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MIXTURE OF GAUSSIANS In the M-step, the parameters are estimated for fixed respon-
We cluster the data by modelling the data vecteras a  Sibilities (definingNy, = 3, vin):
Mixture of K Gaussians (MoG) )
. T — NN]C (4)
p(x[0, M) = p(k|6, M)p(x[k, 0. M), (1) _ L
P = Zn:wmxn (5)
where 6 is the model parametersM is the model, 3, = 1 Z%n(xn — ) (xn — ) (6)
p(k|0, M) is the mixing proportions (which sum to one: N 4
> p(kl@, M) = 1) and p(x|k, 0, M) is Gaussian with
mean vectoy,, and covarianc&: After convergence the responsibilities can be used to make
clustering by assigning gemeto the cluster which is the most
p(x|k, 0, M) = probable.
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The ML MoG has a fatal flaw, hamely trivial solutions exist
with diverging likelihood wheny, = x, andX; — 0
(MacKay, 2003). This problem can be understood and cured
The parameters of the MoG are thilis= {(m, s, )|k = py a Bayesian approach where a prigh) is introduced.
L,...,K} with m, = p(k|6, M). In maximum like- \we can now argue that for any reasonable prior this singular
lihood (ML) MoG the parameters are estlmatede'éi@. = solution has a vanishing posterior probabiliyp| Dy )d6
argmaxg L(0) where the objective is the log-Likelihood [1, p(x.|0)p(0)d6 although it's probability density diver-
L(0) = Y logp(x,|6, M). This naturally leads to a ges, i.e. the peak is narrow, but the probability volume
set of iterative expectation maximisation (EM) updates which(the integral of the density in a local neighbourhood around
are guaranteed to converge to a local maximum of the likethe maximum) is negligible. In the Bayesian approach we
lihood. In the E-step, the responsibility,,, which is the  aim at calculating the quantities of interest by averaging out
probability of clusterk given genen is updated for fixed uncertainty, e.g. the marginal likelihood

parameters as follows

)

p(k)p(x,|k, 0) p(Dn|M) Z/db’ ];[p(XnIB,M)p(BIM) 7)

Vkn _p(k’|Xn,0) Zk/p(/f’)p(xn|/€'79) : (3)
can be used for model order selection, i.e. with no prior
expectations about wha should be, we will choose th&
*to whom correspondence should be addressed that maximizes the probability of the data.
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We can find the cluster assignment probability for a datavalues (using the same notation as (Attias, 2008))= 1,
point x by averaging out the parameters using the posteriof, = 10712, p, = 0, &, = 102K andvy, = M + 1, where
distribution K is the empiricalK’ x K covariance matrix of the data. The

p(k, %Dy, M) parameters were initialized to the following valuag:= A,
p(k|x, Dy, M) = P RPNV (8) B = 1+ 6o, 1 = K, p ~ N(m,K), wherem is the

p(x[Dn, M) empirical mean of the data. For example, scafingand®,,
where with factorse [1075;10'] and e [1072;10%], respectively,
did not change the results significantly.

p@mﬂDN“wo=3/dBMkwﬂwnwﬂheﬂwanDwﬂw>
©)

ASSESSING THE NUMBER OF REPETITIONS

K It is in general difficult to assess when a sampling based
andp(x|Dn, M) = >_; p(k,x|Dy, M). method has converged (MacKay, 2003), i.e. are the samp-
VARIATIONAL BAYES les actually coming_fr(_)m the distribu_tion we want to draw

. ) ] samples from? A similar problem arises in consensus clu-
Unfortunately, the Bayesian approach is not analyticallystering: When will the final consensus clustering not change
tractable and we have to resort to approximate approachesignificantly if we make more repetitions? One way to ans-
In the variational Bayes (VB) approach (Attias, 2000), theyyer this is through resampling (or cross-validation) methods.
priors are chosen in the exponential conjugate family (i.e. &ne could for example measure the difference (using some
Dirichlet flor 7 and a coupled Gaussian-Wishart jof and  gyjtable norm) between the co-occurence matrix calculated
'y = 3, 7) and the posterior distribution(6|Dy ) is appro-  ysing all repetions (the full cluster ensemble) and using
ximated by a simpler tractable_partly factorlge_d fzh_strlbutlonduster ensembles which are generated from the full clu-
4(0) = q(7) [ 1, ¢(1x, T'x)- ¢(0) is found by minimising the  ster ensemble by sub-sampling (cross-validation) or sampling
Kullback-Leibler (KL) divergence betweenandp with replacement (bootstrap).
4(6) Here we will assess the problem in a different compu-
—_— (10) tationally cheaper way that uses the fact that the averaged
(/D) mutual information indicates how diverse the cluster ensem-

The hyperparameters of the priors are chosen such that tikde is. We make a simplistic model for the way the clu-
singularities are removed while at the same time the priofter assignment(x) is generated from the true unknown
will have vanishing influence on the clustering. The reasorfSsignment™*(x): Introducing a ‘flip probability’e, we

for choosing the prior in the exponential conjugate family is@ssume that the assignment is "flipped’ to belong to cluster
that for this choice solving fog(8) simply amounts to using & With probability ep*™(k), wherep™™°(k) is (the true and

an iterative update of the parameters of ghdistribution in  thus unknown) fraction of examples belonging to cluster
the same fashion as with the EM algorithm. As a final beneWith probability (1 — ) the assignment is unchanged. This
fit of the VB approach, we get guaranteed convergence tgoise process’ introduces false positive entries in the co-

likelihood cluster will get a non-zero entry. We should choose the num-

(D, 01M) ber of repetitions such that true positive (TP) entries (pairs
Papp(Dn|M) = /d@q(e) 1ng N> < p(Dy|IM). of tr_a_nscrlpts belc_)ngln_g together) sho_uld be larger than false
q(0) . positive (FP) entries with a safe margin.

) ) . (11 We can calculate the expected mutual information as a
VBMoG has previously been applied to DNA microarrays fnction ofe and{pte (k) } K

by (Muro et al, 2003). Note that ML methods can also =t

zmmmz/w«mmp

be used for model selection (determine the number of clu- (M,.,..) = Z (1= €)*pi + (26 — €)p}]

sters) by subtracting complexity penalizing terms from the k

log-likelihood. These criteria known as Akaike’s Informa- x log [(1 — )2/ pp + (26 — 62)] (12)
tion Criterion (AIC) and the Bayesian Information Criterion

(BIC) have been also applied in context of MoG and DNA 9 9 9
microarrays (McLachlaet al, 2002; Ghosh & Chinnaiyan, e Xk:pk (2¢ — €") log(2e — €7)

2002; Paret al, 2002). The lower bound of the marginal like-

lihood above reduces to BIC in the asymptotic limit of a largewherep;, = p**¢(k). The entropy of the marginal distributi-

number of samples (Attias, 2000). onsM, = — %", p.(k)logp,(k) becomes on average equal
The clustering results are not strongly dependent upon thi the entropy of the true marginald/,) = — >, pi log py.

initialization of the parameters and the choice of hyperpafor large number of transcripts we can ignore fluctuati-

rameters. The hyperparameters were set to the followingns and set}M"”™) = (M,,.)/(M,). This connects the
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observed averaged normalised mutual information with th&eneration of new Gaussian noise to the model parameters
unknown quantities. Next we can calculate the statistics ofor each clustering run did not alter the simulation results
the entries in the co-occurrence model under this noise modsignificantly (Figure 2a—c). Randomization of the 'signal
(an = a(xy)) forn #£n': 10°

(Conr) = (anan) = (an)(an’)
= [(l — E)a;rue +e€ Zpkéan,k‘| (13) é 102k
' §
x [(1 — e)alit® +e Zméan,,k] 3
k £
. E0'}
If atrie = gl this becomes: g
CTP = (1 —€)? + 2¢(1 — €)pa, + €2 Zpi (14)
k
1000 02 04 06 08 1
and ifa,tnrue 7/: a:lr,“e: Normalised a\}erage mutual information
FP _ 2 2
¢ =e(l = €)(pa, eran/) te Zpk ’ (%) Fig. 1. The required number of repetitions versus the average nor-
k malised mutual informatiom7" "™ for p'™¢(k) = 1/K with

The expected entries (over repetitions) for the true positivd® = 10- Because the corredt’ is not known, we use the predic-

entries will approximately be normal distributed with mean €9 Number of repetitions for eadtiin the tested interval. Example

CTP and VarlanCé/TP = CTP(]_ . CTP)/R WhereR is the values are\/ = {01, 05, 08} glVe 173, 18 and 4.
number of repetitions. Demanding that the probability that

a true positive entry is smaller than a false positive should , . . .
o values’ (Table 1 in main text) resulted in a general decrea-
be small, say below = 5 standard deviations we have the

following condition: sed classification error rate for all algorithms. This is.also
' expected since the simulated dataset was constructed in such
OTP _ VTP > OFP | \/YFP (16) a way that there was a high resemblance between clusters 1
- and 3 as well as clusters 4 and 6 (Figure 2d-f).
This condition determineR in terms of the unknowns. If we
know p'™(k), we can use the observed valuendt ™™ 0 REFERENCES
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Fig. 2. Classification error rate as a function of number of clusters for selected clustering methadsnéw Gaussian (Eq. 8 in main text)

noise is generated for each clustering rund+f the signal values are randomised and new Gaussian noise are generated for each clustering
run. Note, the classification error ratesciandf (y-axis scale changed) are much smaller compared to the resaltb,id ande. See Figure

4 in main text for further explanation.




