
Virtual Karaoke System

Gunnar Steinn Magnússon
Katrín Atladóttir

Kgs. Lyngby 2005

Thesis – 2005-82

Abstract

1. ABSTRACT

In this thesis we have designed and programmed a computer game. It is a

karaoke game, based on the popular PlayStation2 game, SingStar.

Our thesis is a construction project with multiple threads, sound input and

output, graphics and animation which made it pretty hard to design. We tried to

follow conventions in software engineering, such as design patterns and object

orientation to simplify the design.

In the game we use Digital Signal Processing as a basis for comparison of

original vocals to a player, singing in a microphone in real time.

Since we wanted the game to be approachable for most people, we programmed

it to work on normal home computers, using Windows and with common

microphones.

Our result is a fully working game, meeting our objectives. Currently it has only

one song, but is expandable to have more songs.

The code for the game and sound analysis and binaries for running the game can

be found on the CD that comes with the report.

1

Preface

2. PREFACE

This master thesis has been written for the Computer Systems Engineering

(CSE) department at the Technical University of Denmark (DTU), which is a

sub department of the Informatics and Mathematical Modelling (IMM)

department. The study has been carried out in the period between February 2005

and October 2005 by Gunnar Steinn Magnússon and Katrín Atladóttir.

The work of the thesis has been supervised by professor Lars Kai Hansen who

is a part of the Intelligent Signal Processing group in the IMM department.

2

Acknowledgments

3. ACKNOWLEDGMENTS

First of all we like to thank Lars Kai Hansen for agreeing on being our

supervisor in this project and for the help, support and letting us be as

independent as we were.

We would also like to thank the great singer and friend Ylfa for helping us with

the vocals and great moral support, Óli for the Matlab help, our families for

having faith in us and moral support, Haji Abbas, our friends for help and

comments, and Viðar for keeping Katrín happy.

3

Contents

4. CONTENTS

4.1. Table of contents
1.Abstract...1
1.Preface...2
2.Acknowledgments...3
3.Contents...4

3.1.Table of contents..4
3.2.List of figures...6

4.Introduction...7
4.1.Introduction..7
4.2.Objectives..7

5.The Game Design..9
singstar.cpp...12
Control class..13
TextOutputBitmap..13
HighScore class...14
Menu classes...15
Game class..15
Progress Bar..16
Drawing the tone scale..16
Lyrics...17
Background Images...18
Drawing microphone/original vocal graphs..19
SoundThread class..19

6.The Sound Processing...22
6.1.Introduction..22
6.2.The Problem...22
6.3.Analyzing the song..22

Fast Fourier transform...22
Testing the Fast Fourier transform..23
Comparing two voices..27
Dividing the song..29
The Matlab code..35

6.4.Microphone input...35
6.5.Comparing The Tune...36

4

Contents

7.Testing...38
7.1.Testing...38
7.2.Beta Testing...38

8.Conclusion...40
8.1.Further work..42

9.References...43

5

Contents

4.2. List of figures
Figure 1: Class diagram of the game..11
Figure 2: Part of the bitmapped font TextOutputBitmap parses........................14
Figure 3: Figure 3: State chart for song playing in SoundThread class. It
supports play, stop and looping songs..20
Figure 4: The most powerful frequency, calculated with FFT, on an original
track with vocals and instruments, same time period as in Figure 8-12. We used
100ms non-overlapping windows. The graph has too many spikes and rapid
changes to use...24
Figure 5 - Vocals were edited in Audacity which is an open source audio editor
project...25
Figure 6: The most powerful frequency, calculated with FFT, on an recorded
vocal, same time period as in Figure 8-12. We used 100ms non-overlapping
windows. The graph looks much better than figure 4 for using as a basis for our
calculations...26
Figure 7: Comparing power of frequencies of two recordings. Both have a
maximum at around 35 Hz which means our algorithm works for these two
vocals..28
Figure 8: Most powerful frequency, calculated with FFT with 10 ms windows
and with 100 samples per second...30
Figure 9: Most powerful frequency, calculated with FFT with 20 ms windows
and with 50 samples per second...31
Figure 10: Most powerful frequency, calculated with FFT with 100 ms
overlapping windows and with 50 samples per second......................................32
Figure 11: Most powerful frequency, calculated with FFT with 100 ms windows
and with 20 samples per second...33
Figure 12: FFT with 100 ms windows and 10 samples per second....................34
Figure 13: How the score is calculated. If a vocal falls in zone A it gets 100%,
zone B is linear from 0-100% depending on how close to A it is and zone C
gives 0%...37
Figure 14 - The game in action. Red lines represent the original voice and green
line the microphone input...41

6

Introduction

5. INTRODUCTION

5.1. Introduction
The idea for our theses is based on the PlayStation21 game SingStar2. It is a

karaoke game developed and published by Sony Computer Entertainment3.

SingStar is a kind of game where you sing with well known tunes and try to

sing similar to the original vocals. It recognizes the tone of your voice, so the

closer you sing to the original tune, the more points you get.

We think it's a great game to play with your friends for a fun night so we wanted

to make it PC compatible and be able to select the songs ourselves. So we

thought it would be great to make a similar game where we can be in charge of

the song selection and it would be a fun way to learn more about Digital Signal

Processing (DSP) and making graphics in OpenGL4.

Since we don't have much background in DSP we had to do a lot of reading and

it made the project a lot harder for us to work on.

We wanted it to be aimed for regular PC users so we just use a rather cheap

microphone (one like people use for Skype5 for example) and a regular home

PC.

5.2. Objectives
We wanted to create a fully functional computer game. What we want to be able

to do in our game is to add a song we select and then be able to play it and

compare our singing voice to the original singing voice and the rate it with

points. The points are added to high score which is saved on the disk for later

7

Introduction

play. The game is supposed to have a functional menu system.

8

The Game Design

6. THE GAME DESIGN

The game is designed to be a full game with a menu, high score and rules. Since

designing a large game can be very complex with lot of objects and threads we

tried to use simple designs and use design patterns where appropriate. We used

Head First Design Patterns6 as our guide and when we mention a design pattern

in this chapter, it can be found in that book.

Since we were two working on this project we had to find a way to prevent

conflicts in working with the files. We decided to use CVS7 (Concurrent

Versions System) and the client we used for our Windows machines is

TortoiseCVS8, an open source CVS client.

When using CVS, the latest version of each file is kept in a server along with all

changes made to the files in the past, so if a conflict occurred we could always

see what had been changed and find the correct version of the file. Another

profit of using CVS is that our project was constantly backed up, so we never

had to worry about loosing all the work we had done.

We decided to use OpenGL as our graphical environment since we have

experience in it.

We used code from NeHe Productions9 as our base to set up our OpenGL

environment and code from the course 02563 Virtual Reality Systems10, taught

by Niels Jørgen Christensen, which provides a few helper classes we used, such

as vector calculations.

9

The Game Design

The overall design of our game loop was inspired by the game loop in Tricks of

the Windows Game Programming Gurus11.

A class diagram of the overall design can be found in Figure 1. Following is a

description of each part of the design.

10

The Game Design

Figure 1: Class diagram of the game

11

The Game Design

singstar.cpp

Singstar.cpp is the main entry point of the application. In it, OpenGL and

Windows are initialized and the main game window is created.

Next, all helper classes are initialized, such as the high score is loaded, text

bitmaps are loaded, the microphone listener is started, the thread that controls

the song playing is started and finally, Control is initialized.

When Control is initialized, the menu system is in turn loaded, which loads all

graphics and sounds associated with it.

The main game loop is next. Following is a pseudo code for the loop:

while (not exiting)

check and handle Windows messages

deltaTime = calculate time since last frame

keys = what keys have changed since last frame

// Tell game that we are drawing another frame

// so it can move objects, handle keyboard etc.

control->step(deltaTime, keys)

// display current game status on screen

control->display()

end while

The Control object makes sure that the right object (some menu or the main

game) gets the step and display calls.

When the program has been notified that it should terminate, it notifies all the

same classes that it initialized, that they should release all resources and exit.

12

The Game Design

For example it stops the song from playing and waits until the thread has

finished.

Control class

The Control class is basically an abstraction to simplify how the main game

loop notifies the right classes using the variation of the Command Design

Pattern.

Every main game part, like high score menu, main menu, the main game etc.

inherits from the AbstractControlObject which defines how someone can

control class with methods such as init, start, display and step.

The Control class keeps an instance of all game objects (main menu, game,

rules menu, high score menu, quit menu) and keeps track of what part is active

and acts as a middle man between the main loop and the active object. The

active object can also notify the Control when it wants to switch to another

game part (for example when the song finishes).

TextOutputBitmap

The TextOutputBitmap class is a class to display text on the screen using a

bitmapped font. The font is created where each character is put on an even grid

in the ASCII as seen in Figure 2.

13

The Game Design

Figure 2: Part of the bitmapped font TextOutputBitmap

parses

TextOutputBitmap loads the font by reading the image and for each character,

calculate where on the image it is and load it into its own OpenGL call list.

Other classes can then use it to print to the screen by writing:

TextOutputBitmap::glPrint(x,y, “The text”);

The printing function also has an option for scaling, centering on the screen and

using multiple fonts.

The glPrint function uses the glCallLists function in OpenGL. glCallLists takes

as a parameter an array of OpenGL call lists and draws them all consequently.

We can use that function, by storing the call lists in ASCII order, call it only

with the string we are supposed to display.

HighScore class

The HighScore class keeps track of the high score. Since it is used in many

places in the game and all have to use the same instance, we used the Singleton

Design Pattern.

With the Singleton Design Pattern no one can create an instance of the class, it

has to request an instance from a static method in the class and it is guaranteed

14

The Game Design

that every time an instance is requested it returns the same instance.

This makes sure that the program does not have inconsistent data.

The class has methods for loading score from disk, write to disk and adding

score to the list.

The high score list is sorted with one round of bubble sort12 each time a number

is added.

Menu classes

The menu consists of four classes, Menu, HighScoreMenu, RulesMenu and

QuitMenu, and they all basically work in the same way.

They all inherit from AbstractControlObject so Control can use it. All start by

loading the graphics needed for the menu. They keep track of which sub menu

is chosen, can display the right graphics according to the sub menu and can

handle keyboard input and switch to other menus in response to that.

The exception to this is HighScoreMenu which asks the HighScore class for the

high score and displays it on the menu using the TextOutputBitmap class which

is discussed later in this report.

Game class

The Game class is where all the game activity is controlled. It combines and

controls different parts of the game, such as lyrics, microphone input, the song

playing and displays them on the screen.

When the game is started it initializes all the appropriate variables and classes,

such as score, the graphs, the lyrics etc.

15

The Game Design

When the game is running it is in charge of letting other parts of the game,

update and display.

When a game finishes, all parts of the game are stopped, the score is compared

to the high score list using the HighScore class and a back button appears so the

user can get back to the main menu.

Some of the more specific things, when the game is running, are discussed in

the following chapters.

Progress Bar

For the user to see his progress, a progress bar is displayed on the screen. The

progress bar is created by overlaying an image onto the background. Only a part

of the image, representing the percentage of song played, is displayed which

results in a good looking progress bar.

Drawing the tone scale

For guidance, thin lines indicating the tones are drawn behind the

microphone/original-vocal graphs. Frequency can be calculated from tone

number with the formula:

hertz=6.875∗2
3tone

12

We then convert the frequencies to pixels on the screen by scaling them down

with a constant and display the nearest tone every 30 pixels on the screen. Both

a line and the tone name is displayed.

16

The Game Design

Lyrics

While a song is playing in the game, the lyrics are displayed on the bottom of

the screen and a marker is placed where in the line the player is.

We used Audacity to find out in which millisecond of the song each line started

and ended.

We added these times and the lyrics to a text file which the game could read.

The Lyrics class is pretty simple. It reads the text file with the lyrics information

and keeps it in a vector and it allows other classes to retrieve lines based on the

current time in the song.

For example can we call:

vector<SongLine *> lines = lyr.getLine2(20000, 3);

to get the next three lines from the 20th second in the song in a vector.

The Game class uses the Lyrics class to display the lyrics on the screen. Each

time it draws to the screen, it asks the lyrics class for the next three lines and

displays them one after another.

To indicate to the user where in the line the song is currently, a small ball

bounces on top of it.

To figure where to make the ball bounce, we calculated the length of the line in

milliseconds, the difference between current time and the beginning of the line

in milliseconds and by that could calculate the percentage of the line that had

finished and placed the ball accordingly.

This method is not perfect, but works good enough. In the few cases the ball

was misplaced by too far, we cut the line into two lines.

17

The Game Design

To add a little life to it, we also made the ball bounce a little by adding a sinus

factor, determined by the number of milliseconds since last frame, to the height.

Background Images

To make the game more alive and fun, we added background images with

simple transitions, known from programs such as Microsoft Powerpoint13.

We found a few pictures from a Dolly Parton fan site14 and edited them to fit

our game.

The SongBackgrounds class manages them in the game. It has support for

multiple images and multiple transition types that can easily be added.

It starts by loading the graphics from disk and into OpenGL textures. Each

frame, the current transition advances a little and then displays the result.

When a transition finishes, it selects a new one, and after a predetermined time,

starts it.

We currently have two types of transitions, one where a picture slides from one

side over the other picture, and one where a picture pushes the existing one out.

The transition speed is determined by the time one frame takes, so it moves on

the same speed for different computers.

Drawing microphone/original vocal graphs

To display the graphs representing the players voice and the original voice we

created a class, FourierPoints, that allows us to create a buffer of some tones,

add tones and then retrieve the last predefined number of tones added.

To accomplish this we use a dynamic array as a circular buffer and keep track of

18

The Game Design

where that last tone was added. Then indexes for each tone can be found using

modulus on the size.

The class is also capable of reading prerecorded tones from a text file, a feature

we use for the original voice which is pre-calculated as seen in chapter 8.

The Game class uses the FourierPoints class both for the microphone input and

original vocals.

Every 100 ms it adds a new microphone tone and displays the last 20 tones on

the screen. It also displays, in another color, the last 20 and next 30 tones from

the original vocals for reference for the player.

SoundThread class

The SoundThread is responsible of playing a song. It is able to loop a song

(needed for example in the menu), stop a song, get play status and notify any

class interested when a song has finished.

Since the SoundThread has to be in its own thread it has to be thread safe to

make sure we don't get any deadlocks or memory leaks because of unexpected

order of actions.

To solve these problems we made the state chart in Figure 3.

19

The Game Design

The state chart shows the main function in SoundThread.

20

Figure 3: Figure 3: State chart for song playing in

SoundThread class. It supports play, stop and looping

songs

The Game Design

To play or stop a song, other threads can call public functions that first lock

status variables using Semaphores, set the new status and then release the

Semaphore.

The song thread, then in the states “Play song” and “Stop play”, locks the

same status variables with semaphores, checks what their status is and then

releases the Semaphore. This way, other threads can simultaneously control the

SoundThread without having a deadlock. The drawback is that the control is not

instant, we have to wait until the song thread reads the command (usually only a

few tens of milliseconds).

All classes can register to be notified when a song has finished. This for

example is convenient for the main game part to know when it should change to

the after-game state. These notifications are implemented by using the Observer

Design Pattern. All classes that need to register for notification, inherit from the

SoundThreadInterface interface in which they have to implement a notify

method which is called when a song finishes.

Using vector we can have multiple classes registering for notifications although

we don't currently use that feature.

The SoundThread class uses the Singleton Design Pattern since we have to use

it in a few places and only want to be playing one sound at a time.

21

The Sound Processing

7. THE SOUND PROCESSING

7.1. Introduction
A large part of the project involved manipulation of sounds and all of the sound

processing was performed with two programs, Audacity15 and Matlab16.

Audacity is a mature multi-platform Open Source sound editor which allowed

us easily to perform noise-reduction and other common sound editing.

Matlab is a well known technical computing application that allowed us to

perform more specific sound processing like Fourier transforms.

7.2. The Problem
We need to select a song, isolate the vocals, analyze the frequencies in the

vocals and write the analysis to a file.

While the program is playing we need to do the same kind of analysis on a

microphone-input and compare that to the original vocals.

7.3. Analyzing the song

Fast Fourier transform

We wanted to compare the original vocals of the song to the microphone input

based on tone of the two sounds. A tone is a specific frequency, for example

middle C is 261.6 Hz.

One way of converting a sound to frequencies is using a Fourier transform.

Fourier transform is a way of converting a function to a trigonometric series

where each part in the sum represents a specific frequency. That is, we can use

22

The Sound Processing

it to convert a sound to a format where we can see the volume behind each

frequency.

The original Fourier transform is a continuous function that is not well suited

for computer calculations, therefore Discrete Fourier transform (DFT) is used in

computer calculations.

DFT is defined by the formula:

Calculating DFT directly takes O(n2) arithmetic operations and is therefore not

realistic for real-time computation.

Some variations of the Discrete Fourier transform exist and the one we use is

called Fast Fourier transform (FFT). Fast Fourier transform calculates in

O(n*log(n)) arithmetic operations and is an effective algorithm to calculate

Discrete Fourier transform.

Matlab has the FFT algorithm built in and we used that for our calculation.

Testing the Fast Fourier transform

We created a test program in Matlab that ran the built in FFT function on

100ms windows on the songs and found the most powerful frequency and

graphed it. When using this algorithm on the original song, it is obvious that

instruments affect the results too much. These results can be seen on Figure 4

which shows how the most powerful frequency changes in a selected time

period in the song. Since the tones are not constant enough, when they clearly

23

The Sound Processing

are, when listening to the song, we can not use this as a basis for our

calculations.

Figure 4: The most powerful frequency, calculated with FFT, on an original

track with vocals and instruments, same time period as in Figure 8-12. We used

100ms non-overlapping windows. The graph has too many spikes and rapid

changes to use.

The optimal solution would be to get the original vocal track without the

instruments and run our algorithm on that, but that was not a possibility for us.

Instead we had our friend, who is a good singer, mimic the singer and recorded

her voice.

We used Audacity to record the voice, applied built in noise-reduction filter and

24

The Sound Processing

synchronized the timing with the original song.

Figure 5 - Vocals were edited in Audacity which is an open source audio editor

project.

We got better results running our algorithm on this recording than the original

tune as can be seen in Figure 6.

25

The Sound Processing

Figure 6: The most powerful frequency, calculated with FFT, on an recorded

vocal, same time period as in Figure 8-12. We used 100ms non-overlapping

windows. The graph looks much better than figure 4 for using as a basis for our

calculations.

Although the graph in figure 6 looks much better than the graph in figure 4,

there are some unexpected spikes which we assume are due to a cheap

microphone and bad recording facilities. Therefore, to minimize this effect, we

had our friend sing the song three times and ran our algorithm on each

recording. Then finally, we calculated the average of the results except if one of

26

The Sound Processing

the recording had a period with a large spike, we discarded that part.

This resulted in almost no spikes.

Comparing two voices

To convince ourselves that this method of comparing two voices would work,

we recorded two voices singing the song and compared the power of each

frequency at a few places in the recordings.

Figure 7: Comparing power of frequencies of two recordings. Both have a

maximum at around 35 Hz which means our algorithm works for these two

vocals.

27

The Sound Processing

Figure 7 shows a comparison of the the power of each frequency of two sound

samples from two persons. Although they are not exactly the same, they both

have the first 3 spikes in the harmonics in the same positions (small deviation

because they are not singing the exact same tone). The first spike is by far the

highest one in both recordings. Since we use the highest spike in our

calculations these two recordings would have matched.

Dividing the song

To apply Fourier transform on a sound, we need to divide it into smaller parts,

or windows, and apply the algorithm on each window.

Choosing how large windows should be and how often per second we should

take a sample depends on a few factors:

Large windows could result in inaccurate results if the tone changes faster than

the window, small windows on the other hand will not give the transform

enough data to work with.

If a sample is taken very often per second, we require higher CPU power while

the game runs, also, since we are using Windows timing function which has a

resolution of 10 ms we can't take more than 100 samples per second.

Also, if we take a few samples per second, the player sees too few reference

points and his results show up so late that it's hard to react to them.

To decide the windows and samples per second we did experiments on various

inputs and plotted the results.

28

The Sound Processing

Figure 8 – 12 show results from the same time period on the same audio file.

First we tried using many small windows which results in figure 8.

Figure 8: Most powerful frequency, calculated with FFT with 10 ms windows

and with 100 samples per second.

The windows are so small that FFT does not have enough data to work with.

This can be seen from rapid changes in the most powerful frequency.

29

The Sound Processing

We then tried a little larger windows. Figure 9 shows 20 ms non-overlapping

windows with 50 samples per second.

Figure 9: Most powerful frequency, calculated with FFT with 20 ms windows

and with 50 samples per second.

The windows are still too small which can be seen by the rapid changes in the

graph.

Next we tried to enlarge the windows to 100 ms overlapping with 50 samples

30

The Sound Processing

per second.

Figure 10: Most powerful frequency, calculated with FFT with 100 ms

overlapping windows and with 50 samples per second.

The graph shows much better results than the graphs in figures 8 and 9 but there

are still some spikes.

We then tried taking fewer samples. We calculated 20 samples per second.

31

The Sound Processing

Figure 11: Most powerful frequency, calculated with FFT with 100 ms windows

and with 20 samples per second.

The graph is starting to look nice, but still has a few spikes in it we would like

to get rid of.

 Finally we tested using 100 ms windows with 10 samples per second.

32

The Sound Processing

Figure 12: FFT with 100 ms windows and 10 samples per second

Here the graph is looking nice and when listening to the song it looks correct.

When comparing the graphs, it is obvious that the graph in figure 12 gives the

best results. Therefore, we decided to use those settings for the calculations in

our program.

The Matlab code

To calculate the most powerful frequency for each frame for the sound files we

33

The Sound Processing

created a Matlab function that can take in an arbitrary number of sound files,

window size in milliseconds and how many times per seconds it should sample.

The function uses a built in FFT function in Matlab. We use the output for each

window to calculate the power of each frequency and then store the most

powerful one.

When we have processed all input files, we calculate their average (disregarding

measurements with large spikes) and write the results to file which can be used

in the game.

We also used the output to plot various graphs used in the report.

Our Matlab code can be found on the CD.

7.4. Microphone input

For the microphone input we used code from Reliable Software17. They offer a

free code to sample input from a microphone and run Fourier transform on it.

Since the code was exactly what we needed, we decided to use it.

The code sets up a recorder on the default sound input in Windows and it

samples to a buffer. When the buffer fills up, the Listen class is notified and it

calculates a Fourier transform on the input and stores it so the Game class can

fetch it when needed.

The algorithm used to calculate the Fourier transform is the Cooley-Tukey

algorithm18.

7.5. Comparing The Tune

When comparing the singing voice to the original voice, we check every 100

34

The Sound Processing

milliseconds for the values in both and compare them.

For timing we use the Windows function GetTickCount()19 which has a time

resolution of 10ms. The error is small and does not accumulate over time.

The result of Fourier transform is a frequency so we start by converting it to a

tone number.

Tones can be calculated with20:

tone=
12∗ln hertz

ln 6.875
­3

Then we get a tone number, for example middle C is tone 60. Since we never

hit the tone exactly, this formula returns a floating point number which we can

use to calculate the scoring.

We then calculate the difference between the tone of reference and microphone

and use the graph in figure 13 as a reference for the scoring.

If the difference between them is more than a full octave, we change them to be

on the same octave. This allows people to sing in their natural voice and not

having to force their singing to mimic the original one.

35

The Sound Processing

Figure 13: How the score is calculated. If a vocal falls in zone A it gets 100%,

zone B is linear from 0-100% depending on how close to A it is and zone C

gives 0%

We have defined two constants, LowRadius and HighRadius, which we use to

determine a percent which we then multiply with the number of milliseconds

since last comparison.

With this method we could easily add a difficulty feature where we could add

Easy, Medium and Hard mode just by changing the LowRadius and HighRadius

values.

36

Testing

8. TESTING

8.1. Testing

We tried to test our program as thoroughly as we could. We ran it on different

computers, ran it for extensive periods, used different microphones and

basically tried to crash our program.

• We found out that the game runs on equal speeds on different

computers, from a 3 year old laptop to a brand new gaming machine.

This includes song speed, the microphone/original voice graphs and all

animation.

• When the program started it used around 61MB of RAM but after

playtime of 15 minutes it had grown to 130MB.

After searching for and cleaning memory leaks we reduced the memory

usage to around 63MB after 15 minutes of play. There still are some

memory leaks we haven't located but they are very small.

8.2. Beta Testing

When we thought our program was good enough to be tested by other people

than ourselves, we started beta testing.

We invited some friends with different backgrounds and skills in working with

computers over.

A 25 year old girl who is studying to become an actress. She only uses

computers for browsing the Internet and write school projects..

37

Testing

A 25 year old girl who is an animator. She uses computers at work and is very

familiar with them.

A 26 year old boy who is a DTU student. He uses computers for programming

and all kinds of processing.

We had them start the game on their own and think out loud through all the

menus and the game. Then we wrote down all their feedbacks and used them to

improve our game.

Two them were not sure how the microphone/original-vocal graph worked at

first but in general they were very satisfied with the game.

38

Conclusion

9. CONCLUSION

When starting this project we made goals for ourselves, those goals were to

make a whole, fully functional computer game, with same objectives as

SingStar.

While trying to achieve these goals we hit some bumps. For example we had no

experience with DSP or sound processing, before starting the project. We

learned that gathering information from the Internet and by reading books and

papers is very important in a project like this. We were also lucky to have

friends at DTU, studying in other fields than us, we could ask about diverse

problems.

After about 8 months of work (including Easter and Summer vacations) we

finished our game, we are happy with the outcome and feel we have achieved

the goal we set for ourselves in the beginning. We feel that we have learned a

lot from this project (which at some times seemed unsolvable) and are very

happy with the outcome.

39

Conclusion

Figure 14 - The game in action. Red lines represent the original voice and green

line the microphone input.

40

Conclusion

9.1. Further work

What is possible to do to make our project a better game?

Given more time and more experience in this field we could have added more

features to our project and fixed some of the problems, for example:

• When calculating the highest frequency of both the original song and the

players singing, we get a few spikes in the results. Part of the reason is

probably due to the cheap microphone we used. Also we would like to

investigate if we could have ran the sounds through some filters that would

have minimized this.

• Currently, although the scoring allows you to sing in your natural octave

even though the original song is in another, the displayed graph does not

show it in the same octave. Fixing this would be first on our fixing list.

• All the text that is drawn with TextOutputBitmap is mono spaced and does

therefore not look natural. Fixing this would not be that easy since we could

not calculate easily where each letter is positioned.

• Making it possible to play over the Internet

• Make a library of songs, downloadable from the Internet

• Make users being able to add songs on their own.

• It might be fun to have videos or even a webcam from the user running in the

background instead of the pictures currently running.

41

References

10. REFERENCES

1. Playstation2 - http://www.playstation.com/

2. SingStar - http://www.singstargame.com/

3. Sony Computer Entertainment – http://sony.com

4. OpenGL – http://opengl.org

5. Skype – http://skype.com

6. Freeman, Eric and Freeman, Elisabeth – Head First Design Patterns –

First edition, O'Reilly, 2004

7. CVS – http://www.nongnu.org/cvs/

8. TortoiseCVS - http://www.tortoisecvs.org/

9. NeHe Productions - http://nehe.gamedev.net/

10. Virtual Reality Systems - http://www2.imm.dtu.dk/courses/02563/

11. Lamothe, Andre – Tricks of the Windows Game Programming Gurus –

Sams, 1999

12. Sedgewick – Algorithm in C++ Part 1-4 – p:277-278 - Third edition,

Addison-Wesley, 1999

13. Microsoft Powerpoint - http://www.microsoft.com/powerpoint

14. Dolly Parton On-Line - http://www.dollyon-

line.com/download/wallpaper.shtml

15. Audacity - http://audacity.sourceforge.net/

42

References

16. Matlab - http://mathworks.com/

17. Reliable Software - http://www.relisoft.com/freeware/recorder.html

18. Cooley-Tukey FFT algorithm - http://en.wikipedia.org/wiki/Cooley-

Tukey_FFT_algorithm

19. GetTickCount -

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/sysinfo/base/gettickcount.asp

20. Where Math meets Music -

http://www.musicmasterworks.com/WhereMathMeetsMusic.html

43

