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Abstract

This article presents methods for the analysis and decomposition of multivariate
datasets where a given ordering/structure of the observations or the variables exist.
Examples of such data sets are remote sensing imagery where observations (pixels)
each consisting of a reflectance spectrum are organised in a two-dimensional grid.
Another example is biological shape analysis. Here each observation (e.g. human
bone, cerebral ventricle) is represented by a number of landmarks the coordinates of
which are the variables. Here we do not have an ordering of the observations (indi-
viduals). However, normally we have an ordering of landmarks (variables) along the
contour of the objects. In this context a landmark is a point with anatomical or geo-
metrical meaning across observations. A further example is reflectance spectra from
samples, where the samples do not exhibit any order but the variables do. For the
case with observation ordering the maximum autocorrelation factor (MAF) trans-
form was proposed for multivariate imagery in [1]. this corresponds to a R-mode
analyse of the data matrix. We propose to extend this concept to situations with vari-
able ordering. This corresponds to a Q-mode analysis of the datamatrix. We denote
this methods Q-MAF decomposition. It turns out that in many situations the new
variables resulting from the MAF and the Q-MAF analyses can be interpreted as a
frequency analysis. However, contrary to Fourier decomposition these new variables
are located in frequency as well as location (space, time, wavelength etc).

1 Introduction

The maximum autocorrelation factor (MAF) analysis was originally proposed as an al-
ternative transformation of multivariate spatial imagery to the celebrated PCA transform
by Paul Switzer [1]. In the MAF analysis we seek a transformation that maximizes the
autocorrelation between neighbouring observations (i.e. pixels). The basic assumption of
the MAF analysis is that the interesting signal exhibits high autocorrelation, whereas the
noise exhibits low autocorrelation. By building the additional information of the structure
of the observations into the model application examples (cf. [2, 3, 4, 5]) show a more
satisfying ordering and compression of the data. This is particularly the case when some
noise components have higher variance than some signal components. In this case the
principal components will fail to give an intuitive order of image quality. The MAF anal-
ysis requires knowledge of or estimation of the variance-covariance matrix of the data as
well as the variance-covariance matrix of the difference between the original data and a
spatially shifted version of the data. It may be formulated as a canonical correlation anal-
ysis problem [6]. A similar approach to filter design is shown in [7]. The power of the
MAF transform is illustrated on a multivariate remotely sensed dataset, where a 62 chan-
nel sun-reflectance spectrum is measured in each pixel of an image. In an Appendix A we
show that the Molgedey-Schuster algorithm for independent components analysis (ICA)
is equivalent to MAF analysis.



We show how the MAF transform can be extended to situations where we exploit not
the ordering of the observations, but the ordering of the variables. A large application area
for this is biological shape analysis. In this context we are concerned with shapes that are
represented by sets of corresponding points. The landmarks, the object representation,
often consists of (using the terminology of [8]) combinations of anatomical landmarks,
that correspond between organisms in a biologically meaningful way, mathentatidal
marks that are allocated on an object according to some mathematical or geometrical
property, and pseudandmarks that are constructed points, e.g. dispersed along the out-
line of an object between anatomical or mathematical landmarks. For use for simulation,
prediction, or segmentation [9, 10, 11] a fair number of landmarks are necessary in order
to achieve sufficiently good or realistic models.

Given their representation the objects are aligned wrt. translation, rotation, and scale
(e.g. bmo. a Procrustes analysis [12]). Finally, the residual variation is decomposed
into latent variables and a low dimensional representation is obtained by retaining only
the most important of these. The decomposition of the variation has been based on a
number of transformations, most importantly PCA [11, 10]. The use of Fourier modes
and wavelets are also reported [13, 14].

By representing the shape coordinates of each observation as the rows of a data matrix,
the PCA usually applied is an R-mode analysis of this matrix. In the statistical sense - in
this analysis - the variables are the point coordinates and the observations are the training
shapes. The estimated eigenvectors are used to deform the mean shape. If instead we
make a Q-mode analysis then the variables are the (unordered) training shapes and the
observations are the point coordinates. Solving in Q-mode provides us with an ordering
of our “new observations”. In this case the deformation of the mean shape is introduced
not by the eigenvectors but by the transformed variables. This allow for application of the
MAF transform. This analysis we denote the Q-MAF transformation. We illustrate this
on a dataset consisting of 50 landmarks on metacarpal-2 (a bone in the hand) extracted
from x-rays of the hands of 24 women.

Finally, we apply the Q-MAF transformation to the decomposition of spectral data
into latent variables.

2 Maximum autocorrelation factors (MAF)

Let the spatial covariance function of a multivariate stochastic variable,wherek
denotes spatial position anl a spatial shift, béd (A) = Cov{Z,, Z,.A}. Evidently
I'"(A) = T'(=A). Then by letting the covariance matrix &, be 3 and defining the
covariance matri®on = D{Z, — Z;, A}, we find

a =28 —T(A) = T(=A) (1)



We are now able to compute the covariance between a linear combination of the original
variables and the shifted variables
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Thus the autocorrelation in shift of a linear combination of the mean-centered orig-
inal variables 7, is
1wl T aw;

In order to minimize that correlation we must maximize the Rayleigh coefficient

wl I w

(4)

The MAF transform is given by the set of conjugate eigenvectorXx gfwrt. 33,
W = [w,...,w,], corresponding to the eigenvalues< - -- < x,, [1]. The resulting
new variables are ordered so that the first MAF is the linear combination that exhibits
maximum autocorrelation. Thieh MAF is the linear combination that exhibits the highest
autocorrelation subject to it being uncorrelated to the previous MAFs. The autocorrelation
of theith component i — 1x;.

Usually we assume first and second order stationarity of our data. So mean-centering
consists of estimating and subtracting a global mean over all observations (pixels). In
other situations other types of mean-centering may be applicable, e.g. no centering
(for calibrated data), centering across variables (empirical orthogonal functions), double
mean-centering.

One problem now arise, namely, how should we chatiseSwitzer suggested that
for images we estimat&, for a horizontal shift in lag 1 and for a vertical shift in lag
1, followed by a pooling of these two covariances. We shall not enter into this subject
further, other than to say that considerations on the range-of-influence of the signal and
noise processes should be used to determine an optimal lag distance/direction.

An additional problem will arise when the number of training examples is less than the
dimensionality of the problem. Then the variance-covariance matrix in the nominator of
Eq. 4 is not positive definite. In this case the optimization must be carried out in the sub-
space spanned by the eigenvectors corresponding to non-zero eigenvalues of this matrix.
This may be achoeve by use of generalized singular value decomposition algorithms [15].

h(w) = w'Xw

2.1 MAF on multivariate imagery

We will illustrate the MAF transform on a multivariate remotely sensed dataset, where a
62 channel sun-reflectance spectrum is measured in each pixel of an image. The original
data are shown in Fig. 1. The images are recorded using the GER Il Imaging Spectrom-
eter from the Geophysical Environmental Research Corp., New York. Using a rotating
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Fig. 1: Sun-reflectance in 62 spectral channels captured by the GER Il Imaging Spec-
trometer. The spectral channels are shown rowwise

mirror a line is scanned perpendicularly to the flight direction of the aircraft. The second
dimension is generated by the forward motion of the aircraft. Correction for roll, pitch,
and yaw of the aircraft as measured by a gyroscope hardmounted on the scanner has been
made.

The GER Il sensor consists of 3 spectrometers. The spectral coverage and resolution
of these are shown in Tab. 1. The second spectrometer records data in a wavelength where
the water in the atmosphere absorps most light, rendering these channels very noisy.

In Figs. 2 and 3 the principal components (PC) and maximum autocorrelation factors
resulting from transformation of the original 62-dimensional observations are shown. It
is evident that the PCs (shown rowwise with PC1 in the upper-left corner) does a poor job

Table 1: Spectral coverage and resolution of the GER Il sensor

Spectral coverage Number of channels Sampling interval
pm nm
Spectrometer | 0.47-0.84 30 12.3
Spectrometer 1.40-1.90 4 120
Spectrometer I 2.00-2.45 28 16.2




Fig. 2: Principal components shown rowwwise with PC1 in the upper left corner.

of separating the interesting signal from the noise. The MAF transform does this in a very
satisfactory way.

The reason for this lies in the design criteria for the methods. Principal components
analysis seeks linear combination that maximize variance. Whereas the MAF transform
seeks maximum autocorrelation between neighbouring observations. Because the phe-
nomena that we want to study in the images have spatial extent the latter method is better
at extracting these. PC fails because some (interesting) components with high autocorre-
lation have smaller variance than some of the noise components.

Furthermore, we can see that the intrinsic dimensionality of this dataset is much less
than the original 62 channels, say on the order of 10. For interpretation purposes we
may compute the correlations between the new variables and the original channels. These
are shown in Fig. 4 for the first 4 MAFs. We see that the first component is a mean
of all spectral channel from spectrometer 1 (visual) and spectrometer 3 (near infrared).
The second MAF is a contrast between the low number and the high number channels of
spectrometer 1. MAF3 is a mean of all near infrared channels, etc.

3 Shape analysis

Biological shape analysis based on landmark data has developed rapidly in the past decade.
Before entering into the matter of things, we shall define precisely what we mean by
shape: shape is all the geometrical information that is left when translation, rotation, and



Fig. 3: maximum autocorrelation factors shown rowwise with MAF1 in the upper left
corner.

isotropical scaling is filtered out, i.e. shape is the geometrical information up to a Eu-
clidean similarity transformation. In the following we shall shortly present how a dataset
is constructed and how it is decomposed into latent variables.

We will illustrate the proposed methods on a dataset that consists of annotations of
the contour of 24 metacarpals, i.e. a bone in the human hand. An example is shown in
Figure 5(a). The annotations are based on 2-D wrist radiographs of human hands. The
annotations are prone to errors in the proximal and distal ends due to the bones being
overlaid in the projection of the radiograph and thus difficult to discern.

3.1 Alignment of shapes

Let there be givem training examples for a given shape class, and let each example be
represented by a set eflandmark point§u;;, v;;), i = 1,...,pandj = 1,...,n. The
alignment problem in 2D consists of estimating an average shap&d pose parameters

for each shape. Let the pose parameters be s@ale: IR, rotation: ¢ € [0;2r[, and
translation:y, € IR?>. Then using a multiple linear regression formulation as described



Maximum Autocorrelation Factor Analysis
Correlations Between MAFs and Bands

0.0 0.5

MAF 1 0.96

-05

1.0

0.5

0.0

MAF 2 0.95

-05

-1.0

05

MAF3 0.92
0.0
!

-1.0 -0.5

1.0

0.5

MAF 4 0.84
0.0
o
n
|

-05

-1.0

Fig. 4: Correlations between the first 4 MAFs and the original variables. On the left in
each subplot the autocorrelation of the MAF components is shown.



(a) (b) Ly

Fig. 5: (a) Metacarpal annotation using 50 landmarks. (b) The metacarpal dataset aligned
and projected into tangent space.

in [12] the alignment problem consists of a minimisation of a vector function

i U1 — Ui 1 0 T
n— Z.6, :

F = , WhereZ,; =

: 1
w—2Z, 10, 4 vin upn 0
p—-2,100 0] : :

wrt. 0; = [3; cos1;, B;sin;, vI]T. Note, that the average shape is constrained to non-
zero size by alignment with the last shape. Tt aligned shape is given b¥;6;.
Generalised Procrustes analysis is obtained by minimising.theorm of this vector
function.

The tangent space coordinates are the projections of the full Procrustes coordinates
into the tangent plane to the shape space at the full Procrustes mean. In the vicinity of
this pole the Euclidean distances of the tangent space are good approximations to the
Procrustes distances. Let the tangent space coordinates with the origin placed at the pole
of the tangent space for each training example be

x; = (xﬁ’...,xm,yila---ayin)T' (5)

Note, that the Procrustes analysis filters out translations of the observations, thus
mean-centering the variables. When we subsequently analyse the deviations from the
estimated mean shape we additionally mean-center across observations.
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The aligned metacarpal dataset as well as the estimated mean shape is shown in
Fig. 5(b). The mean shape is shown as an interpolated curve. The points of the aligned
shapes are shown as scatter on this mean shape. The variation in this scatter in what we
try to decompose into (a few) latent variables.

3.2 Shape decomposition using Principal Components

Cootes et al. [11] describe how a low dimensional model of shape variability can be
optained by decomposition using principal components. They call the resulting model an
active shape model (ASM).

Let the tangent space coordinates of the training examples be organisgdxirza

data matrix

T
Iy

T
)

X =
T
Ly

This matrix may then be decomposed using Eckart-Young’s theorem [16]
X =VAU".

WhereU (2n x r) andV (p x r) are orthogonal matrices, and (r x r) is a diagonal
matrix with positive diagonal elements. The diagonal elementsark called the singular
values ofX'. This decomposition is also called the singular value decomposition (SVD).

By direct calculation using Eckart-Young’s theorem we have the following two eigen-
value decompositions

XXT = vAvT
X'X = UANU”T

The diagonal elements of? are the squared diagonal elementsAofind these are the
positive eigenvalues oKX X7 and X”7 X. The analysis ofX” X is called a R-mode
analysis, and the analysis &f X7 is called a Q-mode analysis. The relation between the
eigenvectors corresponding to the positive eigenvalues for the two problems are given by

V = XUA™!
U = X"VA! (6)

The estimated variance-covariance matrix of the tangent space coordinates of the
training examples in Eq. (5) is
- 1
Y=——XTXx (7)
p—1
the eigenvectors (i.e. the principal components) of which are given by the colurbhs of
The ASM model then consists of retaining the r first principal components. De-

viations from the Procrustes mean (in tangent space) can then be modelled by
z=U'b
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whereU’ is a matrix consisting of the first columns ofU, andb defines a set of
parameters of the deformable model.

However, from Eq. (6) we see that by solving the problem in Q-mode, i.e. solve for
V we could generate the same ASM by

x=X"V'b (8)

whereV"’ is a matrix consisting of the firgtcolumns ofV'.

Solving the problem in Q-mode corresponds to an eigenvalue decomposition of the
covariance matrix of a stochastic variable, examples of which are given by the coordi-
nates of each point across the shape training examples, i.e.

zj = (x5,...,2p), forj=1,....n
zj = (Yijs---,Ypj), Fforjg=n+1,... 2n (9)
This matrix is given by
= in— XX1 (10)

The eigenvectors (i.e. the principal components) of this matrix corresponding to the pos-
itive eigenvalues are given by the columnsiof

3.3 Shape Q-MAF

In this section we will describe how to use the maximum autocorrelation factors (MAF) [1]
transform instead of principal components for formulation of an ASM. The approach as-
sumes an ordering of the landmarks, and is based on a the Q-mode analysis. In general, it
should be applicable since an ordering of the landmark points is almost always present.

In the MAF analysis in Section 3.2 we substitute the makfifrom Eq. (10) for the
variance-covariance matri. The estimate of the difference variance-covariance matrix
is given by

1
SaA = ST 2EET (11)
where ~ -
(21 — 22)"
(zn—l - zn)T
- T
gr—| (B2 (12)

(zn-l—l - zn+2)T

(z2n71 - Zzn)T
L <z2n - szrl)T i

wherez; is defined in Eq (9).
The MAF ASM is built by retaining the < r first maximum autocorrelation factors.
From Eq. (8) deviations from the Procrustes mean (in tangent space) is then modelled by

x=X"W'b (13)
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whereW’ is a matrix consisting of the firgtcolumns of W, andb defines the set of
parameters of the model.

The Q-MAF transformation is performed on the metacarpal dataset and compared to
ordinary PCA. The resulting eigen modes are shown in Fig. 6. In the figure all eigen
modes for the two transformations are shown. The eigen modes are visualised as devia-
tions from the (full Procrustes) mean shape. The mean shape and the deviations from the
mean shape is shown for each eigen mode¢astandard deviations across the training,
respectively. Note that if we assume that the variation from the mean value across the
training set can be modelled by a Gaussian distribution, then we would expect (almost)
all deviations to be withint3 standard deviation.

From the plots in Fig. 6 we see that the Q-MAF transformation results in different
eigen modes from the PCA transformation. The Q-MAF modes constitute a decompo-
sition of (localized) spatial frequency along the contour with frequency increasing with
mode number. Furthermore, the first two modes are easily interpreted as thickness of
the cortical bone, mode three as bending, and mode four as thickness of the proximal
(top) end. In the high order number modes variations composed of neighbouring points
deforming in opposite directions are concentrated.

The PCA eigen modes are less easily interpreted and it seems that many low number
modes are devoted to descriptions of variations of the proximal end. These are variations
that may well stem from annotation arbitrariness.

4 Reflectance spectra Q-MAF

As a final example we will decompose a set of near infra red reflectance spectra published
by John Kalivas [17]. This dataset consist of NIR spectra of 100 wheat samples with the
reflectance measure in 700 2 nm intervals in from 1100 nm to 2500 nm.

Here we propose to decompose the spectra into new latent variables that have the
proporty that they account for variations that exhibit high autocorrelation between neigh-
bouring variables (spectral bands). For this we utilize the Q-MAF procedure. Prior to
the analyse we mean-center the data by subtracting the mean spectrum across all observa-
tions. The deviation from this mean spectrum as determined by the principal components
transformation is shown in Fig. 7 and by the Q-MAF procedure in Fig. 8. We visualtize
the new variables as deviations from the mean spectrum. The mean spectrum is shown in
blue, and+5 standrad deviations as red and green, respectively. We see that the Q-MAF
results in different components than PC, and that they indeed exhibit higher autocorrela-
tion along the variable axis.

5 Discussion

We have demonstrated the power of the maximum autocorrelation factor analysis over
principal components for datasets where the observations are organised in some structure.
Furthermore, we have devised how a new transformation — the Q-MAF transformation
— can utilize that the variables of multivariate problem are organised in some structure.
It has been demonstrated how this new transformation when applied to biological shape
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analyses can ease interpretation. It is suspected that the Q-MAF procedure is better at
isolating effects of the (stochastic) annotation process in high number latent variables
than the featured principal components. Finally, we have shown how apply the Q-MAF
transformation to datasets consisting of spectra from samples. In addition we shown
that the Molgedey-Schusters algorithm for perfoming independent components analysis
is equivalent to the maximum autocorrelation factor transformation.
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A Equivalence of ICA and MAF

It turns out that Molgedey-Schusters algorithm for performing ICA [18] is the same as
the MAF analysis [1].

Assuming the linear mixing model of independent components anaksis AS,
whereX is the (P x N) data matrix with each row consituting a sign&ljs a matrix of
the same form aX containing independent signals in the rows, ahd a linear mixing
matrix. Furthermore, leX 5, andS A be X andsS cyclicly shiftedA steps rowwise. Then
the solution is found by forming

Q:% [(XAXT+X XL (XXT)'=A B(SAS%SSQ)(SST)*} A7l (14)
Due to the independence of the source signals the latter bracketed parenthesis is diagonal.
Therefore the mixing matrix can be determined by an eigenvalue decomposition of the
matrix Q, and the source signals up to a scale factor are estimaté&byA ' X. An
estimator for the crosscovariance function for a shifis +- X X L, and an estimator for
the covariance matrix;, is %XXT. Therefore using Eq. (1)

1 1
Q= 3 2 - ZA| X = [I — ézAz—l}

The unity matrixI has no effect on the eigenvectors,Asimply consists of the conjugate
eigenvectors ok wrt. X, i.e. the MAF problem given in Eq. (3).

It is easily shown that the MAF transform is invariant to affine transformations. There-
fore we may execute a prewhitening beforehand, thus obtakiagl. Then@ becomes
symmetric yieldingd~! = A", and the MAF factors becom‘*TXprewhitenedi-e- the

independent components.
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Fig. 6: The eigen modes for the shape Q-MAF and the PCA transformation are visualised
as deviations from the (full Procrustes) mean shape. The mean shape is drawn in blue. The
deviation from the mean shape is shown for each eigen mode atandard deviations

across the training set as a red and a green curve, respectively.
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Fig. 7: Principal componentis— 4 of the wheat spectra reflectance dataset.
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Fig. 8: Q-mode maximum autocorrelation factars 4 of the wheat spectra reflectance
dataset.
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