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MIXTURE OF GAUSSIANS
We cluster the data by modelling the data vectorsx as a
Mixture of K Gaussians (MoG)

p(x|θ,M) =
K∑

k=1

p(k|θ,M)p(x|k, θ,M) , (1)

where θ is the model parameters,M is the model,
p(k|θ,M) is the mixing proportions (which sum to one:∑

k p(k|θ,M) = 1) and p(x|k, θ,M) is Gaussian with
mean vectorµk and covarianceΣk:

p(x|k, θ,M) =

1√
(2π)M detΣk

exp
(
−1

2
(x− µk)T Σ−1

k (x− µk)
)

.

(2)

The parameters of the MoG are thusθ = {(πk, µk,Σk)|k =
1, . . . , K} with πk ≡ p(k|θ,M). In maximum like-
lihood (ML) MoG the parameters are estimated asθML =
argmaxθ L(θ) where the objective is the log-Likelihood

L(θ) =
∑N

n=1 log p(xn|θ,M). This naturally leads to a
set of iterative expectation maximisation (EM) updates which
are guaranteed to converge to a local maximum of the like-
lihood. In the E-step, the responsibilityγkn which is the
probability of clusterk given genen is updated for fixed
parameters as follows

γkn ≡ p(k|xn, θ) =
p(k)p(xn|k, θ)∑
k′ p(k′)p(xn|k′, θ)

. (3)
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In the M-step, the parameters are estimated for fixed respon-
sibilities (definingNk =

∑
n γkn):

πk =
1
N

Nk (4)

µk =
1

Nk

∑
n

γknxn (5)

Σk =
1

Nk

∑
n

γkn(xn − µk)(xn − µk)T . (6)

After convergence the responsibilities can be used to make
clustering by assigning genen to the cluster which is the most
probable.

BAYESIAN APPROACH
The ML MoG has a fatal flaw, namely trivial solutions exist
with diverging likelihood whenµk = xn and Σk → 0
(MacKay, 2003). This problem can be understood and cured
by a Bayesian approach where a priorp(θ) is introduced.
We can now argue that for any reasonable prior this singular
solution has a vanishing posterior probabilityp(θ|DN )dθ ∝∏

n p(xn|θ)p(θ)dθ although it’s probability density diver-
ges, i.e. the peak is narrow, but the probability volume
(the integral of the density in a local neighbourhood around
the maximum) is negligible. In the Bayesian approach we
aim at calculating the quantities of interest by averaging out
uncertainty, e.g. the marginal likelihood

p(DN |M) =
∫

dθ
∏
n

p(xn|θ,M)p(θ|M) (7)

can be used for model order selection, i.e. with no prior
expectations about whatK should be, we will choose theK
that maximizes the probability of the data.
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We can find the cluster assignment probability for a data
point x by averaging out the parameters using the posterior
distribution

p(k|x,DN ,M) =
p(k,x|DN ,M)
p(x|DN ,M)

. (8)

where

p(k,x|DN ,M) =
∫

dθ p(k|θ,M)p(x|k, θ,M)p(θ|DN ,M)

(9)
andp(x|DN ,M) =

∑K
k p(k,x|DN ,M).

VARIATIONAL BAYES
Unfortunately, the Bayesian approach is not analytically
tractable and we have to resort to approximate approaches.
In the variational Bayes (VB) approach (Attias, 2000), the
priors are chosen in the exponential conjugate family (i.e. a
Dirichlet for π and a coupled Gaussian-Wishart forµk and
Γk = Σ−1

k ) and the posterior distributionp(θ|DN ) is appro-
ximated by a simpler tractable partly factorized distribution
q(θ) = q(π)

∏
k q(µk,Γk). q(θ) is found by minimising the

Kullback-Leibler (KL) divergence betweenq andp

KL(q||p) =
∫

dθ q(θ) log
q(θ)

p(θ|DN )
. (10)

The hyperparameters of the priors are chosen such that the
singularities are removed while at the same time the prior
will have vanishing influence on the clustering. The reason
for choosing the prior in the exponential conjugate family is
that for this choice solving forq(θ) simply amounts to using
an iterative update of the parameters of theq-distribution in
the same fashion as with the EM algorithm. As a final bene-
fit of the VB approach, we get guaranteed convergence to
a maximum of the following lower bound of the marginal
likelihood

papp(DN |M) =
∫

dθq(θ) log
p(DN , θ|M)

q(θ)
≤ p(DN |M) .

(11)
VBMoG has previously been applied to DNA microarrays
by (Muro et al., 2003). Note that ML methods can also
be used for model selection (determine the number of clu-
sters) by subtracting complexity penalizing terms from the
log-likelihood. These criteria known as Akaike’s Informa-
tion Criterion (AIC) and the Bayesian Information Criterion
(BIC) have been also applied in context of MoG and DNA
microarrays (McLachlanet al., 2002; Ghosh & Chinnaiyan,
2002; Panet al., 2002). The lower bound of the marginal like-
lihood above reduces to BIC in the asymptotic limit of a large
number of samples (Attias, 2000).

The clustering results are not strongly dependent upon the
initialization of the parameters and the choice of hyperpa-
rameters. The hyperparameters were set to the following

values (using the same notation as (Attias, 2000)):λ0 = 1,
β0 = 10−12, ρ0 = 0, Φ0 = 10−3K andν0 = M + 1, where
K is the empiricalK ×K covariance matrix of the data. The
parameters were initialized to the following values:λk = λ0,
βk = 1 + β0, Φk = K, ρ ∼ N (m,K), wherem is the
empirical mean of the data. For example, scalingΦ0 andΦk

with factors∈ [10−5; 101] and∈ [10−2; 104], respectively,
did not change the results significantly.

ASSESSING THE NUMBER OF REPETITIONS
It is in general difficult to assess when a sampling based
method has converged (MacKay, 2003), i.e. are the samp-
les actually coming from the distribution we want to draw
samples from? A similar problem arises in consensus clu-
stering: When will the final consensus clustering not change
significantly if we make more repetitions? One way to ans-
wer this is through resampling (or cross-validation) methods.
One could for example measure the difference (using some
suitable norm) between the co-occurence matrix calculated
using all repetions (the full cluster ensemble) and using
cluster ensembles which are generated from the full clu-
ster ensemble by sub-sampling (cross-validation) or sampling
with replacement (bootstrap).

Here we will assess the problem in a different compu-
tationally cheaper way that uses the fact that the averaged
mutual information indicates how diverse the cluster ensem-
ble is. We make a simplistic model for the way the clu-
ster assignmenta(x) is generated from the true unknown
assignmentatrue(x): Introducing a ’flip probability’ε, we
assume that the assignment is ’flipped’ to belong to cluster
k with probability εptrue(k), whereptrue(k) is (the true and
thus unknown) fraction of examples belonging to clusterk.
With probability (1 − ε) the assignment is unchanged. This
’noise process’ introduces false positive entries in the co-
occurrence matrix, i.e. pairs that should not be in the same
cluster will get a non-zero entry. We should choose the num-
ber of repetitions such that true positive (TP) entries (pairs
of transcripts belonging together) should be larger than false
positive (FP) entries with a safe margin.

We can calculate the expected mutual information as a
function ofε and{ptrue(k)}K

k=1:

〈Mrr′〉 =
∑

k

[
(1− ε)2pk + (2ε− ε2)p2

k

]

× log
[
(1− ε)2/pk + (2ε− ε2)

]
(12)

+

(
1−

∑

k

p2
k

)
(2ε− ε2) log(2ε− ε2) ,

wherepk ≡ ptrue(k). The entropy of the marginal distributi-
onsMr = −∑

k pr(k) log pr(k) becomes on average equal
to the entropy of the true marginals〈Mr〉 = −∑

k pk log pk.
For large number of transcripts we can ignore fluctuati-
ons and set〈Mnorm〉 = 〈Mrr′〉/〈Mr〉. This connects the
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observed averaged normalised mutual information with the
unknown quantities. Next we can calculate the statistics of
the entries in the co-occurrence model under this noise model
(an ≡ a(xn)) for n 6= n′:

〈Cnn′〉 = 〈anan′〉 = 〈an〉〈an′〉

=

[
(1− ε)atrue

n + ε
∑

k

pkδan,k

]
(13)

×
[
(1− ε)atrue

n′ + ε
∑

k

pkδan′ ,k

]

If atrue
n = atrue

n′ this becomes:

CTP = (1− ε)2 + 2ε(1− ε)pan
+ ε2

∑

k

p2
k (14)

and ifatrue
n 6= atrue

n′ :

CFP = ε(1− ε)(pan + pan′ ) + ε2
∑

k

p2
k . (15)

The expected entries (over repetitions) for the true positive
entries will approximately be normal distributed with mean
CTP and varianceV TP ≡ CTP(1−CTP)/R, whereR is the
number of repetitions. Demanding that the probability that
a true positive entry is smaller than a false positive should
be small, say belowr = 5 standard deviations we have the
following condition:

CTP − r
√

V TP ≥ CFP + r
√

V FP . (16)

This condition determinesR in terms of the unknowns. If we
know ptrue(k), we can use the observed value ofM

norm
to

estimate the remaining unknownε. In our program we sim-
ply setptrue(k) = 1/K. It turns out that the expression for
the mutual information is quite insensitive to the choice of
K and we useK = 10. A flat distribution ofptrue(k) is
the ideal situation because in the non-flat case small clusters
can ’drown’ in the noise from the larger clusters. However by
choosing the rather conservative marginr = 5 we hope to
compensate for that and so far our program has given sensi-
ble estimates. See Figure 1 for a plot of required repetitions
versusM

norm
. The result is found by solving numerically for

ε in terms ofM
norm

and insertingε(M
norm

) in the condition
above.

SENSITIVITY ANALYSIS OF GENERATIVE
MODEL
The performance of the selected clustering algorithms was
investigated for different variations of the generative model.

Generation of new Gaussian noise to the model parameters
for each clustering run did not alter the simulation results
significantly (Figure 2a–c). Randomization of the ’signal
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Fig. 1. The required number of repetitions versus the average nor-
malised mutual informationM

norm
for ptrue(k) = 1/K with

K = 10. Because the correctK is not known, we use the predic-
ted number of repetitions for eachK in the tested interval. Example
values areM

norm
= {0.1, 0.5, 0.8} give 173, 18 and 4.

values’ (Table 1 in main text) resulted in a general decrea-
sed classification error rate for all algorithms. This is also
expected since the simulated dataset was constructed in such
a way that there was a high resemblance between clusters 1
and 3 as well as clusters 4 and 6 (Figure 2d–f).
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Fig. 2. Classification error rate as a function of number of clusters for selected clustering methods. Ina–cnew Gaussian (Eq. 8 in main text)
noise is generated for each clustering run. Ind–f the signal values are randomised and new Gaussian noise are generated for each clustering
run. Note, the classification error rates inc andf (y-axis scale changed) are much smaller compared to the results ina, b, d ande. See Figure
4 in main text for further explanation.
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