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Introduction

This note is intended as a brief introduction to singular value decomposition (SVD) and
principal component analysis (PCA). These are very useful techniques in data analysis and
visualization. Further information can found for example in Numerical Recipes, section
2.6,available free online:

http://www.nr.com/

http://www.library.cornell.edu/nr/bookcpdf.html

and in C. Bishop, Neural Networks for Pattern Recognition, Chapter 8.
The note is organized as follows: first we establish the linear algebra of SVD, then we

discuss simple properties of the data matrix and principal component analysis and finally
we discuss how to use SVD for PCA and some practical issues in connection with using
SVD for PCA in matlab.

Definitions

• The Singular Values of the square matrix A is defined as the square root of the
eigenvalues of ATA.

• The Condition Number is the ratio of the largest to the smallest singular value.

• A matrix is Ill Conditioned Matrix if the condition number is too large. How
large the condition number can be, before the matrix is ill conditioned, is determined
by the machine precision.

• A matrix is Singular if the condition number is infinite. The determinant of a
singular matrix is 0.

• The Rank of a matrix, is the dimension of the range of the matrix. This corresponds
to the number of non-singular values for the matrix, i.e. the number of linear
independent rows of the matrix.
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Spectral decomposition of a square matrix

Any real symmetric m×m matrix A has a spectral decomposition of the form,

A = UΛUT (1)

where U is an orthonormal matrix (matrix of orthogonal unit vectors: UTU = I or∑
k UkiUkj = δij) and Λ is a diagonal matrix. The columns of U are the eigenvectors of

matrix A and the diagonal elements of Λ are the eigenvalues. If A is positive-definite,
the eigenvalues will all be positive. Multiplying with U , equation 1 can be re-written to,

AU = UΛUTU = UΛ (2)

This can be written as a normal eigenvalue equation by defining the ith column of U as
ui and the eigenvalues as λi = Λii:

Aui = λiui . (3)

Singular Value Decomposition

A real (n×m) matrix, where n ≥ m B has the decomposition,

B = UΓVT , (4)

where U is a n ×m matrix with orthonormal columns (UTU = I), while V is a m ×m
orthonormal matrix (VTV = I), and Γ is a m×m diagonal matrix with positive or zero
elements, called the singular values.

From B we can construct two positive-definite symmetric matrices, BBT and BTB,
each of which we can decompose

BBT = UΓVTVΓUT = UΓ2UT (5)

BTB = VΓ2VT (6)

Keep in mind that n ≥ m. We can now show that BBT which is n× n and BTB which
is m ×m will share m eigenvalues and the remaining n −m eigenvalues of BBT will be
zero.

Using the decomposition above, we can identify the eigenvectors and eigenvalues for
BTB as the columns of V and the squared diagonal elements of Γ, respectively. (The
latter shows that the eigenvalues of BTB must be non-negative). Denoting one such
eigenvector by v and the diagonal element by γ, we have

BTBv = γ2v (7)

then we can multiply on both sides with B to get,

BBTBv = γ2Bv (8)

But this means that we have an eigenvector u = Bv and eigenvalue γ2 for BBT as well,
since

(BBT )Bv = γ2Bv (9)
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We have now shown that BBT and BTB share m eigenvalues.
We still need to prove that the remaining n −m eigenvalues of BBT is zero. To do

that let us consider an eigenvector for BBT , u⊥: BBTu⊥ = β⊥u⊥ which is orthogonal
to the m eigenvectors ui already determined, i.e. UTu⊥ = 0. Using the decomposition
BBT = UΓ2UT , we immediately see that the eigenvalues β⊥ must all be zero,

BBTu⊥ = UΓ2UTu⊥ = 0u⊥ .

The Rank R of BBT is determined by the smallest dimension of B, (R ≤ m). This
ensures that BBT has at most m eigenvalues larger than zero. Note that the relation
for BBT corresponds to the usual spectral decomposition since the “missing” (n − m)
eigenvalues are zero. It is then evident that the two square matrices can be interchanged.
This is a property we can advantage of when dealing with data matrices where we have
many more features than examples.

Properties of a data matrix – first and second moments

Let x (with components xj j = 1, ..., n) be a stochastic vector with probability distribu-
tion P (x). Let {xα|α = 1, ..., m} be a sample from P (x). We will choose a convention for
the data matrix X, where the rows denote the features j = 1, ..., n and the columns the
samples α = 1, ..., m: in other words the components are Xj,α = xα

j .
Principal component analysis is based on the two first empirical moments of the sample

data matrix. The mean vector,

〈x〉 ≡ 1

m

m∑

α=1

xα (10)

and the empirical covariance matrix,

C ≡ 1

m

m∑

α=1

(xα − 〈x〉) (xα − 〈x〉)T (11)

Using the matrix formulation we can write

C ≡ 1

m
XXT , (12)

where we have removed the mean of the data: Xj,α := Xj,α − 〈xj〉.

Principal component analysis (PCA)

In principal component analysis we find the directions in the data with the most variation,
i.e. the eigenvectors corresponding to the largest eigenvalues of the covariance matrix,
and project the data onto these directions. The motivation for doing this is that the
most second order information are in these directions.1 The choice of the number of
directions are often guided by trial and error, but principled methods also exist. If we
denote the matrix of eigenvectors sorted according to eigenvalue by Ũ, we can then PCA

1This also mean we might discard important non-second order information by PCA.
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transformation of the data as Y = ŨTX. The eigenvectors are called the principal
components. By selecting only the first d rows of Y, we have projected the data from n
down to d dimensions.

PCA by SVD

We can use SVD to perform PCA. We decompose X using SVD, i.e.

X = UΓVT

and find that we can write the covariance matrix as

C =
1

n
XXT =

1

n
UΓ2UT .

In this case U is a n × m matrix. Following from the fact that SVD routine order the
singular values in descending order we know that, if n < m, the first n columns in U
corresponds to the sorted eigenvalues of C and if m ≥ n, the first m corresponds to the
sorted non-zero eigenvalues of C. The transformed data can thus be written as

Y = ŨTX = ŨTUΓVT ,

where ŨTU is a simple n×m matrix which is one on the diagonal and zero everywhere
else. To conclude, we can write the transformed data in terms of the SVD decomposition
of X.

PCA by SVD in Matlab

It is common in image processing, sound processing, text processing etc. that we have
many more features than samples, n ¿ m. The covariance matrix itself is therefore very
unpleasant to work with because it is very large and as we have proved above singular.
However, using the relations eqs. (7) and (9), we find that is suffices to decompose the
smaller m×m matrix

D ≡ 1

m
XTX (13)

Given a decomposition of D we can find the interesting non-zero principal directions
and components for C, U = XVS−1. You can instruct matlab to always use the smallest
matrix by using the command ‘[u s v] = svd(X,0)’, see also ‘help svd’ in matlab. However,
in that case we have to be careful about which matrices to use for the transformation.

More samples than variables

In some cases, the number of variables is smaller than the number of examples (n < m).
In these cases, decomposition and dimension reduction might still be desirable for the
n ×m matrix X. Dimension change on X however also results in dimension change on
U,Γ and V, who respectively get the sizes (n×n), (n×m) and (m×m). The dimension
changes the svd routine in matlab slow and adds unnecessary rows to the V matrix.
The problem can be avoided using “[V, S, U ] = svd(X ′, 0); U = U ′; V = V ′;”, in the cases
where (n < m).
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Number of Principal Directions

The no of principal components to use d, is not always easy to determine. The energy
fraction could be used to argue for the usage of a given number of principal components.
The number of components could also be determined from the characteristics of the
singular values. When the singular values stabilize, the remaining components is usually
contaminated with much noise and therefore not useful. In the figure below, an example
of singular values is shown. From component number 13 and up, the singular values are
almost constant, indicating that d should be 12.
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Similar Methods for Dimensionality Reduction

There exists multiple methods that can be used for dimensionality reduction. Some of
them are given in the list below.

• Singular Value Decomposition (SVD)

• Independent Component Analysis (ICA)

• Non-negative Matrix Factorization (NMF)

• Eigen Decomposition

• Random Projection

• Factor Analysis (FA)
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