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ABSTRACT signals are sparsely distributed - either in the time dofmiaithe
frequency domain or in the time-frequency (T-F) domain [2],
[4], [5]. If the source signals do not overlap in the timeefuency
domain, high-quality reconstruction could be obtained [4]
However, there is overlap between the source signals. ¢n thi
case, good separation can still be obtained by applying arypin
time-frequency mask to the mixture [3], [4]. lkomputational
auditory scene analysis, the technique of T-F masking has been
commonly used for years (see e.g. [6]). Here, source separa-
tion is based on organizational cues from auditory scenkysina
h[7]. More recently the technique has also become populalind b
source separation, where separation is based on non-opeda
sources in the T-F domain [8]. T-F masking is applicable tree
separation/ segregation using one microphone [6], [9] aertttan
one microphone [3], [4]. T-F masking can be applied as a ginar
mask. For a binary mask, each T-F unit is either weighted lgy on
1. INTRODUCTION or by zero. In order to reduce musical noise, more smooth snask
. . may also be applied [10]. An advantage of using a binary mssk i
_B"nd source separation _(BSS) addresses the problen% oveeco that only a binary decision has to be made [11]. Such a dexcisio
ing V unknown source signaln) = [s1(n), ... ’fN(n)] from can be based on, e.g., clustering [3], [4], [8], or directidrarrival
M recorded mixtures(n) = [1(n), ..., zu(n)]" of the source 1151 " 1A has been used in different combinations with thesiy
signals. The term blind refers to that only the recorded uneg mask. In [12], separation is performed by removing signals b
are known. An important application for BSS is separation of masking N — M signals and afterwards applying ICA in order
speech s!gnals. The recordec_zl mixtu_res are assumed to be line to separate the remaining signals. ICA has also been used the
superpositions of the source signals, i.e. other way around. In [13], it has been applied to separate two
x(n) = As(n) + v(n), 1) signals by using .two microphones. Bgsed on the ICA outputs, T
F masks are estimated and a mask is applied to each of the ICA
whereA is anM x N mixing matrix andn denotes the discrete  outputs in order to improve the signal to noise ratio.

A limitation in many source separation tasks is that the nemb
of source signals has to be known in advance. Further, inrorde
to achieve good performance, the number of sources cannot ex
ceed the number of sensors. In many real-world applicatioese
limitations are too strict. We propose a novel method forreve
complete blind source separation. Two powerful sourcers¢ipa
technigues have been combinéujependent component analysis

and binary time-frequency masking. Hereby, it is possible to it-
eratively extract each speech signal from the mixture. Bgpgus
merely two microphones we can separate up to six mixed speec
signals under anechoic conditions. The number of sourcakg

is not assumed to be known in advance. Itis also possible ilo-ma
tain the extracted signals as stereo signals.

time index. v(n) is additional noise. A method to retrieve the In this paper, a novel method for separating an arbitrary-num
original signals up to an arbitrary permutation and scalkrigde- ber of speech signals is proposed. Based on the output oaesqu
pendent component analysis (ICA) [1]. In ICA, the main aggum (2 x 2) ICA algorithm and binary T-F masks, this method itera-
tion is that the source signals are independent. By applyirg tively segregates signals from a mixture until an estiméteach

an estimatg/(n) of the source signals can be obtained by finding signal is obtained.
a (pseudo)invers@/ of the mixing matrix so that

y(n) = Wx(n). ) 2. GEOMETRICAL INTERPRETATION OF
INSTANTANEOUSICA
Many methods require that the number of source signals is
known in advance. Another drawback of most of these methods We assume that there is an unknown number of acousticalesourc
is that the number of source signals is assumed not to exbeed t signals but only two microphones. It is assumed that eactteou
number of microphones, i.é4 > N. Even if the mixing process  signal arrives from a certain direction and no reflectiorsuod.e.
A is known, it is not invertible, and in general, the indeperide an anechoic environment. In order to keep the problem simple
components cannot be recovered exactly [1]. In the case o mo the source signals are mixed by an instantaneous mixingxmatr
sources than sensors, thercomplete/underdetermined case, suc- as in eq. (1). Due to delays between the microphones, imstant
cessful separation often relies on the assumption thatdhes neous ICA with a real-valued mixing matrix usually is not bqgp-
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Fig. 1. The two directional microphone responses are shown as
function of the directiord.

Fig. 2. The polar plots show the gain for different directions. ICA
is applied with two sensors and six sources. The two dotseat th
periphery show the null directions. The lines pointing oot the
origin denote the true direction of the speech sources. fAiteet
letter abbreviations (see table 1) identifies the diffespetech sig-

Table 1. The six speech signals. All speakers use raised voice aspals which have been used. As it can be seen from the figure,

if they were speaking in a noisy environment.

Abbreviation Description
CNf | Female speech in Chinesge
NLm Male speech in Dutch
FRm Male speech in French
ITf Female speech in Italian
UKm Male speech in English
RUf | Female speech in Russian

ble to signals recorded at an array of microphones, but ifike
crophones are placed at exact same location and the miarepho
have different responses for different directions, theassjion of
delayed sources can be approximated by the instantanealed mo
[14]. Hereby, a combination of microphone gains corresporal
certain directional pattern. Therefore, two direction&nmphone
responses are used. The two microphone responses are chos
as functions of the directiofl asri(0) 1 + 0.5cos(8) and
ro(0) = 1 — 0.5cos(0), respectively. The two microphone re-
sponses are shown in figure 1. It is possible to make two such di
rectional patterns by adding and subtracting omnidireeticig-
nals from two microphones placed closely together. Hertoe, t
mixing system is given by

®)

Different speech signals are used as source signals. The use
signals are sampled with a sampling frequency of 10 kHz aad th

duration of each signal is 5 s. The speech signals are shown in

table 1.

2.1. Moresourcesthan sensors

Now consider the case whefé > (M = 2). When there are
only two mixed signals, a standard ICA algorithm only has two

(5]

the ICA solution tends to place the null towards sourcesialpat
close to each other. Therefore, each of the two outputs isapgr
of signals spatially close to each other.

output signalg/(n) = [y1(n), y2(n)]*. Since the number of sep-
arated signals obtained by (2) is smaller than the numbeswte
signals,y does not contain the separated signals. Insyeiacan-
other linear superposition of each of the source signalerevthe
weights are given b = WA instead of jusi as in (1). Hereby,

G just corresponds to another weighting depending ofThese
weights makey; (n) andyz(n) as independent as possible. This
is illustrated in figure 2. An implementation of the infomaXA
algorithm [15] has been used. The BGFS method has been used
for optimization [16}. The figure shows the two estimated spatial
responses fronG(0) in the overdetermined case. The response
ot the m’th output is given bylw?,a(0)|, wherew,, is the sepa-
ration vector from then’th output anda(¢) is the mixing vector

for the arrival directiord [17]. By varying8 over all possible di-
rections, directivity patterns can be created as shown indi@.
The estimated null placement is illustrated by the two rodats
placed at the periphery of the polar plot. The lines pointug
from the origin illustrate the correct direction of the soairsig-
nals. Here, the sources are uniformly distributed in therirt

[0° < 0 < 180°]. As it can be seen, the nulls do not cancel single
sources out. Rather, a null is placed at a direction poirtongrds
agroup of sources which are spatially close to each other. Here, it
can be seen that the first outpyt(n), the signals NLm and FRm
are dominating and in the second output(n), the signals UKm,

ITf and CNf are dominating. The sixth signal, RUf exists irttbo
outputs. This new weighting of the signals can be used toesti
binary masks.

IMatlab toolbox available fromhttp:// ol e.inm dt u. dk/
t ool box/ i cal/



3. BLIND SOURCE EXTRACTION WITH ICA AND
BINARY MASKING

A flowchart for the algorithm is given in figure 3. As described
in the previous section, a two-input-two-output ICA alglom is
applied to the input mixtures, disregarding the number ofc®
signals that actually exist in the mixture. The two outpginsils
are arbitrarily scaled. The scaling is fixed by using knowgked
about the microphone responses. Hereby, the two null drect
can be found. The two output signals are scaled such thatewher
one directional response has a null, the other response tnais a
gain. The two re-scaled output signajs(n) andg2(n) are trans-
formed into the frequency domain e.g. by use of the ShorteTim
Fourier Transform STFT so that two spectrograms are oldaine

4
®)
wherew denotes the frequency ands the time index. The binary

masks are then determined by for each T-F unit comparing the
amplitudes of the two spectrograms:

- Yl(wvt)
- Ya(w, 1),

1
U2

BM1(w,t)
BM2(w, t)

T|Yi(w, t)| > |Yao(w,t)|
7|Ya(w, )| > [Yi(w, )],

(6)
()

wherer is a threshold. Next, each of the the two binary masks is
applied to the original mixtures in the T-F domain, and by tion-
linear processing, some of the speech signalsemeved by one

of the masks while other speakers are removed by the othdr. mas
After the masks have been applied to the signals, they aomiec
structed in the time domain by the inverse STFT. If there ig an
single signal left in the masked output, defined by the selecti-
teriain section 3.1, i.e. all but one speech signal have beeked,
this signal has been extracted from the mixture and it iscsalfe
there are more than one signal left in the masked outputs,i$CA
applied to the two masked signals again and a hew set of meesks a
created based on (6), (7) and the previous masks. The use of th
previous mask ensures that T-F units that have been remowed f
the mixture are not reintroduced by the next mask. This iedyn

an element-wise multiplication between the previous maskthe
new mask. This iterative procedure is followed until all kexb
outputs consist of only a single speech signal. Notice, thpud
signals are maintained as two signals. Stereo signalseckedth
directional microphones placed at the same location witlaran
gle between the directional patternsiof (herel80°) are termed
XY-stereo.

3.1. Selection criterion

Further processing on a pair of masked signals should beedoi
in two cases. If all but one signal have been removed or if taolm
has been removed so that there is no signal left after agpthie
mask. The decisions are based on the eigenvalues of thearmar
matrix between the masked sensor signals. The covariantxma
is calculated as

R = ("), 8)

where(-) denotes the expectation with respect to the whole signal,
andx is the two time domain signals of which the binary mask has
been applied. I& only contains one signal, the covariance ma-
trix is singular, and the smallest eigenvalueg:,, is approximately
equal to zero [18]. Since parts of the other signals may neriiai

ter masking, the smallest eigenvalue is equal to the noisence
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Fig. 3. Flowchart showing the main steps of the proposed algo-
rithm. From the output of the ICA algorithm, binary masks are
estimated. The binary masks are applied to the originalatsgn
which again are processed through the ICA step. Every tiree th
output from one of the binary masks is detected as a singhakig
the signal is stored. The iterative procedure stops whesugbluts
only consist of a single signal.

of these remaining signals. ThereforeAif.in is smaller than a
certain noise threshold, , , it is assumed that there is less than
two signals and no further processing is necessary. In ood#is-
criminate between zero or one signal, the largest eigeavalx

is considered. IMmax is smaller than a certain threshotd, ..,
the output is considered of such a bad quality that the sijmaild

be thrown away.

3.2. Findingtheremaining signals

Since some signals may have been removed by both masksrall T-
units that have not been assigned the value ‘1’ are used abecae
remaining mask, and the procedure is applied to the mixture signal
of which the remaining mask is applied, to ensure that aliaig

are estimated. Notice, this step has been omitted from figure

4. EVALUATION

The algorithm described above has been implemented and-eval
ated with mixtures of the six signals from table 1. For the $TF



an FFT length of 2048 has been used. This gives a frequency res

olution of 1025 frequency units. A Hanning window with a lémg

of 512 samples has been applied to the FFT signal and the frame

shift is 256 samples. A high frequency resolution is foundbéo
necessary in order to obtain good performance. The samfpéing
quency of the speech signals is 10 kHz. The three threshglds
Tami, @Nd7a,,.... have been found from initial experiments. In the
ICA step, the separation matrix is initialized by the idgntha-
trix, i.e. W = 1. In order to test robustness/ was also initialized
with a random matrix with values uniformly distributed ovée
interval [0,1]. The different initialization did not affethe result.
When using a binary mask, it is not possible to reconstruet th
speech signal as if it was recorded in the absence of thderitey
signals, because the signals partly overlap. Thereforecampu-
tational goal for source separation, fldeal binary mask has been
suggested [11]. The ideal binary mask for a signal is found fo
each T-F unit by comparing the energy of the desired signtileto
energy of all the interfering signals. Whenever the sigmergy

is highest, the T-F unit is assigned the value ‘1’ and whenthe
interfering signals have more energy, the T-F unit is assighe
value ‘0. As in [9], for each of the separated signals, thecpet-
age of energy los&&_ and the percentage of noise residtig are

calculated:
> ein)

P L 9
EL S P )
Z e3(n)
AR (10)

S Yow

whereO(n) is the estimated signal, addn) is the recorded mix-
ture resynthesized after applying the ideal binary masknz) de-
notes the signal present iifn) but absent irO(n) andez(n) de-
notes the signal present @(n) but absent i/ (n). Also the sig-

nal to noise ratio (SNR) is found. Here the SNR is defined using
the resynthesized speech from the ideal binary mask as ¢iadr

truth
> I*(n)
> (I(n) - O(n))Q]

The algorithm has been applied to mixtures consisting of up
to six signals. In all mixing situations, the signals haverbeni-
formly distributed in the interveD® < 6 < 180°]. The separation
results are shown in figure 4 and in table 2.

Two ideal binary masks have been found — one for each mi-
crophone signal. In all cases, all the signals have beergaigd
from the mixture. In most cases also the correct number ofsg
is estimated. Only in the case of three mixtures, one of thecgo
signals is estimated twice. The double extraction is cabyetie
selection criteria. Based on the chosen thresholds, tleetim
criteria in some cases allows a signal to be extracted mane th
once. In the case of the six mixtures from figure 2, the six esti
mated binary masks are shown in figure 5 along with the estidnat
ideal binary masks from each of the two microphone signate T
input SNR (SNR) is shown in figure 4 too. The SNRs the ratio
between the desired signal and the noise in the recordedimasxt
The separation quality decreases when the number of sigals

SNR= 101log,, [ (11)
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Fig. 4. The signal to noise ratio as function of the number of
source signals. The average SNR for the mixtures beforesepa
tion (SNR) is shown as well as the average SNR after separation
calculated by eq. (11). In the case of three signals, theiecty
estimated signal is ignored (see table 2).

increased. This is expected because when the number of mixed
signals is increased, the mixtures become less sparseoRatig-
tributions of the source directions as well as more thanigixads
have also been examined. Here, in general, not all the soaree
separated from each other. If the arrival angles betweerakig
are too narrow, these signals may be detected as a singla,sign
and they are not separated. Listening tests validate theratem
results. This method differs from previous methods which as
binary mask and two microphones [3], [4]. In [3], binauraksu
have been applied for separation, i.e interaural time atehgity
differences. In [4], the separation is likewise based onlante
and time difference of each source. Here separation is based
clustering of T-F units that have similar amplitude and gha®p-
erties. In our approach too, separation can only be achiéted
source signals have different spatial positions, but tipausgion
criterion is based on independence between the sourcdsigna

5. CONCLUDING REMARKS

A novel method of blind source separation of has been destrib
Based on sparseness and independence, the method itgrative
tracts all the speech signals without knowing the signaladn
vance. An advantage of this method is that stereo signatsaire
tained through the processing. So far, the method has bgtiecp
to successful separation of up to six speech signals unéehait
conditions by use of two microphones. Future work will irdgu
separation of mixtures in reverberant environment, a mérel b
solution of the scaling problem, and improved techniquesHe
stopping criteria based on detection of a single signal.eril-
tive to using a linear frequency scale, a frequency scalentioa-
els the auditory system more accurately could be used, becau
an auditory-based front-end is reported to be more robast ¢éh
Fourier-based analysis in the presence of backgroundéneeice
[9]. The use of more than two sensors could also be investigat
By using more than two sensors, a better resolution can laénelot
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Fig. 5. For a mixture of 6 mixed speech signals, binary masks haee bstimated for each of the 6 speech signals. The black areas
correspond to the mask value ‘1’ and the white areas cornesfmwthe mask value ‘0’. The results are shown together wiighcalculated

ideal binary masks of each of the two microphone signals. The signals-) appear in the order which they were extracted from the
mixture. The first three signals)(c) were extracted after two iterations, the next two signa)s(€) were extracted after three iterations.
The last signalf( was extracted from the remaining mask as described inose8i2.



Table2. Separation results. Mixtures consisting from two up to six
signals have been separated from each other successfuthodt
cases, the correct number of sources has been extracteg.inOnl
the case of three source signals, one of the signals has beten e
mated twice. Here the average performance has been caltulat
with(1) and without the extra signal. The signals appear in the
order which they were extracted from the mixture.

Separated  Microphone 1 Microphone 2
Signal Pa (%) Pw%) | Pa(%) Pw(%)
UKm 0.01 8.42 6.83 0.00
FRm 7.13 0.00 0.00 6.11

Average 3.57 4.21 3.41 3.06
NLm 0.11 2.46 3.84 0.06
CNf 5.28 0.16 0.26 2.81
CNfy 86.39 13.12| 88.97 63.95

RUf 6.74 11.55 6.17 17.26

Average 24.63 6.82| 24.81 21.02

Average 4.04 4.72 3.43 6.71

CNf 1.27 13.25 3.78 13.79
RUf 2.14 17.64| 17.26 3.24
FRm 5.37 2.77 1.01 10.79
UKm 19.60 8.00| 14.67 4.60

Average 7.09 10.41 9.18 8.11

RUf 10.65 20.00| 24.17 17.70
NLm 8.11 4.13 13.58 1.84
FRm 9.81 17.68 1.32 22.37
ITf 19.20 4.37 4.87 6.92
CNf 4.74 15.55 5.13 16.93

Average 10.50 12.35 9.81 13.15
CNf 8.72 28.20 6.77 21.92
NLm 11.96 15.45| 16.32 11.47
FRm 16.05 34.95| 29.05 28.72

ITf 29.69 26.87| 20.36 23.08

UKm 35.56 6.14| 23.26 8.38
RUf 19.58 46.57| 28.14 35.33

Average 20.26 26.36| 20.65 21.48

and ambiguous arrival angles may be avoided. Also appbicsti
for other types of sparse signals could be examined.
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