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Abstract

In this paper we present an empirical Bayes method for flexible and
efficient Independent Component Analysis (ICA). The method is flexible
with respect to choice of source prior, dimensionality and positivity of
the mixing matrix, and structure of the noise covariance matrix. The ef-
ficiency is ensured using parameter optimizers which are more advanced
than the expectation maximization (EM) algorithm, but still easy to im-
plement. These optimizers are the overrelaxed adaptive EM algorithm
and the easy gradient recipe. The required expectations over the source
posterior are estimated with accurate mean field methods: variational and
the expectation consistent framework. We demonstrate the usefulness of
the approach with the publicly available Matlab toolbox icaMF.
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1 Introduction

Since Independent Component Analysis (ICA) in the early nineties caught the
attention of the machine learning community, the interest and activities within
this area have all but exploded. Although initially regarded as an example of a
blind source separation problem for independent data, the focus has in recent
years gradually shifted from different aspects of this instantaneous problem to
the challenge of the convolutive case (mixing over time). A process fuelled
by algorithms such as InfoMax [2] and FastICA [7] which, although not very
flexible, are robust and fast.

But the completely general instantaneous case is far from solved: So far
there exists no algorithm which can do noisy, non-square mixing with an ar-
bitrary non-gaussian prior with the same robustness and speed as the above
mentioned algorithms. Variational (so-called mean field and also known as en-
semble learning) methods [8, 1, 23, 11, 4, 6] are attractive because they are very
flexible general modelling tools. The mean field ICA method as described in
[6], however, had two major difficulties: First, the flexibility with respect to the
prior makes the inside of the black-box rather complicated and unattractive to
wide range of the application-driven part of the research community. Second, it
was slow to converge and no universal stopping criteria could be given. These
two difficulties, however, can now be handled, as this paper demonstrates: The
complexity by the availability of a Matlab toolbox with plug-and-play demos
and examples and the convergence by efficient optimization schemes beyond the
traditional expectation maximization (EM) algorithm .

In a broader context reaching well beyond ICA, the Mean field methods
such as variational Bayes, loopy belief propagation, expectation propagation
(EP) and expectation consistent (EC) have recently gathered much interest, see
e.g. [8, 1, 15, 25, 16, 10, 17] because of their potential as approximate Bayesian
inference engines. An undesirable property of the mean field methods in this
context is that the approximation error is unattainable. One cannot in any
quantitative manner say much about the deviation of marginal moments or
likelihoods from their true values. But in many tests, however, the accuracy and
the polynomial complexity of the mean field methods to intractable sums and
integrals, is positioning the mean field methods as a high-end approximation.

For the last few years, it has been observed that an important cause for the
non-robustness of the mean field methods rests not only upon the approximation
error but rather on the slow convergence of the expectation maximization (EM)
style algorithms, typically used for the joint parameter-latent variable inference
problem [20]. Several alternatives to EM learning, also applicable to non-mean
field based inference, have been proposed recently [22, 14] and analysis have
been given to explain convergence failure both in general and specific settings
[21]. Furthermore, these methods in some cases make the difference between
convergence in finite time or not [18], but in most cases they at least give a
huge speed-up. This new insight has thus taken the mean field methods one
step closer to realizing their full potential for Bayesian inference.

In this paper we revisit mean field ICA to demonstrate that the newly found
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insights can give us a much more efficient system while still retaining the flexi-
bility of the Bayesian ICA approach. Compared to other methods, the flexibility
is rather extensive and enables the user to handle both over-/underdetermined
and square mixing, positive constraints on the mixing matrix, noise estimation
and general source priors, e.g. positive or discrete. The paper is organized as
follows: Section 2 formulates the instantaneous noisy ICA problem which is the
basic model of interest. Section 3 explains how the given log likelihood (bound)
is optimized giving three different approaches. Section 4 deals with estimation
of the source statistics. Two mean field methods – expectation consistent and
variational – are reviewed and in Section 5 we presents the Matlab toolbox.
Finally in Section 6 and 7 we wrap up with demonstrations of the developed
methods and conclusions.

2 Instantaneous ICA

In this section, we give a quick recap of the empirical Bayes approach to in-
stantaneous ICA with additive Gaussian noise – for a more detailed account the
reader is referred to e.g. [6]. The observation model is given by

xt = Ast + nt, t = 1, ..., N

with N being the number of samples. The noise is assumed zero-mean gaussian
with covariance Σ, i.e. the Likelihood is p(xt|A, st,Σ) = N (xt; Ast,Σ). The
source prior factorizes in both sources and time steps. Denoting the stacked
sources by the matrix S, we can write the prior as p(S|ν) =

∏
it pi(Sit|νi),

where ν is shorthand for the parameters of the prior. The observation vectors
xt are stacked as columns into one matrix X: p(X|A,S,Σ) =

∏
t p(xt|A, st,Σ)

and the posterior is given by p(S|X,θ) = p(X|A,S,Σ)p(S|ν)
p(X|θ) , where we have used

the shorthand θ = {A,Σ,ν} for the parameters. In the empirical Bayes (or
Maximum Likelihood II) approach applied to ICA, the noise realization and
the unobserved sources are integrated out, leaving the parameters θ to be de-
termined by maximizing the (marginal) Likelihood: p(X|θ). Alternatively, one
may use a hierarchical Bayesian approach [1] marginalizing also over θ, see [11]
for an application to ICA.

The log likelihood L(θ) = ln p(X|θ) is for most priors too complicated for
practical approaches and instead a lower bound is used as objective function.
The lower bound B is defined by

L(θ) ≡ ln p(X|θ) = ln
∫
q(S|φ)

p(X,S|θ)
q(S|φ)

dS

≥
∫
q(S|φ) ln

p(X,S|θ)
q(S|φ)

dS ≡ B(θ,φ) . (1)

The bounding property is a simple consequence of Jensen’s inequality and holds
for any choice of variational distribution q(S|φ). In fact it is easy to show that
L(θ) = B(θ,φ) − KL(q, p), where KL(q, p) ≥ 0 denotes the Kullback-Leibler
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divergence between the variational distribution and the source posterior. Thus,
if the variational distribution becomes equal to the source posterior, KL(p, p) =
0 and the bound is equal to the log likelihood.

The derivatives of the bound are easily derived for the ICA model

∂B(θ,φ)
∂A

= Σ−1
(
X〈S〉Tq −A〈SST 〉q

)
(2)

∂B(θ,φ)
∂Σ

=
N

2
Σ−1 − 1

2
Σ−1〈(X−AS)(X−AS)T 〉qΣ−1 (3)

∂B(θ,φ)
∂ν

= 〈∂ ln p(s|µ)
∂ν

〉q . (4)

Constrained variables are handled by reparametrization and considered in detail
in Section 3.4. Since many different source priors are relevant depending on
the application, the derivative involving the prior parameter is not specified in
details but left open for easier modular fit to various problem-specific priors.

3 Optimization of Parameters

In this section we discuss a number of approaches for optimization of the lower
bound of the log likelihood. The starting point is the EM algorithm for its sim-
plicity but also variants thereof are of interest in order to speed up convergence.

3.1 The EM Algorithm

The traditional optimization applied in [6] is the Expectation-Maximization
(EM) algorithm as presented in [12]. In their formulation, the EM algorithm is
a coordinate-wise descend in the so-called free energy, which in this context is
minus the lower bound function. In short, the EM algorithm for B(θ,φ) is

E: Maximize B(θ,φ) with respect to φ keeping θ fixed.

M: Maximize B(θ,φ) with respect to θ keeping φ fixed.

This results holds for any variational distribution. However, if the choice of q
is constrained to a family of distributions such that the E-step does not give
q(S|φ) = p(S|X,θ) then we are only optimizing the bound and not the likelihood
itself. This variational approximation works well in many cases, see Section 6.

M-step: In the M-step the lower bound B(θ,φ) is maximized with respect
to the model (hyper) parameters θ = {A,Σ,ν}. Setting the derivatives in eqs.
(2) and (3) equal to zero, one obtains the following EM updates for the mixing
matrix and the noise covariance

A = X〈S〉Tq 〈SST 〉−1
q (5)

Σ = 1
N 〈(X−AS)(X−AS)T 〉q . (6)

The corresponding result for the prior parameters cannot be expressed explicitly
without choosing what prior to use, and is therefore left for the user of whatever

5



specific prior. With these estimates we are ready to make another E-step with
the new values for the parameters, then another M-step, and so on.

The EM algorithm is simple and have important theoretical convergence
properties, but also sometimes unreasonably slow – a postulate reported and
documented by a number of papers regarding the use of EM algorithm for ICA.
The results of [20] is based on a small scale statistical investigation, and [3] and
[19] provide analytically insight to the experience of slow convergence in the low
noise limit.

The analysis in the two latter papers is based on a Taylor expansion of the
true source posterior moments in the noise variance. That is, when for simplicity
the noise is assumed isotropic with variance σ2, the source posterior moments
〈st〉 and 〈stsTt 〉 are expanded in σ2 and inserted to give the update of the the
mixing matrix. The result is

An+1 = An +O(σ2) ,

where An denotes the nth estimate of the mixing matrix. This shows that if
the noise variance is very small, then so is the change in the mixing matrix and
in the limit of zero noise, the EM algorithm becomes infinitely slow. Further
analysis demonstrates that the first order correction term for the mixing matrix
is proportional to the noiseless InfoMax update [2]. This renders the use of
EM for the noise model even less attractive, since only in cases where the noise
is large enough to make the O(σ4) contribution significant, is the solution of
the noise model different from the noiseless InfoMax model. A recent result in
[21] shows that going to in to hierarchical variational Bayesian framework [1]
does not solve the problem. The resulting Variational Bayes EM algorithm, is
suffering from the exact same defect.

With this defect of the EM algorithm in mind, we regard two optimization
alternatives which are both closely related to the original EM algorithm.

3.2 Easy Gradient Recipe

The very appealing property of the EM algorithm is the combination of the
easily implementable scheme and a guaranteed increase of the likelihood. Often,
more advanced optimization methods is more demanding either analytically,
computationally or both, and thus not appealing for large class of complicated
problems. But using the Easy Gradient Recipe [14], one can obtain the efficiency
of state-of-the-art gradient based optimization methods for the cost of the EM
algorithm.This is done by recycling the E and M-steps: Consider in pseudo-
code some function which is given the model parameters θ and returns the log
likelihood bound and gradient of the log likelihood bound computed in three
steps

[B, dBdθ ] = fct(θ)
1) Find φ∗ such that ∂B

∂φ

∣∣
φ∗ = 0 (E-step)

2) Calculate B(θ,φ∗)
3) Calculate ∂B(θ,φ∗)

∂θ (M-step)
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Step 1) is optimizing the bound with respect to the variational parameters and
is therefore equivalent to the E-step. Step 2) is to compute the bound – a task
which in many hidden variable problems is easy given the E-step, and step 3) is
essentially the same same computation as in the M-step, since the M-step means
solving the stationarity condition for the model parameters. Note that in step
3) we have exploited that we in step 1) set φ to it’s value at stationarity such
that implicit θ dependence through φ in the gradient will vanish. The returned
function value and gradient can be fed to any gradient based optimizer. In
this paper we have chosen the so-called UCMINF described in [13], which is a
quasi-Newton method using BFGS update, line search and trust-regions.

3.3 Overrelaxed Adaptive EM

The Easy Gradient Recipe is a very efficient approach for a modest number of
parameters to be estimated, but when in the case of for example very overcom-
plete systems, length(x)�length(s), such as images, the number of parameters
becomes too large for practical optimization. To deal with these situations,
we need to introduce a third optimization approach which in some sense is a
compromise between the two already presented. Among the variants of the EM
algorithm that modifies the step length we find the so-called Overrelaxed Adap-
tive EM algorithm, which, in the M-step, takes a larger step in the direction
proposed by EM,

θn+1 = θn + η(θEM − θn)

where η ≥ 1. For η = 1 we retain the ordinary EM algorithm, but for each time
we take a successful step forward, the parameter η is increased by a factor above
1 e.g. 2. If the bound is decreasing in a certain step, we undo the step and reset
η = 1. This speeds up the process significantly and a nice feature about the
Adaptive Overrelaxed EM is that the computational time spent in each step is
reasonable for also a large number of parameters.

3.4 Dealing with Constrained Parameters

Some of the parameters θ = {A,Σ,ν} are either by definition or applica-
tion constrained to be positive, positive definite, etc. Within the hierarchical
Bayesian framework this is dealt with by imposing priors on these and restrict-
ing these priors to be zero in the forbidden domains as is the case for the hidden
sources S. In the empirical Bayes setting, however, constraints can be imple-
mented using a reparametrization and thereby avoid the trouble of the integrals
involved in the Bayesian approach.

The mixing matrix A is considered to be either unconstrained or with pos-
itive elements. The positivity constraint is constructed using the exponential
function, (A)ij = e(α)ij . In this case, the parameter A is essentially substituted
by the underlying parameter α in the parameter set θ. Note that with this
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parametrization it holds for any function B that

dB
d [α]ij

=
∂A

∂ [α]ij

∂B
∂A

= [A]ij

[
∂B
∂A

]

ij

.

Setting this derivative to zero can be solved by a simple iterative scheme [6, 9, 22]
as long as both the data and the sources are positive:

[A]ij := [A]ij

[
Σ−1X〈S〉Tq

]
ij

[Σ−1A〈SST 〉q]ij
.

When negative data/sources are encountered the problem has to be solved via
somewhat slower quadratic programming techniques.

The noise covariance must be positive definite in order to serve as a covari-
ance, but can be further constrained to be for example diagonal. We consider in
this setup noise covariances of the simple isotropic form Σ = eβI, the diagonal
form Σ = diag(eβ1 , ..., eβm), and the full parametrization Σ = ββT . The param-
eters in the source prior may also be constrained, and similar reparametrizations
may be implemented.

4 Estimating Source Statistics

Calculating the required statistics and the normalization of the source poste-
rior will in most cases be intractable because the non-Gaussian source prior
and multivariate Gaussian Likelihood makes the posterior non-Gaussian mul-
tivariate. In this context tractable means we can calculate the normalization
constant of the posterior, the marginal Likelihood, p(X|θ) and posterior mo-
ments exactly in polynomial time. In the intractable case, we therefore have to
resort to approximate inference techniques. In this section we discuss two de-
terministic mean field approaches, expectation consistent (EC) and variational
(Bayes). In both these approaches variational distributions are used to make
the approximations to the marginal Likelihood tractable, but there is an im-
portant distinction to be made between the two. In the variational approach a
restricted form of the variational distribution q is used to made the calculation
of the bound B(θ,φ) tractable. In EC, on the other hand, the aim is only for an
approximation A(θ,φ) to the log of the marginal likelihood, which will typically
be more precise than the bound. But as will be shown below in optimization of
the parameters A(θ,φ) is used in exactly the same way as B(θ,φ).

4.1 Expectation Consistent

The basic idea behind the expectation consistent (EC) framework [17, 15, 16]
is to use more than one variational distribution approximation to the posterior.
These encode complementary aspects such as prior constraints and the Likeli-
hood term. We will show below that the requirement of consistency between
the distributions on the sufficient statistics, i.e. expectation consistency, follows
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very naturally when we derive the EC approximation to the marginal Likeli-
hood. We will also give a recipe for attaining the consistency by a sequential
iterative approach that alternates between updating each of the distributions.

In instantaneous ICA we can get tractability by choosing a decomposition
into two distributions (here s = st denotes the sources of one time instance t):

q(s) =
1

Zq(λq)
p(s) exp(λTq g(s)) (7)

r(s) =
1

Zq(λq)
p(x|A, s,Σ) exp(λTr g(s)) , (8)

where the exponential factors are chosen to contain the first and diagonal second
moment g(s) = (s1, . . . , sM ,− s

2
1
2 , . . . ,−

s2M
2 ), the parameters are denoted by

λ = (γ1, . . . , γM ,Λ1, . . . ,ΛM ). Both q and r have distinct vectors λq and λr
containing these terms. The normalizers are

Zq(λq) =
∫
ds p(s) exp(λTq g(s)) (9)

Zr(λr) =
∫
ds p(x|A, s,Σ) exp(λTr g(s)) . (10)

The purpose of the exponential factors in the approximate distributions is to
compensate for the factor we have omitted. How to choose the parameters will
be explained below. We see that we get tractability with this choice since q(s)
is a product of univariate distributions and r(s) is a multivariate Gaussian. Of
course the choice of decomposition should be guided not only be tractability
but also by quality of the approximation. We expect from central limit theorem
arguments that the EC approximation with this decomposition will become
better the higher the number of sources with a “homogeneous” connectivity of
the mixing matrix [15, 16, 5]. We expect the EC approximation to almost be
precise than the variational approximation since it contains the variational since
it is a more flexible approximation. To proceed we rewrite the exact marginal
Likelihood as

p(x|A,Σ) =
∫
ds p(x|A, s,Σ) p(s) =

Zq(λq)
Zq(λq)

∫
ds p(x|A, s,Σ) p(s)

= Zq(λq)
〈
p(x|A, s,Σ) exp(−λTq g(s))

〉
q
, (11)

where
〈. . .〉q =

1
Zq(λq)

∫
ds . . . p(s) exp(λTq g(s)) (12)

denotes an average over q(s). The first step in the EC approximation is to in-
troduce a simpler distribution containing only the exponential factor (a product
of univariate Gaussians in this case)

u(s) =
1

Zu(λu)
exp(λTug(s)) (13)
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and exchange the average over q with an average over u. If u shares some key
properties with q, e.g. the two first moments, then in many cases the finer details
of the distribution will not matter very much:
〈
p(x|A, s,Σ) exp(−λTq g(s))

〉
q
≈
〈
p(x|A, s,Σ) exp(−λTq g(s))

〉
u

=
Zr(λu − λq)
Zu(λu)

.

Inserting the approximation we arrive at the EC approximation

A(θ,φ) =≡ lnZq(λq) + lnZr(λu − λq)− lnZu(λu) (14)

with φ = {λq,λu}. With a change of variables λr ≡ λu −λq we can also write

lnZEC(λq,λr) = lnZq(λq) + lnZr(λr)− lnZu(λq + λr) . (15)

The second step in the EC approximation is to determine the parameters from
the stationarity condition [17] which gives the expectation consistent condition
of the three distribution

∂ lnZEC

∂λq
= 0 : 〈g(s)〉q = 〈g(s)〉u (16)

∂ lnZEC

∂λr
= 0 : 〈g(s)〉r = 〈g(s)〉u (17)

with λu = λq + λr. At this stationarity point we have the EC approximation

ln p(x|A,Σ) ≈ A(θ,φ) .

Below we will test this empirically by looking at predictions for moments.

EC Message Passing

Before giving explicit expressions for the marginal Likelihood expression and
parameter derivatives for the ICA model, we give a general recipe for attaining
the expectation consistent fixed-point which is identical to Minka’s expectation
propagation (EP) for two approximating factors [10]. This algorithm very of-
ten has very good convergence properties, but is not guaranteed to converge.
Alternative guaranteed convergent so-called double loop algorithms exist [17].
The details for the ICA-model are given in the Appendix. Iteration k of the
algorithm can be sketched as follows:

1. Send messages from r to q

• Calculate parameters of u(s): Solve for λu: 〈g(s)〉u = µµµr(k − 1) ≡
〈g(s)〉r(k−1)

• Update q(x): λq(k) := λu − λr(k − 1)

2. Send messages from q to r

• Calculate parameters u(s): Solve for λu: 〈g(s)〉u = µµµq(k) ≡ 〈g(s)〉q(k)
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• Update r(s): λr(k) := λu − λq(k)

r(k) and q(k) denote the distributions q and r computed with the parameters
λr(k) and λq(k). Convergence is reached when µµµr = µµµq since each parameter
update ensures λr = λu − λq.

EC for the ICA Model

In the following we give the explicit expressions for the EC marginal likelihood
expression, eq. (14), moments and the derivatives of the marginal Likelihood
approximation with respect to the parameters.

The moments and normalizer of the q(s) =
∏
i qi(si), i = 1, . . . ,M , will

depend upon the choice of prior. We denote the mean by

mq,i(γ,Λ) =
1

Zq(γ,Λ)

∫
ds s pi(s) exp(γs− 1

2
Λs2

i ) (18)

and likewise for the variance vq,i(γ,Λ). The multivariate Gaussian r-distribution
has covariance and mean

χr = (Λr + ATΣ−1A)−1 (19)
mr = χr(γr + ATΣ−1x) (20)

and normalizer

lnZr =
d−M

2
ln 2π − 1

2
ln det Σ +

1
2

ln detχr +
1
2
mT
r χ
−1
r mr − 1

2
xTΣ−1x . (21)

The u distribution is a the product of the univariate normals with moments
mu,i = γu,i/λu,i and vu,i = 1/λu,i. In the propagation algorithm, above and in
the Appendix, we need to solve for the parameters in terms of the moments:
γu,i = vu,imu,i and λu,i = 1/vu,i. Finally the contribution to the marginal
Likelihood from u is given by:

lnZu = −M
2

ln 2π +
1
2

∑

i

ln vu,i +
1
2

∑

i

m2
u,i

vu,i
. (22)

Next we consider the derivatives of the marginal Likelihood with respect to
A, Σ and ν. When expectation consistency holds then ∂ lnZEC

∂λq
= ∂ lnZEC

∂λr
= 0

and we only need to consider the explicit parameter dependence. All A and
Σ dependence is contained in lnZr, eq. (10), and all ν dependence in lnZq,
eq. (9). Stacking the variables, the result—which is is most easily derived by
considering lnZr as a moment generating function—is very close to eqs. (2) and
(3). Compared to these expressions the only difference is that we should now
take the average with respect to the r-distribution. Note that although q and r
have the same diagonal second moments, they differ on the off-diagonal terms:
q has zero covariance since it factorized and r has the Gaussian covariance,
eq. (19). It thus makes an important difference what variational distribution
we use when calculate the derivatives. Finally, the derivatives with respect to
parameters of the prior will be given by eq. (4) with the average being over the
q-distribution.
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4.2 Variational

The variational approximation can be motivated by the need to find a tractable
expression for the bound function eq. (1). This can be achieved choosing the
variational distribution in a tractable family. We have basically two possibilities
for the ICA model either fully factorized q(S) =

∏
it qit(sit) or as a multivariate

Gaussian. The latter choice only give tractable expression for the variational
bound for some choices of the prior. Here we will consider the fully factorized.

Choosing the variational distribution to be completely factorized it is not
likely that a perfect fit to the true source posterior is possible, but in many
cases, the approximation will suffice for a successful estimation. We obtain the
optimal q (in the factorized family) by setting the functional derivative δB/δqit
equal to zero (the so-called freeform derivation) [8]. The general and specific
solutions are:

qit(sit|φit) =
1
c

exp
[〈ln p(X,S|θ)〉q\qit

]

=
1
Zq
pi(sit|νi) exp

[− 1
2Λis2

it + γitsit
]

(23)

where 〈. . .〉q\qit =
∫ ∏

i′t′ 6=it dsi′t′qi′t′(si′t′) . . . denotes an average over the vari-
ational distribution excluding qit(sit) and Λ (a vector of length M) and γ (a
M ×N dimensional matrix) are defined by

Λ = diag(ATΣ−1A) (24)
γ = ATΣ−1X− (ATΣ−1A− diag(Λ) )〈S〉q . (25)

Note how this elegantly both provide us with the structural form of q by eq.
(23) and the optimal values of the parametrization by equations for Λ and
γ. Note also, however, that the expression for γ depends on the variational
mean value and the equations therefore not are closed. Using eq. (23) as a
sequential update for q(S) is the coordinate ascent algorithm for the factorized
variational distribution and thus guaranteed to converge to a (local) optimum.
The sufficient statistics for the variational distribution is the means because it
is the only statistic which is necessary to determine the parameter γ and Λ.
We thus write the update equations for the variational distribution in terms of
the mean function 〈sit〉q = mq,i(γit,Λi), eq. (18). Any convergent integral is
formally a function and it may seem that we have gained little be reformulating
the problem. But for a large and relevant set of source priors, the mean function
mq,i have a nice closed form expression. In those cases we have substituted an
intractable integral with a non-linear equation which evaluates much faster and
more efficiently. The function mq,i is described for a variety of priors in [6]
including binary, uniform, exponential (positive), Laplace (bi-exponential) and
Gaussian.

A consequence of using the factorized variational distribution is that we
will make trivial predictions for the non-diagonal second moments: 〈sitsi′t〉q =
〈sit〉q〈si′t〉q for i 6= i′. These second moments are used in in the derivatives of
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the bound function with respect to parameters, eqs. (2) and (3). This should
be contrasted to the EC and the linear response correction to the variational
approximation [6]. The linear response expression for the covariance is given
by eq. (19) with Λr,it being dependent upon the solution to the variational
equations: Λr,it = 1/vq,it − Λi. This result can thus be seen as an intermediate
step between the completely factorized variational approach and EC.

4.3 EC and Variational Comparison

In figure 1 we compare the mean squared approximation error on the first 〈sit〉
and second moments χii′t = 〈sitsi′t〉 − 〈sit〉〈si′t〉 for a range of signal to noise
ratios. The two RMS error measures are defined as

Error1 =

[
1

NM

∑

it

(〈Sit〉exact − 〈Sit〉app)2

]1/2

(26)

Error2 =

[
1

NM2
(
∑

ii′t

χii′t,exact − χii′t,app)2

]1/2

, (27)

where M is the number of sources. The example is using artificial data from
a mixture of Gaussians source prior with two components (with equal weight),
with zero mean and variances σ2

1 = 1, σ2
2 = 0.01. The number of samples is N =

2000 and the sources are mixed with a 2× 2 matrix with column vectors [1 0]T

and [
√

2/2
√

2/2]T . For each SNR level, defined as SNR = Tr(A〈ssT 〉AT )/σ2, a
data set with the appropriate noise level is generated and thereafter solved by the
various mean field approximations as indicated. In short, Figure 1 shows that
expectation consistent method (EC) is much (typically orders of magnitude)
more accurate than the variational methods, and that among the variational
methods linear response (VarLR) is more accurate than the simple factorized
model (VarFct).

5 Software

In this section we will briefly describe the icaMF Matlab toolbox1 that imple-
ments the algorithms described in this paper. The basic function call is

[S,A,loglikelihood,Sigma]=icaMF(X,par) ,

where X is the data matrix, par is a list of parameters to algorithm (some of
which are described below), S is the estimated sources, A is the estimated mixing
matrix, loglikelihood is the estimated log Likelihood per sample and Sigma
is the estimated noise covariance (default is scalar valued).

The par argument defines a number of settings for the algorithm. Some of
the most important are summarized in table 1.

1The toolbox with demos are available from http://mole.imm.dtu.dk/.
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Figure 1: Accuracy of the different posterior approximations.
For a Mixture of Gaussian prior, the exact source posterior mo-
ments can be calculated and compared to the approximations.
The plot show that both for the first moment (S) and the co-
variance (Chi), the EC is ay least one order of magnitude more
precise than the variational approach. Furthermore, among the
variational approaches is the linear response (VarLR) more ac-
curate than the simple factorized model (VarFct). In [21] we
also compare with the saddle-point method. It tends to give a
worse approximation than variational.

An additional feature for model selection is a Bayesian information criterion
(BIC) function which calculates

BIC = L(θ)− |θ|
2

logN ,

where |θ| is the number of parameters we estimate by maximum Likelihood,
e.g. the number of free parameters in A, Σ and ν. BIC is an asymptotic
expansion for the log of the Likelihood marginalized over all parameter. Figure
2 shows 1) the result of positive ICA for three sources on fMRI brain image
time series (described in figure caption) and 2) the output of the function call
icaMFbic(X,par,1:5). For comparison, figures 3 and 4 shows the result for
positive ICA and standard ICA both for four sources. Although the data has
be preprocessed such that it contains both negative and positive values the
result coming out of the positive ICA is more clear-cut than standard ICA.
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par. Usage Default Examples options

sources number of sources size(X,1) under-/overdetermined, square

optimizer parameter optimizer ’aem’ ’em’,’conjgrad’,bfgs’

solver source statistics solver ’ec’ ’ec’,’variational’

Sprior source prior ’mog’ ’exponential’,’binary’

method ICA method ’free’ ’constant’,’positive’,

’fa’,’ppca’

Table 1: Examples of the par settings in icaMF(X,par). More detail are
given in help icaMF. The ICA methods par.method explained: ’free’,
standard ICA, unconstrained mixing matrix and isotropic noise covariance
Σ = σ2I optimization and heavy-tailed source prior ’mog’ (fixed mix-
ture of Gaussians); ’constant’, for test sets, constant mixing matrix and
noise covariance; ’positive’, positive source prior ’exponential’ and
par.Aprior=’positive’; ’fa’, factor analysis; and ’ppca’, probabilistic PCA.

Interestingly, BIC for standard ICA tends prefer a much larger number ∼ 20 of
sources. This is probably because the model is more flexible than positive ICA.
Note also that BIC is based upon the assumption of independent samples. This
is not true in many case. In this example the samples are pixels in the image
which tend to be quite correlated. So the effective number of samples are lower
than the actual. Using the effective number of samples will lower the preferred
number of sources but it is beyond our aim to estimate the effective number of
samples.

6 Testing the Efficiency of the Framework

In this section we compare convergence properties between the optimization
schemes proposed and demonstrate the strong improvement of the more ad-
vanced methods over the EM algorithm. We also shortly discuss the relation to
the framework of non-negative matrix factorization, NMF.

The plots in Figure 5 are projections of the bound function contours and
steps in the space of the mixing matrix. The mixing matrix is 2 × 2 and the
space therefore 4 dimensional, but a plane is fitted to the path and bound and
steps projected into this two dimensional plane. The noise is isotropic but not
estimated in this example, a choice which that makes no difference to the points
made. Note that the step size of the EM optimization (EM) is so small, that
the dots form a solid line. In total, the EM algorithm use 729 steps to reach
the optimal point. For the adaptive overrelaxed EM (AEM), the step size is far
greater, and we can also see a failed test step as a detour from the region close
to the optimal point. But the AEM cancels this step, resets the step size to 1
and investigate the region close to the optimal point more carefully to reach the
optimal point in only 16 steps. The easy gradient approach with a quasi-Newton
update (BFGS) is also doing well, reaching the optimal point in 25 steps.
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Figure 2: “Spatial” positive ICA on fMRI time-series X =
Time× Image for three sources. The data is described in more
detail in [24]. The bar sub-plot shows the posterior probabili-
ties for models computed by BIC for varying number of sources.
The left plot is columns in mixing matrix: time-series with vi-
sual activation paradigm rest-activation-rest-activation super-
imposed (dashed line). Right plot shows associated sources im-
ages. Note that the decomposition is sorted according to “en-
ergy” Ei =

∑
dA

2
di

∑
t〈sit〉2.
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Figure 3: “Spatial” positive ICA on fMRI time-series X =
Time× Image for four sources.
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Another example which links the slow convergence of the parameters with
slow increase of the log likelihood can be seen in Figure 6. The data is an
artificial mix of the two speech signals available as a demo in the toolbox and the
source priors are chosen to be a mixtures of Gaussians with equal weights, zero
mean and variances σ2

1 = 1, σ2
2 = 0.01. As the figure shows, the development of

the log likelihood approximation is rather different for the three methods. While
the easy gradient approach with quasi-Newton update (BFGS) is somewhat
slower in the beginning, it quickly maximizes the log likelihood to a stable higher
level. As an indicator of the development of the parameters in this process, the
inserts show the data and the estimated mixing matrix for the BFGS at the
stable level and the EM at iteration 15 and 45. Close inspection of the inserts
reveals that the EM algorithm is not at all a perfect estimation at the latter
insert and this final fine-tuning takes an excessive amount of iterations.

We have run simulation comparing non-negative matrix factorization (NMF)
[9] with positive ICA. The results for the two algorithms are very similar al-
though in some instances where the SNR is not very high, positive ICA gives
the most reasonable results. Overall NMF, like InfoMax in the unconstrained
case, seems quite robust to the addition of noise. The main advantages of the
ICA model are precise estimates of noise level and the marginal likelihood.

7 Conclusion

In this paper we have combined the improved optimization methods with the
more advanced source posterior statistics and presented it in a easy-to-use tool-
box. Several examples demonstrates the drawback of the traditional EM algo-
rithm and the improved optimization obtained with adaptive overrelaxed EM
and the easy gradient recipe equipped with a suitably advanced optimizer. We
have also demonstrated the improved accuracy on the estimated source poste-
rior statistics obtained by the use of the expectation consistent (EC) method as
compared to the more traditional variational methods.

The upshot is an efficient ICA method which is still sufficiently flexible to
encompass constraints on the source priors, mixing matrix or noise covariance.
In that sense, the potential of Bayesian ICA is being realized and we believe
that the toolbox implementation is presenting an easy interface to an advanced
method. With a user-friendly interface, we sincerely hope that practitioners in
different research disciplines will also look to the more advanced and flexible
ICA methods when analyzing data in the future.
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A Solving the EC Equations

In this appendix we give the explicit expressions for iterative scheme for solve
the EC equations for the sources at time t, s = st:

• Initialize covariance and mean of r-distribution:

χr := (Λr + ATΣ−1A)−1 (28)
mr := χr(γr + ATΣ−1xt) (29)

with γr = 0 and Λr set such that the covariance is positive definite. It
is sufficient to take Λr to be small positive since ATΣ−1A is an outer-
product form with only non-negative eigenvalues.

Run sequentially over the sources:

1. Send message from r to qi

• Calculate parameter of ui: γu,i := mr,i/χr,ii and Λu,i := 1/χr,ii.

• Update qi: γq,i := γu,i − γr,i and Λq,i := Λu,i − Λr,i.

• Update moments of qi: mq,i := mq,i(γq,i,Λq,i) and χq,ii = vq,i(γq,i,Λq,i).

2. Send message from qi to r

• Calculate parameters of ui: γu,i := mq,i/χq,ii and Λu,i := 1/χq,ii.

• Update r: γr,i := γu,i − γq,i, ∆Λr,i := Λu,i − Λq,i − Λr,i and Λr,i :=
Λu,i − Λq,i.

• Update moments of r using Sherman-Morrison identity:

χr := χr −
∆Λr,i

1 + ∆Λr,i [χr]ii
[χr]i[χr]

T
i (30)

mr := χr(γr + ATΣ−1xt) . (31)

Convergence is reached when and if mr = mq and χr,ii = χq,ii, i = 1, . . . ,M .
The computational complexity of the algorithm is O(M3Nite), where M is the
number of sources, because each Sherman-Morrison update is O(M2) and we
make M of those in each sweep over the nodes.
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Figure 4: “Spatial” standard ICA on fMRI time-series X =
Time × Image for four sources. Standard ICA corresponds to
unconstrained optimization of mixing matrix and heavy-tailed
source prior.

EM AEM BFGS

Figure 5: Visualization of convergence. In this plot, the paths
of the three different optimization methods are plotted: The
EM algorithm (EM), the adaptive overrelaxed EM (AEM), and
the Easy gradient with a quasi-Newton optimizer (BFGS). The
contours are the bound function projected into the plane of the
path.
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Figure 6: Log likelihood versus iterations for the three different
optimization alternatives: The EM algorithm (EM), the over-
relaxed adaptive EM (AEM), and the easy gradient recipe with
a quasi-Newton method (BFGS). The data is a 2× 2 mixing of
the speech data. The inserts shows how the estimated mixing
matrix fits to the data and demonstrates that the EM algorithm
is converging only slowly to the right solution compared to the
BFGS method.
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