

Pickup and Delivery Problem with Hub Reloading

Author: Li Li

Supervisor: Jesper Larsen

Informatics and Mathematical Modelling
Technical University of Denmark

 1

Preface

This thesis is the final report in my scholastic career. I will end my master program in
Technical University of Denmark by completing this project. At the time of finishing this
thesis, I would like to thank to some people who have helped me during the process of
doing this project.

Firstly, I would like to thank to my supervisor Jesper Larsen for his excellent ideas,
unwearied edifications and endless patience. Secondly, I would like to thank to my
parents for their auspices of my school works in Denmark. And I would also like to say
thanks to my best friend, my boyfriend Zhenyu Yuan. He encouraged, comforted me
when I met any problem doing this project and accompanied me passing this strenuous
working process.

 2

Content

Abstract

1 Introduction

 1.1 Motivation…………………………………………………………………………………6
1.2 Description of the working task and purpose……………………………………………...9

2 Routes with Central Depot

 2.1 Problem formulation……………………………………………………………………….9
 2.2 Mathematical formulation…………………………………………………………………12
 2.3 Literature review…………………………………………………………………………..14

3 Method Discussion

 3.1 Forming routes

 3.1.1 Constructive heuristics………………………………………………………………21
 3.1.1.1 Insert_By_Distance heuristic ………………………………………………….22
 3.1.1.2 Sweep_By_Angle heuristic……………………………………………………26
 3.1.1.3 Results comparison…………………………………………………………….28

 3.1.2 Improved heuristics
 3.1.2.1 Based on Sweep_By_Angle……………………………………………………30
 3.1.2.1.1 Result from the modified Sweep_By_Angle…………………………….36
 3.1.2.1.2 Method analysis about Sweep_By_Angle……………………………….39

 3.1.2.2 Based on Insert_By_Distance………………………………………………….40
 3.1.2.2.1 Result from the modified Insert_By_Distance…………………………...45
 3.1.2.2.2 Method analysis about Insert_By_Distance……………………………...46

3.1.2.2.2.1 review the method and analyze it…………………………………..46
3.1.2.2.2.2 some new idea for modifying method……………………………...48

 3.2 Connection routes
 3.2.1 Searching relative routes in different parts…………………………………………..52
 3.2.2 Rearrange the overload routes……………………………………………………….53

 3.3 Experimental results

4 Conclusion
 4.1 Based on Sweep_By_Angle and its pertinent approaches…………………………………66
 4.1.1 disadvantage
 4.1.2 advantage

 4.2 Based on Insert_By_Distance and its pertinent approaches……………………………….66
 4.2.1 disadvamtage
 4.2.2 advantage

 3

 4.3 Comparison and analysis of results………………………………………………………..67
 4.4 Ideas of improving results…………………………………………………………………67
 4.5 Comparison with the General Pickup and Delivery Problem……………………………..68

5
References………………………………………………………………………………………69

6 Appendixes…………………………………………………………………………………..70
6.1 program of constructive methods
6.2 program of modified methods
6.3 final algorithm

 4

List of figures

2-1-1…………………………………………………………………………………………10
2-1-2…………………………………………………………………………………………10
2-1-3…………………………………………………………………………………………10
2-1-4…………………………………………………………………………………………11
2-3-1…………………………………………………………………………………………17
2-3-2…………………………………………………………………………………………17
2-3-3…………………………………………………………………………………………19
2-3-4…………………………………………………………………………………………19
2-3-5…………………………………………………………………………………………20
3-1-1…………………………………………………………………………………………21
3-1-2…………………………………………………………………………………………23
3-1-3…………………………………………………………………………………………23
3-1-4…………………………………………………………………………………………24
3-1-5…………………………………………………………………………………………26
3-1-6…………………………………………………………………………………………27
3-1-7…………………………………………………………………………………………28
3-1-8…………………………………………………………………………………………31
3-1-9…………………………………………………………………………………………31
3-1-10………………………………………………………………………………………..32
3-1-11………………………………………………………………………………………..32
3-1-12………………………………………………………………………………………..33
3-1-13………………………………………………………………………………………..35
3-1-14………………………………………………………………………………………..36
3-1-15………………………………………………………………………………………..39
3-1-16………………………………………………………………………………………..40
3-1-17………………………………………………………………………………………..42
3-1-18………………………………………………………………………………………..43
3-1-19………………………………………………………………………………………..44
3-1-20………………………………………………………………………………………..47
3-1-21………………………………………………………………………………………..47
3-1-22………………………………………………………………………………………..49
3-1-23………………………………………………………………………………………..49
3-1-24………………………………………………………………………………………..50
3-1-25………………………………………………………………………………………..51
3-2-1…………………………………………………………………………………………52
3-2-2…………………………………………………………………………………………54
3-2-3…………………………………………………………………………………………55
3-2-4…………………………………………………………………………………………56
3-2-5…………………………………………………………………………………………57
3-3-1…………………………………………………………………………………………65
3-3-2…………………………………………………………………………………………65
4-4-1…………………………………………………………………………………………68
4-5-1…………………………………………………………………………………………68

 5

List of tables

2-1-1………………………………………………………………………………………....11
3-1-1…………………………………………………………………………………………25
3-1-2…………………………………………………………………………………………25
3-1-3…………………………………………………………………………………………25
3-1-4…………………………………………………………………………………………26
3-1-5…………………………………………………………………………………………29
3-1-6…………………………………………………………………………………………30
3-1-7…………………………………………………………………………………………30
3-1-8…………………………………………………………………………………………37
3-1-9…………………………………………………………………………………………38
3-1-10………………………………………………………………………………………..45
3-1-11………………………………………………………………………………………..45
3-1-12………………………………………………………………………………………..46
3-2-1…………………………………………………………………………………………52
3-2-2…………………………………………………………………………………………53
3-3-1…………………………………………………………………………………………59
3-3-2…………………………………………………………………………………………60
3-3-3…………………………………………………………………………………………60
3-3-4…………………………………………………………………………………………60
3-3-5…………………………………………………………………………………………61
3-3-6…………………………………………………………………………………………61
3-3-7…………………………………………………………………………………………62
3-3-8…………………………………………………………………………………………62
3-3-9…………………………………………………………………………………………62
3-3-10………………………………………………………………………………………..63
3-3-11………………………………………………………………………………………..64

 6

Abstract

Along with the development of the society and the progress of the science, people around
the world are devoting themselves to explore the better and better approaches to deal with
all kinds of problems we are facing in the real life or our generations may confront to in
future.

Nowadays, scientists are no more focusing on solving problems temporarily. They pay
more close attention to adopt right and better ways and do their best to overcome
problems permanently. This sort of the aspiration does not only belong to the developed
countries. Since the explored and good methods have stimulated large batch of developed
and developing countries, even the whole world attempt to apply the scientific means to
solve problems effectively. Thus, the life of human being cannot go ahead well without
science. Meanwhile, when we use the scientific way to help us settle problems, we also
need to investigate right resolved approaches audaciously and continuously.

In the main content of this thesis, we will meet a new kind of transportation problem,
which is a pickup and delivery problem with hub reloading at the central depot. In this
pickup and delivery problem, every pickup source has a corresponding delivery
terminations. We set each request includes the relative pickup and delivery actions and
those two actions cannot be handled by the same vehicle. In other words, the pickup part
and delivery part are separated in this project. My idea of resolving this problem can be
described briefly as the way that: firstly, consider the pickup and delivery parts as two
vehicle routing problems. Secondly, connect the relative pickup and delivery actions in
each request under the time constraint. Along with the steps, I have displayed the relevant
mathematical model. The goal is to find short routes and make every request to be
finished in a limited time period are my work.

Key words
vehicle routing problem, pickup and delivery problem, mathematical model, heuristics,
Insert_By_Distance, Sweep_By_Angle,

 7

1 Introduction

In this section, a short introduction will be described. In the part of motivation, the
development of transportation problem and the terminal purpose what people expect to
touch will be given briefly. In order to guide readers go through this article and know the
thought of composing methods smoothly, a mathematical model of vehicle routing
problem will be described also. At the end of this section, the description of the current
discussing problem will be introduced.

1.1 Motivation

In this thesis, a type of transportation problem will be presented. The purpose for doing
such popular topic is the reason that transportation plays a significant role in the economy
of most developed nations. For example, a National Council of Physical Distribution
Study [1978] [1] estimated that transportation consumption occupied the rate of 15% of
the U.S. gross national product. This economic importance has motivated both private
companies and academic researchers to vigorously pursue the use of operation research
and management science to improve the efficiency of transportation.

Various modes of transportation exist anywhere, such as the airlift, railway, water
transportation, land transportation and so on. In different transportation fields, companies
and researchers focus on different aspects in transportation problem. In the airlift, people
pay primary attention to the arrangement of the crew scheduling. In the ordinary land
transportation, the efficient use of a fleet of vehicles which must take some stops to
pickup and delivery productions or passengers are concerned. The problem requires one
to specify which customers should be delivered by each vehicle. And in what order so as
to minimize total cost subjecting to a variety of constraints such as vehicle capacity and
delivery time constraints. Those are also the content of this thesis that will be discussed
later in more details.

This thesis is a pickup and delivery with hub reloading problem. This problem is a
generation of the well-known vehicle routing problem, which is a generalization of the
traveling salesman problem. The traveling salesman problem can be explained in short as
[7] “A traveling salesman wants to visit each of a set of towns exactly once, starting from
and returning back to his home town.” The traveling salesman problem can be seen as a
trip. One of his problems is to find a shortest route for such trip.

The vehicle routing problem may be seen as the problem composed with some traveling
salesman problems. It can be described as follows: given a fleet of vehicles with uniform
capacity, a common depot, and several customer demands, finds the set of routes with
overall minimum route cost which serve all the demands.

The characters of vehicle routing problem accord with the qualifications of the thesis.
Because in each part of the project in this thesis, a fleet of vehicles without fixed numbers

 8

are located at the central depot, all the vehicles can only work from 6:00 in the morning
to 22:00 in the evening and every vehicle has been fixed the same capacity.

Since the origin of our problem is the vehicle routing problem, there is a mathematical
model of vehicle routing problem [2] displayed.

=K number of vehicles in the fleet

=N number of customers to which transportation must be made. Customers are
indexed form 1 to and index 0 denotes the central depot n

=kQ

the capacity of every vehicle

=id the demand of load from every customer

=ijC

cost of direct travel from to i j

The vehicle routing problem is to determine K vehicle routes. Every route has to start
from the central deport with visiting a subset of N customers in a specified sequence, and
then goes back to the central deport again. In every determined route, the total demand of
a subset of customers should not exceed the vehicle capacity. All the routes should be
determined to shorten the total travel distance.

Objective function: minimize ∑ ∑

∈ ∈∈Kk NjNi ,
 (1)

Subject to:

k
ijij XC

∑∑
∈ ∈

=
Kk Nj

k
ijX 1 , Ni∈∀ (2)

 ∑ ∑
∈ ∈

≤
Ni Nj

kij
k

i QXd , Kk ∈∀ (3)

 ∑
∈

=
Nj

k
ojX 1 , Kk ∈∀ (4)

 ∑ ∑
∈ ∈

=−
Ni Nj

k
hj

k
ih XX ,0 KkNh ∈∀∈∀ , (5)

 ∑
∈

+ =
N

k
niX ,11, Kk ∈∀

i

 (6)

 0=−∑ ∑
∈ ∈Kk Kk

k
jo

k
oj XX (7)

 1 if vehicle drives from node to node directly

 otherwise

N

k i j
=k

ijX
0

ote:
(2) Each customer must be assigned to exactly one vehicle

(3) No vehicle can serve more customers than its capacity permission

(4) For each vehicle, it can only start from depot to any nodes once

(5) omes out from the previous node equals
d

For any two connected nodes, how much load c
to how much load enters into the forward no e

(6) leaves node 0 once, leaves node , if and A flow constraint requiring that each vehicle k i

 9

only if it enters that node, and returns to node 1+n

(7) How many vehicles leaves the depot to serve customers
depot with the same number

 outside should go back to the

1.

tes

stic but not real life data is

generated and supplied by the Danish comp

blem included, but also the mathematical
.

2

oblem, let us see what the differences
between the general case and our facing case are.

 t goods from origins to destinations without

 t goods from origins to destinations with
reloading at the single intermediate depot

 same number of corresponding

tions located

2 Description of the working task and purpose
In the given task, we are required to consider a number of pickup-and-delivery orders.
Under this process, the goods in each order should be picked up at one place called the
source node and transported to another place denoted the terminal node. In this problem
the goods do not travel directly from their sources to their terminations, instead they are
firstly transported from the sources to a central depot where they are reloaded to another
vehicle and then driven to the terminations. At the source, the destination and at the
depot there are some costs associated with loading, moving or off-loading the goods.
Each vehicle is bounded by a total driving time. The problem here is to plan the rou
for the vehicles so that all goods get delivered but at a minimum transportation cost.

In association with the project proposal, a file containing reali
any, Transvision.

2 Routes with Central Depot
In the context underlying, the given problem will be described carefully. Not only is the
detailed train of thought about solving this pro
formulation fromed for solving the problem

.1 Problem formulation
The problem going to be solved later is a generation of ordinary vehicle routing problem.
Comparing with the general pickup-and-delivery pr

general case: vehicles have to transpor
transshipment at intermediate location
our facing case: vehicles have to transpor

Obviously, the character of our facing case is this practical transportation problem
composed of two parts. The first part includs a set of source/pickup nodes and one central
depot. And the second part is composed of the
terminal/delivery nodes and the same central depot.

We may say that the general pickup-and-delivery problem is a vehicle routing problem in
which either all the origins or all the destinations are located at the depot. Then the case
we are facing now can be understood as an order combined with two vehicle routing

roblems. Such order includes two parts: the first one is to set all the destinap
at the depot, and the second one is to set all the origins located at the depot.

 10

If we use three figure to show the differences of general case and our facing case visibly,
then

General case

Our facing case

se routes, a fleet of
vehicles pick up plenty of goods from their source points to the depot, transship the goods

s in a fixed working time period from 06:00 to 22:00.

riefly speaking, the relevant information of the system can be described as a simple
gure below

The aim of our facing problem is to adopt feasible routes. By tho

to another fleet of vehicles, and then delivery them from the depot to their corresponding
terminal point

B
fi
.

F

Evidently, from the picture above, we can
which named as the central depot. Beside

origins destination

origins destination

 source
termination

 depot
 Figure 2-1-1

Figure 2-1-2

igure 2-1

 see tha
 the dep

11
-3

t there is a smal
ot, there are tw
source node
 terminal node
 depot
l light blue rectangle,
o sorts of nodes with

different colours. The light green ones are source nodes with goods, a fleet of green cars
coming from the depot have to visit those nodes, pick up goods from them and go back to

he way of composing route means no route can include the
ource and terminal nodes together without passing by the central depot. When we plan

cost of the entire process is decided by the

haracters of problem per se. It is also a practical task. Despite purely focusing on the

 the fifth respectively. For each order, there are some relevant information
including the ID of order, th
th orrespo demand these on can be seen clearly from
below

the depot. The black nodes are the places where the goods from the light green nodes
have to be sent, we call them terminal nodes. At the end of this process, we can see that
all the fleets of vehicles will come back to the depot again.
It is not difficult to find that each route in either patrs is only composed with source
nodes or terminal nodes. T
s
to send some goods to their terminations, we must be sure those goods have been brought
to the central depot first.

After getting the idea of picking up and delivering goods, how can we save the amount of
the total cost obeying the rule of transporting those goods? Since the objective function is
to find the shortest distance, the minimum
whole travelling route length. And there is no constraint to combine several sorts of
goods together on the same vehicle. Without exceeding vehicle capacity, we expect each
vehicle can get as much as possible goods.
Comparing with normal transportation projects, this case is a little different except for the
c
algorithm search, the Danish company, Transvision, has made a great deal for this case.
They support amount of simulated data. All the data are separated into five weekdays.

There are 247, 214, 199, 229 and 212 orders assigned to those five weekdays from the
first to

e locations of source and term
. All

inal nodes, the week day and
e c nding informati the table

ID To X To Y From X From Y Week
day

Dem
and

1 538181 6086484 720415 6176264 1 16
Table 2-1-1

The value of X and Y are the coordinate value of the central depot on plane.
se the points with green colour to show the source nodes, the points with black

colour to show the terminal nodes and the red circle to denote the position of the central
depot, the distribution of all the data can be seen in the picture following

If we u

12

Figure 2-1-4

From the figure, the real amazing thing is that the picture filled with all the data in five

int, it is not a problem for us to obtain the

ngth between any two nodes. By applying the right angle equation, if we set the
coordinate values of the first and second points are () and () separately, then
the length between them can be calculated as

workdays is the outline of Danish map. This is very interesting and inventive idea of
making the simulated data.

Knowing the coordinate values of each po
le

11 , yx 22 , yx

2

21
2

212,1)()(yyxxLength nodenode −+−=

So far, we have got enough basic information about the problem. As I have mentioned,
we set the pickup and delivery actions as vehicle routing problems. In th

is thesis, I
focused on those two separate vehicle routing problems to get feasible routes. Then I

ery actions and make them to be an entirety. With

2

The mathematical model is based on two parts: the part composed source nodes with a
e part composed terminal nodes with the same central depot. The

 of this model is to obtain the minimum transportation route length.

The d
• Se

et of Vehicles in

• Dat

age velocity o

 Variable:
 Time of each vehi

o Latest starting tim

connected relative pickup and deliv
such idea, a mathematical formulation for this problem has been formed also.

.2 Mathematical formulation

central depot and th
objective function

a a are: t
(its ndices):

o previous Nodes:
o current Nodes :
o vehicles :

 set of nodes for eao

o s

o set of Vehicles in

a:
o distance between

o

 Capacity of each v
 demand from eac
o
o Aver
o Starting time for tr

o Ending time for tra

•
o

o Earliest starting tim

i
j
the first part :

f each vehicle :
rti :

cle :

e of

ch part :
k

the second part :

 two nodes : ijd

ehicle : Q
h node : Ri

N

1K

2K

v

startT anspo ng

nsporting : endT

e of each vehicle:
kt

+
kt

each vehicle: −
kt

13

 Binary o variable:

1 if vehicle drives from node and node

k i j directly

 0 otherwise;

The M d

The model is:

 e

=k
ijX

o el

∑∑∑∑∑∑
∈ ∈ ∈∈

+
Kk Ni Nj

ijij
Nj

ijij XdX Minimiz
∈ ∈

k

Kk Ni

kd (1)

St.
 kX for

21

1=∑∑ Ni∈∀
∈k Nj

ij , 1Kk ∈∀ or Kk 2∈∀ (2)

i

≤∑ QXR k
iji∑ for 1Kk ∈∀ or 2Kk ∈∀

NjN ∈∈

 (3)

k
hj

k
ih XX for 0=− ∑∑ 1, KkNh ∈∀∈∀ or 2Kk ∈∀ (4)

∈∈ NjNi

1
1

0 =∑
∈Nj

k
jX for 1Kk ∈∀ or 2Kk ∈∀

 (5)

1
1

1, =∑
∈

+
Mi

k
niX for 1Kk ∈∀ or 2Kk ∈∀ (6)

T≥+
start for 1Kkkt ∈∀ (7)

endT for 2Kkkk tt ≤+− ∈∀ (8)
+
∈+

1K t (9)

t
∈ ≤

21 KkKk t −
kt ∈

startendKk TT −Kkt ≤+∈ 2

∈ 2

 (10)

1Kk ∈∀

∑∑∑∑
∈∈

++
1

60/)*10(/ k
ij

j

k
ij

Mi
i

k
ij XXRvX for (11) ∑∑

∈ ∈∈ ∈
∈ =

1 111 1

1
Mi NjNMi Nj

ijKk dt

or
Note:

2Kk ∈∀

(1) t
p
he objective function is calculated to get the shortest distance of the whole
rocess since the cost here depends on the entire distance;

(2) each node can be visited by only one vehicle;

(3) constraints; each vehicle cannot transported more pallets than its capacity

(4) flow constraints, which means how many come into one node then how

any come out; m

(5) there is only one vehicle for each route;

(6) there is only one current node can be connected to only one pr

evious node;

 14

(7) e earliest staring time should later than the starting time of the system; th

(8) the transp
should be

ortation started at the latest starting time in the second part
finished earlier than the ending time of the system;

(9) the transportation started at the latest starting time in the first part should be

finished earlier than the earliest starting time of the second part;

(10) the time spent in both parts should less than the total time bounded to each
vehicle;

(11) time spent in the route of the first part or in the second part

2

i h these problems, I have referred some pertinent
iteratures.

aporte and Semet [3] said “Several een proposed for the

vehicle routing problem. All those can be widely classified into two main classes:
classical heuristics developed mos b
have been g ast decade
procedures i ng to e f

The Heuristics are comparatively r

e characters of those two methods:

.3 Literature review

Some basic information and the mathematical formulation for handling the solving case
have been discussed. But the problems of obtaining routes and connecting them still have

ot been solved. In order to deal w tn
l

L families of heuristics have b

tly etween 1960 and 1990, and meta-heuristics which
. But most standard construction and improvement
irst class.”

rown since the l
n use today belo th

mo e popular than the meta-heuristics, mainly due to
th

Heuristics Perform a relative limited exploration of search
space and they can typically produce good solutions
with modest computing time;

 Emphasis on performing a deep exploration of the

most promising regions of the solution space, but it
ined

is not so easy to cope with as people imag

 The implements of their sophistications relay on too
much computing time.

Meta-heuristics

So far, there is some guy has calculated good results for mostly 100 customers in VRP.

paring with the solved u
ore than 200 in every weekday.

I decided to apply heuristics to

e classical VRP heuristics ries.

Com iss e, the number of customers in our problem are nearly
 Being restricted with plenty of customers and expecting

 resolve the problem in this
m
to get feasible results probably.
thesis.

Som can be broadly classified into three catego

 15

e solution while keeping an eye on

constructive heuristics
gradually build a feasibl
solution cost but do not contain an improvement phase per
se

 two-phase heuristics

the problem is decomposed into its two natural
components: clustering of vertices into feasible routes and

 cluster-first, route-second
 route-first, cluster-second

actual routes construction, with possible feedback loops
between the two stages

Classical VRP heuristics

 improvement methods
attempt to upgrade any feasible solution by performing a
sequence of edge or vertex exchanges within or between
vehicle routes.

 S

ic

T c la r ht [4]. T
algorithm is the m
explained as when two routes (0,…, ,0) and (0,

Before starting any practical action to the problem, I have referred some useful articles in
order to find suitable and feasible constructive methods. Some literatures are necessary to
be introduced.

Most of the previous works in this section are about the reason why I chose the heuristics
methods. There are a lot of famous heuristics explored for solving VRP. Such as:

In the article written by Laporte and emet [3], the main classical heuristics for VRP have
been reviewed. They are constructive methods, two-phase methods and improvement
heuristics. Because my aim was to find suitable constructive methods, I mainly paid my
attention to the section of constructive methods in this article. There are two main
techniques are used for constructing VRP solutions. The first one is to use a saving
riterion to merge existing routes. And the second one uses an insertion cost to assign c

vert es to vehicle routes gradually.

he first onstructive method comes from the idea of C rke and W ig his
ost well-known heuristic for the VRP. The notion of saving can be

i j ,…,0) can be merged into a single route
(0,…, i , j ,… A an,0). dist ce saving ijs = ijojio ccc −+ is generated. The second inserti n

es from two algorithms based on sequential insertions. The first, due to Mole
5], expands one route at a time. The second d

o
method com
and James [Mingozzi
T], ap gorithms
applied to p an unspecified number of vehicles.

se e construction

, ue to Christofides, and
plies in turn sequential and parallel. Both of these insertion al are

roblem with
oth [6

 Pha one: sequential rout
Step1 Set a first route index 1=k
Step2 to initialize route . Calculate Select any unconnected point k

i

p k
δ = iii cc

k
λ+0 for every point i

 16

Step3 Let *i
δ = { }iSi k

δ
∈

route k . Optimize route k with the feasible points by using 3-opt algorith .
Repeat st

min . kS is the set of points which can be feasibly inserted into

m
3 until mo more point can be assigned to routeep k

Step4 If all p ints have be inserted into route, stop. Otherwise, set 1+= kk and o en
go to step2

 Phase two: parallel route construction
Step5 tializeIni k routes and),...,1)(0,,0(ktiR tt == . k is the number of routes

obtained from phase one. Let { }kRRj ,...,1=
Step6 ∈For each route t and for every point which has not been connected to

route. Compute ti

JR i
ε =

tiRi cc µ+0 and { }tiJRit
t

εε
∈

= min* . Connect point i to route tR and

repeat step6 until all points have been connected to routes
Step7 Take any route and set JRt ∈ { }tRJJ /:= . For every point connected to route i

tR , compute { }tiJRit
t

εε
∈

= min' and tiiti εετ −= '

{ }Step8 If point i satisfies iSii
t

ττ
∈

* t

in to route tR . Optimize route tR using 3-opt algorithm. Repeat step8 until no

= max . is the set of points which have been inserted

more points can be inserted in to route

S

tR
Step9 φ≠J , go to sIf tep6. Otherwise, if all the points are in routes, stop. If uninserted

arting from the step1 of phase one point exists, create a new route st

Sinc e ong the constructive
methods f by Junger, Reinelt and
Rinaldi [7 ing and ins tion very carefully
and basically.

__
 Insertion Heuristics

It starts with cycles visiting only small subsets of the nodes and then extends these
cycles by inserting the remaining nodes until all nodes are inserted and a circle is
found

Procedure INSERTION
(1) Select a starting circle on nodes) and set

e th heuristics of saving and insertion play an import role am
or VRP, I have referred a relevant article presented
]. This paper has introduced the methods of sav er

n nnnn ,...2,1 (1≥n { }nnnnNW ,...2,1/=
(2) As long as φ≠W do the following:

(2.1) Select a node Wj∈ according to some criterion;
(2.2) Insert j at some position in the cycle and set { }jWW /=

 17

__

 Saving Heuristics

his heuristic was originally developed for vehicle routing problems. It successively
erges sub tours to eventually obtain a single o the vehicle routing problem is

uppose o be special that it involves only one vehicle with unlimited capacity.

rocedure SAVING
Select a base node

T
m ne, if
s d t

P
(1) Vz∈ and set up the 1−n sub tours),(vz ,

consisting of two nodes each; { }zVv /∈
(2 s more than one sub tours is left perform the following steps:

(2.1 compute the saving that is achieved is
eleting in each of them an edge to the base node and

ends ;
(2.2) Merge the two sub tours which provide the largest savings.

) As long a
) For every pair of sub tours 1T and 2T
they are merged by d
connecting the two open

Merging process:

I
O

o

i

j j

i

o

joojiooi dddds +++=1 joijoi ddds ++=2

Figure 2-3-1

−+ ijojiosaving dsss dd=−= 21
be saved

h
f s , then some distance will 0>saving

t erwise, merging process failed

______________________________________Figure 2-3-2

18

Beside literatures above, there are also other four articles supported me some great idea
e ble of researching goods methods to solve problem.

In the article written by Lau and Liang [8], a two-phase method for solving pickup and
w new

ang [8] can be adopted to show as

1.

2. let

ns le position where there is the least increase in cost

. remov from

. i is not empty, go to 3

 Sweep Heuristic
. let be a site from which vehicles leave, and let

wh n I was in the trou

delivery problem with time windows has been presented. In the this paper, t o
constructive methods have a relationship to my structure of presenting constructive
methods. This article makes me realize that the algorithms adopted by me are reasonable.

Two constructive methods discussed by Lau and Li

Insertion Heuristic
let all vehicle have empty routes

ests L be the list of unassigned requ
v L3. ir in

. i ert v in a route at a feasib

take a job pa

4

e v L 5

f L6

1 O A (different from) be another location,
which serves as a reference.

. sort pickup jobs by increasing angle

O

2 AOS∠ wher is the job location. Put result in a
list

. pick a pickup job in with location

e S
L

L I and its delivery job with location J3 and create an new
route with this job pair

. until no more jobs can be added to the route, do

a. if there are uninserted pickup jobs located in the sector

4

IOJ∠ , insert the pair that is
best feasible. Otherwise, insert an uninserted pickup and delivery job pair, in which the
pick up job is at location K , where JOK∠ is smallest and all the constraints are respected

b. remove this pickup job from
L is not empty, go to 3

L

5. if

−E+D

D

+E
+B−
−A
−B+A

−C
+C

19
H

−

+H
 pickup job

 delivery job
depot
Example PDPTW instance

he second paper s written by Fisher and Jaikumar [9]. They have introduced the
aders a good assignment heuristic to solve VRP. The main idea they composed to form
utes in a feasible way, can be described into two steps. Firstly, they set several furthest

 of
weep_By_Angle was produced from it. But I did not try to find seed customers, because

T wa
re
ro
points as seed customers among all the points and connected those seed customers directly
to the depot to make routes. Secondly, they inserted other unconnected points into the
formed routes to make feasible and short routes, under the constraints such as the vehicle
capacity.

The figure above describes the process of forming routes in article Fisher and Jaikumar
[9]. Their idea absolutely inspirited me since my ideas of composing method
S
my project has been given too many points and I could not have any way to define seed
customers from them. I chose to form routes by sweeping the tangent value of each point.
The more details about Sweep_By_Angle will be descried in the next section.

Solution using Insertion Heuristic Solution using Sweep Heuristic

Figure 2-3-3

Figure 2-3-4

 20

The problem handled in the third one presented by Røpke [10] is general pickup and
delivery problem with time windows. Røpke has systematically introduced some
well-known methods for solving pickup and delivery problem with time windows. He has
also implemented most of them and made a conclusion to compare those methods. I have
made some comparisons between the problem in such paper and mine. When I went

rough this article, I th learned more about PDP. Røpke’s way of researching algorithms
elped me to modify my methods in a right and better way.

inally, a th s coming from a Finnish guy, Braysy [11] displayed plenty of feasible and
ptimal algorithms. The content of this report almost crowns all the algo s that I have
entioned above. There is very useful approach used for optimizing routes arose my

ttention when I re it, which is Ejection Chain. The m thod of EC gave me a good
irection when I was dealing with the modification part of my constructive methods.

he method of EC can be briefly described as a procedure of ong routes.
his is not an unfamiliar method in VRP field. People use this method to eliminate routes
hen they do optimization. The basic idea is to pick up first some customers from route
and insert some other customers currently served by route into the partial route . If
e insertion is possible, the custome e inserted into another rout . If

all insertions are feasible, the ejection chain is completed and next chain will start. When

Fig

figur
For the other points and

h

F esi
o rithm
m
a ad e
d

T moving points am
T
w ic

i jc jr irr
rs ic have to b e kr , kr ≠ irth

all the possibility of using EC has been tried and the last one customer can be inserted its
neighbour completed route, the procedure of EC is finished. The process of using EC can
be depicted by figures

Ejection chain. There are three routes i
the routes will be reformed and the figu
the routes in the left figure. Focusing on
from route1 to route2. If point c can
imitations such as time or vehicle capl

other route except route1. Assuming po
routes got are showing in the right

i j , the same

a

b

d

e

f

route2

g
d

e g

f

h

route3

route2

route

ure 2-3-5

ty, we could first move points from
ed up from route 2 is point e,

e. This is the procedure of applying ejec

n the figures above. The figure on the
re on the right shows the new routes fo
 the figure on the left, we assume to mo
 not be inserted into route2 feasibly
aci
int pick

way can be used until no route can be e

c

a

b h

route3 1 rou

21
 route2 to
three new
tion chain.

left shows
rmed from
ve point c
 by some

liminated.

c

te1

3

e trouble would be met. The

3.

This section is the process of getting short and feasible routes. In this section, I will first
tive heuristics: Insert_By_Distance and Sweep_By_Angle,

e get the original solutions. Then I will discuss the modifications
ethods.

3.1.1 Constructive heuristics

From the discussion of classical heuristics above, I know that there are mainly two
well-known heuristics for solving VRP, saving and insertion algorithms. Since the
objective function of my case has been given more than 200 customers, it will not be a
good way to adopt the saving heuristic to form routes. The process of getting saving and
com aring them are a huge and complicated works.

By considering the shortage of using saving heuristic in this thesis, I chose the insertion

ethod as my beginning and I made the method of Insert_By_Distance. The insertion
ethod has helped me get feasible solutions but there also some dissatisfied instances

existed. For example, some points in the same route are far from each other, which make

Method Discussion
In order to find out feasible solution in this project, I divided the whole process of solving
problem into two steps. The first step was responsible to form feasible routes both in
pickup and delivery parts. The second one was to connect relative routes formed in the

ince there was time bounded to each vehicle, somfirst step. S
total time of two relative routes might exceed the bounded time in the process of the
second step. Once the problem happened, such relative routes had to be modified. But the
way of overcoming the trouble will be described later.

1 Forming routes

describe two basic construc
which have helped m
based on those two constructive m

p

m
m

the route length to be longer as the figures shown below.

When I realized this problem, the idea of Fi

Figu

it just gave me information that I should c
those points were connected, then the above

 2
red me. Actually, sher and Jaikumar [9] inspi

re 3-1-1

onnect the points around the same place. If
 phenomenon would not happen. According

2

to this idea, I made the method of Sweep_By_Angle. But it was surprising that the results
from Sweep_By_Angle were not as good as results from Insert_By_Distance. Therefore,
I did some modific

Anyway, I will display the basic methods of Insert_By_Distance and Sweep_By_Angle
in details firstly.

 3

S t e vehicle has to start from the depot, visit its customers and go
b need build an original circle only with the depot, which
m he starting point and also the ending in such circle. The
n sert the rest of the points into the original circle gradually in
o m et the instance that in some route the total demands of
c rt just one more point. We have
t
E nnected point that
n e. Such
m
a

 pot;

ations.

.1.1.1 Insert_By_Distance heuristic
ince in every route, h
ack to the depot at the end. We
eans the depot can be seen as t

ext step of work is to in
rder to form route. Once we e
onnected points exceed the vehicle capacity if we inse
o give up continuing inserting the last point but go back to the depot.

y sequentially. And the uncover time in each circle, we insert point
eeds to be inserted should be close-by the last connected point in the circl

thod can be written ethod is called as Insert_By_Distance. The pseudo code of this me
s
Set: { }nN ,...,1= : all the points except for the de

0k : the ID of routes; =
[] φ=kRoute ;

;0=i
;0=deselectedNo

1 function Insert_By_Distance: all points

 w
5 for

2 all points: n
3 bool: finished = false
4 hile not finished do

(Nj∈)

6 if (∑ ∑
∈ ∈

≤
Mi Nj

k
iji Qxd)

7 if (selectedNode == 0)
8 selectedNode == j;

estDistance = Distance(i,j)
14 if (selectedNode != 0)
15 N = N – {j};
16 Route[k] = Route[k] + {j};
17 i = j;
18 selectedNode = 0;
19 else
20

9 shortestDistance = Distance(i,j);
10 else
11 if (Distance(i,j) < shortestDistance)
12 selectedNode = j;
13 short

 [] φ=++ kRoutek , ;
21 i = 0;
22 selectedNode = 0;
23 while (φ=!N)

 23

When I was in the procedure of inserting points, I found a problem that when more than
one point having the same qualification are waiting to be inserted, which one should be
supposed to my choice?

In order to select the right points, I thought if we choose the point with more demand but
give up the points with less demand when this problem exists, the rest of the points with
less demand will have more chance to be inserted into other circles. And fortunately, the
test and results have proved that my thought was reasonable.

D

E

B O

Demand: Capacity: 30
A: 12
B: 8
C: 7
D: 13
E: 16
O: 0

Route1: O, A, E, O
Route2: O, B, C, D, O

Length_Route1 = 9.3
Length_Route2 = 22.32

C
Total Length = 31.62

A

A

B

C D

E

O

Demand: Capacity: 30
A: 12
B: 8
C: 7
D: 13
E: 16
O: 0

Route1: O, A, B, C, O
Route2: O, E, D, O

Length_Route1 = 21.28
Length_Route2 = 13.3
Total Length = 34.58

0 5 10

5

10

10

0

5

5 10

Figure 3-1-2

Figure 3-1-3

 24

Two pictures above are a part of my test. In those two pictures I set all the same points
with the same demand. In the first picture, point B and point E have the same distance to

s 34.58. Later in the second figure, I chose
 connect point with more demand first, point E instead of point B. And I got 31.62 for
e total route length, which was less than the solution in the first figure.

 the e connecting way, I tested it
with the given data in the pi ade three groups of

he ins t having the same
ication are waiting to be inserted:

oint w re deman

point A after point O and point A have been connected. Should I connect B to A? Or I
should connect E to A?

First I connected the points with less demand. In this way I connected point B first. And I
got the total route length in the first picture wa
to
th
I also considered other instance. What would happen if the information such as the
demand of some points has been changed? In order to make a test, I changed the demand
of some points leaving all the points at their original positions as the figure shown above.
And I connected the point with more demand first again and got the total route length was
33.94, which was less than the first one again.

On the other hand, for sake of insuring the validity of th
ckup part. When I did the test, I m

tance that when more than one poinso
qualif

lutions. Under t

up: the p First gro select

ith mo d

 Second group: ct the point with less demand

sele

 Third group:

lect the point g to their se accordin ID order

E

A

B

C D

O

Demand: Capacity: 30
A: 12
B: 9
C: 7
D: 13
E: 8
O: 0

Route1: O, A, B, E, O
Route2: O, D, C, O

Length_Route1 = 15.62
Length_Route2 = 18.32
Total Length = 33.94

0

10

5

5 10

Figure 3-1-4

 25

Cap 33, results : route length

acity =
w y eekda number of

points
First

group
710×

Second
group

710×

Third
group

710×
Day1 247 2.6603 2.7011 2.7011
Day2 214 2.3584 2.5001 2.5001
Day3 199 2.1858 2.1518 2.2071

2.5817 Day4 229 2.6197 2.5904
Day5 212 2.3298 2.3680 2.3680

Capcacity = 33, results : computing time
Unitage : millisecond

weekday number of points First group

Second group

Day1 247 969 640
Day2 214 609 203
Day3 199 1359 735
Day4 229 391 921
Day5 212 1047 500

 from the original data. In the original data, the
r results got

 than one point has
th alification wa sert . But the time han plying
the way of selecting point with less demand.

Tab low include the solu der changing the data, wh ans only 100
cus will be tested every w .

ap = 33, number of cust = 100, results : route length

The tables above include the solution got
number of customers has not been changed. We can see that almost the bette
by selecting the points with more demand first, when there are more

e same qu iting to be in ed spent is more t ap

les be tion un ich me
tomers eekday

C

acity omers
weekday First group Second group710 × 710×

Day1 1.1305 1.1305
Day2 1.2229 1.2229
Day3 1.1424 1.4039
Day4 1.1521 1.1521
Day5 1.1977 1.1977

Table 3-1-3

Table 3-1-1

Table 3-1-2

 26

Capcacity = 33, number of customers = 100, results : computing tim
Unitage : millisecond

e

weekday First group

Second group

Day1 93 125
Day2 531 422
Day3 94 453
Day4 141 93
Day5 78 422

g the solution from the table, the smallest numbers in those tables are boldfaces.
om data of pickup part are all proved that

re demand when more than one point having the

oute length to be

 other unconnected points to form routes
t e section of reference.

They set the furthest points as seed customers, because the total number of points in their
case was not as many as mine. When I met my case, I could not get any good idea to
resolve my case applying the same way as theirs. The only thing what I could do was to
do the best of my abilities to focus on the points around the same place and tried to form
route by connecting them. In the method of Sweep_By_Angle, I found the sequential
distribution of all the points in each weekday.

Seein
Not only the test but also the solutions got fr
we should priority the points with mo
same qualification are waiting to be inserted.

But as I said before, there is a bad phenomenon existing when we use the method of
Insert_By_Distance. Because some points in the same route formed by
Insert_By_Distance are far from each other, those points make the r
long.

3.1.1.2 Sweep_By_Angle heuristic
The method of Sweep_By_Angle was basically produced from the idea of Fisher and
Jaikumar [9]. In their idea, they knew they should choose the furthest points among the
total points as seed customers. And they inserted

 the way that I have described previously in hin

12

9

13

11

8 16

10
7

13

10
 11

12

Table 3-1-4

Figure 3-1-5
27

From the figure full of the points above, we can see there is a central depot and all the
other points are just distributed around such central depot. On the plane, we may set this
depot as the origin in the planar coordinates. For the other points, we may use lots of

t to connect those points respectively. These radials with the
horizontal lin
sequential distribution depends on the

radial starting from the depo
e crossing the depot can make a lot of angles. My way of finding the

tangent value of those angles.

e know the angles of all the points distributed around the depot are from 0 to

W π2 . The

ay of rearranging the ID of points by angles depends on the tangent function, because
is function increases monotonously when the angles are distributed at the sections of

w
th
[]2,2 ππ− or []23,2 ππ . The idea will be understood more clearly from the figure

llowing.

More detail of sorting points in th eque
s

fo

0 π π 3π
2
π

−

e s
hown below

1 function Rearranging Points: all points
2 all points: Nn∈
3 bool: finished = false
4 while not finished do
5 for(Nj∈)
6 if (xx depotj <
7 tangent_s
8 store such

 (Gj∈9 for
10 if (t
11

 12
13
14 els

Figure 3

ntial way

2

)
mall = 0;
 points in
)

jangent(
 store poi
 G /{G=
 tangent_
e

28
-1-6

 by ang

unite G

) ≥ tan
nt j in p

}j ;
small =
le is written in pseudo code

2

;

gent_small)
art 1;

tangent(j)

j15 tan l =gent_smal tangent()

l =
16 else

∞− 17 tangent_smal
18 store such points in unite B
19 for (Bj∈)

 if (tangent(j) ≥ tangent_small) 20
21 store point j in part 2;
22 }/{ jBB = ;
23 tangent_small = tangent(j)
24 else
25 tangent_small = tangent(j)
26 release the point j in part 2;
27 while (φ=!N)

 All the points are sequenced by the ing part1 and part2.

So far the work of rearranging the points in each day is completed. Once we have got the
sequence of all the points, how can we divide those points to different groups and how to
connect points in each group to form route?

 sum S of puls28

2
π

From the figure we can see some point
depot. The x coordinate values of these
central depot. For the points with blu
their x coo nate values arrdi e bigger tha

ection. We ca

demand_rou

blue points, there is information of dem

Starting from the vertical line under the
plane in anticlockwise dir
The total demand of points in the first ro

,3 ππ
−

π 0

12

9

13

11

8 16

10
7

13

10
 11

12

F

s
 p
e
n

n

t

a

u

with green
oints are le

 colour on
 the x coord

 form five ro

e1 = 12 + 9 =

nd correspon

horizontal l

te is

22

igure 3-1-7

29
Capacity = 30
colour on the left hand of the central
ss than the x coordinate value of the
the right hand of the central depot,
inate value the depot. Nearby the

utes as the capacity of vehicle is 30.

 21 < 30

 of
ding to those points.

ine, we sweep the blue points on the

In f points is far away from 30, but we cannot insert
n cle c acity if we insert the next
one with demand of 13.

T ngement part can be written down as

 this route, even the total demand o
ext point. Since the total demand will exceed the vehi ap

he pseudo code of grouping points following rearra

29 while(φ≠S)
30 for (++= ii ;0 ; 1−S)
31 totalDemand = ∑

=0i
id

32 if (totalDemand Q>)
33 break;
34 store points in specified group

F uping w exist
w nds t e difficult to find
hort routes. Anyway, the results from Sweep_By_Angle can tell us whether this method

 to connect the points in each group, I connected them in

 First ints according to their sequence by their tangent
val

35 else
36 go to step 30;

rom the gro ay of Sweep_By_Angle, we need to know that if lots of routes
ith total dema hat are much less than vehicle capacity, it will b

s
is feasible or not.

When I tried two ways:

Connect po
ue

nd Insert the points by method of Insert_By_Distance. Seco

And I got two groups of solutions:

w eekday Number of

customers
F irst way

710×
Se y cond wa

710×
Day1 247 2.9398 3.0758
Day2 214 2.5753 2.7219
Day3 199 2.2364 2.3630
Day4 229 2.8021 2.9904
Day5 212 2.4978 2.7079

.1.1.3 Results comparison
ntil now, I did not come out with the conclusion that which constructive method is

tics ve been displayed, but both of them had
s. The so s of two m

Table 3-1-5

3

U
better. Even two constructive heuris ha
shortage lution ethods are shown below

 30

C = 33, route

710apacity

results : length×

Metho
d

Day1 Day2 Day3 Day4 Day5

Insert_
By_Dis
tance

2.6603 2.3584 2.1858 2.5817 2.3298

Sweep
_B

2.9398
y_A

ngle

2.5753 2.2364 2.8021 2.4978

Capacity = 33, results : computing time
Unitage : millisecond

Table 3-1-6

Metho
d

Day1 Day2 Day3 Day4 Day5

Insert_
By_Dis
tance

578 594 1406 1219 756

Sweep
_By_A
ngle

969 203 735 921 500

very interesting to find that the results got by applying
n the results got by applying Insertion_By_Distance.

to such un-full routes.

eep_By_Angle have been

eet two problems when they are going to be

From the content of tables, it is
Figure 3-1-7

Sweep_By_Angle are more tha

Based on the results, it seems that it is more necessary to improve Insert_By_Distance
method. But there is also room to improve Sweep_By_Angle, since some routes from it
are not “full” enough. Points released from other routes, which will be destroyed, can be
inserted in

3.1.2 Improved heuristics
In this section, the methods of Insert_By_Distance and Sw

ved separately. For both of them, I used the conception of ejection chain referred impro
from Braysy [11]. Thus they all have to m

proved. im

 What sort of route need to be destroyed?

 How can we insert those released points into other routes?

 Based on Sweep_By_Angle

 the method of Sweep_By_Angle, the main concept of this method is to make the
utes and let them distributed in one sections with their tops at the depot. Because
om the solutions got by applying Insert_By_Distance, plenty of routes overlapped each
ther. And the most perfect thought of forming routes is to avoid overlapping and even
tersection except the point of depot.

3.1.2.1
In
ro some c
fr
o
in

 31

According to the theory of saving algorithm, the elimination of routes can help us shorten

all the points were with little demand. After destroying
and could be easily inserted into other routes. Also,

eal with several points released out and insert them into right routs
mong 70 routes in short time?

r to test whether this ejection chain could bring significant results and also for
izing routes easily, I chose to pick up just one point from route every time and try to

route i

route j

route k

route l

route m

route n

route h

cone section

Figure 3-1-8

Figure 3-1-9

The routes formed by using Sweep_By_Angle had no overlapping and they were close to
each other. And those routes were distributed in some cone sections on plane.

the route length. When I thought about the first problem mentioned above, I thought the
route with lest total demand of points should be destroyed. Because there were maybe
several points in such route or
such route, points with little dem
several points released out could be easier to be inserted to their neighbor routes.

At beginning I have got nearly 70 routes each weekday by using Sweep_By_Angle
method, how to d
a

In orde
optim

intersection

overlapping

 32

insert it into its nearest neighbor route. The detailed act leting this work is

enon

Route 2 and insert
ere is overlappi

Actually, if we ma
two angles will b

and

ion of comp
described below.

As we can see tha
this red point from
This phenom

From the second

th
produce any ove
displayed in previ

Aox∠ Box∠

Looking at the fi
formed by point A
Those pairs of po
figure [3], or on t
vertical line as in

2 22

y

A

o

Route
 can be seen from Figure 3-1-10.

ing point B to Route 2. Obviously, when point B is in
ng between two new routes. But inserting point A t

intersection which ph
w can we figure out the di ce of poi

ke two radial lines from the depot to point A and po
e made by those radial lines and horizontal line cro

Figure 3-1-11

e dist ions o

ine as

t the red point in the first route is very important, bec
 route1 and insert it to route2, new route 2 will overl

and third figures, we will see the difference of ins

rlapping even the so called
ous page. Ho fferen

.

 [1] [2]

gures above, there are four pictures. The first one
 and B. The others are thre ribut f pair of p
ints are distributed only on the left hand side of the
he right hand side of the vertical l in figure [

figure [2].

1 1

A

B B

r

Figure 3-1-10

x

33
Route
1

A

Route
serte
o rou
enom
nt A a

int B
ssing

ause i
ap the

erting

show
oints
 vertic
1] or
Route
Route
Route
d to Route 2,
te 2 will not
enon I have
nd point B?

respectively,
the depo ,

f we pick up
 new route1.

 point A to

to
B

o

al line as in

 [3]

s the angles
on the plane.

crossing the

Firstly, we focus on the first figure and explain how I know that we should choose A
instead of B even if there are several points can be chosen. As we can see that point A
and B with the depot make two angles, Aox∠ and Box∠ .Since the tangent function
creases monotonously when the value of angles are at the sections of []2,2 ππ−
and []23,2 ππ . We know that the tangent value of Box∠ is less than the tangent value
of Aox∠ . And we know we should pick up point A and insert it to route 2 if we want to
avoid overlapping. But can we find a way to deal with general cases?

hen we move points and change routes in the modified way which is talking

oved every time. In order to avoid route
nd w s to start from the depot
eans

e set and as th

Actually, w
now, only one point is considered to be m
overlapping, such point is special. A e know each route ha
and end at the depot again, which m
depot. W

there are at most two points connected to the
startx endx e x coord ts. Certainly, if there

is only one point in such route, we need not consider the work in such complicated way.
t when there are two points, two stanc

P

inate values of those poin

Bu in es will exist

rerequisite Figure out the point

 () () 0* ≥−− depostart xx Point need to be picked up is the point which has
depotendt xx

the bigger tangent value.

() () 0* <−− depotenddepotstart xxxx Point need to be picked up is the point which has
nt value.

the smaller tange

ar, the rule of moving one point has been finished. In order to ensure this rule can be
 to improve the Sweep_By_Angle, first we do some thin or the routes, which have

been formed

thers are omit. For each route, an ID has been given. All the routes are
sorted in the anticlockwise direction. The arresting things are the red points in this figure.

So f
used g f

 Figure 3-1-12

From the simulated route figure above, there are some routes have been shown
completely and o

ID =0

ID =1

ID =2

direction

ID=max

 34

Those points play a very import role am y decide the sequential
stribution of all the routes in antic ckwi

We see all those red points are connected to the central depot directly. The way of finding

t such points is almost the same as the
previously. But

P

ong the routes. The
di lo se direction.

ou method of figuring out the picked up points

rerequisite Figure out the point

() () 0* ≥−− xxxx Point need to be picked up is the point which has depotenddepotstart the smaller tangent value.

 () () 0* <−− depotenddepotstart xxxx Point need to be picked up is the point which has
the bigger tangent value.

I fin
seq y

T p ints exist. After
givin route an I , the steps of work will be displayed

 Note:

from the first route and the last route

n such way, we
uence by the wa

d out those points, save them, and sort those points to make a
of Sweep_By_Angle.

he ID of those red
g each

oints can be used for the routes in which the red po
D

 circulation: start to pick up and insert point
until no point is not connected;

 unchanged
:

hat has been picked up and inserted point
route

route t

ange
points

 rearr connect points by the way of Insert_By_Angle method

 f imp

step1: om the route ID=I or ID=max with least total demand among all
e routes;

Steps o roved Sweep_By_Angle heuristic
Start fr
th

step2: one point from the starting route according to the requirement
f picking point mentioned before. Try to insert the point into next

Pick up
o
route ID=i+1 or ID=0;

step3: If it is feasible to insert such point to route ID=i+1 or ID=0, go to
step5;

step4: f it is not feasible to insert such pint to route ID=i+1 or ID=0, go to I
step8;

step5: exceeds capacity without picking up point from
oute ID=i+1 or ID=0, go to step7;

If the total demand
r

step6: oint
rom route ID=i+1 or ID=0, go to 9;

If the total demand does not exceed capacity without picking up p
f

 35

step7: demand Try to pick up the point in route ID=i+1 or ID=0 with least
and new total demand does not exceed capacity after picking up such
point, go to step10;

step8: Save such point in same point section and leave it to be considered
finally after going through all the routes in the current circulation;

step9: Rearrange all the points in new route ID=i+1 or ID=0 and denote the
original route ID=i+1 or ID=0 has been changed, go to step1;

step10: If there is no unchanged route left fort the point to move in, go to step8

The step works displayed above discuss the problem of how to pick up and insert point.
From the eighth step, we know some points which cannot be inserted to any routes should
be saved in some point section. Now, I will talk about way of handling those points and
connecting them to make new routes.

ir i

value. Th E. Starting from point A we try to find
e t

routes, there are two connected point1 and point2 in the region of

Figure 3-1-13

From the figure, we see that all the black points are connected points and the purple red
points are the points, which have been saved in some point union. How to connect those
purple red points? If we assume to choose the point A as the starting point, the next step
of work will be described below.

F st, it s clear to see that all the purple red points are sorted according to their tangent
e sequential distribution is A, B, C, D,

th nex point in the sequence, which is point B. If we check all the points in the formed
AOB∠ . Since point1

and point2 with depot O cannot compose an entire route, which means depot – 1 – 2 –
depot is not a route. We calculate the demand of point A and point B, and check out
whether the total demand of them exceeds the vehicle capacity or not.

D

Route4

E
C

Route3

B

A
Route2

Route1

1
2

4 3

O

 36

 Yes Connect point A to the depot and make a new route: depot – A – depot. Later start
from point B and find the next new route

 No Check whether there is unconnected point left and continue finding out the next
points.

connected points: poin1, point2, point3 and point4. Those four connected points form a
integrate route: depot – 1 – 2 – 3 – 4 – depot. Thus we can only connect point A, point B

sult from the modified Sweep_By_Angle

 this section, re ose
sults compare with the solution coming from the original method of Sweep_By_Angle.
hen I tried to get results from the modified Sweep_By_Angle, I made some iteration to
n the modified algorithm. The iteration helped points move from one route to another
ute. I thought the solution of modified Sweep_By_Angle in each weekday could form a

urve. This curve depicts the distribution of final results in one weekday after doing
erations.

W could figure out when

get good results by analyzing the curve. When I did the iteration, I set the number of
eration as 100. Actually the number of 100 has no warrant to the algorithm iteration

rations, the results reminded me the way of modified
S bl

 original results: Results got from the orig _By_Angle without improving

We may assume that the total demand of point A and point B does not exceed the
capacity. We find the next point is point C. Between point A and C, there are four

and the depot to make route: depot – A – B – depot.

Until now, all of my idea about how I improved Sweep_By_Angle heuristic has been
introduced completely. The most import and complicated works in this section are to
avoid route overlapping and intersection except the depot. The phenomenon of route
overlapping and intersection can be depicted clearly and visibly in the following figures

.1.2.1.1 Re3
In sults got by applying the modified Sweep_By_Angle are listed. Th
re
W
ru
ro
c
it

e see good result can be easily found out from the curve, since I
I
it
process. But by doing 100 ite

weep_By_Angle had some pro em.

inal Sweep

 current results: irst five results after doing 100 iterations F

current result

good result

Figure 3-1-14

 37

Based on Insert_By_D tance

is

workday Number of points original r current res 0 esult 710× ults 1× 7

2.9398
3.1554
3.3425
3.4030

Day1

247

2.9398

3.3626.
2.5753
2.8799
2.9000
3.0442

Day2

214

2.5753

3.0454
2.2364
2.4453
2.4770
2.5943

Day3

199

2.2364

2.6556
2.8021
2.9612
3.1113
3.2041

Day4

229

2.8021

3.1665
2.4978
2.7157
2.8265
2.8508

Day5

212

2.4978

2.8753

Table 3-1-8

to get better solution after
doing so.

l routes have been changed, the points inside them
need to be connected by applying Insert_By_Distance. Since ejection chain is to change
t
have to be connected in the same way used the original one.

From the results displayed in the table, I was very surprised that the modified algorithm
actually has not helped me to shorten the route length. On the contrary, it made the results
be even worse than the results obtained originally. At that moment, I still did not want to
give up my mind, because I wanted to use the idea of modified Sweep_By_Angle to
modify the method of Insert_By_Distance. And I expected

The way of modifying Insert_By_Distance here is more or less the same as the modified
behavior described in the previous section, but there is a change in the action of
rearranging points. Once the origina

he position of points in routes, points in the original routes got from Insert_By_Distance

 38

When I used the way to Insert_By_Distance, I still use 100 iterations as the steps of
utes. Before starting to iterate the modified behavior, I

s e seq ence ormed in
Insert_By_Distance. The results are

ginal results: esults got from the Insert_By_Distance without improving

moving points among all the ro
orted all the routes and gav the distributed u

to the routes f

 ori R

 original

 current results: First five results after doing 100 iterations

Based on Insert_By_D tance

is
workday Number of points original resu current res 0 lt 710× ults 1× 7

2.6253
3.1226
3.2955
3.4299

Day1

247

2.6603

3.3973
2.3347
2.8790
2.9393
3.1399

Day2

214

2.3584

3.2622
2.1612
2.5844
2.6466
2.7086

Day3

199

2.1858.

2.6362
2.5733
2.9358
3.1548
3.2058

Day4

229

2.5817

3.2220
2.3169
2.7593
2.8887
2.9251

Day5

212

2.3298

3.0362

 the
an the original results,

 routes.

Table 3-1-9

Unfortunately, the ejection chain cannot be used to improve Insert_By_Distance further,
ven though better results could be got at the beginning. This can be referred frome

results above. We see the first results in bold-face are little less th
but the iteration goes up, no better results exist. Even though we should not say the
method of ejection chain has no effect when it used to eliminate

 39

The failure of using ejection chain here belongs to the modified method per se. The
ejection chain could have improved the algorithm and helped to get better results actually,
since some bad phenomenon that could use the ejection chain to resolve:

 Some points in the same route but they are far from each other

 outes but near by each other

thinking whether such movement was good or it would make the route length to be

prove Insert_By_Distance in more feasible way later.

just wanted to decrease the number of routes and removed the points among
utes expecting to get better results. But I did not set shortening route length as the

rerequisite when I moved points. If I only moved points when short routes could be
produced, the modification procedure would help e to get less value of route length at
the end.
In my mind, I thought the best perfect instance of forming routes is to avoid route
overlapping and intersection. The imagined perfect routes can be felt from the figure
following

Actually, the expectations of avoiding route overlapping and intersection are right. But

vehicles with capacity constraint, how we can ensure that all the point will be arranged

 Some points in different r

The method of ejection chain could help us to rearrange the distribution of points in
routes. The failure of modified behavior is the way of using ejection chain above did not
associate with other important constraint. I only concerned with moving points without

longer.

3.1.2.1.2 Method analysis about Sweep_By_Angle
So far, some failure experience of modifying method has been collected. But the failure
of modifying Sweep_By_Angle should not be ignored, because the failure from them
helped me im

In my point of view, the first reason of failure is in the part of modification procedure. In
this part, I
ro
p

 m

Figure 3-1-15

when there are plenty of clustered customers distributed on the plane, such expectation is
luxurious. If we assume that lots of clustered points have to be assigned to different

 40

averagely without route overlapping. The fact is that it is difficult to avoid route
overlapping and intersection, if points are clustered. So this is the second reason why
modification is failed.

 directions to form routes:
weep_By_Angle and Insert_By_Distance. So far, I have explained the way of

modifying the Sweep_By_Angle and I also used the same way to modify
Inser_By_Distance, bu fective solution. Thus I turned to
Insert_By_Distance, tried to m nd expected to get feasible solution.

The process of my thought can be described as the flow chart

ure 3-1-16

Actually, my new idea of modifying the Insert_By_Distance can be described generally

p every route from the formed route section and
ptimize such route with its next neighborhood route

Third, picking up and moving only one point every time is not a good way to modify
method. Firstly, it is a bad choice from the point of time consumption. Secondly, the
choice of picking up point is limited. Only choosing the point connected to the depot
directly will badly block other points to be picked up.

3.1.2.2 Based on Insert_By_Distance

In the part of introducing constructive heuristics, I have set two
S

t as we see that I did not get ef
odify it a

Constructive heuristics

Fig

Fortunately, I have got excellent solution. At least the results were much better than the
old ones. Since I had the experience of working with modifying Sweep_By_Angle, I
mainly emphasized two important rules when I focused on modifying
Insert_By_Distance. This rule was not only experiential words, but it also brought some
significant breakthrough to the results.

The first rule of modifying Insert_By_Distance only allowed inserting point but not
replacing point. From the experience of previous work, I knew that if the replacing action
was successful, it might help us to move points and get better position for them. But if it
was failed, the points replaced outside without being accepted by other routes would form
some new routes, which disobey the idea of saving heuristic.

in two steps. The first step is to pick u i
o 1+i . The second step of work will

tes. In the second step, the work is to set some start after finishing optimizing all the rou

Forming routes:

Insert_By_Distance Improvement based on
Insert_By_Distance

Improvement based on
Sweep_By_Angle

Sweep_By_Angle

 41

constraint and make iteration to continue optimizing results. The second step is also the
ter

up each point p from route i

 from route i if take off point p
n be inserted into route i+1)

route i+1 if insert point p
thIncrease < lengthDecrease)

ecrease = lengthDecrease - lengthIncrease

= Pdecrease
 pSelectedInR1 = currentPoint p

 }
 else if (Pdecrease > largestPDecrease)

 largestPDecrease = Pdecrease

 }
22 }

e iteration made to optimize the solution in the

econd phase will be presented. In this iteration part, we will start to optimize the route
ot from the constructive method of Insert_By_Distance and then use the way of
odified Insert_By_Distance in the anticlockwise direction. But we won’t only follow
e anticlockwise direction; the reason is if some routes are bad at the beginning, the new
rmed routes will be worse and worse. Such judgment will be explained more clearly by

sing figures

second rule I will talk about la

Now, Let us talk about the first step:

dified Insert_By_Distance Function: mo
1 pSelectedInR1 = -1
2 largestPDecrease = -1
3 orderly pick
4 {
5 lengthDecrease = the length decrease
6 If (point p ca
7 {
8 lengthIncrease = the length increase from
9 if (leng
10 {
11 Pd
12 if (largestPDecrease == -1)
13 {
14 largestPDecrease
15
16
17
18 {
19
20 pSelectedInR1 = currentPoint p
21

23 }
24 }
25 if (pSelectedInR1 != -1)
26 {
27 move point pSelectedInR1 from route i to route i+1
28 }

After passing the first step of work, som
s
g
m
th
fo
u

 42

 [2] [3]

he way of optimizing routes has been found. But if we continue only optimizing two
earby routes, there must be no routes can be optimized each other after several iterations.
hen we meet this problem, we should select the routes to optimize without only

onsidering two nearest ones. A variable stepLength will be set in the program to guide
e algorithm choose routes and optimize them. For instance, if we set the stepLength is 1,
hich means we only optimize the current route with its next nearest neighbour route.

There are some simple figures drawn to show the work of stepLength.

From the figures above, we can see that two groups of figures are displayed. The actions
in both figures are to pick up point and insert it to another route in the anticlockwise and
clockwise directions respectively. In the anticlockwise direction, figure [2] includes the
optimized routes coming from figure [1]. And figure [3] includes the new routes got from
figure [2]. In the clockwise direction, figure [4] includes the routes optimized from the
figure [1].

T
n
W
c
th
w

anticlockwise

anticlockwise

Insert to next route

clockwise

[1]

[4]

[1]

Figure 3-1-17

 43

Figure 3-1-18

t route plus 2. Other value of stepLength will follow this
way.

The introduction of stepLength makes us know the meaning of doing so. But the method
tha
explained comple
the method in a in
clockwise d

So th

 First:

h when there is no route can be optimized;

 original routes stepLength = 1 stepLength = 2

The original route with black points has been displayed on the left. In order to show the
use of stepLength, points in the chosen routes going to be optimized are in purple red in
second and the third figures. When stepLength equals to 1, the ID of the next route just
equals to the ID of current route plus 1. In the same way, when stepLength is 2, the ID of
next route is the ID of the curren

t how we use the way of changing stepLength to optimize routes still have not been
tely. The way of iterating algorithm is to optimize routes by applying
nticlockwise direction first and then continue optimizing routes

irection.

when we use e way of stepLength, there are three aspects we need to concern.

When we set the stepLength, every iteration is the action to optimize
routes both in anticlockwise and clockwise directions. We can only stop
and change the stepLengt

 Second: The optimization way only includes inserting but not replacing ;

 Third: The value of stepLength cannot be increased without limitation after
several times of iteration. We need to set a value for maxStepLength
aiming at different instances. The purpose of setting max value to
stepLength is that all the routes are distributed just at one part of the
planar, as

 44

ad choice mentioned here. This is not only theoretic advice; it actually came
from the experience that I have done. And it is also tenable in theory.

nd
bigger, but those bigger values of stepLength will not help routes to be optimized any

press different meanings under different instances. Thus I have used the
stepLength in two different ways. The use of stepLength plays a very important role in
t h lped me get two different solutions.

As the case stands, there are two directions we can choose. The first one is we increase
t
ma
process is

Unde

Figure 3-1-19

In the figure, as we can see that route optimization starting from route1 and trying to
minimize it with route 4 is not a good choice, since those two routes are far from each
other. The maximum stepLength is not the same value as the number of routes, the
maximum stepLength need to be tested out. And the maximum stepLength can help us to
avoid the b

By going through the test part, I found that the value of stepLength should not be
increased up to the number of routes, because routes will stop being optimized after the
stepLength reach to some value. Even though the stepLength can be increased bigger a

further.

We should know that nothing can be fixed and only be considered in one way. Every
thing will im

his thesis. T e different ways of using it have he

he stepLeng
xStepLeng

th continuously in the process of optimizing routes until reach the
th. The second one is to change the stepLength in discontinuity way. The

 Step1: r the instance: stepLength > 1
 Step2: Focusing on the current stepLength, optimize routes until there is no change

in routes

 Step3: Reset the stepLength = 1 and try to optimize any two nearest routes since
some routes must have been changed and reformed in the previous step,
which bring bigger probability to optimize some nearest new routes.

Route4

Route3

Route2

Route1

 45

 Step4 Increase the stepLength until there is no change in routes. Go to step1.

3.1.2.2.1 Result from the modified Insert_By_Distance

So far, the whole work of forming routes is nearly finished. During the procedure, first I
built two constructive heuristics as the start of searching method. Then I modified the

wee _
mo e way.

After having done some work to modify the method of Sweep_By_Angle, I have

 two rules need to obey if
we e c etter res ds used in
Swee

erting

results;

I , two f result t below

 Fi sults y increasing the stepLength continually

S p By_Angle method and got some useful and reasonable conclusions that how to
dify methods and optimize the solutions in more effectiv

improved the way of improving methods. I realize that there are
xpe ted to get b
p_By_Angle.

ults in valid way comparing with the metho

 Only allow to ins point but not replace point;
 Using the circulatory approach effectively to optimize

n the table there are
rst group

 groups o
re b

s, they are lis

 Second group lts by incr tepLength in discontinuity way resu easing s

Re f first y us ified Inse istance:

Ca 33;

sults o part b ing mod rt_By_D
pacity =

weekday Number
of points

Original
results

First group

Second group
7 71010× × 710×

Day1 247 2.6603 2.6131 2.6040
Day2 214 2.3584 2.3233 2.3023
Day3 199 2.1858 2.0940 2.0881
Day4 229 2.5817 2.5339 2.5359
Day5 212 2.3298 2.2401 2.2232

Table 3

Results of second part b odified _Distance:

Ca 33

-1-10

y using m Insert_By
pacity =

weekday Number
of points

Original
results

First group

Second group

Day1 247 9744405 9271989 9085027
Day2 214 8708209 8570935 8379432
Day3 199 7983595 7965560 7914716
Day4 229 8611727 8519576 8483032
Day5 212 8081702 7812657 7789271

Table 3-1-11

A ith the length i weekda re are com time c ed by
running the algorithms in different way of changing stepLength are listed below

long w route n each y, the puting onsum

 46

 First results by increasing the stepLength continually

 second results by increasing stepLength in discontinuity way

time unitage : millisecond

Group
Name

Day1 Day2 Day3 Day4 Day5

First 1641 2422 4682 2969 4734
Second 3172 7453 4953 4813 4500

 tables above, the results displayed are coming from the solutions in different parts by

ty way respectively. More details about changing stepLength
ontinually or in discontinuity way will be explained later in method analysis. And the

ay by changing the stepLength
n different ways.

Distance

rom all the results, I discovered that the rule of only allowing to insert point brings a
significant improvement to solution. And the way of changing stepLength also makes a
great effect. Although the results got both in changing the stepLength continually and in
discontinuity way are not much different, those two manners of changing stepLength
exist big distinctness in the algorithm design.

If we use flow chart to describe those two manners, they should be designed as

Table 3-1-12

In
using modified Insert_By_Distance. The fist and the second tables show the results in the
pickup part and delivery part got by changing the value of stepLength continually or just
changing it in discontinui
c
third table shows the consuming time spent in every weekd
i

The results in bold-face are the results with smaller value. And we found that the way of
changing stepLength in discontinuity way help us to get the best results so far. But the
computing time is much.

3.1.2.2.2 Method analysis about Insert_By_

3.1.2.2.2 .1 review the method and analyze it

F

 47

Flow chart of changing the stepLength in discontinuity way

Figure 3-1-20

First route

 Optimizing routes

 Last route

 Is there any change in routes?

stepLength = maxStepLength?

Reset stepLength:
stepLength = 1

Yes No

stepLength = stepLength +1

Yes No

First route

Optimizing routes

Last route

stepLength = stepLength +1

stepLength = maxStepLength?

Reset stepLength:
stepLength = 1

Yes

No

Flow chart of changing the stepLength continually
48Figure 3-1-21

Loo harts above, the

king at those two flow c re are some steps of work we need to review.

 Optimizing routes : The procedure here is try to optimize one pair
of routes every time

 stepLength = stepLength +1 : This the way of choosing the route to
o timize

is
p

 maxStepLength : The value need to test according the given data

s we see that the difference existing in two changing ways of stepLength is time, which
section. And we could also see the

 avant-couriers’ good idea.

e ideas to solve problems, every such
stance is worthy to trying. In this thesis, plenty of thought came to my mind, some of

 thoughts have not been
orked with may bring uncommon results. Thus I would like to write some new idea
own; perhaps it will give people some information and help them to make more general
onclusions if it can be considered to work with.

he new method I would like to talk is based on the results got from the
sert_by_Distance. If we have the original source of results as

A
can refer the value from the table in previous
complexity. If we set the average complexity isO under each iteration with some fixed
stepLength and the maximum stepLength is m , the total complexity holden by method of
changing stepLength continually and the method of changing stepLength in discontinuity
way are mO and Omm)1(+ respectively.

3.1.2.2.2.2 some new idea for modifying method

The VRP is so popular. People have been being spent their time doing its relevant
researches since they start to know the importance of such problem. Because of
researchers’ contributions, there are a lot of approaches discovered. In this thesis, some
algorithms are also carried out and listed by referring the

From the work I had done, I realize that it is necessary to do some brave attempts if we
have some ideas and think them to be reasonable. The efficiency and perfection of one
method relies on the accurate exhibition of results at the end. This is also the attitude
recognized by the great philosophy conception: the enchantment of maths is that the
results got from it are perfect because of their accuracy.

Now that we should not give up any reasonabl
in
them have been implemented as work shown previously. And for the others, there is no
more time to implement them. But I trustfully think that those
w
d
c

T
In

 49

he new method is the combination of inserting and replacing. In this method, we pay

uenced in anticlockwise direction. So at the beginning
f modifying Insert_By_Distance by using the new idea, we

and make them to distribute in the anticlockwis n. andling that is
e same as the me us section. After sorting the routes, if we

se a simple picture to show the information of routes formed from Insert_By_Distance,
e figure should be described as

Figure 3-1-22

T
our main attention to the demand of point, because the distance of the total routes dose
not only rely on the length of every route, but also is constrained under the vehicle
capacity. And the results got from Insert_by_Distance have a character that the procedure
of forming route is mainly restricted to the constraint of vehicle capacity.

Owing the figure above, we know that ID has set for each route when routes were formed.
But those ID of routes are not seq
o have to resort all the routes

e directio The way of h
th thod described in the previo
u
th

Figure 3-1-23

12

6

11

8
7

14
2

18

10

Route 2
Route 1

Route 3
Capacity: 30

 50

The figure almost includes basic information we need. As we can see that the capacity of
vehicle fixed for the routes in this exam e routes are supposed to be
formed by applying the method of Insert_By_Distance. For instance, we focus on the
route 1 and route 2, if we want to pickup point from route 1 and insert such point into
rou e this poi replace n the origina 2. Then we g

ple is 30 and thre

te 2 or us nt to the point i l route et

 route1 route2
demand 18 12, 11, 6
demand 10 6

Figure 3-1-24

e
ure that the behavior can be carried out completely, the demand of point which will be

uld be mo

c the rule
we let the points with 18 an new route2, we
ll compare them with the original route2, and then there are two instances will happen

te;

In this figure, since most of the routes are full, we need to pickup one point/points from
one route and use such point/points to replace point/points in next route. In order to b
s
replaced out sho re than the demand of point used to replace such point.

Ac ording to obey in boldface, we see there will be four possible new route2 if
d 10 out from route2 respectively. From those

a

 first choice if some of the new route is shorter than route2, then we choose
such new shorter rou

 second choice if none of them are shorter than route2, then we give up doing so
te3 in the same way but consider route2 and rou

We are familia
and what we should do next is a problem. There are some steps can help us to solve the
problem if the t ed.

r with the basic method now, but if we suppose the first choice happened,

 firs choice has been achiev

Step1: one point from route2 will be picked up

if such point can be inserted, check whether new route 3 is shorter comparing

ith the original route3 w

 shorter or no change? insert point

Step2:

 bigger? do not insert, consider route3 and route 4

Step3: such point cannot be inserted, just leave it

if

18 out 12 insert
18 out 11 insert
18 out 6 insert
10 out 6 insert

 51

Figure

Step4 After going through all rout

points have been pushed asi ted points

 3-1-25

es in anticlockwise direction. There are some
de the connec

Try to insert such sort of unconnecte ors d points to their nearest route neighb

Can be inserted? Yes, calculate the distance and compare the
distance of route neighbor and the distance of

e route formed only by connecting the point

Choose the route with shorter distance

th
to the depot

Step5

Cannot be inserted? Yes, just connect the point to the depot, make
route with such point and the depot

Step6 Until all the points have been connected, then make circulation and find the
shortest one

Until now, the description of new idea of modifying method is finished. In this new idea,
the conception of optimizing routes does not refer the experience summarized from the

odified Insert_By_Distance such as replacement. The new idea allows the existence of

3.2 Connecting routes

 this part, step of work connecting the relative formed routes will be described. First,
e need to find out the relationship of routes both in pickup part and the delivery part.

e working time. Since there is a

m
replacement.

This new idea of modifying method may not lead the route length to be shorter enough.
But as the optimizing way is very tight, it is still worthy to implementing and testing
whether there is any improvement to the results.

In
w
Second, all the relative routes will be tested relying on th
time constraint given in the problem that every vehicle has to work from 06:00 to 22:00.
If the time is invalid, we have to rearrange the troublesome routes.

 52

3.2.1 Searching relative routes in different parts

lit, in order to ensure every order can be picked up and transported to

lative routes between pickup and
parts.

For the sake of describing the method, a figure including routes in both parts is displayed.
It is clear to see that this sim le figure composed with one central depot, some points and
several routes formed with links between two nodes. The routes in the figure are
generally distributed on both sides of the central depot.

ome from pickup part. Routes on
the right hand side of the depot come from delivery part. oute, there are some
points inside it. And it is obvious to see that the points o are given the same
ID for the source points and their correspondin terminal points, which can help us to
find out the relative routes by checking the ID of points from different parts.

First, for both side we clarify the nodes in each routes:

Now, all the points have been connected to compose routes. Because the parts of pickup
and delivery are sp
its termination successfully. The work we need to do now is to find out the relative routes
in both parts, which means we have to connect all the relative sources and terminations
together.

First we discuss the way of making connections for re
delivery

p

Figure 3-2-1

We may say routes on the left hand side of the depot c

 In every r
n both sides

g

Left side Right side

},{1 ABR = },{ GARI =

},,{2 CDE= R },,{ EBCRII =

},{3 GFR = },{ FDRIII =

able 3-2-1

T

A

B

G

A
E C

D
E

C B

F

G

D

F

 53

Second, we test whether there is union between any two routes from different parts:

1R 2R 3R
};{1 ARIR =I
};{1 BRIIR =I
;1 φ=RIIIR I

;2 φ=RIR I };{3 GRIR =I
};,{2 ECRIIR =I

};{2 DRIIIR =I
;3 φ=RIIR I

};{3 FRIIIR =I

Table 3-2-2

From the table we see that when we focus on different routes in pickup part and check
their relative routes in delivery part, there are some different results come out. For 1R in
pickup part, we find that routes RI and RII have union with 1R , which can be explained
that the goods from source points in 1R have to be delivered to terminal points
in RI and RII separately. For route 2R and 3R , they can be understood in the same way as
route 1R .

By using the way above, we can find out all the relative routes coming from different
parts.

3.2.2 Rearrange the overload routes

chec

In order to be convenient to understand, we set

As we have mentioned that every vehicle has been bounded with a working time period.
Once there is a route union, we have to k whether the total time spent in any two
relative routes exceeds the time constraint or not. In this thesis, the problem has been
taken starting at 06:00 in the morning and finishing at 22:00 in the evening, so time
period is bounded as 16 hours every day. The work we need to do next is to test time
spending in routes.

I as the collection of routes from the
pickup part, every route has an ID named Ii∈ and the collection of routes in second part
set as J , routes with ID inside called Jj∈ . Since all the routes are formed by connecting
points, point iKk ∈ means nodes in pickup part, and point jKk ∈ in delivery
part. iK and jK are the gathers of points in different parts. And the demand of points in
different part, we set as 33≤d and 33≤i jd .

In this problem procedure, every order need to be uploaded at the source node, offloaded
and uploaded again at the central depot, and then offloaded at the terminal node. For
every process of uploading or offloading, it will take 10 minutes and the one minute for
every demand of goods. The average speed of each vehicle is 60 km/hour. Once we find
the relative routes, the total time spent in them is

)(*2 TimeoffloadingimeuploadingTeportingTimTotalTransTotalTime ++= ;
;60000/)__(jLengthiLengthngTimeTransporti +=

ii ddimeuploadingT +++= 1010 ;
; jj ddTimeoffloading +++= 1010

 54

)(*24060000/)__(ji ddjLengthiLengthTotalTime ++++==

Kno ing th g total time, the steps underlying which are adoptew e way of calculatin d will
 u her any two routes are feasible to be connected

om , is the ID of route coming from the pickup part

iii ,,

help s to check whet

 0=i i1. start fr
2. for (=i 0) ∑<++
3. go through all the routes in delivery part
4. if φ≠∈∈ ji KkKk I means routes coming from different parts have the
5. same ID
6 ddjLengthiLengthTotalTime +.)(*24060000/)__(ji+++==

7. if 16>TotalTime
8. record the route i and its relative route j , save them in special collection
9. else
10. routes from pickup and delivery parts can be connected and such connection
11. is feasible

In the step8, we save the relative routes whose spending time exceeded bounded time
eriod. For the sake of understanding simply, we set the process of uploading,
ansporting and offloading the same amount goods in the pickup part as the first part.

Similarly, we set the process of uploading, e amount
f goods
an be visually represented as

rom the figure, we can see that the time spent in different parts is 4 and 14 hours

to finish work such as the
econd part above. There is an idea jump into my mind that if we can use one more
ehicles to finish the same work which has been done by only one vehicle but using twice

time hicles.

Once
befor

p
tr

 transporting and offloading the sam
as the second part. Then the time spent in routes which need to be rearranged o

c

first part second part

4 hours 14 hours

Figure 3-2-2

F
respectively, which exceeds the total time bounded as 16 hours. The only problem make
this phenomenon happen is some route take too much time
s
v

value, why we should not choose more ve

 we pla
e, there

n to use more vehicles to handle the same work burdened by several vehicles
 are three problems need to be considered firstly:

 55

 How can we split the longer route?

 How many new routes should be formed?

 w routes, how can we distribute the points which
nger route?

Knowing the number of the ne
have been released from the lo

rom those problem, we know that if we want to split route, firstly we should know how

many number of new routes will be engendered. The way of dealing such problem is

= length of the longer route
= number of new routes

F

hrouteLengt
n

1+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
bestTime

speed
hrouteLengt

n

2
60
*24016 capacity

bestTime

+
−

 =

s we have talked just now, there is a job given to be handled only by one vehicle

The bestTime here plays a very important role, first it helps us to get the number of new
routes, second it supplies us a measure to test whether we should split formed route or not.
Then we know if bestTimehrouteLengt > , it is necessary to rearrange the routes.

A

Tin time period, when we wan to shorten the working time, we can rearrange this job to
o vehicles to finish. If every vehicle uses the same time period, then each of them will

s
tw

e 2Tu , which means we can complete the whole work in a half of the original time. So

Because one route cannot be slipt and completed by several vehicles in the some

Figure 3-2-3

The imagination of splitting routes is perfect, but we cannot ensure this perfection exist.

14 hours

7 hours

7 hours

 56

bestTime period. Every vehicle starts from and it has to come back to
the again after visiting its customers, which me

 the central depot
 central depot ans it will be impossible for

s to split a routes into several average new routes if we want the sum of total split time
qu

cou

u
e als to the time spent in the original route. But there is an eclectic instance that we

ld try our best to make sure ngthnewRouteLe nearly reach the value
of nhrouteLengt . Then we come to me

mber of the new routes, how can we distribute the points which
have been released from the longer route?

 the way of rearranging released points and connecting them to form routes, we will
dopt some new idea.

he figures above describe a process of rearranging. The figure on the left is the original

ne
original one. The p tin such long original route can be described as the

nt

et the problem that:

 Knowing the nu

In
a

Figure 3-2-4

T
route and the o on the right shows the new routes which have been split from the

rocedure of split g
steps following

 Step 1 release all the points in the rearranging long route and save these poi s
in a point union W

 Step 2 sta h and connect the furthest point i
and go back to point o . Pick up point i from

rt from the central depot searco ,
W

 Step 3 p th the central depot Check the route com osed by e point/points and o

 Step 4 if ngthnewRouteLe < nhrouteLengt , search and connect the nearest
point j to previous point i and go b k to the central depot ake

ick up point
ac to m

route. P j from W and go to step 4
 Step 5 else if nearly equals tongthnewRouteLe nhrouteLengt , go back to

 57

the depot. Pick up point j from W and check whether φ=W . If
φ≠W , go back to step 2

Let us go back to the figure, and go through the procedure again. As we see that there are
three red points in right figure. They are the first point of every route beside the central
depot. We call those red points seed customers. And the seed customers here are the
points which are far from the central depot. Once we connect such seed customer with the
cen next work is to find the nearest point to this seed customer. Every time
when we search point, we need to supp

tral depot, the
ose those searched points can be com to

rm new route and check whether the time spent in th te is nearly equals to the value
 posed

fo e rou
of nhrouteLengt . If it is, we stop searching next point. But if it is not, we have to
continue until there is no satisfied point.

It seems that there is no problem to arrange those points which have been released out
from the long origi e. But since every time we compose route only by picking up

ing total route length.
nd inserting points to their nearest neighborhood route will not add the routeLength too
ng comparing with the value of

nal rout
the points satisfy the time limitation, there must be some point which is not valid to be
picked up to form route when we finish composing routes. How do we handle those
separate points?

There is a figure underlying, it is very clear to see from the figure that the left points can
be inserted into their neighborhood routes. Because if we only connect them with the
central depot separately, this way disobeys to the saving method as we have proved in the
previous section. But inserting points will help us to avoid increas
A

nhrouteLengt lo firstly, and secondly the consideration
enon of exceeding vehicle capacity can be omitted.

e 3-2-5

arranging the long route from the relative pair of routes
e below

on

of the phenom

 58

Figur

In conclusion, the procedure of re
can be described amply as th ode c
1 function connection() : soluti
2 solution : s;
3 bool : finished = false;
4 while not finished do

5 bestLength = 0;
6 bestTime = (16 – (40 + 2 * capacity) / 60) / 2;

ch spend time exceeding bestTime

uch pair routes and split it into n new

/speed) / bestTime] + 1

while

 ertion of the

s
 < = routeLength / n

 = m -1;

routes
 through all the routes in both parts and check

re are still pairs of routes exist.
0 if there is/are pair routes, go to step 2

 else

 the twelfth step, no matter the value of “int [(routeLength/speed) / bestTime]” is 0 or
ure n equals to 2 at least. Otherwise, there will be no

3

ications have been given. The first one is the number
f point, the second one is the value of vehicle capacity and the third one is the bounded

, the
umber of points in each day is almost more than 200 and optimal results for VRP with

r the constraint of vehicle capacity, which
eans if we change the value of capacity then all the routes will be changed also. So in

7 for each pair routes in solution do
8 find the routes whi
9 if the number of routes > =1
10 choose the longer route in s
11 smaller routes
12 n =int [(routeLength
13 for each splitting route do
14 release all the m points in such route
15 m > 0 do
16 for each point in the point union do
17 start from the depot and find the best ins
18 points to form new route
19 if newRouteLength
20 and if length of insertion > bestLength
21 store insertion;
22 m
23 bestLength = length of insertion;
24 if number of new routes > n
25 stop
26 if there are points have not been selected
27 insert them into those formed new
28 go
29 whether the
3
31
32 Finished!

Note:

In
bigger than 0, we have to make s
change if n=1 again.

.3 Experimental results
In this thesis, three important qualif
o
time period to vehicle. Those three instances are important because they have the crucial
relationship to the final solutions.

Firstly, the number of point decides the complexity of calculation. In our problem
n
only 100 points have been got so far. So in this experimental section, the first 100
customers will be selected from the original data in each day to test the algorithm.

Secondly, the length of route is formed unde
m

 59

this experimental section, we will assume that every vehicle will be added one trailer,
which has the same capacity as the vehicle.

Third, the time period to vehicle is also very important. Since this value decides whether

e should rearrange routes and how many routes need to be rearranged. This factor

val

e first two show some pertinent information of results coming from
ickup and delivery parts with the original number of points and the capacity is 33. The

umber of points.

howing the results of route length, the time spent in computing are also calculated.

Note:

ngth ngth value is set bigger than it

w
influences the efficiency of the algorithm. In this problem, 16 hours has been given. This

ue is reasonable in this current case, because 16 hours ensures that

 Time spent either in pickup part or delivery part is less than 16 hours. If there is
overload route, we could just rearrange the routes in the worse part, but not both. So
value of 16 simplifies the procedure of resolving overload routes.

 More number of overload routes will make the route length to be longer. 16 hours
controls the number of overload.

 Less bounded time period may make us to rearrange the routes in both parts. And
number of new routes will be increased, which brings bad solution.

Since on one hand the given bounded time period is reasonable, and on the other hand
there is not enough time to make test of changing bounded time period. I display two
groups of results and compare them under different constraints. There are four tables in
the first group. Th
p
second two tables show the results when capacity changes to be 66 without changing
n

After s

 maximum

stepLe
We cannot get the best result if we set the value than it, but also
cannot find better result if the stepLe

 overload
route

The relative pair of routes whose total spending time exceeds the
bound time from the given problem

Capacity = 33
Pickup part:

w y orkda number

of
customer

maximum
stepLength

pairs of
overload

routes

resul fore t got be fin ts
dealing with

ove rload 10× 7

al resul
710×

Day1 247 35 1 2.6040 2.6540
Day2 214 14 0 2.3023 2.3023
Day3 199 7 1 2.0881 2.1256
Day4 229 29 2 2.5359 2.6474
Day5 212 31 4 2.2232 2.2931

1

Table 3-3-

 60

Delivery part:

workday number
of

customer

maximum
stepLength

pairs of
overload

routes

resu re lt got befo
de aling with

overload

final results

Day1 247 15 1 9085027 9085027
Day2 214 29 0 8379432 8379432
Day3 199 26 1 7914716 7914716
Day4 229 29 2 8483032 8483032
Day5 212 17 4 7789271 7789271

Table 3-3-2

C 6
Pickup part:

apacity = 6

workday number
of

customer

maximum
stepLength

pairs of
overload

routes

r efor esult got b e final results
dealing with

ove rload 10× 7

710×

Day1 247 6 18 1.3950 1.7508
Day2 214 8 22 1.2200 1.6728
Day3 199 13 24 1.1335 1.6310
Day4 229 3 24 1.3085 1.8300
Day5 212 6 32 1.1632 1.6949

Table 3-3-3

Delivery part:

workday number
of

customer

maximum
stepLength

pairs of
overload

routes

resu re lt got befo
de aling with

overload

final results

Day1 247 7 18 4816073 4816073
Day2 214 15 22 4263168 4263168
Day3 199 13 24 4212978 4230103
Day4 229 4 24 4834634 4840231
Day5 212 8 32 4393987 4393987

Table 3-3-4

Beside the display of results with different vehicle capacity, I also make tow tables show

 data: the given data at the beginning which includes the relevant information of every
point and order

the value of consumed time in two different cases. The time is spent both in pickup part
and delivery part.

 61

C 33 om ut reading
Unitage : mill

apacity = , results : C
isecond

puting time witho data

w y orkda number of
customer

pairs of overload
routes

consuming time

Day1 247 1 9875
Day2 214 0 6213
Day3 199 1 5531
Day4 229 2 6375
Day5 212 4 5343

Table 3-3-5

C 66 om t reading d
Unitage : mill

apacity = , results : C
isecond

puting time withou ata

w y orkda number of
customer

pairs of overload
routes

consuming time

Day1 247 18 4344
Day2 214 22 4594
Day3 199 24 880
Day4 229 24 2031
Day5 212 32 3234

Table 3-3-6

Fro

e longer one

 s of overload routes are more when route length increases

of results, the number of customers are set only to be 100. The way
ng number of customers to be 100 is to select the first 100 customers from the data
y weekday.

 First part = pickup part

Conclusion of the first group of results:

m the results displayed above, we can see that
All the results in the delivery part before and after dealing with the overload problem
are the same. So in most of the overload pairs of relative routes, th
between two routes is in the pickup part.

 When the value of capacity is bigger, then the routes will be also longer.
The number

 The total route length with more capacity is less than the total route length with less
capacity

 The time spending in computing with less capacity is more than the case with more
capacity

Since optimal results for VRP with only 100 points has been explored by some guy so far,
in the second group
of fixi
in ever

Note:

 Second part = delivery part

 62

Customers = 1 ty = 3

00, capaci 3,

weekday pairs of
overload
routes

first part of final results
of the first

part
7×10

second part
results got

before dealing
wit ad

of results got

h overlo
710×

before
d ealing with

overload

final
results of

the
second

part

Day1 1 1.0832 1.1287 3485485 3485485
Day2 2 1.1587 1.2293 4172756 4172756
Day3 2 1.1020 1.1649 4229192 4229192
Day4 0 1.1149 1.1149 3883744 3883744
Day5 0 1.1156 1.1156 4274584 4274584

Table 3-3-7

Customers = 1 ty =

00, capaci 66
weekday pairs of

overload
routes

first part of final results
of the first

part

second part
results got

be
of results got

fore dealing
with overload

before
dealing w ith

overload

final
results of

the
second

part
Day1 16 5694007 1.0214 710× 1982503 1982053

Day2 16 6351351 9806012 2105782 2105782
Day3 9 5940909 9306530 2323729 2323729
Day4 11 6019874 1.0292 710× 2364268 2364268

Day5 22 6299087 1.0069 710× 2286409 2286409

Table 3-3-8

C 33 om ut reading
Unitage : mill

apacity = , results : C
isecond

puting time witho data

w y orkda number of
customer

pairs of overload
routes

consuming time

Day1 100 1 2016
Day2 100 2 578
Day3 100 2 2360
Day4 100 0 1968
Day5 100 0 2265

Table3-3-9

 63

C 66 om ut reading
Unitage : mill

apacity = , results : C
isecond

puting time witho data

w y orkda number of
customer

pairs of overload
routes

Consuming time

Day1 100 16 2187
Day2 100 16 953
Day3 100 9 2235
Day4 100 23 1847
Day5 100 22 1562

Table3-3-10

Co

the longer one

 s of overload routes are more when route length increases

 conclusion got from the first group of results, there are only three left.

maxStepLength can help us to get better results, but we should not fix value
s th ifferent cases. Because the maxStepLength is limited by

 if we have been given a new data. The value of the old maxStepLength

rent route length will be
btained by setting different stepLength and also understand the reason why
axStepLength need to be set to help us get the smallest value

nclusion of the second group of results
All the results in the delivery part before and after dealing with the overload problem
are the same. So in most of the overload pairs of relative routes,
between two routes is in the pickup part.
The number

 The total route length with more capacity is less than the total route length with less
capacity

Comparing with the
When the data has been changed, some characters of results also change like the value of
maxStepLength.

The value of
a e maxStepLength for any d
two factors:

 The content of given data
 The number of routes

As we know that,
will have no meaning. Once we are given new data, we have to test out new
maxStepLength.

I have mentioned that the value of stepLength should not be increased up to the number
of routes, because routes will stop being optimized after the stepLength reach to some
value. Even though the stepLength can be increased bigger and bigger, but those bigger
values of stepLength will not help routes to be optimized any further.If we make a test to
test the first 100 points in the first weekday, we will realize diffe
o
m

 64

Ca

pacity = 33
Value of

stepLength
Value of route length 710×

3 1.0868743906
5 1.0842559938
6 1.0837876156
7 1.0832486313
10 1.0832486313
13 1.0832486313
15 1.0832486313

Table 3-3-11

It is clear to see that the maxStepLength is 7. Because when stepLength is smaller than 7,
the result got by using such stepLength is bigger than the result got by setting 7 as the

f we do not care about the importance of setting maxStepLength, and choose

 d we get the some important ideas after

 Only allow inserting point but not replacing

re good but we do not know whether those

rom the table above, we know there are two pairs of overload routes in the second
eekday when focusing on 100 points, then

stepLength. But when the value of stepLength is bigger than 7, result will not change any
more.

Moreover, i
a very big value as the stepLength, some dead circulation will happen when we run the
algorithm.

So far, the algorithm has been composed. An
completing the algorithm, such as

 Setting the maximum stepLength for iteration

By implementing the algorithm, the results a
results are optimal or not. In order to test that, I made a figure to display the distribution
of the routes got from the second weekday.

F
w

 65

Before handling the overload routes

Figure 3-3-1

fter handling the overload routes

A

Figure 3-3-2

66

By handling the overload routes, it is obvious to find that longer routes in the figure ? are
rearranged. Some new shorter routes are formed and displayed in the figure ?. But there
are some routes overlap each other. No matter how, they do not influence the bounded
the time period though there are two pair of overload routes in the whole problem. The
action of transporting can be solved successfully even the algorithm has some drawback.
The algorithm is definitely feasible.

4

oreover the way of holistic thought how to modify
e methods and get better ones. After finishing the project, I start to apprehend the VRP

ngle and Insert_By_Distance. Those two aspects are discriminative and also
orrelative. Now, I will give some illuminations of two aspects both in disadvantages and

e of emphasizing the idea of orderly distributing and attaching importance to the
es, the results got under those constraints are not perfect.

t also consider the actual
stances. For instance, when the customers are plenty and they are clustered, we should

he Sweep_By_Angle supports us a lot even it is failed. If there is no use of
uch method, I cannot easily agree that Inser_By_Distance is more reasonable and

t the end,

. Conclusions
This is the conclusion of the thesis, but research of this pickup and delivery with hub
reloading problem is far away from the final ending. There is a long and hard route need
to track. By doing this master project, I benefit well from this work. First, it lets me
clearly realize the comprehensive application of VRP. Second, the attempt and
exploration of approaches make me take the reins of basic methods of solving VRP
systematically and consecutively, m
th
or PDP a little bit more and deeper.

In this thesis, I have displayed the mathematical model for the problem and adopted some
algorithms. In the part of forming routes, the methods used mainly based on two aspects:
Sweep_By_A
c
advantages.

4.1 Based on Sweep_By_Angle and its pertinent approaches

1. Disadvantage
Becaus
overlap of rout

2. Advantage
It is a great gain of using tangent value of points to make a sequence for all the points
around the same central depot. The application directly makes an effect to the part of
method modification. There are also some inspirations from the disadvantage of the
methods. We cannot seek the perfect solution blindly bu
in
not emphasize too much that overlap of routes need to avoid.

The use of t
s
effective.

4.2 Based on Insert_By_Distance and its pertinent approaches
1. Disadvantage
At the beginning, because of too much limitation from the vehicle capacity, I insisted
trying my best to compose a route. The total demand of points in such route should close
to the capacity without considering how far the points between each other. A

 67

there was a phenomenon that most of points in some routes were close to the depot and

nsert_By_Distance,
ough there were some bad results came out at the beginning, finally I found the method

solution And the results got from the

 different parts. The main reason for
at is the pickup points are far from the central depot comparing with their

ut from the solution after rearrangement, there are some routes have been changed to be
ould pay some attention to this instance. There is

g the VRP not only the heuristics but also metaheuristics. In this thesis, a feasible
lgorithm has been explored. In such algorithm, only inserting can be allowed, no point

fter forming and connecting relative routes in pickup and delivery part. The time spent

) Genetic Algorithm; 5) Ant Systems; 6)
eural Networks. As the main character of metaheuristics allow deteriorating and

y depends on shortening routes.
 routes can be shorten, points will be considered to move in another route. Otherwise,
o point moving can be accepted. Even there is a chance to get better solution in next

section by acrossing the bad slution at current section. As

several points were far way from them, which made the route length very long.

2. Advantage
When I was in the procedure of searching points by using the way of I
th
of Insert_By_Distance was effective from the
modified Insert_By_Distance at the end had a big and good change.

4.3 Comparison and analysis of results

So far, the results got from the modification of Insert_By_Distance are the best excluding
the new idea of methods. And I find I mostly rearrange the routes from the pickup part in
the section of connecting correlative pair routes from
th
corresponding terminal points. Further points produce longer routes, so I did the
rearrangement mainly focusing on the pickup part.

B
longer than before, I think people sh
probably more appropriate method will help us to get better solution.

4.4 Ideas of improving results
The VRP is very popular in research field. People have explored lots of algorithms for
solvin
a
replacing exist and stepLength has been set to help us repeat the algorithm in feasible
way.

Results got by applying the algorithm are good. There are not so many overload routes
a
in running the algorithm are short. Anyway, I am satisfied with this new algorithm. But
there is still space and chance to improve the algorithm to be better and got better results.

In recent years, several metaheuristics have been explored out for VRP. There are six
main types of metaheuristics used for VRP [12]: 1) Simulated Annealing; 2)
Deterministic Annealing; 3) Tabu Search; 4
N
infeasible intermediary solutions in the procedure of search process. Some mateheuristics
could be tried to improve the existing results.

And in the algorithm, the acceptance of moving points onl
If
n

 68

ted solution. Since there is no time for me implement any of them,
eople could try to use the metaheuristic to get better results if they are interested in

rt and P.

he pickup and delivery
arts in this problem will be handled by different vehicles. In General Pickup and
elivery Problem, the pickup and delivery pa eans one

vehicle should be used to bo

General Pickup and Delivery Problem

th a
xed time has visited some pairs of points, source and terminal points, and if there is still

s more

Figure 4-4-1

Because of the character of metaheuristics, if we accept to move points with some
probability even bad results will be got, better results will be obtained later after passing
by the bad solution first. Some of those metaheuristics displayed above can be adopted to
improve the exis
p

current result

good result
initial result

problem also. More details can refer to the article made by G. Michel, L. Gilbe
Jean-Yves [12].

4.5 Comparison with the General Pickup and Delivery Problem

At the beginning of this thesis, I have mentioned that the pickup and delivery problem
with hub reloading is a new transportation problem. Because t
p
D rts are bounded together, which m

th picking up and delivering goods.

Figure 4-5-1

From the figure for the general PDP, one vehicle staring from the depot is used to pickup
goods from different source points and delivery them to their corresponding destinations.
This style of transportation has some limitations: if one vehicle visits some source points,
it must also visit those source points’ corresponding terminations. A restriction exists in
the general PDP that vehicle cannot stop in an optimal way. If vehicle bounded wi
fi
redundant time for it to visit other source point but cannot visit its corresponding terminal
one, a problem comes out: vehicles cannot use their bounded time period effectively.

But taking a look at this new PDP, the new PDP is much closer to our real life. Although,
we consider that all the goods are the same without classifying in this thesis, it i

depot P1 P2 D2 depot D1

 69

reasonable to transport different kinds of goods from their sources to their corresponding
rminations. If we assume the process of settling in depot as a procedure of producing

DP is worthy and suitable for being considered in future.

5. R

] M. L. Fisher, Vehicle Routing. Operations and Information Management

] N. Kohl, J. Desrosiers, O.B.G. Madsen, M. M. Solomon, F. Soumis, 2-Path Cuts

g

N.Christofides, A. Mingozzi, and P.Toth, The vehicle routing problem. In

[7] , G. Reinelt, and G. Rinaldi, The traveling salesman problem.

age: 3-6, ICTAI 2001: 333-340

R

[1

[12] G. Michel, L. Gilbert and P. Jean-Yves, Metaheuristics for the Vehicle Routing

Problem. September, 1998 Revised: August, 1999. Les Cahiers du GERAD.

te
new goods, this new P

eferences
[1

Department. The Wharton School, University of Pennsylvania, Philadelphia,
PA 19104, U.S.A. page: 1-15

[2
for the Vehicle Routing Problem with Time Windows. Transportation Science,
33(1), 101-116 (1999).

[3] G. Laporte and F. Semet, Classical heuristics for the vehicle routing problem. In P.
Toth, D. Vigo (Ed.), The vehicle routing problem, SIAM, Philadelphia, page: 1-7,
ISBN 0-89871-498-2.

[4] G. Clarke and J. W. Wright, Scheduling if vehicles form a central depot to a

number of delivery points. Operations Research, page: 568-581, 1964

[5] R.H. Mole and S.R. Jameson, A sequential route-building algorithm employing a

eneralized saving criterion. Operational Research Quarterly page:503-511,1976

[6]
N.Christofides, A Mingozzi, p.Toch, and C. Sandi, editors, Combinatorial
Optimization, page: 315-338. Wiley, Chrichester, 1979

M. Junger
Operations Research and Management Sciences: Networks (M. Ball, T.
Magnanti, C.L. Monma, and G. Nemhauser, eds.), North-Holland, 1995, page.
225—330

[8] Hoong Chuin Lau, Zhe LiangT, Pickup and Delivery with Time Windows:

Algorithms and Test Case Generation. P

[9] M. L. Fisher and R. Jaikumar, A Generalized Assignment Heuristic for Vehicle

outing. Networks, 11:109-124, 1981.

[10] R. Stefan, Heuristics for the Multi-Vehicle Pickup and Delivery Problem with

Time Windows. Master thesis, page: 45-79, 2002

1] B. Olli, Local Search and Variable Neighborhood Search Algorithms for the
Vehicle Routing Problem with Time Windows. Ph.D thesis, page: 34-84, 2001

G-98-52

 70

6. Appendix

6.1 Program o

f constructive methods:
**

okenizer;
ort java.util.ArrayList;

tting the feasible routes in every weekday

nDay)

20, 33);

w Date();
ime.getTime();

ead Data:" + milSecond);

te();

nd);
stem.out.println();

);

 milSecond = currentTime.getTime();
em.out.println("Time Start of Algorithm Calculation:" + milSecond);

tialized

Sweep_By_Angle:

import java.io.*;
; import java.util.Vector

mport java.util.StringTi
imp
import java.lang.String;
import java.util.Date;

/**

Demonstrate the way of ge *
 * @version (29_05_2005)
 */
public class Algorithm_Tan
{
 public static void main(int selectio
 {

 System.out.println();
 System.out.println();
 System.out.println("TEST");

 Point depot = new Point(0, 677908, 61502
 PointsUnion unionM = new PointsUnion();

Date currentTime = ne
 long milSecond = currentT
 System.out.println("Time Start to R

ystem.out.println(); S

 unionM.clearAllPoints();
 readFile(unionM, selectionDay);

rrentTime = new Da cu
 milSecond = currentTime.getTime();

ystem.out.println("Time End:" + milSeco S
 Sy

 //unionM.reducePointsUnionSize(100

 currentTime = new Date();

 Syst
 System.out.println();

 /**

 Algorithm begins and some instances are ini *
 */
 PointsUnion leftPoints = new PointsUnion();

 71

 PointsUnion rightPoints = new PointsUnion();

 if (unionM.getPoint(i).getX() >= depot.getX())
 rightPoints.appendPoint(unionM.getPoint(i));

(unionM.getPoint(i));

nd leftPoints
getSize());

rightPoints.getSize());

ight part points: ");

tPoints.getPoint(i).getID() + " Tan(): " +

stem.out.println("Left part points: ");
ize(); i++)

oints.getPoint(i).getID() + " Tan(): " +

rightPoints.getSize() > 0)

 i=0; i<rightPoints.getSize(); i++)

ad(rightPoints.getPoint(i)))

oute.appendPoint(rightPoints.getPoint(i));
 // delete point

 rightPoints.removePoint(i);
 select the next point in next round

 }
 }

;

 // Calculate the tan value for all of the points
 // and divides them into Left and Right parts
 for (int i=0; i<unionM.getSize(); i++)
 {
 unionM.getPoint(i).calculateTan(depot);

 else
 leftPoints.appendPoint
 }

 // Sort the points in left and right part
 rightPoints.sortPointsByTan();
 leftPoints.sortPointsByTan();

 // display rightPoints a
 System.out.println("All points: " + unionM.
 System.out.println("Right part points: " +
 System.out.println("Left part points: " + leftPoints.getSize());
 System.out.println();
 System.out.println("R
 for (int i=0; i<rightPoints.getSize(); i++)
 System.out.println("ID: " + righ
rightPoints.getPoint(i).getTan());
 System.out.println();
 Sy
 for (int i=0; i<leftPoints.getS
 System.out.println("ID: " + leftP
leftPoints.getPoint(i).getTan());

 // Calculate the routes
 ArrayList rightRoutes = new ArrayList();
 while (
 {
 Route newRoute = new Route(depot);
 for (int
 {
 // add a point if possible
 if (!newRoute.overLo
 {
 // add point
 newR

 // reset i to
 i--;

 // save new route
 rightRoutes.add(newRoute)
 }

 ArrayList leftRoutes = new ArrayList();

 72

 while (leftPoints.getSize() > 0)

 i=0; i<leftPoints.getSize(); i++)

ad(leftPoints.getPoint(i)))

oute.appendPoint(leftPoints.getPoint(i));
 // delete point

 leftPoints.removePoint(i);
 select the next point in next round

 }
}

route
ewRoute);

stem.out.println("The right part:");

at rightRouteLength = 0.0f;

m.out.print(" " + newRoute.getPoint(j).getX() + "," +

 if (j==0) // The first point connected with depot

 rightRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1));
ghtRoute

totalLength += rightRouteLength;

 of " + rightRoutes.size() + " line(s): " + totalLength);

stem.out.println();
;

 {
 Route newRoute = new Route(depot);
 for (int
 {
 // add a point if possible
 if (!newRoute.overLo
 {
 // add point
 newR

 // reset i to
 i--;

 // save new
 leftRoutes.add(n
 }

 // Show Result
 System.out.println();
 System.out.println();
 System.out.println("The Result:");
 Sy
 double totalLength = 0.0d;
 Route newRoute = new Route(depot);
 for (int i=0; i<rightRoutes.size(); i++)
 {
 flo
 System.out.print("Right Route " + i + ":");
 newRoute = (Route)rightRoutes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 Syste
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());

 rightRouteLength += depot.getDistance(newRoute.getPoint(0));
 else
 rightRouteLength += newRoute.getDistance(j, j-1);
 }

// finish the total length of the ri
 System.out.println(" Length:" + rightRouteLength);

 }
 System.out.println();
 System.out.println("The Total Length

 System.out.println();
 Sy
 System.out.println("The left part:")
 totalLength = 0.0d;
 for (int i=0; i<leftRoutes.size(); i++)
 {

 73

 float leftRouteLength = 0.0f;

m.out.print(" " + newRoute.getPoint(j).getX() + "," +

 if (j==0) // The first point connected with depot

 leftRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
Route

totalLength += leftRouteLength;

of " + leftRoutes.size() + " line(s): " + totalLength);

rrentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time End of Algorithm Calculation:" + milSecond);
 System.out.println();

 try

ileReader myFile = new FileReader("D:\\BlueJ\\MyProject\\data.csv");
a.csv");

ned.");

fferedReader bfr = new BufferedReader(myFile);

AD>" + line + "<");
okenizer(line,",");

dataLine = new Vector();

enizer.hasMoreTokens())

ment(tokenizer.nextToken());

 System.out.print("Left Route " + i + ":");
 newRoute = (Route)leftRoutes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 Syste
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());

 leftRouteLength += depot.getDistance(newRoute.getPoint(0));
 else
 leftRouteLength += newRoute.getDistance(j, j-1);
 }

finish the total length of the left
 System.out.println(" Length:" + leftRouteLength);

 }
 System.out.println();
 System.out.println("The Total Length

 cu

 }

 private static void readFile(PointsUnion points, int selectedday)
 {

 {
 //F
 FileReader myFile = new FileReader("dat

 if(myFile.ready())
 {
 System.out.println("File Ope

 Bu
 ArrayList dataAll = new ArrayList();
 String line = bfr.readLine();
 while (line != null)
 {
 //System.out.println("RE
 StringTokenizer tokenizer=new StringT
 Vector
 for (int i=0; i<7; i++)
 {
 if (tok
 {
 dataLine.addEle
 }
 else

 74

 {
 myFile.close();

 in the file error at line <ERROR>" + line);
 return;

hasMoreTokens())

yFile.close();
 System.out.println("Data in the file error at line <ERROR>" + line);

 {
 dataAll.add(dataLine);

 i=0; i<dataAll.size(); i++)

oneline = (Vector)dataAll.get(i);
= selectedday)

 j=0; j<oneline.size(); j++)

e = (String)oneline.get(j);
llNum(line))

e
 {

rintln("Data in the file error at line <ERROR>" + i);

ut.println();
);

 Point p = new Point(string2int((String)oneline.get(0)),
ing)oneline.get(1)), string2int((String)oneline.get(2)),

g)oneline.get(6)));
 points.appendPoint(p);

 }

 else

 System.out.println("Directory or File dose not exist.");

 catch (Exception e)
 {

 System.out.println("Data

 }
 }
 if (tokenizer.
 {
 m

 return;
 }
 else

 }
 line = bfr.readLine();
 }

 // Display dataAll
 System.out.println("dataAll:");
 for (int
 {
 Vector
 if (string2int((String)oneline.get(5)) =
 {
 for (int
 {
 lin
 if (isA
 {
 //System.out.print(string2int(line) + " ");
 }
 els

 System.out.p
 return;
 }
 }
 //System.o
 line = (String)oneline.get(1

string2int((Str
string2int((Strin

 }
 }

 {

 }
 }

 75

 System.out.println("Cannot Find File");
 }

 (int i=0; i<s.length(); i++)

 if ((s.charAt(i)<'0') || (s.charAt(i)>'9'))
 return false;

 return true;

 static int string2int(String s)

 (int i=0; i<s.length(); i++)

 out *= 10;
 out += s.charAt(i) - 48;

 }

;
port java.util.StringTokenizer;

ort java.util.ArrayList;

Demonstrate the way of getting the feasible routes in every weekday

*/

 new ArrayList();

ng[] args)

args.length != 1)

System.out.println("Please Input 1 Parameter.");
eturn;

 }

 private static boolean isAllNum(String s)
 {
 for
 {

 }

 }

 private
 {
 int out = 0;
 for
 {

 return out;
 }
}

Insert_By_Distance

import java.io.*;
import java.util.Vector
im
imp
import java.lang.String;
import java.util.Date;

/**
 *
 * @version (29_05_2005)

public class Algorithm
{
 private ArrayList pointsM =

 public static void main(Stri
 {
 int selectionDay = 0;

 if (
 {

 r
 }

 /**

 76

 * The method of "isAllNum" has been given in the coming part, which
day is right or wrong.

!isAllNum(args[0]))

System.out.println("Wrong Parameter!");
return;

 "selectionDay" is int

 selectionDay = string2int(args[0]);

20, 33);

ate currentTime = new Date();
ime.getTime();

ead Data:" + milSecond);
stem.out.println();

rrentTime = new Date();

stem.out.println("Time End:" + milSecond);
stem.out.println();

);

 currentTime = new Date();
 milSecond = currentTime.getTime();

em.out.println("Time Start of Algorithm Calculation:" + milSecond);

int startPoint = depot;

ot); //Every new route will start from the depot

electedNode = -1; // no selected point at first

Loop for all of the points in unionM to find out the nearest points

 * is used to remind user whether the imput of
 */
 if (
 {

 }
 else

 /**
 * Transfer the data of "args[]" from string to int since
 */

 Point depot = new Point(0, 677908, 61502
 PointsUnion unionM = new PointsUnion();

 D
 long milSecond = currentT
 System.out.println("Time Start to R
 Sy

 unionM.clearAllPoints();
 readFile(unionM, selectionDay);

 cu
 milSecond = currentTime.getTime();
 Sy
 Sy

 //unionM.reducePointsUnionSize(100

 Syst
 System.out.println();

 /**
 * Algorithm begins and some instances are initialized
 */
 Po
 ArrayList routes = new ArrayList();
 Route newRoute = new Route(dep
 do
 {
 int s
 float shortestDistance = 0.0f;

 /**
 *
 * to depot.

 77

 */
 for (int j=0; j<unionM.getSize(); j++)

 selectedNode == -1)

 selectedNode = j;

pDistanc startPoin));
= shortestDistance) // The 2 points have same

ins more goods.

etGoods())
{

 selectedNode = j;
ed not change shortestDistance.

}

tempDistance < shortestDistance)
 {

 selectedNode = j;
 shortestDistance = tempDistance;

 }

 }

 if (newRoute.appendPoint(unionM.getPoint(selectedNode)))

artPoint = unionM.getPoint(selectedNode); // reset startpoint
 unionM.removePoint(selectedNode); // delete the selected point from

e
 {

List failed!");
 return;

no new point, this current route is finished

 are no points in the newroute

 {
 unionM.getSize() != 0)

 {
 if (!newRoute.overLoad(unionM.getPoint(j)))
 {
 if (
 {

 shortestDistance = startPoint.getDistance(unionM.getPoint(j));
 }
 else
 {
 float tem e = t.getDistance(unionM.getPoint(j
 if (tempDistance =
distance. Select one which conta
 {
 if (unionM.getPoint(j).getGoods() >
unionM.getPoint(selectedNode).g

 // As 2 distances are same, ne

 }

 if (

 }

 }

 if (selectedNode != -1) //some satisfied point has been searched
 {

 {
 st

unionM
 }
 els

 System.out.println("Adding method of Array

 }
 }
 else //
 {
 // there
 if (newRoute.getSize() == 0)

 if (
 {

 78

 System.out.println("There are/is point(s) left unselected. Algorithm

 break;

f there are points in the newroute, save this route
tes.add(newRoute))

te = new Route(depot);

 else

 System.out.println("add method of ArrayList failed!!!");
urn;

stem.out.println();

tPoint(j).getX() + "," +
int(j).getY() + "," + newRoute.getPoint(j).getGoods());

istance(newRoute.getPoint(0));

Route.getDistance(j, j-1);
 }

depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //

System.out.println(" Length:" + routeLength);
gth;

th of " + routes.size() + " line(s): " + totalLength);

 currentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time End of Algorithm Calculation:" + milSecond);

Failed!");
 }

 }

 // i
 if (rou
 {
 startPoint = depot; // reset startpoint
 newRou
 }

 {

 ret
 }
 }
 }while (true);

 // Show Result
 Sy
 System.out.println();
 System.out.println("The Result:");
 double totalLength = 0.0d;
 for (int i=0; i<routes.size(); i++)
 {
 float routeLength = 0.0f;
 System.out.print("Route " + i + ":");
 newRoute = (Route)routes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 System.out.print(" " + newRoute.ge
newRoute.getPo
 if (j==0) // The first point connected with depot
 routeLength += depot.getD
 else
 routeLength += new

 routeLength +=
finish the total length of the route

 totalLength += routeLen
 }
 System.out.println();
 System.out.println("The Total Leng

 System.out.println();

 }

 79

 private static void readFile(PointsUnion points, int selectedday)
 {

\\BlueJ\\MyProject\\data.csv");
ader myFile = new FileReader("data.csv");

ile Opened.");

ile);

");
okenizer tokenizer=new StringTokenizer(line,",");

 i=0; i<7; i++)

 tokenizer.hasMoreTokens())

e
 {

 System.out.println("Data in the file error at line <ERROR>" + line);

 tokenizer.hasMoreTokens())

 myFile.close();
a in the file error at line <ERROR>" + line);

 return;

 else
 {

d(dataLine);

.out.println("dataAll:");

;
get(5)) == selectedday)

(String)oneline.get(j);

 try
 {
 //FileReader myFile = new FileReader("D:
 FileRe

 if(myFile.ready())
 {
 System.out.println("F

 BufferedReader bfr = new BufferedReader(myF
 ArrayList dataAll = new ArrayList();
 String line = bfr.readLine();
 while (line != null)
 {
 System.out.println("READ>" + line + "<
 StringT
 Vector dataLine = new Vector();
 for (int
 {
 if (
 {
 dataLine.addElement(tokenizer.nextToken());
 }
 els

 myFile.close();

 return;
 }
 }
 if (
 {

 System.out.println("Dat

 }

 dataAll.ad
 }
 line = bfr.readLine();
 }

 // Display dataAll
 System
 for (int i=0; i<dataAll.size(); i++)
 {
 Vector oneline = (Vector)dataAll.get(i)
 if (string2int((String)oneline.
 {
 for (int j=0; j<oneline.size(); j++)
 {
 line =

 80

 if (isAllNum(line))

out.print(string2int(line) + " ");

 else

"Data in the file error at line <ERROR>" + i);
 t ;

 line = (String)oneline.get(1);
 Point p = new Point(string2int((String)oneline.get(0)),

String)oneline.get(1)) , string2int((String)oneline.get(2)),
eline.get(6)));

 points.appendPoint(p);

 }
 }

 {
dose not exist.");

 }
 }
 catch (Exception e)

 System.out.println("Cannot Find File");

um(String s)

s.length(); i++)
 {
 if ((s.charAt(i)<'0') || (s.charAt(i)>'9'))

 }

g2int(String s)

 out = 0;
i<s.length(); i++)

 {
 out *= 10;

 out += s.charAt(i) - 48;

 return out;
 }

**

 {
 System.
 }

 {
 System.out.println(
 re urn
 }
 }
 System.out.println();

string2int((
string2int((String)on

 }

 else

 System.out.println("Directory or File

 {

 }
 }

 private static boolean isAllN
 {
 for (int i=0; i<

 return false;

 return true;
 }

 private static int strin
 {
 int
 for (int i=0;

 }

}

t Poin

/**

 81

 * Demonstrate the charactor of the points and the method of getting distance

_2005)

 private int id;
ivate int x;

te int y;

te double tan;

objects of class Point

putID, int inputX, int inputY, int inputGoods)

 instance variables
 id = inputID;

 x = inputX;
y = inputY;

inputGoods;
tan = 0;

return ID
/
blic int getID()

;

return x
/
blic int getX()

;

return y
/
blic int getY()

 * bewteen two points.
 * @version (29_05
 */
public class Point
{
 // instance variables

 pr
 priva
 private int goods;
 priva

 /**
 * Constructor for
 */
 public Point(int in
 {
 // initialise

 goods =

 }

 /**
 *
 *
 pu
 {
 return id
 }

 /**
 *
 *
 pu
 {
 return x
 }

 /**
 *
 *
 pu
 {
 return y;
 }

 /**

 82

 * return goods
/
blic int getGoods()

ds;

return tan
/
blic double getTan()

wo Points

 points

blic float getDistance(Point p)

 double squareDis = ((double)(x - p.getX())) * ((double)(x - p.getX())) + ((double)(y -
)) * ((double)(y - p.getY()));

rrent Point and Depot

tween these 2 points

pot)

X = (double)(x - depot.getX());

9d;
 else
 tan = -9.999999999E9d;
 }

double disY = (double)(y - depot.getY());
)(disY/disX);

 *
 pu
 {
 return goo
 }

 /**
 *
 *
 pu
 {
 return tan;
 }

 /**
 * Calculate the distance between t
 *
 * @Parameter1: Another Point p
 * return: distance between these 2
 */
 pu
 {

p.getY()
 return (float) Math.sqrt(squareDis);
 }

 /**
 * Calculate the tan() value between cu
 *
 * @Parameter1: Depot point
 * return: tan() value be
 */
 public void calculateTan(Point de
 {
 double dis
 if (disX == 0.0d)
 {
 if (y >= depot.getY())
 tan = 9.999999999E

 tan = (double
 }

 /**
 * Clone a point
 *

 83

 * @Parameter1: point

p)

 id = p.getID();
 x = p.getX();

s = p.getGoods();
 tan = p.getTan();

**

rt java.util.ArrayList;

al actions of points in the algorithm process.

5)
*/
ublic class PointsUnion

te ArrayList union;

*
* C lass PointsUnion
/

ublic PointsUnion()

// initialise instance variables

*
 Appends a point to the end of this union.

*/
lic boolean appendPoint(Point p)

return(union.add(p));

*
 Deletes a point at specified position.

*/
ublic void removePoint(int index)

dex);

*

 * return:
 */
 public void clonePoint(Point
 {

 y = p.getY();
 good

}

PointUnion

impo

/**
 * Demonstrate sever
 * @version (29_05_200

p
{
 // instance variables
 priva

 /*
 onstructor for objects of c
 *
 p
 {

 union = new ArrayList();
 }

 /*
 *

 pub
 {

 }

 /*
 *

 p
 {
 union.remove(in
 }

 /*

 84

 * Clear all points
*/
ublic void clearAllPoints()

* S
 Return: index of that point if found, -1 if not found

*/
lic int searchPoint(Point p)

return(union.indexOf(p));

*
 return the number of pointUnion

*/

*
 Return the point at the specified index number

*/
ublic Point getPoint(int index)

*
 Return the distance between two points at the specified index numbers

*/
ublic float getDistance(int point1, int point2)

*
* Return the distance between two points at the specified index numbers
*/
ub void sortPointsByTan()

pPoint = new Point(0, 0, 0, 0);

 i<getSize(); i++)

 p
 {
 union.clear();
 }

 /**
 earch for a specified point
 *

 pub
 {

 }

 /*
 *

 public int getSize()
 {
 return(union.size());
 }

 /*
 *

 p
 {
 return((Point)(union.get(index)));
 }

 /*
 *

 p
 {
 return(getPoint(point1).getDistance(getPoint(point2)));
 }

 /*

 p lic
 {
 Point tm
 // sorting
 for (int i=1;
 {
 for (int j=0; j<getSize()-i; j++)
 {

 85

 if (getPoint(j).getTan() > getPoint(j+1).getTan())

 tmpPoint.clonePoint(getPoint(j));
 getPoint(j).clonePoint(getPoint(j+1));
 getPoint(j+1).clonePoint(tmpPoint);
 }

ified methods

gle

port java.util.Vector;
ort java.util.StringTokenizer;

rt java.util.Date;

routes in every weekday

rsion (30_06_2005)

 public static void main(int selectionDay)
 {

em.out.println();

ST");

ation and make some examples to help us
 * test the algorithm

{ 7, 6, 3, 3, 5 };

Add depot and all the points afterwards

8, 6150220, 33);
nion unionM = new PointsUnion();

int p = new Point(datax[i], datay[i], datagoods[i]);
onM.appendPoint(p))

() + " " + unionM.getPoint(i).getY() + " "
ods());

 {

 }
 }
 }
}

6.2 program of mod

nBased on Sweep_By_A

import java.io.*;
im
imp
import java.util.ArrayList;
import java.lang.String;
impo

/**
 *Demonstrate the way of getting the feasible
 * @ve
 */
public class Algorithm_Tan
{

 Syst
 System.out.println();
 System.out.println("TE

 /**
 * At the beginning we can set some situ

 */
 int[] datax = { 9, 7, 6, 9, 10 };
 int[] datay =
 int[] datagoods = { 12, 8, 7, 13, 16 };

 /**
 *
 */
 Point depot = new Point(0, 67790
 PointsU
 /* for (int i=0; i<datax.length; i++)
 {
 Po
 if (uni
 {
 System.out.println(unionM.getPoint(i).getX
+ unionM.getPoint(i).getGo

 86

 }
 else

 {
 Point Failed !");

e();
ime();

 System.out.println("Time Start to Read Data:" + milSecond);

 unionM.clearAllPoints();

File(unionM, selectionDay);

//unionM.reducePointsUnionSize(100);

nitialized

ion();
intsUnion rightPoints = new PointsUnion();

; i<unionM.getSize(); i++)

 unionM.getPoint(i).calculateTan(depot);
if (unionM.getPoint(i).getX() >= depot.getX())

nM.getPoint(i));

unionM.getPoint(i));

.getSize());

part points: " + leftPoints.getSize());

stem.out.println();

 points: ");

 leftPoints.getPoint(i).getID() + " Tan(): " +
tPoint(i).getTan());

 System.out.println("Add
 break;
 }
 }*/

 Date currentTime = new Dat
 long milSecond = currentTime.getT

 System.out.println();

 read

 /**
 * Algorithm begins and some instances are i
 */
 PointsUnion leftPoints = new PointsUn
 Po

 // Calculate the tan value for all of the points
 // and divides them into Left and Right parts
 for (int i=0
 {

 rightPoints.appendPoint(unio
 else
 leftPoints.appendPoint(
 }

 // Sort the points in left and right part
 rightPoints.sortPointsByTan();
 leftPoints.sortPointsByTan();

 // display rightPoints and leftPoints
 System.out.println("All points: " + unionM
 System.out.println("Right part points: " + rightPoints.getSize());
 System.out.println("Left
 System.out.println();
 System.out.println("Right part points: ");
 for (int i=0; i<rightPoints.getSize(); i++)
 System.out.println("ID: " + rightPoints.getPoint(i).getID() + " Tan(): " +
rightPoints.getPoint(i).getTan());
 Sy
 System.out.println("Left part
 for (int i=0; i<leftPoints.getSize(); i++)
 System.out.println("ID: " +
leftPoints.ge

 87

 // Calculate the routes
 ArrayList rightRoutes = new ArrayList();

Route = new Route(depot);

point if possible

rightPoints.getSize()-1) // Not the last point

ble tanvalue = rightPoints.getPoint(i).getTan();
+ 1;

int(nexti))) && //

rightPoints.getPoint(nexti).getDistance(depot) >
pot

 i = nexti; // Use the farest for the route
 }

 nexti++;
 if (nexti == rightPoints.getSize()) // The last point

break;

d point
 newRoute.appendPoint(rightPoints.getPoint(i));

 // delete point
s.removePoint(i);

next point in next round
 i--;

 }

 rightRoutes.add(newRoute);

st leftRoutes = new ArrayList();

Route = new Route(depot);

point if possible

leftPoints.getSize()-1) // Not the last point
 {

 while (rightPoints.getSize() > 0)
 {
 Route new
 for (int i=0; i<rightPoints.getSize(); i++)
 {
 // add a
 if (!newRoute.overLoad(rightPoints.getPoint(i)))
 {
 // Check for all of the points which have the same tan() value
 if (i !=
 {
 dou
 int nexti = i
 while (rightPoints.getPoint(nexti).getTan() == tanvalue)
 {
 if ((!newRoute.overLoad(rightPoints.getPo
Check capacity for point nexti
 (
rightPoints.getPoint(i).getDistance(depot))) // Compare the 2 distances with the de
 {

 }
 }

 // ad

 rightPoint
 // reset i to select the

 }
 // save new route

 }

 ArrayLi
 while (leftPoints.getSize() > 0)
 {
 Route new
 for (int i=0; i<leftPoints.getSize(); i++)
 {
 // add a
 if (!newRoute.overLoad(leftPoints.getPoint(i)))
 {
 // Check for all of the points which have the same tan() value
 if (i !=

 88

 double tanvalue = leftPoints.getPoint(i).getTan();
 int nexti = i + 1;

!newRoute.overLoad(leftPoints.getPoint(nexti))) && //

 (leftPoints.getPoint(nexti).getDistance(depot) >
) // Compare the 2 distances with the depot

; // Use the farest for the route
 }

 nexti++;
 if (nexti == leftPoints.getSize()) // The last point

break;

oute.appendPoint(leftPoints.getPoint(i));
 // delete point

 leftPoints.removePoint(i);
 select the next point in next round

 }
}

route
ewRoute);

stem.out.println("The right part:");

at rightRouteLength = 0.0f;

m.out.print(" " + newRoute.getPoint(j).getX() + "," +

 if (j==0) // The first point connected with depot

 rightRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1));
ghtRoute

totalLength += rightRouteLength;

 while (leftPoints.getPoint(nexti).getTan() == tanvalue)
 {
 if ((
Check capacity for point nexti

leftPoints.getPoint(i).getDistance(depot))
 {
 i = nexti

 }
 }

 // add point
 newR

 // reset i to
 i--;

 // save new
 leftRoutes.add(n
 }

 // Show Result
 System.out.println();
 System.out.println();
 System.out.println("The Result:");
 Sy
 double totalLength = 0.0d;
 Route newRoute = new Route(depot);
 for (int i=0; i<rightRoutes.size(); i++)
 {
 flo
 System.out.print("Right Route " + i + ":");
 newRoute = (Route)rightRoutes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 Syste
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());

 rightRouteLength += depot.getDistance(newRoute.getPoint(0));
 else
 rightRouteLength += newRoute.getDistance(j, j-1);
 }

// finish the total length of the ri
 System.out.println(" Length:" + rightRouteLength);

 }

 89

 System.out.println();
 System.out.println("The Total Length of " + rightRoutes.size() + " line(s): " + totalLength);

stem.out.println();
;

at leftRouteLength = 0.0f;

m.out.print(" " + newRoute.getPoint(j).getX() + "," +

 if (j==0) // The first point connected with depot

 leftRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
Route

totalLength += leftRouteLength;

he Total Length of " + leftRoutes.size() + " line(s): " + totalLength);

of X,Y coordinates

stem.out.println("The Result shows in ID:");
);

at rightRouteLength = 0.0f;

;
 if (j==0) // The first point connected with depot

 rightRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1));
ghtRoute

totalLength += rightRouteLength;

 of " + rightRoutes.size() + " line(s): " + totalLength);

 System.out.println();
 Sy
 System.out.println("The left part:")
 totalLength = 0.0d;
 for (int i=0; i<leftRoutes.size(); i++)
 {
 flo
 System.out.print("Left Route " + i + ":");
 newRoute = (Route)leftRoutes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 Syste
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());

 leftRouteLength += depot.getDistance(newRoute.getPoint(0));
 else
 leftRouteLength += newRoute.getDistance(j, j-1);
 }

finish the total length of the left
 System.out.println(" Length:" + leftRouteLength);

 }
 System.out.println();
 System.out.println("T

 // Show Result again using ID instead
 System.out.println();
 System.out.println();
 Sy
 System.out.println("The right part:"
 totalLength = 0.0d;
 for (int i=0; i<rightRoutes.size(); i++)
 {
 flo
 System.out.print("Right Route " + i + ":");
 newRoute = (Route)rightRoutes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 System.out.print(" " + newRoute.getPoint(j).getID() + ",")

 rightRouteLength += depot.getDistance(newRoute.getPoint(0));
 else
 rightRouteLength += newRoute.getDistance(j, j-1);
 }

// finish the total length of the ri
 System.out.println(" Length:" + rightRouteLength);

 }
 System.out.println();
 System.out.println("The Total Length

 90

 System.out.println();
 System.out.println();

;

at leftRouteLength = 0.0f;

);
 if (j==0) // The first point connected with depot

 leftRouteLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
Route

totalLength += leftRouteLength;

of " + leftRoutes.size() + " line(s): " + totalLength);

rrentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time End of Algorithm Calculation:" + milSecond);
 System.out.println();

 try

ileReader myFile = new FileReader("D:\\BlueJ\\MyProject\\data.csv");
a.csv");

ned.");

fferedReader bfr = new BufferedReader(myFile);

AD>" + line + "<");
okenizer(line,",");

dataLine = new Vector();

 System.out.println("The left part:")
 totalLength = 0.0d;
 for (int i=0; i<leftRoutes.size(); i++)
 {
 flo
 System.out.print("Left Route " + i + ":");
 newRoute = (Route)leftRoutes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 System.out.print(" " + newRoute.getPoint(j).getID() + ","

 leftRouteLength += depot.getDistance(newRoute.getPoint(0));
 else
 leftRouteLength += newRoute.getDistance(j, j-1);
 }

finish the total length of the left
 System.out.println(" Length:" + leftRouteLength);

 }
 System.out.println();
 System.out.println("The Total Length

 cu

 }

 private static void readFile(PointsUnion points, int selectedday)
 {

 {
 //F
 FileReader myFile = new FileReader("dat

 if(myFile.ready())
 {
 System.out.println("File Ope

 Bu
 ArrayList dataAll = new ArrayList();
 String line = bfr.readLine();
 while (line != null)
 {
 //System.out.println("RE
 StringTokenizer tokenizer=new StringT
 Vector
 for (int i=0; i<7; i++)

 91

 {
enizer.hasMoreTokens())

ment(tokenizer.nextToken());

 myFile.close();
 in the file error at line <ERROR>" + line);

 return;

hasMoreTokens())

yFile.close();
 System.out.println("Data in the file error at line <ERROR>" + line);

 {
 dataAll.add(dataLine);

 i=0; i<dataAll.size(); i++)

oneline = (Vector)dataAll.get(i);
= selectedday)

 j=0; j<oneline.size(); j++)

e = (String)oneline.get(j);
llNum(line))

e
 {

rintln("Data in the file error at line <ERROR>" + i);

ut.println();
);

 Point p = new Point(string2int((String)oneline.get(0)),
ing)oneline.get(1)), string2int((String)oneline.get(2)),

g)oneline.get(6)));
 points.appendPoint(p);

 }

 else

 if (tok
 {
 dataLine.addEle
 }
 else
 {

 System.out.println("Data

 }
 }
 if (tokenizer.
 {
 m

 return;
 }
 else

 }
 line = bfr.readLine();
 }

 // Display dataAll
 System.out.println("dataAll:");
 for (int
 {
 Vector
 if (string2int((String)oneline.get(5)) =
 {
 for (int
 {
 lin
 if (isA
 {
 //System.out.print(string2int(line) + " ");
 }
 els

 System.out.p
 return;
 }
 }
 //System.o
 line = (String)oneline.get(1

string2int((Str
string2int((Strin

 }
 }

 92

 {
 System.out.println("Directory or File dose not exist.");

 catch (Exception e)
 {

File");
 }

 (int i=0; i<s.length(); i++)

 if ((s.charAt(i)<'0') || (s.charAt(i)>'9'))
 return false;

 return true;

 static int string2int(String s)

 (int i=0; i<s.length(); i++)

 out *= 10;
 out += s.charAt(i) - 48;

 }

;
port java.util.StringTokenizer;

ort java.util.ArrayList;

Demonstrate the way of getting the feasible routes in every weekday

*/

 new ArrayList();

ng[] args)

args.length != 1)

 }
 }

 System.out.println("Cannot Find

 }

 private static boolean isAllNum(String s)
 {
 for
 {

 }

 }

 private
 {
 int out = 0;
 for
 {

 return out;
 }
}

tance Based on Insert_By_Dis

import java.io.*;
import java.util.Vector
im
imp
import java.lang.String;
import java.util.Date;

/**
 *
 * @version (30_06_2005)

public class Algorithm
{
 private ArrayList pointsM =

 public static void main(Stri
 {
 int selectionDay = 0;

 if (
 {

 93

 System.out.println("Please Input 1 Parameter.");
eturn;

The method of "isAllNum" has been given in the coming part, which
day is right or wrong.

!isAllNum(args[0]))

System.out.println("Wrong Parameter!");
return;

ransfer the data of "args[]" from string to int since "selectionDay" is int

nDay = string2int(args[0]);

 * Add depot and all the points afterwards

20, 33);

ate currentTime = new Date();
ime.getTime();

ead Data:" + milSecond);
stem.out.println();

ionM.clearAllPoints();

 // Calculate the tan value for all of the points

 int i=0; i<unionM.getSize(); i++)

int startPoint = depot;

ot); //Every new route will start from the depot

electedNode = -1; // no selected point at first

 r
 }

 /**
 *
 * is used to remind user whether the imput of
 */
 if (
 {

 }
 else

 /**
 * T
 */
 selectio

 /**

 */
 Point depot = new Point(0, 677908, 61502
 PointsUnion unionM = new PointsUnion();

 D
 long milSecond = currentT
 System.out.println("Time Start to R
 Sy

 un
 readFile(unionM, selectionDay);

 //unionM.reducePointsUnionSize(100);

 for (
 unionM.getPoint(i).calculateTan(depot);

 /**
 * Algorithm begins and some instances are initialized
 */
 Po
 ArrayList routes = new ArrayList();
 Route newRoute = new Route(dep
 do
 {
 int s
 float shortestDistance = 0.0f;

 /**

 94

 * Loop for all of the points in unionM to find out the nearest points

+)

 selectedNode == -1)

 selectedNode = j;

pDistanc startPoin));
= shortestDistance) // The 2 points have same

ins more goods.

etGoods())
{

 selectedNode = j;
ed not change shortestDistance.

}

tempDistance < shortestDistance)
 {

 selectedNode = j;
 shortestDistance = tempDistance;

 }

 }

 if (newRoute.appendPoint(unionM.getPoint(selectedNode)))

artPoint = unionM.getPoint(selectedNode); // reset startpoint
 unionM.removePoint(selectedNode); // delete the selected point from

e
 {

List failed!");
 return;

no new point, this current route is finished

 are no points in the newroute

 {
 unionM.getSize() != 0)

 * to depot.
 */
 for (int j=0; j<unionM.getSize(); j+
 {
 if (!newRoute.overLoad(unionM.getPoint(j)))
 {
 if (
 {

 shortestDistance = startPoint.getDistance(unionM.getPoint(j));
 }
 else
 {
 float tem e = t.getDistance(unionM.getPoint(j
 if (tempDistance =
distance. Select one which conta
 {
 if (unionM.getPoint(j).getGoods() >
unionM.getPoint(selectedNode).g

 // As 2 distances are same, ne

 }

 if (

 }

 }

 if (selectedNode != -1) //some satisfied point has been searched
 {

 {
 st

unionM
 }
 els

 System.out.println("Adding method of Array

 }
 }
 else //
 {
 // there
 if (newRoute.getSize() == 0)

 if (

 95

 {
 System.out.println("There are/is point(s) left unselected. Algorithm

ve this route
 routes.add(newRoute))

 startPoint = depot; // reset startpoint

 {
stem.out.println("add method of ArrayList failed!!!");

 return;

stem.out.println();
lt:");

at routeLength = 0.0f;

m.out.print(" " + newRoute.getPoint(j).getX() + "," +

 if (j==0) // The first point connected with depot

);

 routeLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
te

totalLength += routeLength;

he Total Length of " + routes.size() + " line(s): " + totalLength);

rintln();
);

th: " + result.totalLength() + " Total Points: " +

Failed!");
 }
 break;
 }

 // if there are points in the newroute, sa
 if (
 {

 newRoute = new Route(depot);
 }
 else

 Sy

 }
 }
 }while (true);

 // Show Result
 System.out.println();
 Sy
 System.out.println("The Resu
 double totalLength = 0.0d;
 for (int i=0; i<routes.size(); i++)
 {
 flo
 System.out.print("Route " + i + ":");
 newRoute = (Route)routes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 Syste
newRoute.getPoint(j).getY() + "," + newRoute.getPoint(j).getGoods());

 routeLength += depot.getDistance(newRoute.getPoint(0));
 else
 routeLength += newRoute.getDistance(j, j-1
 }

finish the total length of the rou
 System.out.println(" Length:" + routeLength);

 }
 System.out.println();
 System.out.println("T

 System.out.println();
 System.out.p
 Result result = new Result(depot, routes

 System.out.println("Total Leng
result.totalPoints());

 96

 for (int round=0; round<100; round++)

timize_Method_1(false);
tes();

.showResult_ID();
System.out.println("Total Length: " + result.totalLength() + " Total Points: " +

rrentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time End of Algorithm Calculation:" + milSecond);
 System.out.println();

 try

ileReader myFile = new FileReader("D:\\BlueJ\\MyProject\\data.csv");
a.csv");

ned.");

fferedReader bfr = new BufferedReader(myFile);

D>" + line + "<");
okenizer(line,",");

dataLine = new Vector();

enizer.hasMoreTokens())

ment(tokenizer.nextToken());

 myFile.close();
 in the file error at line <ERROR>" + line);

 return;

hasMoreTokens())

yFile.close();
 System.out.println("Data in the file error at line <ERROR>" + line);

 {
 result.sortRoutesByTan();
 result.op
 result.removeNullRou
 //result

result.totalPoints());
 result.resetStatus();
 }

 cu

 }

 private static void readFile(PointsUnion points, int selectedday)
 {

 {
 //F
 FileReader myFile = new FileReader("dat

 if(myFile.ready())
 {
 System.out.println("File Ope

 Bu
 ArrayList dataAll = new ArrayList();
 String line = bfr.readLine();
 while (line != null)
 {
 System.out.println("REA
 StringTokenizer tokenizer=new StringT
 Vector
 for (int i=0; i<7; i++)
 {
 if (tok
 {
 dataLine.addEle
 }
 else
 {

 System.out.println("Data

 }
 }
 if (tokenizer.
 {
 m

 97

 return;
 }
 else
 {

 dataAll.add(dataLine);

 i=0; i<dataAll.size(); i++)

oneline = (Vector)dataAll.get(i);
= selectedday)

 j=0; j<oneline.size(); j++)

e = (String)oneline.get(j);
llNum(line))

e
 {

println("Data in the file error at line <ERROR>" + i);

t.println();
);

 Point p = new Point(string2int((String)oneline.get(0)),
g)oneline.get(1)) , string2int((String)oneline.get(2)),

g)oneline.get(6)));
 points.appendPoint(p);

 }

 else

 System.out.println("Directory or File dose not exist.");

 catch (Exception e)
 {

File");
 }

 (int i=0; i<s.length(); i++)

 if ((s.charAt(i)<'0') || (s.charAt(i)>'9'))
 return false;

 }
 line = bfr.readLine();
 }

 // Display dataAll
 System.out.println("dataAll:");
 for (int
 {
 Vector
 if (string2int((String)oneline.get(5)) =
 {
 for (int
 {
 lin
 if (isA
 {
 System.out.print(string2int(line) + " ");
 }
 els

 System.out.
 return;
 }
 }
 System.ou
 line = (String)oneline.get(1

string2int((Strin
string2int((Strin

 }
 }

 {

 }
 }

 System.out.println("Cannot Find

 }

 private static boolean isAllNum(String s)
 {
 for
 {

 98

 }
 return true;

 static int string2int(String s)

 (int i=0; i<s.length(); i++)

 out *= 10;
 out += s.charAt(i) - 48;

 }

 charactor of the points and the method of getting distance
 bewteen two points.

)

s

 private int x;
ivate int y;

te int goods;

putID, int inputX, int inputY, int inputGoods)

iables
ID;

 x = inputX;
 y = inputY;

goods = inputGoods;

blic int getID()

return id;

 }

 private
 {
 int out = 0;
 for
 {

 return out;
 }
}

**
Point

/**
 * Demonstrate the
 *
 * @version (30_06_2005
 */
public class Point
{
 // instance variable
 private int id;

 pr
 priva
 private double tan;

 /**
 * Constructor for objects of class Point
 */
 public Point(int in
 {
 // initialise instance var
 id = input

 tan = 0;
 }

 /**
 * return ID
 */
 pu
 {

 }

 99

 /**

blic int getX()

return x;

blic int getY()

return y;

blic int getGoods()

return goods;

blic double getTan()

return tan;

alculate the distance between two Points

@Parameter1: Another Point p

 double squareDis = ((double)(x - p.getX())) * ((double)(x - p.getX())) + ((double)(y -
())) * ((double)(y - p.getY()));

return (float) Math.sqrt(squareDis);

alculate the tan() value between current Point and Depot

@Parameter1: Depot point

 * return x
 */
 pu
 {

 }

 /**
 * return y
 */
 pu
 {

 }

 /**
 * return goods
 */
 pu
 {

 }

 /**
 * return tan
 */
 pu
 {

 }

 /**
 * C
 *
 *
 * return: distance between these 2 points
 */
 public float getDistance(Point p)
 {

p.getY

 }

 /**
 * C
 *
 *
 * return: tan() value between these 2 points

 100

 */
 public void calculateTan(Point depot)

etX());
 0.0d)

 if (y >= depot.getY())

 tan = -9.999999999E9d;
 }
 double disY = (double)(y - depot.getY());

tan = (double)(disY/disX);

lone a point

@Parameter1: point

int(Point p)

 x = p.getX();
 y = p.getY();
 goods = p.getGoods();

tan = p.getTan();

lone a point

@Parameter1: point

Point p)

 p.getY())
lse;

goods != p.getGoods())
 return false;

 {
 double disX = (double)(x - depot.g
 if (disX ==
 {

 tan = 9.999999999E9d;
 else

 }

 /**
 * C
 *
 *
 * return:
 */
 public void clonePo
 {
 id = p.getID();

 }

 /**
 * C
 *
 *
 * return:
 */
 public boolean equals(
 {
 if (id != p.getID())
 return false;
 if (x != p.getX())
 return false;
 if (y !=
 return fa
 if (

 return true;
 }
}

PointUnion

 101

import java.util.ArrayList;

/**
 * Demonstrate several actions of points in the algorithm process.
* @version (30_06_2005)

ublic class PointsUnion

blic PointsUnion()
 {
 // initialise instance variables

union = new ArrayList();

 of this union.

blic boolean appendPoint(Point p)

ed position.

blic void removePoint(int index)

union.remove(index);

blic void clearAllPoints()

union.clear();

Search for a specified point
nd, -1 if not found

blic int searchPoint(Point p)

 */
p
{

 private ArrayList union;

 /**
 * Constructor for objects of class PointsUnion
 */
 pu

 }

 /**
 * Appends a point to the end
 */
 pu
 {
 return(union.add(p));
 }

 /**
 * Deletes a point at specifi
 */
 pu
 {

 }

 /**
 * Clear all points
 */
 pu
 {

 }

 /**
 *
 * Return: index of that point if fou
 */
 pu
 {
 return(union.indexOf(p));

 102

 }

 /**

tUnion

 public int getSize()
 {

return(union.size());

 number

blic Point getPoint(int index)

return((Point)(union.get(index)));

x numbers

blic float getDistance(int point1, int point2)

return(getPoint(point1).getDistance(getPoint(point2)));

the specified index numbers

0);
g

tTan())

 tmpPoint.clonePoint(getPoint(j));
 getPoint(j).clonePoint(getPoint(j+1));

 getPoint(j+1).clonePoint(tmpPoint);
 }

 }
}

tween two points at the specified index numbers

 * return the number of poin
 */

 }

 /**
 * Return the point at the specified index
 */
 pu
 {

 }

 /**
 * Return the distance between two points at the specified inde
 */
 pu
 {

 }

 /**
 * Return the distance between two points at
 */
 public void sortPointsByTan()
 {
 Point tmpPoint = new Point(0, 0, 0,
 // sortin
 for (int i=1; i<getSize(); i++)
 {
 for (int j=0; j<getSize()-i; j++)
 {
 if (getPoint(j).getTan() > getPoint(j+1).ge
 {

 }

 /**
 * Return the distance be
 */
 public double calculateAllGoods()

 103

 {
 double total = 0.0d;

 for (int i=0; i<union.size(); i++)
 total += getPoint(i).getGoods();
return total;

oints at the specified index numbers

 (int i=0; i<union.size(); i++)

Point(i).equals(p))
 return i;

 }

he route is the only contraint that
 every route need to consider when define such route is feasible or not

* @version (28_06_2005)

tsUnion

 public int optimizedTimes;
blic int removedPoints;

ic int addedPoints;

 for objects of class Route

timizedTimes = 0;
 removedPoints = 0;
 addedPoints = 0;

ue;

)

 }

 /**
 * Return the distance between two p
 */
 public int findPoint(Point p)
 {
 for
 {
 if (get

 return -1;
 }
}

Route

/**
 * Demonstrate that the total demand of t
 *

 */
public class Route extends Poin
{

 private Point depot;

 pu
 publ
 public boolean selectedAsRoute1;

 /**
 * Constructor
 */
 public Route(Point p)
 {
 super();
 depot = p;
 op

 selectedAsRoute1 = tr
 }

 public void resetStatus(

 104

 {
 optimizedTimes = 0;
 removedPoints = 0;

addedPoints = 0;

method for checking whether the total quantity of the goods exceeds the
 or not

ize(); i++)
talweight += getPoint(i).getGoods();

etGoods();
 if (totalweight <= depot.getGoods())
 return false;

 else
 return true;

method for checking whether the total quantity of the goods exceeds the
t

id resortByDistance()

ot); //Every new route will start from the depot

istance = 0.0f;

Loop for all of the points in unionM to find out the nearest points

 selectedNode == -1)

 selectedNode = j;

pDistance == shortestDistance) // The 2 points have same distance.

 getPoint(j).getGoods() > getPoint(selectedNode).getGoods())

 selectedAsRoute1 = true;
 }

 /**
 *
 * demand of each route
 */
 public boolean overLoad(Point p)
 {
 int totalweight = 0;
 for (int i=0; i<getS
 to
 totalweight += p.g

 }

 /**
 *
 * demand of each route or no
 */
 public vo
 {
 Point startPoint = depot;
 Route newRoute = new Route(dep
 do
 {
 int selectedNode = -1; // no selected point at first
 float shortestD

 /**
 *
 * to depot.
 */
 for (int j=0; j<getSize(); j++)
 {
 if (
 {

 shortestDistance = startPoint.getDistance(getPoint(j));
 }
 else
 {
 float tempDistance = startPoint.getDistance(getPoint(j));
 if (tem
Select one which contains more goods.
 {
 if (

 105

 {
 selectedNode = j;

ed not change shortestDistance.
 }

 tempDistance < shortestDistance)
 {

 selectedNode = j;
 shortestDistance = tempDistance;

 }

d

 newRoute.appendPoint(getPoint(selectedNode)))

 startPoint = getPoint(selectedNode); // reset startpoint
 from unionM

e
 {

List failed!");
 return;

no new point, this current route is finished

 are no points in the newroute

 {
 getSize() != 0)

 System.out.println("There are/is point(s) left unselected. Algorithm

re are points in the newroute, save this route

 ! appendPoint(newRoute.getPoint(j)))
 {

 System.out.println("Adding method of ArrayList failed!");
 return;

 }
 break;
 }
}while (true);

 // As 2 distances are same, ne

 }

 if (

 }

 }

 if (selectedNode != -1) //some satisfied point has been searche
 {
 if (
 {

 removePoint(selectedNode); // delete the selected point
 }
 els

 System.out.println("Adding method of Array

 }
 }
 else //
 {
 // there
 if (newRoute.getSize() == 0)

 if (
 {

Failed!");
 }
 break;
 }

 // if the
 for (int j=0; j<newRoute.getSize(); j++)
 {
 if (

 }

 }

 106

 /**
 * exchange Points, add insertpoint, delete a point

e ID of the point need to exchange in
te

exchage as the insertpoint is too large for it's goods.

getGoods();

Point = new Point(0, 0, 0, 0);
 i=0; i<getSize(); i++)

(totalweight - getPoint(i).getGoods() + insertpoint.getGoods()) <=

 selectedpoint == -1)

 selectedpoint = i;
int(i);

 getPoint(i).getGoods() < deletePoint.getGoods())
 {
 selectedpoint = i;

t = getPoint(i);
 }

 }

 return selectedpoint;

timizedTimes = r.optimizedTimes;
oints;

oints;
sRoute1;

 for (int i=getSize(); i>0; i--)
 removePoint(i-1);

 for (int i=0; i<r.getSize(); i++)
tPoint(i));

le getLength()

 return 0.0d;

; j<getSize(); j++)

 * return : integer>0: as can exchage successful, return th
the rou
 * -1: cannot perform
 */
 public int findExchangePoint(Point insertpoint)
 {
 int totalweight = 0;
 for (int i=0; i<getSize(); i++)
 totalweight += getPoint(i).

 int selectedpoint = -1;
 Point delete
 for (int
 {
 if (
depot.getGoods())
 {
 if (
 {

 deletePoint = getPo
 }
 if (

 deletePoin

 }

 }

 public void cloneRoute(Route r)
 {
 op
 removedPoints = r.removedP
 addedPoints = r.addedP
 selectedAsRoute1 = r.selectedA

 appendPoint(r.ge
 }

 public doub
 {
 if (getSize() == 0)

 double routeLength = 0.0d;
 for (int j=0

 107

 {
 if (j==0) // The first point connected with depot

 else
 += getDistance(j, j-1);

 }
 routeLength += depot.getDistance(getPoint(getSize()-1)); // finish the total length of the
ute

rt java.util.ArrayList;

* @version (30_06_2005)

 Point leftPoint;
te PointsUnion cannotBeAddedPoints;

te ArrayList routes;

 * Constructor for objects of class Result

pot, ArrayList resultRoutes)

 depot = resultDepot;
 routes = resultRoutes;
 zeroPoint = new Point(0, 0, 0, 0);
 leftPoint = new Point(0, 0, 0, 0);
 cannotBeAddedPoints = new PointsUnion();
 }

 public void resetStatus()
 {
 for (int i=0; i<routes.size(); i++)
 ((Route)routes.get(i)).resetStatus();

 for (int i=cannotBeAddedPoints.getSize()-1; i>=0; i--)
 cannotBeAddedPoints.removePoint(i);

 leftPoint = zeroPoint;
 }

 routeLength += depot.getDistance(getPoint(0));

 routeLength

ro
 return routeLength;
 }
}

Result

impo

/**

 */
public class Result
{

 private Point depot;
 private Point zeroPoint;
 private
 priva
 private int manipulatingPoint;
 priva

 /**

 */
 public Result(Point resultDe
 {

 108

 public void showResult_ID()
 {
 // Show Result again using ID instead of X,Y coordinates
 System.out.println();
 System.out.println();
 System.out.println("The Result shows in ID:");
 double totalLength = 0.0d;
 int totalPoints = 0;
 for (int i=0; i<routes.size(); i++)
 {
 float routeLength = 0.0f;
 System.out.print("Route " + i + ":");
 Route newRoute = (Route)routes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 System.out.print(" " + newRoute.getPoint(j).getID() + ",");
 totalPoints++;
 if (j==0) // The first point connected with depot
 routeLength += depot.getDistance(newRoute.getPoint(0));
 else
 routeLength += newRoute.getDistance(j, j-1);
 }
 routeLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); //
finish the total length of the route
 System.out.println(" Length:" + routeLength);
 totalLength += routeLength;
 }
 System.out.println();
 System.out.println("The Total Length of " + routes.size() + " line(s): " + totalLength);
 System.out.println("The Total Number of the Points: " + totalPoints);
 }

 public void removeNullRoutes()
 {
 for (int i=0; i<routes.size(); i++)
 {
 Route newRoute = (Route)routes.get(i);
 if (newRoute.getSize() == 0)
 routes.remove(i);
 }
 }

 public double totalLength ()
 {
 double tl = 0.0d;
 for (int i=0; i<routes.size(); i++)
 tl += ((Route)routes.get(i)).getLength();
 return tl;
 }

 109

 public int totalPoints ()
 {
 int tp = 0;
 for (int i=0; i<routes.size(); i++)
 tp += ((Route)routes.get(i)).getSize();
 return tp;
 }

 public void optimize_Method_1(boolean display)
 {
 if (routes.size() <= 1)
 {
 return;
 }

 boolean result = true;
 int selectedRoute = 0;
 int selectedRoute2 = 0;
 Route optimizeRoute1 = new Route(depot);
 Route optimizeRoute2 = new Route(depot);
 do
 {
 if (result && (!leftPoint.equals(zeroPoint)))
 {
 selectedRoute = selectedRoute2;
 optimizeRoute1 = (Route)routes.get(selectedRoute);
 }

 if (leftPoint.equals(zeroPoint))
 {
 // select route1, route1 here selected is the start route.
 selectedRoute = selectMinimumGoods();
 if (selectedRoute == -1) // All routes have been added or removed point
 break;
 else
 optimizeRoute1 = (Route)routes.get(selectedRoute);
 }

 selectedRoute2 = selectedRoute;
 selectedRoute2++;
 if (selectedRoute2 == routes.size())
 selectedRoute2 = 0;
 optimizeRoute2 = (Route)routes.get(selectedRoute2);

 if (display) System.out.print("Try Optimizing: " + selectedRoute + " " +
selectedRoute2 + ". ");
 result = Optimize_Function_1(optimizeRoute1, optimizeRoute2);
 optimizeRoute1.selectedAsRoute1 = false;
 if (display) System.out.print("Selected Point ID:" + manipulatingPoint + ". ");
 if (result)
 {
 // change the selectedAsRoute1 of the previous route of route1 if necessary
 int preRoute;

 110

 if (selectedRoute == 0)
 preRoute = routes.size() - 1;
 else
 preRoute = selectedRoute - 1;
 if ((((Route)routes.get(preRoute)).selectedAsRoute1 == false) &&
(((Route)routes.get(preRoute)).removedPoints == 0)) // preRoute has been selected as route1
and failed optimization at that time.
 ((Route)routes.get(preRoute)).selectedAsRoute1 = true;

 if (display)
 {
 System.out.print("Success. ");
 if (leftPoint.equals(zeroPoint))
 System.out.println("One point added.");
 else
 System.out.println("One point replaced.");
 }
 }
 else
 if (display) System.out.println("Failed.");

 } while (true);

 // Deal with remaining cannotBeAddedPoints
 if (cannotBeAddedPoints.getSize() == 0)
 return;
 if (display)
 {
 System.out.println();
 System.out.print("Remaining Points:");
 for (int i=0; i<cannotBeAddedPoints.getSize(); i++)
 System.out.print(" " + cannotBeAddedPoints.getPoint(i).getID());
 System.out.println();
 System.out.println("Dealing with remaining cannotBeAddedPoints:");
 }

 /*
 // test!!!!!!!
 for (int i=0; i<cannotBeAddedPoints.getSize(); i++)
 addOnePointInRoutes(cannotBeAddedPoints.getPoint(i), display);
 for (int i=cannotBeAddedPoints.getSize()-1; i>=0; i--)
 cannotBeAddedPoints.removePoint(i);
 */

 cannotBeAddedPoints.sortPointsByTan(); // sort the points
 while (cannotBeAddedPoints.getSize() > 0) // there are points left in
cannotBeAddedPoints
 {
 // Create one empty route
 Route newRoute = new Route(depot);

 // add first point
 Point firstPoint = cannotBeAddedPoints.getPoint(0);
 newRoute.appendPoint(cannotBeAddedPoints.getPoint(0));

 111

 // delete this point from cannotBeAddedPoints
 cannotBeAddedPoints.removePoint(0);

 if (cannotBeAddedPoints.getSize() == 0) // only first point left in
cannotBeAddedPoints
 {
 routes.add(newRoute); // save this route

 // Show the added route
 if (display)
 {
 System.out.print("Added in Route " + (routes.size()-1) + " :");
 for (int i=0; i<((Route)routes.get(routes.size()-1)).getSize(); i++)
 System.out.print(" " +
((Route)routes.get(routes.size()-1)).getPoint(i).getID());
 System.out.println();
 }

 break;
 }

 // add remaining points if possible
 while (cannotBeAddedPoints.getSize() > 0)
 {
 Point checkPoint = cannotBeAddedPoints.getPoint(0);
 if ((!newRoute.overLoad(checkPoint)) &&
(findRouteBetweenTwoPoints(firstPoint, checkPoint) == -1))
 //if (!newRoute.overLoad(checkPoint))
 {
 // add a new point
 newRoute.appendPoint(checkPoint); // add check point
 cannotBeAddedPoints.removePoint(0); // delete it from cannotBeAddedPoints

 if (cannotBeAddedPoints.getSize() == 0) // no point left in
cannotBeAddedPoints
 {
 routes.add(newRoute); // save this route

 // Show the added route
 if (display)
 {
 System.out.print("Added in Route " + (routes.size()-1) + " :");
 for (int i=0; i<((Route)routes.get(routes.size()-1)).getSize(); i++)
 System.out.print(" " +
((Route)routes.get(routes.size()-1)).getPoint(i).getID());
 System.out.println();
 }

 break;
 }
 }
 else
 {
 // cannot add new point. Terminate this route
 newRoute.resortByDistance(); // connect the route in order

 112

 routes.add(newRoute); // save this route

 // Show the added route
 if (display)
 {
 System.out.print("Added in Route " + (routes.size()-1) + " :");
 for (int i=0; i<((Route)routes.get(routes.size()-1)).getSize(); i++)
 System.out.print(" " +
((Route)routes.get(routes.size()-1)).getPoint(i).getID());
 System.out.println();
 }

 break; // start a new route
 }
 }
 }
 }

 public void sortRoutesByTan()
 {
 PointsUnion leftOrder = new PointsUnion();
 PointsUnion rightOrder = new PointsUnion();

 for (int i=0; i<routes.size(); i++)
 {
 Route thisRoute = (Route)routes.get(i);
 int selectedpoint = thisRoute.getSize()-1; // Last point
 if ((thisRoute.getPoint(0).getX()-depot.getX()) *
(thisRoute.getPoint(selectedpoint).getX()-depot.getX()) >= 0)
 {
 if (thisRoute.getPoint(0).getTan() > thisRoute.getPoint(selectedpoint).getTan())
 selectedpoint = 0;
 }
 else
 {
 if (thisRoute.getPoint(0).getTan() < thisRoute.getPoint(selectedpoint).getTan())
 selectedpoint = 0;
 }

 Point newPoint = new Point(0, 0, 0, 0);
 newPoint.clonePoint(thisRoute.getPoint(selectedpoint));

 if (newPoint.getX() > depot.getX()) // right side
 rightOrder.appendPoint(newPoint);
 else // left side
 leftOrder.appendPoint(newPoint);
 }

 leftOrder.sortPointsByTan();
 rightOrder.sortPointsByTan();

 // rightOrder + leftOrder = orderPoints;
 PointsUnion orderPoints = new PointsUnion();
 for (int i=0; i<rightOrder.getSize(); i++)

 113

 orderPoints.appendPoint(rightOrder.getPoint(i));
 for (int i=0; i<leftOrder.getSize(); i++)
 orderPoints.appendPoint(leftOrder.getPoint(i));

 // create a copy for routes
 ArrayList temp = new ArrayList();
 for (int i=0; i<routes.size(); i++)
 temp.add(routes.get(i));

 // clear routes to wait for routes inserting in order
 routes.clear();

 // move each route into routes in the order
 if (orderPoints.getSize() != temp.size())
 {
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 return;
 }
 for (int i=0; i<orderPoints.getSize(); i++)
 {
 Point orderPoint = orderPoints.getPoint(i);
 int j;
 for (j=0; j<temp.size(); j++)
 {
 // check whether orderPoint in route temp[j]
 if (((Route)temp.get(j)).findPoint(orderPoint) != -1)
 {
 routes.add((Route)temp.get(j));
 break;
 }
 }

 if (j == temp.size())
 {
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 return;
 }
 }

 // check routes at last
 if (orderPoints.getSize() != routes.size())
 {
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 return;
 }
 }

 114

 private int selectMinimumGoods()
 {
 // Select the minimum demand route which has not been optimized
 double minimumGoods = 0.0d;
 int selectedRoute = -1;
 for (int i=0; i<routes.size(); i++)
 {
 Route newRoute = (Route)routes.get(i);
 // Check whether has been optimized
 if ((newRoute.addedPoints > 0) || (!newRoute.selectedAsRoute1))
 {
 continue;
 }
 else
 {
 // Is it the first one which has not been optimized
 if (selectedRoute == -1)
 {
 selectedRoute = i;
 minimumGoods = newRoute.calculateAllGoods();
 }
 else // Compare and select minimum
 {
 double temp = newRoute.calculateAllGoods();
 if (temp < minimumGoods)
 {
 minimumGoods = temp;
 selectedRoute = i;
 }
 }
 }
 }

 return selectedRoute;
 }

 private boolean Optimize_Function_1(Route route1, Route route2)
 {
 // Check if left point need to insert into route2
 if (leftPoint.equals(zeroPoint))
 {
 // no point left. Select a proper point from route1
 int selectedpoint = route1.getSize()-1; // Last point
 if ((route1.getPoint(0).getX()-depot.getX()) *
(route1.getPoint(selectedpoint).getX()-depot.getX()) >= 0)
 {
 if (route1.getPoint(0).getTan() > route1.getPoint(selectedpoint).getTan())
 selectedpoint = 0;
 }
 else
 {
 if (route1.getPoint(0).getTan() < route1.getPoint(selectedpoint).getTan())
 selectedpoint = 0;
 }

 115

 // select that point
 leftPoint = route1.getPoint(selectedpoint); // save the point as leftPoint
 }

 // record selected point ID.
 manipulatingPoint = leftPoint.getID();

 // add leftPoint into route2
 if (route2.overLoad(leftPoint))
 {
 // overload
 int deletepoint = route2.findExchangePoint(leftPoint);
 if (deletepoint == -1)
 {
 // exchange failed, cannot exchange leftPoint into route2
 if (route1.addedPoints > 0) // route1 is not a start route
 {
 // remove the leftPoint in route1
 int selectedpoint = route1.findPoint(leftPoint);
 if (selectedpoint < 0)
 {
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!!
");
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!!
");
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!!
");
 return false;
 }
 route1.removePoint(selectedpoint);
 route1.removedPoints++;
 route1.resortByDistance();

 // and save it into cannotBeAddedPoints
 cannotBeAddedPoints.appendPoint(leftPoint);

 leftPoint = zeroPoint; // reset leftPoint
 }
 else // route1 is a start route
 {
 leftPoint = zeroPoint; // reset leftPoint
 }

 return false;
 }
 else
 {
 // exchange successful
 int selectedpoint = route1.findPoint(leftPoint);
 if (selectedpoint < 0)
 {
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!! ");
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!! ");
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!! ");
 return false;

 116

 }
 route1.removePoint(selectedpoint);
 route1.removedPoints++;
 route1.resortByDistance();

 route2.appendPoint(leftPoint); // add left point
 leftPoint = route2.getPoint(deletepoint); // set new left point
 route2.resortByDistance();
 route2.addedPoints++;
 return true;
 }
 }
 else // not overload
 {
 int selectedpoint = route1.findPoint(leftPoint);
 if (selectedpoint<0)
 {
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!! ");
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!! ");
 System.out.println("ERROR ERROR ERROR ERROR ERROR !!! ");
 return false;
 }
 route1.removePoint(selectedpoint);
 route1.removedPoints++;
 route1.resortByDistance();

 route2.appendPoint(leftPoint);
 route2.addedPoints++;
 route2.resortByDistance();

 leftPoint = zeroPoint; // reset leftPoint
 return true;
 }
 }

 /**
 * find the first route in which all of the points lie between two input points
 * return : integer>=0, the index of the corresponding route in routes
 * -1: cannot find the corresponding route
 */
 private int findRouteBetweenTwoPoints(Point p1, Point p2)
 {
 double smalltan = p1.getTan();
 double largetan = p2.getTan();
 if (smalltan>largetan) // exchage them
 {
 double temp = smalltan;
 smalltan = largetan;
 largetan = temp;
 }

 for (int i=0; i<routes.size(); i++)
 {
 Route checkRoute = (Route)routes.get(i);

 117

 boolean allRouteIn = true;
 for (int j=0; j<checkRoute.getSize(); j++)
 {
 double checkTan = checkRoute.getPoint(j).getTan();
 if ((checkTan < smalltan) || (checkTan > largetan))
 {
 allRouteIn = false;
 break;
 }
 }
 if (allRouteIn)
 return i;
 }

 return -1;
 }

 private void addOnePointInRoutes(Point p , boolean display)
 {
 double smallestDis = depot.getDistance(p) * 2 ;
 int selectedRoute = -1;

 for (int i=0; i<routes.size(); i++)
 {
 if (((Route)routes.get(i)).overLoad(p))
 continue;
 else
 {
 Route testRoute = new Route(depot);
 testRoute.cloneRoute((Route)routes.get(i));
 testRoute.appendPoint(p);
 testRoute.resortByDistance();
 double increasedLength = testRoute.getLength() -
((Route)routes.get(i)).getLength();
 if (increasedLength < 0.0d)
 {
 System.out.println("ERROR ERROR ERROR");
 }
 if (increasedLength<smallestDis)
 {
 selectedRoute = i;
 smallestDis = increasedLength;
 }
 }
 }

 if (selectedRoute == -1)
 {
 Route newRoute = new Route(depot);
 newRoute.appendPoint(p);
 routes.add(newRoute);
 if (display) System.out.println("Add point " + p.getID() + " in a sing-point new Route "
+ (routes.size()-1));
 }

 118

 else
 {
 ((Route)routes.get(selectedRoute)).appendPoint(p);
 ((Route)routes.get(selectedRoute)).resortByDistance();
 if (display) System.out.println("Add point " + p.getID() + " in Route " +
selectedRoute);
 }
 }
}

6.3 final program of algorithm

Algorithm

import java.io.*;
import java.util.Vector;
import java.util.StringTokenizer;
import java.util.ArrayList;
import java.util.Date;
import java.lang.String;

/**
 *Demonstrate the way of getting the feasible routes in every weekday
 * @version (28_08_2005)
 */
public class Algorithm
{
 private ArrayList pointsM = new ArrayList();

 public static void main(String[] args)
 {
 int selectionDay = 0;

 if (args.length != 1)
 {
 System.out.println("Please Input 1 Parameter.");
 return;
 }

 /**
 * The method of "isAllNum" has been given in the coming part, which
 * is used to remind user whether the imput of day is right or wrong.
 */
 if (!isAllNum(args[0]))
 {
 System.out.println("Wrong Parameter!");
 return;
 }
 else
 {
 /**
 * Transfer the data of "args[]" from string to int since "selectionDay" is int
 **/
 selectionDay = string2int(args[0]);

 119

 }

 Date currentTime = new Date();
 long milSecond = currentTime.getTime();
 System.out.println("Time Start to Read Data:" + milSecond);
 System.out.println();

 /**
 * Add depot and all the points afterwards
 */
 Point depot = new Point(0, 677908, 6150220, 66);
 PointsUnion unionM = new PointsUnion();
 PointsUnion unionM1 = new PointsUnion();
 PointsUnion unionM2 = new PointsUnion();
 readFile(unionM1, unionM2, selectionDay);
 unionM1.reducePointsUnionSize(100);
 unionM2.reducePointsUnionSize(100);

 currentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time End:" + milSecond);
 System.out.println();

 currentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time Start of Algorithm Calculation:" + milSecond);
 System.out.println();

 // Calculate the tan value for all of the points
 for (int i=0; i<unionM1.getSize(); i++)
 unionM1.getPoint(i).calculateTan(depot);
 for (int i=0; i<unionM2.getSize(); i++)
 unionM2.getPoint(i).calculateTan(depot);

 // First Part
 ArrayList routes1 = new ArrayList();
 unionM1.generateRoutesByDistance(depot, routes1);
 Result result1 = new Result(depot, routes1);
 result1.showResult_ID();
 System.out.println("Total Length: " + result1.totalLength() + " Total Points: " +

result1.totalPoints());

 int stepLength = 1;
 boolean usingResetSteplength = true;
 boolean resetStepLength;
 resetStepLength = usingResetSteplength;
 do
 {
 result1.sortRoutesByTan();
 result1.optimize_Method_1(stepLength, true, false);
 result1.removeNullRoutes();
 result1.optimize_Method_1(stepLength, false, false);
 result1.removeNullRoutes();

 120

 if (result1.noChange())
 {
 stepLength++;

 // reset stepLength
 if (resetStepLength)
 {
 stepLength = 1;
 resetStepLength = false;
 }

 if (stepLength > 6) // reach MAX stepLength
 break;
 else
 {
 System.out.println("Change stepLength to: " + stepLength);
 continue;
 }
 }
 else
 {
 resetStepLength = usingResetSteplength;
 }

 //result.showResult_ID();
 System.out.println("Total Length: " + result1.totalLength() + " Total Points: " +

result1.totalPoints());
 result1.resetStatus();
 } while (true);

 // Final Result
 System.out.println("Final Result of First Part:");
 result1.showResult_ID();

 // Second Part
 ArrayList routes2 = new ArrayList();
 unionM2.generateRoutesByDistance(depot, routes2);
 Result result2 = new Result(depot, routes2);
 result2.showResult_ID();
 System.out.println("Total Length: " + result2.totalLength() + " Total Points: " +

result2.totalPoints());

 stepLength = 1;
 usingResetSteplength = true;
 resetStepLength = false;
 resetStepLength = usingResetSteplength;
 do
 {
 result2.sortRoutesByTan();
 result2.optimize_Method_1(stepLength, true, false);
 result2.removeNullRoutes();
 result2.optimize_Method_1(stepLength, false, false);
 result2.removeNullRoutes();

 if (result2.noChange())

 121

 {
 stepLength++;

 // reset stepLength
 if (resetStepLength)
 {
 stepLength = 1;
 resetStepLength = false;
 }

 if (stepLength > 8) // reach MAX stepLength
 break;
 else
 {
 System.out.println("Change stepLength to: " + stepLength);
 continue;
 }
 }
 else
 {
 resetStepLength = usingResetSteplength;
 }

 //result.showResult_ID();
 System.out.println("Total Length: " + result2.totalLength() + " Total Points: " +

result2.totalPoints());
 result2.resetStatus();
 } while (true);

 // Final Result
 System.out.println("Final Result of Second Part:");
 result2.showResult_ID();

 // combine first part and second part
 ArrayList overLoad2Routes = new ArrayList();
 result1.makeRelationShip(result2, overLoad2Routes);
 if (overLoad2Routes.size() != 0)
 {
 System.out.println("There is(are) OverLoad pair(s) of routes! ");
 for (int i=0; i<overLoad2Routes.size(); i+=2)
 System.out.println(overLoad2Routes.get(i) + " and " +

overLoad2Routes.get(i+1));

 // Result before dealing with overLoadRoutes
 System.out.println();
 System.out.println();
 System.out.println();
 System.out.println();
 System.out.println();
 System.out.println("Result of First Part before dealing with overLoadRoutes:");
 result1.showResult_ID();
 System.out.println();
 System.out.println("Result of Second Part before dealing with overLoadRoutes:");
 result2.showResult_ID();
 }

 122

 while (overLoad2Routes.size() > 0)
 {
 modifyOverLoadRoutes(depot, result1, result2, overLoad2Routes);
 overLoad2Routes = new ArrayList();
 result1.makeRelationShip(result2, overLoad2Routes);
 }

 // Final Result
 System.out.println();
 System.out.println("Final Result of First Part:");
 result1.showResult_ID();
 System.out.println();
 System.out.println("Final Result of Second Part:");
 result2.showResult_ID();

 currentTime = new Date();
 milSecond = currentTime.getTime();
 System.out.println("Time End of Algorithm Calculation:" + milSecond);
 System.out.println();
 }

 private static void readFile(PointsUnion firstPartPoints, PointsUnion secondPartPoints, int

selectedday)
 {
 try
 {
 //FileReader myFile = new FileReader("D:\\BlueJ\\MyProject\\data.csv");
 FileReader myFile = new FileReader("data.csv");

 if(myFile.ready())
 {
 System.out.println("File Opened.");

 BufferedReader bfr = new BufferedReader(myFile);
 ArrayList dataAll = new ArrayList();
 String line = bfr.readLine();
 while (line != null)
 {
 System.out.println("READ>" + line + "<");
 StringTokenizer tokenizer=new StringTokenizer(line,",");
 Vector dataLine = new Vector();
 for (int i=0; i<7; i++)
 {
 if (tokenizer.hasMoreTokens())
 {
 dataLine.addElement(tokenizer.nextToken());
 }
 else
 {
 myFile.close();
 System.out.println("Data in the file error at line <ERROR>" +

line);
 return;

 123

 }
 }
 if (tokenizer.hasMoreTokens())
 {
 myFile.close();
 System.out.println("Data in the file error at line <ERROR>" + line);
 return;
 }
 else
 {
 dataAll.add(dataLine);
 }
 line = bfr.readLine();
 }

 // Display dataAll
 System.out.println("dataAll:");
 for (int i=0; i<dataAll.size(); i++)
 {
 Vector oneline = (Vector)dataAll.get(i);
 if (string2int((String)oneline.get(5)) == selectedday)
 {
 for (int j=0; j<oneline.size(); j++)
 {
 line = (String)oneline.get(j);
 if (isAllNum(line))
 {
 System.out.print(string2int(line) + " ");
 }
 else
 {
 System.out.println("Data in the file error at line <ERROR>"

+ i);
 return;
 }
 }
 System.out.println();
 line = (String)oneline.get(1);
 Point p1 = new Point(string2int((String)oneline.get(0)),

string2int((String)oneline.get(1)) , string2int((String)oneline.get(2)),
string2int((String)oneline.get(6)));

 Point p2 = new Point(string2int((String)oneline.get(0)),
string2int((String)oneline.get(3)) , string2int((String)oneline.get(4)),
string2int((String)oneline.get(6)));

 firstPartPoints.appendPoint(p1);
 secondPartPoints.appendPoint(p2);
 }
 }
 }
 else
 {
 System.out.println("Directory or File dose not exist.");
 }
 }
 catch (Exception e)

 124

 {
 System.out.println("Cannot Find File");
 }
 }

 private static boolean isAllNum(String s)
 {
 for (int i=0; i<s.length(); i++)
 {
 if ((s.charAt(i)<'0') || (s.charAt(i)>'9'))
 return false;
 }
 return true;
 }

 private static int string2int(String s)
 {
 int out = 0;
 for (int i=0; i<s.length(); i++)
 {
 out *= 10;
 out += s.charAt(i) - 48;
 }
 return out;
 }

 private static void modifyOverLoadRoutes(Point depot, Result result1, Result result2,

ArrayList overLoad2Routes)
 {
 int bestTime = (16 - (40 + 2*depot.getGoods()) / 60) / 2;
 double speed = 60000;

 ArrayList hasBeenSplittedInR1 = new ArrayList();
 ArrayList hasBeenSplittedInR2 = new ArrayList();

 int selectPart = 0;
 for (int i=0; i<overLoad2Routes.size(); i+=2)
 {
 String tmp = overLoad2Routes.get(i).toString();
 int pos1 = string2int(tmp);
 tmp = overLoad2Routes.get(i+1).toString();
 int pos2 = string2int(tmp);

 if (hasBeenSplittedInR1.contains(pos1) || hasBeenSplittedInR2.contains(pos2))
 continue;

 double length1 = ((Route)(result1.routes.get((pos1)))).getLength();
 double length2 = ((Route)(result2.routes.get((pos2)))).getLength();
 if (length1 >= length2)
 selectPart = 1;
 else
 selectPart = 2;

 Route splittedRoute;
 int splittedNumber = 0;

 125

 double averageLength = 0.0d;
 if (selectPart == 1)
 {
 splittedRoute = (Route)(result1.routes.get((pos1)));
 splittedNumber = (int)((length1/speed)/(double)bestTime) + 1;
 if (splittedNumber == 1)
 splittedNumber = 2;
 averageLength = length1/splittedNumber;

 hasBeenSplittedInR1.add(pos1);
 }
 else
 {
 splittedRoute = (Route)(result2.routes.get((pos2)));
 splittedNumber = (int)((length2/speed)/(double)bestTime) + 1;
 if (splittedNumber == 1)
 splittedNumber = 2;
 averageLength = length2/splittedNumber;

 hasBeenSplittedInR2.add(pos2);
 }

 ArrayList newRoutes = new ArrayList();
 for (int j=0; j<splittedNumber; j++)
 {
 // Find the farest point
 int farestPoint = -1;
 double farestDistance = 0.0d;
 for (int k=0; k<splittedRoute.getSize(); k++)
 {
 if (farestPoint == -1)
 {
 farestPoint = k;
 farestDistance = splittedRoute.getPoint(k).getDistance(depot);
 }
 else
 {
 double tmplength = splittedRoute.getPoint(k).getDistance(depot);
 if (tmplength > farestDistance)
 {
 farestDistance = tmplength;
 farestPoint = k;
 }
 }
 }

 // Create a new route and add the farestPoint
 Route oneNewRoute = new Route(depot);
 oneNewRoute.appendPoint(splittedRoute.getPoint(farestPoint));

 // Save and Delete farset point
 Point lastPoint = splittedRoute.getPoint(farestPoint);
 splittedRoute.removePoint(farestPoint);

 while (true)

 126

 {
 // Add the remaining point which is nearest with lastPoint and routeLength

possible
 int shortestPoint = -1;
 double shortestDistance = 0.0d;
 for (int k=0; k<splittedRoute.getSize(); k++)
 {
 Route testRoute = new Route(depot);;
 testRoute.cloneRoute(oneNewRoute);
 testRoute.appendPoint(splittedRoute.getPoint(k));
 if (testRoute.getLength() > averageLength)
 continue;
 else
 {
 if (shortestPoint == -1)
 {
 shortestDistance =

splittedRoute.getPoint(k).getDistance(lastPoint);
 shortestPoint = k;
 }
 else
 {
 double tmpDis =

splittedRoute.getPoint(k).getDistance(lastPoint);
 if (tmpDis < shortestDistance)
 {
 shortestDistance = tmpDis;
 shortestPoint = k;
 }
 }
 }
 }
 if (shortestPoint == -1)
 break;
 else
 {
 // add shortestPoint
 oneNewRoute.appendPoint(splittedRoute.getPoint(shortestPoint));
 // save and delete shortestPoint
 lastPoint = splittedRoute.getPoint(shortestPoint);
 splittedRoute.removePoint(shortestPoint);
 }
 }

 // Add the new route into newRoutes
 newRoutes.add(oneNewRoute);
 }

 // add remaining point(s)
 for (int j=0; j<splittedRoute.getSize(); j++)
 {
 int selectRoute = -1;
 double shortestInc = 0.0d;
 for (int k=0; k<newRoutes.size(); k++)
 {

 127

 if (selectRoute == -1)
 {
 selectRoute = 0;
 Route testRoute = new Route(depot);;
 testRoute.cloneRoute((Route)newRoutes.get(0));
 testRoute.appendPoint(splittedRoute.getPoint(j));
 shortestInc = testRoute.getLength() -

((Route)newRoutes.get(0)).getLength();
 }
 else
 {
 Route testRoute = new Route(depot);;
 testRoute.cloneRoute((Route)newRoutes.get(k));
 testRoute.appendPoint(splittedRoute.getPoint(j));
 double tmpInc = testRoute.getLength() -

((Route)newRoutes.get(k)).getLength();
 if (tmpInc < shortestInc)
 {
 shortestInc = tmpInc;
 selectRoute = k;
 }
 }
 }

((Route)newRoutes.get(selectRoute)).appendPoint(splittedRoute.getPoint(j));
 }

 // Save the newRoutes, attention we should replace the splittedRoute using the first

route in newRoutes
 if (selectPart == 1)
 {
 result1.routes.set(pos1, newRoutes.get(0));
 for (int j=1; j<newRoutes.size(); j++)
 result1.routes.add(newRoutes.get(j));
 }
 else
 {
 result2.routes.set(pos2, newRoutes.get(0));
 for (int j=1; j<newRoutes.size(); j++)
 result2.routes.add(newRoutes.get(j));
 }
 }
 }
}

Point

/**
 * Demonstrate the charactor of the points and the method of getting distance
 * bewteen two points.
 * @version (28_08_2005)
 */
public class Point
{
 private int id;

 128

 private int x;
 private int y;
 private int goods;
 private double tan;

 /**
 * Constructor for objects of class Point
 */
 public Point(int inputID, int inputX, int inputY, int inputGoods)
 {
 id = inputID;
 x = inputX;
 y = inputY;
 goods = inputGoods;
 tan = 0;
 }

 /**
 * return ID
 */
 public int getID()
 {
 return id;
 }

 /**
 * return x
 */
 public int getX()
 {
 return x;
 }

 /**
 * return y
 */
 public int getY()
 {
 return y;
 }

 /**
 * return goods
 */
 public int getGoods()
 {
 return goods;
 }

 /**

 129

 * return tan
 */
 public double getTan()
 {
 return tan;
 }

 /**
 * Calculate the distance between two Points
 *
 * @Parameter1: Another Point p
 * return: distance between these 2 points
 */
 public float getDistance(Point p)
 {
 double squareDis = ((double)(x - p.getX())) * ((double)(x - p.getX())) + ((double)(y -

p.getY())) * ((double)(y - p.getY()));
 return (float) Math.sqrt(squareDis);
 }

 /**
 * Calculate the tan() value between current Point and Depot
 *
 * @Parameter1: Depot point
 * return: tan() value between these 2 points
 */
 public void calculateTan(Point depot)
 {
 double disX = (double)(x - depot.getX());
 if (disX == 0.0d)
 {
 if (y >= depot.getY())
 tan = 9.999999999E9d;
 else
 tan = -9.999999999E9d;
 }
 double disY = (double)(y - depot.getY());
 tan = (double)(disY/disX);
 }

 /**
 * Clone a point
 *
 * @Parameter1: point
 * return:
 */
 public void clonePoint(Point p)
 {
 id = p.getID();
 x = p.getX();
 y = p.getY();
 goods = p.getGoods();

 130

 tan = p.getTan();
 }

 /**
 * Clone a point
 *
 * @Parameter1: point
 * return:
 */
 public boolean equals(Point p)
 {
 if (id != p.getID())
 return false;
 if (x != p.getX())
 return false;
 if (y != p.getY())
 return false;
 if (goods != p.getGoods())
 return false;

 return true;
 }
}

PointUnion

import java.util.ArrayList;
import java.util.Random;

/**
 * Demonstrate several actions of points in the algorithm process.
 * @version (28_08_2005)
 */
public class PointsUnion
{
 private ArrayList union;

 /**
 * Constructor for objects of class PointsUnion
 */
 public PointsUnion()
 {
 union = new ArrayList();
 }

 /**
 * Appends a point to the end of this union.
 */
 public boolean appendPoint(Point p)
 {
 return(union.add(p));
 }

 131

 /**
 * Deletes a point at specified position.
 */
 public void removePoint(int index)
 {
 union.remove(index);
 }

 /**
 * Clear all points
 */
 public void clearAllPoints()
 {
 union.clear();
 }

 /**
 * Search for a specified point
 * Return: index of that point if found, -1 if not found
 */
 public int searchPoint(Point p)
 {
 return(union.indexOf(p));
 }

 /**
 * return the number of pointUnion
 */
 public int getSize()
 {
 return(union.size());
 }

 /**
 * Return the point at the specified index number
 */
 public Point getPoint(int index)
 {
 return((Point)(union.get(index)));
 }

 /**
 * Return the distance between two points at the specified index numbers
 */
 public float getDistance(int point1, int point2)
 {
 return(getPoint(point1).getDistance(getPoint(point2)));
 }

 132

 /**
 * Return the distance between two points at the specified index numbers
 */
 public void sortPointsByTan()
 {
 Point tmpPoint = new Point(0, 0, 0, 0);
 // sorting
 for (int i=1; i<getSize(); i++)
 {
 for (int j=0; j<getSize()-i; j++)
 {
 if (getPoint(j).getTan() > getPoint(j+1).getTan())
 {
 tmpPoint.clonePoint(getPoint(j));
 getPoint(j).clonePoint(getPoint(j+1));
 getPoint(j+1).clonePoint(tmpPoint);
 }
 }
 }
 }

 /**
 * Return the distance between two points at the specified index numbers
 */
 public double calculateAllGoods()
 {
 double total = 0.0d;
 for (int i=0; i<union.size(); i++)
 total += getPoint(i).getGoods();
 return total;
 }

 /**
 * Return the distance between two points at the specified index numbers
 */
 public int findPoint(Point p)
 {
 for (int i=0; i<union.size(); i++)
 {
 if (getPoint(i).equals(p))
 return i;
 }

 return -1;
 }

 /**
 * Using Distance Algorithm to get the routes
 */
 public void generateRoutesByDistance(Point depot, ArrayList routes)
 {
 Point startPoint = depot;

 133

 Route newRoute = new Route(depot); //Every new route will start from the depot
 do
 {
 int selectedNode = -1; // no selected point at first
 float shortestDistance = 0.0f;

 /**
 * Loop for all of the points in unionM to find out the nearest points
 * to depot.
 */
 for (int j=0; j<getSize(); j++)
 {
 if (!newRoute.overLoad(getPoint(j)))
 {
 if (selectedNode == -1)
 {
 selectedNode = j;
 shortestDistance = startPoint.getDistance(getPoint(j));
 }
 else
 {
 float tempDistance = startPoint.getDistance(getPoint(j));
 if (tempDistance == shortestDistance) // The 2 points have same

distance. Select one which contains more goods.
 {
 if (getPoint(j).getGoods() > getPoint(selectedNode).getGoods())
 {
 selectedNode = j;
 // As 2 distances are same, need not change

shortestDistance.
 }
 }

 if (tempDistance < shortestDistance)
 {
 selectedNode = j;
 shortestDistance = tempDistance;
 }
 }
 }
 }

 if (selectedNode != -1) //some satisfied point has been searched
 {
 if (newRoute.appendPoint(getPoint(selectedNode)))
 {
 startPoint = getPoint(selectedNode); // reset startpoint
 removePoint(selectedNode); // delete the selected point from unionM
 }
 else
 {
 System.out.println("Adding method of ArrayList failed!");
 return;
 }

 134

 }
 else // no new point, this current route is finished
 {
 // there are no points in the newroute
 if (newRoute.getSize() == 0)
 {
 if (getSize() != 0)
 {
 System.out.println("There are/is point(s) left unselected. Algorithm

Failed!");
 }
 break;
 }

 // if there are points in the newroute, save this route
 if (routes.add(newRoute))
 {
 startPoint = depot; // reset startpoint
 newRoute = new Route(depot);
 }
 else
 {
 System.out.println("add method of ArrayList failed!!!");
 return;
 }
 }
 }while (true);
 }

 void reducePointsUnionSize(int targetSize)
 {
 double random;
 while (getSize() > targetSize)
 {
 //random = Math.random();
 //removePoint((int)(getSize() * random));
 removePoint(getSize() - 1);
 }
 }
}

Route

import java.util.ArrayList;

/**
 * Demonstrate that the total demand of the route is the only contraint that
 * every route need to consider when define such route is feasible or not
 * @version (28_08_2005)
 */
public class Route extends PointsUnion
{
 private Point depot;
 public int optimizedTimes;
 public int removedPoints;

 135

 public int addedPoints;
 public boolean selectedAsRoute1;
 public ArrayList relatedRoutes;

 /**
 * Constructor for objects of class Route
 */
 public Route(Point p)
 {
 super();
 depot = p;
 optimizedTimes = 0;
 removedPoints = 0;
 addedPoints = 0;
 selectedAsRoute1 = true;
 relatedRoutes = new ArrayList();
 }

 public boolean noChange()
 {
 if ((removedPoints == 0) && (addedPoints == 0))
 return true;
 else
 return false;
 }

 public void resetStatus()
 {
 optimizedTimes = 0;
 removedPoints = 0;
 addedPoints = 0;
 selectedAsRoute1 = true;
 }

 /**
 * method for checking whether the total quantity of the goods exceeds the
 * demand of each route or not
 */
 public boolean overLoad(Point p)
 {
 int totalweight = 0;
 for (int i=0; i<getSize(); i++)
 totalweight += getPoint(i).getGoods();
 totalweight += p.getGoods();
 if (totalweight <= depot.getGoods())
 return false;
 else
 return true;
 }

 /**
 * method for checking whether the total quantity of the goods exceeds the
 * demand of each route or not
 */

 136

 public void resortByDistance()
 {
 Point startPoint = depot;
 Route newRoute = new Route(depot); //Every new route will start from the depot
 do
 {
 int selectedNode = -1; // no selected point at first
 float shortestDistance = 0.0f;

 /**
 * Loop for all of the points in unionM to find out the nearest points
 * to depot.
 */
 for (int j=0; j<getSize(); j++)
 {
 if (selectedNode == -1)
 {
 selectedNode = j;
 shortestDistance = startPoint.getDistance(getPoint(j));
 }
 else
 {
 float tempDistance = startPoint.getDistance(getPoint(j));
 if (tempDistance == shortestDistance) // The 2 points have same

distance. Select one which contains more goods.
 {
 if (getPoint(j).getGoods() > getPoint(selectedNode).getGoods())
 {
 selectedNode = j;
 // As 2 distances are same, need not change shortestDistance.
 }
 }

 if (tempDistance < shortestDistance)
 {
 selectedNode = j;
 shortestDistance = tempDistance;
 }
 }
 }

 if (selectedNode != -1) //some satisfied point has been searched
 {
 if (newRoute.appendPoint(getPoint(selectedNode)))
 {
 startPoint = getPoint(selectedNode); // reset startpoint
 removePoint(selectedNode); // delete the selected point from unionM
 }
 else
 {
 System.out.println("Adding method of ArrayList failed!");
 return;
 }
 }
 else // no new point, this current route is finished

 137

 {
 // there are no points in the newroute
 if (newRoute.getSize() == 0)
 {
 if (getSize() != 0)
 {
 System.out.println("There are/is point(s) left unselected. Algorithm

Failed!");
 }
 break;
 }

 // if there are points in the newroute, save this route
 for (int j=0; j<newRoute.getSize(); j++)
 {
 if (! appendPoint(newRoute.getPoint(j)))
 {
 System.out.println("Adding method of ArrayList failed!");
 return;
 }
 }
 break;
 }
 }while (true);
 }

 /**
 * exchange Points, add insertpoint, delete a point
 * return : integer>0: as can exchage successful, return the ID of the point need to exchange

in the route
 * -1: cannot perform exchage as the insertpoint is too large for it's goods.
 */
 public int findExchangePoint(Point insertpoint)
 {
 int totalweight = 0;
 for (int i=0; i<getSize(); i++)
 totalweight += getPoint(i).getGoods();

 int selectedpoint = -1;
 Point deletePoint = new Point(0, 0, 0, 0);
 for (int i=0; i<getSize(); i++)
 {
 if ((totalweight - getPoint(i).getGoods() + insertpoint.getGoods()) <=

depot.getGoods())
 {
 if (selectedpoint == -1)
 {
 selectedpoint = i;
 deletePoint = getPoint(i);
 }
 if (getPoint(i).getGoods() < deletePoint.getGoods())
 {
 selectedpoint = i;
 deletePoint = getPoint(i);

 138

 }
 }
 }
 return selectedpoint;
 }

 public void cloneRoute(Route r)
 {
 optimizedTimes = r.optimizedTimes;
 removedPoints = r.removedPoints;
 addedPoints = r.addedPoints;
 selectedAsRoute1 = r.selectedAsRoute1;

 for (int i=getSize(); i>0; i--)
 removePoint(i-1);
 for (int i=0; i<r.getSize(); i++)
 appendPoint(r.getPoint(i));
 }

 public double getLength()
 {
 if (getSize() == 0)
 return 0.0d;

 double routeLength = 0.0d;
 for (int j=0; j<getSize(); j++)
 {
 if (j==0) // The first point connected with depot
 routeLength += depot.getDistance(getPoint(0));
 else
 routeLength += getDistance(j, j-1);
 }
 routeLength += depot.getDistance(getPoint(getSize()-1)); // finish the total length of the

route
 return routeLength;
 }

 public int getTotalGoods()
 {
 int totalweight = 0;
 for (int i=0; i<getSize(); i++)
 totalweight += getPoint(i).getGoods();
 return totalweight;
 }
}

Result

import java.util.ArrayList;

/**
 * @version (28_08_2005)

 139

 */
public class Result
{
 private Point depot;
 private Point zeroPoint;
 private Point movePoint;
 public ArrayList routes;

 public Result(Point resultDepot, ArrayList resultRoutes)
 {
 depot = resultDepot;
 routes = resultRoutes;
 zeroPoint = new Point(0, 0, 0, 0);
 movePoint = new Point(0, 0, 0, 0);
 }

 public boolean noChange()
 {
 for (int i=0; i<routes.size(); i++)
 {
 if (!((Route)routes.get(i)).noChange())
 return false;
 }
 return true;
 }

 public void resetStatus()
 {
 for (int i=0; i<routes.size(); i++)
 ((Route)routes.get(i)).resetStatus();
 movePoint = zeroPoint;
 }

 public void showResult_ID()
 {
 // Show Result again using ID instead of X,Y coordinates
 System.out.println();
 System.out.println();
 System.out.println("The Result shows in ID:");
 double totalLength = 0.0d;
 int totalPoints = 0;
 for (int i=0; i<routes.size(); i++)
 {
 float routeLength = 0.0f;
 System.out.print("Route " + i + ":");
 Route newRoute = (Route)routes.get(i);
 for (int j=0; j<newRoute.getSize(); j++)
 {
 System.out.print(" " + newRoute.getPoint(j).getID() + ",");
 totalPoints++;
 if (j==0) // The first point connected with depot
 routeLength += depot.getDistance(newRoute.getPoint(0));

 140

 else
 routeLength += newRoute.getDistance(j, j-1);
 }
 routeLength += depot.getDistance(newRoute.getPoint(newRoute.getSize()-1)); // finish
the total length of the route
 System.out.println(" Length:" + routeLength);
 totalLength += routeLength;
 }
 System.out.println();
 System.out.println("The Total Length of " + routes.size() + " line(s): " + totalLength);
 System.out.println("The Total Number of the Points: " + totalPoints);
 }

 public void removeNullRoutes()
 {
 for (int i=0; i<routes.size(); i++)
 {
 Route newRoute = (Route)routes.get(i);
 if (newRoute.getSize() == 0)
 routes.remove(i);
 }
 }

 public double totalLength ()
 {
 double tl = 0.0d;
 for (int i=0; i<routes.size(); i++)
 tl += ((Route)routes.get(i)).getLength();
 return tl;
 }

 public int totalPoints ()
 {
 int tp = 0;
 for (int i=0; i<routes.size(); i++)
 tp += ((Route)routes.get(i)).getSize();
 return tp;
 }

 public void optimize_Method_1(int stepLength, boolean anticlockwise, boolean display)
 {
 if (routes.size() <= 1)
 {
 return;
 }

 boolean result = true;
 int selectedRoute1, selectedRoute2;
 Route optimizeRoute1 = new Route(depot);
 Route optimizeRoute2 = new Route(depot);
 if (anticlockwise)
 {

 141

 for (selectedRoute1=0; selectedRoute1<routes.size(); selectedRoute1++)
 {
 optimizeRoute1 = (Route)routes.get(selectedRoute1);

 selectedRoute2 = selectedRoute1;
 selectedRoute2 += stepLength;
 if (selectedRoute2 >= routes.size())
 selectedRoute2 -= routes.size();
 optimizeRoute2 = (Route)routes.get(selectedRoute2);

 if (display) System.out.print("Try Optimizing: " + selectedRoute1 + " " +
selectedRoute2 + ". ");
 result = Optimize_Function_1(optimizeRoute1, optimizeRoute2, display);
 if (result)
 {
 if (display)
 System.out.println("Success. Point " + movePoint.getID() + " moved.");
 }
 else
 if (display) System.out.println("Failed.");
 }
 }
 else // clockwise
 {
 for (selectedRoute1=routes.size()-1; selectedRoute1>=0; selectedRoute1--)
 {
 optimizeRoute1 = (Route)routes.get(selectedRoute1);

 selectedRoute2 = selectedRoute1;
 selectedRoute2 -= stepLength;
 if (selectedRoute2 < 0)
 selectedRoute2 += routes.size();
 optimizeRoute2 = (Route)routes.get(selectedRoute2);

 if (display) System.out.print("Try Optimizing: " + selectedRoute1 + " " +
selectedRoute2 + ". ");
 result = Optimize_Function_1(optimizeRoute1, optimizeRoute2, display);
 if (result)
 {
 if (display)
 System.out.println("Success. Point " + movePoint.getID() + " moved.");
 }
 else
 if (display) System.out.println("Failed.");
 }
 }
 }

 public void sortRoutesByTan()
 {
 PointsUnion leftOrder = new PointsUnion();
 PointsUnion rightOrder = new PointsUnion();

 142

 for (int i=0; i<routes.size(); i++)
 {
 Route thisRoute = (Route)routes.get(i);
 int selectedpoint = thisRoute.getSize()-1; // Last point
 if ((thisRoute.getPoint(0).getX()-depot.getX()) *
(thisRoute.getPoint(selectedpoint).getX()-depot.getX()) >= 0)
 {
 if (thisRoute.getPoint(0).getTan() > thisRoute.getPoint(selectedpoint).getTan())
 selectedpoint = 0;
 }
 else
 {
 if (thisRoute.getPoint(0).getTan() < thisRoute.getPoint(selectedpoint).getTan())
 selectedpoint = 0;
 }

 Point newPoint = new Point(0, 0, 0, 0);
 newPoint.clonePoint(thisRoute.getPoint(selectedpoint));

 if (newPoint.getX() > depot.getX()) // right side
 rightOrder.appendPoint(newPoint);
 else // left side
 leftOrder.appendPoint(newPoint);
 }

 leftOrder.sortPointsByTan();
 rightOrder.sortPointsByTan();

 // rightOrder + leftOrder = orderPoints;
 PointsUnion orderPoints = new PointsUnion();
 for (int i=0; i<rightOrder.getSize(); i++)
 orderPoints.appendPoint(rightOrder.getPoint(i));
 for (int i=0; i<leftOrder.getSize(); i++)
 orderPoints.appendPoint(leftOrder.getPoint(i));

 // create a copy for routes
 ArrayList temp = new ArrayList();
 for (int i=0; i<routes.size(); i++)
 temp.add(routes.get(i));

 // clear routes to wait for routes inserting in order
 routes.clear();

 // move each route into routes in the order
 if (orderPoints.getSize() != temp.size())
 {
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 return;
 }
 for (int i=0; i<orderPoints.getSize(); i++)
 {
 Point orderPoint = orderPoints.getPoint(i);

 143

 int j;
 for (j=0; j<temp.size(); j++)
 {
 // check whether orderPoint in route temp[j]
 if (((Route)temp.get(j)).findPoint(orderPoint) != -1)
 {
 routes.add((Route)temp.get(j));
 break;
 }
 }

 if (j == temp.size())
 {
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 return;
 }
 }

 // check routes at last
 if (orderPoints.getSize() != routes.size())
 {
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 System.out.println("ERROR happens in sortRoutesByTan !!!");
 return;
 }
 }

 public void makeRelationShip(Result target, ArrayList overLoadRelationRoutes)
 {
 for (int i=0; i<routes.size(); i++)
 {
 Route r1 = (Route)routes.get(i);
 for (int j=0; j< target.routes.size(); j++)
 {
 Route r2 = (Route)target.routes.get(j);
 for (int id1=0; id1<r1.getSize(); id1++)
 {
 for (int id2=0; id2<r2.getSize(); id2++)
 {
 if (r1.getPoint(id1).getID() == r2.getPoint(id2).getID())
 {
 double routeTime = ((r1.getLength() + r2.getLength())) / 60000.0d;

 if ((routeTime + (40 + (2*r1.getTotalGoods() + 2*r2.getTotalGoods()))
/ 60.0d) < 16.0d)
 {
 if (!r1.relatedRoutes.contains(j))
 r1.relatedRoutes.add(j);
 if (!r2.relatedRoutes.contains(i))
 r2.relatedRoutes.add(i);

 144

 }
 else
 {
 overLoadRelationRoutes.add(i);
 overLoadRelationRoutes.add(j);
 }
 }
 }
 }
 }
 }
 }

 private int selectMinimumGoods()
 {
 // Select the minimum demand route which has not been optimized
 double minimumGoods = 0.0d;
 int selectedRoute = -1;
 for (int i=0; i<routes.size(); i++)
 {
 Route newRoute = (Route)routes.get(i);
 // Check whether has been optimized
 if ((newRoute.addedPoints > 0) || (!newRoute.selectedAsRoute1))
 {
 continue;
 }
 else
 {
 // Is it the first one which has not been optimized
 if (selectedRoute == -1)
 {
 selectedRoute = i;
 minimumGoods = newRoute.calculateAllGoods();
 }
 else // Compare and select minimum
 {
 double temp = newRoute.calculateAllGoods();
 if (temp < minimumGoods)
 {
 minimumGoods = temp;
 selectedRoute = i;
 }
 }
 }
 }

 return selectedRoute;
 }

 private boolean Optimize_Function_1(Route route1, Route route2, boolean display)
 {
 int selectedPoint = -1;

 145

 double largestDecrease = 0.0d;
 // Select all of the point from route1
 for (int i=0; i<route1.getSize(); i++)
 {
 if (! route2.overLoad(route1.getPoint(i)))
 {
 double decrease = decreaseByMoveOnePointBetween2Routes(route1, route2, i,
display);
 if (decrease > 0.0d)
 {
 if (selectedPoint == -1)
 {
 selectedPoint = i;
 largestDecrease = decrease;
 }
 else
 {
 if (decrease == largestDecrease)
 {
 if (route1.getPoint(i).getGoods() >
route1.getPoint(selectedPoint).getGoods())
 selectedPoint = i;
 }
 else if (decrease > largestDecrease)
 {
 selectedPoint = i;
 largestDecrease = decrease;
 }
 }
 }
 }
 }

 if (selectedPoint == -1)
 {
 movePoint = zeroPoint;
 return false;
 }
 else
 {
 movePoint = route1.getPoint(selectedPoint);

 route1.removePoint(selectedPoint);
 route1.removedPoints++;
 route1.resortByDistance();

 route2.appendPoint(movePoint);
 route2.addedPoints++;
 route2.resortByDistance();

 return true;
 }
 }

 146

 private int findRouteBetweenTwoPoints(Point p1, Point p2)
 {
 double smalltan = p1.getTan();
 double largetan = p2.getTan();
 if (smalltan>largetan) // exchage them
 {
 double temp = smalltan;
 smalltan = largetan;
 largetan = temp;
 }

 for (int i=0; i<routes.size(); i++)
 {
 Route checkRoute = (Route)routes.get(i);
 boolean allRouteIn = true;
 for (int j=0; j<checkRoute.getSize(); j++)
 {
 double checkTan = checkRoute.getPoint(j).getTan();
 if ((checkTan < smalltan) || (checkTan > largetan))
 {
 allRouteIn = false;
 break;
 }
 }
 if (allRouteIn)
 return i;
 }

 return -1;
 }

 private double decreaseByMoveOnePointBetween2Routes(Route route1, Route route2, int pointID ,
boolean display)
 {
 if (route2.overLoad(route1.getPoint(pointID)))
 return -9.99999999999E9;

 Route testRoute = new Route(depot);
 testRoute.cloneRoute(route1);
 testRoute.removePoint(pointID);
 testRoute.resortByDistance();
 double decreasedLength = route1.getLength() - testRoute.getLength();
 //if (decreasedLength < 0.0d)
 //System.out.println("ERROR ERROR ERROR");

 testRoute.cloneRoute(route2);
 testRoute.appendPoint(route1.getPoint(pointID));
 testRoute.resortByDistance();
 double increasedLength = testRoute.getLength() - route2.getLength();
 //if (increasedLength < 0.0d)
 //System.out.println("ERROR ERROR ERROR");

 return (decreasedLength - increasedLength);
 }

 147

 private void addOnePointInRoutes(Point p , boolean display)
 {
 double smallestDis = depot.getDistance(p) * 2 ;
 int selectedRoute = -1;

 for (int i=0; i<routes.size(); i++)
 {
 if (((Route)routes.get(i)).overLoad(p))
 continue;
 else
 {
 Route testRoute = new Route(depot);
 testRoute.cloneRoute((Route)routes.get(i));
 testRoute.appendPoint(p);
 testRoute.resortByDistance();
 double increasedLength = testRoute.getLength() - ((Route)routes.get(i)).getLength();
 if (increasedLength < 0.0d)
 {
 //System.out.println("ERROR ERROR ERROR");
 }
 if (increasedLength<smallestDis)
 {
 selectedRoute = i;
 smallestDis = increasedLength;
 }
 }
 }

 if (selectedRoute == -1)
 {
 Route newRoute = new Route(depot);
 newRoute.appendPoint(p);
 routes.add(newRoute);
 if (display) System.out.println("Add point " + p.getID() + " in a sing-point new Route " +
(routes.size()-1));
 }
 else
 {
 ((Route)routes.get(selectedRoute)).appendPoint(p);
 ((Route)routes.get(selectedRoute)).resortByDistance();
 if (display) System.out.println("Add point " + p.getID() + " in Route " + selectedRoute);
 }
 }
}

 148

	The Model

