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ABSTRACT

Cognitive component analysis (COCA) is definedhesgrocess of
unsupervised grouping of data such that the resultjroup
structure is well-aligned with that resulting frdmaman cognitive
activity [1]. In this paper we address COCA in tentext short
time sound features, finding phonemes which are simallest
contrastive unit in the sound system of a langu&gmneralizable
components were found deriving from phonemes based
homomorphic filtering features with basic time sc&20 msec).
We sparsified the features based on energy as @ogessing
means to eliminate the intrinsic noise. Independmrhponent
analysis was compared with latent semantic indexamgl was
demonstrated to be a more appropriate model in COCA

1. INTRODUCTION

Cognitive component analysis (COCA) as a newlyrasficoncept
was first brought to bear in [1]: the process ofsupervised
grouping of data such that the resulting groupcttme is well-
aligned with that resulting from human cognitivetidty. The
concept is related to Lee and Seung’s work on regative matrix
factorization (NMF), in [2] they showed that comeatts could be
understood using concepts from gestalt theory:fab®rization of
an observation matrix in terms of a relatively dreat of cognitive
components leads to a parts-based object représantm 2002,
similar parts-based decompositions were obtaineda idatent
variable model based on non-negative linear mistusé non-
negative independent source signals [3]. Holidtigd, parts-based,
recognition of objects is frequently reported inrgaption studies
across multiple modalities and increasingly in edrttdata, where
object recognition is a cognitive process.

The human perceptual system can model complex -agdint
scenery by using a broad spectrum of cues for aimg\perceptual
input and for identification of individual signatqrucing agents. It
is remarkable that representations found in humash animal
perceptual systems closely resemble the theorgticgtimal
representations from independent component angl§a#) [4, 5,
6]. In this paper our aim is to further discuss tenerality of
cognitive component analysis, and try to answergtestion:Are
such optimal representations based on abstract épehdence”
also relevant in higher cognitive functions?

The phoneme is the smallest contrastive unit in gbend
system of a language. Phoneme recognition is dweamsearch
field in speech recognition, see e.g., [7]. In [Bjonemes have
been investigated by one of the COCA analysis, harhatent
Semantic Indexing (LSI), and generalizable comptmeand

structures representing some of these smallest Umdve been
found, as illustrated in Fig. 1. However whethez tieneralizable
structure found in this work can assist phonemegeition in

general, still needs to be explored. Grouping by I@as been
pursued earlier for several abstract data typetudimg text,

dynamic text (chat), images, and combinations (9,11, 12, 13].
It was found in this work that ICA is a more apmiafe model
than both principal component analysis (PCA), whishtoo

constrained, and clustering, which may in someaimsts be too
flexible as a representation of text data.

The generality of ICA makes it possible to be méii in many
different areas. The classical application in sigmacessing of
ICA model is blind source separation (BSS). A dlzdsexample
of BSS is the cocktail party problem (CPP), see, dlgl]. The
problem is to separate the voices of different kpes using
recordings of one or more microphones. Comparin$&/CPP
which is basically using original sound signalss t€A model in
COCA analysis applies on homomorphic filtering éeas, namely
Mel-frequency Cepstral Coefficient (MFCC). MFCCs ashort-
term spectral features, and the mel-frequency wgrpi
transformation based on human auditive system.O«C& we are
interested in a cognitive level, so to speak befkmmantics. The
features we look for can be compared to the featardoreign
speaker hears on entry. Sounds are recognized Iithbutv
semantic reference. Hence, the cognitive contextuinCOCA is
in the intermediate-level between source separdkionlevel) and
content recognition (high-level).

2. COGNITIVE COMPONENT ANALYSIS

2.1 Latent semantic indexing (LSI)

Latent semantic indexing is the PCA applied onrabstdata such
as text [15]. It is basically a tool for dimensitiyareduction and
also can be used to find group structure in datarwvthe signal-to-
noise ratio is high [8]. Our approach is inspired IS| and the
main innovation here is the active search for gaimable non-
orthogonal linear features that may be describeteims of an
independent component generative model.

A strong assumption in LSI is that the data hasaasSian
distribution. Unfortunately, many real world dat&@ aongaussian
instead very sparse [1, 8]. Hence LSI is often used tool to
reduce dimensionality, which is post-processecet@al cognitive
components, e.g., by interactive visualization sute[16].

2.2 Independent component analysis (1 CA)

ICA algorithms can estimate the independent compisnéom
linear mixtures [17], and has applications in magg! world data.
Here we will discuss some basic characteristianigfures and the
possible recovery of sources.



CLIPPED CEPSTRALS: |z| = 1.7

0.3F -
o.2f 5 < s e i
N P .

B ‘\a < s

0.1} 4 s 4
o dl“
e 0_ - _
§ v e [2] PHONEME IN 'S' AND 'F'

-
Soal - L VVL i
S 3 ™
5 2 i | P .
S 4ol e i P i
< e |
=3 =
S oaf 5 - s 5
o & 8 S ZOOM IN
= K e
-0.4 o 75| I R -SINP SRR W —
“ e
-0.5f i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ;R . S N
-0.6F = . -
-0.2 (o] 0.2 0.4 0.6 0.8 | 1.2

Principal Component 1

£

Fig. 1. Scatter plot of data on latent space
The latent space is formed by the two first priatippmponents of the training data consisting of
four separate utterances representing the souhds’,sf, ‘a’. The structure clearly shows the
sparse component mixture, with ‘rays’ emanatingrrine origin (0,0). The ray marked with an
arrow contains a mixture of ‘s’ and ‘' analysisngiows, a generalizable characteristic feature
associated with the vowel a-like sound that opextls bn ‘s’ and an ‘f’.

First, we note that LSI/PCA is not able to recamstrthe
mixing. PCA, being based on co-variance is simpy informed
enough to solve the problem. To see this let theéureé be given
as

K
X=AS, X, => A,S. @)
k=1
whereX;; is the value of'th feature in the’th measurementy is
the mixture coefficient linking featurg with the componenk,
while S is the level of activity in th&th source. In a text instance
a feature is a term and the measurements are datsiméhile the
components can be interpreted as topical contexts.

As a linear mixture is invariant to an invertiblendar

transformation we need to define a normalizationoné of the

distinctive features [19]. An allophone is a phimefariant of a
phoneme in a particular language. According tofittse view, the
same phoneme can sound slightly different in déffé¢languages
and environments. In American English approximatel®
phonemes are in use, of which 12 are vowels. Vowaly in
temporal duration between 40-400msec [18].

Four simple utterances ‘s’, ‘o’, ‘f, ‘a’ from thelIMIT
database [20] were used for this demonstration. Hémc time
scale of 40 msec was used (windowing with 95% ay#8rlsince
the speech production system is generally considgtegionary for
time intervals on the order of 20-40 msec [18]. Wiedows were
represented by 16 MFCCs. The temporal developnifetiteomel-
cepstral representation of the four utterancesrésemted in the
upper panel of Fig. 4. After variance normalizatiwa sparsified

matricesA, S. We do this by assuming that the sources are unifg energy based coefficients by zeroing windowsiaimalized

variance. As they are assumed independent the iaaear will
thus be trivially given as the unit matrix. LSI,nioe PCA, of the
measurement matrix is based on analysis of theriemee

. =lim lXXT = AAT 2
Tow
Clearly the information irAAT is not enough to uniquely identify
A, since if one solutior is found, any (row) rotated matridA =

AU, UUT = | is also a solution, becauge has the same outer
product asA. This is a potential problem for LS| based analysi

magnitudes with a statistical z < 1.4, which reda%% energy
from original features. LSI/PCA was performed oe 8parsified
feature coefficients to get the most variant PCponents. The
results from Fig. 1 seem to indicate that genemhbliz cognitive
components corresponding to phonemes, e.g. /ee/dtmmance ‘s’

and ‘f, can be identified using linear componenalgsis.

However the ray structures representing the phoseane not
aligned with the directions of the principal compats, hence, an
ICA scheme is required.

Six components ICA was applied on the PCA coeffitie

The ICA community has on the other hand devised ymanFig. 2 shows the scatter plot of sparsified featune the first two

algorithms that use more informed statistics t@teé and thusS,
see [17] for a recent review.

3. COMPONENT ANALYSISFOR PHONEMES

The phoneme is defined as the class of soundsutbatonsistently
perceived as representing a certain minimal lirtguisit in [18].

However phonologists have differing views of theopbme, and
two major ones are: in the American structuralistdition, a
phoneme is defined according to its allophonesemdronments;
in the generative tradition, a phoneme is definedaaset of

principal components derived from the 16 x 16 sfadsfeature
covariance matrix. The six independent sources &enmotated as
red circle, blue square, green diamond, magentyan triangle
and black X respectively. The tag for the samples Wabeled
according to the independent sourcgspatrix, from ICA analysis
on sparsified and dimensionality reduced featufé® arrows in
Fig. 2 represent the directions of sources whiah the column
vectors of the mixing matrik in equation (1). The ‘ray’ structure
with rays emanating from the origin of the coordénaystem is
evident, and each ray along the vector belongs&independent
source. In order to testify the generalizabitifythis structure, a



icaML with 6 sources on TRAINING data
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Fig. 2. Scatter plot of training data
Six components ICA performed on PCA coefficients.
Scatter plot shows the data projected on the finst
principal components derived from the sparsified
features. The circle, square, diamond, +, triargld X
stand for 6 independent sources. The tag for thelea
was labeled according t8 matrix from ICA, and the
arrows represent the directions of sources fromingix
matrix A. The ‘ray’ structure with rays emanating from
the origin (0,0) is evident.

icaML with 6 sources on TEST data
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Fig. 3. Scatter plot of test data
Another set of utterances ‘s’, ‘o’, 'f, ‘a’ was alyzed.
The ‘ray’ structure is obvious and similar to thaining
set, emanating from the origin (0,0).

test set with another set of utterances ‘s’, ‘8),‘a’ from TIMIT
was analyzed using the same setup. The resulshaven in Fig. 3.
Here we only show the direction of the first sourcater we will
demonstrate the cognitive content of this source.
Generalizability has been verified in another way using
two different implementations of ICA, namely maximu
likelihood ICA (icaML) and the fast fixed-point agthm for ICA
(fastICA). IcaML algorithm is the estimation of thiedependent
component as in the Infomax by Bell and SejnowaHli] [using a
maximum likelihood formulation. Fig. 4 and 5 shovhet
classification results from icaML and fastICA omitring and test
sets separately. In the two upper panels, thedeshgevelopment
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Fig. 4. MFCCsand Classification on Training set

In the two upper panels, the temporal developmérihe
mel-frequency cepstral representations of the waigis’,
‘o, ‘f, ‘a’ and 4 spasified ones is presentedheTl
boundaries between them are clearly visible. 55%rgn
was retained after sparsification. The first indegent
sources from two ICA implementations are shownha t
two lower panels: the vertical lines indicate tbedtions of
windows belonging to the first source. Results fromo
ICA algorithms are similar. A large percentage bét
windows locate in, approximately, windows No. 1No.
133 for ‘s’, and No. 471 to No. 600 for ‘f. It inchtes the
feature is related to the similar /ee/ sound thanspoth ‘s’
and ‘f'.
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Fig. 5. MFCCsand Classification on Test set

The two upper panels show the temporal developroént
the mel-frequency cepstral representations of ther f
original utterances and four spasified ones. 60%rgn
was left for test set. The two lower panels show fifst
independent sources from icaML and fastICA: theivelr
lines indicate the locations of windows belongingthe
first source. Two panels look quite similar. Thenishr
scenario shown in Fig. 4 for training set happeagain on
test set, which indicates the feature is relatethéosimilar
/eel sound that opens both ‘s’ and ‘. However ¢hare
more mis-detections located outside the above gnge



of the mel-frequency cepstral representations efftur original
utterances and four sparsified utterances is predewith the
sequence of ‘'s’, ‘o’, ‘f, ‘a’. The boundaries maten the four
utterances are clearly visible, and the utteranglesw much
similarity between the two samples (test and trdiowever, they
are of quite different duration. For training s&§% energy was
retained after sparsification; and 60% energy wedtsfor test set.
The first independent sources from two ICA algarnighare shown
in the two lower panels of Fig. 4 and 5: the vaitiines indicate
the locations of windows belonging to the first smu It is quite
clear that the results of icaML resemble those astiCA. For
training set, we notice that a large percentagehef windows
locate in the first part of ‘s’ and ‘f utterancesyhich
approximately from windows No. 1 to No. 133 for,‘ahd No. 471
to No. 600 for ‘f'. It indicates the feature is a&d to the similar
/eel sound that opens both ‘s’ and ‘f'. A similaesario happened
in test set, however there are more lines locatsidri the above
ranges. Our interpretation is the windows contgniow energy
(almost zero) have simply been classified into fitet class. The
classification has been improved while we slighthduced the
threshold for sparsification. However low threshdldngs more
noise, which increases the classification error.

4. CONCLUSION

The generality of cognitive component analysis, olthis defined
as the process of unsupervised grouping of data shat the
ensuing group structure is well-aligned with thesulting from
human cognitive activity, has been explored in ga@per. We have
studied the derived cognitive components of phorsefr@n short
time homomorphic filtering features with energy das
sparsification. ICA on short-term spectral featurb#CC, was
compared with latent semantic indexing, and wasahstnated to
be a more appropriate model in COCA.

The fact that we find such cognitively relevant gament by
simple unsupervised learning based on sparse lio@aponent
analysis lends further support to our working hyyesis that
humans could use such information theoretical spr&tions, not
only in basic perception tasks, but also when aiady more
abstract data.
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