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ABSTRACT

Motivation: Hierarchical and relocation clustering (e.g. K-
means and self-organising maps) have been successful tools
in the display and analysis of whole genome DNA microarray
expression data. However, the results of hierarchical cluste-
ring are sensitive to outliers, and most relocation methods
give results that are dependent on the initialisation of the
algorithm. Therefore, it is difficult to assess the significance
of the results. We have developed a consensus clustering
algorithm, where the final result is averaged over multiple
clustering runs, giving a robust and reproducible clustering,
capable of capturing small signal variations. The algorithm
preserves valuable properties of hierarchical clustering, which
is useful for visualisation and interpretation of the results.
Results: We show for the first time that one can take advan-
tage of multiple clustering runs in DNA microarray analysis by
collecting re-occurring clustering patterns in a co-occurrence
matrix. The results show that consensus clustering obtained
from clustering multiple times with Variational Bayes Mixtures
of Gaussians or K-means significantly reduces the classifica-
tion error rate for a simulated dataset. The method is flexible
and it is possible to find consensus clusters from different
clustering algorithms. Thus, the algorithm can be used as a
framework to test in a quantitative manner the homogeneity of
different clustering algorithms. We compare the method with
a number of state-of-the-art clustering methods. It is shown
that the method is robust and gives low classification error
rates for a realistic, simulated dataset. The algorithm is also
demonstrated for real datasets. It is shown that more biologi-
cal meaningful transcriptional patterns can be found without
conservative statistical or fold-change exclusion of data.
Availability: Matlab source code for the clustering algorithm
ClusterLustre , and the simulated dataset for testing are
available upon request from T.G.

Contact: tg@biocentrum.dtu.dk

*to whom correspondence should be addressed

1 INTRODUCTION

The analysis of whole genome transcription data using cluste-
ring has been a very useful tool to display (Eistal., 1998)

and identify the functionality of genes (DeRi al, 1997;
Gasctlet al,, 2000). However, it is well known that many relo-
cation clustering algorithms such & -means (Eisert al,,
1998), self-organizing maps (SOM) (Tamagbal., 1999),
Mixtures of Gaussians (MacKay, 2003), etc. give results that
depend upon the initialialisation of the clustering algorithm.
This tendency is even more pronounced when the dataset
increases in size and transcripts with more noisy profiles are
included in the dataset. It is therefore common to make a
substantial data reduction before applying clustering. This is
acceptable when we expect only few genes to be affected in
the experiment, but if thousands of genes are affected the data
reduction will remove many informative genes. In a recent
study it was clearly demonstrated that small changes in the
expression level were biological meaningful, when the yeast
Saccharomyces cerevisia@as grown under well controlled
conditions (Jonegt al, 2003). Hence, with the emerging
quantitative and integrative approaches to study biology there
is a need to cluster larger transcription datasets, reduce the
randomness of the clustering result and assess the statistical
significance of the results (Grotkjeer & Nielsen, 2004).

An alternative to relocation clustering is hierarchical clu-
stering where transcripts are assembled into a dendrogram,
but here the structure of the dendrogram is sensitive to out-
liers (Hastieet al, 2001). A practical approacho DNA
microarray analysis is to run different clustering methods
with different data reduction (filtering) schemes and manu-
ally look for reproducible patterns (Kaminski & Friedman,
2002). This strategy is reasonable because the clustering
objective is really ill-defined, i.e. the natural definition of
distance or metric for the data is not known. Clustering
methods vary in objective and metric, but the success of the
practical approach shows that many objectives share traits
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that often make more biological sense than looking at thelusters with more complex shapes than the input clusters,

results of any methods alone. e.g. spherical clusters as i-means (Fred & Jain, 2003).
Bayesian model selection should be able to find the rela- Here, we will motivate the introduction of the consensus

tive probability of the different clustering methods testedmethod in DNA microarray analysis from a model avera-

(MacKay, 2003). The main problem with the Bayesianging point of view as a way to make approximate Bayesian

approach is computational since for non-trivial models, it isaveraging when the marginal likelihoods coming out of the

always computationally intractable to perform the necessargpproximate Bayesian machinery cannot be trusted.

averages over model parameters. Approximations such . .

Monte Carlo sampling (MacKay, 2003; Dubey al., 2004) 21 ) Soft a.md hard gssgnment clusterlng

or variational Bayes (Attias, 2000) have to be employedn this section we briefly introduce the basic concepts of

instead. A proper model parameter average will give a clubrobabilistic clustering, for a more details see the Suppl.

stering that is unique up to an arbitrary permutation of labelsMaterial. The probabilistic (or soft) assignment is a vector

i.e. the cluster numbering is allowed to change. Unfortunatel(X) = [P(1[xx), ..., p(K|x,)]" giving the probabilities of

approximate methods tend to give results that are non-uniqué€k = 1,..., K cluster labels for an objecf{ experiment
The randomness of an algorithm, approximate Bayesian dfata vectorsk = [x1, ..., zy]". One way to modeb(k|x)

any other, can be interpreted as arising from partitionings ofS through a mixture model

the data that are more or less equally likely, and the algo- p(k)p(x|k)

rithm is stuck in a local maxima of the objective. This is a plklx) = =% i i

practical problem, and global search methods such a Monte 2=1 P(R)P(xK')

Carlo or genetic algorithms (Falkenauer & Marchand, 2003Hard assignments are the degenerate case of the soft assi-

have been devised to overcome this. However, we can alsghment where one component, sayk|x) is one, but

choose to take advantage of the randomness in the solutiogs hard assignment can also be obtained fro) =

to devise a robustonsensus clusteringhich is the strategy argmax;, p(k|x), i.e. a transcript is only assigned to the most

taken here. Upon averaging over multiple runs with differentorobable cluster.

algorithms and settings, common patterns will be amplified In practice we do not know the density model before the

whereas non-reproducible features of the individual runs argata arrive and we must learn it from the datasef =

suppressed. {x1,...,xn} of size N examples (number of transcripts).
The outline of the paper is as follows: First, we presentWe therefore write the mixture model as an explicit function

the consensus clustering algorithm framework. The actua®f the set of model parametefisand the model\t:

clustering method used, variational Bayes (VB) Mixture of K

(_Baus_sians (MoG) (Attia_s, ZOOQ) is degcril_)ed in Suppl. Mate- p(x|6, M) = ZP(’CW,M)Z?(XW o, M) . 2)

rial since VBMoG and its maximum likelihood counterpart 1

are already well-established in the DNA microarray Iltera—.l.he model M is shorthand for the clustering method used

ture (McLachlanet al,, 2002; Ghosh & Chinnaiyan, 2002; .
Panet al, 2002). The developed framework is tested on aand the setting of parameters such as the number of clusters

generative model for DNA microarray data, since itis cruciaIK' Maximum likelihood and the Bayesian approach give two

with a simulated dataset that reflects the underlying biologi_fundamentally different ways of dealing with the uncertainty
of the model parametets

cal signal. Finally, we show how one can use the consensus . -
In maximum likelihoodthe parameters are found by

clustering algorithm to group co-expressed genes in Iarg%aximising the likelihood of the parameter@™’ =

real whole genome datasets. The results demonstrate that : . .
. . Dy |6 with the assumption of indepen-
cluster-then-analyse is a good alternative to the commonl)e}rgmaxe p(Dn|0, M) P P

used filter-then-cluster approach. dent examplesp(Dy|60, M) = [I;_, p(x,/6, M) and
assignment probabilities are given byk|x, ™" M)
p(k|O™, M)p(x|k, 6", M). This naturally leads to a set
of iterative expectation maximisation (EM) updates which

2 CONSENSUS CLUSTERING are guaranteed to converge to a local maximum of the like-

The consensus clustering method described in this paper {§100d. In the Bayesian approach we form the posterior distri-
related to those more or less independently and recently prdsution of the parameteyg0|Dy, M) = %,
posed in Fred & Jain (2002, 2003); Strehl & Ghosh (2002);wherep(8| M) is the prior over model parameters and

Monti et al. (2003), see also the discussion of related work

in section 5 of Strehl & Ghosh (2002). The main features of p(Dn|M) = /dep(DNw,M)p(e\M) (3)
these methods are that they use only the cluster assignments

(soft or hard) as input to form the consensus (and not e.g. clus the likelihood of the model (marginal likelihood or evi-
ster means), and the consensus clustering is able to identifyence). We can find the cluster assignment probability for a

@)




Robust consensus clustering

data pointx by averaging out the parameters using the postediverse are the partitionings. Strehl & Ghosh (2002) pro-
rior distributionp(k|x, Dy, M) = % Eitherway, posed the mutual information between the cluster ensemble
we calculate the soft assignments and obtain an assignme@fd the single consensus clustering as the learning objec-
matrixP = [p(x1),...,p(xy)] of size K x N. tive, and Montiet al. (2003) used the same basic method
Themarginal likelihoodplays a special role because it can (apparently without being aware of the work of Fred & Jain
be used for model selection/averaging, i.e. we can assign @002)) focusing their analysis on the stability of clustering
probability to each modeM o p(M)p(Dy| M), where towards perturbations. The mutual information between two
p(M) is the prior probability of the model. For non-trivial runs,r andr’, measures the similarity between the clustering

models the evidence is computationally intractable althouglsolutions

asymptotic expressions exist. The variational Bayes (VB) /

; ; . , j o
framework aims at approximating the average over the para- M, = E P (B, k) o (B)pr (K (5)
meters, but it unfortunately underestimates the width of the kk/ pr!

posterior distribution of¢ (MacKay, 2003). As a conse-
guence multiple modes of the approximate marginal like-
lihood exists for this flexible model. It means that dependin
upon the initialisation, two rung and »’ give and diffe-
rent estimates of the marginal likelihopgd,,,(Dx|r, M) #
Papp(Dn|r’, M). This clearly indicates that the posterior
averaging has not been performed correctly. However, the orm M,
clustering we find in a run typically has many sensible fea- My ™ = m
tures and can still be useful if we combine clusterings from ’
multiple runs. where the entropy of the marginal distributiops(k) is
given by M, = —>", p-(k)logp.(k). Finding the consen-
2.2 Averaging over the cluster ensemble sus clustering by optimizing the mutual information directly
After partitioning the datak times we have a cluster ensem- is NP-hard and the method suggested above may be viewed
ble of R soft assignment matricé®;,...,Pr]. We may asan approximation to do this (Strehl & Ghosh, 2002).

where the joint probab|I|ty of labél and%’ in runsr andr’ is
calculated ap,., (k, k') = % >°,, p(k|xn, 7)p(k' %, ') and
Y%he marginal probabilities as- (k) = & >, plklxn,7) =
> Prr(E, k") We can also introduce a normalised version
of this quantity:

€ [_1;1] ’ (6)

also have posterior probabilities for each (M, |Dy) The average mutual information
p(Dn| M, )p(M.,.), where M,. is the model used in the o 9
run. From the cluster ensemble we can get different average M = RE-D) > Mg )

quantities of interest.

We will concentrate on measures that are invariant with b q dstick for h i
respect to the labelling of the clusters and can be used {2 be used as ayar stick for etermmmgt e sufficient num-

extract knowledge from runs with different number of clu- Pe" Of repetitions. Clearly whehl"""" is small, the cluster
sters. Theco-occurrence matrixC,,,, is the probability that ensemble is diverse, and more repetitions are needed. We

transcript: andn’ are in the same cluster can express the required number of repetions as a function

of M by assuming a simplistic randomization process:

ror! r>r!

the observed cluster assignment is a noisy version of the

R K, . . . .
Copy = Zzp k%, 7)p(k[Xns, 7)p(M, |Dy) true (unknqwn) clugtenng. 'Th|s rando’mlzatlon both Iowgrs

=1 k1 the mutual information and introduces 'false positive’ entries

R in the co-occurence matrix. Requiring that the 'true posi-
tive’ entries should be significantly larger than 'false positive’

[PTP, ] p(M,|D 4 ) . — X

g JnnP(Me|Pr) - @) Geterminesk in terms of "™ See Suppl. Material for

more detail.

We can convert the co-occurrence matrix interanscript-

transcript distance matrixD,,,,, = 1 — C,,,,». This distance 3 GENERATIVE MODEL

matrix can be used as input to a standard hierarchical clustéa order to test the performance of the consensus clustering
ring algorithm. In the chosen Ward algorithm (Ward, 1963),algorithm we developed an artificial dataset based on a sta-
clusters which 'do not increase the variation drastically’ aretistical model of transcription data. Rocke & Durbin (2001)
merged when the number of leaves (clusters) is decreaseshowed that data from spotted cDNA microarrays could be

see section 4.1. fitted to a two-component generative model. The model was
) ) also shown to be valid for oligonucleotide microarrays manu-
2.3 Mutual information factured by Affymetrix GeneChip (Gellet al, 2003; Rocke

The normalised mutual information can be used to quan& Durbin, 2003). Here we consider a slight generalisation of
tify the significance of the different clustering runs, i.e. howthis model by including a multiplicative gene effestp(y,,)
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on the ’'true’ (direct|y comparab|e) transcript |e\/1§,3’|Lm of Table 1. Model parameters for the simulated dataggt,. The

genen =1 N in DNA microarraym =1 M. The parametery,,, is the background noise level of DNA microarray
e e, M. ! :

introduction of this factor is reflecting the fact that the trans- ™ @"d%k IS the number of members in cluster

cript level of individual genes have different magnitude. The

measured transcript level,,,, is given by am |39 35 33 35 34 34 34 31

K, k/m|1 2 3 4 5 6 7 8

Ynm = Qi + Hnm eXP(’Yn + nnm) + Enm (8)

60 1 |13 21 1.7 09 39 22 19 14
wherea,, is the mean background noise of microarraand 0 2 |36 31 27 14 41 34 31 26
n ~ N(0,02) ande ~ N(0,02) are biological and techni- 3 3 112 14 15 21 10 10 11 1.1
Ld dn ltilicati € 4 additi hat foll 120 4 |09 12 15 16 12 12 13 33
cal dependent multiplicative and additive errors that follow 0 5 |30 12 10 05 21 13 11 14
Gaussian distributiond/ with mean 0, and vananoe% and 80 6 |04 04 04 04 05 05 05 25

o2, respectively.
The parameters,,, ando. can be estimated by considering The tabulated signal values are given relativgito= 280, i.e. the true

the probe sets with lowest intensity (Rocke & Durbin, 2001).  anscriptieveku,.. is found by multiplying withy:.

The rather strong influence of transcript dependent multipli-

cative effectexp(y) suggests that we should transform the

data in order to at least partly remove it prior to clustering.

Otherwise we will mostly cluster the data according to the

magnitude of the transcript level (Eisebal.,, 1998; Gibbons

& Roth, 2002). A Pearson distance is therefore used prior to

clustering as

A 20tcl.1

(Abs. expression)
=
ul

=10
— o
Inm, — ynm. yn G [71’ 1] (9) = V D
max (o, 00) 5
wherey,, ando? are the average and varianceygf,, for the B
nth transcript, respectively, and the max operation wigh 1fc1
small is introduced to avoid amplifying noise for transcripts  _
with constant expression. A soft version is also possible with 3 0.5
Vo2 + o3 instead of the max. g
The gene effect and multiplicative error for high transcript “E’ 0
levels cannot be determined without DNA microarray repli- 2 5
cates and thus,, = 0.14 was based on in-house transcription '
data (commercial oligonucleotide microarrays from Affyme- 1
trix). For modelling purposes it was assumed thdollows 1357 1357 1357 1857 1357 1357 1357

. . . . . i Experiment number
a Gaussian distribution (0, 02). Under this assumption,

the meain of the true transcript Ievgl (.)f ageng, was calcu- Fig. 1. Simulated dataset with 500 transcripts and 8 DNA microar-
lated tO/% = 280 and tos, = 1.5 by fitting the same m-house rays divided into the 6 true clusters and a cluster without signal, i.e.
expression data to Eq. 8. Thus, we can simulate the influengg e noise (cluster 7). Note, only odd numbers are shown on the
of noise on the true transcript level for both high and low ;_axis. a. Log, transformed transcription profile of all transcripts
expression levels. in the cluster (Eq. 8)b. Means and deviation of the transformed

3.1 Simulated dataset dataset (Eq. 9).

A simulated dataset was generated by using the generative

model in Eqg. (8) and subsequently transformed accordin .
to Eq. (9). The parameters for the true transcript level in as only due to noise imposed by the model. Clearly, before

the simulated dataset with 500 transcripts and 8 microarys’ing any clustering algorithm on a dataset it is desirable o

rays are given in Table 1 and plotted as clusters with meanghmmate noise, but in our case we used the simulated dataset

and deviations in Figure 1. The transcript level of transcriptto address the robustness of different clustering algorithm.

n =1,...,400 was divided into 6 true clusters witki,, tran- o
scripts and a relative transcript leyel,,, as shownin Table 1. 3.2  Classification error rate
For the transcriptes = 401,...,500 we used a mean true Compared to previous studies (Fred & Jain, 2002; Strehl

transcript level,u, of 280. For cluster 7 there was no true & Ghosh, 2002; Fred & Jain, 2003; Monét al., 2003)
change in transcript level and variance in the transcript levethe proposed, simulated dataset is difficult to cluster, and a
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high classification error rate is expected due to large over- A B
lap between clusters (Figure 1). The perfect clustering would 1000
determine the number of clusters to 7 with the number of
members as given in Table 1. We defined the classification
error rate as follows: For a clustering result of the simulated
dataset with a given clustering algorithm the correctly cluste-

800

600

Number of pairs
Sorted transcripts

400

red transcripts in a single cluster was the maximum number 400
of transcripts identified in one of the 7 clusters in the simu-
lated dataset. We determined the total number of correctly ' g2 04 s ‘o5 1 " 10 200 30 "o 500
clustered transcripts by summing over all clusters, and hence D 120
the classification error rate was determined as the difference 3
between all transcripts (500) and the total number of correctly 10 Y
clustered transcripts divided by the total number of trans- B . 2
cripts (500). An alternative to the classification error rate is £ ;gﬂ c
simply to use the normalised mutual information betweenthe 3 s £
simulated dataset and a given clustering, but the classification s i
error rate is easier to interpret and has strong resemblance I }—————
to the commonly used false discovery rate used in statisti- D e R T
cal analysis of DNA microarrays (Tusheral., 2001; Reiner E arddtance clusternumber
et al_, 2003) 5 1| cistr. 1: 106 Cistr. 2: 72 Clstr. 3: 35 Cistr. 4: 23 Clstr. 5: 15 Clstr. 6: 49
é 05 J
4 RESULTS /\J m W/ W\/‘ W

In this section we make consensus analysis of the simulated -1
dataset and compare the classification error rate with diffe- [owra | [owss | [owssms | [owor | [owwe | [owea
rent 'single shot’ approaches. Furthermore, we use a very

large dataset (spotted cDNA microarray) (Gasthl., 2000) W N/\/v\

for biological validation and comparison. Finally, we use

consensus clustering to re-analyse a DNA microarray data- TTes7 1ss7 1 L T S ST 1357 137
set (Affymetrix oligonucleotide DNA microarray) (Bret al.,

2003). Fig. 2. Overview of the consensus clustering mechanism of a simu-
4.1 Complete consensus analysis of simulated data lated dataset with 500 transcripts and 6 true clusters, including a

We clustered the simulated and transformed dataset (Eq. 9;Iuster with pure noise. The consensus clustering was based on

d sh h . d th | fth 410 VBMoG ’single shot’ clustering runs. See text for additional
and show the properties and the resuits of the CONSENSYR;qils.a. Normalised mutual information between the 240 cluste-

clustering algorithm in Figure 2a—e. ring runs.b. Co-occurrence matrix of the sorted transcripts using
As mentioned earlier, we do not have aayoriori KNOW-  gptimal leaf ordering (Bar-Joseg al, 2001). A black area corre-

ledge of the true number of clusters. Thus, in practice Weponds to a high degree of co-occurrence, i.e. these transcripts tend
have to scan different clustering solutions in a user-definetb cluster in all clustering runs. The white area indicates that these
interval. In the current case, we scanned cluster solutionsanscripts never cluster together (see text for more detail3he
with K = 5,...,20 clusters with 15 repetitions resulting in co-occurrence matrix is assembled into a dendrogram with 12 lea-
a total 0of16 - 15 = 240 runs. As seen in Figure 2a the nor- Ves, or clusters using the Ward distandetistogram of the cluster
malised mutual information between &840 — 1)240/2 = size.e. qumalised transcription profile for all 12 _clu§ters shown
98,680 pairs is on average 0.53 indicating a high degre®s Normalised values between -1 and 1, where 0 indicates the ave-

. . - . rage expression level. The bars give the standard deviation within
of uncertainty in the VBMoG clustering algorithm. Based . - IR

. the clusters. Note the high standard deviation within noisy clusters

on the 240 VBMoG clustering runs we constructed the co,_g
occurrence matrix in Figure 2b weighing all runs equally, i.e.
p(M,|Dxn) = 1/Rin Eq. 4. We also tried to use the estimate
of the marginal likelihood from VB as weights in Eq. 4, but
that led to a much less stable, close to winner-take-all ensen{BIC) (see also Suppl. Material). The average of the most
ble, and always very high classification error rates, see alslikely number of clusters based on the 15 repetitions was 12
VBMoG 'single shot’ clustering in Figure 4. This underli- with a standard deviation of 3. This result also indicates that
nes that the VB is not accurate enough to be used for modehat the posterior averaging has not been performed correctly,
averaging. For each repetition the most likely number of clu-and hence, 12 clusters is only considered a conservative and
sters was determined by the Bayesian Information Criterigpragmatic starting point for further biological validation. For

Norm. expression
I
o o
U o w
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a real, biological dataset the problem becomes even worsghe classification error rate was only weakly dependent on
(see section 4.3). the number of clusters, and an increase in cluster size did not
For improved visualisation we sorted the co-occurrenceesult in a much better separation and identification of the
matrix with the optimal leaf ordering algorithm (Bar-Josephground truth (Figure 4). Most transcripts were always col-
et al, 2001) implemented iMatlab (Venet, 2003). In lected in a few major clusters, and hence extra clusters only
Figure 2b a dark square corresponds to a high degree of coesulted in the formation of clusters with few transcripts.
occurrence of a number of transcripts, i.e. these transcripts To further test the sensitivity to the clustering initialisa-
are frequently found in the same clusters. As an examplejon, we initialised in the 7 cluster centres, as defined in
it can be observed that transcripts 1-178 are frequently clutable 1. The classification error rates decreased significantly:
stered together, but there is also a second, sharp borderlindBMoG 0.104, genMoG 0.096 and-means 0.176 (calcula-
dividing the transcripts into two new, distinct clusters. Ontions not shown) besides for MoG which ended up in a trivial
the other hand, transcripts 179-321 did not show a cleasolution (see Suppl. Material). As expected, the probabili-
pattern with a sharp borderline. The ’blurry square’ alsostic models VBMoG and genMoG are performing better than
included transcripts within the 179—407 borderline. However,K-means when all algorithms are initialised in the 7 true clu-
the 'blurry square’ also included two dark squares within thester centres. The probabilistic models are not limited to only
179-407 borderline, indicating clusters with a higher degreeapturing spherical clusters. However, it is worth noting that
of noise. the values are in sharp contrast to the average classification

In the dendrogram in Figure 2c it was observed that theerror rates obtained with random initialisation in Figure 4b.
small clusters 4—-8 compromising 131 transcripts in the data©ur results suggested that the clusters obtained from 'single
set (Figure 2d) are very similar with respect to the Wardshot’ clustering algorithms represented local maxima, and
distance. The Ward distance metric is a measure of hetdhese maxima were far from the ground truth. The ’single
rogeneity, and thus a low Ward distance indicated that thehot’ clustering—essentially maximum likelihood results—
transcripts in one of clusters 4-8 are almost just as likely tacan be understood from a bias/variance consideration: less
emerge in one of the other three clusters. Furthermore, thigéexible models, in this cas&-means, have a lower tendency
standard deviation within this cluster was much higher tharto overfit data than more flexible models (i.e. have a lower
for the remaining clusters. In Figure 3 it can be seen that mewariance). However, they are also biased towards simpler and
ging clusters 4-8 results in a cluster without signal (cluster 4€ften less accurate explanations of data, here spherically sha-
in row 3), i.e. mean value of 0 in 8 experiments. Clusters 9ed clusters. To ensure that the results were not biased by
and 10 represemt’, in Table 1. We can merge these two clu- the parameters in the generative model, we performed a sen-
sters based on the transcription profile in Figure 2e, and mositivity analysis of the parameters. It was confirmed that all
importantly, biological validation of the clusters. Thus, the results were qualitative identical to the results in Figure 4 (see
dendrogram can be used to discard and merge clusters. If w&uppl. material).
decided to decrease the number of clusters to 7 by merging Consensus clustering significantly reduced the classifi-
clusters, it is important that the transcript classification errorcation error rate for all algorithms taken as input to the
rate is controlled. Indeed, in the current example a moderateonsensus clustering (Figure 4c). We confirm the results
decrease in the number of clusters from 12 to 7 resulted in aby Fred & Jain (2002) who showed that consensus clu-
increase in classification error rate from 0.094 to 0.120 (47 tstering with K-means enabled the identification of more
60 classification errors per clustering). complex pattern than withK-means alone. The classi-

) ) fication error rate was reduced from 0.176 to 0.142 in

4.2 Comparison of clustering approaches Figure 4c. The simulated dataset was also clustered with
In Figure 4 the classification error rate for some selectedhe ArrayMiner  (Falkenauer & Marchand, 2003) (see
clustering algorithms were investigated and compared talso http://www.optimaldesign.com ) and CLICK
the consensus clustering. The simple hierarchical clusterinfSharanet al., 2003), clustering algorithms especially desi-
algorithms in Figure 4a had high classification error ratesgned for analysis of DNA microarray data. Both algorithms
but the Ward algorithm was performing considerably bet-group transcripts into unique and reproducible clusters, but
ter than the remaining algorithms. The classification errothey also identify unclassified transcripts, e.g. insignificant
rate was 0.272 for 7 clusters decreasing to only 0.010 foclusters and outliers. Clustering witfrrayMiner  (default
12-15 clusters. A large number of clusters results in manypptions and the number of clusters specified to 7, including
relatively homogeneous clusters (Kamwaral, 2002) and a cluster capturing non-classified transcripts) resulted in a
consequently a low classification error rate for the proposetbw classification error rate of only 0.096. If the number
generative model for transcription data. of clusters was increased to 11 the classification error rate

All four classical ’single shot’ relocation clustering decreased to 0.082. There seems to be a trend that consen-
methods in Figure 4b also fail to cluster the simulated datasetus clustering (with VBMoG) outperformA&rrayMiner
correctly and results in very high classification error ratesfor larger number of clusters. AsrayMiner  clusters with
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Fig. 3. Effect of merging clusters from Figure 2. The 12 initial clusters are merged to three clusters in five steps, indicated with rows to the
left. In rows number 1-5 the number of clusters is 12, 9, 7, 5 and 3, respectively. When two or more clusters are merged, the lowest cluster
label is preserved, e.g. clusters 9 and 10 in row 1 are merged into cluster 9 in row 2 with 46+17=63 transcripts, and clusters 4, 6 and 7 in
row 2 into cluster 4 in row 3 with 38+49+44=131 transcripts. Clusters which are not merged are transferred horizontally from one row to the
row below. Cluster 4 in rows 3 and 4 is composed of the noisy clusters 4-8. It is observed that the average normalised expression value is
approximately O with a large standard deviation.

a MoG (optimised with a genetic algorithm instead of EM) This large dataset was analysed with consensus cluste-
we expect this trend to be more pronounced when the amounming and the result compared to clustering with a number
of data increases, the number of clusters are unknown and tleé classical and commercially available methods (Table 2).
underlying model cannot be approximated with Mixtures of The clustering results were validated by the number of
GaussiansCLICK correctly identified the number of clusters over-represented Gene Ontology (GO) categories (Ashburner
(default options) to 6 excluding a cluster with unclassifiedet al, 2000) in each cluster. The rational behind this valida-
transcripts. In this case the classification error rate was 0.232%ion was that yeast genes with similar function mostly obey
However, we found that théLICK algorithm was more con- common regulatory mechanism and therefore have common
servative and resulted in a large cluster of 176 unclassifietranscript patterns (Eiseet al, 1998; Hughe®t al, 2000).
transcripts. Thus, with our definition of classification error The GO describes the cellular process, function and com-
rate theCLICK algorithm is not performing well. ponent categories of a gene and the over-representation of
. a particular GO category in a cluster may thereby be used as
4.3 Consensus clustering of real datasets a measure of successful clustering of co-regulated genes. The
We next validated the different clustering algorithms on a reabver-representation of different GO categories was tested in
cDNA microarray dataset (Gaset al, 2000). This dataset the cumulative hypergeometric distribution (Tavazeieal.,

was produced by exposing the ye&stcerevisia¢o 11 envi-  1999; Smeet al, 2002).K -means consensus clustering per-
ronmental changes and detecting the transcriptional chang@srmed better that other algorithms in all three test examples
over 173 DNA microarrays. The subsequent 3-fold chang€Table 2; 10, 13 and 18 clusters). This result was opposed to
exclusion showed that 2,049 genes had altered transcript lev@e clustering of the simulated dataset whareayMiner

in at least one of the 173 conditions.
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Table 2. Clustering and biological validation. For each algorithm with a

A © 08 o"(')‘--om(')v.o”('),..o”('),‘o —e— Averlage fixed number of clusters the Gene Ontology categories (Ashbwinat,
[ —— Centroid 2001) with aP-value below 0.01 were considered significant. The tabulated
S 0.6 —— Complete ] values are the number of significant categories summed over all clusters.
@ -0 Single
504} m + Ward
§ Algorithm and settings Clusters Process Function Component
5 0ol Tt E
a0
5 et K-meahs clogsensus 10 536 229 141
0 X X X X ArrayMiner- 10 484 236 151
6 8 10 12 14 16 18 20 22 Hierarchical (Ward) 10 342 147 117
Click and Expandér3 10 282 122 89
B o8 o Moo K-means (single shot) 10 275 101 113
© —— VBMoG VBMOoG (single shot) 10 86 42 15
506 —— GenMoG ]
= M ~O K-means K-means consensus 13 561 259 158
S04} K-means (single shot) 13 444 171 127
Ei o Hierarchical (Ward) 13 372 156 114
= ool ©00.0.0.0 0 Adaptive quality-based 13 260 110 101
g VBMOoG (single shot) 13 80 45 17
@)
0 . ’ : * ; ’ y K-means consensus 18 595 274 180
6 8 10 12 14 16 18 20 22 K-means (single shot) 18 483 174 160
C o015 T T T T T T Hierarchical (Ward) 18 454 184 177
) 000 .0.¢ —+ CVBMoG CAGED version 1.0 18 426 163 136
< 0.0.0.9 9 CK-means VBMoG (single shot) 18 105 64 45
§ 0—6—6\9_6\6_656\0 —6— C Combi
o % ArrayMiner
S o1l L Genes not classified are considered one cluster, and consequently the chosen number
k= of clusters in the algorithm is chosen to be one less than the tabulated value.
;,g Algorithm reference:? (Falkenauer & Marchand, 2003¥,(Sharanet al, 2003) and
@ 4(Shararet al, 2003).
O
0.05 . . . . . - v
6 8 10 12 14 16 18 20 22

the simulated one (2,049 transcripts and 173 DNA microar-
rays compared to 500 transcripts and 8 DNA microarrays).
Fig. 4. Classification error rate as a function of number of clu- K-means is a more robust method and therefore better sui-
sters for selected clustering methodsFive hierarchical clustering ted for multi-dimensional datasets for the 'single shot’ cases.
methods. All standard algorithms, except from the Ward algorithm ArrayMiner  and consensus VBMoG, on the other hand,
have a tendency to form one large cluster and a number of smatiely on Mixtures of Gaussians and therefore possess the
clusters resulting in high classification error rates (see also t&xt). ability to describe data more sophisticated thEameans
Four relocation ’single shot’ clustering methods with fixed number(|:igure 4). However, this characteristic of MoG is apparently
of clusters. MoG is standard Mixture of Gaussians and GenMog; §rawback when the dimensionality of the dataset increa-
is the generahse@ M!xture of Gaussian algorithm (Hanseal,, ses. 'Single shot VBMoG performed poorly on the Gasth
2000). The classification error rate was calculated as the mean Valua?/ dataset with a mutual information between runs that was
of 300 clustering runsc. Consensus clustering (denoted with C) ) .

of VBMoG, K-means and Combi (inputs from both the VBMoG less than 0.05 (Tab_le 2). Consensus clustering W.It.h VBMoG
and K -means algorithms). Each consensus solution was based diPnsequently requires a large number of repetition before
scanning withK = 5,...,20 clusters with 15 repetitions, and @ stable solution could be obtained (See Supp. Material).
the classification error rate was calculated as the mean value of 360r low mutual information between runs it seems like a
clustering runs. The classification error rate is compared with thanore prudent strategy to go for a local search method as
ArrayMiner  (Falkenauer & Marchand, 2003) where unclassifiedin ArrayMiner  compared to the consensus strategy. The
genes in the output have been collected in one single cluster. Notgdvantage of{ -means for analysis large dataset was also evi-
there are much smaller classification error rates inj@xis scale  gentin the 'single shot’ analysis of the Gasttal.data where
changed) compared to the algorithmsiandb. K-means improved the number of over-represented GO cate-
gories compared to 'single shot’ VBMoG (Table 2).

Number of clusters

Another characteristic of the consensus clustering algorithms
and consensus VBMoG performed better than conselisus was the ability to cluster and exclude transcripts in the same
means (Figure 4c) and probably reflect the fact that thestep. Transcript datasets are often sorted prior to clustering
Gaschet al. dataset has a much larger dimensionality thareither according to fold change or by a statistical method
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(Tusheret al,, 2001), which may lead to exclusion of false A
negative data. We therefore re-analysed a time course expe- ———— ]
riment from yeast treated with lithium chloride (LiCl). The
budding yeastS. cerevisiaewas grown on galactose and
exposed to a toxic concentration of LiCl at time 0, and the
cells were harvested for transcription analysis at time 0, 20,
40, 60 and 140 minutes after the pulse (Btal., 2003).

In the original dataset 1,390 open reading frames (ORFs)  so00
were found to to have altered expression in response to LiCl, TR TR R EEa—=
of which 664 were found to be down-regulated and 725 ¢ Sorted transcripts Ward distance
up-regulated (Breet al, 2003). In the current analysis we Jfmrrrans N mepwreeas B tenepwmrun B pwayroms B pnapras B pmopes
used consensus clustering on all 5,710 detectable transcripts
without prior data exclusion. The transcription data were clu-
stered as illustrated with the simulated dataset in section 4.1. §-s
The only exception was that we scanned cluster solutions -
with K = 10,...,40 and 50 repetitions leading to a total of Y canzoos | fosneze | osnoarr || sz | | cenaer | f osn iz
31-50 = 1, 550 runs. For each repetition the most likely num- £ os
ber of clusters was determined by the BIC. The average of
the most likely number of clusters based on the 50 repetitions
was 22 with a standard deviation of 10. Once again, the result e e e e e e
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indicates that that the posterior averaging has not been perfor-
med correctly; that is, the variation in the number of optimal
clusters reflect that the solutions are very different from run 55
to run. In Figure 5a the co-occurrence matrix has been sorted -
according to the 22 clusters to reflect minimum difference 1) cisr 10183 | | ctor.20:012 | | Cla 21428 | | Clo 22452
between adjacent clusters (Bar-Joseplal., 2001). The 22 '
clusters consisted of up-regulated clusters (Figure 5b and
Figure 5c, clusters 1-4 and 7-10), three down-regulated clu-
sters (Figure 5b, clusters 20-22) plus a set of clusters with 0 40 140 0 40 140 0 40 o 0 40 140
ORFs that had a transient response to LiCl (Figure 5c, clu-

sters 6 and 11-13). The remaining seven clusters did naqt.

have | ofile and theref onsidered . Fig. 5. Overview of a real whole genome consensus clustering
qv a ciear profile and were refore considered as NoiS&q i The yeasS. cerevisiaavas treated with a toxic concentra-
(Figure 5c, clusters 5 and 14-19).

. tion of LiCl at time 0.a. Co-occurrence matrix of the 5,710 ORFs.
Both up- and down-regulated genes were further subdiViThe transcripts have been sorted with respect to the 22 clusters using
ded into clusters with immediate or delayed response to thgptimal leaf ordering (Bar-Josept al, 2001).b. Dendrogram of
lithium pulse, revealing a better resolution of the data than irthe 22 clustersc. Normalised transcription profile for all 22 clusters
the initial analysis (Bret al, 2003). It was thereby clear that shown as normalised values between -1 and 1, where 0 indicates the
genes in the carbon metabolism are up-regulated while gen@gerage expression level. The bars give the standard deviation with
involved in ribosome biogenesis are down-regulated as aie clusters.
immediate response to the LiCl pulse (clusters 6—8 and 22).

After 40 minutes genes in clusters 2 and 3 were up-regulr;\tec(t',lusters of up-regulated genes, 1,169 in clusters of down-

while those in cluster 20 started to be down-regulated. Man¥egulated genes and 794 in clusters of genes with a transient

of the genes in clusters 2 and 3 were involved in protein cata- : : .
. . response. This large discrepancy between the original data
bolism and transport through the secretory pathway, while . .
! .. analysis and the current one was mostly owed to exclusion of

r‘iranscripts without a three-fold change in expression. Fold-

were found in cluster 20. Finally, after 60 to 140 minu- : . i
. ) . . . change exclusion did not appear to be necessary in the current
tes genes involved in cell wall biosynthesis, invasive growth

and autophagy in clusters 1, 4, 9 and 10 were up-regulateg.nalySIS’ and more ORFS were found to Improve the analy-.
Sis. Consensus clustering thereby bypass a major challenge in

Hence, it was clear that there were functional differences bet- . . ; .
I . r?nscrlptlon analysis, namely conservative data exclusion.
ween genes with immediate and delayed response and tha
this separation was greatly aided by consensus clustering.
The current data analysis suggested more than the origﬁ DISCUSSION
nal 1,390 identified ORFs had altered expression in respong& good clustering has predictive power: clues to the function

to the chemical stress. In total 2,106 genes were found imf unknown genes can be obtained by associating the function
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of the known co-regulated genes. Thus, the chosen clusterinfthus, the dendrogram is constructed based orfoited struc-
algorithm must be reliable in order to distinguish betweenture with no regard to thglobal structureof the expression
different effects when small changes in the transcript level arélata—in consensus clustering it is the other way around: the
significant (Jonest al,, 2003), and secondly the results must robust, local structure is emerging out of the global picture.
be presented in a form which makes biological interpretation In conclusion, with consensus clustering we have achieved
and validation accessible. the two-fold aim of a robust clustering, where gene expres-
We showed that classical and fast 'single shot’ cluste-sion data are divided into robust and reproducible clusters
ring produced poor cluster results for a realistic simulatedand at the same time attaining the advantages of hierarchical
dataset based on biological data. Initialisation in the clu-clustering. Clusters can be visualised in a dendrogram and
ster centres and the succes®ofayMiner (Falkenauer & analysed on multiple scales in a biological context.
Marchand, 2003), which uses a genetic algorithm for optimi-
sing the Mixture of Gaussians objective function, indicatespCcKNOWLEDGEMENT

that local minima is the main reason why single run relo- . .
cation algorithm fails. The consensus approach taken in thi;’homas Grotkjeer would like to acknowledge the Novozy-

paper can be seen as a statistical formalisation of the practicg]eS Blpprocess Academy for financial support. The authors
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clustering approach using different algorithms (Kaminski & ersion of theArravMiner  software package

Friedman, 2002). The result is a consensus clustering, wher& y P ge.
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