree solution. Hen
e the deviation is not ne
essarilya good estimate on the quality of the solution given the demand. The maximum deviation is 8%,but usually mu
h better.

80
Chapter 13Con
lusion
Motivated by hierar
hies in tele
ommuni
ation networks, hierar
hi
al networks have been de�nedand des
ribed. The underlying networks
hosen are
apa
itated networks with �ow- and setup-
osts, whi
h are in general hard to optimize. Other underlying networks
ould have been
hosen,e.g. un
apa
itated networks or networks with only setup-
osts, and hierar
hies
ould be de�nedusing these networks as well.Solution algorithms are developed solving the hierar
hi
al network problem to optimality for fewnodes, and heuristi
ally for up to 100 nodes well within time limits, i.e. faster than a
ouple ofhours. The solution algorithms are based on a generally appli
able division into mainly two phases,one whi
h deal with the hierar
hies, and one whi
h deals with the network. Given this division, itshould be possible to reuse the �rst part dealing with hierar
hies for other types of networks.The optimal solution algorithm
an solve hierar
hi
al networks with nodes of up to 10 nodes andif group sizes are limited up to 15 nodes. The algorithm is based on a bran
h-and-bound s
heme.Depending on the network data, using the bounds has a positive in�uen
e on the runtime, thoughthe optimal solution algorithm shows to have two problems: The number of di�erent groups growsexponentially with the number of nodes, and the runtime for solving ea
h group grows exponentiallywith the number of nodes in the group.Some group
al
ulations
an be reused, sin
e
hanges in one group does not ne
essarily in�uen
eother parts of the hierar
hi
al network. This redu
e the e�e
t of the �rst point above, but theprimary group nevertheless has to be re
al
ulated, hen
e the number of di�erent group divisionsa�e
ts the algorithm severely. Usually, a division of the network into groups where one or fewgroups
ontain many more nodes than other groups is not desirable. Thus, the se
ond point isdealt with by a

epting only groups of a maximum size. This way we avoid the optimization ofthe time
onsuming large groups.The Heuristi
 applied is based on simulated annealing of phase 1, and a greedy algorithm inphase 2 eventually followed by a lo
al sear
h s
heme. The simulated annealing approa
h requiresidenti�
ation of temperatures, update s
heme and a

ept
riteria. These depend highly on thenumber of nodes in the network solved, hen
e parameters are found as fun
tions of the number ofnodes. Reuse of group-data are also used, and in parti
ular for large networks, the gain is high.We test the improvements of the optimal algorithm and the heuristi
 algorithm, both for run-time and for the quality of the solutions found, where relevant. This shows that the algorithmi

onstru
ts have e�e
t both with respe
t to runtime and in the heuristi

ase on the quality ofsolutions.The performan
e of the algorithms are also measured when the input data are varied. For the

13.1 Outlook 81optimal solution algorithm, the performan
e depend on the amount of demand and the
apa
ityof the edges. In general the
hoi
e of whi
h version of the algorithms to use depend on the data.In both the optimal and the heuristi

ase it is very important that solved groups are saved andreused, sin
e this gives a high speed up.Measuring quality of heuristi
 solutions is in general hard. We
ompare heuristi
 solutions to theoptimal solutions when these
an be found, and
ompare solutions �internally� between di�erentruns of the heuristi
. Also we
ompare with solutions whi
h are found using greedy algorithms -the solutions are used initially in the simulated annealing algorithm.The stru
ture of the solutions is in some
ases investigated, and the solutions seem reasonable. I.e.if total demand is low, solutions are usually trees, and groups
onsist of nodes, whi
h are
lose,whereas if the total demand is in
reased, the groups are usually separated, i.e. the demand
ontrolthe group division and many edges may be sele
ted in groups.13.1 OutlookMany questions are left for further investigation, some important ones are
onsidered here. Theheuristi
 algorithm should be applied to some real world data in order to
ompare solutions foundwith existing solutions. This would give a better indi
ation on whether the found solutions arebene�
ial. Applying the algorithms to real world data would probably require extension of theheuristi
 solution algorithm to handle more than two levels, and also it would be bene�
ial toextend the algorithm su
h that it
ould �nd the best number of groups to divide the network into.Given the results in this thesis there does not seem to be any doubt, that these extension
ouldbe
arried out, though some important questions are left unanswered. The most important isprobably how data
an be reused between neighbour-solutions. In the implemented algorithm thekey to the performan
e was the reuse of group data, but primary group data were never reused.If more hierar
hies were present, reuse should be possible in more levels, and the performan
e ofsu
h a s
heme is unknown.Other open questions are whether better solution algorithms
an be applied to the NHNP's inorder to improve solution quality and lower runtime. Sin
e
apa
itated networks are well studied,it is likely that su
h algorithms exist and
an be adapted in the solution pro
ess. The solutionalgorithms should probably be modi�ed to �t our needs, whi
h is that of solving many moderatelysized networks fast as opposed to solving a large network.Another possibility is to look into what other underlying models
ould be used with hierar
hies. Asmentioned the �ow-
ost is not used in tele
ommuni
ation networks -
osts
an instead be modeledusing the setup-
ost. Hen
e what happens if the underlying model used is a model without �ow-
ost? Is this easier to solve or is the runtime the same?An unpleasant limitation is that we do not allow �ows to split. In tele
ommuni
ation networks�ows
an split, at least in some �xed sizes, but how
an this be handled?It does not seem likely that an optimal solution strategy
an be built for solving the hierar
hi
alnetworks. This is no doubt so, sin
e the problem of solving the underlying networks is NP-hard,but even if the underlying model were repla
ed by e.g. an un
apa
itated network type, it seemsunlikely that su
h algorithms
an be found. But of
ourse these
an be interesting, if used asmodels for building better heuristi
s.

82
Bibliography
[1℄ A. K. Aggarwal, M. Oblak, and R. R. Vemuganti. A heuristi
 solution pro
edure for multi-
ommodity integer �ows. Computers and Operations Resear
h, 22(10):1075�1087, 1995.[2℄ B. Awerbu
h and T. Leighton. A simple lo
al-
ontrol approximation algorithm for multi
om-modity �ow. Foundations of Computer S
ien
e, 1993. Pro
eedings., 34th Annual Symposiumon, pages 459 �468, 1993.[3℄ Anataram Balakrishnan, Thomas L. Magnanti, and Prakash Mir
handani. Designing hierar-
hi
al survivable networks. Operations Resear
h vol. 46, Issue 1, 1998.[4℄ Dhritiman Banerjee and Biswanath Mukherjee. Wavelength-routed opti
al networks: Lin-ear formulation, resour
e budgeting tradeo�s, and a re
on�guration study. INFOCOM '97.Sixteenth Annual Joint Conferen
e of the IEEE Computer and Communi
ations, 1997.[5℄ L. Brunetta, M. Conforti, and M. Fis
hetti. A polyhedral approa
h to an integer multi
om-modity �ow problem. Dis
rete Applied Mathemati
s, 101(1-3):13�36, 2000.[6℄ William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander S
hrijver.Combinatorial Optimization. Wiley-Inters
ien
e, 1998.[7℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion to Algorithms.The MIT Press, 1996.[8℄ J. Current and H. Pirkul. The hierar
hi
al network design problem with transshipment fa
il-ities. European Journal of Operational Resear
h, 51(3):338�47, 1991.[9℄ J.R. Current. The design of a hierar
hi
al transportation network with transshipment fa
ilities.Transportation S
ien
e, 22(4):270�7, 1988.[10℄ J.R. Current, C.S. ReVelle, and J.L. Cohon. The hierar
hi
al network design problem. Euro-pean Journal of Operational Resear
h, 27(1):57�66, 1986.[11℄ Rudra Dutta and George N. Rouskas. A survey of virtual topology design algorithms forwavelength routed opti
al networks. 1999.[12℄ Bernard Gendron, Teodor Gabriel Craini
, and Antonio Franginoi. Multi
ommodity
apa
i-tated network design. http://www.di.unipi.it/ frangio/
urvitae.html, 1997.[13℄ Frederi
k S. Hillier and Gerald J. Lieberman. Introdu
tion to Operations Resear
h. M
Graw-Hill, 1995.[14℄ K. Holmberg and D. Yuan. A lagrangian heuristi
 based bran
h-and-bound approa
h for the
apa
itated network design problem. Operations Resear
h, 48(3):461�81, 2000.[15℄ A. Kamath, O. Palmon, and S. Plotkin. Fast approximation algorithm for minimum
ostmulti
ommodity �ow. Pro
eedings of the Sixth Annual ACM-SIAM Symposium on Dis
reteAlgorithms, pages 493�501, 1995.[16℄ V. Kumar. An approximation algorithm for
ir
ular ar

olouring. Algorithmi
a, 30(3):406�17,2001.[17℄ Zbigniew Mi
halewi
z and David B. Fogel. How to Solve It: Modern Heuristi
s. Springer,2000.[18℄ M. Pioro and P. Gajowni
zek. Simulated allo
ation: a suboptimal solution to the multi
om-modity �ow problem. Teletra�
 Symposium, 11th. Performan
e Engineering in Tele
ommu-ni
ations Networks. IEE Eleventh UK, page 31/1, 1994.[19℄ H. Pirkul, J. Current, and V. Nagarajan. The hierar
hi
al network design problem: a newformulation and solution pro
edures. Transportation S
ien
e, 25(3):175�82, 1991.

BIBLIOGRAPHY 83[20℄ N.G.F. San
ho. The hierar
hi
al network design problem with multiple primary paths. Euro-pean Journal of Operational Resear
h 96, 1996.

