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ABSTRACT
Motivation: Hierarchical and relocation clustering (e.g. K-
means and self-organising maps) have been successful tools
in the display and analysis of whole genome DNA microarray
expression data. However, the results of hierarchical cluste-
ring are sensitive to outliers, and most relocation methods
give results that are dependent on the initialisation of the
algorithm. Therefore, it is difficult to assess the significance
of the results. We have developed a consensus clustering
algorithm, where the final result is averaged over multiple
clustering runs, giving a robust and reproducible clustering,
capable of capturing small signal variations. The algorithm
preserves valuable properties of hierarchical clustering, which
is useful for visualisation and interpretation of the results.
Results: We show for the first time that one can take advan-
tage of multiple clustering runs in DNA microarray analysis by
collecting re-occurring clustering patterns in a co-occurrence
matrix. The results show that consensus clustering obtained
from clustering multiple times with Variational Bayes Mixtures
of Gaussians or K-means significantly reduces the classifica-
tion error rate for a simulated dataset. The method is flexible
and it is possible to find consensus clusters from different
clustering algorithms. Thus, the algorithm can be used as a
framework to test in a quantitative manner the homogeneity of
different clustering algorithms. We compare the method with
a number of state-of-the-art clustering methods. It is shown
that the method is robust and gives low classification error
rates for a realistic, simulated dataset. The algorithm is also
demonstrated for real datasets. It is shown that more biologi-
cal meaningful transcriptional patterns can be found without
conservative statistical or fold-change exclusion of data.
Availability: Matlab source code for the clustering algorithm
ClusterLustre , and the simulated dataset for testing are
available upon request from T.G.
Contact: tg@biocentrum.dtu.dk

∗to whom correspondence should be addressed

1 INTRODUCTION
The analysis of whole genome transcription data using cluste-
ring has been a very useful tool to display (Eisenet al., 1998)
and identify the functionality of genes (DeRisiet al., 1997;
Gaschet al., 2000). However, it is well known that many relo-
cation clustering algorithms such asK-means (Eisenet al.,
1998), self-organizing maps (SOM) (Tamayoet al., 1999),
Mixtures of Gaussians (MacKay, 2003), etc. give results that
depend upon the initialialisation of the clustering algorithm.
This tendency is even more pronounced when the dataset
increases in size and transcripts with more noisy profiles are
included in the dataset. It is therefore common to make a
substantial data reduction before applying clustering. This is
acceptable when we expect only few genes to be affected in
the experiment, but if thousands of genes are affected the data
reduction will remove many informative genes. In a recent
study it was clearly demonstrated that small changes in the
expression level were biological meaningful, when the yeast
Saccharomyces cerevisiaewas grown under well controlled
conditions (Joneset al., 2003). Hence, with the emerging
quantitative and integrative approaches to study biology there
is a need to cluster larger transcription datasets, reduce the
randomness of the clustering result and assess the statistical
significance of the results (Grotkjær & Nielsen, 2004).

An alternative to relocation clustering is hierarchical clu-
stering where transcripts are assembled into a dendrogram,
but here the structure of the dendrogram is sensitive to out-
liers (Hastieet al., 2001). A practical approachto DNA
microarray analysis is to run different clustering methods
with different data reduction (filtering) schemes and manu-
ally look for reproducible patterns (Kaminski & Friedman,
2002). This strategy is reasonable because the clustering
objective is really ill-defined, i.e. the natural definition of
distance or metric for the data is not known. Clustering
methods vary in objective and metric, but the success of the
practical approach shows that many objectives share traits
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that often make more biological sense than looking at the
results of any methods alone.

Bayesian model selection should be able to find the rela-
tive probability of the different clustering methods tested
(MacKay, 2003). The main problem with the Bayesian
approach is computational since for non-trivial models, it is
always computationally intractable to perform the necessary
averages over model parameters. Approximations such as
Monte Carlo sampling (MacKay, 2003; Dubeyet al., 2004)
or variational Bayes (Attias, 2000) have to be employed
instead. A proper model parameter average will give a clu-
stering that is unique up to an arbitrary permutation of labels,
i.e. the cluster numbering is allowed to change. Unfortunately
approximate methods tend to give results that are non-unique.

The randomness of an algorithm, approximate Bayesian or
any other, can be interpreted as arising from partitionings of
the data that are more or less equally likely, and the algo-
rithm is stuck in a local maxima of the objective. This is a
practical problem, and global search methods such a Monte
Carlo or genetic algorithms (Falkenauer & Marchand, 2003)
have been devised to overcome this. However, we can also
choose to take advantage of the randomness in the solutions
to devise a robustconsensus clusteringwhich is the strategy
taken here. Upon averaging over multiple runs with different
algorithms and settings, common patterns will be amplified
whereas non-reproducible features of the individual runs are
suppressed.

The outline of the paper is as follows: First, we present
the consensus clustering algorithm framework. The actual
clustering method used, variational Bayes (VB) Mixture of
Gaussians (MoG) (Attias, 2000) is described in Suppl. Mate-
rial since VBMoG and its maximum likelihood counterpart
are already well-established in the DNA microarray litera-
ture (McLachlanet al., 2002; Ghosh & Chinnaiyan, 2002;
Panet al., 2002). The developed framework is tested on a
generative model for DNA microarray data, since it is crucial
with a simulated dataset that reflects the underlying biologi-
cal signal. Finally, we show how one can use the consensus
clustering algorithm to group co-expressed genes in large
real whole genome datasets. The results demonstrate that
cluster-then-analyse is a good alternative to the commonly
used filter-then-cluster approach.

2 CONSENSUS CLUSTERING
The consensus clustering method described in this paper is
related to those more or less independently and recently pro-
posed in Fred & Jain (2002, 2003); Strehl & Ghosh (2002);
Monti et al. (2003), see also the discussion of related work
in section 5 of Strehl & Ghosh (2002). The main features of
these methods are that they use only the cluster assignments
(soft or hard) as input to form the consensus (and not e.g. clu-
ster means), and the consensus clustering is able to identify

clusters with more complex shapes than the input clusters,
e.g. spherical clusters as inK-means (Fred & Jain, 2003).

Here, we will motivate the introduction of the consensus
method in DNA microarray analysis from a model avera-
ging point of view as a way to make approximate Bayesian
averaging when the marginal likelihoods coming out of the
approximate Bayesian machinery cannot be trusted.

2.1 Soft and hard assignment clustering
In this section we briefly introduce the basic concepts of
probabilistic clustering, for a more details see the Suppl.
Material. The probabilistic (or soft) assignment is a vector
p(x) = [p(1|xn), . . . , p(K|xn)]T giving the probabilities of
thek = 1, . . . ,K cluster labels for an object (M experiment
data vectors)x = [x1, . . . , xM ]T . One way to modelp(k|x)
is through a mixture model

p(k|x) =
p(k)p(x|k)∑K

k′=1 p(k′)p(x|k′)
. (1)

Hard assignments are the degenerate case of the soft assi-
gnment where one component, say,p(k|x) is one, but
a hard assignment can also be obtained froma(x) =
argmaxk p(k|x), i.e. a transcript is only assigned to the most
probable cluster.

In practice we do not know the density model before the
data arrive and we must learn it from the dataset:DN ≡
{x1, . . . ,xN} of sizeN examples (number of transcripts).
We therefore write the mixture model as an explicit function
of the set of model parametersθ and the modelM:

p(x|θ,M) =
K∑

k=1

p(k|θ,M)p(x|k, θ,M) . (2)

The modelM is shorthand for the clustering method used
and the setting of parameters such as the number of clusters
K. Maximum likelihood and the Bayesian approach give two
fundamentally different ways of dealing with the uncertainty
of the model parametersθ.

In maximum likelihoodthe parameters are found by
maximising the likelihood of the parameters:θML =
argmaxθ p(DN |θ,M) with the assumption of indepen-

dent examplesp(DN |θ,M) =
∏N

n=1 p(xn|θ,M) and
assignment probabilities are given byp(k|x,θML,M) ∝
p(k|θML,M)p(x|k, θML,M). This naturally leads to a set
of iterative expectation maximisation (EM) updates which
are guaranteed to converge to a local maximum of the like-
lihood. In the Bayesian approach we form the posterior distri-

bution of the parametersp(θ|DN ,M) = p(DN |θ,M)p(θ|M)
p(DN |M) ,

wherep(θ|M) is the prior over model parameters and

p(DN |M) =
∫

dθ p(DN |θ,M)p(θ|M) (3)

is the likelihood of the model (marginal likelihood or evi-
dence). We can find the cluster assignment probability for a
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data pointx by averaging out the parameters using the poste-
rior distributionp(k|x,DN ,M) = p(k,x|DN ,M)

p(x|DN ,M) . Either way,
we calculate the soft assignments and obtain an assignment
matrixP = [p(x1), . . . ,p(xN )] of sizeK ×N .

Themarginal likelihoodplays a special role because it can
be used for model selection/averaging, i.e. we can assign a
probability to each modelM ∝ p(M)p(DN |M), where
p(M) is the prior probability of the model. For non-trivial
models the evidence is computationally intractable although
asymptotic expressions exist. The variational Bayes (VB)
framework aims at approximating the average over the para-
meters, but it unfortunately underestimates the width of the
posterior distribution ofθ (MacKay, 2003). As a conse-
quence multiple modes of the approximate marginal like-
lihood exists for this flexible model. It means that depending
upon the initialisation, two runsr and r′ give and diffe-
rent estimates of the marginal likelihoodpapp(DN |r,M) 6=
papp(DN |r′,M). This clearly indicates that the posterior
averaging has not been performed correctly. However, the
clustering we find in a run typically has many sensible fea-
tures and can still be useful if we combine clusterings from
multiple runs.

2.2 Averaging over the cluster ensemble
After partitioning the dataR times we have a cluster ensem-
ble of R soft assignment matrices[P1, . . . ,PR]. We may
also have posterior probabilities for each runp(Mr|DN ) ∝
p(DN |Mr)p(Mr), whereMr is the model used in ther
run. From the cluster ensemble we can get different average
quantities of interest.

We will concentrate on measures that are invariant with
respect to the labelling of the clusters and can be used to
extract knowledge from runs with different number of clu-
sters. Theco-occurrence matrixCnn′ is the probability that
transcriptn andn′ are in the same cluster

Cnn′ =
R∑

r=1

Kr∑

k=1

p(k|xn, r)p(k|xn′ , r)p(Mr|DN )

=
R∑

r=1

[PT
r Pr]nn′p(Mr|DN ) . (4)

We can convert the co-occurrence matrix into atranscript-
transcript distance matrixDnn′ = 1 − Cnn′ . This distance
matrix can be used as input to a standard hierarchical cluste-
ring algorithm. In the chosen Ward algorithm (Ward, 1963),
clusters which ’do not increase the variation drastically’ are
merged when the number of leaves (clusters) is decreased,
see section 4.1.

2.3 Mutual information
The normalised mutual information can be used to quan-
tify the significance of the different clustering runs, i.e. how

diverse are the partitionings. Strehl & Ghosh (2002) pro-
posed the mutual information between the cluster ensemble
and the single consensus clustering as the learning objec-
tive, and Montiet al. (2003) used the same basic method
(apparently without being aware of the work of Fred & Jain
(2002)) focusing their analysis on the stability of clustering
towards perturbations. The mutual information between two
runs,r andr′, measures the similarity between the clustering
solutions

Mrr′ =
∑

kk′
prr′(k, k′) log

prr′(k, k′)
pr(k)pr′(k′)

, (5)

where the joint probability of labelk andk′ in runsr andr′ is
calculated asprr′(k, k′) = 1

N

∑
n p(k|xn, r)p(k′|xn, r′) and

the marginal probabilities aspr(k) = 1
N

∑
n p(k|xn, r) =∑

k′ prr′(k, k′). We can also introduce a normalised version
of this quantity:

Mnorm
rr′ =

Mrr′

max(Mr, Mr′)
∈ [−1; 1] , (6)

where the entropy of the marginal distributionspr(k) is
given byMr = −∑

k pr(k) log pr(k). Finding the consen-
sus clustering by optimizing the mutual information directly
is NP-hard and the method suggested above may be viewed
as an approximation to do this (Strehl & Ghosh, 2002).

The average mutual information

M
norm

=
2

R(R− 1)

∑

r,r′,r>r′
Mnorm

rr′ (7)

can be used as a yardstick for determining the sufficient num-
ber of repetitions. Clearly whenM

norm
is small, the cluster

ensemble is diverse, and more repetitions are needed. We
can express the required number of repetions as a function
of M

norm
by assuming a simplistic randomization process:

the observed cluster assignment is a noisy version of the
true (unknown) clustering. This randomization both lowers
the mutual information and introduces ’false positive’ entries
in the co-occurence matrix. Requiring that the ’true posi-
tive’ entries should be significantly larger than ’false positive’
determinesR in terms ofM

norm
. See Suppl. Material for

more detail.

3 GENERATIVE MODEL
In order to test the performance of the consensus clustering
algorithm we developed an artificial dataset based on a sta-
tistical model of transcription data. Rocke & Durbin (2001)
showed that data from spotted cDNA microarrays could be
fitted to a two-component generative model. The model was
also shown to be valid for oligonucleotide microarrays manu-
factured by Affymetrix GeneChip (Gelleret al., 2003; Rocke
& Durbin, 2003). Here we consider a slight generalisation of
this model by including a multiplicative gene effectexp(γn)
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on the ’true’ (directly comparable) transcript levelµnm of
genen = 1, . . . , N in DNA microarraym = 1, . . . , M . The
introduction of this factor is reflecting the fact that the trans-
cript level of individual genes have different magnitude. The
measured transcript level,ynm, is given by

ynm = αm + µnm exp(γn + ηnm) + εnm , (8)

whereαm is the mean background noise of microarraym and
η ∼ N (0, σ2

η) andε ∼ N (0, σ2
ε) are biological and techni-

cal dependent multiplicative and additive errors that follow
Gaussian distributionsN with mean 0, and varianceσ2

η and
σ2

ε , respectively.
The parametersαm andσε can be estimated by considering

the probe sets with lowest intensity (Rocke & Durbin, 2001).
The rather strong influence of transcript dependent multipli-
cative effectexp(γ) suggests that we should transform the
data in order to at least partly remove it prior to clustering.
Otherwise we will mostly cluster the data according to the
magnitude of the transcript level (Eisenet al., 1998; Gibbons
& Roth, 2002). A Pearson distance is therefore used prior to
clustering as

xnm =
ynm − ȳn

max(σn, σ0)
∈ [−1; 1] (9)

whereȳn andσ2
n are the average and variance ofynm for the

nth transcript, respectively, and the max operation withσ0

small is introduced to avoid amplifying noise for transcripts
with constant expression. A soft version is also possible with√

σ2
n + σ2

0 instead of the max.
The gene effect and multiplicative error for high transcript

levels cannot be determined without DNA microarray repli-
cates and thusση = 0.14 was based on in-house transcription
data (commercial oligonucleotide microarrays from Affyme-
trix). For modelling purposes it was assumed thatγ follows
a Gaussian distribution∼ N (0, σ2

γ). Under this assumption,
the mean of the true transcript level of a geneµnm was calcu-
lated toµ̄ = 280 and toσγ = 1.5 by fitting the same in-house
expression data to Eq. 8. Thus, we can simulate the influence
of noise on the true transcript level for both high and low
expression levels.

3.1 Simulated dataset
A simulated dataset was generated by using the generative
model in Eq. (8) and subsequently transformed according
to Eq. (9). The parameters for the true transcript level in
the simulated dataset with 500 transcripts and 8 microar-
rays are given in Table 1 and plotted as clusters with means
and deviations in Figure 1. The transcript level of transcript
n = 1, . . . , 400 was divided into 6 true clusters withKk tran-
scripts and a relative transcript levelµnm as shown in Table 1.
For the transcriptsn = 401, . . . , 500 we used a mean true
transcript level,µ, of 280. For cluster 7 there was no true
change in transcript level and variance in the transcript level

Table 1. Model parameters for the simulated datasetynm. The
parameterαm is the background noise level of DNA microarray
m andKk is the number of members in clusterk.

αm 39 35 33 35 34 34 34 31
Kk k/m 1 2 3 4 5 6 7 8

60 1 1.3 2.1 1.7 0.9 3.9 2.2 1.9 1.4
70 2 3.6 3.1 2.7 1.4 4.1 3.4 3.1 2.6
30 3 1.2 1.4 1.5 2.1 1.0 1.0 1.1 1.1
120 4 0.9 1.2 1.5 1.6 1.2 1.2 1.3 3.3
40 5 3.0 1.2 1.0 0.5 2.1 1.3 1.1 1.1
80 6 0.4 0.4 0.4 0.4 0.5 0.5 0.5 2.5

The tabulated signal values are given relative toµ̄ = 280, i.e. the true
transcript levelµnm is found by multiplying withµ̄.
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Fig. 1. Simulated dataset with 500 transcripts and 8 DNA microar-
rays divided into the 6 true clusters and a cluster without signal, i.e.
pure noise (cluster 7). Note, only odd numbers are shown on the
x-axis. a. Log2 transformed transcription profile of all transcripts
in the cluster (Eq. 8).b. Means and deviation of the transformed
dataset (Eq. 9).

was only due to noise imposed by the model. Clearly, before
using any clustering algorithm on a dataset it is desirable to
eliminate noise, but in our case we used the simulated dataset
to address the robustness of different clustering algorithm.

3.2 Classification error rate
Compared to previous studies (Fred & Jain, 2002; Strehl
& Ghosh, 2002; Fred & Jain, 2003; Montiet al., 2003)
the proposed, simulated dataset is difficult to cluster, and a
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high classification error rate is expected due to large over-
lap between clusters (Figure 1). The perfect clustering would
determine the number of clusters to 7 with the number of
members as given in Table 1. We defined the classification
error rate as follows: For a clustering result of the simulated
dataset with a given clustering algorithm the correctly cluste-
red transcripts in a single cluster was the maximum number
of transcripts identified in one of the 7 clusters in the simu-
lated dataset. We determined the total number of correctly
clustered transcripts by summing over all clusters, and hence
the classification error rate was determined as the difference
between all transcripts (500) and the total number of correctly
clustered transcripts divided by the total number of trans-
cripts (500). An alternative to the classification error rate is
simply to use the normalised mutual information between the
simulated dataset and a given clustering, but the classification
error rate is easier to interpret and has strong resemblance
to the commonly used false discovery rate used in statisti-
cal analysis of DNA microarrays (Tusheret al., 2001; Reiner
et al., 2003).

4 RESULTS
In this section we make consensus analysis of the simulated
dataset and compare the classification error rate with diffe-
rent ’single shot’ approaches. Furthermore, we use a very
large dataset (spotted cDNA microarray) (Gaschet al., 2000)
for biological validation and comparison. Finally, we use
consensus clustering to re-analyse a DNA microarray data-
set (Affymetrix oligonucleotide DNA microarray) (Broet al.,
2003).

4.1 Complete consensus analysis of simulated data
We clustered the simulated and transformed dataset (Eq. 9),
and show the properties and the results of the consensus
clustering algorithm in Figure 2a–e.

As mentioned earlier, we do not have anya priori know-
ledge of the true number of clusters. Thus, in practice we
have to scan different clustering solutions in a user-defined
interval. In the current case, we scanned cluster solutions
with K = 5, . . . , 20 clusters with 15 repetitions resulting in
a total of16 · 15 = 240 runs. As seen in Figure 2a the nor-
malised mutual information between all(240 − 1)240/2 =
28, 680 pairs is on average 0.53 indicating a high degree
of uncertainty in the VBMoG clustering algorithm. Based
on the 240 VBMoG clustering runs we constructed the co-
occurrence matrix in Figure 2b weighing all runs equally, i.e.
p(Mr|DN ) = 1/R in Eq. 4. We also tried to use the estimate
of the marginal likelihood from VB as weights in Eq. 4, but
that led to a much less stable, close to winner-take-all ensem-
ble, and always very high classification error rates, see also
VBMoG ’single shot’ clustering in Figure 4. This underli-
nes that the VB is not accurate enough to be used for model
averaging. For each repetition the most likely number of clu-
sters was determined by the Bayesian Information Criteria
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Fig. 2. Overview of the consensus clustering mechanism of a simu-
lated dataset with 500 transcripts and 6 true clusters, including a
cluster with pure noise. The consensus clustering was based on
240 VBMoG ’single shot’ clustering runs. See text for additional
details.a. Normalised mutual information between the 240 cluste-
ring runs.b. Co-occurrence matrix of the sorted transcripts using
optimal leaf ordering (Bar-Josephet al., 2001). A black area corre-
sponds to a high degree of co-occurrence, i.e. these transcripts tend
to cluster in all clustering runs. The white area indicates that these
transcripts never cluster together (see text for more details).c. The
co-occurrence matrix is assembled into a dendrogram with 12 lea-
ves, or clusters using the Ward distance.d. Histogram of the cluster
size. e. Normalised transcription profile for all 12 clusters shown
as normalised values between -1 and 1, where 0 indicates the ave-
rage expression level. The bars give the standard deviation within
the clusters. Note the high standard deviation within noisy clusters
4–8.

(BIC) (see also Suppl. Material). The average of the most
likely number of clusters based on the 15 repetitions was 12
with a standard deviation of 3. This result also indicates that
that the posterior averaging has not been performed correctly,
and hence, 12 clusters is only considered a conservative and
pragmatic starting point for further biological validation. For
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a real, biological dataset the problem becomes even worse
(see section 4.3).

For improved visualisation we sorted the co-occurrence
matrix with the optimal leaf ordering algorithm (Bar-Joseph
et al., 2001) implemented inMatlab (Venet, 2003). In
Figure 2b a dark square corresponds to a high degree of co-
occurrence of a number of transcripts, i.e. these transcripts
are frequently found in the same clusters. As an example,
it can be observed that transcripts 1–178 are frequently clu-
stered together, but there is also a second, sharp borderline
dividing the transcripts into two new, distinct clusters. On
the other hand, transcripts 179–321 did not show a clear
pattern with a sharp borderline. The ’blurry square’ also
included transcripts within the 179–407 borderline. However,
the ’blurry square’ also included two dark squares within the
179–407 borderline, indicating clusters with a higher degree
of noise.

In the dendrogram in Figure 2c it was observed that the
small clusters 4–8 compromising 131 transcripts in the data-
set (Figure 2d) are very similar with respect to the Ward
distance. The Ward distance metric is a measure of hete-
rogeneity, and thus a low Ward distance indicated that the
transcripts in one of clusters 4–8 are almost just as likely to
emerge in one of the other three clusters. Furthermore, the
standard deviation within this cluster was much higher than
for the remaining clusters. In Figure 3 it can be seen that mer-
ging clusters 4–8 results in a cluster without signal (cluster 4
in row 3), i.e. mean value of 0 in 8 experiments. Clusters 9
and 10 representK2 in Table 1. We can merge these two clu-
sters based on the transcription profile in Figure 2e, and most
importantly, biological validation of the clusters. Thus, the
dendrogram can be used to discard and merge clusters. If we
decided to decrease the number of clusters to 7 by merging
clusters, it is important that the transcript classification error
rate is controlled. Indeed, in the current example a moderate
decrease in the number of clusters from 12 to 7 resulted in an
increase in classification error rate from 0.094 to 0.120 (47 to
60 classification errors per clustering).

4.2 Comparison of clustering approaches
In Figure 4 the classification error rate for some selected
clustering algorithms were investigated and compared to
the consensus clustering. The simple hierarchical clustering
algorithms in Figure 4a had high classification error rates,
but the Ward algorithm was performing considerably bet-
ter than the remaining algorithms. The classification error
rate was 0.272 for 7 clusters decreasing to only 0.010 for
12–15 clusters. A large number of clusters results in many,
relatively homogeneous clusters (Kamvaret al., 2002) and
consequently a low classification error rate for the proposed
generative model for transcription data.

All four classical ’single shot’ relocation clustering
methods in Figure 4b also fail to cluster the simulated dataset
correctly and results in very high classification error rates.

The classification error rate was only weakly dependent on
the number of clusters, and an increase in cluster size did not
result in a much better separation and identification of the
ground truth (Figure 4). Most transcripts were always col-
lected in a few major clusters, and hence extra clusters only
resulted in the formation of clusters with few transcripts.

To further test the sensitivity to the clustering initialisa-
tion, we initialised in the 7 cluster centres, as defined in
Table 1. The classification error rates decreased significantly:
VBMoG 0.104, genMoG 0.096 andK-means 0.176 (calcula-
tions not shown) besides for MoG which ended up in a trivial
solution (see Suppl. Material). As expected, the probabili-
stic models VBMoG and genMoG are performing better than
K-means when all algorithms are initialised in the 7 true clu-
ster centres. The probabilistic models are not limited to only
capturing spherical clusters. However, it is worth noting that
the values are in sharp contrast to the average classification
error rates obtained with random initialisation in Figure 4b.
Our results suggested that the clusters obtained from ’single
shot’ clustering algorithms represented local maxima, and
these maxima were far from the ground truth. The ’single
shot’ clustering—essentially maximum likelihood results—
can be understood from a bias/variance consideration: less
flexible models, in this caseK-means, have a lower tendency
to overfit data than more flexible models (i.e. have a lower
variance). However, they are also biased towards simpler and
often less accurate explanations of data, here spherically sha-
ped clusters. To ensure that the results were not biased by
the parameters in the generative model, we performed a sen-
sitivity analysis of the parameters. It was confirmed that all
results were qualitative identical to the results in Figure 4 (see
Suppl. material).

Consensus clustering significantly reduced the classifi-
cation error rate for all algorithms taken as input to the
consensus clustering (Figure 4c). We confirm the results
by Fred & Jain (2002) who showed that consensus clu-
stering with K-means enabled the identification of more
complex pattern than withK-means alone. The classi-
fication error rate was reduced from 0.176 to 0.142 in
Figure 4c. The simulated dataset was also clustered with
the ArrayMiner (Falkenauer & Marchand, 2003) (see
also http://www.optimaldesign.com ) and CLICK
(Sharanet al., 2003), clustering algorithms especially desi-
gned for analysis of DNA microarray data. Both algorithms
group transcripts into unique and reproducible clusters, but
they also identify unclassified transcripts, e.g. insignificant
clusters and outliers. Clustering withArrayMiner (default
options and the number of clusters specified to 7, including
a cluster capturing non-classified transcripts) resulted in a
low classification error rate of only 0.096. If the number
of clusters was increased to 11 the classification error rate
decreased to 0.082. There seems to be a trend that consen-
sus clustering (with VBMoG) outperformsArrayMiner
for larger number of clusters. AsArrayMiner clusters with
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Fig. 3. Effect of merging clusters from Figure 2. The 12 initial clusters are merged to three clusters in five steps, indicated with rows to the
left. In rows number 1–5 the number of clusters is 12, 9, 7, 5 and 3, respectively. When two or more clusters are merged, the lowest cluster
label is preserved, e.g. clusters 9 and 10 in row 1 are merged into cluster 9 in row 2 with 46+17=63 transcripts, and clusters 4, 6 and 7 in
row 2 into cluster 4 in row 3 with 38+49+44=131 transcripts. Clusters which are not merged are transferred horizontally from one row to the
row below. Cluster 4 in rows 3 and 4 is composed of the noisy clusters 4–8. It is observed that the average normalised expression value is
approximately 0 with a large standard deviation.

a MoG (optimised with a genetic algorithm instead of EM)
we expect this trend to be more pronounced when the amount
of data increases, the number of clusters are unknown and the
underlying model cannot be approximated with Mixtures of
Gaussians.CLICK correctly identified the number of clusters
(default options) to 6 excluding a cluster with unclassified
transcripts. In this case the classification error rate was 0.232.
However, we found that theCLICK algorithm was more con-
servative and resulted in a large cluster of 176 unclassified
transcripts. Thus, with our definition of classification error
rate theCLICK algorithm is not performing well.

4.3 Consensus clustering of real datasets
We next validated the different clustering algorithms on a real
cDNA microarray dataset (Gaschet al., 2000). This dataset
was produced by exposing the yeastS. cerevisiaeto 11 envi-
ronmental changes and detecting the transcriptional changes
over 173 DNA microarrays. The subsequent 3-fold change
exclusion showed that 2,049 genes had altered transcript level
in at least one of the 173 conditions.

This large dataset was analysed with consensus cluste-
ring and the result compared to clustering with a number
of classical and commercially available methods (Table 2).
The clustering results were validated by the number of
over-represented Gene Ontology (GO) categories (Ashburner
et al., 2000) in each cluster. The rational behind this valida-
tion was that yeast genes with similar function mostly obey
common regulatory mechanism and therefore have common
transcript patterns (Eisenet al., 1998; Hugheset al., 2000).
The GO describes the cellular process, function and com-
ponent categories of a gene and the over-representation of
a particular GO category in a cluster may thereby be used as
a measure of successful clustering of co-regulated genes. The
over-representation of different GO categories was tested in
the cumulative hypergeometric distribution (Tavazoieet al.,
1999; Smetet al., 2002).K-means consensus clustering per-
formed better that other algorithms in all three test examples
(Table 2; 10, 13 and 18 clusters). This result was opposed to
the clustering of the simulated dataset whereArrayMiner
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Fig. 4. Classification error rate as a function of number of clu-
sters for selected clustering methods.a. Five hierarchical clustering
methods. All standard algorithms, except from the Ward algorithm,
have a tendency to form one large cluster and a number of small
clusters resulting in high classification error rates (see also text).b.
Four relocation ’single shot’ clustering methods with fixed number
of clusters. MoG is standard Mixture of Gaussians and GenMog
is the generalised Mixture of Gaussian algorithm (Hansenet al.,
2000). The classification error rate was calculated as the mean value
of 300 clustering runs.c. Consensus clustering (denoted with C)
of VBMoG, K-means and Combi (inputs from both the VBMoG
andK-means algorithms). Each consensus solution was based on
scanning withK = 5, . . . , 20 clusters with 15 repetitions, and
the classification error rate was calculated as the mean value of 50
clustering runs. The classification error rate is compared with the
ArrayMiner (Falkenauer & Marchand, 2003) where unclassified
genes in the output have been collected in one single cluster. Note,
there are much smaller classification error rates in C (y-axis scale
changed) compared to the algorithms ina andb.

and consensus VBMoG performed better than consensusK-
means (Figure 4c) and probably reflect the fact that the
Gaschet al. dataset has a much larger dimensionality than

Table 2. Clustering and biological validation. For each algorithm with a
fixed number of clusters the Gene Ontology categories (Ashburneret al.,
2001) with aP -value below 0.01 were considered significant. The tabulated
values are the number of significant categories summed over all clusters.

Algorithm and settings Clusters Process Function Component

K-means consensus 10 536 229 141
ArrayMiner1,2 10 484 236 151
Hierarchical (Ward) 10 342 147 117
Click and Expander1,3 10 282 122 89
K-means (single shot) 10 275 101 113
VBMoG (single shot) 10 86 42 15

K-means consensus 13 561 259 158
K-means (single shot) 13 444 171 127
Hierarchical (Ward) 13 372 156 114
Adaptive quality-based1 13 260 110 101
VBMoG (single shot) 13 80 45 17

K-means consensus 18 595 274 180
K-means (single shot) 18 483 174 160
Hierarchical (Ward) 18 454 184 177
CAGED version 1.04 18 426 163 136
VBMoG (single shot) 18 105 64 45

1Genes not classified are considered one cluster, and consequently the chosen number
of clusters in the algorithm is chosen to be one less than the tabulated value.
Algorithm reference:2(Falkenauer & Marchand, 2003),3(Sharanet al., 2003) and
4(Sharanet al., 2003).

the simulated one (2,049 transcripts and 173 DNA microar-
rays compared to 500 transcripts and 8 DNA microarrays).
K-means is a more robust method and therefore better sui-
ted for multi-dimensional datasets for the ’single shot’ cases.
ArrayMiner and consensus VBMoG, on the other hand,
rely on Mixtures of Gaussians and therefore possess the
ability to describe data more sophisticated thanK-means
(Figure 4). However, this characteristic of MoG is apparently
a drawback when the dimensionality of the dataset increa-
ses. ’Single shot’ VBMoG performed poorly on the Gaschet
al. dataset with a mutual information between runs that was
less than 0.05 (Table 2). Consensus clustering with VBMoG
consequently requires a large number of repetition before
a stable solution could be obtained (See Supp. Material).
For low mutual information between runs it seems like a
more prudent strategy to go for a local search method as
in ArrayMiner compared to the consensus strategy. The
advantage ofK-means for analysis large dataset was also evi-
dent in the ’single shot’ analysis of the Gaschet al.data where
K-means improved the number of over-represented GO cate-
gories compared to ’single shot’ VBMoG (Table 2).

Another characteristic of the consensus clustering algorithms
was the ability to cluster and exclude transcripts in the same
step. Transcript datasets are often sorted prior to clustering
either according to fold change or by a statistical method
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(Tusheret al., 2001), which may lead to exclusion of false
negative data. We therefore re-analysed a time course expe-
riment from yeast treated with lithium chloride (LiCl). The
budding yeastS. cerevisiaewas grown on galactose and
exposed to a toxic concentration of LiCl at time 0, and the
cells were harvested for transcription analysis at time 0, 20,
40, 60 and 140 minutes after the pulse (Broet al., 2003).

In the original dataset 1,390 open reading frames (ORFs)
were found to to have altered expression in response to LiCl,
of which 664 were found to be down-regulated and 725
up-regulated (Broet al., 2003). In the current analysis we
used consensus clustering on all 5,710 detectable transcripts
without prior data exclusion. The transcription data were clu-
stered as illustrated with the simulated dataset in section 4.1.
The only exception was that we scanned cluster solutions
with K = 10, . . . , 40 and 50 repetitions leading to a total of
31·50 = 1, 550 runs. For each repetition the most likely num-
ber of clusters was determined by the BIC. The average of
the most likely number of clusters based on the 50 repetitions
was 22 with a standard deviation of 10. Once again, the result
indicates that that the posterior averaging has not been perfor-
med correctly; that is, the variation in the number of optimal
clusters reflect that the solutions are very different from run
to run. In Figure 5a the co-occurrence matrix has been sorted
according to the 22 clusters to reflect minimum difference
between adjacent clusters (Bar-Josephet al., 2001). The 22
clusters consisted of up-regulated clusters (Figure 5b and
Figure 5c, clusters 1–4 and 7–10), three down-regulated clu-
sters (Figure 5b, clusters 20–22) plus a set of clusters with
ORFs that had a transient response to LiCl (Figure 5c, clu-
sters 6 and 11–13). The remaining seven clusters did not
have a clear profile and were therefore considered as noise
(Figure 5c, clusters 5 and 14–19).

Both up- and down-regulated genes were further subdivi-
ded into clusters with immediate or delayed response to the
lithium pulse, revealing a better resolution of the data than in
the initial analysis (Broet al., 2003). It was thereby clear that
genes in the carbon metabolism are up-regulated while genes
involved in ribosome biogenesis are down-regulated as an
immediate response to the LiCl pulse (clusters 6–8 and 22).
After 40 minutes genes in clusters 2 and 3 were up-regulated,
while those in cluster 20 started to be down-regulated. Many
of the genes in clusters 2 and 3 were involved in protein cata-
bolism and transport through the secretory pathway, while
genes involved in amino acid metabolism and replication
were found in cluster 20. Finally, after 60 to 140 minu-
tes genes involved in cell wall biosynthesis, invasive growth
and autophagy in clusters 1, 4, 9 and 10 were up-regulated.
Hence, it was clear that there were functional differences bet-
ween genes with immediate and delayed response and that
this separation was greatly aided by consensus clustering.

The current data analysis suggested more than the origi-
nal 1,390 identified ORFs had altered expression in response
to the chemical stress. In total 2,106 genes were found in
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Fig. 5. Overview of a real whole genome consensus clustering
result. The yeastS. cerevisiaewas treated with a toxic concentra-
tion of LiCl at time 0.a. Co-occurrence matrix of the 5,710 ORFs.
The transcripts have been sorted with respect to the 22 clusters using
optimal leaf ordering (Bar-Josephet al., 2001).b. Dendrogram of
the 22 clusters.c. Normalised transcription profile for all 22 clusters
shown as normalised values between -1 and 1, where 0 indicates the
average expression level. The bars give the standard deviation with
the clusters.

clusters of up-regulated genes, 1,169 in clusters of down-
regulated genes and 794 in clusters of genes with a transient
response. This large discrepancy between the original data
analysis and the current one was mostly owed to exclusion of
transcripts without a three-fold change in expression. Fold-
change exclusion did not appear to be necessary in the current
analysis, and more ORFs were found to improve the analy-
sis. Consensus clustering thereby bypass a major challenge in
transcription analysis, namely conservative data exclusion.

5 DISCUSSION
A good clustering has predictive power: clues to the function
of unknown genes can be obtained by associating the function
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of the known co-regulated genes. Thus, the chosen clustering
algorithm must be reliable in order to distinguish between
different effects when small changes in the transcript level are
significant (Joneset al., 2003), and secondly the results must
be presented in a form which makes biological interpretation
and validation accessible.

We showed that classical and fast ’single shot’ cluste-
ring produced poor cluster results for a realistic simulated
dataset based on biological data. Initialisation in the clu-
ster centres and the success ofArrayMiner (Falkenauer &
Marchand, 2003), which uses a genetic algorithm for optimi-
sing the Mixture of Gaussians objective function, indicates
that local minima is the main reason why single run relo-
cation algorithm fails. The consensus approach taken in this
paper can be seen as a statistical formalisation of the practical
clustering approach using different algorithms (Kaminski &
Friedman, 2002). The result is a consensus clustering, where
common traits over multiple runs are amplified and non-
reproducible features suppressed. The biological validation
by human intervention is then moved from cumbersome vali-
dation of single runs to validation of the consensus result, e.g.
to choosing the clusters of interest in a hierarchical clustering.
Averaging over multiple clustering runs enables the clusters
to capture more complicated shapes than any other single
clustering algorithm (Fred & Jain, 2002, 2003) as shown in
Figure 4 where the consensus of theK-means outperformed
K-means initialised in the true cluster centres. Consensus
clustering, taking any cluster ensemble as input, offers a very
simple way to combine results from different methods and
can thus be expected to a larger scope of validity of any sin-
gle method. It is not likely that one method is capturing all
biological information (Goldsteinet al., 2002), and hence
consensus clustering is a valuable tool for discovering ever
emerging patterns in the data. The drawback of consensus
clustering is the increased computation time, but the conside-
rable amount of time investigated in biological interpretation
justifies a longer computation time.

The consensus clustering algorithm does not determine the
number of clusters unambiguously though optimality crite-
ria exist (Fred & Jain, 2002, 2003), but the dendrogram is
a useful and pragmatic tool for biological interpretation of
the results (Eisenet al., 1998). In DNA microarray analysis
the ’correct’ number of clusters depends upon the questi-
ons asked. The advantage of the dendrogram representation
is that the biological analyst can choose the scale and here
the purpose of the consensus method is simply to provide a
robust multi-scale clustering. For example, in Figure 3 (clu-
sters 1 and 2) and Figure 5 (clusters 6 and 7) the clusters
are very similar in shape, but only a biological validation
can justify the existence of one or two clusters. As discus-
sed in Falkenauer & Marchand (2003) standard hierarchical
clustering is based on a ’bottom-up’ approach where smal-
ler clusters at the lower level are merged into bigger clusters.

Thus, the dendrogram is constructed based on thelocal struc-
ture with no regard to theglobal structureof the expression
data—in consensus clustering it is the other way around: the
robust, local structure is emerging out of the global picture.

In conclusion, with consensus clustering we have achieved
the two-fold aim of a robust clustering, where gene expres-
sion data are divided into robust and reproducible clusters
and at the same time attaining the advantages of hierarchical
clustering. Clusters can be visualised in a dendrogram and
analysed on multiple scales in a biological context.
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