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Abstract

Generic “bag-of-words” text categorization methods are only based on
the information contained in word count histograms. These methods
does therefore not capture the information contained in the order in which
the words appear in a document. We here consider models that is acting
on both parts of information at the same time, that is the information
about what words appear and in what order they appear. State-space
models has the ability to capture information from the order in which
the words appear, and combine it with the word appearance probabili-
ties. The state-space models should therefore conceptually super-seed
the bag-of-words/vector-space models, in ability to model documents
correctly. In the following we experiment with two state space model
approaches, for making categorization better.

1 Introduction

The document vector space model (Salton et al., 1975), the bag-of-words model and its
varieties are effective document simplifications, that make machine learning approaches to
text modeling and classification simple. The two document representations has resulted in
the development of many different algorithms (Deerwester et al., 1990; Hofmann, 1999;
Sebastiani, 2002; Blei et al., 2003) who are effective for text classification. The models
that use these representations however loose a big fraction of the information contained in
the documents, by considering only the counts of how many times words appear in a given
document. The other part of information contained in documents is the information about
the order in which the words appears. Though the major part of document information is
contained in the knowledge about which word occur, some important information might
be captured from the word appearance order, that could make document classification ac-
curacy better. One way to interpret the word order information is as being the authors
style of writing, i.e. a fingerprint that tells how the author constructs his sentences. Some
authors might construct grammatically different sentences from others. This grammatical
difference might not be captured when only word histograms are considered.

It is easy to extract the word appearance information from a document and form it into some
meaningful representation that can be used for machine learning, i.e. vectors or histograms.
The word order information is however harder to extract to some simple low dimensional
representation, which is easily portable to a machine learning algorithms. We therefore
consider state space models, which can model sequences of data, instead of the counts.



State space models have previously been used for language modeling, e.g. in context of
predicting the next word in handwritten text recognition systems (Zimmermann & Bunke,
2004), and has been successful so. It is therefore further likely that the state-space model
can capture valuable information that can be used for text classification.

We here consider two different state-space based approaches, both based on an underlying
Markov state space model. Both approaches suggest a method to overcome the dimension-
ality problem of text, which otherwise makes the state-space models extremely slow. The
first approach suggested here generates a new lower dimensional vocabulary, which is later
used in a hidden Markov model. Using the second approach, the state part of a hidden
Markov model is used in conjunction with LSI emission probabilities.

2 Discrete Markov Process

The discrete Markov process (Rabiner & Juang, 1986) is a state space model that can
model and generate sequences of discrete symbols. The discrete Markov process considers
a system withK statessk, where for each time-stept the process changes state, where
the new state can be the same as the previous state. The actual state at timet is denoted
qt, which can be interpreted as the discrete symbol generated at timet. The probability
of changing state to a new stateqt+1 = sj from the stateqt = si is determined by the
transition probabilitiesasi,sj

= P (qt+1 = sj |qt = si), where
∑K

j=1 asi,sj
= 1 and

asi,sj
≥ 0. The transition probabilities are therefore only dependent on the current state of

the process and not the timet or previous statesqt−t′ . A tutorial on Markov processes can
be found in (Rabiner, 1989).

The discrete Markov process assembles an urn scheme where there is one urn for each state
in the Markov process. When the time-step changes, a new urn is selected according to the
transition probabilities, and a ball from that urn is drawn, and the color noted, whereafter
the ball is returned into the urn. Each urn contains only balls with the same color.

The urn model analogy to text modeling is straight forward. Instead of balls, each urn
is filled with words, again only one kind of words for each urn. When a document is
generated, we start out with one particular urn and draw a word from it, and continue to
another urn and draw a new word here. The transition probabilities determines what words
are likely to appear after the present one. The Markov process will therefore be able to
model parts of the semantics of the language model, by the transition probabilities. These
semantics are not modeled at all when only word appearances alone are considered, i.e.
using the vector space model representation.

Different kinds of documents might contain the same kinds of words, where the order of the
appearances of the words, can change the meaning of the content. The word “train” could
for example be used in documents about transportation or in documents about exercising
in the gym. The words appearing around the word train, will therefore change the meaning
of that particular word. The difference in meaning could therefore be captured by the
Markov model. Another example of when the order of the words appearances can change
the meaning of a sentence, is when the word “not” is used. Yet another example where
transition probabilities could be useful is in spam email detection systems.

The drawback of the Markov model is that it models a huge probability space, since it
considers all the possible word-pairs in the vocabulary. Since most document collection
vocabularies considers about100, 000 words, the model must consider10, 000, 000, 000
possible transition probabilities. The transition probabilities would therefore consume to
much memory for holding this data representation. By use of a grammar, many of the
transition probabilities could be pruned away, while many word pairs can’t be used in
grammatically correct sentences. Though the pruning approach would reduce the amount



of modeled probabilities tremendously, the amount of memory used to represent the model
would still be very large. On top of the memory consumption, the model would also need
a lot of data to be able to estimate all the transition probabilities. For existing document
collections, the amount of data is far too limited to estimate the probabilities, making a huge
need for smoothing, which usually result in bad modeling performance. Human brains
can probably work with some variety of this modeling approach, while we can generalize
many probabilities in the model by use of grammar and can therefore easily prune away
the unlikely Markov model transition probabilities.

3 Hidden Markov Model

The hidden Markov model (HMM) (Rabiner & Juang, 1986; Rabiner, 1989) extends the
discrete Markov process by adding an additional emission parameter to each state. The
emission parameters controls the output that is generated from each state, i.e. a discrete
symbol. For the HMM, each state therefore has the potential to generate all the symbols in
the vocabulary of symbols. For each time-stept the HMM still changes state according to
the transition probabilitiesasi,sj , but the the symbol is now generated using the emission
probabilitiesbsj ,vm = P (xt = vm|qt = sj), wherext is the symbol generated at timet
andvm is symbol numberm from the vocabulary ofM symbols.

The HMM assembles an urn scheme that is similar to the Markov process urn scheme. A
new urn is still selected at each time-step according to the transition probabilities, and a
ball from the new urn is drawn. The color of the ball is noted whereafter the ball is returned
into the urn. Using the HMM each urn now contains a distribution of balls that each has
one ofM different colors.

Since the number of symbols that can be generatedM is independent of the number of
statesK, the memory consumption of the model can be reduced remarkably when the
vocabulary is huge. If we consider a vocabulary of about100, 000 words and use a state-
space of100 states, the amount of probabilities used to describe the model is approxi-
mately10, 000, 000, which is only1/1000 of the amount of memory needed to describe
the Markov process for the same vocabulary.

The HMM parameters can be estimated using the expectation maximization (EM) algo-
rithm (Dempster et al., 1977), resulting in an iterative update procedure that estimates the
model parameters using the so called forward-backward approach (Rabiner, 1989),

πsi
= γ1,si

(1)

asi,sj =
∑T−1

t=1 ξt,si,sj∑T−1
t=1 γt,si

(2)

bsj ,vm
=

∑T
t=1(Ot = vm)ξt,si,sj∑T

t=1 γt,sj

(3)

whereπsi
is the probability of starting in statesi andγt,si

=
∑K

j=1 ξt,si,sj
andξt,i,j is the

probability of being in statesi at timet and in statesj at timet + 1 and(Ot = vm) is 1
if the observation at timet is symbolvm, and zero otherwise. The full description of the
learning rules can be found in (Rabiner, 1989).



4 HMM with LSI GMM Vocabulary

The HMM approach reduces the memory needs, comparing it with a Markov process with
a similar vocabulary size, making it possible to represent the model in a standard computer
of today. The HMM model is however still fairly large and the EM updates that estimates
the parameters are very demanding, computationally. In the approach described here, the
vocabulary is therefore projected to a lower dimensional representation using latent seman-
tic indexing (LSI) (Deerwester et al., 1990) with a SVD basis (Madsen et al., 2003) and
gaussian mixture models (GMM). In Figure 1, the the lower dimensional representation of
the vocabulary is shown.

The procedure of transforming the vocabulary to a lower dimensional representation, takes
place in the following way:

1. Documents are cut into substrings of length L, with 50% overlap.

2. A common LSI representation for the substrings in all the documents is estimated
using SVD.

3. The substrings are clustered using GMM on the first H dimensions of the LSI
representation.

4. The clusters are now forming a new and much smaller vocabulary for the sub-
strings, where each substring is transformed to an the index associated with the
closest cluster.

5. A HMM is trained for each class of documents using the new vocabulary.

6. New documents are classified using the HMM forward backward classification
algorithm.

The classification algorithm is using the forward-backward approach which is also used to
estimate the parameters.

Figure 1: Space for the new vocabulary.

5 HMM with LSI emission probabilities

In the section about the hidden Markov model, we reject the model for use on text directly,
while the high number of parameters for the model would make it converge slowly, due to
size of the vocabulary. It is further undesirable to use the HMM directly on each single class
while the classes wont be able to share the emission probabilities. It is desirable to share



the emission probabilities for all the classes while they can be thought of as latent topics,
where there is a latent topic for each single state in the HMM. This idea is conceptually
similar to the ideas from latent semantic indexing and it’s varieties (Furnas et al., 1988;
Deerwester et al., 1990; Hofmann, 1999; Kolenda et al., 2002; Blei et al., 2002; Blei et al.,
2003).

The problems of shared latent topic emissions could be overcome by redefining the HMM
to be a model with more state space transition models, but only one single state emission
model. This model would be likely to inherit the slow convergence property of the normal
HMM. We therefore reject the model here, knowing that it probably would be the best
modeling approach to the problem.

The alternative to a redefined HMM, is to estimate the emission probabilitiesbsj ,vm using
another algorithm and keeping them fixed when first estimated. Using this approach it
would only be necessary to estimate the state transition parametersasi,sj and initial state
probabilitiesπsi for each separate class. This estimation procedure would further not need
to run in an iterative EM-loop where the one set of parameters are estimated based on an
estimate of the other set of parameters. The transition parameters would therefore only
need one or very few iterations to converge.

There are more alternative ways to determine a set of shared latent topic emission para-
meters. Three possible approaches areindependent component analysis(ICA) (Bell &
Sejnowski, 1995b; Bell & Sejnowski, 1995a; Molgedey & Schuster, 1994),singular value
decomposition(SVD) (Madsen et al., 2003) andnon-negative matrix factorization(NMF)
(Lee & Seung, 1999; Lee & Seung, 2001). The latter approach has the advantage of esti-
mating non-negative values when factorizing the data, which is valuable since these values
reflect emission probabilities, i.e. they have to be positive and sum to zero. NMF has also
shown valuable for text clustering previously (Xu et al., 2003). In practise however the
NMF does not work well with the sparse structure of the text data, resulting in very few
active words in each NMF latent topic. When only few words are active it is necessary to
either use a lot of smoothing or use many latent topics. Neither of these fixes are likely to
give us a good model or classifier, so we turn to SVD approach instead. The latent top-
ics estimated by the SVD all have many active words. The problem of probabilities being
negative is solved by simply setting negative values equal to zero, and then normalize the
distribution.

The procedure of using the HMM state space model with LSI estimated emission probabil-
ities, takes place in the following way:

1. A common set of HMM emission parameters are estimated using the LSI approach
on the documents using the histogram representation.

2. A set of HMM state space parameters are estimated for each class using the word
sequences for each document.

3. New documents (sequences of words) are classified using the HMM forward back-
ward classification algorithm.

6 Experiments

We are here working with the three corpora: email, WebKB and multimedia. The number of
words in the three corpora are reduced by use of stemming and stop-word removal. Though
we here only show results for the email-data, similar results where gained by use of the two
other data-sets. The TF-IDF transformation has been applied to the document collections,
when performing experiments using the HMM with LSI-GMM generated vocabulary. In
the experiments where using the HMM with LSI emission probabilities, the TF-IDF trans-
formation has not been applied. The reason is that the HMM works on sequences where



each unit in the sequence must be unity. A weighting scheme could be applied to the HMM,
where the TF-IDF coefficients could be applied as weights. At first we are interested in in-
vestigating if the model works conceptually, and have therefore skipped the transformation
step.

We start by training the HMM with LSI-GMM generated vocabulary (HLG) using the
email-data. The largest class in the email data-set (spam) accounts for0.55% of the emails.
A naive classifier should therefore have a classification accuracy of about0.55. The two
models considered should therefore have generalization error below0.45%.

We find that the HLG approach works best when a LSI subspace of 4 dimensions is used
to form the new HLG generated vocabulary. A set of100 gaussian’s is used to cover the
4-dimensional space forming an new vocabulary of100 words. The first three dimensions
of the subspace are shown in Figure 1, where the structure of the data are much different
from the structure found by the generic LSI representation Figure??. Each cluster that is
put in the space in Figure 1 now represents a word in the new vocabulary.

Estimating the HMM for the new sequences, the transition probabilities for the three classes
in the email-set, show us whether there is a sequential difference between the three classes
that is captured by the model. In Figure 2, a graphical illustration of the transition proba-
bilities is shown. Seven states is used in the HMM to best model the new sequences.

(a) Job (b) Conference (c) Spam

Figure 2: Graphical illustration of the transition probabilities for the HLG model. For the
Job category (a), state 1 and 4 are paired and almost isolated from the other states making
them a semantic chain for the category. Similarly state 5, 6 and 7 forms a state group that
are likely to generate long sequences of words. The Conference category (b) has a similar
group formation where the states 3 and 4 forms a group, and state 1,7 and 8 forms a group.
The spam category (c) does not have the same strong group formation as the two other
categories, but is instead less symmetric. There is however weak group formation between
the states 1, 2 and four, and the states 3 and 5. The illustration of the transition probabilities
reveal that there is a sequential pattern that is captured by the model.

The illustration in Figure 2 shows clearly that there is information in the order in which the
words appear in a document, and that this information can be captured by the HMM.

There are more settings that determines the optimal HLG model, i.e. number of LSI dimen-
sions, number of states in the HMM, the number of gaussian mixtures and the length of the
substrings used to form the vocabulary. In Figure 3 the classification accuracy for the HLG
model as function of the substring length is plotted, where the settings for the remaining
parameters are close to optimal.

The HLG model has an accuracy that is lower than the accuracy of the LSI model, for all
possible substring-length values.



Figure 3: Classification accuracy using the HMM with LSI-GMM reduced vocabulary,
as function of the substring length. The classification results are compared with a neural
network classifier using a LSI subspace on TFIDF normalized data. The data used are
email data where 20% of the data are used for training.

We next turn to the HMM model with LSI estimated emission probabilities. We again take
a look at the transition probabilities for the three classes in the email-set, for discovering
whether there is a sequential difference between the three classes that is captured by the
model. In Figure 4 an illustration of the transition probabilities is shown. The Illustration
shows transition probabilities for a model with 20 states, where the best model instead uses
about 120 states. The smaller model is shown while it is easier to survey.

(a) Job (b) Conference (c) Spam

Figure 4: Graphical illustration of the transition probabilities for the LSI-HMM model.
The group formations for the LSI-HMM state space is harder to discover than those for the
HLG model. There is however small groupings like state 1 and 3 for the Job category (a).

The formation of state groups is not as obvious as it was for the HLG model. It is therefore
less obvious whether or not, the LSI-HMM model has captured much sequential informa-
tion about the documents.

In Figure 5 we show the learning curves for the LSI-HMM compared with the generic LSI
model. The LSI model performs slightly better than the LSI-HMM model when used for
classification. The performance of the two models follow along for the whole range of
training set sizes.



Figure 5: Learning curves for the LSI HMM model. The LSI-HMM model is slightly
worse at classifying documents correctly than the generic LSI model.

7 Discussion

The first approach to capture information from the word sequences in documents, the HLG
model did not perform well at the classification task. The state transition probabilities
however showed that word order information was captured in the model. The reason for
the lack of classification performance is therefore not to be found in the use of the state
space model, but rather in the transformation of the vocabulary to a lower dimensional
LSI-GMM vocabulary.

Previous experiments has shown that the 50 or more LSI components are needed to cre-
ate an efficient classifier. It is therefore likely that valuable information is lost when we
only use 4 LSI principal component directions here. The reason for only using few LSI
components is that the use of many components makes it hard for the GMM to model the
semantic space correctly. As illustrated in Figure 6, the density in the LSI subspace is very
high in some areas, and the clusters are not very gaussian in shape. A very high amount of
gaussian mixtures is therefore needed if they should cover a higher dimensional subspace.
In practise the gaussian mixtures are poor at modeling the new LSI subspace, while they
tend to cluster around high density areas when too many LSI dimensions are used. This
gives a bad fit to many of the outer data-points, resulting in poor classification performance.

The HMM model with LSI estimated emission probabilities was much better at classifying
documents correctly than the HLG model. The state transition probabilities did however
not seem to capture any valuable information about the differences in word sequences for
the three classes. It is likely that a true EM estimate of emission probabilities would have
resulted in different transition probabilities that would capture more of the word order
information, leading to better classification. A true EM estimate of shared latent topic
emissions will however require that the a new HMM must be redefined and update rules
determined.

8 Conclusion

We have used two state space model approaches to capture the information, that is con-
tained in the order in which words appear in documents. The first approach involved
a transformation of the document vocabulary, into a smaller LSI vocabulary, whereon a
HMM could be trained. This approach lacked in classification ability but was conceptual



(a) full space (b) zoom

Figure 6: Zooming in on the LSI space of the document substrings. Some of the spaces are
very dense on data, making the areas very attractive for the gaussian mixtures. When using
high dimensional representations of the LSI substring space, the outer data points therefore
tend to be badly modeled. Since much variation exists for the data in non dense areas, lack
of modeling in these areas are likely to result in loss of information.

successful at capturing word order information. The second approach involved making an
estimate of latent topic emission probabilities for at HMM using LSI. This approach had
less success at capturing word order information, but was better at the classification task.
We have hope that the HMM approach will have greater success by the development of a
HMM with shared latent topic emission probabilities.
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