Pickup and Delivery Problem with Hub Reloading

Author: Li Li

Supervisor: Jesper Larsen

Informatics and Mathematical Modelling
Technical University of Denmark

Preface

This thesis is the final report in my scholastic career. | will end my master program in
Technical University of Denmark by completing this project. At the time of finishing this
thesis, |1 would like to thank to some people who have helped me during the process of
doing this project.

Firstly, 1 would like to thank to my supervisor Jesper Larsen for his excellent ideas,
unwearied edifications and endless patience. Secondly, | would like to thank to my
parents for their auspices of my school works in Denmark. And | would also like to say
thanks to my best friend, my boyfriend Zhenyu Yuan. He encouraged, comforted me
when | met any problem doing this project and accompanied me passing this strenuous
working process.

Content

Abstract

1 Introduction
1.1 Motivation

2 Routes with Central Depot

2.1 Problem formulation
2.2 Mathematical formulation

3 Method Discussion
3.1 Forming routes

3.1.1 Constructive heuristics
3.1.1.1 Insert_By_Distance heuristic

3.1.2 Improved heuristics
3.1.2.1 Based on Sweep_By_Angle
3.1.2.1.1 Result from the modified Sweep By Angle

3.1.2.2 Based on Insert_By_Distance...

3.1.2.2.1 Result from the modified Insert By Dlstance................................

3.1.2.2.2 Method analysis about Insert_By Distance...
3.1.2.2.2.1 review the method and analyze it

3.2 Connection routes
3.2.1 Searching relative routes in different parts

3.3 Experimental results

4 Conclusion

4.1 Based on Sweep_By_Angle and its pertinent approaches...............ocoveeieiieninnnnnnn.

4.1.1 disadvantage
4.1.2 advantage

4.2 Based on Insert_By_Distance and its pertinent approaches
4.2.1 disadvamtage
4.2.2 advantage

1.2 Description of the working task and pUrpOSE.oeoi i

Rl W] 0 R AV L T

3.1.1.2 Sweep_ By ANgle heUristiC.......c.viuiieiieie i e e e
3.1.1.3 ReSUItS COMPAIISON v eeetiie e ee et e e e e e

3.1.2.1.2 Method analysis about Sweep_ By Angle.....................

3.1.2.2.2.2 some new idea for modifying method...................

3.2.2 Rearrange the overload routes...........c.cooviiiiii i e

..66

4.3 Comparison and analysis Of FeSUILS..........ouuieiie i e e e e 67

4.4 ldeas of improving results.. P ¢ ¥ 4
4.5 Comparison with the General Plckup and Dellvery Problem 68
5
RETEIENCES. ...t e e, 69
B APPENAIXES. ...t e 70

6.1 program of constructive methods
6.2 program of modified methods
6.3 final algorithm

e
e
e
e
2
e
2 T
e
2
T
R
T
R
T
L
T
R
T
R P
T
R PP
T
P
T o
R G P
T
PP
T
3L 20 e e e e
B L2 e e e e e
B e e e
R PP PP
R
R PP
e
B2 e e e
B3 e e e e e e e e
B2 e e
B2 e e e e
T
T
e
Ao DL e e

List of figures

.10
.10
.10
A1
17
A7
19
19
.20
21
.23
.23
.24
.26

27

.28
31
31
.32
32
.33
.35
.36
.39
40
42
43
44
A7
A7
49
49
.50
51
.92
.54
.95
.56
.97
.65
.65
.68
.68

e
T
R
T
R
T
L
T
R

3-1-9.

R P
T
R P
e
B2 e e
T
B3 e e e
T
R
T
T L
T
R

3-3-9.

3-3-lOT::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T::L:T.“
T

List of tables

11
.25
.25
.25
.26
.29
.30
.30
.37
...38
45
45
46
.92
.53
.99
.60
.60
.60
.61
.61
.62
.62
...62
.63
.64

Abstract

Along with the development of the society and the progress of the science, people around
the world are devoting themselves to explore the better and better approaches to deal with
all kinds of problems we are facing in the real life or our generations may confront to in
future.

Nowadays, scientists are no more focusing on solving problems temporarily. They pay
more close attention to adopt right and better ways and do their best to overcome
problems permanently. This sort of the aspiration does not only belong to the developed
countries. Since the explored and good methods have stimulated large batch of developed
and developing countries, even the whole world attempt to apply the scientific means to
solve problems effectively. Thus, the life of human being cannot go ahead well without
science. Meanwhile, when we use the scientific way to help us settle problems, we also
need to investigate right resolved approaches audaciously and continuously.

In the main content of this thesis, we will meet a new kind of transportation problem,
which is a pickup and delivery problem with hub reloading at the central depot. In this
pickup and delivery problem, every pickup source has a corresponding delivery
terminations. We set each request includes the relative pickup and delivery actions and
those two actions cannot be handled by the same vehicle. In other words, the pickup part
and delivery part are separated in this project. My idea of resolving this problem can be
described briefly as the way that: firstly, consider the pickup and delivery parts as two
vehicle routing problems. Secondly, connect the relative pickup and delivery actions in
each request under the time constraint. Along with the steps, | have displayed the relevant
mathematical model. The goal is to find short routes and make every request to be
finished in a limited time period are my work.

Key words
vehicle routing problem, pickup and delivery problem, mathematical model, heuristics,
Insert_ By Distance, Sweep By Angle,

1 Introduction

In this section, a short introduction will be described. In the part of motivation, the
development of transportation problem and the terminal purpose what people expect to
touch will be given briefly. In order to guide readers go through this article and know the
thought of composing methods smoothly, a mathematical model of vehicle routing
problem will be described also. At the end of this section, the description of the current
discussing problem will be introduced.

1.1 Motivation

In this thesis, a type of transportation problem will be presented. The purpose for doing
such popular topic is the reason that transportation plays a significant role in the economy
of most developed nations. For example, a National Council of Physical Distribution
Study [1978] [1] estimated that transportation consumption occupied the rate of 15% of
the U.S. gross national product. This economic importance has motivated both private
companies and academic researchers to vigorously pursue the use of operation research
and management science to improve the efficiency of transportation.

Various modes of transportation exist anywhere, such as the airlift, railway, water
transportation, land transportation and so on. In different transportation fields, companies
and researchers focus on different aspects in transportation problem. In the airlift, people
pay primary attention to the arrangement of the crew scheduling. In the ordinary land
transportation, the efficient use of a fleet of vehicles which must take some stops to
pickup and delivery productions or passengers are concerned. The problem requires one
to specify which customers should be delivered by each vehicle. And in what order so as
to minimize total cost subjecting to a variety of constraints such as vehicle capacity and
delivery time constraints. Those are also the content of this thesis that will be discussed
later in more details.

This thesis is a pickup and delivery with hub reloading problem. This problem is a
generation of the well-known vehicle routing problem, which is a generalization of the
traveling salesman problem. The traveling salesman problem can be explained in short as
[7] “A traveling salesman wants to visit each of a set of towns exactly once, starting from
and returning back to his home town.” The traveling salesman problem can be seen as a
trip. One of his problems is to find a shortest route for such trip.

The vehicle routing problem may be seen as the problem composed with some traveling
salesman problems. It can be described as follows: given a fleet of vehicles with uniform
capacity, a common depot, and several customer demands, finds the set of routes with
overall minimum route cost which serve all the demands.

The characters of vehicle routing problem accord with the qualifications of the thesis.
Because in each part of the project in this thesis, a fleet of vehicles without fixed numbers

are located at the central depot, all the vehicles can only work from 6:00 in the morning
to 22:00 in the evening and every vehicle has been fixed the same capacity.

Since the origin of our problem is the vehicle routing problem, there is a mathematical
model of vehicle routing problem [2] displayed.
K = number of vehicles in the fleet

N = number of customers to which transportation must be made. Customers are
indexed form 1 ton and index O denotes the central depot

Q= the capacity of every vehicle

d. = the demand of load from every customer

— cost of direct travel from ito j

The vehicle routing problem is to determine K vehicle routes. Every route has to start
from the central deport with visiting a subset of N customers in a specified sequence, and
then goes back to the central deport again. In every determined route, the total demand of
a subset of customers should not exceed the vehicle capacity. All the routes should be
determined to shorten the total travel distance.

Objective function: minimize > > C, X (1)
keK ieN, jeN
Subjectto: > > X{ =1, VieN (2)
keK jeN
ZdiZXi';st, vk e K (3)
ieN jeN
k
ZN:xoj=1, vk e K (4)
je
D Xi—D Xx =0, VheN,vkeK (5
ieN jeN
D Xia=1 VkekK (6)
ieN
DXL =D XK =0 (7)
keK keK

1 if vehicle k drives from nodei to node j directly

0 otherwise

Note:
(2) Each customer must be assigned to exactly one vehicle
(3) No vehicle can serve more customers than its capacity permission
(4) For each vehicle, it can only start from depot to any nodes once

(5) For any two connected nodes, how much load comes out from the previous node equals
to how much load enters into the forward node

(6) A flow constraint requiring that each vehicle k leaves node 0 once, leaves nodei, if and

only if it enters that node, and returns to noden +1

(7) How many vehicles leaves the depot to serve customers outside should go back to the
depot with the same number

1.2 Description of the working task and purpose

In the given task, we are required to consider a number of pickup-and-delivery orders.
Under this process, the goods in each order should be picked up at one place called the
source node and transported to another place denoted the terminal node. In this problem
the goods do not travel directly from their sources to their terminations, instead they are
firstly transported from the sources to a central depot where they are reloaded to another
vehicle and then driven to the terminations. At the source, the destination and at the
depot there are some costs associated with loading, moving or off-loading the goods.
Each vehicle is bounded by a total driving time. The problem here is to plan the routes
for the vehicles so that all goods get delivered but at a minimum transportation cost.

In association with the project proposal, a file containing realistic but not real life data is
generated and supplied by the Danish company, Transvision.

2 Routes with Central Depot

In the context underlying, the given problem will be described carefully. Not only is the
detailed train of thought about solving this problem included, but also the mathematical
formulation fromed for solving the problem.

2.1 Problem formulation

The problem going to be solved later is a generation of ordinary vehicle routing problem.
Comparing with the general pickup-and-delivery problem, let us see what the differences
between the general case and our facing case are.

<> general case: vehicles have to transport goods from origins to destinations without
transshipment at intermediate location

< our facing case: vehicles have to transport goods from origins to destinations with
reloading at the single intermediate depot

Obviously, the character of our facing case is this practical transportation problem
composed of two parts. The first part includs a set of source/pickup nodes and one central
depot. And the second part is composed of the same number of corresponding
terminal/delivery nodes and the same central depot.

We may say that the general pickup-and-delivery problem is a vehicle routing problem in
which either all the origins or all the destinations are located at the depot. Then the case
we are facing now can be understood as an order combined with two vehicle routing
problems. Such order includes two parts: the first one is to set all the destinations located
at the depot, and the second one is to set all the origins located at the depot.

10

If we use three figure to show the differences of general case and our facing case visibly,
then

General case

e re— Nl ® source
o o termination
origins destination d
g) Il depot
Figure 2-1-1

Our facing case

o« o _é»o

././ destination origins \

Figure 2-1-2

The aim of our facing problem is to adopt feasible routes. By those routes, a fleet of
vehicles pick up plenty of goods from their source points to the depot, transship the goods
to another fleet of vehicles, and then delivery them from the depot to their corresponding
terminal points in a fixed working time period from 06:00 to 22:00.

Briefly speaking, the relevant information of the system can be described as a simple
figure below

@ source node
@ terminal node
M depot

Figure 2-1-3

Evidently, from the picture above, we can see that there is a small light blue rectangle,
which named as the central depot. Beside the depot, there are two sorts of nodes with

11

different colours. The light green ones are source nodes with goods, a fleet of green cars
coming from the depot have to visit those nodes, pick up goods from them and go back to
the depot. The black nodes are the places where the goods from the light green nodes
have to be sent, we call them terminal nodes. At the end of this process, we can see that
all the fleets of vehicles will come back to the depot again.

It is not difficult to find that each route in either patrs is only composed with source
nodes or terminal nodes. The way of composing route means no route can include the
source and terminal nodes together without passing by the central depot. When we plan
to send some goods to their terminations, we must be sure those goods have been brought
to the central depot first.

After getting the idea of picking up and delivering goods, how can we save the amount of
the total cost obeying the rule of transporting those goods? Since the objective function is
to find the shortest distance, the minimum cost of the entire process is decided by the
whole travelling route length. And there is no constraint to combine several sorts of
goods together on the same vehicle. Without exceeding vehicle capacity, we expect each
vehicle can get as much as possible goods.

Comparing with normal transportation projects, this case is a little different except for the
characters of problem per se. It is also a practical task. Despite purely focusing on the
algorithm search, the Danish company, Transvision, has made a great deal for this case.
They support amount of simulated data. All the data are separated into five weekdays.

There are 247, 214, 199, 229 and 212 orders assigned to those five weekdays from the
first to the fifth respectively. For each order, there are some relevant information
including the ID of order, the locations of source and terminal nodes, the week day and
the corresponding demand. All these information can be seen clearly from the table
below

ID To X ToY From X From Y Week Dem
day and
1 538181 6086484 720415 6176264 1 16
Table 2-1-1

The value of X and Y are the coordinate value of the central depot on plane.

If we use the points with green colour to show the source nodes, the points with black
colour to show the terminal nodes and the red circle to denote the position of the central
depot, the distribution of all the data can be seen in the picture following

x10°

6.4 T T
Figure 2-1-4
635 =
8.3 -
6.25 .. % . - #
RN RA
. o Pl
62k ’ ‘ ‘ . - ,.N‘":v‘\‘, ten, i
; 3 e) AT R s X
| X B A
e
o i I3 4
Cod s g T i t
: o " P S G R
L o * LY Lo i i MR % _
6.15 B ooal o0, Y RO s O £,
R . . . , .
. s " : w o Fa
* e ! sEt g, N *
"
P . * *d e
2 i .
8.1 4t v, 2 .. .
3 * R P +
i . X
. 3 ¥ " : o

From the figure, the real amazing thing is that the picture filled with all the data in five
workdays is the outline of Danish map. This is very interesting and inventive idea of
making the simulated data.

Knowing the coordinate values of each point, it is not a problem for us to obtain the
length between any two nodes. By applying the right angle equation, if we set the
coordinate values of the first and second points are (x,,Y,) and (X,,Y,) separately, then

the length between them can be calculated as

Lengthnodel,nodez = \/(Xl - X2)2 + (yl - y2)2

So far, we have got enough basic information about the problem. As | have mentioned,
we set the pickup and delivery actions as vehicle routing problems. In this thesis, |
focused on those two separate vehicle routing problems to get feasible routes. Then |
connected relative pickup and delivery actions and make them to be an entirety. With
such idea, a mathematical formulation for this problem has been formed also.

2.2 Mathematical formulation

The mathematical model is based on two parts: the part composed source nodes with a
central depot and the part composed terminal nodes with the same central depot. The
objective function of this model is to obtain the minimum transportation route length.

The data are:
e Sets (indices): .
o previous Nodes: |

o currentNodes: |

o vehicles:

0 set of nodes for e] N

o0 set of Vehicles in the first part : K,

0 set of Vehicles in the second par K,
e Data:

o distance between two nodes : d;

o demand from eachnode: R,

o Capacity of each vehicle: Q

0 Average velocity of each vehicle : v

o Starting time for transporting : Tant

o Ending time for transporting : Tend
e Variable:

o Time of each vehicle: t,
o Earliest starting time of each vehicle: t,

o Latest starting time of each vehicle: t,

13

o0 Binary

variable:

1 if vehicle k drives from node i and node | directly
k
X =
0 otherwise;

The Model
The model is:
L k k
Minimize > > > d X+ > > > d; X 1)
keK;ieN jeN keK,ieN jeN
St.
szi';:l for Vie N, Vk e K, or Vk e K, (2
k jeN
DRDYXi < for Vk e K, or Vk e K, ©)
ieN jeN
ZX:;—ZX,';:O for Vhe N,Vk e K, or Vk € K, (4)
ieN jeN
> X =1 for Vk e K, or Vk e K, (5)
jeN;
D X =1 for Vk e K, or Vk e K, (6)
ieM,
te > T, for Vk e K, (7)
to+t <T.yq for Vk € K, (8)
tlzeKl +tkeK1 < tl:reKz (9)
tkeK2 +tkeK2 STend _Tstart (10)
vk € K,
k k k
bk, = 2, 2,0y X VAR DX +10% Y > X() /60 for (11)
ieM; jeN; ieM,; jeNy ieM; jeN;
or Vk e K,
Note:
(1) the objective function is calculated to get the shortest distance of the whole
process since the cost here depends on the entire distance;
(2) each node can be visited by only one vehicle;
3) each vehicle cannot transported more pallets than its capacity constraints;
4) flow constraints, which means how many come into one node then how
many come out;
(5) there is only one vehicle for each route;
(6) there is only one current node can be connected to only one previous node;

14

(7 the earliest staring time should later than the starting time of the system;

(8) the transportation started at the latest starting time in the second part
should be finished earlier than the ending time of the system;

(9) the transportation started at the latest starting time in the first part should be
finished earlier than the earliest starting time of the second part;

(10) the time spent in both parts should less than the total time bounded to each
vehicle;
(12) time spent in the route of the first part or in the second part

2.3 Literature review

Some basic information and the mathematical formulation for handling the solving case
have been discussed. But the problems of obtaining routes and connecting them still have
not been solved. In order to deal with these problems, I have referred some pertinent
literatures.

Laporte and Semet [3] said “Several families of heuristics have been proposed for the
vehicle routing problem. All those can be widely classified into two main classes:
classical heuristics developed mostly between 1960 and 1990, and meta-heuristics which
have been grown since the last decade. But most standard construction and improvement
procedures in use today belong to the first class.”

The Heuristics are comparatively more popular than the meta-heuristics, mainly due to
the characters of those two methods:

Heuristics ® Perform a relative limited exploration of search
space and they can typically produce good solutions
with modest computing time;

® Emphasis on performing a deep exploration of the
most promising regions of the solution space, but it
Meta-heuristics is not so easy to cope with as people imagined

® The implements of their sophistications relay on too
much computing time.

So far, there is some guy has calculated good results for mostly 100 customers in VRP.
Comparing with the solved issue, the number of customers in our problem are nearly
more than 200 in every weekday. Being restricted with plenty of customers and expecting
to get feasible results probably. | decided to apply heuristics to resolve the problem in this
thesis.

Some classical VRP heuristics can be broadly classified into three categories.

15

[» constructive heuristics
gradually build a feasible solution while keeping an eye on
solution cost but do not contain an improvement phase per
se

» two-phase heuristics

Classical VRP heuristics < ® cluster-first, route-second
® route-first, cluster-second

the problem is decomposed into its two natural
components: clustering of vertices into feasible routes and
actual routes construction, with possible feedback loops
between the two stages

\ > improvement methods
attempt to upgrade any feasible solution by performing a
sequence of edge or vertex exchanges within or between
vehicle routes.

Before starting any practical action to the problem, I have referred some useful articles in
order to find suitable and feasible constructive methods. Some literatures are necessary to
be introduced.

Most of the previous works in this section are about the reason why | chose the heuristics
methods. There are a lot of famous heuristics explored for solving VRP. Such as:

In the article written by Laporte and Semet [3], the main classical heuristics for VRP have
been reviewed. They are constructive methods, two-phase methods and improvement
heuristics. Because my aim was to find suitable constructive methods, | mainly paid my
attention to the section of constructive methods in this article. There are two main
techniques are used for constructing VRP solutions. The first one is to use a saving
criterion to merge existing routes. And the second one uses an insertion cost to assign
vertices to vehicle routes gradually.

The first constructive method comes from the idea of Clarke and Wright [4]. This
algorithm is the most well-known heuristic for the VRP. The notion of saving can be
explained as when two routes (0,...,i,0) and (0, j,...,0) can be merged into a single route
©,...,1,j,...,0). A distance saving s;=c; +C, —C;is generated. The second insertion

method comes from two algorithms based on sequential insertions. The first, due to Mole
and James [5], expands one route at a time. The second, due to Christofides, Mingozzi and
Toth [6], applies in turn sequential and parallel. Both of these insertion algorithms are
applied to problem with an unspecified number of vehicles.

> Phase one: sequential route construction
Stepl Set a first route index k =1

Step2 Select any unconnected point p, to initialize route k . Calculate

0;=Cy; + AC; for every point i

16

Step3

Step4

Let Q*:mgn{éi}. S,is the set of points which can be feasibly inserted into
ieS;

route kK . Optimize route K with the feasible points by using 3-opt algorithm.
Repeat step 3 until mo more point can be assigned to route k

If all points have been inserted into route, stop. Otherwise, set k =k +1and
go to step2

» Phase two: parallel route construction

Step5

Step6

Step7

Step8

Step9

Initialize k routes and R, =(0,i,,0)(t =1,...,K) . k is the number of routes
obtained from phase one. Let j = {Rl,..., Rk}

For each route R, € J and for every pointiwhich has not been connected to
route. Compute &; =Cy; + ;g and €. = rgjeijn{gﬁ } Connect pointi to route R, and
repeat step6 until all points have been connected to routes

Take any route R, € J and set J := J /{R, }. For every pointi connected to route

R,, compute &, = Tijn{gti} and 7; = & — &
[6

If pointi satisfies 7. = max{ri } S, is the set of points which have been inserted
ieS;

in to route R,. Optimize route R, using 3-opt algorithm. Repeat step8 until no

more points can be inserted in to route R,

If |J| # ¢ , go to step6. Otherwise, if all the points are in routes, stop. If uninserted

point exists, create a new route starting from the stepl of phase one

Since the heuristics of saving and insertion play an import role among the constructive
methods for VRP, | have referred a relevant article presented by Junger, Reinelt and
Rinaldi [7]. This paper has introduced the methods of saving and insertion very carefully
and basically.

< Insertion Heuristics
It starts with cycles visiting only small subsets of the nodes and then extends these
cycles by inserting the remaining nodes until all nodes are inserted and a circle is

found

Procedure INSERTION
(1) Selectastarting circle on n nodes n,n, n,(n>1)andsetW =N/{n,n, n, |

()

As long as W # ¢ do the following:
(2.1) Selectanode j €W according to some criterion;

(2.2) Insert j at some position in the cycle and set W =W /{j}

17

O O O

Figure 2-3-1

< Saving Heuristics
This heuristic was originally developed for vehicle routing problems. It successively
merges sub tours to eventually obtain a single one, if the vehicle routing problem is
supposed to be special that it involves only one vehicle with unlimited capacity.

Procedure SAVING

(1) Select a base node ze€V and set up the n-1 sub tours (z,V) ,
veV /{z}consisting of two nodes each;

(2) Aslong as more than one sub tours is left perform the following steps:
(2.1) For every pair of sub tours T,and T,compute the saving that is achieved is

they are merged by deleting in each of them an edge to the base node and
connecting the two open ends ;
(2.2) Merge the two sub tours which provide the largest savings.

Merging process:

s,=dy, +d, +d; +d, s,=d, +d, +d.
Ssaving =535, =dio+doj _dij

If Sqaving>0 » then some distance will be saved
Otherwise, merging process failed

Figure 2-3-2

18

Beside literatures above, there are also other four articles supported me some great idea
when | was in the trouble of researching goods methods to solve problem.

In the article written by Lau and Liang [8], a two-phase method for solving pickup and
delivery problem with time windows has been presented. In the this paper, two new
constructive methods have a relationship to my structure of presenting constructive
methods. This article makes me realize that the algorithms adopted by me are reasonable.

Two constructive methods discussed by Lau and Liang [8] can be adopted to show as

® Insertion Heuristic
1. let all vehicle have empty routes

let L be the list of unassigned requests

take a job pairvin L

insertVvin a route at a feasible position where there is the least increase in cost
remove V from L

2 O

if Lis not empty, go to 3

Sweep Heuristic
letO be a site from which vehicles leave, and let A (different from O) be another location,
which serves as a reference.

=

2. sort pickup jobs by increasing angle ZAOS where S is the job location. Put result in a
list L

3. pick a pickup job in L with location | and its delivery job with location J and create an new
route with this job pair

4. until no more jobs can be added to the route, do

a. if there are uninserted pickup jobs located in the sector Z10J , insert the pair that is
best feasible. Otherwise, insert an uninserted pickup and delivery job pair, in which the
pick up job is at location K , where ZJOK is smallest and all the constraints are respected

b. remove this pickup job from L
5. ifLis not empty, go to 3

@ Dpickup job D* @ ® E
@ delivery job .
@ depot ® E
D @® ® B
A ¢ o
A @ ® B
® H-
C-
® v
® C' ® H

Example PDPTW instance

19

K

Solution using Insertion Heuristic Solution using Sweep Heuristic
Figure 2-3-3

The second paper was written by Fisher and Jaikumar [9]. They have introduced the
readers a good assignment heuristic to solve VRP. The main idea they composed to form
routes in a feasible way, can be described into two steps. Firstly, they set several furthest
points as seed customers among all the points and connected those seed customers directly
to the depot to make routes. Secondly, they inserted other unconnected points into the
formed routes to make feasible and short routes, under the constraints such as the vehicle
capacity.

Figure 2-3-4

The figure above describes the process of forming routes in article Fisher and Jaikumar
[9]. Their idea absolutely inspirited me since my ideas of composing method of
Sweep_By_Angle was produced from it. But | did not try to find seed customers, because
my project has been given too many points and | could not have any way to define seed
customers from them. I chose to form routes by sweeping the tangent value of each point.
The more details about Sweep_By_Angle will be descried in the next section.

20

The problem handled in the third one presented by Rgpke [10] is general pickup and
delivery problem with time windows. Repke has systematically introduced some
well-known methods for solving pickup and delivery problem with time windows. He has
also implemented most of them and made a conclusion to compare those methods. | have
made some comparisons between the problem in such paper and mine. When | went
through this article, I learned more about PDP. Rgpke’s way of researching algorithms
helped me to modify my methods in a right and better way.

Finally, a thesis coming from a Finnish guy, Braysy [11] displayed plenty of feasible and
optimal algorithms. The content of this report almost crowns all the algorithms that | have
mentioned above. There is very useful approach used for optimizing routes arose my
attention when 1 read it, which is Ejection Chain. The method of EC gave me a good
direction when | was dealing with the modification part of my constructive methods.

The method of EC can be briefly described as a procedure of moving points among routes.
This is not an unfamiliar method in VRP field. People use this method to eliminate routes
when they do optimization. The basic idea is to pick up first some customersc, from route

r,and insert some other customersc; currently served by router;into the partial router; . If

the insertion is possible, the customersc; have to be inserted into another router,,r, = r;. If

all insertions are feasible, the ejection chain is completed and next chain will start. When
all the possibility of using EC has been tried and the last one customer can be inserted its
neighbour completed route, the procedure of EC is finished. The process of using EC can

be depicted by figures
route2
e e
g N g
AN d AN //@ te2
f f \Aro/“e
h b — r /h‘ b c
/ / \ ; \ / \
route3 a routel route 3
routel
Figure 2-3-5

Ejection chain. There are three routes in the figures above. The figure on the left shows
the routes will be reformed and the figure on the right shows the new routes formed from
the routes in the left figure. Focusing on the figure on the left, we assume to move point ¢
from routel to route2. If point ¢ can not be inserted into route2 feasibly by some
limitations such as time or vehicle capacity, we could first move points from route2 to
other route except routel. Assuming point picked up from route 2 is point e, three new
routes got are showing in the right figure. This is the procedure of applying ejection chain.
For the other points iand j, the same way can be used until no route can be eliminated.

21

3 Method Discussion

In order to find out feasible solution in this project, I divided the whole process of solving
problem into two steps. The first step was responsible to form feasible routes both in
pickup and delivery parts. The second one was to connect relative routes formed in the
first step. Since there was time bounded to each vehicle, some trouble would be met. The
total time of two relative routes might exceed the bounded time in the process of the
second step. Once the problem happened, such relative routes had to be modified. But the
way of overcoming the trouble will be described later.

3.1 Forming routes

This section is the process of getting short and feasible routes. In this section, | will first
describe two basic constructive heuristics: Insert_By Distance and Sweep_By_Angle,
which have helped me get the original solutions. Then | will discuss the modifications
based on those two constructive methods.

3.1.1 Constructive heuristics

From the discussion of classical heuristics above, | know that there are mainly two
well-known heuristics for solving VRP, saving and insertion algorithms. Since the
objective function of my case has been given more than 200 customers, it will not be a
good way to adopt the saving heuristic to form routes. The process of getting saving and
comparing them are a huge and complicated works.

By considering the shortage of using saving heuristic in this thesis, | chose the insertion
method as my beginning and | made the method of Insert_By_Distance. The insertion
method has helped me get feasible solutions but there also some dissatisfied instances
existed. For example, some points in the same route are far from each other, which make
the route length to be longer as the figures shown below.

107 10"
B.4 : ‘ : : B4

B35 B.35

B.3r

6.3

B.25

B2+ B2t

B.15

1 Il 1 1 : 1 1 1 1
15 5 55 5 65 7 45 5 55 B 65
w100 107

Figure 3-1-1

When | realized this problem, the idea of Fisher and Jaikumar [9] inspired me. Actually,
it just gave me information that I should connect the points around the same place. If
those points were connected, then the above phenomenon would not happen. According

22

to this idea, | made the method of Sweep_By_Angle. But it was surprising that the results
from Sweep_By_Angle were not as good as results from Insert_By_Distance. Therefore,
I did some modifications.

Anyway, | will display the basic methods of Insert_By_Distance and Sweep_By_Angle
in details firstly.

3.1.1.1 Insert_By_Distance heuristic

Since in every route, the vehicle has to start from the depot, visit its customers and go
back to the depot at the end. We need build an original circle only with the depot, which
means the depot can be seen as the starting point and also the ending in such circle. The
next step of work is to insert the rest of the points into the original circle gradually in
order to form route. Once we meet the instance that in some route the total demands of
connected points exceed the vehicle capacity if we insert just one more point. We have
to give up continuing inserting the last point but go back to the depot.
Every time in each circle, we insert point sequentially. And the unconnected point that
needs to be inserted should be close-by the last connected point in the circle. Such
method is called as Insert_ By Distance. The pseudo code of this method can be written
as
Set: N = {1,...,n}: all the points except for the depot;

k =0 : the ID of routes;

Routek]=¢;

i=0;

selectedNode = 0;

1 function Insert_By_Distance: all points
2 all points: n
3 bool: finished = false
4 while not finished do
5 for(je N)
6 if (). d; > xi <Q)
ieM jeN
7 if (selectedNode == 0)
8 selectedNode == j;
9 shortestDistance = Distance(i,j);
10 else
11 if (Distance(i,j) < shortestDistance)
12 selectedNode = j;
13 shortestDistance = Distance(i,j)
14 if (selectedNode !=0)
15 N=N-{}
16 Route[k] = Route[K] + {j};
17 i=j;
18 selectedNode = 0;
19 else
20 k + -+, Route[k] = ¢
21 i=0;
22 selectedNode = 0;
23 while (N!=¢)

23

When | was in the procedure of inserting points, | found a problem that when more than
one point having the same qualification are waiting to be inserted, which one should be

supposed to my choice?

In order to select the right points, | thought if we choose the point with more demand but
give up the points with less demand when this problem exists, the rest of the points with
less demand will have more chance to be inserted into other circles. And fortunately, the

test and results have proved that my thought was reasonable.

Demand:
12
8
7
13
16
0

oOmoOwx

Routel: O, A, B, C, O
Route2: O, E, D, O

Length_Routel = 21.28
Length_Route2 = 13.3
Total Length = 34.58

Figure 3-1-2

Demand:
12
8
7
13
16
0

]
]
-
1

oCmuoOw>

Routel: O, A, E, O
Route2: O0,B,C, D, O

5 Length_Routel = 9.3
Length_Route2 = 22.32
D Total Length = 31.62

Figure 3-1-3

24

Capacity: 30

Capacity: 30

10

Two pictures above are a part of my test. In those two pictures | set all the same points
with the same demand. In the first picture, point B and point E have the same distance to
point A after point O and point A have been connected. Should I connect B to A? Or |
should connect E to A?

First I connected the points with less demand. In this way | connected point B first. And |
got the total route length in the first picture was 34.58. Later in the second figure, | chose
to connect point with more demand first, point E instead of point B. And | got 31.62 for
the total route length, which was less than the solution in the first figure.

I also considered other instance. What would happen if the information such as the
demand of some points has been changed? In order to make a test, | changed the demand
of some points leaving all the points at their original positions as the figure shown above.
And | connected the point with more demand first again and got the total route length was
33.94, which was less than the first one again.

Demand: Capacity: 30
A 12
B: 9
A C: 7
D: 13
B | E: 8
~__ O o 0
1 % E Routel: O, A, B, E, O
Route2: O, D, C, O
Length_Routel = 15.62
Length_Route2 = 18.32
T Total Length = 33.94
£ C D
L
0

Figure 3-1-4

On the other hand, for the sake of insuring the validity of the connecting way, | tested it
with the given data in the pickup part. When | did the test, | made three groups of
solutions. Under the instance that when more than one point having the same
qualification are waiting to be inserted:

> First group: select the point with more demand
» Second group: select the point with less demand
> Third group: select the point according to their ID order

25

Capacity = 33, results : route length

weekday

Dayl
Day?2
Day3
Day4
Day5

number of
points

247
214
199
229
212

First
group
x 10’
2.6603
2.3584
2.1858
2.5817
2.3298

Table 3-1-1

Capcacity = 33, results : computing time
Unitage : millisecond

weekday

Dayl
Day?2
Day3
Day4
Day5

The tables above include the solution got from the original data. In the original data, the
number of customers has not been changed. We can see that almost the better results got
by selecting the points with more demand first, when there are more than one point has
the same qualification waiting to be inserted. But the time spent is more than applying

number of points

247
214
199
229
212

First group

969
609
1359
391
1047

Table 3-1-2

the way of selecting point with less demand.

Tables below include the solution under changing the data, which means only 100

customers will be tested every weekday.

Second

group
x10’

2.7011
2.5001
2.1518
2.6197
2.3680

Third
group
x 10’
2.7011
2.5001
2.2071
2.5904
2.3680

Second group

640
203
735
921
500

Capacity = 33, number of customers = 100, results : route length

weekday

Dayl
Day?2
Day3
Day4
Day5

First group x 10’

1.1305
1.2229
1.1424
1.1521
1.1977

Table 3-1-3

26

Second group x 10’

1.1305
1.2229
1.4039
1.1521
1.1977

Capcacity = 33, number of customers = 100, results :
Unitage : millisecond

computing time

weekday First group Second group
Dayl 93 125
Day?2 531 422
Day3 94 453
Day4 141 93
Day5 78 422
Table 3-1-4

Seeing the solution from the table, the smallest numbers in those tables are boldfaces.
Not only the test but also the solutions got from data of pickup part are all proved that
we should priority the points with more demand when more than one point having the
same qualification are waiting to be inserted.

But as | said before, there is a bad phenomenon existing when we use the method of
Insert_ By Distance. Because some points in the same route formed by
Insert_By_ Distance are far from each other, those points make the route length to be
long.

3.1.1.2 Sweep_By_Angle heuristic

The method of Sweep_By_Angle was basically produced from the idea of Fisher and
Jaikumar [9]. In their idea, they knew they should choose the furthest points among the
total points as seed customers. And they inserted other unconnected points to form routes
in the way that I have described previously in the section of reference.

They set the furthest points as seed customers, because the total number of points in their
case was not as many as mine. When | met my case, | could not get any good idea to
resolve my case applying the same way as theirs. The only thing what | could do was to
do the best of my abilities to focus on the points around the same place and tried to form
route by connecting them. In the method of Sweep By Angle, | found the sequential
distribution of all the points in each weekday.

A

@ .
@ 11 >
o o . K]
R A .
° RSN P ¢
° \ '~§. @6
° RV NICIY
{7 e n@
20
o @12
Figure 3-1-5

27

From the figure full of the points above, we can see there is a central depot and all the
other points are just distributed around such central depot. On the plane, we may set this
depot as the origin in the planar coordinates. For the other points, we may use lots of
radial starting from the depot to connect those points respectively. These radials with the
horizontal line crossing the depot can make a lot of angles. My way of finding the
sequential distribution depends on the tangent value of those angles.

We know the angles of all the points distributed around the depot are from 0 to2x . The
way of rearranging the ID of points by angles depends on the tangent function, because
this function increases monotonously when the angles are distributed at the sections of
[-7z/2,7/2] or [x/2,37/2]. The idea will be understood more clearly from the figure

following.

V4 T 3z
e 0 z T
Figure 3-1-6

More detail of sorting points in the sequential way by angle is written in pseudo code
shown below

1 function Rearranging Points: all points

2 all points: ne N

3 bool: finished = false

4 while not finished do

5 for(je N)

6 if (Xj < Xdepot)

7 tangent_small = 0;

8 store such points in unite G ;
9

for(jeG)
10 if (tangent(j) > tangent_small)
11 store point jin part 1;
12 G =GHj};
13 tangent_small = tangent(])
14 else

28

15

16
17
18
19

20
21

22
23

24
25

26
27
28

tangent_small = tangent(J)

else
tangent_small = — o0
store such points in unite B
for(jeB)
if (tangent(j) = tangent_small)
store point Jin part 2;
B=B/j}:
tangent_small = tangent(J)
else)
tangent_small = tangent(|)
release the point jin part 2;

while (N!=¢)
All the points are sequenced by the sum S of pulsing partl and part2.

So far the work of rearranging the points in each day is completed. Once we have got the
sequence of all the points, how can we divide those points to different groups and how to
connect points in each group to form route?

. /12
@ @
. /
. /

Il , Capacity = 30

10 .7
Q-

VK]

&0

AN ’I//
R4 AN
/ Tl
v

N e ol

22
Figure 3-1-7

From the figure we can see some points with green colour on the left hand of the central
depot. The x coordinate values of these points are less than the x coordinate value of the
central depot. For the points with blue colour on the right hand of the central depot,
their x coordinate values are bigger than the x coordinate value of the depot. Nearby the
blue points, there is information of demand corresponding to those points.

Starting from the vertical line under the horizontal line, we sweep the blue points on the
plane in anticlockwise direction. We can form five routes as the capacity of vehicle is 30.
The total demand of points in the first route is

demand _routel =12 +9=21<30

29

In this route, even the total demand of points is far away from 30, but we cannot insert
next point. Since the total demand will exceed the vehicle capacity if we insert the next
one with demand of 13.

The pseudo code of grouping points following rearrangement part can be written down as

29 while(S # @)
30 for(I=0;i++;S-1)
31 totalDemand = Zdi
i=0
32 if (totalDemand > Q)
33 break;
34 store points in specified group
35 else
36 go to step 30;

From the grouping way of Sweep_By_Angle, we need to know that if lots of routes exist
with total demands that are much less than vehicle capacity, it will be difficult to find
short routes. Anyway, the results from Sweep_By_Angle can tell us whether this method
is feasible or not.

When | tried to connect the points in each group, | connected them in two ways:

> First Connect points according to their sequence by their tangent
value
» Second Insert the points by method of Insert_By_Distance.

And | got two groups of solutions:

weekday Number of First way Second way
customers x107 x 10’
Dayl 247 2.9398 3.0758
Day?2 214 2.5753 2.7219
Day3 199 2.2364 2.3630
Day4 229 2.8021 2.9904
Day5 212 2.4978 2.7079
Table 3-1-5

3.1.1.3 Results comparison

Until now, | did not come out with the conclusion that which constructive method is
better. Even two constructive heuristics have been displayed, but both of them had
shortages. The solutions of two methods are shown below

30

Capacity = 33, results : route length x10’

Metho Day1l Day?2 Day3 Day4 Day5
d
Insert_ 2.6603 2.3584 2.1858 2.5817 2.3298
By Dis
tance
Sweep 2.9398 2.5753 2.2364 2.8021 2.4978
_By A
ngle
Table 3-1-6

Capacity = 33, results : computing time
Unitage : millisecond

Metho Day1l Day?2 Day3 Day4 Day5
d
Insert_
By Dis 1406 1219 578 594 756
tance
Sweep 969 203 735 921 500
_By A
ngle
Figure 3-1-7

From the content of tables, it is very interesting to find that the results got by applying
Sweep_By_Angle are more than the results got by applying Insertion_By_Distance.

Based on the results, it seems that it is more necessary to improve Insert_By_ Distance
method. But there is also room to improve Sweep_By_Angle, since some routes from it
are not “full” enough. Points released from other routes, which will be destroyed, can be
inserted into such un-full routes.

3.1.2 Improved heuristics

In this section, the methods of Insert By Distance and Sweep By Angle have been
improved separately. For both of them, I used the conception of ejection chain referred
from Braysy [11]. Thus they all have to meet two problems when they are going to be
improved.

» What sort of route need to be destroyed?
» How can we insert those released points into other routes?

3.1.2.1 Based on Sweep_By_Angle

In the method of Sweep_By_Angle, the main concept of this method is to make the
routes and let them distributed in some cone sections with their tops at the depot. Because
from the solutions got by applying Insert_By Distance, plenty of routes overlapped each
other. And the most perfect thought of forming routes is to avoid overlapping and even
intersection except the point of depot.

31

routei

route k

cone section —» routen

AN

routeh

routem

Figure 3-1-8

overlapping

intersection

Figure 3-1-9

The routes formed by using Sweep_By_Angle had no overlapping and they were close to
each other. And those routes were distributed in some cone sections on plane.

According to the theory of saving algorithm, the elimination of routes can help us shorten
the route length. When | thought about the first problem mentioned above, | thought the
route with lest total demand of points should be destroyed. Because there were maybe
several points in such route or all the points were with little demand. After destroying
such route, points with little demand could be easily inserted into other routes. Also,
several points released out could be easier to be inserted to their neighbor routes.

At beginning | have got nearly 70 routes each weekday by using Sweep By Angle
method, how to deal with several points released out and insert them into right routs

among 70 routes in short time?

In order to test whether this ejection chain could bring significant results and also for
optimizing routes easily, I chose to pick up just one point from route every time and try to

32

insert it into its nearest neighbor route. The detailed action of completing this work is
described below.

Roiite 2 Roiite 2 Roiite 2

Route 1

Route 1
Figure 3-1-10

Route 1

As we can see that the red point in the first route is very important, because if we pick up
this red point from routel and insert it to route2, new route 2 will overlap the new routel.
This phenomenon can be seen from Figure 3-1-10.

From the second and third figures, we will see the difference of inserting point A to
Route 2 and inserting point B to Route 2. Obviously, when point B is inserted to Route 2,
there is overlapping between two new routes. But inserting point A to route 2 will not
produce any overlapping even the so called intersection which phenomenon | have
displayed in previous page. How can we figure out the difference of point A and point B?

Actually, if we make two radial lines from the depot to point A and point B respectively,
two angles will be made by those radial lines and horizontal line crossing the depoto,
ZAox and ~ZBox.

.
/
/
v
5
v
\
.

[1] [2] [3]
Figure 3-1-11

Looking at the figures above, there are four pictures. The first one shows the angles
formed by point A and B. The others are three distributions of pair of points on the plane.
Those pairs of points are distributed only on the left hand side of the vertical line as in
figure [3], or on the right hand side of the vertical line as in figure [1] or crossing the
vertical line as in figure [2].

33

v

Firstly, we focus on the first figure and explain how | know that we should choose A
instead of B even if there are several points can be chosen. As we can see that point A
and B with the depot make two angles, ZAoxand ZBox .Since the tangent function
creases monotonously when the value of angles are at the sections of [-7/2,7/2]

and[z/2,37/2]. We know that the tangent value of ~Box is less than the tangent value

of ZAox. And we know we should pick up point A and insert it to route 2 if we want to
avoid overlapping. But can we find a way to deal with general cases?

Actually, when we move points and change routes in the modified way which is talking
now, only one point is considered to be moved every time. In order to avoid route
overlapping, such point is special. And we know each route has to start from the depot
and end at the depot again, which means there are at most two points connected to the
depot. We set x,,andX,, as thexcoordinate values of those points. Certainly, if there

is only one point in such route, we need not consider the work in such complicated way.
But when there are two points, two instances will exist

Prerequisite Figure out the point

> (Xstart — X, ot)*(xend — X, ot)Z 0 Point need to be picked up is the point which has
P P the bigger tangent value.

» (Xstart ~ Xgepar)* (Xend _ Xdepot)< 0 Point need to be picked up is the point which has
the smaller tangent value.

So far, the rule of moving one point has been finished. In order to ensure this rule can be
used to improve the Sweep By Angle, first we do some thing for the routes, which have
been formed

ID =2
="
g
=3 ID =1
o
>
ID=max ID =0
Figure 3-1-12

From the simulated route figure above, there are some routes have been shown
completely and others are omit. For each route, an ID has been given. All the routes are
sorted in the anticlockwise direction. The arresting things are the red points in this figure.

34

Those points play a very import role among the routes. They decide the sequential
distribution of all the routes in anticlockwise direction.

We see all those red points are connected to the central depot directly. The way of finding

out such points
previously. But

Prerequisite

> (Xstart - Xdepot

> (Xstart - Xdepot

is almost the same as the method of figuring out the picked up points

Figure out the point

)* (Xend _ Xdepot)z 0 Point need to be picked up is the point which has
the smaller tangent value.

)* (X —X)< 0 Point need to be picked up is the point which has
end depot .
the bigger tangent value.

In such way, we find out those points, save them, and sort those points to make a
sequence by the way of Sweep_By_Angle.

The ID of those

red points can be used for the routes in which the red points exist. After

giving each route an ID, the steps of work will be displayed

> Note:
® circulation:

start to pick up and insert point from the first route and the last route
until no point is not connected;

® unchanged route that has been picked up and inserted point
route:
® rearrange connect points by the way of Insert_By_Angle method

points

» Steps of improved Sweep_By_Angle heuristic

stepl:

step2:

step3:

step4:

step5:

step6:

Start from the route ID=I or ID=max with least total demand among all
the routes;

Pick up one point from the starting route according to the requirement
of picking point mentioned before. Try to insert the point into next
route ID=i+1 or ID=0;

If it is feasible to insert such point to route ID=i+1 or ID=0, go to
step5;

If it is not feasible to insert such pint to route ID=i+1 or ID=0, go to
steps;

If the total demand exceeds capacity without picking up point from
route ID=i+1 or ID=0, go to step7,;

If the total demand does not exceed capacity without picking up point
from route ID=i+1 or ID=0, go to 9;

35

step?: Try to pick up the point in route ID=i+1 or ID=0 with least demand
and new total demand does not exceed capacity after picking up such
point, go to stepl0;

step8: Save such point in same point section and leave it to be considered
finally after going through all the routes in the current circulation;

step9: Rearrange all the points in new route ID=i+1 or ID=0 and denote the
original route ID=i+1 or ID=0 has been changed, go to stepl,;

step10: If there is no unchanged route left fort the point to move in, go to step8

The step works displayed above discuss the problem of how to pick up and insert point.
From the eighth step, we know some points which cannot be inserted to any routes should
be saved in some point section. Now, | will talk about way of handling those points and
connecting them to make new routes.

A
Route4
. _. Route3
"~ E
9] - C
\
4
\ 3
1 R
N . 2
A
Rouite1
Figure 3-1-13

From the figure, we see that all the black points are connected points and the purple red
points are the points, which have been saved in some point union. How to connect those
purple red points? If we assume to choose the point A as the starting point, the next step
of work will be described below.

First, it is clear to see that all the purple red points are sorted according to their tangent
value. The sequential distribution is A, B, C, D, E. Starting from point A we try to find
the next point in the sequence, which is point B. If we check all the points in the formed
routes, there are two connected pointl and point2 in the region of ZAOB. Since pointl
and point2 with depot O cannot compose an entire route, which means depot — 1 — 2 —
depot is not a route. We calculate the demand of point A and point B, and check out
whether the total demand of them exceeds the vehicle capacity or not.

36

» Yes Connect point A to the depot and make a new route: depot — A — depot. Later start
from point B and find the next new route

» No Check whether there is unconnected point left and continue finding out the next
points.

We may assume that the total demand of point A and point B does not exceed the
capacity. We find the next point is point C. Between point A and C, there are four
connected points: poinl, point2, point3 and point4. Those four connected points form a
integrate route: depot — 1 — 2 — 3 — 4 — depot. Thus we can only connect point A, point B
and the depot to make route: depot — A — B — depot.

Until now, all of my idea about how | improved Sweep By _Angle heuristic has been
introduced completely. The most import and complicated works in this section are to
avoid route overlapping and intersection except the depot. The phenomenon of route
overlapping and intersection can be depicted clearly and visibly in the following figures

3.1.2.1.1 Result from the modified Sweep By Angle

In this section, results got by applying the modified Sweep_By_Angle are listed. Those
results compare with the solution coming from the original method of Sweep By _Angle.
When | tried to get results from the modified Sweep By Angle, | made some iteration to
run the modified algorithm. The iteration helped points move from one route to another
route. I thought the solution of modified Sweep By Angle in each weekday could form a
curve. This curve depicts the distribution of final results in one weekday after doing
iterations.

current result

v\
good result
Figure 3-1-14

We see good result can be easily found out from the curve, since I could figure out when
I get good results by analyzing the curve. When | did the iteration, | set the number of
iteration as 100. Actually the number of 100 has no warrant to the algorithm iteration
process. But by doing 100 iterations, the results reminded me the way of modified
Sweep_By_Angle had some problem.

® original results: Results got from the original Sweep_By_Angle without improving

® current results: First five results after doing 100 iterations

37

Based on Insert_By_Distance

workday Number of points original result x10’ current results x10’
2.9398

5 6398 3.1554
Dayl 247 ' 3.3425

3.4030
3.3626.
2.5753
2.8799
Day2 214 2.5153 2.9000
3.0442
3.0454
2.2364
2.4453
Day3 199 2.2364 24770
2.5943
2.6556
2.8021
2.9612
Day4 229 2.8021 3.1113
3.2041
3.1665
2.4978
2.7157
Day5 212 2.4978 2.8265
2.8508
2.8753

Table 3-1-8

From the results displayed in the table, I was very surprised that the modified algorithm
actually has not helped me to shorten the route length. On the contrary, it made the results
be even worse than the results obtained originally. At that moment, 1 still did not want to
give up my mind, because | wanted to use the idea of modified Sweep_By_Angle to
modify the method of Insert By Distance. And | expected to get better solution after
doing so.

The way of modifying Insert_By_Distance here is more or less the same as the modified
behavior described in the previous section, but there is a change in the action of
rearranging points. Once the original routes have been changed, the points inside them
need to be connected by applying Insert_ By Distance. Since ejection chain is to change
the position of points in routes, points in the original routes got from Insert_By_Distance
have to be connected in the same way used the original one.

38

When | used the way to Insert By Distance, | still use 100 iterations as the steps of
moving points among all the routes. Before starting to iterate the modified behavior, |
sorted all the routes and gave the distributed sequence to the routes formed in
Insert_By Distance. The results are

® original results: Results got from the original Insert_By_Distance without improving
® current results: First five results after doing 100 iterations

Based on Insert_By_Distance

workday Number of points original result x10’ current results x107
2.6253
3.1226
Dayl 247 2.6603 3.2955
3.4299
3.3973
2.3347
2.8790
Day2 214 2.3584 2.9393
3.1399
3.2622
2.1612
2.5844
2.7086
2.6362
2.5733
2.9358
Day4 229 29817 3.1548
3.2058
3.2220
2.3169
2.7593
Day5 212 2.3298 2.8887
2.9251
3.0362

Table 3-1-9

Unfortunately, the ejection chain cannot be used to improve Insert_By_Distance further,
even though better results could be got at the beginning. This can be referred from the
results above. We see the first results in bold-face are little less than the original results,
but the iteration goes up, no better results exist. Even though we should not say the
method of ejection chain has no effect when it used to eliminate routes.

39

The failure of using ejection chain here belongs to the modified method per se. The
ejection chain could have improved the algorithm and helped to get better results actually,
since some bad phenomenon that could use the ejection chain to resolve:

» Some points in the same route but they are far from each other
» Some points in different routes but near by each other

The method of ejection chain could help us to rearrange the distribution of points in
routes. The failure of modified behavior is the way of using ejection chain above did not
associate with other important constraint. I only concerned with moving points without
thinking whether such movement was good or it would make the route length to be
longer.

3.1.2.1.2 Method analysis about Sweep_ By Angle

So far, some failure experience of modifying method has been collected. But the failure
of modifying Sweep By Angle should not be ignored, because the failure from them
helped me improve Insert_By_Distance in more feasible way later.

In my point of view, the first reason of failure is in the part of modification procedure. In
this part, | just wanted to decrease the number of routes and removed the points among
routes expecting to get better results. But | did not set shortening route length as the
prerequisite when | moved points. If | only moved points when short routes could be
produced, the modification procedure would help me to get less value of route length at
the end.

In my mind, | thought the best perfect instance of forming routes is to avoid route
overlapping and intersection. The imagined perfect routes can be felt from the figure
following

v

Figure 3-1-15

Actually, the expectations of avoiding route overlapping and intersection are right. But
when there are plenty of clustered customers distributed on the plane, such expectation is
luxurious. If we assume that lots of clustered points have to be assigned to different
vehicles with capacity constraint, how we can ensure that all the point will be arranged

40

averagely without route overlapping. The fact is that it is difficult to avoid route
overlapping and intersection, if points are clustered. So this is the second reason why
modification is failed.

Third, picking up and moving only one point every time is not a good way to modify
method. Firstly, it is a bad choice from the point of time consumption. Secondly, the
choice of picking up point is limited. Only choosing the point connected to the depot
directly will badly block other points to be picked up.

3.1.2.2 Based on Insert_By_Distance

In the part of introducing constructive heuristics, | have set two directions to form routes:
Sweep By Angle and Insert By Distance. So far, | have explained the way of
modifying the Sweep By Angle and | also used the same way to modify
Inser_By_Distance, but as we see that | did not get effective solution. Thus I turned to
Insert_By_Distance, tried to modify it and expected to get feasible solution.

The process of my thought can be described as the flow chart

Constructive heuristics

L]

P
; Improvement based on
Insert_By_Distance Il‘ Inspert_By_Distance
Forming routes: <
Improvement based on
Sweep_By_Angle Il- Swpeep_By_AngIe
\

Figure 3-1-16

Fortunately, | have got excellent solution. At least the results were much better than the
old ones. Since | had the experience of working with modifying Sweep_By_Angle, |
mainly emphasized two important rules when | focused on modifying
Insert_By_ Distance. This rule was not only experiential words, but it also brought some
significant breakthrough to the results.

The first rule of modifying Insert_By_Distance only allowed inserting point but not
replacing point. From the experience of previous work, I knew that if the replacing action
was successful, it might help us to move points and get better position for them. But if it
was failed, the points replaced outside without being accepted by other routes would form
some new routes, which disobey the idea of saving heuristic.

Actually, my new idea of modifying the Insert_By Distance can be described generally
in two steps. The first step is to pick up every routei from the formed route section and
optimize such route with its next neighborhood routei +1. The second step of work will
start after finishing optimizing all the routes. In the second step, the work is to set some

41

constraint and make iteration to continue optimizing results. The second step is also the
second rule I will talk about later

Now, Let us talk about the first step:

Function: modified Insert_By_Distance

OCoO~NOOUIPAWNPEF

pSelectedinR1 =-1
largestPDecrease = -1
orderly pickup each point p from route i

lengthDecrease = the length decrease from route i if take off point p
If (point p can be inserted into route i+1)

lengthincrease = the length increase from route i+1 if insert point p
if (lengthincrease < lengthDecrease)

{

Pdecrease = lengthDecrease - lengthincrease
if (largestPDecrease ==-1)

{

largestPDecrease = Pdecrease
pSelectedInR1 = currentPoint p

else if (Pdecrease > largestPDecrease)

{

largestPDecrease = Pdecrease
pSelectedInR1 = currentPoint p

}
}
if (pSelectedInR1 !=-1)
{

}

move point pSelectedIinR1 from route i to route i+1

After passing the first step of work, some iteration made to optimize the solution in the
second phase will be presented. In this iteration part, we will start to optimize the route
got from the constructive method of Insert By Distance and then use the way of
modified Insert_ By Distance in the anticlockwise direction. But we won’t only follow
the anticlockwise direction; the reason is if some routes are bad at the beginning, the new
formed routes will be worse and worse. Such judgment will be explained more clearly by
using figures

42

anticlockwise

anticlockwise \

Insert to next route
[2]

clockwise />
il Q

g Figure 3-1-17 4]

[1]

From the figures above, we can see that two groups of figures are displayed. The actions
in both figures are to pick up point and insert it to another route in the anticlockwise and
clockwise directions respectively. In the anticlockwise direction, figure [2] includes the
optimized routes coming from figure [1]. And figure [3] includes the new routes got from
figure [2]. In the clockwise direction, figure [4] includes the routes optimized from the
figure [1].

The way of optimizing routes has been found. But if we continue only optimizing two
nearby routes, there must be no routes can be optimized each other after several iterations.
When we meet this problem, we should select the routes to optimize without only
considering two nearest ones. A variable stepLength will be set in the program to guide
the algorithm choose routes and optimize them. For instance, if we set the stepLength is 1,
which means we only optimize the current route with its next nearest neighbour route.
There are some simple figures drawn to show the work of stepLength.

43

original routes stepLength =1 stepLength =2
Figure 3-1-18

The original route with black points has been displayed on the left. In order to show the
use of stepLength, points in the chosen routes going to be optimized are in purple red in
second and the third figures. When stepLength equals to 1, the ID of the next route just
equals to the ID of current route plus 1. In the same way, when stepLength is 2, the ID of
next route is the ID of the current route plus 2. Other value of stepLength will follow this
way.

The introduction of stepLength makes us know the meaning of doing so. But the method
that how we use the way of changing stepLength to optimize routes still have not been
explained completely. The way of iterating algorithm is to optimize routes by applying
the method in anticlockwise direction first and then continue optimizing routes in
clockwise direction.

So when we use the way of stepLength, there are three aspects we need to concern.

» First: When we set the stepLength, every iteration is the action to optimize
routes both in anticlockwise and clockwise directions. We can only stop
and change the stepLength when there is no route can be optimized;

> Second: The optimization way only includes inserting but not replacing ;

» Third: The value of stepLength cannot be increased without limitation after
several times of iteration. We need to set a value for maxStepLength
aiming at different instances. The purpose of setting max value to
stepLength is that all the routes are distributed just at one part of the
planar, as

44

Routed

Route3

v

Route2

Routel

Figure 3-1-19

In the figure, as we can see that route optimization starting from routel and trying to
minimize it with route 4 is not a good choice, since those two routes are far from each
other. The maximum stepLength is not the same value as the number of routes, the
maximum stepLength need to be tested out. And the maximum stepLength can help us to
avoid the bad choice mentioned here. This is not only theoretic advice; it actually came
from the experience that | have done. And it is also tenable in theory.

By going through the test part, I found that the value of stepLength should not be
increased up to the number of routes, because routes will stop being optimized after the
stepLength reach to some value. Even though the stepLength can be increased bigger and
bigger, but those bigger values of stepLength will not help routes to be optimized any
further.

We should know that nothing can be fixed and only be considered in one way. Every
thing will impress different meanings under different instances. Thus | have used the
stepLength in two different ways. The use of stepLength plays a very important role in
this thesis. The different ways of using it have helped me get two different solutions.

As the case stands, there are two directions we can choose. The first one is we increase
the stepLength continuously in the process of optimizing routes until reach the
maxStepLength. The second one is to change the stepLength in discontinuity way. The
process is

® Stepl: Under the instance: stepLength > 1

® Step2: Focusing on the current stepLength, optimize routes until there is no change
in routes

® Step3: Reset the stepLength = 1 and try to optimize any two nearest routes since
some routes must have been changed and reformed in the previous step,
which bring bigger probability to optimize some nearest new routes.

45

® Stepd Increase the stepLength until there is no change in routes. Go to stepl.

3.1.2.2.1 Result from the modified Insert_By_Distance

So far, the whole work of forming routes is nearly finished. During the procedure, first |
built two constructive heuristics as the start of searching method. Then | modified the
Sweep_ By Angle method and got some useful and reasonable conclusions that how to
modify methods and optimize the solutions in more effective way.

After having done some work to modify the method of Sweep By Angle, | have
improved the way of improving methods. | realize that there are two rules need to obey if
we expected to get better results in valid way comparing with the methods used in
Sweep_By_Angle.

® Only allow to inserting point but not replace point;
® Using the circulatory approach effectively to optimize results;

In the table, there are two groups of results, they are list below
» First group results by increasing the stepLength continually

» Second group results by increasing stepLength in discontinuity way

Results of first part by using modified Insert_By Distance:

Capacity = 33;
weekday Number Original First group Second group
of points yegylts x 10’ x 10’ x 10’
Dayl 247 2.6603 2.6131 2.6040
Day?2 214 2.3584 2.3233 2.3023
Day3 199 2.1858 2.0940 2.0881
Day4 229 2.5817 2.5339 2.5359
Day5 212 2.3298 2.2401 2.2232

Table 3-1-10

Results of second part by using modified Insert_By_Distance:

Capacity = 33
weekday Number Original First group Second group
of points results
Dayl 247 9744405 9271989 9085027
Day2 214 8708209 8570935 8379432
Day3 199 7983595 7965560 7914716
Day4 229 8611727 8519576 8483032
Day5 212 8081702 7812657 7789271

Table 3-1-11

Along with the route length in each weekday, there are computing time consumed by
running the algorithms in different way of changing stepLength are listed below

46

» First results by increasing the stepLength continually

» second results by increasing stepLength in discontinuity way

time unitage : millisecond

Group Dayl Day2 Day3 Day4 Day5
Name
First 1641 2422 4682 2969 4734
Second 3172 7453 4953 4813 4500
Table 3-1-12

In tables above, the results displayed are coming from the solutions in different parts by
using modified Insert_By_Distance. The fist and the second tables show the results in the
pickup part and delivery part got by changing the value of stepLength continually or just
changing it in discontinuity way respectively. More details about changing stepLength
continually or in discontinuity way will be explained later in method analysis. And the
third table shows the consuming time spent in every weekday by changing the stepLength
in different ways.

The results in bold-face are the results with smaller value. And we found that the way of
changing stepLength in discontinuity way help us to get the best results so far. But the
computing time is much.

3.1.2.2.2 Method analysis about Insert_By_Distance

3.1.2.2.2 .1 review the method and analyze it

From all the results, I discovered that the rule of only allowing to insert point brings a
significant improvement to solution. And the way of changing stepLength also makes a
great effect. Although the results got both in changing the stepLength continually and in
discontinuity way are not much different, those two manners of changing stepLength
exist big distinctness in the algorithm design.

If we use flow chart to describe those two manners, they should be designed as

47

A 4

First route

y

Optimizing routes

Last

route

A

y

Is there any change in routes?

Yes
/

/

~_ No

Reset stepLength:

stepLength =1

A

stepLength = stepLength +1

A 4

stepLength = maxStepLength?

Yes \\ No

Flow chart of changing the stepLength in discontinuity way

Figure 3-1-20

A 4

First route <

y

Optimizing routes

Last

route

A

y

stepLength = stepLength +1

A

4

stepLength = maxStepLength?

Yes
‘/

/

Reset stepLength:

stepLength =1

\

No

Flow chart of changing the stepLength continually
Figure 3-1-21

T~} @ |

Looking at those two flow charts above, there are some steps of work we need to review.

» Optimizing routes : The procedure here is try to optimize one pair
of routes every time

» stepLength = stepLength +1 : This is the way of choosing the route to
optimize

> maxStepLength : The value need to test according the given data

As we see that the difference existing in two changing ways of stepLength is time, which
can refer the value from the table in previous section. And we could also see the
complexity. If we set the average complexity isO under each iteration with some fixed
stepLength and the maximum stepLength ism , the total complexity holden by method of
changing stepLength continually and the method of changing stepLength in discontinuity
way are mO and m(m +1)O respectively.

3.1.2.2.2.2 some new idea for modifying method

The VRP is so popular. People have been being spent their time doing its relevant
researches since they start to know the importance of such problem. Because of
researchers’ contributions, there are a lot of approaches discovered. In this thesis, some
algorithms are also carried out and listed by referring the avant-couriers’ good idea.

From the work | had done, | realize that it is necessary to do some brave attempts if we
have some ideas and think them to be reasonable. The efficiency and perfection of one
method relies on the accurate exhibition of results at the end. This is also the attitude
recognized by the great philosophy conception: the enchantment of maths is that the
results got from it are perfect because of their accuracy.

Now that we should not give up any reasonable ideas to solve problems, every such
instance is worthy to trying. In this thesis, plenty of thought came to my mind, some of
them have been implemented as work shown previously. And for the others, there is no
more time to implement them. But | trustfully think that those thoughts have not been
worked with may bring uncommon results. Thus | would like to write some new idea
down; perhaps it will give people some information and help them to make more general
conclusions if it can be considered to work with.

The new method | would like to talk is based on the results got from the
Insert_by Distance. If we have the original source of results as

49

Figure 3-1-22

The new method is the combination of inserting and replacing. In this method, we pay
our main attention to the demand of point, because the distance of the total routes dose
not only rely on the length of every route, but also is constrained under the vehicle
capacity. And the results got from Insert_by Distance have a character that the procedure
of forming route is mainly restricted to the constraint of vehicle capacity.

Owing the figure above, we know that ID has set for each route when routes were formed.
But those ID of routes are not sequenced in anticlockwise direction. So at the beginning
of modifying Insert_By_Distance by using the new idea, we have to resort all the routes
and make them to distribute in the anticlockwise direction. The way of handling that is
the same as the method described in the previous section. After sorting the routes, if we
use a simple picture to show the information of routes formed from Insert_By Distance,
the figure should be described as

8 Capacity: 30

7 /Route 3
14

2

10
12 11 \
. . Route 2
Routel 7 6

Figure 3-1-23

50

The figure almost includes basic information we need. As we can see that the capacity of
vehicle fixed for the routes in this example is 30 and three routes are supposed to be
formed by applying the method of Insert_ By Distance. For instance, we focus on the
route 1 and route 2, if we want to pickup point from route 1 and insert such point into
route 2 or use this point to replace the point in the original route 2. Then we get

- .
routel route? 18 out — 12 insert
—> 5
demand 18 12,11, 6 12 out 11 insert
demand 10 6 out — 6 !nsert
10out —> 6insert
Figure 3-1-24

In this figure, since most of the routes are full, we need to pickup one point/points from
one route and use such point/points to replace point/points in next route. In order to be
sure that the behavior can be carried out completely, the demand of point which will be
replaced out should be more than the demand of point used to replace such point.

According to obey the rule in boldface, we see there will be four possible new route2 if
we let the points with 18 and 10 out from route2 respectively. From those new route2, we
all compare them with the original route2, and then there are two instances will happen

> first choice if some of the new route is shorter than route2, then we choose
such new shorter route;

» second choice if none of them are shorter than route2, then we give up doing so
but consider route2 and route3 in the same way

We are familiar with the basic method now, but if we suppose the first choice happened,
and what we should do next is a problem. There are some steps can help us to solve the
problem if the first choice has been achieved.

Step1: one point from route2 will be picked up

if such point can be inserted, check whether new route 3 is shorter comparing
Step2: with the original route3

® shorter or no change? insert point
® bhigger? do not insert, consider route3 and route 4
Step3: if such point cannot be inserted, just leave it

51

Figure 3-1-25

Step4 After going through all routes in anticlockwise direction. There are some
points have been pushed aside the connected points

Try to insert such sort of unconnected points to their nearest route neighbors

Can be inserted? Yes, calculate the distance and compare the
distance of route neighbor and the distance of
the route formed only by connecting the point
to the depot
Choose the route with shorter distance

Step5

Cannot be inserted? Yes, just connect the point to the depot, make
route with such point and the depot

Step6 Until all the points have been connected, then make circulation and find the
shortest one

Until now, the description of new idea of modifying method is finished. In this new idea,
the conception of optimizing routes does not refer the experience summarized from the
modified Insert_By_Distance such as replacement. The new idea allows the existence of
replacement.

This new idea of modifying method may not lead the route length to be shorter enough.
But as the optimizing way is very tight, it is still worthy to implementing and testing
whether there is any improvement to the results.

3.2 Connecting routes

In this part, step of work connecting the relative formed routes will be described. First,
we need to find out the relationship of routes both in pickup part and the delivery part.
Second, all the relative routes will be tested relying on the working time. Since there is a
time constraint given in the problem that every vehicle has to work from 06:00 to 22:00.
If the time is invalid, we have to rearrange the troublesome routes.

52

3.2.1 Searching relative routes in different parts

Now, all the points have been connected to compose routes. Because the parts of pickup
and delivery are split, in order to ensure every order can be picked up and transported to
its termination successfully. The work we need to do now is to find out the relative routes
in both parts, which means we have to connect all the relative sources and terminations
together.

First we discuss the way of making connections for relative routes between pickup and
delivery parts.

For the sake of describing the method, a figure including routes in both parts is displayed.
It is clear to see that this simple figure composed with one central depot, some points and
several routes formed with links between two nodes. The routes in the figure are
generally distributed on both sides of the central depot.

Figure 3-2-1

We may say routes on the left hand side of the depot come from pickup part. Routes on
the right hand side of the depot come from delivery part. In every route, there are some
points inside it. And it is obvious to see that the points on both sides are given the same
ID for the source points and their corresponding terminal points, which can help us to
find out the relative routes by checking the ID of points from different parts.

First, for both side we clarify the nodes in each routes:

Left side Right side
R1={B, A} Rl ={A, G}
R2={E,D,C} RIl ={C,B,E}
R3={F,G} RIll ={D,F}
Table 3-2-1

53

Second, we test whether there is union between any two routes from different parts:

R1 R2 R3
R1INRI ={A}; R2NRI =¢; R3NRI ={G};
R1INRIl ={B}; R2NRIl ={C,E}; R3NRII = ¢;
RINRII = ¢; R2NRII ={D}; R3NRII ={F};

Table 3-2-2

From the table we see that when we focus on different routes in pickup part and check
their relative routes in delivery part, there are some different results come out. ForR1 in
pickup part, we find that routes Rl and Rl have union with R1, which can be explained
that the goods from source points in R1have to be delivered to terminal points
inRI and RII separately. For route R2 and R3, they can be understood in the same way as
route R1.

By using the way above, we can find out all the relative routes coming from different
parts.

3.2.2 Rearrange the overload routes

As we have mentioned that every vehicle has been bounded with a working time period.
Once there is a route union, we have to check whether the total time spent in any two
relative routes exceeds the time constraint or not. In this thesis, the problem has been
taken starting at 06:00 in the morning and finishing at 22:00 in the evening, so time
period is bounded as 16 hours every day. The work we need to do next is to test time
spending in routes.

In order to be convenient to understand, we setl as the collection of routes from the
pickup part, every route has an ID namedi € | and the collection of routes in second part
set asJ , routes with ID inside called j € J . Since all the routes are formed by connecting

points, point k € K; means nodes in pickup part, and point k € K; in delivery
part. K;and K ; are the gathers of points in different parts. And the demand of points in
different part, we setas d; <33andd; <33.

In this problem procedure, every order need to be uploaded at the source node, offloaded
and uploaded again at the central depot, and then offloaded at the terminal node. For
every process of uploading or offloading, it will take 10 minutes and the one minute for
every demand of goods. The average speed of each vehicle is 60 km/hour. Once we find
the relative routes, the total time spent in them is

TotalTime = TotalTransportingTime + 2 * (uploadingTime + offloadingTime) ;
TransportingTime = (Length _i+ Length _ j)/60000;

uploadingTime =10+d, +10+d;;

offloadingTime =10+d; +10+d;;

54

™~
= 2

TotalTime == (Length _i + Length _ j)/60000+40+2*(d; +d;)

Knowing the way of calculating total time, the steps underlying which are adopted will
help us to check whether any two routes are feasible to be connected

1 start from 1 =0, iisthe ID of route coming from the pickup part

2. for(i=0,i++i<)i)

3 go through all the routes in delivery part

4 if keK,MNke K # ¢ means routes coming from different parts have the
5. same 1D

6. TotalTime == (Length _i + Length _ j)/60000+40+2*(d; +d;)

7 if TotalTime >16

8 record the route i and its relative route J, save them in special collection
9. else

10. routes from pickup and delivery parts can be connected and such connection
11. is feasible

In the step8, we save the relative routes whose spending time exceeded bounded time
period. For the sake of understanding simply, we set the process of uploading,
transporting and offloading the same amount goods in the pickup part as the first part.
Similarly, we set the process of uploading, transporting and offloading the same amount
of goods as the second part. Then the time spent in routes which need to be rearranged
can be visually represented as

first part second part
Figure 3-2-2

From the figure, we can see that the time spent in different parts is 4 and 14 hours
respectively, which exceeds the total time bounded as 16 hours. The only problem make
this phenomenon happen is some route take too much time to finish work such as the
second part above. There is an idea jump into my mind that if we can use one more
vehicles to finish the same work which has been done by only one vehicle but using twice
time value, why we should not choose more vehicles.

Once we plan to use more vehicles to handle the same work burdened by several vehicles
before, there are three problems need to be considered firstly:

55

> How can we split the longer route?

A\

How many new routes should be formed?

> Knowing the number of the new routes, how can we distribute the points which
have been released from the longer route?

From those problem, we know that if we want to split route, firstly we should know how
many number of new routes will be engendered. The way of dealing such problem is

routeLength = length of the longer route
n = number of new routes

routeLength
B speed
bestTime

16— 40 + 2 * capacity

bestTime = 5 60

The bestTime here plays a very important role, first it helps us to get the number of new
routes, second it supplies us a measure to test whether we should split formed route or not.
Then we know if routeLength > bestTime, it is necessary to rearrange the routes.

As we have talked just now, there is a job given to be handled only by one vehicle
inT time period, when we wan to shorten the working time, we can rearrange this job to
two vehicles to finish. If every vehicle uses the same time period, then each of them will
useT/2, which means we can complete the whole work in a half of the original time. So

Figure 3-2-3

The imagination of splitting routes is perfect, but we cannot ensure this perfection exist.
Because one route cannot be slipt and completed by several vehicles in the some

56

bestTime period. Every vehicle starts from the central depot and it has to come back to
the central depot again after visiting its customers, which means it will be impossible for
us to split a routes into several average new routes if we want the sum of total split time
equals to the time spent in the original route. But there is an eclectic instance that we
could try our best to make sure newRouteLength nearly reach the value

of routeLength/n . Then we come to meet the problem that:

» Knowing the number of the new routes, how can we distribute the points which
have been released from the longer route?

In the way of rearranging released points and connecting them to form routes, we will
adopt some new idea.

-

Figure 3-2-4

The figures above describe a process of rearranging. The figure on the left is the original
route and the one on the right shows the new routes which have been split from the
original one. The procedure of splitting such long original route can be described as the
steps following

> Step 1 release all the points in the rearranging long route and save these points
in a point union W

> Step 2 start from the central depot 0, search and connect the furthest point i
and go back to point 0. Pick up point i from W

> Step 3 Check the route composed by the point/points and the central depot 0

» Step4 if newRouteLength <routeLength/n, search and connect the nearest

point j to previous point iand go back to the central depot to make
route. Pick up point j from W and go to step 4

» Step5 else if newRouteLength nearly equals torouteLength/n, go back to

57

the depot. Pick up point j from W and check whether W =¢ . If
W # ¢, go back to step 2

Let us go back to the figure, and go through the procedure again. As we see that there are
three red points in right figure. They are the first point of every route beside the central
depot. We call those red points seed customers. And the seed customers here are the
points which are far from the central depot. Once we connect such seed customer with the
central depot, the next work is to find the nearest point to this seed customer. Every time
when we search point, we need to suppose those searched points can be composed to
form new route and check whether the time spent in the route is nearly equals to the value
of routeLength/n. If it is, we stop searching next point. But if it is not, we have to

continue until there is no satisfied point.

It seems that there is no problem to arrange those points which have been released out
from the long original route. But since every time we compose route only by picking up
the points satisfy the time limitation, there must be some point which is not valid to be
picked up to form route when we finish composing routes. How do we handle those
separate points?

There is a figure underlying, it is very clear to see from the figure that the left points can
be inserted into their neighborhood routes. Because if we only connect them with the
central depot separately, this way disobeys to the saving method as we have proved in the
previous section. But inserting points will help us to avoid increasing total route length.
And inserting points to their nearest neighborhood route will not add the routeLength too
long comparing with the value of routeLength/n firstly, and secondly the consideration

of the phenomenon of exceeding vehicle capacity can be omitted.

Figure 3-2-5

In conclusion, the procedure of rearranging the long route from the relative pair of routes
can be described amply as the code below
1 function connection() : solution

2 solution : s;
3 bool : finished = false;
4 while not finished do

58

5 bestLength = 0;

6 bestTime = (16 — (40 + 2 * capacity) /60) / 2;

7 for each pair routes in solution do

8 find the routes which spend time exceeding bestTime

9 if the number of routes > =1

10 choose the longer route in such pair routes and split it into n new
11 smaller routes

12 n =int [(routeLength/speed) / bestTime] + 1

13 for each splitting route do

14 release all the m points in such route

15 while m>0do

16 for each point in the point union do

17 start from the depot and find the best insertion of the
18 points to form new routes

19 if newRouteLength < = routeLength / n

20 and if length of insertion > bestLength

21 store insertion;

22 m=m -1,

23 bestLength = length of insertion;

24 if number of new routes > n

25 stop

26 if there are points have not been selected

27 insert them into those formed new routes

28 go through all the routes in both parts and check
29 whether there are still pairs of routes exist.

30 if there is/are pair routes, go to step 2

31 else

32 Finished!

Note:

In the twelfth step, no matter the value of “int [(routeLength/speed) / bestTime]” is O or
bigger than 0, we have to make sure n equals to 2 at least. Otherwise, there will be no
change if n=1 again.

3.3 Experimental results

In this thesis, three important qualifications have been given. The first one is the number
of point, the second one is the value of vehicle capacity and the third one is the bounded
time period to vehicle. Those three instances are important because they have the crucial
relationship to the final solutions.

Firstly, the number of point decides the complexity of calculation. In our problem, the
number of points in each day is almost more than 200 and optimal results for VRP with
only 100 points have been got so far. So in this experimental section, the first 100
customers will be selected from the original data in each day to test the algorithm.

Secondly, the length of route is formed under the constraint of vehicle capacity, which
means if we change the value of capacity then all the routes will be changed also. So in

59

this experimental section, we will assume that every vehicle will be added one trailer,
which has the same capacity as the vehicle.

Third, the time period to vehicle is also very important. Since this value decides whether
we should rearrange routes and how many routes need to be rearranged. This factor
influences the efficiency of the algorithm. In this problem, 16 hours has been given. This
value is reasonable in this current case, because 16 hours ensures that

® Time spent either in pickup part or delivery part is less than 16 hours. If there is
overload route, we could just rearrange the routes in the worse part, but not both. So
value of 16 simplifies the procedure of resolving overload routes.

® More number of overload routes will make the route length to be longer. 16 hours
controls the number of overload.

® Less bounded time period may make us to rearrange the routes in both parts. And
number of new routes will be increased, which brings bad solution.

Since on one hand the given bounded time period is reasonable, and on the other hand
there is not enough time to make test of changing bounded time period. | display two
groups of results and compare them under different constraints. There are four tables in
the first group. The first two show some pertinent information of results coming from
pickup and delivery parts with the original number of points and the capacity is 33. The
second two tables show the results when capacity changes to be 66 without changing
number of points.

After showing the results of route length, the time spent in computing are also calculated.

Note:
> maximum We cannot get the best result if we set the value than it, but also
stepLength cannot find better result if the stepLength value is set bigger than it
> overload The relative pair of routes whose total spending time exceeds the
route bound time from the given problem
Capacity = 33
Pickup part:
workday number maximum pairsof result got before final results
of stepLength overload dealing with %10’
customer routes overload x 10’
Dayl 247 35 1 2.6040 2.6540
Day2 214 14 0 2.3023 2.3023
Day3 199 7 1 2.0881 2.1256
Day4 229 29 2 2.5359 2.6474
Day5 212 31 4 2.2232 2.2931
Table 3-3-1

60

Delivery part:
workday number maximum pairsof result got before final results

of stepLength overload dealing with
customer routes overload
Dayl 247 15 1 9085027 9085027
Day?2 214 29 0 8379432 8379432
Day3 199 26 1 7914716 7914716
Day4 229 29 2 8483032 8483032
Day5 212 17 4 7789271 7789271
Table 3-3-2
Capacity = 66
Pickup part:
workday number maximum pairsof result got before final results
of stepLength overload dealing with %10’
customer routes overloadx 10’
Day1 247 6 18 1.3950 1.7508
Day?2 214 8 22 1.2200 1.6728
Day3 199 13 24 1.1335 1.6310
Day4 229 3 24 1.3085 1.8300
Day5 212 6 32 1.1632 1.6949
Table 3-3-3

Delivery part:
workday number maximum pairsof result got before final results

of stepLength overload dealing with
customer routes overload
Day1 247 7 18 4816073 4816073
Day?2 214 15 22 4263168 4263168
Day3 199 13 24 4212978 4230103
Day4 229 4 24 4834634 4840231
Day5 212 8 32 4393987 4393987
Table 3-3-4

Beside the display of results with different vehicle capacity, | also make tow tables show
the value of consumed time in two different cases. The time is spent both in pickup part
and delivery part.

» data: the given data at the beginning which includes the relevant information of every
point and order

61

Capacity = 33, results : Computing time without reading data
Unitage : millisecond

workday number of pairs of overload consuming time
customer routes
Dayl 247 1 9875
Day?2 214 0 6213
Day3 199 1 5531
Day4 229 2 6375
Day5 212 4 5343
Table 3-3-5

Capacity = 66, results : Computing time without reading data
Unitage : millisecond

workday number of pairs of overload consuming time
customer routes
Dayl 247 18 4344
Day?2 214 22 4594
Day3 199 24 880
Day4 229 24 2031
Day5 212 32 3234
Table 3-3-6

Conclusion of the first group of results:
From the results displayed above, we can see that

» All the results in the delivery part before and after dealing with the overload problem
are the same. So in most of the overload pairs of relative routes, the longer one
between two routes is in the pickup part.

When the value of capacity is bigger, then the routes will be also longer.
The numbers of overload routes are more when route length increases

The total route length with more capacity is less than the total route length with less
capacity
The time spending in computing with less capacity is more than the case with more
capacity

vV VYV V VY

Since optimal results for VRP with only 100 points has been explored by some guy so far,
in the second group of results, the number of customers are set only to be 100. The way
of fixing number of customers to be 100 is to select the first 100 customers from the data
in every weekday.

Note:
» First part = pickup part
» Second part = delivery part

62

Customers = 100, capacity = 33,

weekday pairs of first part of final results second part final
overload results got of the first of results got results of

routes before dealing part before the
with overload %10’ dealing with second

%107 overload part
Dayl 1 1.0832 1.1287 3485485 3485485
Day?2 2 1.1587 1.2293 4172756 4172756
Day3 2 1.1020 1.1649 4229192 4229192
Day4 0 1.1149 1.1149 3883744 3883744
Day5 0 1.1156 1.1156 4274584 4274584

Table 3-3-7

Customers = 100, capacity = 66

weekday pairs of first part of final results second part final
overload results got of the first of results got results of

routes before dealing part before the

with overload dealing with second

overload part
Dayl 16 5694007 1.0214 %107 1982503 1982053
Day2 16 6351351 9806012 2105782 2105782
Day3 9 5940909 9306530 2323729 2323729
Day4 11 6019874 1.0292 x 107 2364268 2364268
Day5 22 6299087 1.0069 x 107 2286409 2286409

Table 3-3-8

Capacity = 33, results : Computing time without reading data
Unitage : millisecond

workday number of pairs of overload consuming time
customer routes
Day1 100 1 2016
Day2 100 2 578
Day3 100 2 2360
Day4 100 0 1968
Day5 100 0 2265
Table3-3-9

63

Capacity = 66, results : Computing time without reading data
Unitage : millisecond

workday number of pairs of overload Consuming time
customer routes
Dayl 100 16 2187
Day2 100 16 953
Day3 100 9 2235
Day4 100 23 1847
Day5 100 22 1562
Table3-3-10

Conclusion of the second group of results

» All the results in the delivery part before and after dealing with the overload problem
are the same. So in most of the overload pairs of relative routes, the longer one
between two routes is in the pickup part.

» The numbers of overload routes are more when route length increases

» The total route length with more capacity is less than the total route length with less
capacity

Comparing with the conclusion got from the first group of results, there are only three left.
When the data has been changed, some characters of results also change like the value of
maxStepLength.

The value of maxStepLength can help us to get better results, but we should not fix value
as the maxStepLength for any different cases. Because the maxStepLength is limited by
two factors:

® The content of given data
® The number of routes

As we know that, if we have been given a new data. The value of the old maxStepLength
will have no meaning. Once we are given new data, we have to test out new
maxStepLength.

I have mentioned that the value of stepLength should not be increased up to the number
of routes, because routes will stop being optimized after the stepLength reach to some
value. Even though the stepLength can be increased bigger and bigger, but those bigger
values of stepLength will not help routes to be optimized any further.If we make a test to
test the first 100 points in the first weekday, we will realize different route length will be
obtained by setting different stepLength and also understand the reason why
maxStepLength need to be set to help us get the smallest value

64

Capacity = 33

Value of Value of route length x10’
stepLength
3 1.0868743906
5 1.0842559938
6 1.0837876156
7 1.0832486313
10 1.0832486313
13 1.0832486313
15 1.0832486313
Table 3-3-11

It is clear to see that the maxStepLength is 7. Because when stepLength is smaller than 7,
the result got by using such stepLength is bigger than the result got by setting 7 as the
stepLength. But when the value of stepLength is bigger than 7, result will not change any
more.

Moreover, if we do not care about the importance of setting maxStepLength, and choose
a very big value as the stepLength, some dead circulation will happen when we run the
algorithm.

So far, the algorithm has been composed. And we get the some important ideas after
completing the algorithm, such as

® Only allow inserting point but not replacing

@ Setting the maximum stepLength for iteration

By implementing the algorithm, the results are good but we do not know whether those
results are optimal or not. In order to test that, I made a figure to display the distribution
of the routes got from the second weekday.

From the table above, we know there are two pairs of overload routes in the second
weekday when focusing on 100 points, then

65

Before handling the overload routes

]
¥ 10

5.4

535

6.3

6251

6.2

Figure 3-3-1

After handling the overload routes

5
%10

B35

63

B.25

62

Figure 3-3-2

66

By handling the overload routes, it is obvious to find that longer routes in the figure ? are
rearranged. Some new shorter routes are formed and displayed in the figure ?. But there
are some routes overlap each other. No matter how, they do not influence the bounded
the time period though there are two pair of overload routes in the whole problem. The
action of transporting can be solved successfully even the algorithm has some drawback.
The algorithm is definitely feasible.

4. Conclusions

This is the conclusion of the thesis, but research of this pickup and delivery with hub
reloading problem is far away from the final ending. There is a long and hard route need
to track. By doing this master project, | benefit well from this work. First, it lets me
clearly realize the comprehensive application of VRP. Second, the attempt and
exploration of approaches make me take the reins of basic methods of solving VRP
systematically and consecutively, moreover the way of holistic thought how to modify
the methods and get better ones. After finishing the project, | start to apprehend the VRP
or PDP a little bit more and deeper.

In this thesis, | have displayed the mathematical model for the problem and adopted some
algorithms. In the part of forming routes, the methods used mainly based on two aspects:
Sweep_By_Angle and Insert_By_Distance. Those two aspects are discriminative and also
correlative. Now, | will give some illuminations of two aspects both in disadvantages and
advantages.

4.1 Based on Sweep_By_Angle and its pertinent approaches

1. Disadvantage
Because of emphasizing the idea of orderly distributing and attaching importance to the
overlap of routes, the results got under those constraints are not perfect.

2. Advantage

It is a great gain of using tangent value of points to make a sequence for all the points
around the same central depot. The application directly makes an effect to the part of
method modification. There are also some inspirations from the disadvantage of the
methods. We cannot seek the perfect solution blindly but also consider the actual
instances. For instance, when the customers are plenty and they are clustered, we should
not emphasize too much that overlap of routes need to avoid.

The use of the Sweep By _Angle supports us a lot even it is failed. If there is no use of
such method, | cannot easily agree that Inser_By Distance is more reasonable and
effective.

4.2 Based on Insert_By_ Distance and its pertinent approaches

1. Disadvantage

At the beginning, because of too much limitation from the vehicle capacity, | insisted
trying my best to compose a route. The total demand of points in such route should close
to the capacity without considering how far the points between each other. At the end,

67

there was a phenomenon that most of points in some routes were close to the depot and
several points were far way from them, which made the route length very long.

2. Advantage

When | was in the procedure of searching points by using the way of Insert_By_Distance,
though there were some bad results came out at the beginning, finally | found the method
of Insert_By Distance was effective from the solution And the results got from the
modified Insert_By_ Distance at the end had a big and good change.

4.3 Comparison and analysis of results

So far, the results got from the modification of Insert_By_Distance are the best excluding
the new idea of methods. And I find I mostly rearrange the routes from the pickup part in
the section of connecting correlative pair routes from different parts. The main reason for
that is the pickup points are far from the central depot comparing with their
corresponding terminal points. Further points produce longer routes, so | did the
rearrangement mainly focusing on the pickup part.

But from the solution after rearrangement, there are some routes have been changed to be
longer than before, | think people should pay some attention to this instance. There is
probably more appropriate method will help us to get better solution.

4.4 ldeas of improving results

The VRP is very popular in research field. People have explored lots of algorithms for
solving the VRP not only the heuristics but also metaheuristics. In this thesis, a feasible
algorithm has been explored. In such algorithm, only inserting can be allowed, no point
replacing exist and stepLength has been set to help us repeat the algorithm in feasible
way.

Results got by applying the algorithm are good. There are not so many overload routes
after forming and connecting relative routes in pickup and delivery part. The time spent
in running the algorithm are short. Anyway, | am satisfied with this new algorithm. But
there is still space and chance to improve the algorithm to be better and got better results.

In recent years, several metaheuristics have been explored out for VRP. There are six
main types of metaheuristics used for VRP [12]: 1) Simulated Annealing; 2)
Deterministic Annealing; 3) Tabu Search; 4) Genetic Algorithm; 5) Ant Systems; 6)
Neural Networks. As the main character of metaheuristics allow deteriorating and
infeasible intermediary solutions in the procedure of search process. Some mateheuristics
could be tried to improve the existing results.

And in the algorithm, the acceptance of moving points only depends on shortening routes.
If routes can be shorten, points will be considered to move in another route. Otherwise,
no point moving can be accepted. Even there is a chance to get better solution in next
section by acrossing the bad slution at current section. As

68

current result

A\

AN

good result

initial result

Figure 4-4-1

Because of the character of metaheuristics, if we accept to move points with some
probability even bad results will be got, better results will be obtained later after passing
by the bad solution first. Some of those metaheuristics displayed above can be adopted to
improve the existed solution. Since there is no time for me implement any of them,
people could try to use the metaheuristic to get better results if they are interested in
problem also. More details can refer to the article made by G. Michel, L. Gilbert and P.
Jean-Yves [12].

4.5 Comparison with the General Pickup and Delivery Problem

At the beginning of this thesis, | have mentioned that the pickup and delivery problem
with hub reloading is a new transportation problem. Because the pickup and delivery
parts in this problem will be handled by different vehicles. In General Pickup and
Delivery Problem, the pickup and delivery parts are bounded together, which means one
vehicle should be used to both picking up and delivering goods.

General Pickup and Delivery Problem

EEEN) EEEN , EEEN depot

Figure 4-5-1

From the figure for the general PDP, one vehicle staring from the depot is used to pickup
goods from different source points and delivery them to their corresponding destinations.
This style of transportation has some limitations: if one vehicle visits some source points,
it must also visit those source points’ corresponding terminations. A restriction exists in
the general PDP that vehicle cannot stop in an optimal way. If vehicle bounded with a
fixed time has visited some pairs of points, source and terminal points, and if there is still
redundant time for it to visit other source point but cannot visit its corresponding terminal
one, a problem comes out: vehicles cannot use their bounded time period effectively.

But taking a look at this new PDP, the new PDP is much closer to our real life. Although,
we consider that all the goods are the same without classifying in this thesis, it is more

69

reasonable to transport different kinds of goods from their sources to their corresponding
terminations. If we assume the process of settling in depot as a procedure of producing
new goods, this new PDP is worthy and suitable for being considered in future.

5. References

[1] M. L. Fisher, Vehicle Routing. Operations and Information Management
Department. The Wharton School, University of Pennsylvania, Philadelphia,
PA 19104, U.S.A. page: 1-15

[2] N. Kohl, J. Desrosiers, O.B.G. Madsen, M. M. Solomon, F. Soumis, 2-Path Cuts
for the Vehicle Routing Problem with Time Windows. Transportation Science,
33(1), 101-116 (1999).

[3] G. Laporte and F. Semet, Classical heuristics for the vehicle routing problem. In P.
Toth, D. Vigo (Ed.), The vehicle routing problem, SIAM, Philadelphia, page: 1-7,
ISBN 0-89871-498-2.

[4] G. Clarke and J. W. Wright, Scheduling if vehicles form a central depot to a
number of delivery points. Operations Research, page: 568-581, 1964

[5] R.H. Mole and S.R. Jameson, A sequential route-building algorithm employing a
generalized saving criterion. Operational Research Quarterly page:503-511,1976

[6] N.Christofides, A. Mingozzi, and P.Toth, The vehicle routing problem. In
N.Christofides, A Mingozzi, p.Toch, and C. Sandi, editors, Combinatorial
Optimization, page: 315-338. Wiley, Chrichester, 1979

[7] M. Junger, G. Reinelt, and G. Rinaldi, The traveling salesman problem.
Operations Research and Management Sciences: Networks (M. Ball, T.
Magnanti, C.L. Monma, and G. Nemhauser, eds.), North-Holland, 1995, page.
225—330

[8] Hoong Chuin Lau, Zhe LiangT, Pickup and Delivery with Time Windows:
Algorithms and Test Case Generation. Page: 3-6, ICTAI 2001: 333-340

[9] M. L. Fisher and R. Jaikumar, A Generalized Assignment Heuristic for Vehicle
Routing. Networks, 11:109-124, 1981.

[10] R. Stefan, Heuristics for the Multi-Vehicle Pickup and Delivery Problem with
Time Windows. Master thesis, page: 45-79, 2002

[11] B. Olli, Local Search and Variable Neighborhood Search Algorithms for the
Vehicle Routing Problem with Time Windows. Ph.D thesis, page: 34-84, 2001

[12] G. Michel, L. Gilbert and P. Jean-Yves, Metaheuristics for the Vehicle Routing

Problem. September, 1998 Revised: August, 1999. Les Cahiers du GERAD.
G-98-52

70

6. Appendix

6.1 Program of constructive methods:

*kkkkkkkkhkkkkhkkhhkhhhkhhhhhhhkhhhkhhhhkhhhkhhhhkhhkhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhkhhhhhhhkhhhhhhkhhhhhhhhhhhhhhhhkhiiiixkx
Sweep_By_Angle:

import java.io.*;

import java.util.Vector;

import java.util.StringTokenizer;
import java.util. ArrayList;

import java.lang.String;

import java.util.Date;

/**
*Demonstrate the way of getting the feasible routes in every weekday
* @version (29_05_2005)
*/

public class Algorithm_Tan

{

public static void main(int selectionDay)
{
System.out.printIn();
System.out.printin();
System.out.printin("TEST");

Point depot = new Point(0, 677908, 6150220, 33);
PointsUnion unionM = new PointsUnion();

Date currentTime = new Date();

long milSecond = currentTime.getTime();

System.out.printin("Time Start to Read Data:" + milSecond);
System.out.printin();

unionM.clearAllPoints();
readFile(unionM, selectionDay);

currentTime = new Date();

milSecond = currentTime.getTime();
System.out.printin("Time End:" + milSecond);
System.out.printin();

/lunionM.reducePointsUnionSize(100);

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time Start of Algorithm Calculation:" + milSecond);
System.out.printin();

/**
* Algorithm begins and some instances are initialized
*/

PointsUnion leftPoints = new PointsUnion();

71

PointsUnion rightPoints = new PointsUnion();

/l Calculate the tan value for all of the points
/l and divides them into Left and Right parts
for (int i=0; i<unionM.getSize(); i++)

{
unionM.getPoint(i).calculateTan(depot);
if (unionM.getPoint(i).getX() >= depot.getX())
rightPoints.appendPoint(unionM.getPoint(i));
else
leftPoints.appendPoint(unionM.getPoint(i));
}

I/ Sort the points in left and right part
rightPoints.sortPointsByTan();
leftPoints.sortPointsByTan();

/I display rightPoints and leftPoints
System.out.printin("All points: " + unionM.getSize());
System.out.printin("Right part points: " + rightPoints.getSize());
System.out.printin("Left part points: " + leftPoints.getSize());
System.out.printin();
System.out.printin("Right part points: ");
for (int i=0; i<rightPoints.getSize(); i++)
System.out.printin("ID: " + rightPoints.getPoint(i).getID() + " Tan(): " +
rightPoints.getPoint(i).getTan());
System.out.printin();
System.out.printin("Left part points: ");
for (int i=0; i<leftPoints.getSize(); i++)
System.out.printin("ID: " + leftPoints.getPoint(i).getID() + " Tan(): " +
leftPoints.getPoint(i).getTan());

I/l Calculate the routes
ArrayList rightRoutes = new ArrayList();
while (rightPoints.getSize() > 0)

{
Route newRoute = new Route(depot);
for (int i=0; i<rightPoints.getSize(); i++)
/I add a point if possible
if ('newRoute.overLoad(rightPoints.getPoint(i)))
{
/l add point
newRoute.appendPoint(rightPoints.getPoint(i));
/Il delete point
rightPoints.removePoint(i);
/l reset i to select the next point in next round
i-=;
}
}
/[save new route
rightRoutes.add(newRoute);
}

ArrayList leftRoutes = new ArrayList();

72

while (leftPoints.getSize() > 0)

{
Route newRoute = new Route(depot);
for (int i=0; i<leftPoints.getSize(); i++)
// add a point if possible
if (InewRoute.overLoad(leftPoints.getPoint(i)))
{
/l add point
newRoute.appendPoint(leftPoints.getPoint(i));
/l delete point
leftPoints.removePoint(i);
/l reset i to select the next point in next round
I--;
}
}
/[save new route
leftRoutes.add(newRoute);
}

Il Show Result

System.out.printin();

System.out.printin();

System.out.printin("The Result:");

System.out.printin("The right part:");

double totalLength = 0.0d;

Route newRoute = new Route(depot);

for (int i=0; i<rightRoutes.size(); i++)

{
float rightRouteLength = 0.0f;
System.out.print("Right Route " + i +™");
newRoute = (Route)rightRoutes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" "+ newRoute.getPoint(j).getXx() + " +
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());
if (j==0) /I The first point connected with depot
rightRouteLength += depot.getDistance(newRoute.getPoint(0));
else
rightRouteLength += newRoute.getDistance(j, j-1);
}
rightRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1));
/I finish the total length of the rightRoute
System.out.printin(" Length:" + rightRouteLength);
totalLength += rightRouteLength;
}
System.out.printin();
System.out.printin("The Total Length of " + rightRoutes.size() + " line(s): " + totalLength);

System.out.printin();
System.out.printin();
System.out.printin("The left part:");
totalLength = 0.0d;

for (int i=0; i<leftRoutes.size(); i++)

{

73

float leftRouteLength = 0.0f;
System.out.print("Left Route " +i+™");
newRoute = (Route)leftRoutes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" "+ newRoute.getPoint(j).getXx() + " +
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());
if (j==0) /I The first point connected with depot
leftRouteLength += depot.getDistance(newRoute.getPoint(0));
else
leftRouteLength += newRoute.getDistance(j, j-1);
}
leftRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
finish the total length of the leftRoute
System.out.printin(" Length:" + leftRouteLength);
totalLength += leftRouteLength;
}
System.out.printin();
System.out.printin("The Total Length of " + leftRoutes.size() + " line(s): " + totalLength);

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time End of Algorithm Calculation:" + milSecond);
System.out.printin();

}
private static void readFile(PointsUnion points, int selectedday)
{

try

{

/[FileReader myFile = new FileReader("D:\\BlueJ\MyProject\\data.csv");
FileReader myFile = new FileReader("data.csv");

if(myFile.ready())
{
System.out.println("File Opened.");

BufferedReader bfr = new BufferedReader(myFile);
ArrayList dataAll = new ArrayList();
String line = bfr.readLine();
while (line !'=null)
{
/ISystem.out.printin("READ>" + line + "<");
StringTokenizer tokenizer=new StringTokenizer(line,",");
Vector datalLine = new Vector();
for (inti=0; i<7; i++)
{

if (tokenizer.hasMoreTokens())

{
}

else

dataLine.addElement(tokenizer.nextToken());

74

myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);
return;
}
}
if (tokenizer.hasMoreTokens())

{

myFile.close();
System.out.println("Data in the file error at line <ERROR>" + line);
return;

}

else

dataAll.add(dataLine);
}

line = bfr.readLine();

}

// Display dataAll
System.out.printin("dataAll:");
for (int i=0; i<dataAll.size(); i++)

{
Vector oneline = (Vector)dataAll.get(i);
if (string2int((String)oneline.get(5)) == selectedday)
for (int j=0; j<oneline.size(); j++)
line = (String)oneline.get());
if (isAllNum(line))
/ISystem.out.print(string2int(line) + " ");
}
else
{
System.out.printin("Data in the file error at line <ERROR>" + i);
return;
}
}
/ISystem.out.printin();
line = (String)oneline.get(1);
Point p = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(1)) string2int((String)oneline.get(2)),

string2int((String)oneline.get(6)));
points.appendPoint(p);
}
}
}
else

{
}

catch (Exception e)

{

System.out.printin("Directory or File dose not exist.");

75

System.out.printin("Cannot Find File");

}
}
private static boolean isAIINum(String s)
{
for (int i=0; i<s.length(); i++)
if (('s.charAt(i)<'0") || (s.charAt(i)>'9"))
return false;
}
return true;
}
private static int string2int(String s)
{
int out = O;
for (int i=0; i<s.length(); i++)
{
out *= 10;
out += s.charAt(i) - 48;
}
return out;
}

}

*kkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkhhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
Insert_By Distance

import java.io.*;

import java.util.Vector;

import java.util.StringTokenizer;

import java.util. ArrayList;

import java.lang.String;

import java.util.Date;

/**

*Demonstrate the way of getting the feasible routes in every weekday
* @version (29_05 2005)
*/

public class Algorithm

{ private ArrayList pointsM = new ArrayList();
public static void main(String[] args)
{ int selectionDay = 0;
if (args.length !1=1)

System.out.printin("Please Input 1 Parameter.");
return;

/**

76

* The method of "isAlINum" has been given in the coming part, which
* is used to remind user whether the imput of day is right or wrong.
*/
if (lisAllINum(args[0]))
{
System.out.printin("Wrong Parameter!");
return;

}

else

/**
* Transfer the data of "args[]" from string to int since "selectionDay" is int
*
selectionDay = string2int(args[0]);

Point depot = new Point(0, 677908, 6150220, 33);
PointsUnion unionM = new PointsUnion();

Date currentTime = new Date();

long milSecond = currentTime.getTime();

System.out.printin("Time Start to Read Data:" + milSecond);
System.out.printin();

unionM.clearAllPoints();
readFile(unionM, selectionDay);

currentTime = new Date();

milSecond = currentTime.getTime();
System.out.printin("Time End:" + milSecond);
System.out.printin();

/lunionM.reducePointsUnionSize(100);

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time Start of Algorithm Calculation:" + milSecond);
System.out.printin();

/**
* Algorithm begins and some instances are initialized
*/
Point startPoint = depot;
ArrayList routes = new ArrayList();
Route newRoute = new Route(depot); //[Every new route will start from the depot
do
L o
int selectedNode = -1; // no selected point at first
float shortestDistance = 0.0f;

/**

* Loop for all of the points in unionM to find out the nearest points
* to depot.

77

*/
for (int j=0; j<unionM.getSize(); j++)

if (!InewRoute.overLoad(unionM.getPoint(j)))

if (selectedNode ==-1)

{ selectedNode = |;
shortestDistance = startPoint.getDistance(unionM.getPoint(j));
}
else
{

float tempDistance = startPoint.getDistance(unionM.getPoint()));
if (tempDistance == shortestDistance) // The 2 points have same
distance. Select one which contains more goods.

{
if (unionM.getPoint(j).getGoods() >
unionM.getPoint(selectedNode).getGoods())
{

selectedNode = |;
/I As 2 distances are same, need not change shortestDistance.

}
}
if (tempDistance < shortestDistance)
{
selectedNode = j;
shortestDistance = tempDistance;
}

}
}

if (selectedNode !=-1) //some satisfied point has been searched

if (newRoute.appendPoint(unionM.getPaoint(selectedNode)))

{

startPoint = unionM.getPoint(selectedNode); // reset startpoint
unionM.removePoint(selectedNode); // delete the selected point from
unionM

}

else

{
System.out.printin("Adding method of ArrayList failed!");

return;

}

else // no new point, this current route is finished

{

/I there are no points in the newroute
if (newRoute.getSize() ==0)
{

if (unionM.getSize() I=0)

{

78

System.out.printin(*There aref/is point(s) left unselected. Algorithm
Failed!);

}

break;

}

/I if there are points in the newroute, save this route
if (routes.add(newRoute))

{
startPoint = depot; // reset startpoint
newRoute = new Route(depot);
}
else
{
System.out.printin("add method of ArrayList failed!!!");
return;
}

twhile (true);

Il Show Result

System.out.printin();

System.out.printIn();

System.out.printin("The Result:");

double totalLength = 0.0d;

for (int i=0; i<routes.size(); i++)

{
float routeLength = 0.0f;
System.out.print("Route " +i + ":");
newRoute = (Route)routes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" "+ newRoute.getPoint(j).getXx() + " +
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());
if (j==0) /I The first point connected with depot
routeLength += depot.getDistance(newRoute.getPoint(0));
else
routeLength += newRoute.getDistance(j, j-1);
}
routeLength += depot.getDistance(newRoute.getPoint(hewRoute.getSize()-1)); //
finish the total length of the route
System.out.printin(" Length:" + routeLength);
totalLength += routeLength;
}
System.out.printin();
System.out.printin("The Total Length of " + routes.size() + " line(s): " + totalLength);

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time End of Algorithm Calculation:" + milSecond);
System.out.printin();

79

private static void readFile(PointsUnion points, int selectedday)

{
try
{

/[FileReader myFile = new FileReader("D:\\BlueJ\MyProject\\data.csv");
FileReader myFile = new FileReader("data.csv");

if(myFile.ready())
{

System.out.printin("File Opened.");

BufferedReader bfr = new BufferedReader(myFile);
ArrayList dataAll = new ArrayList();

String line = bfr.readLine();

while (line !'=null)

{
System.out.printin("READ>" + line + "<");
StringTokenizer tokenizer=new StringTokenizer(line,",");
Vector datalLine = new Vector();
for (inti=0; i<7; i++)
if (tokenizer.hasMoreTokens())
{
dataLine.addElement(tokenizer.nextToken());
}
else
myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);
return;
}
}
if (tokenizer.hasMoreTokens())
{
myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);
return;
}
else
dataAll.add(dataLine);
}
line = bfr.readLine();
}
// Display dataAll

System.out.printin("dataAll:");
for (int i=0; i<dataAll.size(); i++)

{

Vector oneline = (Vector)dataAll.get(i);
if (string2int((String)oneline.get(5)) == selectedday)

for (int j=0; j<oneline.size(); j++)

line = (String)oneline.get());

80

if (isAlINum(line))
{

System.out.print(string2int(line) + " ");

}

else

{
System.out.printin("Data in the file error at line <ERROR>" +i);
return;

}

}
System.out.printIn();

line = (String)oneline.get(1);

Point p = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(1)) , string2int((String)oneline.get(2)),
string2int((String)oneline.get(6)));

points.appendPoint(p);

}
}
}
else
{
System.out.printin("Directory or File dose not exist.");
}
! .
catch (Exception e)
{
System.out.printin("Cannot Find File");
}
}
private static boolean isAIINum(String s)
{
for (int i=0; i<s.length(); i++)
if (('s.charAt(i)<'0") || (s.charAt(i)>'9"))
return false;
}
return true;
}
private static int string2int(String s)
{
int out = 0;
for (int i=0; i<s.length(); i++)
{
out *= 10;
out += s.charAt(i) - 48;
}
return out;
}
}
*kkkkkkkkkkkkkhkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkhkhkhkhkhhkkhkkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
Point
/**

81

* Demonstrate the charactor of the points and the method of getting distance
* bewteen two points.
* @version (29_05 2005)
*/
public class Point
{
// instance variables
private int id;
private int x;
private int y;
private int goods;
private double tan;

/**
* Constructor for objects of class Point
*/
public Point(int inputID, int inputX, int inputY, int inputGoods)
{
/l initialise instance variables
id = inputlID;
X = inputX;
y = inputY;
goods = inputGoods;
tan = 0;

}

/**

* return 1D

*/
public int getID()
{

}

return id;

/**

* return X

*/
public int getX()
{

}

return x;

/**

*returny

*/
public int getY()
{

}

return y;

/**

82

* return goods

*/
public int getGoods()
{

}

return goods;

/**

* return tan

*/
public double getTan()
{

}

return tan;

/**

* Calculate the distance between two Points

*

* @Parameterl: Another Point p
* return: distance between these 2 points
*/

public float getDistance(Point p)

{
double squareDis = ((double)(x - p.getX())) * ((double)(x - p.getX())) + ((double)(y -

p.getY())) * ((double)(y - p.getY()));
return (float) Math.sqrt(squareDis);
}

/**

* Calculate the tan() value between current Point and Depot
*

* @Parameterl: Depot point
* return: tan() value between these 2 points

*/
public void calculateTan(Point depot)
{
double disX = (double)(x - depot.getX());
if (disX ==0.0d)
if (y >= depot.getY())
tan = 9.999999999E9d;
else
tan = -9.999999999E9d;
}
double disY = (double)(y - depot.getY());
tan = (double)(disY/disX);
}
/*-k

* Clone a point

*

83

* @Parameterl: point
* return:
*/
public void clonePoint(Point p)

{
id = p.getID();
X = p.getX();
y = p.getY();
goods = p.getGoods();
tan = p.getTan();
}

*kkkkkkkkkkkhkkkhhhhhhhhkkkkkkkhhkkkkkkkkkhkkkkkkkkkkkkkhkhhhkkhkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkx

PointUnion

import java.util. ArrayList;

/**
* Demonstrate several actions of points in the algorithm process.
* @version (29_05_2005)
*/

public class PointsUnion

{

/I instance variables
private ArrayList union;

/**
* Constructor for objects of class PointsUnion
*/

public PointsUnion()

{

[/l initialise instance variables
union = new ArrayList();

/**
* Appends a point to the end of this union.
*/

public boolean appendPoint(Point p)

{

}
/**

* Deletes a point at specified position.
*/
public void removePoint(int index)

{
}

return(union.add(p));

union.remove(index);

/**

84

* Clear all points
*/
public void clearAllPoints()

{
}

union.clear();

/**

* Search for a specified point
* Return: index of that point if found, -1 if not found

*/
public int searchPoint(Point p)
{
return(union.indexOf(p));
}
/**
* return the number of pointUnion
*/
public int getSize()
{
return(union.size());
}
/**
* Return the point at the specified index number
*/
public Point getPoint(int index)
{
return((Point)(union.get(index)));
}
/**

* Return the distance between two points at the specified index numbers
*/

public float getDistance(int pointl, int point2)

{

}

return(getPoint(pointl).getDistance(getPoint(point2)));

/**
* Return the distance between two points at the specified index numbers
*/

public void sortPointsByTan()

{
Point tmpPoint = new Point(0, 0, 0, 0);
/I sorting
for (int i=1; i<getSize(); i++)
{

for (int j=0; j<getSize()-i; j++)

85

if (getPoint(j).getTan() > getPoint(j+1).getTan())
{

tmpPoint.clonePoint(getPoint(j));
getPoint(j).clonePoint(getPoint(j+1));
getPoint(j+1).clonePoint(tmpPoint);

}
}

6.2 program of modified methods

*kkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhhkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkx

Based on Sweep_By_Angle

import java.io.*;

import java.util.Vector;

import java.util.StringTokenizer;
import java.util. ArrayList;

import java.lang.String;

import java.util.Date;

/**

*Demonstrate the way of getting the feasible routes in every weekday
* @version (30_06_2005)
*/
public class Algorithm_Tan
{
public static void main(int selectionDay)
{
System.out.printin();
System.out.printin();
System.out.printin("TEST");

/**
* At the beginning we can set some situation and make some examples to help us

* test the algorithm
*/

int] datax ={9, 7,6,9,10};

int[] datay ={ 7,6, 3,3,5};

int[] datagoods ={ 12, 8, 7, 13, 16 };

/**
* Add depot and all the points afterwards
*/

Point depot = new Point(0, 677908, 6150220, 33);
PointsUnion unionM = new PointsUnion();
[* for (int i=0; i<datax.length; i++)
{
Point p = new Point(datax[i], datay][i], datagoods]i]);
if (unionM.appendPoint(p))

{
System.out.println(unionM.getPoint(i).getX() + " " + unionM.getPoint(i).getY() + " "
+ unionM.getPoint(i).getGoods());

86

}

else

{
System.out.printin("Add Point Failed !");
break;

}

il

Date currentTime = new Date();

long milSecond = currentTime.getTime();

System.out.printin("Time Start to Read Data:" + milSecond);
System.out.printin();

unionM.clearAllPoints();
readFile(unionM, selectionDay);

/lunionM.reducePointsUnionSize(100);

/**
* Algorithm begins and some instances are initialized
*/
PointsUnion leftPoints = new PointsUnion();
PointsUnion rightPoints = new PointsUnion();

/I Calculate the tan value for all of the points
// and divides them into Left and Right parts
for (int i=0; i<unionM.getSize(); i++)

{
unionM.getPoint(i).calculateTan(depot);
if (unionM.getPoint(i).getX() >= depot.getX())
rightPoints.appendPoint(unionM.getPoint(i));
else
leftPoints.appendPoint(unionM.getPoint(i));
}

I/ Sort the points in left and right part
rightPoints.sortPointsByTan();
leftPoints.sortPointsByTan();

/I display rightPoints and leftPoints
System.out.printin("All points: " + unionM.getSize());
System.out.printin("Right part points: " + rightPoints.getSize());
System.out.printin("Left part points: " + leftPoints.getSize());
System.out.printin();
System.out.printin("Right part points: ");
for (int i=0; i<rightPoints.getSize(); i++)
System.out.printin("ID: " + rightPoints.getPoint(i).getID() + " Tan(): " +
rightPoints.getPoint(i).getTan());
System.out.printin();
System.out.printin("Left part points: ");
for (int i=0; i<leftPoints.getSize(); i++)
System.out.printin("ID: " + leftPoints.getPoint(i).getID() + " Tan(): " +
leftPoints.getPoint(i).getTan());

87

/I Calculate the routes
ArrayList rightRoutes = new ArrayList();
while (rightPoints.getSize() > 0)
{
Route newRoute = new Route(depot);
for (int i=0; i<rightPoints.getSize(); i++)

// add a point if possible
if ('newRoute.overLoad(rightPoints.getPoint(i)))
{
/I Check for all of the points which have the same tan() value
if (i !=rightPoints.getSize()-1) // Not the last point
{
double tanvalue = rightPoints.getPoint(i).getTan();
intnexti=i+1;
while (rightPoints.getPoint(nexti).getTan() == tanvalue)

if (('newRoute.overLoad(rightPoints.getPoint(nexti))) && //
Check capacity for point nexti

(rightPoints.getPoint(nexti).getDistance(depot) >
rightPoints.getPoint(i).getDistance(depot))) // Compare the 2 distances with the depot

i = nexti; // Use the farest for the route

b
nexti++;
if (nexti == rightPoints.getSize()) // The last point
break;
}
}
// add point

newRoute.appendPoint(rightPoints.getPoint(i));
/I delete point
rightPoints.removePoint(i);
/I reset i to select the next point in next round
I--
}
}
/[save new route

rightRoutes.add(newRoute);
}

ArrayList leftRoutes = new ArrayList();
while (leftPoints.getSize() >0)
{
Route newRoute = new Route(depot);
for (int i=0; i<leftPoints.getSize(); i++)
{
/l add a point if possible
if ('newRoute.overLoad(leftPoints.getPoint(i)))

/I Check for all of the points which have the same tan() value

if (i!=leftPoints.getSize()-1) // Not the last point
{

88

double tanvalue = leftPoints.getPoint(i).getTan();
int nexti =i+ 1;
while (leftPoints.getPoint(nexti).getTan() == tanvalue)

if (('newRoute.overLoad(leftPoints.getPoint(nexti))) &&
Check capacity for point nexti

(leftPoints.getPoint(nexti).getDistance(depot)
leftPoints.getPoint(i).getDistance(depot))) // Compare the 2 distances with the depot

i = nexti; // Use the farest for the route

b
nexti++;
if (nexti == leftPoints.getSize()) // The last point
break;
}
}
/[add point

newRoute.appendPoint(leftPoints.getPoint(i));
/[delete point

leftPoints.removePoint(i);

I/l reset i to select the next point in next round

i
}
}
[/l save new route
leftRoutes.add(newRoute);

}

/I Show Result

System.out.printin();

System.out.printin();

System.out.printin("The Result:");

System.out.printin("The right part:");

double totalLength = 0.0d;

Route newRoute = new Route(depot);

for (int i=0; i<rightRoutes.size(); i++)

{
float rightRouteLength = 0.0f;
System.out.print("Right Route " + i +™");
newRoute = (Route)rightRoutes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" "+ newRoute.getPoint(j).getX() +
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());
if (j==0) /I The first point connected with depot
rightRouteLength += depot.getDistance(newRoute.getPoint(0));
else

rightRouteLength += newRoute.getDistance(j, j-1);
}

rightRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1));

/I finish the total length of the rightRoute

System.out.printin(" Length:" + rightRouteLength);
totalLength += rightRoutelLength;

89

1

System.out.printin();
System.out.printin("The Total Length of " + rightRoutes.size() + " line(s): " + totalLength);

System.out.printin();

System.out.printin();

System.out.printin("The left part:");

totalLength = 0.0d;

for (int i=0; i<leftRoutes.size(); i++)

{
float leftRouteLength = 0.0f;
System.out.print("Left Route " + i+ ™");
newRoute = (Route)leftRoutes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" "+ newRoute.getPoint(j).getX() + " +
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());
if (j==0) /I The first point connected with depot
leftRouteLength += depot.getDistance(newRoute.getPoint(0));
else
leftRouteLength += newRoute.getDistance(j, j-1);
}
leftRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
finish the total length of the leftRoute
System.out.printin(" Length:" + leftRouteLength);
totalLength += leftRouteLength;
}
System.out.printin();
System.out.printin("The Total Length of " + leftRoutes.size() + " line(s): " + totalLength);

/I Show Result again using ID instead of X,Y coordinates
System.out.printin();
System.out.printin();
System.out.printin("The Result shows in ID:");
System.out.printin("The right part:");
totalLength = 0.0d;
for (int i=0; i<rightRoutes.size(); i++)
{
float rightRouteLength = 0.0f;
System.out.print("Right Route " + i + ":");
newRoute = (Route)rightRoutes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" " + newRoute.getPoint(j).getID() + ",);
if (j==0) /I The first point connected with depot

rightRouteLength += depot.getDistance(newRoute.getPoint(0));
else

rightRouteLength += newRoute.getDistance(j, j-1);

rightRouteLength += depot.getDistance(newRoute.getPoint(hnewRoute.getSize()-1));
/I finish the total length of the rightRoute
System.out.printin(" Length:" + rightRouteLength);
totalLength += rightRoutelLength;
}
System.out.printin();
System.out.printin("The Total Length of " + rightRoutes.size() + " line(s): " + totalLength);

90

System.out.printin();

System.out.printin();

System.out.printin("The left part:");

totalLength = 0.0d;

for (int i=0; i<leftRoutes.size(); i++)

{
float leftRouteLength = 0.0f;
System.out.print("Left Route " +i+™");
newRoute = (Route)leftRoutes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" " + newRoute.getPoint(j).getID() + ",");
if (j==0) /I The first point connected with depot
leftRouteLength += depot.getDistance(newRoute.getPoint(0));
else
leftRouteLength += newRoute.getDistance(j, j-1);
}
leftRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
finish the total length of the leftRoute
System.out.printin(" Length:" + leftRouteLength);
totalLength += leftRouteLength;
}
System.out.printin();
System.out.printin("The Total Length of " + leftRoutes.size() + " line(s): " + totalLength);

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time End of Algorithm Calculation:" + milSecond);
System.out.printin();

}
private static void readFile(PointsUnion points, int selectedday)
{

try

{

/[FileReader myFile = new FileReader("D:\\BlueJ\MyProject\\data.csv");
FileReader myFile = new FileReader("data.csv");

if(myFile.ready())
{
System.out.printin("File Opened.");

BufferedReader bfr = new BufferedReader(myFile);
ArrayList dataAll = new ArrayList();
String line = bfr.readLine();
while (line = null)
{
/ISystem.out.printin("READ>" + line + "<");
StringTokenizer tokenizer=new StringTokenizer(line,",");
Vector datalLine = new Vector();
for (inti=0; i<7; i++)

91

if (tokenizer.hasMoreTokens())

{
dataLine.addElement(tokenizer.nextToken());
}
else
{
myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);
return;
}

}

if (tokenizer.hasMoreTokens())

myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);

return;
}
else
dataAll.add(dataLine);
}

line = bfr.readLine();

}

// Display dataAll
System.out.printin("dataAll:");
for (int i=0; i<dataAll.size(); i++)

{
Vector oneline = (Vector)dataAll.get(i);
if (string2int((String)oneline.get(5)) == selectedday)
for (int j=0; j<oneline.size(); j++)
line = (String)oneline.get());
if (isAllNum(line))
{
/ISystem.out.print(string2int(line) + " ");
}
else
{
System.out.printin("Data in the file error at line <ERROR>" + i);
return;
}
}
//System.out.printin();
line = (String)oneline.get(1);
Point p = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(1)) string2int((String)oneline.get(2)),

string2int((String)oneline.get(6)));
points.appendPoint(p);
}

else

92

{

System.out.printin("Directory or File dose not exist.");

}
catch (Exception e)
{
System.out.printin("Cannot Find File");
}
}
private static boolean isAIINum(String s)
{
for (int i=0; i<s.length(); i++)
if (('s.charAt(i)<'0") || (s.charAt(i)>'9"))
return false;
}
return true;
}
private static int string2int(String s)
{
int out = O;
for (int i=0; i<s.length(); i++)
{
out *=10;
out += s.charAt(i) - 48;
}
return out;
}

}

kkkkkkkkkkkkkkkkhkkkkhkkkkhkkkkkhkkkkhkkkkkkhkkkkkkkkkhkkkhkkkhkkhkhkkkkhkkhkkkkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkhkkkkhkkkhkkkhkkkkhkkkkhkkkkhkkkkkkkkkx
Based on Insert_By_Distance

import java.io.*;

import java.util.Vector;

import java.util.StringTokenizer;

import java.util. ArrayList;

import java.lang.String;

import java.util.Date;

/**
*Demonstrate the way of getting the feasible routes in every weekday
* @version (30_06_2005)
*/

public class Algorithm

{
private ArrayList pointsM = new ArrayList();
public static void main(String[] args)
{

int selectionDay = 0;

if (args.length !1=1)
{

93

System.out.printin("Please Input 1 Parameter.");
return;

/**
* The method of "isAlINum" has been given in the coming part, which
* is used to remind user whether the imput of day is right or wrong.
*
if (lisAllNum(args[0]))
{
System.out.printin("Wrong Parameter!");
return;

}

else

/**
* Transfer the data of "args[]" from string to int since "selectionDay" is int
*/
selectionDay = string2int(args[0]);

/**

* Add depot and all the points afterwards

*/
Point depot = new Point(0, 677908, 6150220, 33);
PointsUnion unionM = new PointsUnion();

Date currentTime = new Date();

long milSecond = currentTime.getTime();

System.out.printin("Time Start to Read Data:" + milSecond);
System.out.printin();

unionM.clearAllPoints();
readFile(unionM, selectionDay);

/lunionM.reducePointsUnionSize(100);

I/l Calculate the tan value for all of the points
for (int i=0; i<unionM.getSize(); i++)
unionM.getPoint(i).calculateTan(depot);

/**
* Algorithm begins and some instances are initialized
*/
Point startPoint = depot;
ArrayList routes = new ArrayList();
Route newRoute = new Route(depot); //Every new route will start from the depot
do
L o
int selectedNode = -1; // no selected point at first
float shortestDistance = 0.0f;

/**

94

* Loop for all of the points in unionM to find out the nearest points
* to depot.
*/

for (int j=0; j<unionM.getSize(); j++)

if ('newRoute.overLoad(unionM.getPoint(j)))

if (selectedNode ==-1)

{
selectedNode = |;
shortestDistance = startPoint.getDistance(unionM.getPoint(j));
}
else
{

float tempDistance = startPoint.getDistance(unionM.getPoint(j));
if (tempDistance == shortestDistance) // The 2 points have same
distance. Select one which contains more goods.

{
if (unionM.getPoint(j).getGoods() >
unionM.getPoint(selectedNode).getGoods())

selectedNode = j;
/I As 2 distances are same, need not change shortestDistance.

}
}
if (tempDistance < shortestDistance)
{
selectedNode = j;
shortestDistance = tempDistance;
}
}
}
}
if (selectedNode !=-1) //[some satisfied point has been searched
{
if (newRoute.appendPoint(unionM.getPoint(selectedNode)))
{
startPoint = unionM.getPoint(selectedNode); // reset startpoint
unionM.removePoint(selectedNode); // delete the selected point from
unionM
}
else
{
System.out.printin("Adding method of ArrayList failed!");
return;
}
}

else // no new point, this current route is finished

// there are no points in the newroute
if (newRoute.getSize() ==0)

{
if (unionM.getSize() I=0)

95

System.out.printin(*There arefis point(s) left unselected. Algorithm
Failed!);

}

break;

}

/I if there are points in the newroute, save this route
if (routes.add(newRoute))

{
startPoint = depot; // reset startpoint
newRoute = new Route(depot);
}
else
{
System.out.printin("add method of ArrayList failed!!!");
return;
}

}

twhile (true);

/I Show Result

System.out.printIn();

System.out.printin();

System.out.printin("The Result:");

double totalLength = 0.0d;

for (int i=0; i<routes.size(); i++)

{
float routeLength = 0.0f;
System.out.print("Route " + i+ "");
newRoute = (Route)routes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

{
System.out.print(" "+ newRoute.getPoint(j).getX() + " +
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());
if (j==0) /I The first point connected with depot
routeLength += depot.getDistance(newRoute.getPoint(0));
else
routeLength += newRoute.getDistance(j, j-1);
}
routeLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
finish the total length of the route
System.out.printin(" Length:" + routeLength);
totalLength += routeLength;
}
System.out.printIn();
System.out.printin("The Total Length of " + routes.size() + " line(s): " + totalLength);

System.out.printin();
System.out.printin();
Result result = new Result(depot, routes);

System.out.printin("Total Length: " + result.totalLength() + " Total Points: " +
result.totalPoints());

96

for (int round=0; round<100; round++)

{

result.sortRoutesByTan();
result.optimize_Method_1(false);
result.removeNullRoutes();
/Iresult.showResult_ID();

System.out.printin("Total Length: " + result.totalLength() + " Total Points:
result.totalPoints());

result.resetStatus();

}

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time End of Algorithm Calculation:" + milSecond);
System.out.printin();

private static void readFile(PointsUnion points, int selectedday)

{
try
{

/[FileReader myFile = new FileReader("D:\\BlueJ\MyProject\\data.csv");
FileReader myFile = new FileReader("data.csv");

if(myFile.ready())
{

System.out.printin("File Opened.");

BufferedReader bfr = new BufferedReader(myFile);
ArrayList dataAll = new ArrayList();

String line = bfr.readLine();

while (line = null)

{

System.out.printin("READ>" + line + "<");
StringTokenizer tokenizer=new StringTokenizer(line,",");
Vector datalLine = new Vector();

for (inti=0; i<7; i++)

if (tokenizer.hasMoreTokens())

{
dataLine.addElement(tokenizer.nextToken());
}
else
{
myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);
return;
}

}

if (tokenizer.hasMoreTokens())

myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);

97

return;

}
else
dataAll.add(dataLine);
}
line = bfr.readLine();
}
// Display dataAll

System.out.printin("dataAll:");
for (int i=0; i<dataAll.size(); i++)

{
Vector oneline = (Vector)dataAll.get(i);
if (string2int((String)oneline.get(5)) == selectedday)
for (int j=0; j<oneline.size(); j++)
line = (String)oneline.get());
if (isAllNum(line))
{
System.out.print(string2int(line) + " ");
}
else
{
System.out.printin("Data in the file error at line <ERROR>" + i);
return;
}
}
System.out.printin();
line = (String)oneline.get(1);
Point p = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(1)) , string2int((String)oneline.get(2)),

string2int((String)oneline.get(6)));
points.appendPoint(p);

}
}
}
else
{
System.out.printin("Directory or File dose not exist.");
}
}
catch (Exception e)
{
System.out.printin("Cannot Find File");
}
}
private static boolean isAIINum(String s)
{

for (int i=0; i<s.length(); i++)

if (('s.charAt(i)<'0") || (s.charAt(i)>'9"))
return false;

98

}

return true;

private static int string2int(String s)
int out = O;
for (int i=0; i<s.length(); i++)
out *= 10;
out += s.charAt(i) - 48;
return out;
kkkkkkkkkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkhkhkkkkhkkhkkhkkkkhkkkhkkkkhkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkkkhkkkhkkkkhkkkkhkkkkhkkkkkkkkkx
Point
/**

* Demonstrate the charactor of the points and the method of getting distance
* bewteen two points.
* @version (30_06_2005)
*/
public class Point
{
// instance variables
private int id;
private int x;
private int y;
private int goods;
private double tan;

/**
* Constructor for objects of class Point
*/
public Point(int inputID, int inputX, int inputY, int inputGoods)
{
/l initialise instance variables
id = inputlID;
X = inputX;
y = inputY;
goods = inputGoods;
tan = 0;

}

/**

* return ID

*/
public int getID()
{

}

return id;

99

/**

* return X

*/
public int getX()
{

}

return x;

/**

*returny

*/
public int getY()
{

}

returny;

/**

* return goods

*/
public int getGoods()
{

}

return goods;

/**

* return tan

*/
public double getTan()
{

}

return tan;

/**

* Calculate the distance between two Points

*

* @Parameterl: Another Point p
* return: distance between these 2 points
*/

public float getDistance(Point p)

{
double squareDis = ((double)(x - p.getX())) * ((double)(x - p.getX())) + ((double)(y -

p.getY())) * ((double)(y - p.getY()));
return (float) Math.sqrt(squareDis);
}

/**

* Calculate the tan() value between current Point and Depot

*

* @Parameterl: Depot point
* return: tan() value between these 2 points

100

*/
public void calculateTan(Point depot)

{
double disX = (double)(x - depot.getX());
if (disX ==0.0d)
{
if (y >= depot.getY())
tan = 9.999999999E9d;
else
tan = -9.999999999E9d,;
}
double disY = (double)(y - depot.getY());
tan = (double)(disY/disX);
}
/**

* Clone a point

*

* @Parameterl: point
* return:
*/
public void clonePoint(Point p)
{
id = p.getID();
x = p.getX();
y = p.getY();
goods = p.getGoods();
tan = p.getTan();

/**

* Clone a point

*

* @Parameterl: point
* return:
*/
public boolean equals(Point p)

{

if (id !=p.getID())
return false;

if (x!=p.getX())
return false;

if (y!=p.getY())
return false;

if (goods != p.getGoods())
return false;

return true;

}

*kkkkkkkkkkkhhhhhhhhhhhhhhhkhhhhhhhkkkhhhhhkhkkkkhhhhhhhhhhhhhhhkkkkkkkkkkhkhkhhkhkkkkkkhkhkkkkkkkhhkkkkkkkhkhkhkkkkkkkkx

PointUnion

101

import java.util. ArrayList;

/**
* Demonstrate several actions of points in the algorithm process.
* @version (30_06_2005)
*/

public class PointsUnion

{

private ArrayList union;

/**
* Constructor for objects of class PointsUnion
*/

public PointsUnion()

{

/I initialise instance variables
union = new ArrayList();

/**
* Appends a point to the end of this union.
*/

public boolean appendPoint(Point p)

{

}

/**
* Deletes a point at specified position.
*/

public void removePoint(int index)

{
}

return(union.add(p));

union.remove(index);

/**
* Clear all points
*/
public void clearAllPoints()

{
}

union.clear();

/**

* Search for a specified point
* Return: index of that point if found, -1 if not found
*/

public int searchPoint(Point p)

{

return(union.indexOf(p));

102

}
/**

* return the number of pointUnion
*/

public int getSize()

{

}

return(union.size());

/**
* Return the point at the specified index number
*/

public Point getPoint(int index)

{

}

return((Point)(union.get(index)));

/**
* Return the distance between two points at the specified index numbers
*/

public float getDistance(int pointl, int point2)

{

}

return(getPoint(pointl).getDistance(getPoint(point2)));

/**
* Return the distance between two points at the specified index numbers
*/

public void sortPointsByTan()

{
Point tmpPoint = new Point(0, 0, 0, 0);
/I sorting
for (int i=1; i<getSize(); i++)
{
for (int j=0; j<getSize()-i; j++)
if (getPoint(j).getTan() > getPoint(j+1).getTan())
tmpPoint.clonePoint(getPoint(j));
getPoint(j).clonePoint(getPoint(j+1));
getPoint(j+1).clonePoint(tmpPoint);
}
}
}
}
/**

* Return the distance between two points at the specified index numbers
*/
public double calculateAllGoods()

103

double total = 0.0d;

for (int i=0; i<union.size(); i++)
total += getPoint(i).getGoods();

return total;

/**
* Return the distance between two points at the specified index numbers
*/
public int findPoint(Point p)
for (int i=0; i<union.size(); i++)
if (getPoint(i).equals(p))
return i;
return -1;
*kkkkkkkkkkkhhkkhhkkhhkkhhkkhhkhkhhkhhhhhhhkhhhhhhkkhhhhhhkkhhhhhhkhhkkhhhkhhhkhhhkhhhhhhkhhrkhhhrkhhrhhhhhhkkhhhkhhhkkhhrhikiiix
Route
/**

* Demonstrate that the total demand of the route is the only contraint that
* every route need to consider when define such route is feasible or not
* @version (28 _06_2005)
*/

public class Route extends PointsUnion

{

private Point depot;

public int optimizedTimes;

public int removedPoints;

public int addedPoints;

public boolean selectedAsRoutel;

/**
* Constructor for objects of class Route
*/
public Route(Point p)
{
super();
depot = p;
optimizedTimes = 0;
removedPoints = 0;
addedPoints = 0;
selectedAsRoutel = true;
}

public void resetStatus()

104

optimizedTimes = 0;
removedPoints = 0;
addedPoints = 0;
selectedAsRoutel = true;

}

/**

* method for checking whether the total quantity of the goods exceeds the
* demand of each route or not

*/
public boolean overLoad(Point p)
{
int totalweight = O;
for (int i=0; i<getSize(); i++)
totalweight += getPoint(i).getGoods();
totalweight += p.getGoods();
if (totalweight <= depot.getGoods())
return false;
else
return true;
}
/**

* method for checking whether the total quantity of the goods exceeds the
* demand of each route or not
*/
public void resortByDistance()
{
Point startPoint = depot;
Route newRoute = new Route(depot); //Every new route will start from the depot
do
{
int selectedNode = -1; // no selected point at first
float shortestDistance = 0.0f;

/**
* Loop for all of the points in unionM to find out the nearest points
* to depot.
*/

for (int j=0; j<getSize(); j++)

if (selectedNode ==-1)

{
selectedNode = j;
shortestDistance = startPoint.getDistance(getPoint(j));
}
else
{

float tempDistance = startPoint.getDistance(getPoint(j));
if (tempDistance == shortestDistance) // The 2 points have same distance.
Select one which contains more goods.

if (getPoint(j).getGoods() > getPoint(selectedNode).getGoods())

105

selectedNode = j;
/I As 2 distances are same, need not change shortestDistance.

}
}
if (tempDistance < shortestDistance)
{
selectedNode = j;
shortestDistance = tempDistance;
}
}
}
if (selectedNode !=-1) //some satisfied point has been searched
{
if (newRoute.appendPoint(getPoint(selectedNode)))
{
startPoint = getPoint(selectedNode); // reset startpoint
removePoint(selectedNode); // delete the selected point from unionM
}
else
{
System.out.printin("Adding method of ArrayList failed!");
return;
}
else // no new point, this current route is finished
{

// there are no points in the newroute
if (newRoute.getSize() ==0)

{
if (getSize()'=0)
{
System.out.printin(*There aref/is point(s) left unselected. Algorithm
Failed!");
}
break;
}
/I if there are points in the newroute, save this route
for (int j=0; j<newRoute.getSize(); j++)
if (! appendPoint(newRoute.getPoint(j)))
{
System.out.printin("Adding method of ArrayList failed!");
return;
}
}
break;
twhile (true);
}

106

/**
* exchange Points, add insertpoint, delete a point

* return : integer>0: as can exchage successful, return the ID of the point need to exchange in
the route

* -1: cannot perform exchage as the insertpoint is too large for it's goods.
*/

public int findExchangePoint(Point insertpoint)

{

int totalweight = 0;
for (int i=0; i<getSize(); i++)
totalweight += getPoint(i).getGoods();

int selectedpoint = -1;
Point deletePoint = new Point(0, 0, 0, 0);
for (int i=0; i<getSize(); i++)

if ((totalweight - getPoint(i).getGoods() + insertpoint.getGoods()) <=
depot.getGoods())
{

if (selectedpoint ==-1)

{
selectedpoint = i;
deletePoint = getPoint(i);

}
if (getPoint(i).getGoods() < deletePoint.getGoods())

selectedpoint = i;
deletePoint = getPoint(i);

}
} -
return selectedpoint;

}

public void cloneRoute(Route r)

{
optimizedTimes = r.optimizedTimes;
removedPoints = r.removedPoints;
addedPoints = r.addedPoints;
selectedAsRoutel = r.selectedAsRoutel;

for (int i=getSize(); i>0; i--)
removePoint(i-1);

for (int i=0; i<r.getSize(); i++)
appendPoint(r.getPoint(i));

public double getLength()

{
if (getSize() ==0)
return 0.0d;

double routeLength = 0.0d;
for (int j=0; j<getSize(); j++)

107

if (j==0) /I The first point connected with depot
routeLength += depot.getDistance(getPoint(0));
else
routeLength += getDistance(j, j-1);

routeLength += depot.getDistance(getPoint(getSize()-1)); // finish the total length of the
route

return routeLength;
kkkkkkkkkkkkkhkkhkkhkhkhkhkkhkkhkkkkhkhkkhkkkhkkkhkkhkkhkhkhkkkkkkhkkkkhkhkkhkkkhkkkhkkkkkhkhkkhkkkkkkkhkkhkkkhkhkkhkkhkkkkkkkkkkkk
Result

import java.util. ArrayList;

/**
* @version (30_06_2005)
*/

public class Result

{

private Point depot;

private Point zeroPoint;

private Point leftPoint;

private PointsUnion cannotBeAddedPoints;
private int manipulatingPoint;

private ArrayList routes;

/**
* Constructor for objects of class Result
*/
public Result(Point resultDepot, ArrayList resultRoutes)

{

depot = resultDepot;

routes = resultRoutes;

zeroPoint = new Point(0, 0, 0, 0);

leftPoint = new Point(0, 0, 0, 0);
cannotBeAddedPoints = new PointsUnion();

public void resetStatus()

{
for (int i=0; i<routes.size(); i++)
((Route)routes.get(i)).resetStatus();
for (int i=cannotBeAddedPoints.getSize()-1; i>=0; i--)
cannotBeAddedPoints.removePoint(i);
leftPoint = zeroPoint;
}

108

public void showResult_ID()
{
/I Show Result again using ID instead of X,Y coordinates
System.out.printin();
System.out.printin();
System.out.printin("The Result shows in ID:");
double totalLength = 0.0d;
int totalPoints = 0;
for (int i=0; i<routes.size(); i++)
{
float routeLength = 0.0f;
System.out.print("Route " +i +":");
Route newRoute = (Route)routes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" " + newRoute.getPoint(j).getID() + ",);
totalPoints++;
if (j==0) /I The first point connected with depot
routeLength += depot.getDistance(newRoute.getPoint(0));
else
routeLength += newRoute.getDistance(j, j-1);
}
routeLength += depot.getDistance(newRoute.getPoint(hewRoute.getSize()-1)); //
finish the total length of the route
System.out.printin(" Length:" + routeLength);
totalLength += routeLength;
}
System.out.printin();
System.out.printin("The Total Length of " + routes.size() + " line(s): " + totalLength);
System.out.printin("The Total Number of the Points: " + totalPoints);

public void removeNullRoutes()

{
for (int i=0; i<routes.size(); i++)
{
Route newRoute = (Route)routes.get(i);
if (newRoute.getSize() ==0)
routes.remove(i);
}
}

public double totalLength ()

double tl = 0.0d;
for (int i=0; i<routes.size(); i++)

tl += ((Route)routes.get(i)).getLength();
return tl;

109

public int totalPoints ()

{
inttp =0;
for (int i=0; i<routes.size(); i++)
tp += ((Route)routes.get(i)).getSize();
return tp;
}

public void optimize_Method_1(boolean display)
{

if (routes.size() <=1)

return;

}

boolean result = true;

int selectedRoute = 0;

int selectedRoute2 = 0;

Route optimizeRoutel = new Route(depot);
Route optimizeRoute2 = new Route(depot);

do
if (result && (!leftPoint.equals(zeroPoint)))
{
selectedRoute = selectedRoute2;
optimizeRoutel = (Route)routes.get(selectedRoute);
}
if (leftPoint.equals(zeroPoint))
{
Il select routel, routel here selected is the start route.
selectedRoute = selectMinimumGoods();
if (selectedRoute ==-1) // All routes have been added or removed point
break;
else
optimizeRoutel = (Route)routes.get(selectedRoute);
}

selectedRoute2 = selectedRoute;
selectedRoute2++;
if (selectedRoute2 == routes.size())
selectedRoute2 = 0;
optimizeRoute2 = (Route)routes.get(selectedRoute?2);

if (display) System.out.print("Try Optimizing: " + selectedRoute + "
selectedRoute2 +". ");

result = Optimize_Function_1(optimizeRoutel, optimizeRoute?2);

optimizeRoutel.selectedAsRoutel = false;

if (display) System.out.print("Selected Point ID:" + manipulatingPoint + . ");

if (result)

Il change the selectedAsRoutel of the previous route of routel if necessary
int preRoute;

110

if (selectedRoute ==0)
preRoute = routes.size() - 1;
else
preRoute = selectedRoute - 1;
if ((((Route)routes.get(preRoute)).selectedAsRoutel == false) &&
(((Route)routes.get(preRoute)).removedPoints == 0)) // preRoute has been selected as routel
and failed optimization at that time.
((Route)routes.get(preRoute)).selectedAsRoutel = true;

if (display)
{
System.out.print("Success. ");
if (leftPoint.equals(zeroPoint))
System.out.printin("One point added.");
else
System.out.printin("One point replaced.");

}

else
if (display) System.out.printin("Failed.");

} while (true);

// Deal with remaining cannotBeAddedPoints

if (cannotBeAddedPoints.getSize() == 0)
return;

if (display)

{

System.out.printin();
System.out.print("Remaining Points:");
for (int i=0; i<cannotBeAddedPoints.getSize(); i++)
System.out.print(" " + cannotBeAddedPoints.getPoint(i).getID());
System.out.printin();
System.out.printin("Dealing with remaining cannotBeAddedPoints:");

}
/*

for (int i=0; i<cannotBeAddedPoints.getSize(); i++)
addOnePointInRoutes(cannotBeAddedPoints.getPoint(i), display);

for (int i=cannotBeAddedPoints.getSize()-1; i>=0; i--)
cannotBeAddedPoints.removePoint(i);

*/

cannotBeAddedPoints.sortPointsByTan(); // sort the points

while (cannotBeAddedPoints.getSize() > 0) /I there are points left in
cannotBeAddedPoints

{

/I Create one empty route
Route newRoute = new Route(depot);

// add first point

Point firstPoint = cannotBeAddedPoints.getPoint(0);
newRoute.appendPoint(cannotBeAddedPoints.getPoint(0));

111

/I delete this point from cannotBeAddedPoints
cannotBeAddedPoints.removePoint(0);

if (cannotBeAddedPoints.getSize() == 0) /[only first point left in
cannotBeAddedPoints
{

routes.add(newRoute); // save this route

// Show the added route
if (display)
{
System.out.print("Added in Route " + (routes.size()-1) + " :");
for (int i=0; i<((Route)routes.get(routes.size()-1)).getSize(); i++)
System.out.print(" " +
((Route)routes.get(routes.size()-1)).getPoint(i).getID());
System.out.printin();
}

break;

}

// add remaining points if possible
while (cannotBeAddedPoints.getSize() > 0)
{
Point checkPoint = cannotBeAddedPoints.getPoint(0);
if ((InewRoute.overLoad(checkPoint)) &&
(findRouteBetweenTwoPoints(firstPoint, checkPoint) ==-1))
/lif ('newRoute.overLoad(checkPoint))
{
/[add a new point
newRoute.appendPoint(checkPoint); // add check point
cannotBeAddedPoints.removePoint(0); // delete it from cannotBeAddedPoints

if (cannotBeAddedPoints.getSize() == 0) /[no point left in
cannotBeAddedPoints
{

routes.add(newRoute); // save this route

/I Show the added route
if (display)
{

System.out.print("Added in Route " + (routes.size()-1) + " :");
for (int i=0; i<((Route)routes.get(routes.size()-1)).getSize(); i++)
System.out.print(" " +
((Route)routes.get(routes.size()-1)).getPoint(i).getID());
System.out.printin();

}
break;
}
}
else
{

/I cannot add new point. Terminate this route
newRoute.resortByDistance(); // connect the route in order

112

routes.add(newRoute); // save this route

/I Show the added route
if (display)
{

System.out.print("Added in Route " + (routes.size()-1) + " "),
for (int i=0; i<((Route)routes.get(routes.size()-1)).getSize(); i++)
System.out.print(" "
((Route)routes.get(routes.size()-1)).getPoint(i).getID());
System.out.printin();
}

break; // start a new route

public void sortRoutesByTan()

{
PointsUnion leftOrder = new PointsUnion();
PointsUnion rightOrder = new PointsUnion();

for (int i=0; i<routes.size(); i++)
{
Route thisRoute = (Route)routes.get(i);
int selectedpoint = thisRoute.getSize()-1; // Last point
if ((thisRoute.getPoint(0).getX()-depot.getX())
(thisRoute.getPoint(selectedpoint).getX()-depot.getX()) >=0)

if (thisRoute.getPoint(0).getTan() > thisRoute.getPoint(selectedpoint).getTan())
selectedpoint = 0;

}
else
{
if (thisRoute.getPoint(0).getTan() < thisRoute.getPoint(selectedpoint).getTan())
selectedpoint = 0;
}

Point newPoint = new Point(0, 0, 0, 0);
newPoint.clonePoint(thisRoute.getPoint(selectedpoint));

if (newPoint.getX() > depot.getX()) // right side
rightOrder.appendPoint(newPoint);

else Il left side
leftOrder.appendPoint(newPoint);

}

leftOrder.sortPointsByTan();
rightOrder.sortPointsByTan();

I rightOrder + leftOrder = orderPoints;

PointsUnion orderPoints = new PointsUnion();
for (int i=0; i<rightOrder.getSize(); i++)

113

orderPoints.appendPoint(rightOrder.getPoint(i));
for (int i=0; i<leftOrder.getSize(); i++)
orderPoints.appendPoint(leftOrder.getPoint(i));

Il create a copy for routes

ArrayList temp = new ArrayList();

for (int i=0; i<routes.size(); i++)
temp.add(routes.get(i));

/I clear routes to wait for routes inserting in order
routes.clear();

/I move each route into routes in the order
if (orderPoints.getSize() != temp.size())

{
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
return;
}
for (int i=0; i<orderPoints.getSize(); i++)
{
Point orderPoint = orderPoints.getPoint(i);
int j;
for (j=0; j<temp.size(); j++)
/I check whether orderPoint in route templ[j]
if (((Route)temp.get(j)).findPoint(orderPoint) !=-1)
routes.add((Route)temp.get()));
break;
}
}
if (j==temp.size())
{
System.out.printin("ERROR happens in sortRoutesByTan !!'");
System.out.printin("ERROR happens in sortRoutesByTan !!'");
System.out.printin("ERROR happens in sortRoutesByTan ");
return;
}
}

I/l check routes at last
if (orderPoints.getSize() != routes.size())

{
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
return;

}

114

private int selectMinimumGoods()
{
I/l Select the minimum demand route which has not been optimized
double minimumGoods = 0.0d;
int selectedRoute = -1;
for (int i=0; i<routes.size(); i++)
{
Route newRoute = (Route)routes.get(i);
/I Check whether has been optimized
if ((newRoute.addedPoints > 0) || ('newRoute.selectedAsRoutel))

{
}

else

{

continue;

/I 1s it the first one which has not been optimized
if (selectedRoute ==-1)

{

selectedRoute = i;
minimumGoods = newRoute.calculateAllGoods();

else /I Compare and select minimum

{

double temp = newRoute.calculateAllGoods();
if (temp < minimumGoods)
{

minimumGoods = temp;

selectedRoute = i;

}

return selectedRoute;

private boolean Optimize_Function_1(Route routel, Route route2)

I/l Check if left point need to insert into route2
if (leftPoint.equals(zeroPoint))

{

/I no point left. Select a proper point from routel

int selectedpoint = routel.getSize()-1; // Last point

if ((routel.getPoint(0).getX()-depot.getX())
(routel.getPoint(selectedpoint).getX()-depot.getX()) >=0)

if (routel.getPoint(0).getTan() > routel.getPoint(selectedpoint).getTan())
selectedpoint = 0;

}
else
if (routel.getPoint(0).getTan() < routel.getPoint(selectedpoint).getTan())
selectedpoint = 0;
}

115

/I select that point
leftPoint = routel.getPoint(selectedpoint); // save the point as leftPoint

}

Il record selected point ID.
manipulatingPoint = leftPoint.getID();

/I add leftPoint into route2

if (route2.overLoad(leftPoint))

{
/I overload
int deletepoint = route2.findExchangePoint(leftPoint);
if (deletepoint ==-1)

Il exchange failed, cannot exchange leftPoint into route2
if (routel.addedPoints > 0) // routel is not a start route
{

/I remove the leftPoint in routel

int selectedpoint = routel.findPoint(leftPoint);

if (selectedpoint<0)

{ System.out.printin("'ERROR ERROR ERROR ERROR ERROR !l
System.out.printin("ERROR ERROR ERROR ERROR ERROR !!!
System.out.printin("ERROR ERROR ERROR ERROR ERROR !l

} return false;

routel.removePoint(selectedpoint);
routel.removedPoints++;
routel.resortByDistance();

/[and save it into cannotBeAddedPoints
cannotBeAddedPoints.appendPoint(leftPoint);

leftPoint = zeroPoint; // reset leftPoint
else /I routel is a start route

leftPoint = zeroPoint; // reset leftPoint

}

return false;
}
else
{

/I exchange successful

int selectedpoint = routel.findPoint(leftPoint);

if (selectedpoint<0)

{
System.out.printin("ERROR ERROR ERROR ERROR ERROR!II™M);
System.out.printin("ERROR ERROR ERROR ERROR ERROR!");
System.out.printin("ERROR ERROR ERROR ERROR ERROR!");
return false;

116

}

routel.removePoint(selectedpoint);
routel.removedPoints++;
routel.resortByDistance();

route2.appendPoint(leftPoint); // add left point

leftPoint = route2.getPoint(deletepoint); // set new left point
route2.resortByDistance();

route2.addedPoints++;

return true;

else /I not overload
{
int selectedpoint = routel.findPoint(leftPoint);
if (selectedpoint<0)
{
System.out.printin("ERROR ERROR ERROR ERROR ERROR!");
System.out.printin("ERROR ERROR ERROR ERROR ERROR!II™M);
System.out.printin("ERROR ERROR ERROR ERROR ERROR!II™);
return false;
}
routel.removePoint(selectedpoint);
routel.removedPoints++;
routel.resortByDistance();

route2.appendPoint(leftPoint);
route2.addedPoints++;
route2.resortByDistance();

leftPoint = zeroPoint; // reset leftPoint
return true;

/**

* find the first route in which all of the points lie between two input points
* return : integer>=0, the index of the corresponding route in routes

* -1: cannot find the corresponding route
*/
private int findRouteBetweenTwoPoints(Point p1, Point p2)

{
double smalltan = pl.getTan();

double largetan = p2.getTan();
if (smalltan>largetan) // exchage them

double temp = smalltan;
smalltan = largetan;
largetan = temp;

}

for (int i=0; i<routes.size(); i++)

{

Route checkRoute = (Route)routes.get(i);

117

boolean allRouteln = true;
for (int j=0; j<checkRoute.getSize(); j++)

double checkTan = checkRoute.getPoint(j).getTan();
if ((checkTan < smalltan) || (checkTan > largetan))

{
allRouteln = false;
break;
}
}
if (allRouteln)
return i;
}
return -1;

private void addOnePointinRoutes(Point p , boolean display)
{

double smallestDis = depot.getDistance(p) * 2 ;

int selectedRoute = -1;

for (int i=0; i<routes.size(); i++)

if (((Route)routes.get(i)).overLoad(p))
continue;

else

{
Route testRoute = new Route(depot);
testRoute.cloneRoute((Route)routes.get(i));
testRoute.appendPoint(p);
testRoute.resortByDistance();
double increasedLength = testRoute.getLength() -

((Route)routes.get(i)).getLength();

if (increasedLength < 0.0d)

{
System.out.printin("ERROR ERROR ERROR");
}
if (increasedLength<smallestDis)
{
selectedRoute = i;
smallestDis = increasedLength;
}
}
}
if (selectedRoute ==-1)
{

Route newRoute = new Route(depot);

newRoute.appendPoint(p);

routes.add(newRoute);

if (display) System.out.printin("Add point " + p.getID() + " in a sing-point new Route "
+ (routes.size()-1));

118

else

{
((Route)routes.get(selectedRoute)).appendPoint(p);

((Route)routes.get(selectedRoute)).resortByDistance();
if (display) System.out.printin("Add point " + p.getiD() + " in Route "
selectedRoute);
}
}
}

6.3 final program of algorithm

*kkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkhkkhkkkkhkkkhkkkkhkkkkkkkkhkkkkkkkkhkkhkkkkhkkhkkkhkkkhkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkk
Algorithm

import java.io.*;

import java.util.Vector;

import java.util. StringTokenizer;

import java.util. ArrayList;

import java.util.Date;

import java.lang.String;

/**
*Demonstrate the way of getting the feasible routes in every weekday
* @version (28_08_2005)
*/

public class Algorithm

{
private ArrayList pointsM = new ArrayList();

public static void main(String[] args)

{

int selectionDay = 0;
if (args.length !1=1)

System.out.printin("Please Input 1 Parameter.");
return;

/**
* The method of "isAlINum" has been given in the coming part, which
* is used to remind user whether the imput of day is right or wrong.
*/
if (lisAlINum(args[0]))
{
System.out.printin("Wrong Parameter!");
return;

}

else

{

/**

* Transfer the data of "args[]" from string to int since "selectionDay" is int

**/

selectionDay = string2int(args[0]);

119

}

Date currentTime = new Date();

long milSecond = currentTime.getTime();

System.out.println("Time Start to Read Data:" + milSecond);
System.out.printin();

/**

* Add depot and all the points afterwards

*/
Point depot = new Point(0, 677908, 6150220, 66);
PointsUnion unionM = new PointsUnion();
PointsUnion unionM1 = new PointsUnion();
PointsUnion unionM2 = new PointsUnion();
readFile(unionM1, unionM2, selectionDay);
unionM1.reducePointsUnionSize(100);
unionM2.reducePointsUnionSize(100);

currentTime = new Date();

milSecond = currentTime.getTime();
System.out.printin("Time End:" + milSecond);
System.out.printin();

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.println("Time Start of Algorithm Calculation:" + milSecond);
System.out.printin();

/I Calculate the tan value for all of the points

for (int i=0; i<unionM1.getSize(); i++)
unionM1.getPoint(i).calculateTan(depot);

for ((int i=0; i<unionM2.getSize(); i++)
unionM2.getPoint(i).calculateTan(depot);

/I First Part

ArrayList routesl = new ArrayList();

unionM1.generateRoutesByDistance(depot, routesl);

Result resultl = new Result(depot, routesl);

resultl.showResult_ID();

System.out.printin("Total Length: " + resultl.totalLength() + " Total Points: " +
resultl.totalPoints());

int stepLength = 1;

boolean usingResetSteplength = true;

boolean resetStepLength;

resetStepLength = usingResetSteplength;

do

{
resultl.sortRoutesByTan();
resultl.optimize_Method_1(stepLength, true, false);
resultl.removeNullRoutes();
resultl.optimize_Method_1(stepLength, false, false);
resultl.removeNullRoutes();

120

if (resultl.noChange())

{
stepLength++;
/ reset stepLength
if (resetStepLength)
{
stepLength = 1;
resetStepLength = false;
}
if (stepLength >6) // reach MAX stepLength
break;
else
{
System.out.printin("Change stepLength to: " + stepLength);
continue;
}
}
else
{
resetStepLength = usingResetSteplength;
}
/lresult.showResult_ID();
System.out.printin("Total Length: " + resultl.totalLength() + " Total Points: " +

resultl.totalPoints());
resultl.resetStatus();
} while (true);

/I Final Result
System.out.printin("Final Result of First Part:");
resultl.showResult_ID();

/I Second Part

ArrayList routes2 = new ArrayList();

unionM2.generateRoutesByDistance(depot, routes?2);

Result result2 = new Result(depot, routes?);

result2.showResult_ID();

System.out.printin("Total Length: " + result2.totalLength() + " Total Points: " +
result2.totalPoints());

stepLength = 1;

usingResetSteplength = true;

resetStepLength = false;

resetStepLength = usingResetSteplength;

do

{
result2.sortRoutesByTan();
result2.optimize_Method_1(stepLength, true, false);
result2.removeNullRoutes();
result2.optimize_Method_1(stepLength, false, false);
result2.removeNullRoutes();

if (result2.noChange())

121

stepLength++;

/I reset stepLength
if (resetStepLength)

{
stepLength = 1;
resetStepLength = false;
}
if (stepLength >8) // reach MAX stepLength
break;
else
{
System.out.printin("Change stepLength to: " + stepLength);
continue;
}
}
else
{
resetStepLength = usingResetSteplength;
}
[lresult.showResult_ID();
System.out.printin("Total Length: " + result2.totalLength() + " Total Points: "

result2.totalPoints());
result2.resetStatus();
} while (true);

Il Final Result
System.out.printin("Final Result of Second Part:");
result2.showResult_ID();

/I combine first part and second part
ArrayList overLoad2Routes = new ArrayList();
resultl.makeRelationShip(result2, overLoad2Routes);
if (overLoad2Routes.size() 1=0)
{

System.out.printin("There is(are) OverLoad pair(s) of routes! ");

for (int i=0; i<overLoad2Routes.size(); i+=2)

System.out.printin(overLoad2Routes.get(i) + " and
overLoad2Routes.get(i+1));

// Result before dealing with overLoadRoutes

System.out.printin();

System.out.printIn();

System.out.printIn();

System.out.printin();

System.out.printIn();

System.out.printin("Result of First Part before dealing with overLoadRoutes:");
resultl.showResult_ID();

System.out.printin();

System.out.printin("Result of Second Part before dealing with overLoadRoutes:");
result2.showResult_ID();

122

while (overLoad2Routes.size() > 0)

{
modifyOverLoadRoutes(depot, resultl, result2, overLoad2Routes);
overLoad2Routes = new ArrayList();
resultl.makeRelationShip(result2, overLoad2Routes);

}

/l Final Result

System.out.printin();

System.out.println("Final Result of First Part:");
resultl.showResult_ID();

System.out.printin();

System.out.println("Final Result of Second Part:");
result2.showResult_ID();

currentTime = new Date();

milSecond = currentTime.getTime();

System.out.printin("Time End of Algorithm Calculation:" + milSecond);
System.out.println();

private static void readFile(PointsUnion firstPartPoints, PointsUnion secondPartPoints, int
selectedday)

{
try
{
/IFileReader myFile = new FileReader("D:\\BlueJ\\MyProject\\data.csv");
FileReader myFile = new FileReader("data.csv");

if(myFile.ready())

{
System.out.printin("File Opened.");

BufferedReader bfr = new BufferedReader(myFile);
ArrayList dataAll = new ArrayList();
String line = bfr.readLine();
while (line !'=null)
{
System.out.printin("READ>" + line + "<");
StringTokenizer tokenizer=new StringTokenizer(line,",");
Vector datalLine = new Vector();
for (int i=0; i<7; i++)
{

if (tokenizer.hasMoreTokens())

{
}

else

{

datalLine.addElement(tokenizer.nextToken());

myFile.close();

System.out.printin("Data in the file error at line <ERROR>" +
line);

return;

123

}

if (tokenizer.hasMoreTokens())

myFile.close();
System.out.printin("Data in the file error at line <ERROR>" + line);

return;
}
else
{
dataAll.add(dataLine);
}

line = bfr.readLine();

}

/I Display dataAll
System.out.printin("dataAll:");
for (int i=0; i<dataAll.size(); i++)

{
Vector oneline = (Vector)dataAll.get(i);
if (string2int((String)oneline.get(5)) == selectedday)
for (int j=0; j<oneline.size(); j++)
{
line = (String)oneline.get());
if (iIsAlINum(line))
{
System.out.print(string2int(line) + " ");
}
else
{
System.out.printin("Data in the file error at line <ERROR>"
+i);
return;
}

}

System.out.printin();

line = (String)oneline.get(1);

Point pl = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(1)) , string2int((String)oneline.get(2)),
string2int((String)oneline.get(6)));

Point p2 = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(3)) . string2int((String)oneline.get(4)),

string2int((String)oneline.get(6)));
firstPartPoints.appendPoint(pl);
secondPartPoints.appendPoint(p2);

}
}
}
else
{
System.out.printin("Directory or File dose not exist.");
}

}

catch (Exception e)

124

System.out.printin("Cannot Find File");

}
}
private static boolean isAlINum(String s)
{
for (int i=0; i<s.length(); i++)
if ((s.charAt(i)<'0") || (s.charAt(i)>'9"))
return false;
}
return true;
}
private static int string2int(String s)
{
int out = 0;
for (int i=0; i<s.length(); i++)
{
out *= 10;
out += s.charAt(i) - 48;
}
return out;
}

private static void modifyOverLoadRoutes(Point depot, Result resultl, Result result2,
ArrayList overLoad2Routes)
{
int bestTime = (16 - (40 + 2*depot.getGoods())/ 60) / 2;
double speed = 60000;

ArrayList hasBeenSplittedInR1 = new ArrayList();
ArrayList hasBeenSplittedInR2 = new ArrayList();

int selectPart = 0;
for (int i=0; i<overLoad2Routes.size(); i+=2)
{
String tmp = overLoad2Routes.get(i).toString();
int posl = string2int(tmp);
tmp = overLoad2Routes.get(i+1).toString();
int pos2 = string2int(tmp);

if (hasBeenSplittedInR1.contains(posl) || hasBeenSplittedInR2.contains(pos2))
continue;

double lengthl = ((Route)(resultl.routes.get((posl)
double length2 = ((Route)(result2.routes.get((pos2)
if (lengthl >=length2)

selectPart = 1;

)).getLength();
)).getLength();

~—

else
selectPart = 2;

Route splittedRoute;
int splittedNumber = 0O;

125

double averagelLength = 0.0d;
if (selectPart==1)

{

else

}

splittedRoute = (Route)(resultl.routes.get((posl)));
splittedNumber = (int)((lengthl/speed)/(double)bestTime) + 1;
if (splittedNumber ==1)

splittedNumber = 2;
averagelength = length1/splittedNumber;

hasBeenSplittedinR1.add(posl);

splittedRoute = (Route)(result2.routes.get((pos2)));
splittedNumber = (int)((length2/speed)/(double)bestTime) + 1;
if (splittedNumber ==1)

splittedNumber = 2;
averagelength = length2/splittedNumber;

hasBeenSplittedinR2.add(pos2);

ArrayList newRoutes = new ArrayList();
for (int j=0; j<splittedNumber; j++)

// Find the farest point

int farestPoint = -1;

double farestDistance = 0.0d;

for (int k=0; k<splittedRoute.getSize(); k++)

if (farestPoint ==-1)

{
farestPoint = k;
farestDistance = splittedRoute.getPoint(k).getDistance(depot);
}
else
{
double tmplength = splittedRoute.getPoint(k).getDistance(depot);
if (tmplength > farestDistance)
farestDistance = tmplength;
farestPoint = k;
}
}

}

/I Create a new route and add the farestPoint

Route oneNewRoute = new Route(depot);
oneNewRoute.appendPoint(splittedRoute.getPoint(farestPoint));
/I Save and Delete farset point

Point lastPoint = splittedRoute.getPoint(farestPoint);
splittedRoute.removePoint(farestPoint);

while (true)

126

/l Add the remaining point which is nearest with lastPoint and routeLength
possible

int shortestPoint = -1;

double shortestDistance = 0.0d;

for (int k=0; k<splittedRoute.getSize(); k++)

{
Route testRoute = new Route(depot);;
testRoute.cloneRoute(oneNewRoute);
testRoute.appendPoint(splittedRoute.getPoint(k));
if (testRoute.getLength() > averagelLength)

continue;

else

if (shortestPoint ==-1)
{
shortestDistance =
splittedRoute.getPoint(k).getDistance(lastPoint);
shortestPoint = k;
}
else
double tmpDis =

splittedRoute.getPoint(k).getDistance(lastPoint);
if (tmpDis < shortestDistance)

{
shortestDistance = tmpDis;
shortestPoint = k;
}
}
}
}
if (shortestPoint ==-1)
break;
else
{
// add shortestPoint
oneNewRoute.appendPoint(splittedRoute.getPoint(shortestPoint));
/l save and delete shortestPoint
lastPoint = splittedRoute.getPoint(shortestPoint);
splittedRoute.removePoint(shortestPoint);
}

}

// Add the new route into newRoutes
newRoutes.add(oneNewRoute);

}

/I add remaining point(s)
for (int j=0; j<splittedRoute.getSize(); j++)

int selectRoute = -1;
double shortestinc = 0.0d;
for (int k=0; k<newRoutes.size(); k++)

{

127

if (selectRoute ==-1)
{
selectRoute = 0;
Route testRoute = new Route(depot);;
testRoute.cloneRoute((Route)newRoutes.get(0));
testRoute.appendPoint(splittedRoute.getPoint(j));
shortestinc = testRoute.getLength() -
((Route)newRoutes.get(0)).getLength();
}

else
{
Route testRoute = new Route(depot);;
testRoute.cloneRoute((Route)newRoutes.get(K));
testRoute.appendPoint(splittedRoute.getPoint(j));
double tmplnc = testRoute.getLength() -
((Route)newRoutes.get(k)).getLength();
if (tmplnc < shortestinc)
{
shortestinc = tmpinc;
selectRoute = k;

}

((Route)newRoutes.get(selectRoute)).appendPoint(splittedRoute.getPoint(j));

/I Save the newRoutes, attention we should replace the splittedRoute using the first
route in newRoutes
if (selectPart==1)

{
resultl.routes.set(posl, newRoutes.get(0));
for (int j=1; j<newRoutes.size(); j++)
resultl.routes.add(newRoutes.get(j));
}
else
{
result2.routes.set(pos2, newRoutes.get(0));
for (int j=1; j<newRoutes.size(); j++)
result2.routes.add(newRoutes.get(j));
}
}
}
}
kkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkkkkkkkhkkkhkkkkhkkkkkkkkkkkhkkkkkkkhkhkkhkkhkkkkhkkhkkhkkkhkkkkkkkkkkkkkkhkkkkhkkkkhkkkkkkkhkkkkkkkk
Point
/**

* Demonstrate the charactor of the points and the method of getting distance
* bewteen two points.
* @version (28 _08 2005)
*/
public class Point

{

private int id;

128

private int x;
private inty;
private int goods;
private double tan;

/**
* Constructor for objects of class Point
*/
public Point(int inputID, int inputX, int inputY, int inputGoods)
{
id = inputID;
X = inputX;
y = inputY;
goods = inputGoods;
tan = 0;

}

/**

*return ID

*/
public int getlD()
{

}

return id;

/**

* return x

*/
public int getX()
{

}

return x;

/**

*returny

*/
public int getY()
{

}

return y;

/**

* return goods

*/
public int getGoods()
{

}

return goods;

/**

129

* return tan

*/
public double getTan()
{

}

return tan;

/**

* Calculate the distance between two Points
*

* @Parameterl: Another Point p
* return; distance between these 2 points
*/

public float getDistance(Point p)

{
double squareDis = ((double)(x - p.getX())) * ((double)(x - p.getX())) + ((double)(y -

p.getY())) * ((double)(y - p.getY()));
return (float) Math.sqrt(squareDis);
}

/**
* Calculate the tan() value between current Point and Depot
*
* @Parameterl: Depot point
* return: tan() value between these 2 points

*/
public void calculateTan(Point depot)
{
double disX = (double)(x - depot.getX());
if (disX==0.0d)
if (y >= depot.getY())
tan = 9.999999999E9d;
else
tan = -9.999999999E9d;
}
double disY = (double)(y - depot.getY());
tan = (double)(disY/disX);
}
/**

* Clone a point
* @Parameterl: point
* return;
*/
public void clonePoint(Point p)
{
id = p.getID();
X = p.getX();
y = p.getY();
goods = p.getGoods();

130

tan = p.getTan();

/**

* Clone a point

*

* @Parameterl: point
* return:
*/
public boolean equals(Point p)

{
if (id !=p.getlD())
return false;

if (x!=p.getX())
return false;

if (y!=p.getY())
return false;

if (goods != p.getGoods())
return false;

return true;

}

kkkkkkkkkkkkkkhkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhkhkhkkhkk

PointUnion

import java.util. ArrayList;
import java.util. Random;

/**
* Demonstrate several actions of points in the algorithm process.
* @version (28_08_2005)
*/

public class PointsUnion

{

private ArrayList union;

/**
* Constructor for objects of class PointsUnion
*/

public PointsUnion()

{

}

union = new ArrayList();

/**
* Appends a point to the end of this union.
*

public boolean appendPoint(Point p)

{

}

return(union.add(p));

131

/**
* Deletes a point at specified position.
*/

public void removePoint(int index)

{
}

union.remove(index);

/**
* Clear all points
*
public void clearAllPoints()

{
}

union.clear();

/**

* Search for a specified point
* Return: index of that point if found, -1 if not found

*/
public int searchPoint(Point p)
{
return(union.indexOf(p));
}
/**
* return the number of pointUnion
*/
public int getSize()
{
return(union.size());
}
/**
* Return the point at the specified index number
*/
public Point getPoint(int index)
{
return((Point)(union.get(index)));
}
/**

* Return the distance between two points at the specified index numbers
*/

public float getDistance(int pointl, int point2)

{

}

return(getPoint(pointl).getDistance(getPoint(point2)));

132

/**
* Return the distance between two points at the specified index numbers
*/

public void sortPointsByTan()

{
Point tmpPoint = new Point(0, 0, 0, 0);
Il sorting
for (inti=1; i<getSize(); i++)
{
for (int j=0; j<getSize()-i; j++)
if (getPoint(j).getTan() > getPoint(j+1).getTan())
tmpPoint.clonePoint(getPoint(j));
getPoint(j).clonePoint(getPoint(j+1));
getPoint(j+1).clonePoint(tmpPoint);
}
}
}
}
/**

* Return the distance between two points at the specified index numbers
*/
public double calculateAllGoods()

{
double total = 0.0d;
for (int i=0; i<union.size(); i++)
total += getPoint(i).getGoods();
return total;
}
/**

* Return the distance between two points at the specified index numbers
*/

public int findPoint(Point p)

{

for ((int i=0; i<union.size(); i++)

if (getPoint(i).equals(p))
return i;

}

return -1;

/**
* Using Distance Algorithm to get the routes
*
public void generateRoutesByDistance(Point depot, ArrayList routes)

{

Point startPoint = depot;

133

Route newRoute = new Route(depot); //Every new route will start from the depot
do

{

int selectedNode = -1; // no selected point at first
float shortestDistance = 0.0f;

/**
* Loop for all of the points in unionM to find out the nearest points
* to depot.
*/

for (int j=0; j<getSize(); j++)

if ('newRoute.overLoad(getPoint(j)))

if (selectedNode ==-1)

{ selectedNode = j;
shortestDistance = startPoint.getDistance(getPoint(j));
}
else
{

float tempDistance = startPoint.getDistance(getPoint(j));
if (tempDistance == shortestDistance) // The 2 points have same
distance. Select one which contains more goods.

if (getPoint(j).getGoods() > getPoint(selectedNode).getGoods())
{
selectedNode = |;

/I As 2 distances are same, need not change
shortestDistance.

}
}
if (tempDistance < shortestDistance)
{
selectedNode = j;
shortestDistance = tempDistance;
}
}
}
}
if (selectedNode !=-1) //some satisfied point has been searched
{
if (newRoute.appendPoint(getPoint(selectedNode)))
{
startPoint = getPoint(selectedNode); // reset startpoint
removePoint(selectedNode); // delete the selected point from unionM
}
else
{
System.out.printin(*Adding method of ArrayList failed!");
return;
}

134

else // no new point, this current route is finished

{
/l there are no points in the newroute
if (newRoute.getSize() ==0)
if (getSize()!=0)
{

System.out.printin("There are/is point(s) left unselected. Algorithm

Failed!");

}
break;

}

/I if there are points in the newroute, save this route

if (routes.add(newRoute))

{ startPoint = depot; // reset startpoint
newRoute = new Route(depot);

}

else

{
System.out.printin("add method of ArrayList failed!!!");
return;

}

}while (true);
}

void reducePointsUnionSize(int targetSize)

double random;
while (getSize() > targetSize)

/frandom = Math.random();
/fremovePoint((int)(getSize() * random));
removePoint(getSize() - 1);

}

kkkkkkkkkkkkkkkkhkhkkhhkhkkk

Route
import java.util. ArrayList;

/**

* Demonstrate that the total demand of the route is the only contraint that
* every route need to consider when define such route is feasible or not
* @version (28 _08 2005)
*/
public class Route extends PointsUnion
{
private Point depot;
public int optimizedTimes;
public int removedPoints;

135

public int addedPoints;
public boolean selectedAsRoutel;
public ArrayList relatedRoutes;

/**

* Constructor for objects of class Route
*/
public Route(Point p)
{
super();
depot = p;
optimizedTimes = 0;
removedPoints = 0;
addedPoints = 0;
selectedAsRoutel = true;
relatedRoutes = new ArrayList();

}
public boolean noChange()
{
if ((removedPoints == 0) && (addedPoints ==0))
return true;
else
return false;
}
public void resetStatus()
{
optimizedTimes = 0;
removedPoints = 0;
addedPoints = 0;
selectedAsRoutel = true;
}
/**

* method for checking whether the total quantity of the goods exceeds the
* demand of each route or not

*/
public boolean overLoad(Point p)
{
int totalweight = 0;
for (int i=0; i<getSize(); i++)
totalweight += getPoint(i).getGoods();
totalweight += p.getGoods();
if (totalweight <= depot.getGoods())
return false;
else
return true;
}
/**

* method for checking whether the total quantity of the goods exceeds the
* demand of each route or not
*

136

public void resortByDistance()
{
Point startPoint = depot;
Route newRoute = new Route(depot); //Every new route will start from the depot
do
t o
int selectedNode = -1; // no selected point at first
float shortestDistance = 0.0f;

/**

* Loop for all of the points in unionM to find out the nearest points
* to depot.
*

for (int j=0; j<getSize(); j++)

{

if (selectedNode ==-1)

{ selectedNode = j;
shortestDistance = startPoint.getDistance(getPoint(j));
}
else
{

float tempDistance = startPoint.getDistance(getPoint(j));
if (tempDistance == shortestDistance) // The 2 points have same
distance. Select one which contains more goods.

if (getPoint(j).getGoods() > getPoint(selectedNode).getGoods())
{

selectedNode = j;
/I As 2 distances are same, need not change shortestDistance.

}
}
if (tempDistance < shortestDistance)
{
selectedNode = j;
shortestDistance = tempDistance;
}
}
}
if (selectedNode !=-1) //some satisfied point has been searched
{
if (newRoute.appendPoint(getPoint(selectedNode)))
{
startPoint = getPoint(selectedNode); // reset startpoint
removePoint(selectedNode); // delete the selected point from unionM
}
else
{
System.out.printin("Adding method of ArrayList failed!");
return;
}

else // no new point, this current route is finished

137

/I there are no points in the newroute
if (newRoute.getSize() ==0)

if (getSize()!=0)
{

System.out.printin("There are/is point(s) left unselected. Algorithm
Failed!);
}

break;

}

/I if there are points in the newroute, save this route
for (int j=0; j<newRoute.getSize(); j++)

if (! appendPoint(newRoute.getPoint(j)))

System.out.printin("Adding method of ArrayList failed!");
return;

}
}
break;

}

}while (true);

/**
* exchange Points, add insertpoint, delete a point
* return : integer>0: as can exchage successful, return the 1D of the point need to exchange
in the route

* -1: cannot perform exchage as the insertpoint is too large for it's goods.
*/

public int findExchangePoint(Point insertpoint)

{

int totalweight = 0;
for (int i=0; i<getSize(); i++)
totalweight += getPoint(i).getGoods();

int selectedpoint = -1;
Point deletePoint = new Point(0, 0, 0, 0);
for (int i=0; i<getSize(); i++)

if ((totalweight - getPoint(i).getGoods() + insertpoint.getGoods()) <=

depot.getGoods())
{
if (selectedpoint ==-1)
{
selectedpoint = i;
deletePoint = getPoint(i);
}

if (getPoint(i).getGoods() < deletePoint.getGoods())

selectedpoint = i;
deletePoint = getPoint(i);

138

}
}

return selectedpoint;

public void cloneRoute(Route r)

{
optimizedTimes = r.optimizedTimes;
removedPoints = r.removedPoints;
addedPoints = r.addedPoints;
selectedAsRoutel = r.selectedAsRoutel;

for (int i=getSize(); i>0; i--)
removePoint(i-1);

for (int i=0; i<r.getSize(); i++)
appendPoint(r.getPoint(i));

public double getLength()
{
if (getSize() ==0)
return 0.0d;

double routeLength = 0.0d;
for (int j=0; j<getSize(); j++)

if (j==0) /I The first point connected with depot
routeLength += depot.getDistance(getPoint(0));
clse routeLength += getDistance(j, j-1);
iouteLength += depot.getDistance(getPoint(getSize()-1)); // finish the total length of the
roue return routeLength;

public int getTotalGoods()

{
int totalweight = 0;

for (int i=0; i<getSize(); i++)
totalweight += getPoint(i).getGoods();
return totalweight;

}

kkkhkkkkkkkkkkkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkhkkk

Result
import java.util. ArrayList;

/**

* @version (28 _08 2005)

139

*/

public class Result

{

private Point depot;
private Point zeroPoint;
private Point movePoint;
public ArrayList routes;

public Result(Point resultDepot, ArrayList resultRoutes)

{
depot = resultDepot;
routes = resultRoutes;
zeroPoint = new Point(0, 0, 0, 0);
movePoint = new Point(0, 0, 0, 0);
}
public boolean noChange()
{
for (int i=0; i<routes.size(); i++)
if (!((Route)routes.get(i)).noChange())
return false;
}
return true;
}
public void resetStatus()
{
for (int i=0; i<routes.size(); i++)
((Route)routes.get(i)).resetStatus();
movePoint = zeroPoint;
}

public void showResult_ID()
{
/I Show Result again using ID instead of X,Y coordinates
System.out.printin();
System.out.printin();
System.out.printin("The Result shows in ID:");
double totalLength = 0.0d;
int totalPoints = 0;
for (int i=0; i<routes.size(); i++)
{
float routeLength = 0.0f;
System.out.print("Route " + i+ ":");
Route newRoute = (Route)routes.get(i);
for (int j=0; j<newRoute.getSize(); j++)

System.out.print(" " + newRoute.getPoint(j).getID() + ",");
totalPoints++;
if (j==0) /I The first point connected with depot

routeLength += depot.getDistance(newRoute.getPoint(0));

140

else
routeLength += newRoute.getDistance(j, j-1);
}
routeLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); // finish
the total length of the route

System.out.printin(" Length:" + routeLength);

totalLength += routeLength;
}
System.out.printin();
System.out.printin("The Total Length of " + routes.size() + " line(s): " + totalLength);
System.out.printin("The Total Number of the Points: " + totalPoints);

}
public void removeNullRoutes()
{
for (int i=0; i<routes.size(); i++)
{
Route newRoute = (Route)routes.get(i);
if (newRoute.getSize() ==0)
routes.remove(i);
}
}

public double totalLength ()

double tl = 0.0d;
for (int i=0; i<routes.size(); i++)
tl += ((Route)routes.get(i)).getLength();

return tl;
}
public int totalPoints ()
{
inttp =0;
for (int i=0; i<routes.size(); i++)
tp += ((Route)routes.get(i)).getSize();
return tp;
}

public void optimize_Method_1(int stepLength, boolean anticlockwise, boolean display)
{
if (routes.size() <=1)

{
}

boolean result = true;

int selectedRoutel, selectedRoute2;

Route optimizeRoutel = new Route(depot);
Route optimizeRoute2 = new Route(depot);
if (anticlockwise)

{

return;

141

for (selectedRoute1=0; selectedRoutel<routes.size(); selectedRoutel++)

{

optimizeRoutel = (Route)routes.get(selectedRoutel);

selectedRoute2 = selectedRoutel;
selectedRoute2 += steplLength;
if (selectedRoute2 >= routes.size())
selectedRoute2 -= routes.size();
optimizeRoute2 = (Route)routes.get(selectedRoute?2);

if (display) System.out.print("Try Optimizing: " + selectedRoutel +" " +
selectedRoute2 +". ");

result = Optimize_Function_1(optimizeRoutel, optimizeRoute2, display);

if (result)

if (display)
System.out.println("Success. Point " + movePoint.getID() + " moved.");

}

else
if (display) System.out.printin("Failed.");

else /I clockwise

for (selectedRoutel=routes.size()-1; selectedRoute1>=0; selectedRoutel--)

{
optimizeRoutel = (Route)routes.get(selectedRoutel);
selectedRoute2 = selectedRoutel;
selectedRoute2 -= stepLength;
if (selectedRoute2 <0)
selectedRoute2 += routes.size();
optimizeRoute2 = (Route)routes.get(selectedRoute?2);
if (display) System.out.print("Try Optimizing: " + selectedRoutel +" " +
selectedRoute2 +". ");
result = Optimize_Function_1(optimizeRoutel, optimizeRoute2, display);
if (result)
if (display)
System.out.printin("Success. Point " + movePoint.getID() + " moved.");
}
else
if (display) System.out.printin("Failed.");
}

public void sortRoutesByTan()
{

PointsUnion leftOrder = new PointsUnion();
PointsUnion rightOrder = new PointsUnion();

142

for (int i=0; i<routes.size(); i++)
{
Route thisRoute = (Route)routes.get(i);
int selectedpoint = thisRoute.getSize()-1; // Last point
if ((thisRoute.getPoint(0).getX()-depot.getX()) *
(thisRoute.getPoint(selectedpoint).getX()-depot.getX()) >=0)

if (thisRoute.getPoint(0).getTan() > thisRoute.getPoint(selectedpoint).getTan())
selectedpoint = 0;

}
else
if (thisRoute.getPoint(0).getTan() < thisRoute.getPoint(selectedpoint).getTan())
selectedpoint = 0;
}

Point newPoint = new Point(0, 0, 0, 0);
newPoint.clonePoint(thisRoute.getPoint(selectedpoint));

if (newPoint.getX() > depot.getX()) // right side
rightOrder.appendPoint(newPoint);

else Il left side
leftOrder.appendPoint(newPoint);

}

leftOrder.sortPointsByTan();
rightOrder.sortPointsByTan();

I rightOrder + leftOrder = orderPoints;

PointsUnion orderPoints = new PointsUnion();

for (int i=0; i<rightOrder.getSize(); i++)
orderPoints.appendPoint(rightOrder.getPoint(i));

for (int i=0; i<leftOrder.getSize(); i++)
orderPoints.appendPoint(leftOrder.getPoint(i));

Il create a copy for routes

ArrayList temp = new ArrayList();

for (int i=0; i<routes.size(); i++)
temp.add(routes.get(i));

/I clear routes to wait for routes inserting in order
routes.clear();

/I move each route into routes in the order
if (orderPoints.getSize() != temp.size())

{
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
return;

}

for (int i=0; i<orderPoints.getSize(); i++)

{

Point orderPoint = orderPoints.getPoint(i);

143

int j;
for (j=0; j<temp.size(); j++)

/I check whether orderPoint in route temp[j]
if (((Route)temp.get(j)).findPoint(orderPoint) !=-1)
{

routes.add((Route)temp.get()));
break;

}
if (j == temp.size())

System.out.printin("ERROR happens in sortRoutesByTan !!'");
System.out.printin("ERROR happens in sortRoutesByTan !!'");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
return;

}

Il check routes at last
if (orderPoints.getSize() != routes.size())

{
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan !!!");
System.out.printin("ERROR happens in sortRoutesByTan ");
return;

}

public void makeRelationShip(Result target, ArrayList overLoadRelationRoutes)

{

for (int i=0; i<routes.size(); i++)

{

Route rl = (Route)routes.get(i);
for (int j=0; j< target.routes.size(); j++)

Route r2 = (Route)target.routes.get(j);
for (int id1=0; id1<rl.getSize(); id1++)

for (int id2=0; id2<r2.getSize(); id2++)
if (rl.getPoint(id1).getID() == r2.getPoint(id2).getID())
{
double routeTime = ((rl1.getLength() + r2.getLength())) / 60000.0d;

if ((routeTime + (40 + (2*rl.getTotalGoods() + 2*r2.getTotalGoods()))

{

/60.0d) < 16.0d)

if (!rl.relatedRoutes.contains(j))
rl.relatedRoutes.add(j);

if (!r2.relatedRoutes.contains(i))
r2.relatedRoutes.add(i);

144

}

else
{
overLoadRelationRoutes.add(i);
overLoadRelationRoutes.add(j);
}

private int selectMinimumGoods()
{
I/l Select the minimum demand route which has not been optimized
double minimumGoods = 0.0d;
int selectedRoute = -1;
for (int i=0; i<routes.size(); i++)
{
Route newRoute = (Route)routes.get(i);
/I Check whether has been optimized
if ((newRoute.addedPoints > 0) || ('newRoute.selectedAsRoutel))

{
}

else

{

continue;

/I Is it the first one which has not been optimized
if (selectedRoute ==-1)

{

selectedRoute =i;
minimumGoods = newRoute.calculateAllGoods();

}

else /I Compare and select minimum

double temp = newRoute.calculateAllGoods();
if (temp < minimumGoods)

{

minimumGoods = temp;
selectedRoute = i;

}

return selectedRoute;

private boolean Optimize_Function_1(Route routel, Route route2, boolean display)

{

int selectedPoint = -1;

145

double largestDecrease = 0.0d;
Il Select all of the point from routel
for (int i=0; i<routel.getSize(); i++)

if (! route2.overLoad(routel.getPoint(i)))
{
double decrease = decreaseByMoveOnePointBetween2Routes(routel, route2, i,
display);
if (decrease > 0.0d)
{
if (selectedPoint ==-1)
{
selectedPoint = i;
largestDecrease = decrease;

}

else
if (decrease == largestDecrease)
{
if (routel.getPoint(i).getGoods() >

routel.getPoint(selectedPoint).getGoods())
selectedPoint = i;

}
else if (decrease > largestDecrease)
{
selectedPoint = i;
largestDecrease = decrease;
}
}
}
}
}
if (selectedPoint ==-1)
{
movePoint = zeroPoint;
return false;
}
else
{ . . .
movePoint = routel.getPoint(selectedPoint);
routel.removePoint(selectedPoint);
routel.removedPoints++;
routel.resortByDistance();
route2.appendPoint(movePoint);
route2.addedPoints++;
route2.resortByDistance();
return true;
}

146

private int findRouteBetweenTwoPoints(Point p1, Point p2)

{
double smalltan = pl.getTan();
double largetan = p2.getTan();
if (smalltan>largetan) // exchage them
double temp = smalltan;
smalltan = largetan;
largetan = temp;
}
for (int i=0; i<routes.size(); i++)
{
Route checkRoute = (Route)routes.get(i);
boolean allRouteln = true;
for (int j=0; j<checkRoute.getSize(); j++)
double checkTan = checkRoute.getPoint(j).getTan();
if ((checkTan < smalltan) || (checkTan > largetan))
{
allRouteln = false;
break;
}
}
if (allRouteln)
return i;
}
return -1;
}

private double decreaseByMoveOnePointBetween2Routes(Route routel, Route route2, int pointiD ,
boolean display)

if (route2.overLoad(routel.getPoint(pointlD)))
return -9.99999999999E9;

Route testRoute = new Route(depot);
testRoute.cloneRoute(routel);
testRoute.removePoint(pointID);
testRoute.resortByDistance();
double decreasedLength = routel.getLength() - testRoute.getLength();
/fif (decreasedLength < 0.0d)
/ISystem.out.printin("ERROR ERROR ERROR");

testRoute.cloneRoute(route2);
testRoute.appendPoint(routel.getPoint(pointiD));
testRoute.resortByDistance();
double increasedLength = testRoute.getLength() - route2.getLength();
/fif (increasedLength < 0.0d)

/ISystem.out.printin("ERROR ERROR ERROR");

return (decreasedLength - increasedLength);

147

private void addOnePointinRoutes(Point p , boolean display)
{

double smallestDis = depot.getDistance(p) * 2 ;

int selectedRoute = -1;

for (int i=0; i<routes.size(); i++)
{
if (((Route)routes.get(i)).overLoad(p))
continue;
else
{
Route testRoute = new Route(depot);
testRoute.cloneRoute((Route)routes.get(i));
testRoute.appendPoint(p);
testRoute.resortByDistance();
double increasedLength = testRoute.getLength() - ((Route)routes.get(i)).getLength();
if (increasedLength < 0.0d)

/ISystem.out.printin("ERROR ERROR ERROR");
}

if (increasedLength<smallestDis)
{
selectedRoute =i;
smallestDis = increasedLength;

}

if (selectedRoute ==-1)
{
Route newRoute = new Route(depot);
newRoute.appendPoint(p);
routes.add(newRoute);
if (display) System.out.printin("Add point " + p.getID() + " in a sing-point new Route " +
(routes.size()-1));

else

{
((Route)routes.get(selectedRoute)).appendPoint(p);
((Route)routes.get(selectedRoute)).resortByDistance();
if (display) System.out.printin("Add point " + p.getID() + " in Route " + selectedRoute);

148

	The Model

