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Abstract

This thesis addresses the problem of scheduling aircraft landings at

an airport. Given a set of planes and runways, the objective is to

minimize the total (weighted) deviation from the target landing time

for each plane. There are costs associated with landing either earlier

or later than a target landing time for each plane. Each plane has to

land on one of the runways within its predetermined time windows such

that separation criteria between all pairs of planes are satisfied. This

type of problem is a large-scale optimization problem, which occurs at

busy airports where making optimal use of the bottleneck resource (the

runways) is crucial to keep the airport operating smoothly.

This thesis is the first attempt to develop a branch-and-price exact

algorithm for the Aircraft Landing Problem (ALP), in which the col-

umn generation method is applied to solve the linear relaxation problem

for each branch node throughout the branch-and-bound procedure. We

formulate the ALP as a set partitioning problem with side constraints

on the number of available runways. We also present a mixed integer

formulation for the subproblem in column generation, which can be

used to generate the columns with the minimum negative reduced cost.

Then a branch-and-bound method is developed to find the optimal

integer solution for the ALP. Finally, the branch-and-price exact algo-

rithm is implemented and tested on the public data from OR Library

v
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involving up to 50 aircraft and 4 runways. The computational results

show that the algorithm can solve the problem optimally in acceptable

CPU time. Furthermore, the optimal solutions can be achieved with

less than 500 columns generated and 12 branch nodes explored.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, air traffic has experienced a tremendous

growth. As an example, the world’s largest airport - Atlanta, USA -

alone handles more than 80 million embarkations and disembarkations

per year. The biggest cargo airport, located in Memphis, TN, trans-

ports 2.5 million tons of cargo each year. Congonhas, the Brazilian

airport through which passes the largest number of aircraft, manages

an average of 22 thousand movements a month (Mello (2002)). At Syd-

ney airport, landing slots are allocated at 3 minuts intervals (Ciesielski

et al. (1998)). Air transport has definitely established itself as one of

the most important means of transport in the future.

However, as the air traffic develops, the limitation of the runway

becomes the bottleneck during the airport operation. For example,

London Heathrow airport, one of the busiest airports in the world,

has only two runways (Atkin et al. (2004)). When the number of

approaching flights exceeds the airport capacity, some of these aircraft

can not be landed on its ′perfect′ landing time. There is a cost mainly on

the waste of fuel for each plane flying faster than its most economical

speed. Airlines also experience different costs for delays of different

1
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flights. Depending on the amount of delay, there might be a number

of transfer passengers that miss their connecting flight. The crew or

aircraft might also be needed to perform a next flight, that now has

to be rescheduled. This might propagate delays to departing flights.

There are a lot of other possible costs resulting from delays, such as

ground crew rescheduling, crew-overtime payments and so on (Soomer

et al. (2005)). It has been estimated the cost caused by air traffic

congestion would be $10 billion in Europe by the year 2000 (Ciesielski

et al. (1998)). Therefore solving the aircraft landing problem (ALP),

which is the problem of assigning each aircraft an optimal landing time

and runway such that the total cost is minimized, is an important area

of air traffic operations.

If the terms ′aircraft′ and ′runway′ are considered more loosely,

many routing and scheduling problems can be regarded as ALP. An

example is that we have a number of customers in need to be picked

up by a set of vehicles with given time windows for each customer and

the travelling time between any pair of them. This routing problem

can be viewed as an ALP where the runways represent the vehicles and

the aircraft represent the customers. Another example is to assign a

number of jobs on a set of machines where the release time, latest finish

time and processing time for each job are given. This scheduling prob-

lem can also be considered as an ALP. An in-depth description about

the ALP is introduced in section 2.1.

The aircraft landing problem is ′hard′ to solve since it can be viewed

as a job machine scheduling problem with release times and sequence-

dependent processing time. The job machine scheduling problem has

been proved to be NP-hard, hence the ALP is NP-hard (see Beasley et

al. (2000)). In the past decades, both exact algorithms and heuristic

algorithms have been developed for the ALP. The exact algorithms

can find the optimal solution within reasonable time for the instances

involving up to 50 aircraft. However, as the size increases, the running

time consumed for finding the optimal solution by the exact algorithm
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usually increase exponentially. Hence, many heuristic methods have

also been developed with the hope to solve the problem more quickly,

such as population heuristic approaches (see Pinol et al. (2003)), time

segment heuristic (see Jung et al. (2003)) etc. A review of the literature

is presented in section 2.3.

In this thesis, we focus on investigating and developing new methods

for the aircraft landing problem. We are interested in finding optimal

solutions for the large-scale ALP. The exact algorithm, presented by

Beasley et al. (2000), is based on the LP-based tree search method (so

called branch-and-bound) to find the optimal integer solution. Rather

than using the branch-and-bound method, we instead apply a branch-

and-price approach to find optimal solutions, which has been applied

successfully to solve large instances of well known NP-hard problems

such as the Vehicle Routing Problem (Larsen, (1999)), Aircrew Schedul-

ing Problems (Desaulniers et al. (2001)), Job Machine Scheduling Prob-

lems (Chen et al. (1997)) etc.

In the branch-and-price methods, column generation is applied for

solving the linear relaxation problems throughout the branch-and-bound

tree. Column generation, first proposed by Dantzig and Wolfe in 1961,

is a powerful mehtod for dealing with linear programming problems

which contain a huge number of variables. It starts by solving a re-

stricted problem including only a few variables and then checks the

optimality by a pricing problem. However, as mentioned in Barnhart

et al. (1998), there are fundamental difficulties in applying column

generation techniques for linear programming in integer programming

solution methods, including the following:

• Conventional integer programming branching on variables may

not be effective because fixing variables can destroy the structure

of the pricing problem.

• Solving the linear programming problems and the subproblems

to optimality may not be efficient, in which case different rules

will apply for managing the branch-and-price tree.
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For a general survey of the branch-and-price method see Barnhart

et al. (1998).

1.2 Overview of the contribution of the

thesis

This thesis is the first attempt to develop a branch-and-price based

algorithm for the ALP. Contributions are made on the following aspects:

We present a set partitioning formulation for the problem of which the

linear relaxation provides excellent lower bound for the integer problem.

We propose a mixed integer formulation for solving the subproblem in

the column generation. The model not only determines the column

with the minimum reduced cost that is to be added to the master

problem, but also solves the sequence problem and gives the landing

time for the aircraft appearing in the column. Moreover, 4 kinds of

constraints are added to the model in order to make it operational for

all the branch nodes throughout the branch-and-bound procedure. We

also propose a new branching strategy for the ALP, which makes the

branch-and-bound more efficient.

1.3 Outline of the thesis

The remainder of the thesis is structured as follows: In Chapter 2 more

details about the ALP are introduced and a mathematical model for the

ALP is presented. Furthermore a review of relevant literature is given.

In Chapter 3, we reformulate the ALP as a set partitioning model and

propose a branch-and-price method to solve the problem, in which the

linear relaxation of the integer problem is solved by column generation

for determining the lower bound, and the branch-and-bound method is
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used to guarrantee the optimal integer solution for the ALP. A mathe-

matical fomulation for the subproblem in the column generation is also

proposed. In Chapter 4, an algorithm based on the branch-and-price

method is developed. It is implemented and tested on the public data

from OR-Library involving up to 50 aircraft. Computational results

and data analysis are also presented. In Chapter 5, we summarize the

achievements in this thesis and point out the future research on this

work.



Chapter 2

The Aircraft Landing

Problem

In this chapter, the description of the ALP is introduced. A mixed

integer formulation for the ALP is presented. Finally, we review some

recent approaches for the ALP in the literature, including genetic algo-

rithm, population algorithm and so on.

2.1 Problem Description

Given a set of planes with target landing times and time windows for

landings and runways, the objective of the ALP is to minimize the

total (weighted) deviation from the target landing time for each plane.

There are costs associated with landing either earlier or later than a

target landing time for each plane. Each plane has to land on one of the

runways within its predetermined time windows such that separation

criteria between all pairs of plane are satisfied. This type of problem

is a large-scale optimization problem, which occurs at busy airports

where making optimal use of the bottleneck resource (the runways) is

crucial to keep the airport operating smoothly.

Upon entering within the radar range (or horizon) of an air traffic

6
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control (ATC) at an airport, a plane requires ATC to assign a landing

time and also a runway if more than one runways are in use. The

landing time must lie within a predetermined time window, bounded

by an earliest landing time and a latest landing time. The time windows

are different for different planes. The earliest time represents the time

required if a plane flies at its maximum airspeed. The latest time

corresponds to the landing time of a plane flying at its most fuel efficient

airspeed while holding (circling) for the maximum allowable time (see

Abela et al. (1993)).

Each plane also has a most economical, preferred speed, referred to

as the cruise speed. The preferred or target time of a plane is the time

it would land if it is required to fly at cruise speed. If ATC requires the

plane to either slow down, hold or speed up, a cost will be incurred.

Fig.2.1. depicts this variation in cost within the time windows of a

plane.

6
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Figure 2.1: Variation in cost for a plane within its time window

Furthermore, the flow of incoming aircraft is not homogenous, it

contains different aircraft types. All aircraft in flight create wake vor-

tices at the rear of the craft. These vortices have a chaotic evolution

and can cause serious turbulence to a closely following aircraft, even to

the extent of a crash. In order to maintain an aircraft’s aerodynamic

stability, a separation distance based on the preceding aircraft types

must be respected during landing. The separation time between two

aircraft depends on the type of the aircraft, e.g. a Boeing 747 can
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handle (and generates) more turbulence than a Hawker 700.

During peak hours, ATC must handle safely and effectively land-

ings of a continuous flow of aircraft entering the radar range to the

assigned runway(s). The capacity of the runways is highly constrained

and this makes the scheduling of landings a difficult task to perform

effectively. We might expect that the practical problem of scheduling

aircraft landings within an ATC environment is more complex than

the basic problem described above. We do not have perfect (or ex-

act) information about all planes that are going to land. In practice

the operational environment changes as time passes. New information

becomes available making it necessary to revise the previous decision

based on available information.

In the following, we consider the static (or off-line) version of the

problem, where the set of aircraft waiting to land is known. This is

in particular useful to investigate airport runway capacity in the plan-

ning stage. As customary in the big airports in practical case, there

are usually more than one runways (e.g. the Copenhagen airport has

3 runways), therefore, we mainly discuss the multiple runway ALP in

this work. Note that whilst throughout this thesis we shall only re-

fer to planes landing, the formulation and algorithm presented here is

applicable without change to problems also involving takeoffs.

2.2 A mathematical model of the ALP

This section presents a mixed integer formulation of the static multiple

runway aircraft landing problem based on the formulaiton presented in

Beasley et al. (2000).

Given a set of planes P , each plane i has a predetermined landing

time windows [Ei, Li], and also, a target time Ti (Ei ≤ Ti ≤ Li) at which

time the plane is landed with cost 0. Sij is the required separation time

between plane i and j (where i lands before j) for landing these on the
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same runway. As customary in the multiple runway case, we assume

that the separation time between two planes on different runways is 0.

gi and hi denote the unit costs for plane i landing earlier and later than

the target time respectively.

We use the decision variables:

xi = the landing time for plane i (i ∈ P );

αi = how soon plane i lands before Ti (i ∈ P )

βi = how late plane i lands after Ti (i ∈ P )

δij =

{
1 if plane i lands before j (i, j ∈ P ; i 6= j);

0 otherwise

zij =

{
1 if i and j land on the same runway (i, j ∈ P ; i 6= j);

0 otherwise

yjr =

{
1 if plane j lands on runway r (j ∈ P ; r ∈ R);

0 otherwise

The problem is to determine the landing time x and the allocation

variable y for each plane which gives the minimum cost while satisfying

the following:

• each plane lands at some time within the corresponding time win-

dow

xi ∈ [Ei, Li] ∀i ∈ P ; (2.2.1)

• separation criteria between the landing of a plane, and the landing

of all successive planes on the same runway are respected. That

is, if δij = 1 and zij = 1, then the following holds,

xj ≥ xi + Sij ∀i, j ∈ P ; i 6= j (2.2.2)

The mathematical formulation can now be stated as:
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MIP:

min

P∑

i=1

(giαi + hiβi) (2.2.3)

s.t. Ei ≤ xi ≤ Li ∀i ∈ P ; (2.2.4)

δij + δji = 1 ∀i, j ∈ P ; i 6= j (2.2.5)

R∑

r=1

yir = 1 ∀i ∈ P ; r ∈ R (2.2.6)

zij = zji ∀i, j ∈ P ; i 6= j (2.2.7)

zij ≥ yir + yjr − 1 ∀i, j ∈ P ; i 6= j (2.2.8)

xj ≥ xi + Sijzij − (Li + Sij − Ej)δji∀i, j ∈ P ; i 6= j (2.2.9)

αi ≥ Ti − xi ∀i ∈ P (2.2.10)

0 ≤ αi ≤ Ti − Ei ∀i ∈ P (2.2.11)

βi ≥ xi − Ti ∀i ∈ P (2.2.12)

0 ≤ βi ≤ Li − Ti ∀i ∈ P (2.2.13)

xi = Ti − αi + βi ∀i ∈ P (2.2.14)

xi, αi, βi ≥ 0 ∀i ∈ P (2.2.15)

δij , yij, zij binary ∀i, j ∈ P ; i 6= j (2.2.16)

The objective function (Eq.2.2.3) minimize the sum of the costs

of deviation from the target times (Ti). Constraints (Eq.2.2.4) ensure

that each plane lands within its time windows. Constraints (Eq.2.2.5)

indicate that either plane i must land before plane j (δij = 1) or plane

j must land before plane i (δji = 1). Constraints (Eq.2.2.6) ensure that

each plan lands on exactly one runway whereas constraints (Eq.2.2.7)

are symmetry constraints (if i and j land on the same runway so do

j and i). Constraints (Eq.2.2.8) ensure that, if there is any runway r

on which plane i and j are both landed (i.e. yir = yjr = 1), then we

force zij to be 1 (i and j land on the same runway). If zij = 0, then
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(Eq.2.2.8) becomes 0 ≥ yir + yjr − 1, ensuring that planes i and j can

not land on the same runway. Constraints (Eq.2.2.9) are the separation

constraints for plane i and j. There are four cases to consider here:

a. If zij = 0 and δji = 1, which means i and j land on different

runway and j lands before i,it becomes

xj ≥ xi − (Li + Sij − Ej)

the same as

xj − Ej ≥ xi − Li − Sij

which always holds since xj − Ej ≥ 0 and xi − Li − Sij ≤ 0.

b. If zij = 0 and δji = 0 (indicating j lands after i on a different

runway), (Eq.2.2.9) becomes

xj ≥ xi + 0 − 0

which is in accordance with δji = 0.

c. If zij = 1 and δji = 1 (showing that j lands before i on the same

runway), (Eq.2.2.9) becomes

xj ≥ xi + Sij − (Li + Sij − Ej)

the same as

xj − Ej ≥ xi − Li

which always holds since the left handside is always larger than

or equal to zero while the right handsize is non-positive.

d. If zij = 1 and δji = 0 (showing that j lands after i on the same

runway), (Eq.2.2.9) becomes

xj ≥ xi + Sij

ensuring the separation time between i and j must be fulfilled.
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Constraints (Eq.2.2.10) and (Eq.2.2.11) ensure that αi is at least as big

as zero and the time difference between Ti and xi, and at most the time

difference between Ti and Ei. Constraints (Eq.2.2.12) and (Eq.2.2.13)

are similar equations for βi. Constraits (Eq.2.2.14) relate the landing

time (xi) to the time plane i lands before (αi), or after (βi), target (Ti).

This formulation is a mixed integer program involving 3P conti-

nous variables, o(P 2) binary vaiables. The linear programming relax-

ation (denoted as LMIP) is obtained by relaxing the integer constraints

(Eq.2.2.16) to

δij, zij , yir ∈ [0, 1] ∀i, j ∈ P ; i 6= j (2.2.17)

There are a number of extensions to the above formulation of the

ALP worth mentioning. Note first here that the objective is to mini-

mize the total weighted deviation of the landing time from the target

time. However, different objective functions can be adopted relating

to practical considerations. For example, if we were using the model

strategically to obtain some indication of the runway capacity, then we

might use the objective function

min max[xi|i = 1, ..., P ] (2.2.18)

to land all the P planes as soon as possible. In practice, it could also

happen that certain aircraft can not land on certain runways because,

for example, a particular runway is under maintenance or it is too short

for landing the aircraft. This can be easily dealt with by forcing zir = 0

if plane i can not use runway r.

2.3 Review of previous literature

With the problem of increasing congestion at airports, the efficient and

effective scheduling of plane takeoffs and landings becomes very impor-

tant. More and more work has been done recently in investigating the
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ALP. Both heuristic methods and optimal methods have been devel-

oped to solve the ALP including simple heuristic, population heuristic,

genetic algorithm etc.

Beasley et al. (2000) present a mixed integer formulation of the

ALP and a detailed review of published work addressing the ALP. They

propose 6 kinds of additional constraints in order to reduce the zero-

one space of the mixed integer formulation. The problem is then solved

optimally by using linear programming-based tree search for the public

data from OR-Library involving up to 50 aircraft. An effective heuristic

algorithm is also presented.

Ernst et al. (1999) present a specialized simplex algorithm which

evaluates the landing time very rapidly, based on some partial order in-

formation. This method is then used in a problem space search heuris-

tic as well as a branch-and-bound method for both single and multiple

runway ALP. Preprocessing steps involving time window tightening and

partial ordering based on problem data or an upper bound are used.

The algorithm is tested by the instances from OR-Library involving up

to 50 aircraft and 4 runways.

Jung et al. (2003) propose a heuristic algorithm based on the seg-

mentation of time. The time horizon is divided into time segments

that determine subproblems of ALP. Each subproblem is formulated

as a mixed integer zero-one linear problem as in Beasley et al. (2000)

and solved optimally in turn. Computational results are presented for

instances from OR-Library and for randomly generated instances in-

volving up to 75 aircraft and 4 runways.

Cheng et al. (1999) develop four different genetic-search formula-

tions for the multiple runway ALP. Three of these schemes use a genetic

algorithm approach while the last scheme uses a genetic programming

approach. Computational results are presented involving 12 aircraft

and 3 runways.

Pinol et al. (2005) first apply the scatter search and bionomic algo-

rithm for the multiple runway ALP. The initial population consists of
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three heuristic individuals based on the order of non decreasing earli-

est, target and latest time. The fitness value is defined as the objective

function value while the unfitness value is measured by the violation of

the separation time constraints. In the scatter search, binary tourna-

ment selection scheme based on individual fitnesses is used for parents

selection. For each aircraft, the new proportion value is computed as

a weighted linear combination of the corresponding parent propotion

values. Random weights are used here in order to introduce diversity

to the new individual. Furthermore, a duplication test is used to main-

tain a good level of diversity in the population. Then a simple linear

program on the landing sequence with the order fixed is applied to im-

prove the new individual. Afterwards, the new child is inserted into

the population, and the current worst individual is removed in order

to keep the population size constant. Both the linear and non-linear

objective function is considered in their paper. Computational results

are presented involving up to 500 aircraft and 5 runways.

Psaraftis et al. (1978, 1980) and Storer et al. (1992) adopt a job-

shop scheduling approach for solving a version of ALP. The runways

represent identical machines and the planes represent jobs. The earlist

time associated with each plane is the ready time (or release time) of

the job. Typically such papers assume the latest time to be sufficiently

large to be of no consequence. The separation time in the ALP is con-

sidered as the processing time in job-shop scheduling. The processing

time of a particular job (plane) on a particular machine (runway) is

then dependent upon just the job following it on the same machine

(successive separation), or all the other jobs that will follow it on the

same machine (complete separation).

Bianco et al. (1993) also adopt a job-shop sheduling view of the

ALP. They solve the single-runway problem using a mixed integer lin-

ear program and provide a tree-search procedure with embedded La-

grangean lower bounds. They also develop a heuristic approach for the

problem.
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The ALP may also be viewed as an open traveling salesman problem

(TSP) with time windows when single runway and successive separation

is considered. The difficulty with this approach lies in representing the

objective function. Bianco et al. (1993) apply this method and develop

dynamic programming algorithm for the TSP with cumulative costs.

Bianco et al. (1999) also adopt this approach and present a dynamic

programming formulation, lower bounds, and two heuristic algorithms.

Computational results are presented for a number of randomly gener-

ated problems and as well as two problems from the OR Library.

Among the heuristic algorithms, the simple heuristic (Beasley et al.

(2000)) provides the fastest solutions. However, the solution quality is

not stable. For the tested instances, the worst solution is around 77%

away from the optimum. The time segment heuristic provides much

better solutions. For the same instances, the optimality gap is less

than 6.5%. Another good heuristic method is the population heuristic

method. Moreover, it is very efficient and has been used to solve the

problem involving up to 500 aircraft that are much larger than those

in most of the papers.

All the exact algorithms (e.g. Beasley et al. (2000) and Ernst et al.

(1999)) use the branch-and-bound method to search for optimal integer

solution for the ALP. However, by using this method, the running time

grows exponentially in the problem size. Hence, it is not able to solve

the very large scale problems optimally within in acceptable time. In

the literature, the ALP are solved to optimality up to 50 aircraft.



Chapter 3

The Branch-and-Price

Method for ALP

In this chapter, we reformulate the ALP as a set partitioning model,

of which the linear relaxation provides a good bound of the optimal

solution. The preprocessing is introduced in order to reduce the solution

space. A heuristic method for determining an upper bound, which is

used to tighten the time windows, is presented. Finally, a branch-and-

price method is proposed for solving the ALP.

3.1 A set partitioning model of the ALP

The experimental results presented in Beasley et al. (2000) show that

the linear relaxation LMIP provides a poor bound on the optimal value

of the mixed integer model MIP presented. In order to get a better

formulation, we reformulate it as a set partitioning formulation. Planes

covered by the same column are to be landed on the same runway.

Additionally, side constraints on the number of available runways need

to be added. Let S denote the set of all feasible landing sequences.

Let as
i be 1 if plane i appears in the landing sequence s (s ∈ S) and 0

otherwise. Let cs be the cost of the landing sequence s, which is given

16
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by,

cs =
P∑

i=1

(giαia
s
i + hiβia

s
i )

The resulting model becomes:

SP:

min
∑

s∈S

cszs (3.1.1)

s.t.
∑

s∈S

as
izs = 1 ∀i ∈ P (3.1.2)

∑

s∈S

zs = R (3.1.3)

zs binary (3.1.4)

where the zs is the binary variable which is 1 if the landing sequence s

is selected and 0 otherwise. (Eq.3.1.1) is the objective function mini-

mizing the accumulated costs of all the planes. Constraints (Eq.3.1.2)

ensure that each plane lands on exactly one runway, while the constraint

(Eq.3.1.3) shows the limit on the number of the runways. Constraints

(Eq.3.1.4) are the integrality constraints on the decision variable zs.

This is an integer program denoted as SP. Fig.3.1 shows an small in-

stance of landing 3 planes on 2 runways. The time windows and the

unit costs for the landings are given. The separation time between any

of two planes is set to be 10.

Fig.3.2 shows the feasible landing sequences, corresponding landing

time and the corresponding costs. Note here that the feasible landing

sequences must fulfill the time windows, separation constraints and so

on. Consider the landing sequence {2 → 1}. Regarding the separation

constraints between plane 2 and plane 1 (i.e. S21 = 10), the earliest time

of landing plane 1 after the landing of plane 2 is 98 (= E2 +S21), which

exceeds its time window ([50, 95]). Hence, {2 → 1} is not included

in the solution space S of the set partitioning model. Furthermore,

the ′total cost′ is the minimum cost for each landing sequence and
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plane Ei Ti Li gi hi

1: 50 88 95 3 1
2: 88 95 105 3 1
3: 75 100 120 3 1

Figure 3.1: A small example of landing problem.

the ′landing time′ is the optimal landing time corresponding to the

minimum cost. This is because the objective of the ALP is to minimize

the total cost. If a feasible sequence s is selected in the optimal solution,

the planes involved in this sequence will land on the optimal landing

time, and thus the total cost of the landings is minimized.

Consider the problem of finding the minimum cost and the optimal

landing time for a feasible sequence s. This can be viewed as a single

landing problem given a set of planes and also the order of the planes.

Let Ps denote the set of planes appearing in sequence s and Us denote

the set of ordered pairs. For instance, for the feasible sequence 10

({1 → 3 → 2}) in Fig.3.2, the corresponding P10 is {1, 2, 3} and U10 is

{(1, 3), (1, 2), (3, 2)}.

The objective is to find the landing time xi ( ∀i ∈ Ps) such that

1. xi ∈ [Ei, Li]

2. xj ≥ xi + Sij ∀(i, j) ∈ Us

3. the sum of the weighted deviation from the target time is mini-

mized

The notations αi and βi are used to denote the earliness and tardiness.

The mathematical model can be formulated as
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landing sequence landing time total cost
sequence 1: {1} {88} 0
sequence 2: {2} {95} 0
sequence 3: {3} {100} 0
sequence 4: {1→ 2} {88 98} 3
sequence 5: {1→ 3} {88 100} 0
sequence 6: {3→ 1} {85 95} 52
sequence 7: {2→ 3} {95 105} 5
sequence 8: {3→ 2} {95 105} 25
sequence 9: {1→ 2 → 3} {88 98 108} 11
sequence 10: {1→ 3 → 2} {85 95 105} 34

Figure 3.2: The feasible sequences of Fig.3.1

SEQ:

min
∑

i∈Ps

(giαi + hiβi) (3.1.5)

s.t. Ei ≤ xi ≤ Li ∀i ∈ Ps (3.1.6)

xj ≥ xi + Sij ∀(i, j) ∈ Us (3.1.7)

αi ≥ Ti − xi ∀i ∈ Ps (3.1.8)

0 ≤ αi ≤ Ti − Ei ∀i ∈ Ps (3.1.9)

βi ≥ xi − Ti ∀i ∈ Ps (3.1.10)

0 ≤ βi ≤ Li − Ti ∀i ∈ Ps (3.1.11)

xi = Ti − αi + βi ∀i ∈ Ps (3.1.12)

xi, αi, βi ≥ 0 ∀i ∈ Ps (3.1.13)
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The constraints (Eq.3.1.6) ensure that each plane appearing in Ps

lands within its time window. Constraints (Eq.3.1.7) ensure that the

separation time between i and j is larger than or equal to Sij (∀(i, j) ∈

Us), since i lands before j in the landing sequence. Constraints (Eq.3.1.8

– Eq.3.1.12) are similar to the constraints (Eq.2.2.10 – Eq.2.2.15) in

MIP as shown in chapter 2, related to the αi, βi and xi. This is a

linear program (denoted as SEQ) that can be used to find the optimal

solution for any given landing sequences.

With the information of feasible landing sequences and the corre-

sponding cost, the ALP problem can be formulated as a set partition-

ing problem. The corresponding set partitioning model of this small

instance is shown in Fig.3.3.

min 0z1 +0z2 +0z3 +3z4 +0z5 +5z6 +11z7

z1 + z4 + z5 + z7 =1
z2 + z4 + z6 + z7 =1

z3 + z5 + z6 + z7 =1
z1 + z2 + z3 + z4 + z5 + z6 + z7 =2

Figure 3.3: The set partition formulation of Fig.3.1

Note here that the column in the formulation does not state the

information of the order of the landings. For instance, for the last

column [1 1 1]′ in the set partitioning model, there exist two feasible

landing sequences including sequence 9 ({1 → 2 → 3}) with cost 11

and sequence 10 ({1 → 3 → 2}) with cost 34, as shown in Fig.3.2.

However, because that the objective of the ALP is to minimize the

total cost, if the last column is selected, it is obvious that the planes
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will land in the order of sequence 10 which has the minimum cost

among the costs of the two feasible sequences corresponding to this

column. Therefore, the coefficient in the objective function should be

the minimum cost of landing the planes appearing in the corresponding

column. For the small example, we enumerate all the feasible sequences

corresponding to the column, calculate the costs for these sequences

and choose the minimum cost to be the coefficient (called enumeration

method). However, for large-scale problems, it is time consuming to use

the enumeration method, since there exist too many feasible sequences

for the columns. Instead, a mathematical model can be formed to

determine the minimum cost for a column. This optimization problem

is slightly different formulated than determining the minimum cost for

a given landing sequence, since the order of the planes is unknown here.

Based on the SEQ, this model can be obtained by adding an additional

variable δij which is 1 if plane i lands before plane j and 0 otherwise,

the constraints (Eq.3.1.14) to ensure that plane i lands either before or

after plane j, and the separation time constraints (Eq.3.1.15).

δij + δji = 1 ∀i, j ∈ Pa; i 6= j (3.1.14)

xj ≥ xi + Sijδij − (Li − Ej)δji ∀i, j ∈ Pa; i 6= j (3.1.15)

Let Pa denote the set of planes appearing in the column a. The

complete model can be obtained as follows:
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COL:

min
∑

i∈Pa

(giαi + hiβi) (3.1.16)

s.t. Ei ≤ xi ≤ Li ∀i ∈ Pa; (3.1.17)

δij + δji = 1 ∀i, j ∈ Pa; i 6= j (3.1.18)

xj ≥ xi + Sijδij − (Li − Ej)δji ∀i, j ∈ Pa; i 6= j (3.1.19)

αi ≥ Ti − xi ∀i ∈ Pa (3.1.20)

0 ≤ αi ≤ Ti − Ei ∀i ∈ Pa (3.1.21)

βi ≥ xi − Ti ∀i ∈ Pa (3.1.22)

0 ≤ βi ≤ Li − Ti ∀i ∈ Pa (3.1.23)

xi = Ti − αi + βi ∀i ∈ Pa (3.1.24)

xi, αi, βi ≥ 0 ∀i ∈ Pa (3.1.25)

δij binary ∀i, j ∈ Pa; i 6= j (3.1.26)

This is a mixed integer formulation (denoted as COL) used to deter-

mine the minimum cost, the landing sequence and the landing time for

the columns in the set partitioning model. Fig. 3.4 shows the complete

information of the set partitioning model for this small instance.

The ALP can be solved by solving the set partitioning model. For

the small example, as shown in Fig.3.3, the optimal solution is Z∗ =

[0, 1, 0, 0, 1, 0, 0]. According to the information shown in Fig.3.4, the

corresponding optimal landings for the ALP can be obtained as shown

in table 3.1.
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variable cs a′

s landing sequence landing time
z1 0 [1 0 0] {1} {88}
z2 0 [0 1 0] {2} {95}
z3 0 [0 0 1] {3} {100}
z4 3 [1 1 0] {1→ 2} {88 98}
z5 0 [1 0 1] {1→ 3} {88 100}
z6 5 [0 1 1] {2→ 3} {95 105}
z7 11 [1 1 1] {1→ 2 → 3} {88 98 108}

Figure 3.4: The complete information for the set partitioning model.

3.2 Preprocessing

In order to make the calculation more efficient, the formulation is tight-

ened before we start to solve the optimization problem. This can be

done by fixing some variables, reducing the feasible interval of some

variables etc. Thereby, the solution space is narrowed.

In the ALP, the predetermined landing time window for each plane

depends on the airspeed at which the plane flies. As mentioned above,

runway landing column landing sequence cost
1 [0 1 0] {2} 0
2 [1 0 1] {1 → 3} 0

Total Landing Cost 0

Table 3.1: Final results for the small example in Fig.3.1
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the earliest time is the landing time of the plane flying at its maximum

airspeed while the latest time is at its most fuel-effiicient airspeed.

Due to the difference of the airspeed, a plane is allowed to land in a

very wide time window without considering the total cost. However, in

practical, the cost has to be considered. For example, in practical airline

operations, a plane would never land at its latest landing time since this

costs too much although it is feasible. This makes the predetermined

latest time to be of no consequence. Moreover, the overlapes of the

allowable landing time of two different planes will also be large intervals

with the ′loose′ time windows. This will result in a huge number of

feasible solutions. For example, we have two planes 1 and 2 with time

windows of [50, 571] and [200, 760], respectively, and we assume the

separation time is S12 = 20 and S21 = 30. We can see that plane 1

can be landed either before or after plane 2 (i.e δ12 = 1 or δ21 = 1). In

other words, landing sequences {1 → 2} and {2 → 1} are both feasible

here, although {2 → 1} may incur a very large cost.

Suppose we already know the upper bound of the cost (denoted as

ZUB) which will definitely be large or equal to the optimal solution.

Then it is possible to limit the deviation from target time for each

plane. For plane i, if we assume that all other planes make a zero

contribution to the objective function value, we can update Ei using

Ei = max[Ei, Ti − ZUB/gi] ∀i ∈ P (3.2.1)

because the cost would exceed the ZUB if we land i more than ZUB/gi

time units before its target time. Similarly, for the latest time, we have

that

Li = min[Li, Ti + ZUB/hi] ∀i ∈ P (3.2.2)

By using equations (Eq.3.2.1) and (Eq.3.2.2), the time windows [Ei, Li]

for each plane i (∀i ∈ P ) can be tightened. Assume that, for the

above two planes, the time windows becomes [57, 80] and [200, 230]

respectively. Note here that sequence {2 → 1} is not feasible any
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more. Therefore, the value of δ12 is fixed to be 0 and δ21 to be 1.

The solution space is hence reduced. The better the upper bound is,

the more significant the solution space is reduced, especially for the

large-scale problems.

As we known, for a minimize problem, any feasible solution can

form an upper bound of the optimal solution. Hence, a general way to

provide an upper bound is searching for a feasible solution which can

be done through an approximate algorithm or heuristic method. In this

thesis, a simple heuristic method based on Beasley et al. (2000) is used

to determining the upper bound for the total cost of the given landing

problem.

Specifically, the planes are ordered in nondecreasing target time,

then assigned one by one to the runway with the least cost. The landing

cost on a runway is calculated according to the previous landings and

the corresponding separation time. Let Bir be the cost of airplane i

landing on runway r, then

Bir = maxk∈Ar
{Ti, xk + Ski}

where Ar is the previous landings on runway r and plane i is the one

being considered for a runway assignment. The current plane is as-

signed to the runway r∗ with the minimum Bir. Hence, after this step,

the temporary assignment of landing times are always on or after the

target times. To improve the solution obtained, the LP problem with

the fixed order of landing on the runway is solved.

3.3 Branch-and-Price

Branch-and-price is known to be an efficient method for solving large-

scale scheduling problems such as the vehicle routing problem, the crew

scheduling problem etc. However, it has not been applied for the ALP

in the literature. In this section, we propose a branch-and-price method

for the ALP.
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3.3.1 Column Generation

For the small example involving 3 planes shown in Fig.3.1 involving

3 planes, it is possible to enumerate all possibilities of the landing se-

quences as shown in Fig.3.1. However, for a problem with 50 planes,

there exsit
∑50

k=1

(
50
k

)
≈ 1.1259 × 1015 feasible columns. It is compu-

tational inefficient to enumerate all these columns. We can start by

solving a restriced problem which is an LP relaxation with only a small

subset of the the variables (called master problem). In other words,

the value of the rest variables are fixed to be 0. Then, we check if the

addition of one or more variables, currently not in the restricted linear

program, might improve the LP-solution. According to the simplex

algorithm, this can be achieved by adding the variable with negtive

reduced cost. The problem of finding a variable with negative reduced

cost is called the subproblem. The reduced cost is defined as:

c̃j = cj − πa ∀j ∈ S

where cj is the cost coefficient for column a, π is the dual values cor-

responding to each constraints of the linear system provided by the

optimal basic solution of the master problem.

This method of solving linear program is called column generation.

It has been demonstrated to be a successful method for solving the

linear program with huge number of variables.

In our case, the linear relaxation program (denoted as LSP) can

be obtained from the integer program (SP) without the integrality

constraints (Eq.3.1.4). The master problem is initiated with a set of

columns that is generated during the initilizaiton. The subproblem is

to find the column with the minimum reduced cost. A mathematial

formulation for the subproblem is proposed and shown as following:
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SUB:

min

P∑

i=1

(giαi + hiβi) −

P∑

i=1

πiai − λ (3.3.1)

s.t. aiEi ≤ xi ≤ aiLi ∀i ∈ P (3.3.2)

δij ≤ ai ∀i, j ∈ P ; i 6= j (3.3.3)

δij ≤ aj ∀i, j ∈ P ; i 6= j (3.3.4)

1 ≥ δij + δji ≥ ai + aj − 1 ∀i, j ∈ P ; i 6= j (3.3.5)

xj ≥ xi + Sijδij − (Li − Ej)δji − (aiLi

− ajEj) + (Li − Ej)(δij + δji) ∀i, j ∈ P ; i 6= j (3.3.6)

αi ≥ aiTi − xi ∀i ∈ P (3.3.7)

0 ≤ αi ≤ Ti − Ei ∀i ∈ P (3.3.8)

βi ≥ xi − aiTi ∀i ∈ P (3.3.9)

0 ≤ βi ≤ Li − Ti ∀i ∈ P (3.3.10)

xi = aiTi − αi + βi ∀i ∈ P (3.3.11)

δij, ai binary ∀i, j ∈ P (3.3.12)

where πi denotes the dual variable value corresponding to plane i, for

each i ∈ P , in constraint (Eq.3.1.2), and λ denotes the dual variable

value corresponding to the (Eq.3.1.3) in the master problem. ai is the

binary variable which is 1 if plane i appears in the landing sequence

and 0 otherwise. This can be considered as a single runway landing

problem for a subset of the planes.

The landing time (xi), earliness (αi) and tardiness (βi) are active

only if the plane i appears in the landing sequence (i.e. ai = 1). This

is ensured by constraints (Eq.3.3.2). Similarly, constraints (Eq.3.3.3)

and (Eq.3.3.4) show that δij is active if i and j both are in the landing

sequence (i.e. ai = aj = 1). Constraints (Eq.3.3.5) show that either

plane i must land before plane j (δij = 1) or plane j must land before
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plane i (δji = 1) given both of them are active (i.e. ai = aj = 1).

Constraints (Eq.3.3.6) enforce the separation time between two planes.

There are 4 cases considered here:

a. If both of plane i and j are active (i.e. ai = aj = 1), then either

i lands before j (i.e. δij = 1) or j lands before i (i.e. δij = 0).

Therefore, (Eq.3.3.6) becomes either xj ≥ xi + Sij ensuring that

separation is enforced, or xj ≥ xi − (Li −Ej) a constraint that is

always true.

b. If ai = 1 aj = 0, from (Eq.3.3.3) and (Eq.3.3.4) we have that

δij = δji = 0. From (Eq.3.3.2) we have xj = 0 given aj =

0. Therefore, (Eq.3.3.6) becomes 0 ≥ xi − Li, which is already

covered by constraint (Eq.3.3.2).

c. If ai = 0 aj = 1, similar to case b, (Eq.3.3.6) becomes xj ≥ Ej .

d. If ai = 0 aj = 0, it becomes 0 ≥ 0.

The objective function (Eq.3.3.1) is the reduced cost of column a. The

first term
∑P

i=1(giαi + hiβi) is the cost of the column.

Consider a plane that is not covered by the column (i.e. ai = 0 ).

Its landing time will simply be set to be 0 (i.e. xi = 0) by (Eq.3.3.2). In

this case, the constraint (Eq.3.3.7) becomes αi ≥ 0 which is covered by

the constraint (Eq.3.3.8). Thereby, we have αi ∈ [0, Ti − Ei]. Similaly,

we have βi ∈ [0, Li − Ti] by the constraints (Eq.3.3.9) and (Eq.3.3.10).

Given ai = 0 and xi = 0, we can obtain αi = βi from constraint

(Eq.3.3.11). Since the unit costs gi and hi in the objective function are

positive, in the optimal solution, both αi and βi will be forced to be

0 by minimizing the objective function. In other words, the plane not

appearing in the column will have no effect on the objective function

coefficient (Eq.3.3.1) .

The subproblem is denoted as SUB. If the objective function value

is non-negative, then the master problem LSP has been solved, other-

wise the corresponding column a is added to the master problem and
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the master problem is then solved again.

The general framework of column generation is presented in Fig.3.5.

generate an initial feasible solution (columns)

repeat

solve the master problem by linear programming

find out the columns with negative reduced cost

add the column(s) into the master problem

until termination, when there exists no column with negative reduced

cost

Figure 3.5: The framework of column generation

3.3.2 Branch-and-Bound

In most cases, the solution of LSP is a fractional solution. In order to

guarantee that we end up with an integer solution, the column gener-

ation method is combined with a branch-and-bound method (so called

branch-and-price) in which the column generation provides the lower

bound for each node throughout the exploration of branch-and-bound

tree.

Branch-and-bound is a general search method. Suppose we wish to

minimize a function f(x), where x is restricted to some feasible region

(defined, i.e. by explicit mathematical constraints). To apply branch

and bound, one must have a means of computing a lower bound on the
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optimization problem and a means of dividing the feasible region of the

problem to create smaller subproblems. Moreover, there usually also

have to be a way to compute an upper bound (e.g. a feasible solution).

The method starts by considering the original problem with the

complete feasible region, which is called the root problem. The lower-

bounding and upper-bounding procedures are applied to the root prob-

lem. If the bounds match, then an optimal solution has been found and

the procedure terminates. Otherwise, the feasible region is divided into

two or more regions, each is a strict subregion of the original, which

together cover the whole feasible region. Ideally, these subproblems

partition the feasible region. These subproblems become children node

of the root search node. The algorithm is applied recursively to the

subproblems, generating a tree of subproblems. The upper bound for

the problem is updated if we find a feasible solution that is better than

the current best solution, and it can be used to prune the rest of the

tree: If the lower bound for a node exceeds the best known feasible

solution, no globally optimal solution can exist in the subspace of the

feasible region represented by the node. Therefore, the node can be

removed from consideration. The search proceeds until all nodes have

been solved or pruned.

In the following, we give some details of our branch-and-bound al-

gorithm for solving the entire problem SP.

Bounding

In order to evaluate a given subspace, a bound value is computed.

In our case, a lower bound is given by the linear relaxation problem

LSP with some restriction on partial landing sequence sets S imposed

by branching rules (described later). An upper bound (ZUB), that

is the minimum integer solution value abtained so far, is associated

with the branch-and-bound tree. At each iteration, one branch-and-

bound node is solved using the column generation approach described
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previous. The restricted master problem is initialized using all the

columns of its father node except the one that must be deleted based

on branching rules. There are three possible cases for the LP solution

to a branch-and-bound node.

Case 1: If the solution is integer, then we first prune this node from

the branch-and-bound tree, since none of its offsprings will produce

better integer solution. Then the solution value (ZSV ) is compared

with the current upper bound (ZUB) of the entire tree. If ZSV < ZUB,

then this node becomes the best integer node and the upper bound of

the problem is updated: ZUB := ZSV , and the lower bound of each

active branch-and-bound tree node is compared with this new upper

bound. And those nodes for which lower bound is larger than the ZUB

is not necessary to be considered any more and is thus pruned from the

tree.

Case 2: If the solution is fractional and its solution value is greater

than or equal to the upper bound ZUB, then this node is pruned from

the tree since the integer solutions of its offspings will be no better than

the fractional solution.

Case 3: If the solution is fractional and its solution value is less than

the ZUB, then a branching decision is made to create two child nodes

of this node based on the fractional solution.

Branching

According to the branch-and-bound method, if the solution of the cur-

rent node satisfies Case 3, a branching decision has to be made to

create two son nodes. A customary branching way is to branch on the

binary decision variables in the model. In our formulation, the value of

each variable zs indicates the selection of the corresponding landing se-

quence s. For the ALP, zs = 0 means that the partial landing sequence

is excluded and hence no such sequence can be generated in subsequent

subproblems. However, it is very hard to exclude a sequence when
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solving a single runway problem.

In our algorithm, instead of branching on the z-variable, a new

branching decision is constructed as follows: we branch on whether

plane j is landed immediately after i or not. This is called Ryan-

Foster branching (Ryan et al. (1981)) which has been used for solving

crew scheduling and vehicle routing problems (Larsen (1999)). In our

problem, let yij denote the new variable which is 1 if plane j is landed

immediately after i and 0 otherwise. For any feasible solution of LSP,

(z̄s, s ∈ S), the corresponding ȳij is given by

ȳij =
∑

s∈S

ws
ij z̄s ≥ 0 ∀i, j ∈ P ; i 6= j (3.3.13)

where ws
ij is 1 if s ∈ S covers both plane i and plane j and plane i is

immediately after plane j, and 0 otherwise.

Consider a branch-and-bound node and suppose its LSP solution

(denoted as z̄s, s ∈ S), is fractional and is not pruned. Compute the

corresponding ȳij value by (Eq.3.3.13). Then a branching decision can

be made on this node. A pair (m, n) is selected such that ȳmn is the

fractional value closest to 1, i.e.ȳmn = max{ ȳij|ȳij ∈ (0, 1)}. Then two

son nodes are created, one along the branch with ȳmn fixed as 1 and the

other as 0. Constraints enforcing this requirement need to be added to

the problem.

1. If ȳmn is fixed to 1, the initial restricted master problem of the

corresponding child node consists of all the columns of its father node

where plane n lands immediately after plane m or where none of these

appear. For example, for an ALP involving 10 aircraft, the feasible

columns for the branch node ȳ23 = 1 consist of the following two parts:

PartA. Neither of the two planes exist (i.e. a2 = a3 = 0). For example,

planes land in the sequence {1 → 5 → 8 → 10}.

PartB. Both of them are covered by the column (i.e. a2 = a3 = 1) and

plane 3 lands immediately after plane 2. For example, planes land

in the sequence {1 → 2 → 3 → 6 → 9 → 10}
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Therefore, the structure of the subproblem SUB must be updated. The

following two constraints are imposed:

am = an (3.3.14)
∑

k∈P δkm =
∑

k∈P δkn − am (3.3.15)

Constraint (Eq.3.3.14) indicates that either both or none of them are

covered by the landing sequence (i.e. either am = an = 1 or am = an =

0). In constraint (Eq.3.3.15),
∑

k∈P δkm is the number of the planes that

land before plane m, while
∑

k∈P δkn corresponds to plane n. There are

two cases considered here

i. If am = an = 0, from (Eq.3.3.3) and (Eq.3.3.4) we have δkm =

δkn = 0 (∀k ∈ P ). Therefore, (Eq.3.3.15) becomes 0 = 0 − 0

which is always true.

ii. If am = an = 1, (Eq.3.3.15) becomes
∑

k∈P δkm =
∑

k∈P δkn − 1

showing that plane n lands immediately after plane m, which is

in accordance with ȳmn = 1

2. If ȳmn is fixed to 0, the initial restricted master problem of the

corresponding child node consists of all the columns of its father node

except those where plane n is landed immediately after plane m. For

the same example above, for the branch node with ȳmn = 0, the feasible

columns consist of,

PartA. Neither of the two planes exist (i.e. a2 = a3 = 0). For example,

planes land in the sequence {1 → 5 → 8 → 10}.

PartB. Only one of them appears in the column (i.e. a2 = 1 or a3 = 1),

e.g. {2 → 9 → 7 → 10} and {1 → 3 → 9 → 8 → 10}.

PartC. Both of them are covered by the column (i.e. a2 = a3 = 1) but

plane 3 does not land immediately after plane 2, e.g. {1 → 2 →

9 → 3 → 10} and {7 → 3 → 2 → 9 → 4}.
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Therefore, the following two constraints should be added to the

subproblem:

am + an ≤ 1 + Mdmn (3.3.16)

2 − Mδnm ≤
∑

k∈P δkn −
∑

k∈P δkm + M(1 − dmn) (3.3.17)

where dmn is a binary variable. M is a large number. In this case,

either constraint (Eq.3.3.16) or constraint (Eq.3.3.17) is active.

i. If dmn = 0, (Eq.3.3.16) becomes am+an ≤ 1 which satisfies PartA

and PartB. From (Eq.3.3.3) and (Eq.3.3.4) in the SUB, we have

δnm = 0. Therefore, (Eq.3.3.17) becomes 2 − 0 ≤
∑

k∈P δkn −∑
k∈P δkm + M which always holds since M is sufficiently large.

ii. If dmn = 1, (Eq.3.3.17) becomes 2−Mδnm ≤
∑

k∈P δkn−
∑

k∈P δkm.

If plane n lands before m (i.e. δnm = 1 ), (Eq.3.3.17) becomes

2−Mδnm ≤
∑

k∈P δkn −
∑

k∈P δkm which always holds since M is

sufficient large. If plane n lands after m (i.e. δnm = 0), (Eq.3.3.17)

becomes 2 ≤
∑

k∈P δkn −
∑

k∈P δkm indicating that at least one

plane lands after m and before n which is in accordance with the

assumption.

With the 4 types of constraints (Eq.3.3.14–Eq.3.3.17) added into

the SUB, the subproblem can be used to generate the feasible columns

for each branch node throughout the branch-and-bound procedure.

Selection

As mentioned above, in each iteration, one node of the unexplored nodes

is to be considered. Usually, the following three strategies are used to

select the node: Best-first Search (BeFS) in which the node that has

the lowest lower bound is selected; Breath-first Search (BFS) in which

the branch-and-bound tree is explored level by level; Depth-first Search

(DFS) in which the child node with the largest level is selected.
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In our case, the node selection strategy used is the DFS. If the cur-

rent branch-and-bound node is not pruned (i.e.the solution is fractional

and is less than the upper bound ZUB of the branch-and-bound tree),

then the branching scheme is made on this node, and the child node

with ȳmn = 1 is selected as the next node to be explored.

3.3.3 The overall method

To sum up, the framework of the entire branch-and-price method is de-

picted in Fig.3.6. The column generation is started with the generated

columns in the initialization. More details about the initial columns

will be discussed in section 3.4. When no more columns can be gener-

ated and the lower bound of the branch-and-bound node is determined,

if the solution is integer, we compare it with the gloable upper bound

ZUB, then update the ZUB and prune the current node. If it is frac-

tional and lower than the gloable upper bound ZUB then the node is

pruned, otherwise it is divided into two child nodes. Then a new node

is selected to be explored.

3.4 Implementation Details

3.4.1 Preprocessing

Tighten the time windows

As disscussed in section 3.2, a heuristic method is used to provide the

upper bound of the problem. The main idea is to first generate a greedy

solution in which the planes are sorted by the non-decreasing target

time and are considered to be landed on the runway at its best time

one by one. Then the solution is improved by solving the LP problem

with the order of landing on the runway fixed. The implementation is



36

Figure 3.6: The overall structure of branch-and-price algorithm.

shown in Fig.3.7. Details see airland heuristic.m in Appendix A.

Determine the cost coefficient for a column

As described in section 3.1, the coefficient in the objective function of

the set partitioning model is the minimum cost of landing the planes

appearing in the corresponding column. Two method for solving the

problem are proposed: the enumaration method and the mathemati-

cal modeling method. The second one can be solved by GAMS. The

enumeration method is described as following:

If there is only one plane covered in the column, it can be simply

assigned to landing on its target time, and the cost will be 0.

If there are two planes i and j (assumed that Ti < Tj) appearing

in the column, it is obvious that to land plane i before j is cheaper

than the other way. Furthermore, if the separation time between i
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initialization
sort the planes by the target time
for j = 1 to P

for r = 1 to R
Bjr:= the best time that j can be land on runway r

end

Xj := min{ Bjr|r = 1, ..., R}
rway := the corresponding r to the min{ Bjr|r = 1, ..., R}
Arway := [Arway, j] (add the plane j on runway rway)

end

return X (the landing time for each plane)
if X 6= T

X:= the solution of the LP problem with the fixed order
end

ZUB =
∑P

i=1 gi max(0, Ti − Xi) + hi max(0, Xi − Ti)
return ZUB

Figure 3.7: The heuristic method for ZUB

and j is satisfied for landing both of them on their target time (i.e.

Tj − Ti > Sij), the column has the minimum cost that equals to 0,

the corresponding landing sequence {i, j} and landing time {Ti, Tj}.

Otherwise, either plane i needs to speed up or plane j has to land after

its target time, therefore, the minimun cost is min{gi, hj}(Sij−Tj +Ti).

If there exist three or more planes in the column, then the problem

becomes more complex. However, it is important to note that the cost

of a complete sequence is always bigger than or equal to the cost of its

partial sequence. It is therefore possible to quickly find a large number

of sequences that have larger cost than the upper bound ZUB by just

checking the cost of their partial sequences. Based on this principle,
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we start with landing only one plane. In each iteration, one new plane

is inserted into each of the existing landing sequences, which contain

the planes that have been considered in the previous iterations. The

plane is allowed to be put into any position of the existing sequences if

it is feasible (the time windows and separation time satisfied). We then

calculate the costs for all feasible sequences and remove those with costs

lager than the upper bound ZUB. The rest of the sequences become

the current sequences for the next iteration.

3.4.2 Columns Generation

Our implementation of generating the initial column is done by ini good

cols.m in Matlab (see Appendix B). The linear programming master

problem and subproblem is solved by the GAMS programs air.gms and

subproblem.gms ( refer to Appendix C).

Initial columns

Basically, the initial columns for our column generation method consist

of two main parts. The first part is P dummy columns. Each column

contains one plane without taking account of the runways, that is,

the column contains a single 1 for the i′th row (as
i = 1). They are

added to ensure a feasible LP upon branching and they are assigned

a cost sufficiently high in order to force them out of the basis in the

optimal solution. Fig.3.8 shows an example of the dummy column part

in the master problem for a landing problem involving 4 aircraft and 2

runways. The second part is the columns corresponding to the heuristic

solution obtained in the preprocessing. This is added in order to get a

good starting objective value.

In order to improve the initial dual value of the master problem,

we also do some experiments on adding some additional initial columns

besides those initial columns mentioned above. The way we used to
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min 0z1 + 0z2 + 0z3 + 0z4 + · · ·

s.t. 1z1 + 0z2 + 0z3 + 0z4 + · · · =1
0z1 + 1z2 + 0z3 + 0z4 + · · · =1
0z1 + 0z2 + 1z3 + 0z4 + · · · =1
0z1 + 0z2 + 0z3 + 1z4 + · · · =1
0z1 + 0z2 + 0z3 + 0z4 + · · · =2

Figure 3.8: The dummy part in the master problem for an small ex-
ample

generate these columns is as follows: The planes are ordered in nonde-

creasing target time, then they are considered one by one whether to

be landed or not. If the cost of landing the current plane is 0, in other

words, the separation time between its target time and the previous

landings is satisfied, we assign it to the runway, otherwise we discard

it. Let k denote the number of non-existing planes. The next step is to

generate k columns. In each column, we first fix one of the non-existing

planes to be landed at its target time, then insert the rest P-1 planes as

many as we can. By doing this, we ensure that our columns generated

cover all the planes. The details of the algorithm for generating the

columns are shown in Fig.3.9.

Master problem

As we mentioned in section 3.3.2, the column generation is applied for

each of the branch-and-bound nodes. In branch-and-bound, the feasible
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initialization
ordindT = sortindex(T);
cost0 col = zeros(num,P);
nonexist = [];
col0 col(1, ordindT (1)) = 1;
for j = 2 to P

if {the separation time between T (ordindT (j))
and the previous landings is satisfied}

cost0 col(1, ordindT (j)) = 1;
else

nonexist = [nonexist, j];
end

end

k=length(nonexist);
for i = 1 to k

for j = 1 to P
if {the separation time between T (ordindT (j))

and the previous landings is satisfied}
cost0 col(i+1,ordindT (j)) = 1;

end

end

end

return cost0 col[]

Figure 3.9: The generation of the initial columns.
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region of each node is a subset of the original feasible region. Before

we start the column generation for a node, we need to specify which

columns of its father node are not feasible any more and remove them

from the master problem. In our implementation, in order to avoid

the recalculation of the same column, we do not remove them from our

column set Z[]. We achieve this by doing the following: create a new

variable fix corresponding to z and add a new constraint (Eq.3.4.1)

in the master problem, initialize the variable fix to be [0,...,0] at the

begining, set fix(s) to be 1 if the column s is checked to be infeasible

due to the branch-and-bound. With adding the constraits (Eq.3.4.1),

it is easy to see that, the column s will never be selected in solving the

current node, since the value of the variable zs is forced to 0.

zs = 0 ∀s ∈ S; fix(s) = 1 (3.4.1)

Consider the small example involving 3 planes and 2 runways as shown

in section 3.1. Suppose the solution of the linear relaxation LSP is

fractional and the child node with y23 = 1 is selected to be explored.

From Fig.3.4, we can see the column 1, 6, and 7 are feasible for this

node, while the column 2, 3, 4, and 5 are not feasible any more. By

updating fix :=[0 1 1 1 1 0 0], the infeasible columns will never be

selected in the solution of this node, since the values of the correspond-

ing variables z2, z3, z4, and z5 are forced to be 0 by the constraints

(Eq.3.4.1).

Subproblem

Similar to the master problem, the columns generated in the subprob-

lem also need to fulfill the feasibility of the current branch node.Given

the information of the branch node, the subproblem is only allowed to

generate the columns lying in the feasible region of the current node.

In our implementation, the column generating procedure in the sub-

problem also controlled by a matrix node[] (P by P) which is initilized
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to be 0 for all node(i, j). Based on the node[] of its father node, the

corresponding node(i, j) is set to be 1 for the branch of yij = 1 and

node(i, j) = 2 for yij = 0. It is updated for exploring the node in each

branch-and-bound iteration. With the same example above, the values

of node[] for the root node and its two child node are shown in Fig.

3.10.

branch node node[]

root node




0 0 0
0 0 0
0 0 0





y23 = 1




0 0 0
0 0 1
0 0 0




y23 = 0




0 0 0
0 0 2
0 0 0





Figure 3.10: The node[] value for a small example

Afterwards, the following constraints (Eq.3.4.2) and (Eq.3.4.3 need

to be added to the subproblem. Note here that, we do not have any

additional constraints on the rest of planes of which the corresponding
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values of node are still 0.

(Eq.3.3.14) (Eq.3.3.15) ∀i, j ∈ P ; node(i, j) = 1 (3.4.2)

(Eq.3.3.16) (Eq.3.3.17) ∀i, j ∈ P ; node(i, j) = 2 (3.4.3)

3.4.3 Branch-and-Bound

The above column generation algorithm provides the lower bound for

each node of the branch-and-bound tree. Here, we focus on the branch-

ing variables and the node selection. Initially, we pick out the non-zero

variables and save these in vector (Z I[]). The corresponding land-

ing sequence can be found in Seq[]. The matrix Weight[] (P by P )

represents the connection flow between the planes. It is an implemen-

tation of calculating the branching variable yij by Eq.3.3.13 metioned

in section 3.3.2. The two-dimension vector Branch[] is used to save

the information of the branch nodes that have been considered. Before

we choose a new node, those nodes appearing in Branch[] need to be

removed. This can be achieved by resetting the value of these afore-

mentioned node in Weight[] to be 0. Finally, we just pick the largest

fractional value in the Branch[] and set the corresponding node to be

the next one to be explored. The implementation details are shown in

the following figure Fig.3.11. (Codes see Appendix D).

For example, for the same instance as shown in Fig.3.1, we assume

that the solution of the linear relaxation of the problem is Z = [0.7

0.2 0.3 0.1 0 0.5 0.2] as shown in Fig.3.12. In the implementation, the

matrix Weight[] has the value of

Weight =




− 0.3 0

0 − 0.7

0 0 −




Since, the current node is the root node of the branch tree, the Branch[]

is empty. The maximum value in the matrix Weight[] is 0.7, hence
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initialization;
ro = number of nodes in Branch[];
Weight[] = zeros(P,P);
Z I = find(Z =0);
for i = 1 to length(Z I)

seq = Seq(Z I(i),:)
for i = 1 to length(seq)-1

Weight(j,j+1) = Weight(j,j+1) + ZI(i);
end

end

for m = 1 to ro
Weight(Branch(m,1), Branch(m,2))=0

end

max weight = max(max(Weight));
max wei node = find(Weight==max weight);
return max wei node

Figure 3.11: The implementation of node selection

max weight = 0.7. By using the matlab function find.m, the index

of the max weight is returned and is stored in max wei node[] (i.e.

max wei node = [2,3]). In the next branch-and-bound iteration, the

branching node with ymax weight=1 is selected to be explored.

3.4.4 The overall algorithm

The entire algoritm is a combination of the preprocessing, column

generation and the branch-and-bound. In our implementation, we

start with generating a upper bound UB by the heuristic method

airland heuristic(). During the column generation, the vector Z[]

presents the value of the decision variables z in the set partitioning
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variable a′

s landing sequence solution zs

z1 [1 0 0] {1} 0.7
z2 [0 1 0] {2} 0.2
z3 [0 0 1] {3} 0.3
z4 [1 1 0] {1→ 2} 0.1
z5 [1 0 1] {1→ 3} 0.0
z6 [0 1 1] {2→ 3} 0.5
z7 [1 1 1] {1→ 2 → 3} 0.2

Figure 3.12: The example of branch node selection.

model defined in section 3.1. A[], C[], Seq[], T ime[] are used to store the

information corresponding to the variable Z[], this information includes:

binary column, cost, landing sequence and landing time. Function

air1 Branch(node[]) is used to excute the column generation given the

feasible region defined by node[] using the way mentioned above. The

LP solution of the root node is denoted as the LP lower bound of the

entire problem LP LB. The obj val is the optimal value determined by

the column generation for the current branch node. Next node() im-

plements the selection of the next node in the branch and bound, and

the branch node information Branch[] is uppdated by Next node().

Boolean variale delete shows whether the current node is pruned or

not. The implementation is shown in Fig.3.13. The corresponding

program is Algorithm air1 MinSub.m in Appendix D.
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initialization the data parameter;
UB = airland heuristic();
node = zeros(P,P);
[Z, A, C, I, obj val, Seq, T ime] = air1 Branch(node);
if Z is integer

Output the optimal solution;
break

end

ite = 1000;
delete = 0;
for i=1:itr

if delete = 0
[node] = Next node(node)

else

update node
end

delete = 0
[Z, A, C, I, obj val, Seq, T ime] = air1 Branch(node);
if obj val > UB

delete = 1;
elseif Z is integer

if obj val = LP LB
Output the optimal solution;
break

end

update UB, Best IP ;
delete = 1;

end

end

Figure 3.13: The implementation of branch-and-price algorithm.



Chapter 4

Case Studies

In this chapter, we start by investigating the effectivity of solving the

ALP by the column generation method which previously has not been

applied for the problem in the literature. An experiment on a small

instance involving 10 aircraft, is first considered, in which the minimun

cost, the landing sequence and the landing time corresponding to each

column in the entire set partitioning model SP are determined before

the column generation starts. The computational results show that the

column generation method solved the linear relaxation of the SP suc-

cessfully. Then the branch-and-bound is used to determine the optimal

solution for the integer problem SP. A modified algorithm which is es-

pecially efficient for large-scale problems is developed and tested by the

public data in OR-Library involving up to 50 aircraft and 4 runways.

4.1 A Small Instance

As we known the branch-and-price method is very problem-dependent,

it is more a principle than an algorithm and may be technically dif-

ficult to apply to a specific problem in pratice. Practical difficulties

may include how to apply the column generation, how to construct the

subproblem, and how to choose a branching variable, etc.

47
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In our experiments, we start with a small instance in OR-Library

involving 10 aircraft and 2 runways. In the following, we will first in-

vestigate the effectivity of the column generation techniques for sloving

the SP, the linear relaxation problem of the set partitioning model as

formulated in section 3.1, in which each column indicates the planes

to be landed and the corresponding coefficient in the objective func-

tion denotes the cost for landing those planes. It is very important to

note that, the column does not state the order of the landing sequence,

and the coefficient in the objective function is the minimum cost corre-

sponding to the optimal landings of the planes appeared in the column.

Therefore, in each column generation iteration, the information for the

corresponding column to be added needs to be specified before entering

it into the master problem. In the literature, no method or formulation

is developed for generating the columns in the subproblem of the ALP.

To get started, in this small instance, we determined all the columns

and the corresponding costs, landing sequences and landing time in the

preprocessing by using the enumerate method described in section 3.4.

Afterwards, we start column generation for solving the LSP. In each

iteration, one of the columns which has the minimum reduced cost is

then added to the master problem. The reduced costs (c̃j) for each

column j by the following,

c̃j = cj − πa − λ < 0 ∀j ∈ S

where the cj is the cost for the column a determined in the preprocess-

ing, the π and λ are the dual values in the master problem.

Without loss of generality, the column generation starts with the

dummy columns and a random feasible solution of landing the first five

planes on runway 1 and the other five on runway 2. The computational

results are shown in table 4.1. The objective value ′Obj value′ and the

minimum reduced cost ′min c̃j
′ for each iteration are reported in this

table.

From the row of ′Obj val′, we can see that the objective value was

improved by adding the columns with the negative reduced cost through



49

Iteration 1 2 3 4 5 6
Obj value 450.00 450.00 450.00 450.00 323.33 323.33
min c̃j -811 -1201 -2541 -2181 -1194 -1194

Iteration 7 8 9 10 11 12
Obj value 243.33 209.17 189.00 172.08 148.67 123.33
min c̃j -554.33 -321.83 -359 -324.33 -289 -169.33

Iteration 13 14 15 16 17
Obj value 123.33 115.00 90.00 90.00 90.00
min c̃j -187.67 -216.0 -91.0 -91.0 0

Table 4.1: Column Generation results for the small experiment.

the whole procedure. And the column generation stopped at the 17th

iteration, in which the minimum reduced cost was 0 showing that the

LSP was solved optimally. And it is worth to note that, the optimal

solution for LSP was 90 which is equal to the optimal solution for this

problem presented in Beasley et al. (2000). In other words, the lower

bound provided by column generation reached the optimal solution

of this problem. This small experiment illustrates that the column

generation is often not only effective but also very efficient, and provides

very good lower bound for solving the ALP.

In the following, the branch-and-bound method is combined to se-

cure an integer solution of the SP problem. The column generation

method tested above is used to determine the lower bound for each

branch node, and the new branching variable proposed in chapter 3.3.2

is used. Only 7 branching decisions were made: y(6,8) = 1, y(8,1) = 1,

y(7,9) = 1, y(3,4) = 1, y(1,2) = 1, y(9,10) = 1 and y(4,5) = 1. Afterwards,

the algorithm achieved the optimal integer solution shown in table 4.2.
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runway landing column landing sequence cost
1 [1 1 0 0 0 1 0 1 0 0] { 6 → 8 → 1 → 2} 90
2 [0 0 1 1 1 0 1 0 1 1] { 3 → 4 → 5 → 7 → 9 → 10} 0

Total Landing Cost 90

Table 4.2: Final results for the small experiment.

As a conclusion for the experiment on this small instance of ALP,

the branch-and-price method was demonstrated to be successful for the

ALP and very efficient for this instance. Furthermore, this experiment

was started with the columns of a random feasible solution. We believe

that the algorithm will perform better with a good start point given by

a heuristic solution.

4.2 General Problems

As the size of the problem becomes larger, it is computational inefficient

to determine the information of all the columns as we have done in the

preprocessing of the above small instance. For example, for a problem

with 50 planes, there exsit appro. 1.1259× 1015 feasible columns. How

to construct the subproblem for the ALP, how to generate the columns

efficiently for large-scale problems are the next things to be investigated.

With this in mind, the mathematical model SUB for the subproblem

and the entire algorithm described in chapter 3 has been developed and

tested by the public data in OR-Library involving up to 50 aircraft and

4 runways.

Our first computational experiment (I) consists two parts: In the
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first part, we used our branch-and-price algorithm constructed in chap-

ter 3 with the basic initial columns including the columns of the heuris-

tic solution and the dummy columns. It is implemented in Matlab 7.0

on a 1000Mhz Pentium PC with 1GB of memmory, and the master

problem LSP and subroblem SUB were solved by GAMS 21.5. The

other part of the experiment used the LMIP-based algorithm presented

in Beasley et al. (2000) (called LMIP based exact algorithm) in which

the lower bound was provided by LMIP and the branch decision was

made on the binary variables in the formulation. It is implemented in

GAMS.

The computational results are shown in table 4.3. The ′B&P ′

part are the results of our branch-and-price exact algorithm, while the
′B&B′ corresponds to the other algorithm. The first column is the

identification of the problem. The following two columns ′P′ and ′R′

are the number of planes and the number of runways respectively. Each

problem has been solved with an increasing number of runways until

the optimal solution value dropped to zero (indicating that we have

a sufficient number of runways to enable all planes to land on target

time). The column ′LSP-IP Gap′ represents the gap in percentage be-

tween the linear relaxation solution value of column generation (ZLSP )

and the optimal integer solution value (ZIP ): 100(ZIP − ZLSP )/ZIP .

The column ′LMIP-IP Gap′ represents the gap in percentage between

the linear relaxation solution value of the mixed integer formulation

(ZLMIP ) and ZIP . The columns named ′No.of Tree Nodes′ show the

number of tree nodes searched for solving the problem in the branch-

and-price algoritm and the LMIP based exact algorithm, respectively,

while the columns ′Opt. Sol.′ represent the final solutions of them.

The columns named ′Total Time (sec)′ show the running time for the

two algorithms. The column ′Tol.Col.′ is the total number of columns

generated in the branch-and-price algorithm.

It is clear from column 8 and column 11 in table 4.3, that our

algorithm successfully find the optimal solution for all the problems.
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Hence, our algorithm in practice is an exact algorithm that can solve

the ALP optimally in acceptable time.

As it shows in column ′Tot. Col.′, the optimal solutions are achieved

by no more than 500 columns generated. For example, for the problem

8 involving 50 aircraft, there exist appro. 1.1259×1015 feasible columns

in the entire set partitioning problem, however, only 199 columns were

used.

In the column ′LSP-IP Gap′, all the values equal to 0, which indi-

cates that for all the problems, the optimal objective values ZLSP of the

linear relaxation LSP are equal to the corresponding optimal integer

solutions ZIP (i.e. ZLSP = ZIP ). These are excellent lower bounds

for the problems. As we have mentioned, a lower bound (ZLB) for the

problem can be used to prune the branch node with upper bound less

than ZLB during the tree searching. An excellent lower bound might

significantly prune the tree and enhance the efficiency of the branch-

and-bound. In column ′LMIP-IP Gap′, the optimality gaps are 100%

given by the LMIP. In other words, for all the problems, the lower

bound ZLMIP equal to 0. This lower bound is trival since it is obvi-

ous that cost will never be negative. By comparing these two columns,

we reach the conclusion that the lower bound provided by the LSP is

significantly better than MIP.

In the columns of ′No. of Tree Node′, less than 12 tree nodes were

explored to find the optimal solution in our branch-and-price algorithm,

while extreme large number of nodes in the LP-based tree search algo-

rithm, such as 282160 for problem 5 with 2 runways. This demonstrates

that our branch decision makes branch-and-bound much more efficient

than the LP-based tree search, in which branching decisions are made

on the binary variables in the mixed integer formulation. Moreover, in

the problem 1 2 3 4 and 8, only one tree node was explored. In other

words, the branch-and-bound procedure stopped at its root node. This

is because for these problems, the solutions of the LSP provided by

the column generation are integer solutions which are also feasible and
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optimal to the integer problem SP. This once again shows the effec-

tiveness of applying the set partitioning model and column generation

on the aircraft landing problems.

However, comparing the running time in column 7 with that in col-

umn 11, our branch-and-price algorithm is currently not competitive.

Most of the time is used for solving the subproblems in our algorithm.

Besides, our algorithm is implemented in Matlab which is not as effi-

cient as C++ or JAVA. In the future, improvements can be made in

order to enhance the efficiency of the branch-and-price algorithm. One

way is to use a fast heuristic method instead of solving SUB at the

beginning of the column generation procedure. Another way, which is

investigated in our next computational experiment, is to generate some

good initial columns for the column generation.

As a conclusion of the comparision between the two exact algo-

rithms, the advantages of our branch-and-price exact algorithm include

the following: Our set partitioning fomulation SP is a much better for-

mulation of ALP than the mixed integer formulaiton MIP, its linear

relaxation provides a lower bound that is significantly better than the

MIP. The branch-and-bound strategies used in our algorithm is much

more efficient than the tree search in the LP-based exact algorithm

according to the number of the branch nodes explored. This indicates

that the proposed branching decision method is very suitable and good

for aircraft landing problems. Furthermore, the column generation is an

efficient way to solve the LSP due to the low number of columns gener-

ated for solving the entire problem. These points show the potential of

solving very large aircraft landing problems optimally by the branch-

and-price algorithm, while the branch-and-bound algorithm presum-

ably is too inefficient and may lead to an excessive computational time

in search of the optimum.

Our next computational experiment (II) aims at invesitigating the

initial columns. As discussed in chapter 3.4.2, starting with some good
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additional columns may shorten the computational time. In the follow-

ing, we added the additional columns constructed in the way described

in section 3.4.2. The computational results are shown in table 4.4.

For this experiment, the general conclusions which are the same as

we have got in experiment I, will not be discussed in details, including:

the LSP provide good lower bounds for the problem, the algorithm

achieve optimal, only few branch nodes had been explored and quite few

columns were generated. Here, we focus on the different performances

between experiment I and II in order to investigate the efficiency of

adding additional columns at the beginning.

In table 4.4, the new column named ′Add.Col.′ shows the number

of additional columns generated for each problem. We can observe that

the larger the problem is the more additional columns were generated in

general, such as for the problem 8 involving 50 aircraft, 18 additional

columns were generated by our generating strategy stated in section

3.4.2.

Comparing the total running time of these two experiments (col-

umn 9 and column 11 in table 4.4), all the problem were solved faster

in II than I except two of them, the problem 4 with 2 runways and

the problem 5. In particular, for the first three problems, the addi-

tion of these kind of columns significantly shortened the running time.

This indicates that choosing proper initial columns may improve the

efficiency of the algorithm.

If we compare the total number of columns used (column 7 and

column 10 in table 4.4), most of the problems in I used less column to

reach optimality. For problem 8, 158 columns used in II while 199 in I

– 25% columns are saved by the additional initial columns.

As a conclusion of the comparison between I and II, the selection

of the initial columns in column generation has effect on the efficiency

of solving the ALP. More investigation and experiments must however

be made on the initial columns in order to make the branch-and-price

algorithm more efficient.
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B&P B&B
LSP No.of Total LMIP No.of Total

Pro. -IP Tree Tot. Time Opt. -IP Tree Time Opt.
Num. P R Gap Nodes Col. (sec) Sol. Gap Nodes (sec) Sol.

1 10 2 0.0 1 25 36.4 90 100 91 0.13 90
3 - - - - 0 - - - 0

2 15 2 0.0 1 43 72.8 210 100 115 0.13 210
3 - - - - 0 - - - 0

3 20 2 0.0 1 56 96.4 60 100 142 0.27 60
3 - - - - 0 - - - 0

4 20 2 0.0 1 93 267.9 640 100 193319 417.2 640
3 0.0 1 61 117.0 130 100 39901 7.48 130
4 - - - - 0 - - - 0

5 20 2 0.0 9 192 1133.3 650 100 282160 130.74 650
3 0.0 12 142 624.2 170 100 20035 21.30 170
4 - - - - 0 - - - 0

6 30 2 0.0 9 461 2960.6 554 100 25316 5.86 554
3 - - - - 0 - - - 0

7 44 2 - - - - 0 - - - 0
8 50 2 0.0 1 199 769.7 135 100 9020 4.56 135

3 - - - - 0 - - - 0

Table 4.3: Computational results for experiment I
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II I
LSP No.of Total Total

Pro. -IP Tree Add. Tot. Time Opt. Tot. Time
Num. P R Gap Nodes Col. Col. (sec) Sol. Col. (sec)

1 10 2 0.0 1 4 18 7.5 90 25 36.4
3 - - - - - 0 - -

2 15 2 0.0 1 6 26 10.0 210 43 72.8
3 - - - - - 0 - -

3 20 2 0.0 1 6 33 15.5 60 56 96.4
3 - - - - - 0 - -

4 20 2 0.0 1 10 86 304.1 640 93 267.9
3 0.0 1 10 53 59.7 130 93 117.0
4 - - - - - 0 - -

5 20 2 0.0 9 9 204 1626.6 650 192 1133.3
3 0.0 12 9 98 790.8 170 142 624.2
4 - - - - - 0 - -

6 30 2 0.0 9 16 446 2854.1 554 461 2960.6
3 - - - - - 0 - -

7 44 2 - - - - - 0 - -
8 50 2 0.0 1 18 158 502.9 135 199 769.7

3 - - - - - 0 - -

Table 4.4: Computational results for experiment II



Chapter 5

Conclusion

In this chapter, we summarize the achievements in this thesis and point

out some future research in the field of aircraft landing problem.

5.1 Achievements

This thesis is the first attempt to develop and implement a branch-and-

price algorithm for the aircraft landing problem. The achievements of

this thesis are shown in the following aspects:

• We reformulated the ALP as a set partitioning problem with side

constraints on the limited number of available runways. We then

presented a set partitioning model (SP) for the problem.

• We adopted the column generation method for solving the linear

relaxation of the set partitioning model (LSP) to determine a

lower bound of the optimal integer solution. Computational re-

sults show that our LSP provide a quite good lower bound while

the linear relaxation of the mixed integer formulation (LMIP)

can not achieve. For each of the problems we have tested, the

gap between the solution of LSP and the optimal solution is 0,

57
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indicating our SP formulation is much better than the LMIP

formulation for the aircraft landing problem.

• We presented a mixed integer formulation SUB for the subprob-

lem involved in the column generation, which is used to generate

the column with the minimum reduced cost in each column gen-

eration iteration. Moreover, the corresponding total cost, landing

sequence and landing time for each plane appearing in the column

can also be determined by solving the SUB. In order to make it

available for solving the node in branch-and-bound tree, we pro-

posed 4 constraints ensuring that the column we generate is in

the feasible region of the node.

• We extended the column generation into a branch-and-price frame-

work, in which the branch-and-bound method is used to guaran-

tee that we end up with an integer solution. In other words, we

proposed an exact algorithm based on the branch-and-price prin-

ciple to solve the optimal solution of the ALP. We introduced

a new branching variable which is determined by the total flow

connecting the successive planes in the fractional solution. The

computational results show that for all the problems, the algo-

rithm achieves optimal solution with no more than 12 branch-

and-bound nodes explored, indicating the branch decision strat-

egy proposed in this algorithm makes the branch-and-bound quite

efficient for the ALP.

• We implemented the exact algorithm and tested it using the

public data from OR-Library involving up to 50 aircraft and 4

runways. Furthermore, it is worthwhile to note that all of our

problems were solved with less than 450 columns generated and

12 branch nodes explored. This indicates potential capability

of solving large-scale aircraft landing problems optimally by the

branch-and-price algorithm.
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5.2 Future research

As a result of the work presented in this thesis, the following future

research on the ALP are suggested:

• Development of a strategy for generating ′good′ initial columns

The experiments presented in this thesis show that the running

time can be shortened by adding additional proper initial columns

at the beginning of the column generation. In our computational

experiments, this is achieved by adding the set of initial columns

generated by the strategy given in section 3.4.2 for most of the

problems. Further work can be conducted to investigate which

initial columns will be more probable to be helpful to the problems

in general, how many we should generate, and also a strategy

constructed to generate the initial columns.

• Development of a heuristic method for the subproblem

In the column generation method, it is necessary to solve the

optimal solution of the mixed integer model of the subproblem

SUB in order to ensure the optimality of the master problem

(e.g. min c̃j ≥ 0). However, at the beginning of the column

generation, especially in the case that the current solution is far

from the optimal LP solution, there might exist many columns

with negative reduced cost that can be added in order to improve

the current solution. It is time consuming to solve the subproblem

by the method proposed in this thesis. In order to speed up, a fast

heuristic method may be developed and used for generating the

columns to be added at the beninning of the column generation.

Note that the ALP can be viewed as a Vehicle Routing Problem

with Time Windows (VRPTW) with a target service (landing)

time, an infinite capacity, and an objective function of minimiz-

ing the total deviation from the taget time. The subproblem of
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the VRPTW has been successfully solved by Elementary Short-

est Path Problem with Time Windows and Capacity Consitraints

(ESPPTWCC) (see Larsen (1999)). In the future, we plan to de-

velop a heuristic method based on the method of solving the El-

ementary Shortest Path Problem for the subproblem of the ALP.

• Investigation on the cuts (valid inequalities) for the problem

In our algorithm, the method used to guarantee the integrality of

the solution after solving the linear relaxation of the original prob-

lem is branch-and-bound method. Another method is to improve

the polyhedal description of the relaxed problem in order to get

an integer solution or at least tighten the bound by adding cuts

(inequalities). As we mentioned in chapter 3, the subproblem is

similar to a single runway landing problem, which can be viewed

as an open Travelling Salesman Problem (TSP) (Bianco et al.

(1993)). For the TSP, several kinds of cuts has been successfully

applied: the comb-inequlities, 2-path inequalities etc (Bard et al.

(2002)). In the future, investigation can be made in searching

for cuts for the ALP that can be added into the LP relaxation

formulation and which results in an improved optimal solution

by solving the new enhanced problem. Furthmore, the cuts can

be generated and added throughout the whole branch-and-price

algorithm resulting in a branch-and-price-and-cut algorithm for

the ALP.

• Investigation on the dynamic case of the ALP

The research in this thesis focusses on the static case of the ALP.

This is particularly useful to investigate airport runway capacity

in the strategic planning stage. However, during the airport oper-

ation, the information of the landings, such as the earlist, target

and latest time, might change over time. Therefore, the dynamic

ALP is crucial to the applicability in operational planning.
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Appendix A

Matlab programs for

heuristic mehtod

function [C,t,X_star,x,Seq,Xrun,C_seq,E,T,L,g,h,S]
= airland_heuristic(Pro,Run)

% Find the upbound (a feasible solution) by using the heuristic method
%
% Usage: [C,A,x,E,T,L,g,h,S] = airland(Pro,Run)
%
% Input: Pro: The number of the problem
% Run: The number of the runways
% Output: C: The total cost
% x: Landing time for each plane
% A: The order of the planes on each runway’
% t: Time consuming
% E: The earliest landing time
% T: The target landing time
% L: The latest landing time
% g: The unit cost of landing before target time
% h: The unit cost of landing after target time
% S: The seperation time between the planes
% starting time
tic
% Get the data
[P,E,T,L,g,h,S] = Getdata(Pro);
% Get the index corresponding to the sorted plane
ord = sortindex(T);
% initialization
mS = zeros(1,P);
A = zeros(Run,P+1);
x = zeros(1,P);
X_star = zeros(1,P);
C = 0;

64



65

Xrun = zeros(Run,P);
if Run == 1

C = 1;
A = ord;

end
if Run > 1

% for each planes
for i = 1:P

j = ord(i);
B = zeros(1,Run);
% at each runway
for r = 1:Run

mS = zeros(1,P);
l = 1;
if (find(A(r,:)>0))

Q = find(A(r,:)>0);
for m = 1:length(Q)

k = A(r, Q(m));
mS(l) = x(k) + S(k,j);
l = l+1;

end
end
B(r) = max (T(j), max(mS));

end
% the best landing time for plane j
x(j) = min(B);
% feasible runway for x(j)
rway = find(B==min(B));
emp = find (A(rway(1),:) == 0);
% put j into the runway r
A(rway(1), emp(1)) = j;

% add the cost of the current plane to the total cost
if x(j)<T(j)

C = C+(T(j)-x(j))*g(j);
else

C = C+(x(j)-T(j))*h(j);
end

end
end
C_seq=zeros(Run,1);
% If C>0, recalculate the solution
if C~=0

C = 0;
Q =[];
% for each runway
for r = 1:Run

n =length(find(A(r,:)>0));
Q = A(r,1:n);
[f,AA,b,Aeq,beq,lb,ub] = recalculateX(Q,g,h,T,E,L,S);



66

[xcurrent,fval] = linprog(f,AA,b,Aeq,beq,lb,ub);
Xrun(r,1:n) = xcurrent(2*n+1:end);
X_star = opttime(X_star,Xrun(r,:),Q);
[B,false,SS,xx]=seperationtest(X_star,S,Q);
if false == 1

[f,AA,b,Aeq,beq,lb,ub] = recalculateXXXX(Q);
[xcurrent,fval] = linprog(f,AA,b,Aeq,beq,lb,ub);
Xrun(r,1:n) = xcurrent(2*n+1:end);
X_star = opttime(X_star,Xrun(r,:),Q);
Rere = 1

end
% calculating the cost
C_seq(r)=fval;
C = C + fval;
clear xcurrent;

end
end
% Output the sequence and cost
C;
Seq = A ;
t=toc ;

function v = sortindex(a)
% Get the index corresponding to the sorted plane
%
% Usage: [v , c]= sortindex(a)
%
%Input: a: The vector which want to be sorted
%Output: v: The vector of the original index
b = sort(a);
for i = 1:length(a)

c = find(a==b(i));
d = c(1);
a(d) = NaN;
v(i) = c(1);

end

function [xx,gg,hh,TT,EE,LL,SS] = getxx(A,x,r,g,h,T,E,L,S)
% Get the properties of the planes which will land on runway r
% with the fix order in the Step 1 and 2
% current planes on runway r
Q = find(A(r,:)>0);
for m = 1:length(Q)

k = A(r, m);
k1 = A(r, m+1);
xx(m) = x(k);
gg(m) = g(k);
hh(m) = h(k);
TT(m) = T(k);
EE(m) = E(k);
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LL(m) = L(k);
if m < length(Q)

SS(m) = S(k, k1);
end

end

function [f,A,b,Aeq,beq,lb,ub] = recalculateX(A,x,r,g,h,T,E,L,S)
% Form the model to be minimizing as following
% Min f’x
% s.t. A*x <= b
% Aeq*x = beq
% lb <= x <= ub
%
% Usage: [f,A,b,Aeq,beq,lb,ub] = recalculateX(A,x,r,g,h,T,E,L,S)%
% Input: A: The order of the planes on each runway
% x: current solution
% r: the runway to be recalculated
% g: The unit cost of landing before target time
% h: The unit cost of landing after target time
% T: The target landing time
% E: The earliest landing time
% L: The latest landing time
% S: The seperation time between the planes
% Output: the parameters in the model
% f: The coefficient for variable
% [a1 a2 ... b1 b2 ... x1 x2 ...]
% A: The coefficient matrix of the left handside of
% x(i)-x(i+1) <= S(i,i+1)
% b: The vector of right handside of
% x(i)-x(i+1) <= S(i,i+1)
% Aeq: The leftside of a(i)-b(i)+x(i) == T(i)
% beq: The rightside of a(i)-b(i)+x(i) == T(i)
% lb: The lowerbound of the variable
% ub: The upperbound of the variable
% Get the properties of the planes which will land on runway r with
% the fix order in the Step 1 and 2
[xx,gg,hh,TT,EE,LL,SS] = getxx(A,x,r,g,h,T,E,L,S);
n = length(gg);
ze = zeros(n,1);
z = zeros(n-1,n);
I = eye(n);
f = [gg’;hh’;ze];
sum gg(i)*a(i)+hh(i)*b(i)+0*x(i)

A = [z z eye(n-1) zeros(n-1,1)] + [z z zeros(n-1,1) -eye(n-1)];
b = -SS’;
lb = [ze;ze;EE’];
ub = [TT’-EE’;LL’-TT’;LL’];
beq = [TT’];
Aeq = [I -I I];
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function [P,E,T,L,g,h,S] = Getdata(Pro)
% Find the upbound (a feasible solution) by using the heuristic method
%
% Usage: [C,A,x,E,T,L,g,h,S] = airland(Pro,Run)
%
% Input: Pro: The number of the problem
% Run: The number of the runways
% Output: C: The total cost
% x: Landing time for each plane
% A: The order of the planes on each runway’
% t: Time consuming
% E: The earliest landing time
% T: The target landing time
% L: The latest landing time
% g: The unit cost of landing before target time
% h: The unit cost of landing after target time
% S: The seperation time between the planes
% Read the data from ’airland .txt’
switch Pro,

case 1,
Dat = textread(’airland1.txt’);

case 2,
Dat = textread(’airland2.txt’);

case 3,
Dat = textread(’airland3.txt’);

case 4,
Dat = textread(’airland4.txt’);

case 5,
Dat = textread(’airland5.txt’);

case 6,
Dat = textread(’airland6.txt’);

case 7,
Dat = textread(’airland7.txt’);

case 8,
Dat = textread(’airland8.txt’);

case 9,
Dat = textread(’airland9.txt’);

case 10,
Dat = textread(’airland10.txt’);

case 11,
Dat = textread(’airland11.txt’);

case 12,
Dat = textread(’airland12.txt’);

case 13,
Dat = textread(’airland13.txt’);

end

% Get the data
if Pro < 2

d1 = Dat(2:3:end, 1:end-3);
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S = [Dat(3:3:end, 1:end-1) Dat(4:3:end, 1:2)];
elseif Pro < 3

d1 = Dat(2:3:end, 1:end-3);
S = [Dat(3:3:end, 1:end-1) Dat(4:3:end, 1:end-2)];

elseif (Pro < 6)
d1 = Dat(2:4:end, 1:end-3);
S = [Dat(3:4:end, 1:end-1) Dat(4:4:end, 1:end-1) ...

Dat(5:4:end, 1:end-5) ];
elseif (Pro == 6)

d1 = Dat(2:5:end, 1:end-3);
S = [Dat(3:5:end, 1:end-1) Dat(4:5:end, 1:end-1) ...

Dat(5:5:end, 1:end-1) Dat(6:5:end, 1:end-3) ];
elseif (Pro == 7)

d1 = Dat(2:7:end, 1:end-3);
S = [Dat(3:7:end, 1:end-1) Dat(4:7:end, 1:end-1) ...

Dat(5:7:end, 1:end-1) Dat(6:7:end, 1:end-1) ...
Dat(7:7:end, 1:end-1) Dat(8:7:end, 1:end-5) ];

elseif (Pro == 8)
d1 = Dat(2:8:end, 1:end-3);
S = [Dat(3:8:end, 1:end-1) Dat(4:8:end, 1:end-1) ...

Dat(5:8:end, 1:end-1) Dat(6:8:end, 1:end-1) ...
Dat(7:8:end, 1:end-1) Dat(8:8:end, 1:end-1) ...
Dat(9:8:end, 1:end-7) ];

elseif (Pro == 9)
d1 = Dat(2:5:end, 1:6);
S = [Dat(3:5:end, 1:end) Dat(4:5:end, 1:end) ...

Dat(5:5:end, 1:end) Dat(6:5:end, 1:10) ];
elseif (Pro == 10)

d1 = Dat(2:6:end, 1:6);
S = [Dat(3:6:end, 1:end) Dat(4:6:end, 1:end) ...

Dat(5:6:end, 1:end) Dat(6:6:end, 1:end) ...
Dat(7:6:end, 1:end) ];

elseif (Pro == 11)
d1 = Dat(2:8:end, 1:6);
S = [Dat(3:8:end, 1:end) Dat(4:8:end, 1:end) ...

Dat(5:8:end, 1:end) Dat(6:8:end, 1:end) ...
Dat(7:8:end, 1:end) Dat(8:8:end, 1:end) ...
Dat(9:8:end, 1:20) ];

elseif (Pro == 12)
d1 = Dat(2:10:end, 1:6);
S = [Dat(3:10:end, 1:end) Dat(4:10:end, 1:end) ...

Dat(5:10:end, 1:end) Dat(6:10:end, 1:end) ...
Dat(7:10:end, 1:end) Dat(8:10:end, 1:end) ...
Dat(9:10:end, 1:end) Dat(10:10:end, 1:end) ...
Dat(11:10:end, 1:10) ];

else
d1 = Dat(2:18:end, 1:6);
S = [Dat(3:18:end, 1:end) Dat(4:18:end, 1:end) ...

Dat(5:18:end, 1:end) Dat(6:18:end, 1:end) ...
Dat(7:18:end, 1:end) Dat(8:18:end, 1:end) ...
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Dat(9:18:end, 1:end) Dat(10:18:end, 1:end) ...
Dat(11:18:end, 1:end) Dat(12:18:end, 1:end) ...
Dat(13:18:end, 1:end) Dat(14:18:end, 1:end) ...
Dat(15:18:end, 1:end) Dat(16:18:end, 1:end) ...
Dat(17:18:end, 1:end) Dat(18:18:end, 1:end) ...
Dat(19:18:end, 1:20)];

end
% Sort the data
P = Dat(1,1);
E = d1(:, 2); T = d1(:, 3); L = d1(:, 4);
g = d1(:, 5); h = d1(:, 6);



Appendix B

Matlab programs for Column

Generation

function [Z,A,C,obj_val,Seq,Time] = air1_Branch(node_1,node_0)

% Solve the linear relaxation by column generation
% given the previous information and the branching condition
%
% Usage: [Z,A,C,obj_val,Seq,Time] = air1_Branch(node_1,node_0)
%
% Input: prev_I: The final i(s) corresponding to the
% final columns in the previous iteration
% avail_I: The available i(s) in the previous iteration
% (new available i(s) are found within this set )
% Output: Z: The optimal solution for this branch
% A: The final columns in this iteration
% C: The final objective function coefficient
% I: The final i(s) corresponding to the final columns
% obj_val: The objectiv function in each iteration
global P R E T L g h S oriE oriL
global A C Seq Time
global TT1 TT2 TT3 TT4 TT5 TT6
B = ones(P,1);
% Find out the infeasible columns, set Fix to be 1
Fix= checkavail(node_1,node_0);
% Update the node[] for the current node
node_parameter = zeros(P,P);
[ro_1,co_1] = size(node_1);
[ro_0,co_0] = size(node_0);
if ~isempty(node_1)

for i = 1:ro_1
node_parameter(node_1(i,1),node_1(i,2))=1;
% the other elements in the same row
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node_parameter(node_1(i,1),1:node_1(i,2)-1) = 2;
node_parameter(node_1(i,1),node_1(i,2)+1:end)=2;
node_parameter(node_1(i,1),node_1(i,1)) = 0;
% the other elements in the same column
node_parameter(1:(node_1(i,1)-1),node_1(i,2)) = 2;
node_parameter(node_1(i,1)+1:end,node_1(i,2))=2;
node_parameter(node_1(i,2),node_1(i,2)) = 0;

end
end
if ~isempty(node_0)

for i = 1:ro_0
node_parameter(node_0(i,1),node_0(i,2))=2;

end
end
node = node_parameter;
% The number of the iterations
Num = 1000000;
obj_val =[];
temp = ones(P,1);
Fix(1:P)=zeros(P,1);
for n = 1:Num

% Solve the master problem by ’air.gms’
[z,u,ulast,obj] = gams(’air’,A,B,C,temp,Fix,R);
master_solution = find(z.val~=0);

size(A);
% The objective value

obj_val = [obj_val z.val(1:length(C))’*C];
% The dual variables for the equations

pi = u.val;
dual_value = pi’;

pilast = ulast.val;
% Solve the subproblem by ’subproblem.gms’
[x,col,Re_cost] = gams(’subproblem’,E,T,L,g,h,S,pi,pilast,node);

if Re_cost.val > -0.000001
Z = z.val(1:length(C))’;

break
end
for i = P+1:(length(C))
if A(:,i)==col.val

here=1;
end

end
c= Re_cost.val + [pi’ pilast]*[col.val; 1];
temp_seq = sortindex(x.val);
s = [temp_seq(length(find(x.val==0))+1:end) ...

zeros(1,P-length(find(x.val~=0)))];
ti = [sort(x.val(find(x.val~=0)))

zeros(P-length(find(x.val~=0)),1)]’;
% Update the C[], A[], Seq[], Time[], and Fix[]
C = [C; c];
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A = [A col.val ];
Seq = [Seq; s];
Time = [Time; ti];
Fix(length(C))=0;

end

function initialization(p,r)
% initialize the parameters P, E[], T[], g[], h[]
% initialize matrix for saving the computational results for
% A[], C[], I[], Seq[], Time[]
% initialize the initial columns for column generation
global P E T L g h S R oriE oriL
global A C I Seq Time
global UB All_Nodes Nnode
%parameter initialization
Pro = p;
R = r;
[P,oriE,T,oriL,g,h,S] = Getdata(Pro);
for i = 1:P

S(i,i) = 9999;
end
% Calculate the upper bound by airland_heuristic.m
[UB,t,X_star,x,heuristic_Seq,heuristic_Time,heuristic_C]
= airland_heuristic(p,r);
All_Nodes = avail_nodes_90;
Nnode = length(All_Nodes);
ordind = sortindex(T);
for i = 1:P

E(i) = max(oriE(i), T(i)-UB/g(i));
L(i) = min(oriL(i), T(i)+UB/h(i));

end
% the ’dummy’ part of the initial column
C = ones(P,1)*5000;
Seq = [[1:P]’, zeros(P,P-1)];
A = eye(P);
Time = [T,zeros(P,P-1) ] ;
% the ’heuristic solution’ part of the initial column
heuristic_col = zeros(R,P);
for i = 1:R

for j = 1:length(find(heuristic_Seq(i,:)~=0))
heuristic_col(i,heuristic_Seq(i,j))=1;

end
end
C = [C; heuristic_C];
Seq = [Seq; heuristic_Seq(:,1:P)];
Time = [Time; heuristic_Time];
A = [A, heuristic_col’];
% the good initial columns generated by ini_good_col.m
[cost0_c,cost0_col,cost0_Seq,cost0_Time] = ini_good_cols(Pro);
C = [C; cost0_c];
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Seq = [Seq; cost0_Seq];
Time = [Time; cost0_Time];
A = [A, cost0_col’];

function Fix = checkavail(node_yes,node_no)
global Seq
% determine the Fix value for those sequences in Seq
[ro,co] = size(Seq);
Fix = zeros(10000,1);
[ro_yes,co_no] = size(node_yes);
[ro_no,co_no] = size(node_no);
for i = 1:ro

Seq_i = Seq(i,:);
for y = 1:ro_yes

index_1 = find(Seq_i==node_yes(y,1));
index_2 = find(Seq_i==node_yes(y,2));
if isempty(index_1) & isempty(index_2)
elseif index_1 & index_2 & (index_1 == index_2 - 1)
else

Fix(i) = 1;
break

end
end
for n = 1:ro_no

index_1 = find(Seq_i==node_no(n,1));
index_2 = find(Seq_i==node_no(n,2));
if isempty(index_1) & isempty(index_2)
elseif index_1 & index_2 & (index_1 == index_2 - 1)

Fix(i) = 1;
break

end
end

end
Fix(ro+1:end) = 1;

function [cost0_col,cost0_Seq,cost0_Time] = ini_good_cols(Pro)
% Find the ’good’ initial columns
global P E T L g h S
% [P,E,T,L,g,h,S] = Getdata(Pro);
num = 50;
no = round(P*0.85);
cost0_c = zeros(num,1);
cost0_col = zeros(num, P);
cost0_Seq = [];
cost0_Time = [];
nonexist = [];
ordindT = sortindex(T);
TT = sort(T);
t = []; s = [];
cost0_col(1,ordindT(1)) = 1;
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t = TT(1);
s = ordindT(1);
for j = 2:P

q = find(cost0_col(1,:)~=0);
if max(T(q) + S(q,ordindT(j))) <= TT(j)

cost0_col(1,ordindT(j)) = 1;
t = [t TT(j)];
s = [s ordindT(j)];

else
nonexist = [nonexist j];

end
end
cost0_Time = [cost0_Time; t, zeros(1, P-length(t))];
cost0_Seq = [cost0_Seq; s, zeros(1, P-length(s))];
for i = 1:length(nonexist)

t = []; s = [];
for j = 1:P

if j < nonexist(i)
q = find(cost0_col(i+1,ordindT(1:nonexist(i))));
if (TT(j)+S(j, ordindT(j))) <= TT(nonexist(i))

if isempty(q)
cost0_col(i+1,ordindT(j)) = 1;
t = [t TT(j)];
s = [s ordindT(j)];

elseif max(TT(q) + S(ordindT(q),ordindT(j))) <= TT(j)
cost0_col(i+1,ordindT(j)) = 1;
t = [t TT(j)];
s = [s ordindT(j)];

end
end

elseif j == nonexist(i)
cost0_col(i+1,ordindT(j)) = 1;
t = [t TT(j)];
s = [s ordindT(j)];

else
q = find(cost0_col(i+1,:));
if max(T(q) + S(q,ordindT(j))) <= TT(j)

cost0_col(i+1,ordindT(j)) = 1;
t = [t TT(j)];
s = [s ordindT(j)];

end
end

end
cost0_Time = [cost0_Time; t, zeros(1, P-length(t))];
cost0_Seq = [cost0_Seq; s, zeros(1, P-length(s))];

end
for i = 1:num

if cost0_col(i,:)==0
cost0_c = cost0_c(1:i-1);
cost0_col = cost0_col(1:i-1,:);
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cost0_Seq = cost0_Seq(1:i-1,:);
cost0_Time = cost0_Time(1:i-1,:);
break

end
end



Appendix C

GAMS programs for the

master problem and the

subproblem

Air1.gms

Set
i /1*100/
j /1*10000/;
Parameter
A(i,j) the column matrix
B(i) each plane lands on one runway
C(j) the cost coefficient
Fix(j) the control variable for z
temp(j) the column using runway;
Scalars
R the number of runways /2 /;
Variable
zzz the sum of the cost;
Positive variable
z(j) the decision variable;
Equation
cost the objective function
dual(i) the row for each plane
duallast the limit on the number of available runways
check(j) the feasibility of the decision variable;
cost.. zzz =e= sum(j, C(j)*z(j)) ;
dual(i).. sum(j, A(i,j)*z(j)) =e= B(i);
duallast.. sum(j$(temp(j)=0), z(j))=e= R;
check(j)$(Fix(j) > 0) ..z(j) =e= 0;
model air1 /all/;
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$if exist matdata.gms $include matdata.gms
solve air1 using lp minimizing zzz;
display zzz.l;
$libinclude matout z.l J
$libinclude matout dual.m I
$libinclude matout duallast.m
$libinclude matout zzz.l

Subproblem.gms

Sets
i planes / 1*100 /
r runways / 1*1 /;
alias (i,j);
alias (i,k);

Parameters
E(i) the earliest landing time for plane i
T(i) the target landing time for plan i
L(i) the latest landing time for plan i
g(i) the unit cost for landing before target time
h(i) the unit cost for landing after target time
pi(i) the dual value for plane i
node(i,j) equals to 1 if j -> i or 2 otherwise
S(i,j) seperation time between i and j;

Scalars
pilast the dual for the last equation ;

Variable RC;
Positive Variable x(i), a(i), b(i);
Binary Variable theta(i,j), col(i), y(i,j);
Equations

Recost define objective function
ETime(i) the earlest time for plane i
LTime(i) the latest time for plane i
a1(i) the relation between a and T x
a2(i) the relation between a and T E
b1(i) the relation between b and x T
b2(i) the relation between b and L T
axb(i) the relation between x and a b
Comp1(i,j) either i before j or j before i
Comp2(i,j) either i before j or j before i
Comp3(i,j) either i before j or j before i
Comp4(i,j) either i before j or j before i
U(i,j) seperation time requirment for all planes
choose(i,j) set node to be 1
choose2(i,j) set node to be 1
delete(i,j) set node to be 0
delete2(i,j) set node to be 0;

Recost .. RC =e= sum(i, g(i)*a(i)+h(i)*b(i)-pi(i)*col(i)) - pilast;
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ETime(i) .. col(i)*E(i) =l= x(i);
LTime(i) .. x(i) =l= col(i)*L(i);
a1(i) .. a(i) =g= col(i)*T(i)-x(i);
a2(i) .. a(i) =l= T(i)-E(i);
b1(i) .. b(i) =g= x(i)-col(i)*T(i);
b2(i) .. b(i) =l= L(i)-T(i);
axb(i) .. x(i) =e= col(i)*T(i)-a(i)+b(i);
Comp1(i,j)$(S(i,j) < 9000) .. theta(i,j) + theta(j,i) =l= 1;
Comp2(i,j)$(S(i,j) < 9000) .. theta(i,j) + theta(j,i) =g=

col(i)+col(j)-1;
Comp3(i,j)$(S(i,j) < 9000) .. theta(i,j) =l= col(i);
Comp4(i,j)$(S(i,j) < 9000) .. theta(i,j) =l= col(j);
U(i,j)$(S(i,j) < 9000) .. x(j) =g= x(i) + S(i,j)*theta(i,j)

- (L(i)-E(j))*theta(j,i) - (col(i)*L(i)-col(j)*E(j))
+ (L(i)-E(j))*(theta(i,j)+theta(j,i));

choose(i,j)$(node(i,j)=1) .. col(i) =e= col(j);
choose2(i,j)$(node(i,j)=1) .. sum(k,theta(k,i)) =e=

sum(k,theta(k,j)) - col(i);
delete(i,j)$(node(i,j)=2) .. col(i)+col(j) =l= 1 + 1000000*y(i,j);
delete2(i,j)$(node(i,j)=2) . 2 - 100000*theta(j,i) =l=

sum(k,theta(k,j))-sum(k,theta(k,i)) +10000000*(1-y(i,j));

Model subproblem /all/ ;
$if exist matdata.gms $include matdata.gms
solve subproblem using MIP minimizing RC;
display x.l, a.l, b.l, col.l, theta.l, y.l;
$libinclude matout x.l I
$libinclude matout col.l I
$libinclude matout RC.l



Appendix D

Matlab programs for

Branch-and-Price algorithm

function [Sequence,LandingTime,Cost,t] = Algorithm_air1_MinSub
% The entire branch-and-price algorithm
% The function air1_Branch() excute the column generation
clear all
tic
global P E T L g h S oriE oriL
global A C Seq Time
global UB All_Nodes Nnode
p = 9; % The number of problem
r = 2; % The number of runways
% initialization ----- initialize the global parameters
initialization(p,r)
% definition of the output
Sequence = []; LandingTime = []; Cost = 0;
% The first parent node --- The LP relaxation of the problem
node_1 =[]; node_0 = [];
% Solve the root node by column generation
[Z,A,C,obj_val,Seq,Time] = air1_Branch(node_1,node_0);
% check if LP relaxation solution is integer
if floor(Z) == Z

index = find(Z==1);
for i = 1:length(index)

Sequence = [Sequence; Seq(index(i),:)];
LandingTime = [LandingTime; Time(index(i),:)];
Cost = Cost + C(index(i),:);

end
return

end
% set the lower bound of the optimal solution
LP_LB = obj_val(end);
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numberofcolumn = [length(C)]
% Branching and Bound
nodess = [];
delete = 0;
for n = 1:100

% Update the information of the node to be explored
[ro_1,co_1] = size(node_1);
if delete==0 & ro_1 < (P-1)
% choose a child node

node = Node_choosing(Z,[node_1; node_0]);
node_1 = [node_1; node];
nodess = [nodess; node];

else
% remove the node and search for the next node

num = find(nodess(:,1)==node_1(end,1)...
& nodess(:,2)==node_1(end,2));

nodess = nodess(1:num,:);
[row,col] = size(node_0);
temp = [];
for i = 1:row

if ~isempty(find(nodess(1:num,1)==node_0(i,1) ...
&nodess(1:num,2)==node_0(i,2)))
temp = [temp; node_0(i,:)];

end
end
node_0 = [temp; node_1(end,:)];
node_1 = node_1(1:end-1,:);

end
delete = 0;
% solve the linear relaxation problem for the current node by column
% generation ’air1_Branch.m’
[Z,A,C,obj_val,Seq,Time] = air1_Branch(node_1,node_0);
numberofcolumn = [numberofcolumn length(C)]
if obj_val(end) > UB+0.0001

%% LP > UB, prune the node
delete = 1;

else
%% LP <= UB , Check if it is integer or not

if floor(Z) == Z
%%% LP is integer
if abs(obj_val(end)-LP_LB)<0.0001

%% IP = LP_LB, then output the solution
index = find(Z==1);
for i = 1:length(index)

Sequence = [Sequence; Seq(index(i),:)];
LandingTime = [LandingTime; Time(index(i),:)];
Cost = Cost + C(index(i),:);

end
t = toc
break
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else
%% LP > LP_LB, update the UB, delete the node
delete = 1;
UB = obj_val(end);
index = find(Z==1);

end
end

end
end
% output the result
if isempty(index)

for i = 1:length(index)
Sequence = [Sequence; Seq(index(i),:)];
LandingTime = [LandingTime; Time(index(i),:)];
Cost = Cost + C(index(i),:);

end
end
% the total running time
t = toc

function node = Node_choosing(Z,Branch)
% Choose the next node to be explored
global P R E T L g h S
global A C I Seq Time
Weight = zeros(P);
Z_I = find(Z~=0);
for i = 1:length(Z_I)

for j = 1:length(find(Seq(Z_I(i),:)~=0))-1
Weight(Seq(Z_I(i),j),Seq(Z_I(i),j+1)) = ...
Weight(Seq(Z_I(i),j),Seq(Z_I(i),j+1)) + Z(Z_I(i));

end
end
[ro,co] = size(Branch);
for m = 1:ro

Weight(Branch(m,1),Branch(m,2)) = 0;
end
[I_1,J_1] = find(abs(Weight-1)<0.0001);
for i = 1:length(I_1)

Weight(I_1(i),J_1(i)) = 0;
end
[II,JJ] = find(Weight==max(max(Weight)));
node = [[I_1,J_1]; [II(1),JJ(1)]];


