
Secure Dynamic Program Repartitioning

Rene R. Hansen and Christian W. Probst
Informatics and Mathematical Modelling

Technical University of Denmark
2800 Kongens Lyngby, Denmark

frrh,probstg@imm.dtu.dk
July 16, 2005

Abstract
Secure program partitioning has been introduced as a language-based technique to

allow the distribution of data and computation across mutually untrusted hosts, while
at the same time guaranteeing the protection of con�dential data. Programs that have
been annotated with security types are automatically partitioned by the compiler. The
main drawback in this setting is that both the trust hierarchy and the set of hosts are
�xed once the program has been partitioned. This paper suggests an enhanced version
of the partitioning framework, where the trust relation still remains �xed, but the
partitioning compiler becomes a part of the network and can recompile applications,
thus allowing hosts to enter or leave the framework. We contend that this setting is
superior to static partitioning, since it allows redistribution of data and computations.
This is especially bene�cial if the new host allows data and computations to better
ful�ll the trust requirements of the users. Erasure Policies ensure that the original
host of the redistributed data or computation does not store the data any longer.
Keywords: Secure Program Partitioning, Erasure Policies, Distributed Computation.

1 Introduction
Secure Program Partitioning [ZZNM2001, ZZNM2002] has been introduced as a language-
based technique for distributing con�dential data and computation across a distributed sys-
tem of mutually untrusted hosts. The program to be distributed is annotated with security
types that constrain permissible information
ow. The resulting con�dentiality and integrity
policies are used to guide the partitioning across the network. The resulting communicating
sub-programs not only implement the original program, but at the same time satisfy all secu-
rity requirements of principals, including trust relations to other principals as well as hosts.
The results reported in [ZZNM2001, ZZNM2002] with respect to the performance of the
distributed code suggest that this is a feasible way to obtain secure distributed computation.

1

The main drawback in Secure Program Partitioning (SPP) is that the framework contains
two �xed components|the trust relation and the hosts in the network. While we contend
that a static trust relation essentially is necessary to ensure system integrity, the second
restriction not only seems to be super
uous, but also hinders the system from moving data
or computations to newly available hosts that might allow a better ful�llment of principal's
requirements. Thus, by allowing the partitioning to be adjusted after a host joins or leaves
the network, the overall trust of the principals in the partitioning and thus in the security
of the distributed system can be increased.

After data and computations have been redistributed in the enhanced network, in an
ideal world hosts should not store any references to items that have been moved to another
host. The recently introduced mechanism of Erasure Policies [CM2005] allows to design
systems where programmers annotate their data with policies that describe exactly this
kind of behavior. Erasure Policies state explicit erasure and declassi�cation requirements.

The contributions of this paper are:
� We extend the framework for Secure Program Partitioning to allow hosts to enter and
(under certain conditions) leave the network.

� By adding Erasure Policies to SPP, the extended system assures that information is
erased or made inaccessible after a node has left the network.

The rest of this paper is structured as follows. Section 2 gives an overview of related work,
including Secure Program Partitioning and Erasure Policies. This is followed in Section 3
by the description of our proposed framework for dynamic repartitioning in the case of hosts
entering the network. The emphasis here is on making the partitioning an active component
of the framework, as well as using Erasure Policies to ensure that hosts make inaccessible
any data that has been redistributed to another host. Section 5 concludes the paper with
an overview of future work.

2 Related Work
This section gives an overview of Secure Program Partitioning [ZZNM2001, ZZNM2002] and
Erasure Policies [CM2005], which form the foundation for the framework described in the
rest of this paper. This Section largely follows the description in the cited papers.

2.1 Secure Program Partitioning
Information-
ow policies have been used for specifying con�dentiality and integrity require-
ments. Their success is mostly based on the ability to specify how information may be used
in the system as opposed to which principals may access or modify the data. Security-typed
languages [Sch2000, ABHR1999, HR1998, Mye1999, PC2000, SV1998, VSI1996, ZM2001]
have been used to implement these policies in programming languages. By annotating data
in programs, the programmer explicitly speci�es how the
ow of information allowed by the

2

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

sub−programs

� �
� �

�
�

� �
� �

�
�

� �
� �

	
	compiler

trust declarations

security−typed

source code host 1

host 2

host 3

splitter

Figure 1: Structure of the Secure Program Partitioning Framework as introduced
by [ZZNM2001, ZZNM2002].

language semantics should be constrained. The bene�t of these explicit annotations is that
programs that violate the restrictions will be rejected either during compilation or during
execution. Thus, the program itself does not have to be trusted|instead, only the reused
components (compiler and run-time system) must be trusted.

The bene�t of SPP is that participants do not need to fully trust each others hosts to
enable the distributed execution of a program dealing with data of the principals. As Fig-
ure 1 depicts, in the original framework introduced by [ZZNM2001], the compiler receives
two inputs|the program source code, which uses a security-typed language, and the trust
declarations of all participants. These declarations state each principal's trust in hosts and
other principals. They are used to guide the compilation and splitting of the security-typed
program into sub-programs that are executed on (some of) the hosts in the network. By
communicating, these sub-programs perform the same computation as the original program,
however, the splitter ensures that all trust and security policies are ful�lled. As the authors
state in [ZZNM2001], the splitter ensures that if a host h is subverted, only the con�dentiality
or integrity of data owned by principals that trust h is threatened.

The main component in the programming model used in SPP is the principal, who
can express con�dentiality or integrity concerns with respect to data. Principals can be
named in information-
ow policies and also de�ne the authority possessed by the program
being executed. Security labels [ML2000] express con�dentiality policies on data. A label
l1 = fo : r1; r2; � � � ; rng means that data labeled with l1 is owned by a principal o and that o
permits readers r1; � � � ; rn (and o) to read the data. Data can also have multiple owners, each
expressing its concerns with respect to the data. E.g., l2 = fo1 : r1; r2; o2 : r2; r3; g expresses
that owner o1 allows readers r1 and r2 to read data labeled with l2, and owner o2 does so
for readers r2 and r3. Of course each annotation must be obeyed by the system, that is only
r2 will be allowed to access data labeled with l2. Additionally, labels may specify integrity.
l3 = f? : p1; � � � ; png speci�es which principals trust the data labeled with l3.

To allow the splitter to partition the program across the hosts of the target network, it
must know the trust relationship between the principals and the hosts. This information is

3

1 public class OTExample f
2 intfAlice:; ?:Aliceg m1;
3 intfAlice:; ?:Aliceg m2;
4 booleanfAlice:; ?:Aliceg isAccessed;
5
6 intfBob:g transferf?:Aliceg (intfBob:g n)
7 where authority(Alice) f
8 int tmp1 = m1;
9 int tmp2 = m2;
10 if(!isAccessed) f
11 isAccessed = true;
12 if(endorse(n, f?:Aliceg) == 1)
13 return declassify(tmp1, fBob:g);
14 else
15 return declassify(tmp2, fBob:g);
16 g
17 else return 0;
18 g
19 g

Figure 2: The source code for the Oblivious Transfer example taken from [ZZNM2002], based
on the Oblivious Transfer Problem [Rab1981]. Alice has two values (stored in �elds m1 and
m2), exactly one of which Bob is allowed to learn. However, Bob does not want Alice to
know, which value he has requested. Fields and methods have been annotated with labels
to specify con�dentiality and integrity requirements of the principals Alice and Bob.

speci�ed by two components per principal and host. The con�dentiality label C(h;A) speci�es
the upper bound on the con�dentiality of information that A allows to be sent to host h.
Accordingly, the integrity label speci�es whether the principal trusts information received
from host h. For the example shown in Figure 2, the principals Alice, Bob, and Charlie
specify the following con�dentiality and integrity labels for the four hosts in the network.
Alice does trust her own host A as well as the hosts T and S and also believes in the integrity
of data received from these hosts. Bob trusts his own host B as well as hosts T and S, but
only believes in the integrity of data received from his own host. Finally, Charlie trusts the
host T . This results in the following sets C and I:

C(A;Alice) = fAlice :g I(A;Alice) = f? : Aliceg
C(B;Bob) = fBob :g I(B;Bob) = f? : Bobg
C(T;Alice) = fAlice :g I(T;Alice) = f? : Aliceg
C(T;Bob) = fBob :g C(T;Charlie) = fCharlie :g
C(S;Alice) = fAlice :g C(S;Bob) = fBob :g
For a host h, the sets Ch and Ih are computed as the union of the according sets C(h;)

4

and I(h;), respectively. Along the same lines one can derive con�dentiality and integrity
labels for �elds and expressions in a security-typed language. Generally, the sets C and I are
uni�ed into a single label L and the two functions C and I are used to extract each of the
subsets.

For the splitting of an application onto the hosts available in a network, the authors
in [ZZNM2002] specify constraints for �elds and statements in the application. For a �eld
f , the generated constraints are

C(Lf) v Ch and Ih v I(Lf)
The constraints for a statement S result from performing a simple de�nition-use analysis

on all data used or de�ned in the statement. Let U(S) and D(S) be the set of values used
and locations de�ned by S. Then

C �tv2U(S)Lv
� v Ch and Ih v I �ul2D(S)Ll

�

For a list of additional constraints, including those regarding the program counter, refer
to [ZZNM2002]. The essential property for this work is that in principal they all have the
above form.

2.2 Erasure Policies
Erasure Policies (EPs) as introduced by Chong and Myers [CM2005] impose strong end-to-
end requirements to enforce that information is either erased or made less accessible. They
are based on a lattice of security levels. The simplest kind of a policy is a label l that limits
how the labeled data may be used. In the setting of SPP this would be a set of con�dentiality
and integrity requirements. Additionally, erasure policies have the form l1c%l2, where l1; l2
are policies and c is a condition specifying that l1 must be enforced on the labeled data, and
once condition c is ful�lled, l2 must be enforced as well, independent of the future evaluation
of c. Finally there are declassi�cation policies l1 c

; l2 stating that l1 must be enforced on the
labeled data, but once condition c is ful�lled, the data may be declassi�ed. From thereon
policy l2 must be enforced, again independent of the future evaluation of c.

3 Dynamic Repartitioning
This section introduces our extension to the Secure Program Partitioning framework as
introduced in Section 2.

Dynamic Repartitioning essentially shares all the properties of SPP as described above.
The main achievement is that hosts may join or leave the network after an initial partitioning
of the application has been found. This initial partitioning is important, since it ensures that
the program can also be partitioned across a bigger set of hosts. We de�ne the set of hosts
used for constructing the initial partitioning as Hinit . Hosts in this set are never allowed to
leave the network, since they are needed to ensure the existence of a partitioning. Hosts that

5

��
�
��
�

� � �� � �� � �
� � �� � �� � �

� �� �
� �� �

compiler

����

� � �� � �
	 	 		 	 	

�
�

��

�����
�

��
�
��
�

� � �� � �� � �
� � �� � �� � �

� �� �
� �� �

host 1

host 2

host 3

host 4

host 1

host 2

host 3

splitter

compiler

splitter

compiler

����

����

trust declarations

security−typed

source code ����

� � �� � �
� � �� � �

� �� �
� �
� �

host 1

host 2

host 3

host 1

host 2

host 3

host 4

splitter

compiler

splitter

(b)

(d)

(a)

(c)

Figure 3: Secure Dynamic Program Repartitioning. The main change in contrast to SPP is
that the Compiler/Splitter component is part of the network (a). The initial distribution of
application code is done just like in the original framework (b). Once a new node enters the
network (c), the Compiler/Splitter tries to �nd a new distribution that better ful�lls the trust
requirements speci�ed by the principals. If the new host enables such a repartitioning, the
new partitions are distributed to the hosts (d). Otherwise, the system remains unchanged.
In a last step, hosts must erase the data that has been partitioned to another host (or make
the data inaccessible). In (d) this is the hatched area of host 3.

join the network later are part of the set Hjoin . Hosts in this set may freely join or leave
the network since they are not needed for the initial partitioning. In contrast, in the case of
hosts from the set Hinit leaving the network no guarantee can be given that the source code
can be partitioned across the remaining hosts.

The e�ect of having an additional host in the network is that some of the constraints
introduced in Section 2 may be resolved to an element that is smaller with respect to v than
the original solution. This is true for all constraints where the con�dentiality (integrity) sets
for the new host n (Cn and In) are smaller (bigger) than those of the originally chosen host
h. Of course there is no guarantee that the new host will be chosen for data or computations,
just like the host S in the Oblivious Transfer example.

3.1 Enforcing Erasure of Data
If data has been repartitioned to another host as result of a host joining the network, prin-
cipals will want to be assured that their data has been erased or made less accessible on the

6

host A

host B

host T

else return 0;

return declassify(tmp2, {Bob:});

else

return declassify(tmp1, {Bob:});

if (endorse(n, {?:Alice}) == 1)

isAccessed = true;

if (!isAccessed) {

int tmp2 = m2;

int tmp1 = m1;

where authority(Alice) {

public class OTExample {

int{Alice:; ?:Alice} m1;

int{Alice:; ?:Alice} m2;

boolean{Alice:; ?:Alice} isAccessed;

int{Bob:} transfer{?:Alice} (int{Bob:} n)

}

}

}

Figure 4: The Oblivious Transfer example including the partitioning of code pieces across
three hosts according to [ZZNM2002].

original host. Using the framework of Erasure Policies as described in Section 2, this e�ect
can be ensured automatically without additional annotations by the principals.

To do so, we introduce two conditions rem and loc that model the event of data being
rescheduled to a remote host and data being available locally. We assume that during the
redistribution of an application no data ever is reused. As the result of a host n joining the
network, data might be repartitioned from host h to the new host n. If n leaves the network
again, depending on the other hosts that joined or left the network, the data or parts of it
could be repartitioned to be stored on h again. In this scenario, a fresh copy of the data
would be created and stored on h. To make sure that data stored on hosts are not reused
once they have been partitioned on another host, we use an erasure policy using the rem
condition. The policy for some data d that is partitioned on a host h and in the original
framework would have label l then becomes lrem%>. This ensures that after the d has been
partitioned onto another host it can no longer be accessed on host h.

7

4 An Example
This section returns to the Oblivious Transfer example presented in Figure 2. Using the
annotations to the source code and the con�dentiality and integrity labels speci�ed by the
principals, the code can be partitioned on three hosts A, B, and T . The labels for the four
available hosts are

CA = fAlice :g IA = f? : Aliceg
CB = fBob :g IB = f? : Bobg
CT = fAlice :;Bob;Charlie :g IT = f? : Aliceg
CS = fAlice :;Bob :g IS = f? :g
Figure 4 shows how the application again and how to partition it on three of the hosts,

A, B, and T .
Assume that later on a host N joins the network for which the principals have speci�ed

CN = fAlice :;Bobg and IN = f? : Aliceg. Repartitioning data and computations that
in Figure 4 have been partitioned to T will allow to ful�ll the requirements of both Alice and
Bob better than in the original partition, since the set CT is larger than necessary to ful�ll all
constraints generated for the program (since the labels in the program do not reason about
Charlie).

5 Conclusions and Future Work
We have introduced a framework for Secure Dynamic Program Repartitioning. The work
presented in this paper builds on prior work on Secure Program Partitioning, a framework
working with a �xed sets of hosts. Our framework inherits all properties from SPP, but
additionally allows hosts to join and (under certain conditions) leave the network, possibly
causing a re-partitioning of the application, and uses Erasure Policies to ensure that data is
made inaccessible on hosts that no longer store the data after repartitioning has taken place.

We see two limitations for our approach. On the on hand, for the time being like SPP
we only investigate single-threaded programs. Repartitioning of applications can only occur
when the program is not being executed. Thus, no additional communication primitives are
needed on top of those introduced by [ZZNM2002]. On the other hand, theoretically the
system does not know the con�dentiality and integrity sets of principals for hosts joining the
network. This could be avoided by having a list of hosts potentially joining the network and
principals specifying policies for each of them or by specifying certain properties of a host
like operating system or owner to deduct policies for each user based on preferences. While
these approaches are inherently inelegant, we currently see no real alternative.

We are currently working on the formalization of the extensions described here. It will be
especially interesting to model fully dynamic networks based on the available con�dentiality
and integrity, that is allow hosts to leave the network again based on the trust of principals
into the hosts remaining in the network. In order to ensure that applications can still be
partitioned in this case, the system will need to ensure that (instead of forcing the initial

8

set of hosts to remain in the network) the hosts remaining in the network provide the same
con�dentiality and integrity as the initial set. Another interesting problem is to change the
token model introduced by [ZZNM2002] so that repartitioning can be guaranteed to be safe
also while the application is executed.

References
[ABHR1999] Mart��n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core

calculus of dependency. In ACM, editor, POPL '99. Proceedings of the 26th
ACM SIGPLAN-SIGACT on Principles of programming languages, January
20{22, 1999, San Antonio, TX, ACM SIGPLAN Notices, pages 147{160, New
York, NY, USA, 1999. ACM Press.

[CM2005] Stephen Chong and Andrew C. Myers. Language-Based Information Erasure.
In CSFW '05: Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW'05), pages 241{254, Washington, DC, USA, 2005. IEEE
Computer Society.

[HR1998] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with
security and integrity. In Conference Record of POPL '98: The 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 365{377, San Diego, California, 19{21 January 1998.

[ML2000] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentral-
ized label model. ACM Transactions on Software Engineering and Methodol-
ogy, 9(4), October 2000.

[Mye1999] Andrew C. Myers. JFlow: practical mostly-static information
ow control. In
ACM, editor, POPL '99. Proceedings of the 26th ACM SIGPLAN-SIGACT
on Principles of programming languages, January 20{22, 1999, San Antonio,
TX, ACM SIGPLAN Notices, pages 228{241, New York, NY, USA, 1999. ACM
Press.

[PC2000] Fran�cois Pottier and Sylvain Conchon. Information
ow inference for free.
ACM SIGPLAN Notices, 35(9):46{57, September 2000.

[Rab1981] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

[Sch2000] Fred B. Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security, 3(1):30{50, February 2000.

[SV1998] Geo�rey Smith and Dennis Volpano. Secure information
ow in a multi-
threaded imperative language. In The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL '98), pages 355{364,
New York, January 1998. Association for Computing Machinery.

9

[VSI1996] Dennis Volpano, Geo�rey Smith, and Cynthia Irvine. A sound type system for
secure
ow analysis. Journal of Computer Security, 4(3):167{187, December
1996.

[ZM2001] Steve Zdancewic and Andrew C. Myers. Secure information
ow and CPS.
Lecture Notes in Computer Science, 2028:46{??, 2001.

[ZZNM2001] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.
Untrusted hosts and con�dentiality: Secure program partitioning. In Greg
Ganger, editor, Proceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP-01), volume 35, 5 of ACM SIGOPS Operating Systems
Review, pages 1{14, New York, October 21{24 2001. ACM Press.

[ZZNM2002] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. ACM Transactions on Computer Systems,
20(3):283{328, August 2002.

10

