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Abstract

Reaching deep sub-micron technology within the near future makes it possible to
implement complex embedded Multiprocessor System-on-Chip (MPSoC) as a sin-
gle chip solution. Combined with the requirements for short time to market and
low production cost, make designs rely on IP core re-usability. To cope with the
increasing complexity of the software and hardware design space, the SoC designer
rely on simulation tools to be able to make crucial design decisions at an early stage
in the design phase; especially related to the SoC communication platform. For ef-
ficient and powerful design space exploration, the ultimate simulation tool consists
of a library from where the SoC designer can freely select from a variety of differ-
ent SoC models, representing IP cores at different abstraction level and then be able
to integrate these into a common SoC communication platform (e.g. NoC) having
the same interface to the different models. Thus constructing a simulation frame-
work for a particular design space can be fully customized, relative to representing
the abstraction level of the different IP cores as desired.

This project work contributes to reaching this goal by proposing a methodology
for extending a SystemC based high-level RTOS model for MES0C[7] to support
inter-processor communication using OCP2.0 at TL1 and TLO. Also presented is
a methodology for configure a simulation framework in a fast and easy manner,
based on a configuration file. Further, a new SoC communication platform model
is proposed, allowing abstract modeling of different topologies, such as bus and
mesh, while still being able to support communication of real data; also at cycle
true level. Finally, different design space exploration experiments are presented
with the aim of showing the capabilities of the new models.
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Chapter 1

Introduction

In embedded system design the SoC communication platform is becoming an im-
portant aspect of consideration, due to the increasing numbers of IP cores. Se-
lecting an optimal topology and IP core placement is crucial for the system per-
formance. Thus the SoC designer rely heavily on different modeling techniques
and design tools to be able make decisions about the topology, which should be
done at an early stage in the design phase. The ultimate design tool for a SoC de-
signer, would consist of a library containing SoC models representing IP cores as
well as SoC communication platforms at different abstraction level. Based on this
library the designer would have the ability to construct a fully customized simula-
tion framework, integrating the different types of models through a common SoC
communication interface. Having a common SoC interface allows for easy and
fast model exchange and thus abstraction level refinement, as desired. The flex-
ibility of this methodology is indeed very powerful for design space exploration
experiments as well as in-depth SoC communication platform analysis. An exam-
ple of such a customized simulation framework is illustrated in figure 1.1, with the
different model types described next.

Application Application Application
model model model

Memory ARM TG RTOS

MPARM MPARM
model model model model

SoC communication platform (e.g. NoC)

Figure 1.1: Example of a simulation framework integrating different SoC models
into a common SoC communication platform.

Building up such library tool set is an ongoing action at IMM, DTU. There are

11



12 Chapter 1. Introduction

currently following SystemC based models available for MPSoC simulations:

. MPARI\/E] which is a cycle-true homogeneous MPSoC simulation frame-
work, modeling IP cores such as ARM-processor, private processor memory,
shared semaphore memory as well as Network-on-Chip (NoC) architectures
based on AMBA, STBus and cross-pipes.

* OCP2.0 cycle true traffic generdﬂ;)rfor ARM processor emulation. This
model precedes from the MPARM simulation framework.

» Abstract Real-Time Operating System (RTOS) mﬁd’éhe model forms the
foundation for the ARTS simulation framework, defining an abstract multi-
processor architecture, operating at transaction level and with applications
expressed as task graphs.

The MPARM and Traffic Generator models support SoC communication using
the OCP 2.0 protocol. However, it is not possible to use the abstract RTOS model
jointly with the other models, for SoC communication platform analysis, since it
has no SoC communication interface.

To deal with this issue, this project aiming integration of the abstract RTOS model
together with an OCP2.0 based SoC communication platform. The thesis proposes
a methodology for expanding the abstract RTOS model to support OCP2.0 based
SoC communication (inter-processor communication), related to inter-task depen-
dencies. The methodology emphasizes on modularity to support backward com-
patibility with the original model as well as making it easy to incorporate support
for other SoC communication protocols. Additionally, a methodology is proposed
for doing fast, easy and flexible configuration of a MPSoC simulation framework,
based on the abstract RTOS model. The foundation for the methodology is based
on a configuration file, written in a simple script language, defining design space
parameters such as task declarations/partitioning, scheduling policies etc. In con-
junction to this, a dedicated parser has been developed.

As an extension to the project, an abstract SoC communication platform model
is proposed as well. The model favorers from being able to support communication
of real data, at cycle true level, at the same time as having an abstract description of
the communication topology (e.g. simple bus or NoC). This model also emphasizes
on modularity, making it easy to implement support for new topologies as well as
different SoC communication protocols; also at different abstraction levels.

It must be clearly emphasized that this thesis does not cover integration of the
abstract RTOS modebgether withan ARM model, in the sense to emulate or
support communication with an ARM processor model. Doing so has not been
possible, because getting access to the MPARM model was not possible before

!Developed at DEIS, University of Bologna.
2Developed in corporation with IMM, DTU and DEIS, University of Bologhal[14]
Developed at IMM DTUI[[7]
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at a very late stage in the project phase. However, since both module now sup-
ports inter-processor communication through a common SoC interface (OCP2.0),
implementing this feature is indeed possible.

The rest of this thesis serves to document the work carried out in this project. The
report is organized in the following way:

Chapter 2 presents related work.

Chapter 3 gives an introduction to the system level description language
(SystemC and the Master/Slave library) used for modeling as well as the
motivation for this for.

Chapter 4 gives an introduction to the OCP protocol, highlighting some of
the important features. It also gives a short introduction to the SystemC
based transaction level library, used for abstract OCP channel modeling.

Chapter 5 gives an introduction to the abstract RTOS model for MPSoC and
highlights its characteristics and features.

Chapter 6 presents a discussion of the approach used to extend the abstract
PE model, based on the RTOS model, to support low-level inter-processor
communication, related to inter-task dependency.

Chapter 7 presents an overview of the new MPSoC simulation framework,
based on the extended abstract PE model, by giving a brief introduction to
the different modules, their behavior and how they interact.

Chapter 8 presents the configuration file script language, used for configur-
ing an abstract PE based MPSoC simulation framework.

Chapter 9 presents the abstract SoC communication platform model, includ-
ing and overview description.

Chapter 10 presents three design space exploration experiments, based on
simulation frameworks integrating the abstract PE and SoC communication
platform models for showing their capabilities.

Chapter 11 presents implementation specific details for the extended abstract
PE model. This also includes modifications and improvements done to the
original RTOS model.

Chapter 12 presents implementation specific details for the abstract SoC
communication platform model.

Chapter 13 wraps up and gives a final conclusion

Chapter 14 presents suggestions for future work and improvements.
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The report is relative long due to the implementation descriptions. Here is a sug-
gested way to this report: Chapter 2,3,4,5 serves as general introductions and may
be skipped or skimmed by readers already familiar with related work, SystemC,
OCP and the abstract RTOS model. Chapter 6,7,8,9,10 and 11 are essential for un-
derstanding the extended abstract PE model and the SoC communication platform
model. Chapter 11 and 12 may be skimmed or used as reference for readers not
interested in in-depth implementation specific details.



Chapter 2

Related Work

Different SoC models and frameworks have been proposed for MPSoC simulation
at different level of abstraction. [12] presents a SystemC based MPSoC simulation
framework for analyzing on-chip communication with cycle and bit true accuracy.
The framework (SWARM) consists of an adapted version of the ARM Instruction
Set Simulator([B] for processor modeling. It also consists of memory, interrupt and
semaphore devices as well as interconnection modeling based on AMBA AHB or
STBus. The authors demonstrate that the platform is suitable for doing benchmark-
ing and quantitative analysis (performance comparison and architectural design
space exploration between AMBA AHB and STBus), based on realistic workloads.
[14] focuses on performance improvement for cycle and bit true simulations, using
an OCP2.0 compliant traffic generator (TG) for ARM processor emulation. The
model precedes from the MPARM simulation framework, which is an extended
version of [12], also using OCP 2.0 protocol in the SoC communication interface.
The traffic generator (TG) model favorers from being reactive and able to handle
unpredictable network behavior like resource contention etc. Based on a reference
simulation, using the ARM processor model to emulate, the RTL communication
trace is analyzed and a TG program is generated using appropriate tools. The ad-
vantage of using a TG is, that the complex application specific details in the IP
model is abstracted away, thus reducing simulation time with a factor of 2..4. In
[13] an abstract modular RTOS model for MPSoC is presented. It operates at trans-
action level and uses task graphs for application modeling. The RTOS models basic
RTOS services, covering synchronization, resource allocation and task scheduling.
It has been implemented using SystemC and the Master/Slave library. The flexi-
bility of the model is clearly demonstrated in [23], where it forms the foundation
of an abstract Network-on-Chip (NoC) simulation framework for MPSoC. In the
simulation framework, all low level network details are abstracted away and net-
work communication is simulated using message tasks. The NoC communication
is managed and modeled by a dedicated communication processor, also based on
the abstract RTOS model. Additional, the abstract RTOS model can also be used
in conjunction to wireless sensor network modeling as demonstrated in [9].

15



16 Chapter 2. Related Work

The model presented in [10] also covers RTOS modeling and is similarlto [13].
However, it has been implemented top of SystemC, to overcome the lack of
support for modeling dynamic real-time behavior, like task synchronization and
preemption. This approach supports even higher level of abstraction (un-timed
system specification). It also features true multitask execution as well as power
consumption estimation for different scheduling algorithm, available from an as-
sociated RTOS library. Similar approach is presented in [8], but this model is based
on SpecCi[4] as system-level-description-language (SLDL), with extensions added
to original SpecC language. Another, yet closely related work, is presented in [16]
and consists of a generic RTOS model. The model has been implemented on top
of the SystemC kernel, but using a set of generic classes instead. Compaied to [8],
this model provides higher accuracy modeling of the RTOS and preemption, taking
into account parameters such as context switching and scheduling algorithm dura-
tion. The model also integrates into a graphical tool[set [1], previously developed
by the same authors. This tool set features automatic code generation, of SystemC
based models, as well as graphical and numerical analysis of the simulation results.

Characteristic for the previous frameworks and models is that only [14] ex-
plores the possibility of mixing and integrating different abstraction level SoC
models, into a common SoC communication platform. Thus the work presented
in this thesis makes good sense, in conjunction to this, by proposing some new
modeling methodologies within the field of mixed abstraction level modeling.



Chapter 3

System-Level Description
Language

This section gives a short introduction to SystemC and the Master/Slave library,
used in this framework for modeling. Please refer ta [22] and [21] for more infor-
mation.

3.1 SystemC

SystemC is a system-level description language (SLDL), intend for Co-design. Itis
implemented as a set of classes, on top of the ANSI C++ programming language, to
support event driven simulation and threaded execution. The methodology of Sys-
temC makes it suitable for creating accurate executable specifications, algorithm
exploration, system-level models at multiple abstraction levels. It was introduced
in 1999 and had back then close similarities with VHDL and Verilog, thus useful
for RTL simulations. With the introduction of SystemC 2.0, the language became
more suitable for abstract modeling as well. However the current version of Sys-
temC 2.1 still lacks support for dynamic real-time behavior, found in embedded
system, using RTOS. This feature, however, is expected to be implemented in a
future release of SystemC (version 3/0)/[15].

Today SystemC has grown high popularity and emerged to become an industry
standard for system-level modeling.

3.2 Master-Slave library

The Master/Slave class library is an abstract communication channel model for
SystemC. The library aiming simulation of SoC platforms, which uses bus commu-
nication in the producer/consumer style manner. It supports all abstraction levels,
ranging from un-timed down to cycle-accurate. The methodology introduced by
the library allows for easy and flexible separation of communication (bus protocol)

17



18 Chapter 3. System-Level Description Language

from behavior (IP core), which is very useful for abstraction level refinement of the
communication channel, during the design process.



Chapter 4

SoC communication platform

This section highlights the main features of the OCP2.0 protocol, being used in
this project work in the SoC communication interface. Also presented is a brief in-
troduction to the SystemC based Transaction Level (TL) Communication Library,
which will be used for modeling an OCP TL1 channel in the project. Further infor-
mation about the protocol and library can be found.in [17] and [18] respectively.

4.1 Open Core Protocol

The Open Core Protocol (OCP), provided by OCP International Partnership (OCP-
IP) [2], is a protocol for on-chip synchronous RTL communication, between IP
cores. The communication is point-to-point and requires a master and slave de-
vice, connected to the channel. The master initiate commands (e.g. read or write
requests) to the slave, which in return may provide a response (e.g. response data
for a read request). The slave cannot initiates commands. A simple master/slave
setup is shown in figuie 4.1.

System ocp System
initiator target
Master | “"™° | Slave

request

Figure 4.1: Master/slave point-to-point communication

The protocol has gained high popularity, due to its flexible configuration abili-
ties and refinements of data, communication and test signals; all important aspect
in today design methodology, focusing on IP core reuse and easy integration. The
protocol supports many types of communication schemes, such as simple and burst
transactions, multi-threaded out-of-order transaction, pipelined and non-pipelined

19



20 Chapter 4. SoC communication platform

communications etc. Examples can be found in the OCP Specification [17].

The protocol also provides a methodology for documenting the property of an
IP core (address space encoding etc.) and it's OCP interface (signals supported
etc.). This is done using dnterfaceandRTL configuration fileespectively, cre-
ated using a set of predefined conventions. The simplicity of the configuration file
makes it easy for the SoC designer to determine if an IP core, for an example, is
compatible with a certain OCP configuration.

4.2 OCP Transaction Level Communication Library

The OCP Transaction Level (TL) Communication Library is an OCP channel model
for SystemC, provided freely by OCP-IP [2]. The library targeting system level
models, using the OCP protocol as a SoC communication platform. It supports
modeling at transaction level 1 (TL1) and TL2 [5], which is suitable for close-to
cycle true modeling, but significantly faster. The methodology used for channel
communication is based on a set of dedicated commands (function calls), mak-
ing OCP transaction modeling easy, since protocol implementation details are ab-
stracted away. The channel model is very easy to configure (signal wise) and has
incorporated a real-time OCP checker, checking for non-compliant OCP transac-
tions.

Members of the OCP-IP community also have access to a set of library exten-
sions, consisting of an OCP monitor and a set of TL adapters. The OCP monitor
is used for monitoring the channel and saves the channel state, at each clock cycle,
into a file. This format is somewhat similar to a timing trace and can be analyzer
either using a text editor or the CoreCreator tool set, provided by OCP-IP. The
TL adapters are used for TL adaption between TLO/TL1 and TL1/TL2. However,
the adapters need to be customized manually, since the default channel support is
restricted to simple configurations only.



Chapter 5

The abstract PE model

The foundation for the MPSoC framework proposed in this thesis precedes from
the abstract RTOS model for MPSoC simulations, developed by Virk and Gonzalez
[Z]. This chapter serves to give an introduction to the abspatess elemerPE)
model, which is based on the abstract RTOS model. Readers already familiar with
the model may skip this chapter without any lose of consistence.

Figure] 5.1 below the architecture of the abstract PE model.

Clock

! I
! I
! I
} T1 T )| Tn } Application
I I
| |

,,,,,,,,,,,,,,,,,,,

Synchronnizer

Y

|
|
|
|
|
|
|
|
|
| Resource
|
|
|
|
|
|
|
|

Allocator

'

Scheduler

Figure 5.1: Architecture for the abstract PE model

The model works at transaction level and consists of an abstract RTOS, used
for modeling basic RTOS services, covering synchronization, resource allocation
and scheduling. The applications running on top of the RTOS is modeled using
task graphs. Characteristic for the model is the modularity, which makes mod-
ule exchange an easy matter (for an example exchanging the scheduler module
for scheduling algorithm exploration). Modules communicating using high-level
messages, based on structs. This approach is described later.

21



22 Chapter 5. The abstract PE model

5.0.1 Periodic Task

For application modeling periodic task modés available. It models periodic
execution of a group of instructions. The model support preemption. Higyre 5.2
shows the task model, with the different timing parameters described next.

Period

Deadline

| Execution time
Offset | RRT CsL |
|

X 2

Resource

!
13
|
¥
|
|
|
|
|
|
|
|
| Access
|

N

|
3
|
|
|
|
|
|
|
|
|
|
|
|
|

> Time

Figure 5.2: Task model timing for the first execution cycle.

Timing constrains

In the model, the exact functionality is abstracted away and instead described using
the following set of timing constrains:

« Execution time. The amount of time it takes to execute the set of in-
structions. Determined randomly (uniform) within a specified best-case and
worse-case execution time.

» Offset. A time offset, determining when the task is ready for being released
for execution. This offset is relative to zero-time and is only applicable for
the first execution cycle.

» Deadline A time boundary within the execution must complete. The dead-
line is relative to the release of the task.

* Period. The time interval determines when the task should start executing
again.

The model also support even more accurate modeling, taking into account con-
text switch overhead, e.g. added by the scheduling algorithm. However it is default
not being used.

Resource requirement

A task may requires access to one ore more resource, during execution. Examples
of such resources are memory and peripheral devices (e.g. printers). In this model,
the abstract description of a task resource requirement is expressed by the following
parameters:

« Resource IDA number identifying the resource to request.
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« Resource Request Time (RRT)Yhe time offset, relative to the start of task
execution, when the task will request the resource.

« Critical section length (CSL) The amount of time the resource will be oc-
cupied by the task.

Whenever a running task requires access to a resource, it sends a requests to
the resource allocator.

5.0.2 Implementation

The periodic task model has been implemented using a 4-state FSM, as shown in

figure[5.3.

Cheriod > 0 Irun

Crunning ==0

preempt
resume )

Ipreempt & Iresume
Crunnlng > 0

Figure 5.3: State machine for the periodic task model.

State transition depends on control messages from the RTOS and local watch-
dog timers, used for managing the execution timing constrains. The watchdog
timers areCyeriod, Crunning, Cdeadiine @ssSOCiated with task period, execution time
and deadline monitoring respectivelg.,.,,q decrements in all state§;,,,ining
decrements in running state affl..qin. decrements in running state and pre-
empt state. 1{U;..q1ine reaches zero, before execution finishes, a Ul message will
be generated, informing that the deadline has been missed. Beside the execution
watchdog timers, the model also uses a series of watchdog timers for managing
RRT and CSL for each resource requests. They are only applicable and decrement
in running state. The meaning of the different states are summarized next.

« Idle. Task waiting to release itself. This happens wiligp,;,q becomes
zero. The task issuesREADYmessage to the synchronizer, indicating ready
for execution, and goes to ready state.
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« Ready. Task has been released and waits for execution. WHdNmes-
sage is received from the scheduler, it goes to running state and execution
starts.

* Running. Task executing. Whe@,,,ning reaches zero, the execution com-
pletes and the task issueBEMNISH message to the scheduler. If the task re-
ceives PREEMPTnessage from the scheduler, the execution is preempted,
and the task goes to preempt state.

* Preempted Task execution has been preempted. WhBESUMEnessage
is received from the scheduler, the task goes back to running state again and
resumes execution.

5.1 RTOS model

The abstract RTOS model consists of three modules: synchronizer, resource allo-
cator and scheduler.

5.1.1 Synchronizer

The synchronizer manages the dependencies between tasks. It ensures that a task
is not released for execution, before all data dependencies has been resolved. The
current synchronizer implements the Direct Synchronization (DS) protocol, pro-
posed by Sun and Liui [11].

The dependency database

Tasks dependencies are expressed using task graphs. In the synchronizer, task de-
pendencies are managed using a dependency database, somewhat similar to a task
graph. The dependency database is a boolean NxN matrix, where N equals the
number of tasks. The row and column number maps to the task ID. Columns en-
tries are associated withrecedingdependencies, while row entries are associated
succeedinglependencies. If entrly, j) is true, data dependency exists, thus task
cannot execute before tagKinishes execution. Figufe 5.4 shows an example of a
task graph and the dependency database equivalent.

Tasks ready for execution, but with unresolved data dependencies, are kept in
a pending task queue. Each time a running task finishes execution, the queue is
checked up against the dependency database to check if any pending tasks can be
released for scheduling. When tagfinishes execution, the dependency database
is updated, by clearing (setting to false) all row entries in colym@hecking if all
dependencies have been resolved for idskdone by performing an OR operation
of all column entries in row. If the result is false, all dependencies have been
resolved and task may be released to the scheduler for execution scheduling.
Otherwise all dependencies have not been resolved yet and the task stays in the
gueue.
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Figure 5.4: Task graph and dependency database equivalent

5.2 Resource Allocator

In real-time systems, resource contention often occurs, since multiple tasks are
competing over the same shared resource. Typically these resources are non-
preempt able, which means that lack of resource allocation eventually could lead
to data corruption, in situations with resource contention. In conjunction to this,
incautious management may lead to unbound priority inversion; a situation where
a low priority task blocks for a high priority task, because the high priority task
waits access to a resource currently occupied by the low priority task.

The resource allocator models the protocol for managing these situations. It
cooperates with the scheduler and ensures that only one task can have access to a
shared non-preemptive resource at any time. Whenever a running task has a re-
source request, it sends a request message to the resource allocator. The resource
allocator either grant resource access or refuses the request, causing the scheduler
to preempt the task, until the resource becomes available. The protocol imple-
mented in the current model is a simplified version of the Basic Priority Inheri-
tance protocol, suggested by Sha, Rajkumar and Lehotzky [19]. In conjunction to
this, the current implementation of the resource allocator does not support nested
resource requirement.

5.3 Scheduler

The scheduler manages the real-time scheduling of task, ready for execution, based
on the task priority. All tasks ready for execution are kept in a queue and sorted
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with respect to their assigned priorities. Currently RM and EDF scheduling is avail-
able for the model. The characteristics of RM and EDF scheduling is summarized
below.

» Rate-Monotonic (RM). Highest priority assigned to the task with theort-
est period The priority isstatic meaning that the priority of a task waiting
for execution does not change.

 Earliest-Deadline-First (EDF) Highest priority assigned to the task with
the closest deadlineThe priority isdynami¢ meaning the priority of a task
waiting for increases each clock cycle, since the deadline is getting closer.

5.4 Communication link and the message struct

Communication between the different modules in the PE module is based on

sc _link _mpcommunication link, provided by the SystemC Master/Slave library
[21]. The module communication is based on high-level struct messages. Table
[5.7 shows the struct encoding and gives a brief description of the different entries.
Depending on the receiver of the message and the action type, some fields are
not applicable. Additionally, table 5.2 described the different types of high-level
messages, issued by the task and RTOS model, identified fopthmentry.

[ Type [ Name | Description ]
unsigned int messagelD Receiver of the message (e.g. task or synchronizer)
unsigned int snum Target scheduler and resource allocator
unsigned int thum Task ID
unsigned int comm Action type (e.g. RUN or READY)
unsigned int resourcelD Resource ID
unsigned int tper Task period
unsigned int tdl Task deadline
unsigned int priority Task priority
char* text A message describing the action. For monitoring purpagse.

Table 5.1: High-level message struct encoding.
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[ Action type [ Producer Consumer | Description ]

READY Task Scheduler Task,tnum notifies the synchronizer/scheduler, that it is ready
for execution.

RUN Scheduler Task CPU time has been granted by the scheduler. Execution of
task,tnum may start.

REQUEST Task Resource al-| Task,tnum requests access for resourcesourcelD . Is-

locator sued during running-state when RRT has been reached for this
resource.

GRANT Resource al-| Scheduler ResourceresourcelD  requested by the running taskum

locator has been granted and execution may continue.

REFUSE Resource al-| Scheduler ResourceresourcelD  requested by the running taskum

locator is already occupied by another task. The scheduler must pre-
empt execution of the task.

PREEMPT Scheduler Task The running task;tnum must preempt execution, since |a
higher priority task has been released for execution or al re-
source request has not been granted.

RESUME Scheduler Task The preempted taskpjum must resume execution now.

FINISH Task Scheduler Task, tnum notifies the scheduler that execution has com-
pleted.

Table 5.2: High-level message type descriptions.

5.5 Monitor module

Not shown in figur¢ 5]1 is the monitor slave-module, connecting to the different
communication links. The module monitors the real-time state of the system-level
module, during simulation. Thus messages issued by the different module triggers
the monitor to prompt an associated Ul message to the screen. As such the monitor
module is not a part of the model and may be left out. Missed deadlines will still
be reported by the periodic task module.






Chapter 6

Inter-processor communication
methodology

This chapter discusses the methodology used to make the abstract PE model, pre-
sented in chaptéi 5, supporting inter-processor communication at a lower transac-
tion level. The discussion presented forms the foundation for the implementation.

6.1 Application partitioning

In a distributed multiprocessor system, application partitioning is a very important
aspect of the design space exploration, since it concerns optimizing and balancing
the execution of the different applications running on top of an architecture. How-
ever, partitioning requires inter-processor communication, due to the data transfer-
ring between the partitioned parts of the application. For an example, selecting a
multi-processor architecture using slow processors can reduce the product cost, but
may cause an application not to meet its deadlines, if it is to be executed on a single
processor. For that matter task partitioning is essential, if the application allows for
parallel execution of some tasks.

Modeling this in a MPSoC simulation framework, using the abstract PE model
from chaptef b for processor modeling, would be equivalent to partitioning a task
graph with parallel branches onto multiple processors. However, when the models
interface to a SoC communication platform model having a low level interface (e.g.
OCP2.0 TLO), transmission of dedicated data is required to do accurate modeling.
This model illustrated in figurfe 6.1, showing a partitioned task graph and two PE’s
connecting to SoC communication platform. The selected partitioning requires
inter-processor communication, since data dependency exists betyweed
and both are mapped onto different PE’s. From a high-level perspective, the inter-
processor communication can also be considered as a task and is in the example
identified by,

29
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Application Application
model model

PE1 PE2
Tio

SoC comm. platform model

Figure 6.1: Example of task graph partitioning in a MPSoC simulation framework
using the abstract PE model.

6.2 SoC communication interface extension modules

Making the abstract PE model support low-level inter-processor communication,
requires a dedicated communication interface. The chosen approach has been to
refine this module into at© deviceandlO taskmodel, added on top of the existing
model. This approach illustrated in block diagram in fidure 6.2

N
Application
Software modeling RTOS
10 task
=
Hardware modeling 10 device
NV

%%%%%% €T

SoC communication interface

Figure 6.2: Block diagram showing the abstract PE module including 1O task and
IO device modules for SOC communication support.

The 10 device model connects physically to the SoC communication platform
thus modeling a hardware 10 port and managing the communication protocol. The
IO task models an IO device driver, controlling the IO device whenever there is an
inter-processor communication event (receiving/transmitting). It handles protocol
at application level, which here consists of encoding/decoding of data to/from the
SoC communication platform, being synchronization messages between tasks with
inter-dependencies. The approach is illustrated in figure 6.3.

When there is preceding inter-task dependency, the RTOS issues synchroniza-
tion message to the 10 task, containing information relevant for the inter-processor
communication. Based on this message the 10 task encodes a certain traffic patter,
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Figure 6.3: Block diagram showing the abstract PE module including 1O task and
IO device modules for SoC communication support.

forwards this to the 10 device, which starts the transmission. The procedure for
receiving is just the other way around.

6.2.1 10 task synchronization and execution

Integrating the 10 task with the abstract RTOS model requires some small exten-
sions to the synchronizer to support messages to/from the 10 task. It also requires
some extensions to the message structs (figufe 5.1[ page 26) as well as the periodic
task model. Below is a general description of the approach used for synchronizing
the 10 task execution, in conjunction to inter-processor communication and inter-
task dependency handling. Understanding this description requires familiarity with
the behavior of the abstract RTOS model.

Transmit data

A task having preceding inter-task dependencies must isSS®@ GTRANSFER
message when it completes execution. This new message type notifies task com-
pletion (equal to & INISHED message) butlsothat an inter-processor communi-

cation event must start. Further, it must contain inter-processor communication re-
lated information such as transfer type (write, read or response), data transfer size,
target PE addresses etc. The message should cause the synchronizer to release the
10 task for execution immediately afterward. The scheduler starts the execution of
the 10 task and the inter-processor communication starts by interacting with the 10
device. Any local pending task must not start executing before the inter-processor
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communication event has completed, which is identified BINMSHED message
issued from the 10 task. This means that the 10 task has the highest priority and
is non-preemptive. The duration of the 10 task execution depends on data transfer
size as well as bandwidth.

Receive data

When data is received from the SoC communication interface, the 10 task sends
a READYmessage to the synchronizer, notifying it is ready be process data. This
should cause the synchronizer to release the 10 task for execution immediately af-
terward. Any running tasks should be preempted by the scheduler, if no buffering
mechanism has been implemented in the 10 device model. The |0 task executes
until the request/response phase completes, after which it isse&NIEGHED _EXT
message to the synchronizer. This new message is similaFINISHED mes-

sage, except that it is associated with the non-local task, initiating the inter-processor
communication and not forwarded to the scheduler. Also, the non-local task ID is
decoded by the IO task. The message should causes the synchronizer to release any
pending tasks having succeeding dependencies to this non-local task. After having
issued thé-INISH _EXT, the IO task completes execution by issuirglidISHED
message and any pending task may start executing afterward.

Figure[6.4 shows how the described approach applies to the timing of two task
having inter-dependencies, whete<  andr, — PE1 andm, — PE2.

PE1 1 ‘ R
SoC comm. latency
PE2 10 task ‘ 12 ‘

Figure 6.4: Timing for inter-task dependency.

> time

To summarize, the important characteristics related to the integration of the 10
task extension of the RTOS model is listed below:

» The synchronizer does not have any prior knowledge about when the 10 task
is going to be launched, in the sense that it is encoded into the dependency
database. Thus the 10 task can be considered as Hgiragnicallyreleased
for execution, relative to the message received from a task or from the 10
task itself.

* SoC communication specific information (transfer type, data transfer size
etc.) is stored in the task having preceding inter-task dependency. Thus any
tasks having preceding inter-task dependency need to be configured before
simulation starts.



6.3. Task graph abstraction level refinement 33

« The message struct must be expanded to carry inter-processor communica-
tion related information.

More implementation specific details regarding the RTOS model and the mes-
sage struct expanding is presented in se¢tion 11.1,[page 87, while implementation
specific details for the 10 task is presented in sedtion|11.5,[page 108.

6.3 Task graph abstraction level refinement

At the SoC communication interface, the abstract PE model must be able to support
read and write request and response. Response means in this context the returned
data to a read request.

The precedence nature of a task graph is somewhat equivalent to a write re-
guest, when considering an edge to be associated with data transfer. Thus a SoC
communication event related to an inter-task dependency can easily be modeled
using a write request. However, a task graph, like the one in flgufe 6.1 does not
obviously support read requests, since this would requires bidirectional edges, for
request and response phase respectively. An elegant solution to this problem is to
use end-to-end task, which is just an abstraction level refinement of a task graph.

6.3.1 End-to-end task

An end-to-end task is series of subtasks, connected in a chain. The definition is
an extension of the existing basic periodic task model, to make it more suitable
for distributed systems modeling [20]. It can be considered either as clustering a
group of preceding tasks together or refining the functionality of a task, into even
smaller subtasks. However, it is allowed for an end-to-end task to have only one
subtask. In this special case itis identical to the original periodic task model. From
a low-level perspective, an example of an end-to-end task, consisting of 4 subtasks,
could be to (1) generate some data in PE1, (2) transfer the data to PE2, (3) process
the data in PE2 and (4) output the data to a peripheral device, connected to PE2
(e.g. printer). Below summarizes the main formal definitions of an end-to-end task
[20]:

* An end-to-end taskl; consists of a series of subtasks, connected in a chain.
Subtasks are always executed in a precedence order. Thus siibjask
cannot execute before subtdBk completes execution.

* The end-to-end deadline f@r is relativeto release of the first subtask, ; .

» The execution time of a subtask; ; is bounded and must not exceed a
maximum execution timer; ;.

« All subtasks have the same priority.

« Subtasks are statically assigned to PE’s.
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Figure[6.5 shows an example of an end-to-end system consisting of four sub-
tasks mapped onto three PE’s.

Figure 6.5: Example an end-to-end system.

Since a clustered group of subtasks always belongs to the same task group (end-to-
end task)[;, the abstraction level provided from this, makes the data dependencies
between subtask suitable for modeling read transfer. However, some restrictions
apply to usage and mapping of subtasks, when used for read transfer modeling.
These are summarized below:

1. Aread transfer is always associated with three adjacent subtésksig-
gers the read requedf; ;1 receives the request and generates the response
data,T; ;o receives the response data.

2. A subtask]T; ;, triggering a read request must always be located in the same
PE as the subtaskK; ;. », receiving the response data.

3. Aread transfer (covering request and response) must be kept within the same
end-to-end taski;. Thus triggering a read request after the third last subtask
is not allowed, since a complete read transfer requires three subtasks, as
stated in 1. This also means that an end-to-end task must have at least three
subtasks, to model a read transfer.

Dependencies between subtasks can also be used to modeling write transfer.
Here there are no restrictions with respect to usage and mapping of subtask, since
only two tasks with dependencies are required (a producer and consumer task).

Figure[6.6 illustrates an example of an end-to-end system, consisting of four
subtask, modeling write and read transfers.
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SoC comm. latency

(B) Timing graph for the end-to-end system

Figure 6.6: Example of an end-to-end system modeling write and read transfers.

6.4 Inter-dependency synchronization protocol

To manage synchronization between tasks having inter-task dependency, a set of
simple rules have been defined for the address encoding as well as the data encod-
ing, related to response data. These rules describe the protocol at application level,
implemented by the IO task.

6.4.1 Task ID encoding

Each subtask has an unique task ID. This task ID carries information about the
(end-to-end) task group ID as well as the subtask ID. The task ID encoding has
been selected in such way that the lower and upper bits define the task group 1D
and subtask ID respectively. Figure|6.7 shows an example for a 16-bit task ID. In

this example the subtask ID is defined by bit[0:3], which allows addressing up to

15 subtasks (subtask ID equal to zero is not allowed).

15 43 0
‘ Task group ID ‘ Subtask ID ‘

Figure 6.7: Example of a 16-bit task ID encoding.

6.4.2 Address encoding

Task having succeeding inter-task dependencies, related to a request, rely on trans-
fers to be done to a particular location in the address space, assigned to the PE.
This address location is always relative to the task ID.

The address encoding is very simple and definethasum of the SoC com-
munication base-address of the target PE and the task ID of the subtask, issuing
the requestslf it is a burst request, the address remains constant.

Example:Subtask;r ; finishes execution and triggers a write request to subtask,
71,2, located in a PE having a base-address of 0x100h. The task tf fousing 4-
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bit subtask encoding, is Ox11h. Thus the address associated with the write request
becomes 0x111h. When the target PE receives the request, the IO task finds the
task ID of the non-local subtask, simply found by doing the reversed procedure (i.e.
subtracting the PE base address from the address, associated with the request).

6.4.3 Data encoding

Since a task in the abstract PE model does not implement any functionality, the
data to transmit for write transfer are dummy (e.g. zero or random). However,
for a response, the transmitted data must equal the task ID of the subtask, issuing
the response. This applies as well to all data packets, in multiple responses (burst
read).



Chapter 7

MPSoC framework overview

This chapter gives an introduction to the new MPSoC simulation framework, based
on the abstract PE model, extended to support low-level inter-processor communi-
cation. A brief introduction to the different new modules and extensions done will
be presented. The aim is to give an overview of the framework, before presenting
the implementation specific details in the following chapter.

OCP interface boundary

OCP 2.0 on-chip communication interf face

Figure 7.1: Simplified framework block diagram

Figure[7.1 shows simplified block diagram of the framework; here With
PE’s instantiated. Solid lines between objects sgelink _mp communication
channels while dotted lines indicates objects access through pointers. Relative to
the block diagram with figurie 5.1, presented in chapter 5, an abstract PE has been
extended with an 10 task and an OCP2.0 compliant IO device model.

At top level, three other new modules have been incorporated: a parser, a global
synchronization database and a performance monitor. A single instance of each of
these modules connect to all PE. This connection is established through pointers

37
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to the modules, provided to the PE module constructor, during object creation.
Through the pointers, different public methods are accessed in the modules.

7.1 Top-level modules

The top level module combines the different modules in to a structural, defining
the simulation framework as illustrated in figure]7.1. However, this abstract PE
based MPSoC simulation framework relies on an OCP2.0 based SoC communi-
cation platform to be complete, unless two PE modules are connected in a back-
to-back configuration. Different examples of simulation framework configurations
are found on the enclosed CD-ROM/®RTS _Model/builds . These are:

pe _ocp _tl0/ Two PE’s connected in a back-to-back configuration, using OCP2.0 TLO

pe_ocp_tl1 _clk/ Two PE’s connected in a back-to-back configuration, using OCP2.0 TL1

examplel/ Two PE’s connected to a OCP2.0 TLO bus.

example2/ Four PE’s connected to a OCP2.0 TLO/TL1 bus/1D mesh/2D mesh (mixed interface).
example3/ Nine PE’s connected to a OCP2.0 TLO bus/1D mesh/2D mesh, using OCP2.0 TL1.

Example 1,2 and 3 are based on the SoC communication platform model, to
be presented in chapfer 9, page 53. They are also being used in the design space
exploration experiments, presented in chapter 10, page 63.

7.2 Parser

In the original abstract PE model, RTOS configuration and task graphs were as-
signed statically in the sense that they were hard-coded. It meant, for an example,
that whenever a task graph modification was required, the model had to be rebuild
again. To avoid this very time consuming step and to introduce overall greater

configuration flexibility, a parser module has been developed.

The parser accepts a configuration file as an input, written in a simple script
language. This file defines the boundaries of a simulation with respect to parame-
ters such as task declarations/partitioning, resource requirements as well as RTOS
configuration (selection of scheduling policy etc.) for the different PE’s. It also
contains other parameters such as SoC communication address space assignment,
data logging filename declaration etc. An example of a configuration file is found
in figure[8.8, page §1. If parsing of a configuration file is successful, the differ-
ent parameters can be obtained via dedicated public methods and then used for
dynamic object creation (e.g. task modules) etc, before a simulation starts.

Section 11.3, pade P9 presents the implementation specific details for parser
module.
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7.3 Dependency controller

The dependency controller module manages the database, describing the depen-
dencies between tasks, assigned to a simulation. It can be considergtbhala
dependency databassince it connects to all synchronizers. A synchronizer ac-
cess module when a database entry has to be cleared (task finished) or when a
dependency-resolved check is performed, to see if a task can be released for ex-
ecution. In the original synchronizer, the database was located locally in a syn-
chronizer. However this approach is only suitable for intra-task dependencies and
will not work for inter-task dependencies, unless the synchronizer is common to
all PE’s or the synchronizer is modified significantly. To maintain a modular ap-
proach and still keep the original simplicity of the synchronizer, the approach has
been to implement a global synchronization database module, added on top of the
existing synchronizer. Database access is done indirectly through method calls to
the dependency controller module, using a pointer. This pointer is provided to the
synchronizers, during object creation. Using this approach, only very few changes
have been required in the original synchronizer (e.g. removal of the dependency
database and exchanging some functionality with methods call to the dependency
controller module).

Another problem with the original synchronizer was, that it did not allowed pe-
riodical execution of task graphs: once a task graph completed, the dependencies
were lost, and uncontrolled and concurrent task execution would follow afterward
(if the tasks were periodically). This problem has been solved in the new depen-
dency controller module, since the dependency database for a task graph is restored
whenever the task graph execution completes.

In conjunction to this, a newask blocking/unblockingeature has been im-
plemented. That is, a taskith dependencies will automatically block itself, after
completed execution. By blocking meaning that a task cannot issSERESADY
message to the synchronizer, once it has completed execution. This is to avoid,
that a task does not accidentally starts executing again, if the task period becomes
shorter than the total task graph execution @mbnblocking is managed by the
dependency controller and is initiated immediately after a task graph completes.
When this happens, all tasks belonging to the task graph gets unblocked. This
is accomplished by accessing a dedicated method in the periodic task module for
this purpose. In conjunction to this, the dependency controller has a database con-
taining pointers to all tasks objects. The task pointer database in being initialized,
during task object creation in the different PE’s. This is done by passing a pointer
to the task object, from the PE to the dependency controller, as soon as the task
object has been created.

Sectior] I1.J7, pade 1p8 presents the implementation specific details for the de-
pendency controller.

This would otherwise happens, since the dependencies remain lost, until the database is restored
again.
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7.4 Performance monitor

The performance monitor module serves to monitor different figures, covering PE
performance and the end-to-end deadline for task groups with multiple subtasks.
The figures are a part of the data logging and useful when doing design space
exploration. All tasks and PE’s access this module through a pointer to the object.

7.4.1 PE performance

PE performance covetsilization andlO task executiofigures.

« Utilization is a measure for how efficient a PE is being used, defined as the
ratio between the no.of.clock cycles, used for task execution and the total
no.of simulation clock cycles. Thus an utilization of 1 would indicate a PE
has been in use for the entire simulation period, while an utilization of O
would indicate that a PE has not been used at all.

« |0 task executioncovers a series of activity figures, related to inter-processor
communication. They relate to the usage of the IO task for a particular action
(e.g. write transmit/receive etc.). The figure for a particular action is defined
as the ratio between the no.of clock cycles, used for this action and the total
no.of simulation the PE has been in use.

The PE performance figures are calculated, based on activity reporting done
by the tasks, when execution starts and finished. This is done by calling dedicated
reporting methods in the performance monitor module.

7.4.2 End-to-end deadline

The performance monitor module also monitors the end-to-end deadline for task
groups with multiple subtask. For this purpose, it keeps a database containing
information about task groups having multiple subtask (subtask count and end-to-
end deadlines). This database is initialized before simulation starts, by fetching
the information from the parser module. The database is being updated whenever
a task becomes ready or finishes execution. This is done by calling a dedicated
reporting method in the performance monitor module, causing the database entry
for the particular task group to be updated. At each clock cycle the database is
checked to see if any end-to-end task groups have missed their end-to-end deadline.
If a deadline has been missed (that is not all tasks have completed execution), the
module reports missed end-to-end deadline.

The performance module is not mandatory and may be left from the simulation
framework, if end-to-end task deadlines or PE performance figures are without
interests.

Sectior] 11.B, page 1B4 presents the implementation specific details for the per-
formance monitor module.
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7.5 10 task

The 10 task models an 10 device driver. It is used for protocol management at
application level, in conjunction to inter-processor communication. This covers
encoding/decoding of synchronization messages between local and external tasks,
having preceding/succeeding inter-task dependencies. It is based on the protocol
described in sectidn §.4, pggg 35. 10 task execution follows the approach described
in sectior] 6.2.1, page B1.

Sectior] 11.p, pade IP8 presents the implementation specific details for the 10
task module.

7.6 10 device model

The 10 device models the hardware IO device, implementing the protocol used in
the SoC communication interface. In this project the target protocol is OCP 2.0
and an 10 device model has been developed for TLO and TL1 respectively. Both
models have a fully multi-threaded OCP interface and are configurable (signal-
wise), relative to the channel they connect to. An IO device consists of an OCP
master and slave, to handle write and read requests. Further, buffers have been
implemented for received write and response data. A buffer exists for each thread
and the sizes are configurable. Usage of buffers allows for out-of-order thread
execution as well as 10 task prioritizing, related to receiving data (not considered
in this framework).

Sectior] 116, pade I]L5 presents the implementation specific details for the 10
device modules.

7.7 10 task-10 device communication link

The communication link between the |10 task and 10 device is based on two

sc _link _mpchannels for transmitting/receiving messages between the modules.
The channels are not used for transporting physical, data related to inter-processor
communication (e.g. address/data), but used for high-level interrupt-like messages
only. It means that wheneverrew inter-processor communication event starts
(e.g. a new request phase), a message will be send from the 10 task or IO device
or vise versa. Access to the physical data and addresses is prondiezttly
through pointers, encapsulated in the message. These pointers point at buffers
(deque objects) from where address and/or data can be fetched. The advantage of
this approach is speed improvement, due to redacetink _mpchannel activity.

Sectior{ I1.4, padge ID6 presents the communication link channel approach in
more detail.
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7.8 Periodic task model

Small extensions have been added on-top of the original periodical task model.
These are summarized below:

 Self-blocking. Means that whenever a task with dependencies finished exe-
cution, it cannot start executing again, before it gets unblocked by the depen-
dency controller. Self-blocking has been implemented for synchronization
reasons and previously been described in seftign 7.3. Enabling/disabling of
self-blocking as well as unblocking is controlled through calls to dedicated
methods in the periodic task module.

» Dynamic resource requirement allocationThis is a new improvement, al-
lowing support for a fully user defined number resource requirements. The
original task model always had three resource requirements, no matter what.

« Inter-dependency configuration A task having preceding interdependen-
cies must be configured to initiates an inter-processor communication event,
when task execution finishes (see also setion|6.2.1]page 31). In conjunction
to this, it must hold all information related to the this (transaction type, data
transfer size, target PE addresses etc.). For this matter, a method has been im-
plemented for passing the SoC transaction information onto the task, which
will be stored in a database. Task configuration is done, before the simulation
starts and is managed by a task configuration method in the PE module.

« End-to-end task identification Due to the new support for end-to-end task,
a task is now defined by group ID and subtask ID.

7.9 PE module

The PE module connects the different submodules into a structural, forming the
PE system-level model. RTOS modules and tasks are selected and created dynami-
cally, relative to the declarations done in the configuration file. Module objects are
created and connected in the PE module constructor.

The PE module contains a method for configuration of assigned tasks with pre-
ceding inter-dependencies. This method is called after the construction of the PE.
An algorithm scans the dependency database, obtained from the parser, and deter-
mines if outgoing inter-dependencies exists for any of the assigned tasks. If so,
information about the target task(s) (e.g. base address of the target PE) is provided
to the assigned task. The configuration ensures that an inter-processor communi-
cation will be initiated when task execution finishes.
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7.10 Simulation data logging

The framework supports logging of different types of simulation data, ranging from
a text based log file, containing real time state of the different PE’s to a VCD
timing file showing the different task states versus time. Depending on the SoC
communication platform being OCP TLO or TL1, different types of communication
trace logging is possible as well. The different types of simulation data will be

presented in sectign 10.1.3, pagé 65.






Chapter 8

The configuration file

This chapter gives a description of the configuration file as well as the syntax to use
when creating a configuration file. The configuration file defines the boundaries of
a simulation, with respect to task declaration, partitioning, RTOS configuration,
PE address assignment etc. It is being read by the parser module, and if parsing is
successful, the different information, from the file, can be obtained from the parser
and used for configuration as desired. In conjunction to this, it must be empha-
sized that themeaningof the different arguments, for a particular declaration, is
only applicable to implementation of this framework, due to the way it has been
integration with the parser mod[ije

Readers not interested in a more detailed description of the declaration syn-
tax may read sectidn 8.1 and then skip ahead to figuile 8.8,[page 51, showing an
example of a configuration file.

8.1 Declaration types

The configuration file environment is very simple and based on a gettdration-
types mnemoni¢sdentifying what to declare (e.g. dependency database or PE
module behavior). After a declaration-type mnemonic follows byatttealdecla-
ration, which for some declaration-types may consists of a series declarations. The
syntax to use for a declaration depends upon the declaration-type mnemonic. In
general the syntax is very simple and easy to understand and use.

The different types of declarations to include in the configuration file, for this
framework, is summarized in taljle 8.1 below. Some declarations may be left out,
while others are mandatory.

1The meaning of the different arguments are not dictated by the parser, thus other implementa-
tions might use the configuration data, available from the parser, differently.
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| Declaration-type mnemonic [ Description | Requirement |

module PE module behavior declaration (e.g. what kind [oMandatory
protocols to use in the RTOS)

sub _task _map Task declaration (timing constrains etc.) Mandatory

ee _deadline End-to-end deadline declaration Optionalt

dependency _map Dependency database declaration Optionalf

ved file VCD trace filename declaration (task state timing) | Optional

log file Monitor log file declaration (message monitoring) | Optional

screen _dump Message monitoring screen dump enable/disable | Optional

Tt Mandatory if an end-to-end task consists of multiple subtasks.

t Mandatory if there are end-to-end tasks with dependencies.

Table 8.1: Declaration-type and requirement overview.

8.2 Declaration syntax

This section describes the declaration syntax used in the configuration file. Before
presenting the syntax for the different types of declarations, a set of general rules
are summarized.

Declaration-type mnemonics are not case sensitive.

The order of the different types of declarations (identified by the declaration-
type mnemonic) may be arbitrary.

The configuration file may include comments. A comment must always start
with #. Everything afterward is treaded as a comment until reaching newline.
Comments are in general allowed anywhere in the configuration file, also
after a completed declaration.

Space and tab are allowed anywhere in the configuration file, also in a dec-
laration before and after a parameter separator (e.g. comma).

Newline is also allowed anywhere in the configuration file, except in the
middle of an incomplete declaration (e.g. before or after a parameter separa-
tor). For declaration-types supporting multiple declarations, each declaration
must be separated by newline.

8.2.1 module

The module declaration-type mnemomnimpdule is used for defining the behavior

of the different PE to instantiated. This includes address assignment as well as
the types of protocols to use in the synchronizer, resource allocator and scheduler
respectively. An uniquenodule declaration is required for each PE, where the
PE is identified by ID argument associated with thelD" declaration name. In
conjunction to this, all behavior declarations must be done within the boundary of
the declaration region, identified by the closed brgce.}. The declaration order
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may be arbitrary. Note that declaration names are case sensitive. [Fidure 8.1 shows
the syntax and an example for subtask declaration.

Syntax and example Argument description
Module behaviour declaration <pelD> 1D of the target PE for the behaviour
description t
. <low> Lower address boundary. t
Syntax: <high> Upper address boundary. t
<synchronizer_type> i i ifi
nodute { y! _type S)Tchronlzer protocol identifiert
“pelD” = <pelD> 0=DS
"address™ = <low>:<high> <allocator_type> Resource allocator protocol identifiert
“synchronizer" = <synchronizer_type> 0 = Simplified basic PI
"resource_allocator” = <allocator_type> A v
soheduler = <scheduler types <scheduler_type> Scheduler protocol identifiert
"monitor" = <flag> 0=RM
3 1=EDF
<flag> Message monitoring enable/disable flag
for the PR, identified by <pelD>.
Example:
Disable = {O|no| false}
module { Enable = {1]yes| true}
“pelD”
"address" x0000: 0xOFfc Boolean mnemonic not case sensitive.

"'synchronizer"
"resource_allocator”
“'scheduler”
“monitor™

<K oooQor

@
[

t Parameter expressed using decimal or hexadecimal (e.g. Ox or
OxF) notation.

Figure 8.1: Syntax and example fmrodule declaration.

8.2.2 sub task _map

The subtask declaration-type mnemomsigh _task _mapmust be declared before
doing any task declaration. The mnemonic is only allowed to be declared once in
the configuration file (multiple declaration would otherwise introduce ambiguity).
Thus all task declarations must be done within the boundary of the declaration
region, identified by the closed brade,..}.

If a subtask has a resource requirement, it must be specified at the next line fol-
lowing the task declaration (comments in-between is allowed). Multiple resource
requirements must also be separated by a newline.

The subtask ID of a subtask belonging to a particular task group is not specified.
The reason is, that the ID will be assigned automatically by the parsiee same
order as the subtasks are declared

Figure[8.2 shows the syntax and an example for subtask declaration.

8.2.3 ee_deadline

The end-to-end deadline declaration-type mnemoneérisieadline  and must

be used when declaring the end-to-end deadline for end-to-end tasks with multiple
subtasks. The mnemonic is only allowed to be used once in the configuration
file (multiple declaration would otherwise introduce ambiguity). Thus all deadline
declarations must be done within the boundary of the declaration region, identified
by the closed bracsd,...}. For end-to-end tasks only consisting of one subtask, the
declaration will be ignored and the deadline, specified in the task declaration, will
be used instead. If all assigned end-to-end tasks only consist of one subtask, the



48

Chapter 8. The configuration file

Syntax and example

Argument description

Subtask declaration <name> Task name. Letters, digits and
underscore (_) is allowed. Space or
. tab is not allowed.
Syntax: <pelD> 1D of the target PE where to assign the
sub_task_map { task. 1
“<name>",<pelD>,<parentID>,<p>,<BCET>,<WCET>,<dl>,<offs>,<comm>,<data> <parentiD> ID 9fthe parent (end-to-end) task, to
<resourcelD>,<RRT>,<CSL> which the subtask belongs to. T
- <p> Task period, specified in no. of clock
« .- 5 cycles. t
'<name>’ ,<pel?>,<parentlD>,<p>,<BCET>,<WCET>,<d|>,<offs>,<comm>,<data> <BCETS Besbcaseexecuﬂonthne,spedfbdin
no. of clock cycles. t
¥ <WCET> Worse-case execution time, specified in
no. of clock cycles.
<di> Subtask deadline, specified in no.of
Example: clock cycles. Only applicable if the
parent task consists of one subtask.
sub_task_map { <offs> Release offset for the first instance of
“EndToEnd_Task1_1",2,1,6000,476,698,100000,0,write  ,23 the subtask. Specified in no. of clock
::E:gggﬂg?:ﬁﬁk %i M '433'233‘ T ?ng . 18 cycles and relative to zero time. 1
ToEnd_Taskd_3".2, . 93,117, . *,response, <comm> SoC transaction type identifier. The
2,20,27 identifier is either a mnemonic or digit.
. 3.50,60 e o Valid mnemonics are
) EndToEnd_Taskl_4",1,*, ,108,216, L,*,null ,0 null,write, read,response (not
case sensitive), while the corresponding
digitsare 0,1,2,3.
<data> Amount of data associated with a SoC
transaction. Only applicable, if the
subtask has interdependency. t
<resourcelD> | |D of the resource to request.
<RRT> Resource request time, relative to the
start of task execution. Specified in
no.of clock cycles. t
<CsL> Critical section length. Specified in no.
of clock cycles. t
T Parameter expressed using decimal or hexadecimal (e.g.
OxF or OXF) notation.
* is a value-inheritance operator, causing the argument
from the previous declared subtask to be inheritated.
Cannot be used for resource declaration arguments.
Figure 8.2: Syntax and example feub _task _mapdeclaration.
ee_deadline declaration may be left out. Figure B.3 shows the syntax and an

example for the end-to-end deadline declaration.

Syntax and example

Argument description

End-to-end deadline declaration

Syntax:

ee_deadline {
<parentID> = <ee_dI>

}
Example:

ee_deadline {
1 = 20000
2 = 33000

<parentlD>

Parent ID of the end-to-end task to
assign an end-to-end deadline. t

<ee_dI>

The end-to-end deadline, specified in
no. of clock cycles.

t Parameter expressed using decimal or hexadecimal (e.g.
Oxf or OXF) notation.

Figure 8.3: Syntax and example fee _deadline

declaration.
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8.2.4 dependency _map

The dependency database declaration-type mnemodépisndency _map. The
dependency database declaration is a symmetrical NxN matrix, with boolean en-
tries. The matrix declaration must be done within the boundary of the declaration
region, identified by the closed brade...}. The row and column index maps to the
task group ID and a marked entry indicates a dependency between two end-to-end
tasks. Dependencies between subtasks in an end-to-erate¢asit to be specified

since they will be assigned automatically by the parser. If no dependency exists be-
tween any of the declared end-to-end task, the dependency declaration may be left
out. A description of the dependency database encoding is presented in section
[6.1.3, pagé 74. Figufe 8.4 shows the syntax and an example for the dependency
database declaration.

Syntax and example Argument description
Dependency declaration <boolean> A Boolean value, expressing if a
dependency exists between two end-to-
Syntax: end tasks. Valid values are 0 and 1. A

relation_map { marked entry indicates a dependency.

<boolean>,<boolean>, . . . , <boolean>
<boolean>,<boolean>, . . . , <boolean>

¥
Example:

relation_map {
0,0,0,

roool
ocooo

0,1,0,
0,0,1,
0,0,0,

i

Figure 8.4: Syntax and example fdependency _mapdeclaration.

8.2.5 log file

The monitoring log file declaration-type mnemonidag _file . It must be de-
clared, if the message monitoring is to be logged to a file. Argument to be provided
is the filename. Only one log file declaration-type mnemonic is allowed. If the dec-
laration is left out, no log file will be created. Figdre]8.5 shows the syntax and an
example for the log filename declaration.

Syntax and example Argument description
Log filename declaration <filename> The filename of the Ul monitor log file.
Letters, digits and underscore (_) is
Syntax: allowed. Space or tab is not allowed.

log_file = “<filename>”
Example:

log_file = “MP3_Decoder.log”

Figure 8.5: Syntax and example flog _file declaration.
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8.2.6 vcd file

The VCD file declaration-type mnemonicysd _file . If the declaration is in-
cluded in the configuration file, the states of the assigned tasks will be logged to
the VCD file, during simulation. Argument to be provided is the filename. Only
one VCD file declaration-type mnemonic is allowed. If the declaration is left out,
no VCD file will be created. Figure 8.6 shows the syntax and an example for the
VCD filename declaration.

Syntax and example Argument description
Log filename declaration <filename> The filename of the VCD trace file.
Letters, digits and underscore (_) is
Syntax: . allowed. Space or tab is not allowed.
ved_file = “<filename> Extension is added automatically by the
Examgle; framework. (-vcd)
vcd_file = “MP3_Decoder™

Figure 8.6: Syntax and example fecd _file  declaration.

8.2.7 screendump

The screen dump declaration-type mnemosaeendump is used for enabling

or disabling the message monitoring dumping to the screen, during a simulation.
If the declaration is left out, screen dumping will be enabled as default. For long
simulations it is recommended to disable screen dumping, since it will increase
performance significantly. In this case it is recommended to enable the log file
option instead. Figurie 8.7 shows the syntax and an example for the screen dump
declaration.

Syntax and example Argument description
Screendump flag declaration <flag> Ul on-screen monitor enable/disable
Boolean flag.
Syntax:
Disable = {O]no| false}
screen_dump = <flag> Enable = {1]yes|true}
Syntax:

Boolean mnemonic not case sensitive.

screen_dump = true

Figure 8.7: Syntax and example fecreendump declaration.
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screen_dump = no # if this declaration is left out, default will be yes
log_file = "MP3_logfile" # if this declaration is left out, no log file will be created
ved_file = "MP3" # 1f this declaration is left out, no vcd file will be created
module {

"'pelD" =1

“address" = 0x0000:0x0ffc

#

# module behavior configuration for PE#1

#

"'synchronizer" =0

"resource_allocator” = 0

“scheduler™ =0 # O=RM|1=EDF

“monitor" = yes
module {

"'pelD" =2

“address" = 0x1000:0x1ffc

#

# module behavior configuration for PE#2
#

"'synchronizer"
"resource_allocator"”
“'scheduler™
“monitor"

# O=RM]1=EDF

ee_deadline {
7 = 25000 # for end-to-end task, grouplD 17
8 = 25000 # for end-to-end task, grouplD 18

sub_task_map {

NOTE: * is an value-inheritance operator, causing the argument from the
previous declared task to be inherited.

+ +

| MP3 Decoder -> Will be mapped to task graph#0 |

+

<name>,<pelD>,<grouplD>,<per>,<BCET>,<WCET>,<dl>,<offset>,<transer_type>,<transfer_size>

WO HEHE

""MP3_Decoder_Taskl1™ ,1, 1, 30000, 45, 45, 25000,0,write,100
""MP3_Decoder_Task2" ,1, 2, * 19, 20, * ,0,nu .0
""MP3_Decoder_Task3" ,2, 3, *, 19, 20, * ,0,null ,0
""MP3_Decoder_Task4" ,1, 4, * , 1471, 1545, * ,0,null ,0
""MP3_Decoder_Task5" ,2, 5, * , 1471, 1545, * ,0,nu ,0
""MP3_Decoder_Taské6" ,1, 6, * , 567, 595, * ,0,nu ,0
“"MP3_Decoder_Task7" ,2, 7, * , 567, 595, * ,0,write,100
“"MP3_Decoder_Task8" ,1, 8, * , 2557, 2685, * ,0,write,100
“"MP3_Decoder_Task9" ,2, 9, * , 103, 108, * ,0,nu ,0
“"MP3_Decoder_Task10",1,10, * , 103, 108, * ,0,nu .0
""MP3_Decoder_Task11",2,11, * , 852, 895, * .0
""MP3_Decoder_Task12",1,12, * , 852, 895, * .0
""MP3_Decoder_Task13",2,13, * , 5797, 6087, * .0
""MP3_Decoder_Task14",1,14, * , 5797, 6087, * .0
""MP3_Decoder_Task15",2,15, * 10667,11200 * ,0
""MP3_Decoder_Task16",1,16, * ,10667,11200, * ,0

# + +

# | end-to-end task, grouplD 17 |

# + +
“EndToEnd_Task17_1" ,1,17, 50000, 1471, 1545,100000,0,read ,10
"“EndToEnd_Task17_2" ,2,17, * o, 71, 105, * ,0,response, 10
“EndToEnd_Task17_3" ,1,17, * , 1471, 1545, * ,0,null .0

# + +

# | end-to-end task, grouplD 18 |

# + +

"EndToEnd_Task18_1" ,1,18, 60000, 476, 698,100000,0,write .37
"EndToEnd_Task18_2" ,2,18, * , 1071, 1105, * ,0,read .29

"EndToEnd_Task18_3" ,1,18, * , 931, 1245, * ,0,response,29
1,10,5 # resource request 1
2,20,17 # resource request 2
3,200,8 # resource request 3
4,700,33 # resource request 4
“EndToEnd_Task18_4" ,2,18, * ., 931, 1245, * ,0,null .0

relation_map {

-
=)

#
#0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 <-- this is the same as the grouplD
#

# MP3 Decoder dependencies

oo
CONOUAWNR O

LLLLLLPLeeLeeerrRRee
LPLLLLLLeLeeRReeRe
LLLLLLLLLLPEPLLPLeRe
LLLLLLLLRreRPLLLeRe
LPLLLLLRRoLPLReReRe
LLLLLLLLELLLPLLLRPe
LLLLLLPERPRLLRPLLPLeRe
LLLLRrLLLLLReLLeRe
LPLPrPLLLLeLeeReReRee
LLPLELPLLLLLLLPLPLPLRPe
LLPLLLLLRLLLPLLeRe
LrLeLLPLeeeLeLeeeeeRee
PRLLPLLLLLLLPLLLRPe
LLLLLLLLLLLLPLPLPLRPe
0000000000000 O0O0O00O
HEPE PR G G N I I IR B AR

0000000000 OrOOO

Figure 8.8: Example of a configuration file.






Chapter 9

SoC communication platform
model

This chapter presents a SystemC based model for abstract SoC communication
modeling, developed in conjunction to the extended abstract PE model presented
in the previous chapter. The SoC communication platform model has the following
features and characteristics:

» Topology modeling (currently available):

1. 1D/2D mesh NoC based on packed switched traffic and minimal path
routing, where links are granted on a first-come-first-served principle
and routers are assumed to have infinite buffers and zero latency.

2. Single shared bus granted on a first-come-first-served principle.
» Communication:

1. Transmission of real data between nodes (e.g. RTL).
2. Support for multi threaded out-of-order communication.
3. Support for OCP 2.0 at TLO and TL1.

« Implementation approach:

1. Modular architecture which makes it easy to implement different SoC
communication topologies as well as different communication proto-
cols; also at different abstraction levels.

2. Fully configurable node count.

Figure[9.1 shows the architecture of the SoC communication platform model.
What makes this model especially interesting is the ability to support communi-
cation at low level (e.g. RTL) while still maintaining an abstract description of
the underlying communication topology (e.g. mesh or bus). An advantage from

53
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this approach is speed improvement simulation wise (relative to low level NoC
implementation). The drawback may be reduced accuracy, depending on the im-
plementation detailedness in the SoC allocator.

SoC communication interface (i.e. OCP 2.0)

10 port; 10 ports 10 porty

A A [

4

Intermediate
adapter,

Y

Intermediate
adapters

A

Intermediate
adaptery

Intermediate
adapter;

SoC allocator

| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
i i
| Y i
| SoC |
} resource usage }
| buffer i
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I

v

SoC scheduler

]

Figure 9.1: The SoC communication platform model architecture.

9.1 Module descriptions

From a top level point of view, the model consists of two main modulekD a
adapter mode{composed of an IO port and an intermediate adapter) auha
munication layer model or SoC communication processor (composed of an allo-
cator, resource usage buffer and scheduler). The characteristics of the different sub
modules are briefly summarized below:

IO port Models the physical hardware port and implements and manages the SoC
communication protocol.

Intermediate adapter Manages request/response messages to/from the 10 port
and serves as a message converter between the IO port and the SoC com-
munication platform model. For an example, when a request is received
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from the 10 port, a correspondirtgansport messagéequivalent to a data
package) will be created and issued to the NoC at the same time as the inter-
mediate adapter starts fetching the actual data coming from the 10 port.

SoC allocator Models the SoC communication topology (e.g. mesh or bus) and
serves to minimize conflicts over shared communication resources (e.g. links
and routers). It also manages the routing of the transport messages.

SoC resource usage buffeModels occupation of a shared communication re-
source (e.g. when a link is being used), by transport message buffering
during the resource usage period.

SoC schedulerModels the scheduling of transport messages in case of resource
contention. For an example, for a NoC topology it could be used to model
the management of network service requirements such as guaranteed service
(GS).

The motivation for having refined the 10 adapter model into an 10 port and
intermediate adapter has been done for modular reason; that is to separate the com-
munication handling to/from the SoC communication layer model from communi-
cation handling to/from the IP core. This also simplifies the implementation of the
IO port model.

The exact behavior of the different modules and how they interact will de-

scribed later in sectign 9.3, page 57.

9.2 Module communication

The communication between the modules are based oactHank _mp model
available from the SystemC Master/Slave library. Data transferred through links
arepointersto message objects, similar to the approach being used in the extended
abstract PE model. See also secfion 11.1.1, page 87.

The communication link between the 10 port and the intermediate adapter dif-
fers from the remaining communication links in the SoC communication model,
with respect to the message type. This communication link follows the same pro-
tocol being used in the abstract PE model, between the 10 task and IO device
model. See also sectipn 11J4.2, page 107. This also means that an 10 device model
used in the extended abstract PE model may be used as an 10 port in the 1O adapter
model and vise versa.

The remaining links in the model serves to communicate pointers to transport
messages. A transport message is generated by the intermediate adapter when-
ever a new inter-processor communication event starts; that is when a new re-
sponse/request phase is being received by the 10 port to which it connects. The
transport message encapsulates information about the response/request and may
float around in the SOoC communication layer model, until it is ready to be released
to the destination 10 adapter. The transport message may also be considered as a
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single request/response package encapsulating all the datapsipometransport
message will be generated for a particular inter-processor communication event
(e.g. burst write).

A transport message is being defined by the stnmt,_ message _type de-
scribed in tabl¢ 9]1. The struct consists of entries related to the inter-processor
communications, used and maintained by the intermediate adapter. It also consists
of entries used and maintained by the SoC communication layer model for routing
management. The upper and lower part of table 9.1 shows the entries related to the
inter-processor communication and routing management respectively.

Since a transport message encapsulates routing information as well as all the
data related to the inter-processor communication, it might be considered equiv-
alent to packed switched transmission. This however depends on the topology
modeled by the SoC allocator, and how it manages a transport message.
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[ Type | Name

Description ]

0

unsigned int type Identifying the transaction type. Valid mnemonig
are: WR, RD, RESP.

unsigned int threadlD The thread ID associated with the particular transac-
tion.

bool singleReq Only applicable for a burst read request, and identi-
fies, if the request type is single (true) or non-single
(false).

unsigned int dataUnits Data transfer size. Equivalent to the burst length.

deque<unsigned int>* addrQ Pointer to a buffer containing the addresses asspci-
ated with a request. The buffer is created and main-
tained by the intermediate adapter, initiating the trans-
port message.

deque<unsigned int>* dataQ Pointer to a buffer containing data associated with
a request/response. The buffer is created and main-
tained by the intermediate adapter, initiating the trans-
port message.

unsigned

int comm Action identifier. Valid mnemonics are READY,
REFUSE, GRANT and RUN.

(IJ

unsigned int from The sourcenode ID (IO adapter) from where th

transport messages originate from.

unsigned int to Thedestinationnode ID (IO adapter) where the mes

sage is hitting at.

unsigned int now A node ID identifying/modeling the current locatiop
of the transport message in the SoC communication

layer.

unsigned

int CSL Used as a critical section length watchdog timer |in
conjunction to usage of a shared communication [re-
source (e.g. link).

unsigned int  (1x10 array) resourcelD Identifying the shared communication resource cur-
rently used/required by the transport message. The ID
is an array, due to the implementation of the 1D/2D

mesh allocator (described later).

Table 9.1: Transport message struwic _message _type . Entries in the upper
part of the table relates to the inter-processor communication, while entries in the
lower part is used by the SoC communication layer model for routing management.

9.3 Model behavior description

This section presents a behavior description of the SoC communication platform
model, starting with the approach for communication task modeling. This is fol-
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lowed by a more in-depth behavior description of the different modules.

9.3.1 The communication task

From a high-level perspective, an inter-processor communication can be consid-
ered as a task. Assume two PE’s, PE1 and PE2 are connected to the framework
and that a simple application, consisting of two tagksand,, wherer; < 7,

have been partitioned in such way that— PE1 andr, — PE2. Thus in this
simple scenario, inter-processor communication is required, due to the emergence
of an inter-task dependency. The inter-processor communication can modeled as a
communication task;y,c in betweenr; andr,. This is shown in figurg 9] 2.

@ ’

TsoC N SoC commumcan

EH DA o
\ ,’

‘Csc

Task decomposmon Architecture mapping

Figure 9.2: inter-processor communication modeling.

Depending on the topology, the communication taskc can be further de-
composed into a subset of tasks, connected in a chain. These tasks correspond to
the usage of shared communication resources like links and routers, used when
the data float around in the network layer. In this framework, the foundation for
the modeling of the communication task;,c is based on the transport message
issued by the intermediate adapter. This message will float around in the SoC com-
munication layer model, until it is ready for being released to the destination 10
adapter. The time interval between when an intermediate adapter issues a transport
message and when the message is being released to the target 10 adapter and the
inter-processor communication has been done, corresponds to the communication
task execution time. This time interval is dynamic and depends on the following
basic factor:

 Data transfer size and bandwidth available.
» Topology and distance (link-wise) between source and destination 10 adapter.

« Communication resource contention, if any.

The message floating is managed by the SoC allocator (since it models the
topology) and simply models the different subtasks that a communication task
may consists of (e.g. the usage of links and routers) In conjunction to the mod-
eling of shared communication resource usage, a transport message get buffered in
the SoC resource usage buffer, each time a new resource has been granted. The
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amount of time a message gets buffered, corresponds to a certain resource occupa-
tion time/critical section length (CSL), determined by the SoC allocator (relative
to data transfer size and bandwidth).

The next sections explain how the communication modeling has been imple-
mented, by giving a brief behavior description of the different modules. Imple-
mentation details are presented in sedfion 12, 139.

9.3.2 10 adapter model

The 10 adapter model consists of the 10 port and intermediate adapter model.

Receiving from the SoC interface

When an 10O port receives a hew request/response phase, it SRE#Amessage

to the intermediate adapter. See tgble [11.6, 111 for the types of messages
coming from the 10 port model. This causes the intermediate adapter to perform
two operations:

1. Create buffer objects for address/data storage and initiates the fetching of ad-
dress/data available from the IO port (in each clock cycle, new address/data
is fetched pushed onto the buffers. This process continues until all the ad-
dresses/data, associated with the inter-processor communication event has
been fetched).

2. Create &READYtransport message to the SoC communication layer model,
targeting the NoC allocator.

The transport message contains the pointers to the address/data buffer objects
as well as inter-processor communication information likes transaction type, data
transfer size and thread ID. The pointers will be used by the destination |O adapter
when fetching the address/data associated with the inter-processor communication
event. Besides the inter-processor communication information, the message also
contains arouting information identifying the source and destination node ID’s
as well as the current initial position of the message (which initially equals the
source node ID). The routing information is store in ft@n , to andnow fields
in the message and used by the SoC allocator for the actual routing management.
See also table 9.1, pafe|57. Determining the destination node ID depends on the
inter-processor communication event being a request or a response to a previously
initiated read request. If it is a request, the intermediate adapter finds the desti-
nation node ID from the address using a look-up table defining the address space
mapping of the different IO adapters node ID (initialized before the simulation
starts). For a response, the node ID is found from a look-up table holding the
source ID of the 10 adapter previously issued read request transport message. The
look-up table is addressed using the thread ID. Thus using the thread ID associated
with the response, the destination node ID is fetched from the table.
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Transmitting to the SoC interface

When an intermediate adapter receiveR@Ntransport message from the SoC
resource usage buffer, it means that the transport message has reached the desti-
nation 10 adapter. This causes the intermediate adapter to issue a message to the
10 port, starting the actual inter-processor communication afterward. The message
contains the SoC communication information fetched from the transport message
(address/data buffer pointers, transaction type, thread ID etc.).

If the transport message relates to a read request, the source ID of the 10
adapter, initiating the transport message, is captured and stored in a look-up ta-
ble for later use, when the response is coming. See also the description in the
previous section, regarding the response handling procedure.

9.3.3 SoC allocator

The SoC allocator manages the usage of shared communication resources such as
link. Transport messages received by the SoC allocator are aRBf® Ymes-
sages and can be considered as a communication resource egldasguest mes-
sage at the same time.

When the NoC allocator receives a READY message it looks at the position in-
formation from ,to andnow) and determine what the next routing action should
be for the message and thus which resource to use. In conjunction to this, three
possible position scenarios exists:

e now == from : The transport message has been released from the initial
node position; that from the source 10 adapter.

« now != from AND now != to : The message has reached a certain
node in the SoC communication layer. Here the message has been released
by the SoC resource usage buffer.

« now == to : The transport message has reached the destination IO adapter
and the inter-processor communication has been processed as well (i.e. inter-
processor communication completed). This message comes from NoC re-
source usage buffer.

If the message comes from the intermediate adaptav (== from ) the SoC
allocator performs the following operations:

« Selects the next shared communication resource to use and updates the
resourcelD entry in the message with the corresponding resource ID. The
resource selection is done relative to the curranty) and destinationt¢ )
position and reflects the topology modeled by the NoC allocator

» Updatesnow to reflect the message position as it will &iter the resource
has been used. The is also topology dependent as well.
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« Initialize the CSL watchdog timer, relative to the data transfer size, available
from the transport messagaataUnits ).

» Check if the requested resource is already occupied by evaluatiresan
vation counteifor this particular resource. If already in use (the reservation
counter is non-zero), tiRREAD Ytransport message is changed REBEFUSE
and forwarded to the SoC scheduler, where it waits until the resource be-
comes available. If the resource is free, READYtransport message is
changed to &RANTand forwarded to the SoC resource usage buffer instead.
In both scenarios the reservation counter, associated with the resource, will
be incremented.

The processing of a transport message coming from the SoC resource usage
buffer, whennow != from AND now != to follows the same procedure as
described above. However, since this message also relates to the release of a pre-
viously used resource, two operations are performed first:

1. Decrementing the reservation counter associated with the resource, identified
by the entryresourcelD  from the transport message.

2. Issuing aRELEASEMessage to the SoC scheduler, if the reservation counter
is non-zero. If the counter is non-zero, it means that there is a transport
message waiting in the SoC scheduler for this resource to become free. The
RELEASEmessage contains the ID of the released resource and causes (in
the current SoC scheduler implementation) the first pending transport mes-
sages, waiting for this resource, to be released to the SoC resource usage
buffer.

If the message indicates completion of the inter-processor communication at
(now == to ), the allocator releases the associated resource and delete the mes-
sage afterward.

9.3.4 SoC resource usage buffer

The SoC resource usage buffer models the actual resource usage mechanism, for
an example when using a link. Whenever a transport message has been granted a
shared resource by the SoC allocator, it gets forwarded to the SoC resource buffer,
which buffers the message during the critical section length (CSL). At each clock
cycle theCSL entry in the different buffered messages will be decremented, and
whenever CSL reaches zero for a message (i.e. when the resource usage occupation
time has been reached), it gets released and forwarded back to the SoC allocator
again.

However, before buffering the message, it first checks if the next target node
equals the destination 10 adapteio(v == to ). If so, it means that the inter-
processor communication also should start. Thus, it creates a copy of the trans-
port message, changing it to a RUN message and forwards it to the destination
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IO adapter. This ensures that the inter-processor communication starts when the
resource has been granted.

9.3.5 SoC scheduler

The SoC scheduler manages the scheduling of transport messages in case of re-
source contention. The current scheduler implementation does not support features
such as guaranteed service (GS). Thus pending transport messages, waiting for a
shared resource to become free, will be served in a first-come-first-served manner.
Whenever the SoC allocator refuses a transport message to use a shared re-
source, it gets forwarded to the SoC scheduler and buffered, until the resource
becomes available. Releasing a transport message happens REEEASENes-
sage is received from the SoC allocator, indicating the release of a shared resource.
The scheduler searches through the pending transport messages, until the first mes-
sage waiting for this resource has been found. The transport message is removed
from the buffer, changed to@RANTmessage and forwarded to the SoC resource
usage buffer.



Chapter 10

Design space exploration
experiments

In this chapter, the capabilities of the extended abstract PE model and SoC commu-
nication platform model will be demonstrated, through some design space explo-
ration examples. The examples integrate the abstract PE and SoC communication
models, forming different simulation framewaorks for distributed MPSoC architec-
ture and application modeling. The examples demonstrate how the models easily
can be used for architecture optimization relative to the application running on top
of it.

Three examples will be presented in the mentioned order:

1. A basic introduction using a simple simulation framework for presenting the
output data available from a simulation.

2. SoC communication topology exploration and mixture of abstraction level
in the SoC communication interface.

3. Complex system performance behavior analysis.
For all examples, the following applies as well:

« Task ID encoding, used in conjunction to address generation, has been se-
lected such that bit[3:0] contains the subtask ID. See also séctipn 6.4, page
[33 for more information.

» Fixed OCP2.0 (TL1 and TLO) channel configuration for all example. See
also TLO and TL1 configuration files in appenflix C, page] 167.

« Fictive selected data sizes associated task graph edges.

63
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10.1 Example 1: Introduction

This example serves as an introduction to the frameworks and presents the different
results available from a simulation. It is based on modeling a simple architecture,
consisting of two extended abstract PE's communicating through a 32-bit OCP2.0
TLO compliant bus. Application running on top is based on the MP3 Decoder task
graph available froni [23].

The source code and configuration file for this example can be found on the
enclosed CD-ROM in the directoryARTS _Model/builds/examplel

10.1.1 The simulation framework

Figure[10.1 shows a block diagram of the simulation framework. The bus model is
based on the SoC communication platform model using the SoC allocator model
for a single shared bus. Both RTOS uses RM scheduling policy. The modeled
clock period will be hs.

l L l
| | | |
: Application : : Application :
| | | |
I RTOS | I RTOS |
} model } } model }
| | | |
|| ocP20TLO | | || ocP20TLO | |
ocp20 A s
TLO
OCP2.0 TLO ‘ ‘ 0OCP2.0 TLO
BUS model

Figure 10.1: The system level model.

10.1.2 Application model

Assuming the BCET and WCET figures for the MP3 decoder application applies to
the PE’s to model, it can be found that the application is not able to execute success-
fully on a single PE, since the BCET is 41584while the deadline 2500(%:. See

also the configuration fileexamplel.task  or figure[10.2. Thus parallel tasks
must execute on different processors in order to meet the deadline requirement. For
this example the partition showed in figdire 70.2 will be used. As it can be seen,
the selected partitioning introduces inter-task dependency between three tasks. All
inter-processor communication related inter-task dependency will be modeled as
write transaction of 10x32-bit data words.
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Task ID | BCET [ns] | WCET [nS] | Data[32bit] | difns] | Tins]
11 45 45 10 25000 | 30000
21 19 20 10 25000 | 30000
31 19 20 10 25000 | 30000
41 1471 1545 10 25000 | 30000
5.1 1471 1545 10 25000 | 30000
6.1 567 595 10 25000 | 30000
71 567 595 10 25000 | 30000
8.1 2557 2685 10 25000 | 30000
9.1 103 108 10 25000 | 30000
10,1 103 108 10 25000 | 30000
111 852 895 10 25000 | 30000
121 852 895 10 25000 | 30000
13.1 5797 6087 10 25000 | 30000
14,1 5797 6087 10 25000 | 30000
151 10667 11200 10 25000 | 30000
161 10667 11200 10 25000 | 30000

Figure 10.2: MP3 Decoder task graph (partitioned).

10.1.3 Simulation output data

When running the executable system level moeedmplel.x for 30000:s and
using the configuration file for this examplexamplel.task , the following
files will be generated:

» Text based log file(ex1 _logfile ), containing the real time state of the
system level model, presented in a readable text format. From this file it is
possible to see:

— Missed subtask and end-to-end deadlines (if any).

— Task graph execution completion time.

— RTOS states of the different PE’s versus time (e.g. task execution,
preemption etc.)

— Inter-processor communication event information (e.g. address infor-
mation, burst length, thread ID etc.).

— PE utilization figures, including 10 task usage.

— Address space map for tasks having succeeding inter-task dependen-
cies.

» PE task scheduling VCD timing file(ex1 _PE.vcd ), contains the task ex-
ecution in the different PE’s versus time. From this file it is possible to see
which task is executing on a certain PE at a certain time.

* OCP2.0 TLO VCD timing files (ex1 RTLO_PE#0 andex1 RTLO_PE#1),
containing the TLO/RTL trace in the OCP interface between the bus and the
PEO and PE1 respectively.

 Task state VCD timing file (ex1 _task.vcd ), containing the states of the
assigned tasks (idle, running or preempted) versus time.
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10.1.4 Analyzing the log file

The text based log file may be useful for gaining information about the state of
the system level model at a particular time. The logging is done in a sequential
time-wise manner. Figufe 10.3 shows a section of the log file for this example. For
convenience, the complete log file has been included in appendix D| page 169.

45 ns PE#0: task(1l,1) (request to NoC: task(3,1),addr=0x1011,dataUnits=10)-> adaptor
45 ns PE#0: scheduler (start NoC write request) -> task(IO)
45 ns |oCP| PEO_TLO.IOdevice.master: sent BURST request.

| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

46 ns |ocP| soc_comm.tl0 _io_a.slave: receiving BURST request.
| s | Data handshake: yes

| L | MCmd: WR, MAddr: 0x1011, MThreadID: 0xl
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
46 ns |oCP| soc comm.tl0 io b.master: sent BURST request.

| M | Data handshake: yes

| A | MCmd: WR, MAddr: 0x1011, MThreadID: 0xl
| s | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
47 ns |OoCP| PE1 _TLO.IOdevice.slave: receiving BURST request.

| 8 | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1011, MThreadID: 0xl
| A | MBurstSeg: UNKN, MBurstLength: 10, MBurstSingleReq: 1

47 ns PE#1: task(IO) (write data ready) -> scheduler

47 ns synchronizer: READY from IO task

47 ns PE#1: scheduler (fetch data from SLAVE) -> task(IO)
55 ns |OoCP| PEO_TLO.IOdevice.master: Request completed
55 ns PE#0: task(IO) (IO task finished) -> scheduler

55 ns synconizer: releases task(2,1)

55 ns PE#0: scheduler (run) -> task(2,1)

56 ns |OCP| soc_comm.tl0 io b.master: Request completed
57 ns PE#1: task(l,1) (external task finished) -> scheduler
57 ns synconizer: releases task(3,1)

57 ns PE#1: task(IO) (IO task finished) -> scheduler

57 ns PE#1: scheduler (run) -> task(3,1)

Figure 10.3: A section of the log file.

From the log file section it can be seen, that when task(1,1) in PEO finishes
execution at 4bs, the inter-processor communication consisting of a burst write
starts afterward. When the request is received in PE1, the 10 task is launched at
47ns and data fetching starts. After &5, the 1O task in PEO has completed the
burst write, and task(2,1) starts executing. Ab5,/when all data associated with
the burst write have been received, the 10 task completes and task(3,1), depending
on the data, starts to execute.
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For small and simple simulations like this one, it may be easy to get an overview
of the system level performance from the log file alone, since only two PE’s and
a single task graph is considered. However, for more complex simulation this be-
comes almost impossible (or at least very difficult), due to the very high level of
detailedness in the log file. In these situations, the VCD files containing the task
scheduling/state information should be used instead, while the log file serves as a
reference.

Simulation summary

The end of the log file contains a small simulation summary report. This includes
the address map for tasks having interdependencies as well as PE utilization and

|0 task usage figures. Figyre 10.4
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PE UTILIZATION
PE#0 : 75.7967% (22739@30000)
PE#1 : 67.0833% (20125@30000

IO TASK USAGE
PE#0 : 0.131932% (30@22739)
Write data TX : 0.0879546% (20@22739
Write data RX : 0.0439773% (10@22739)

PE#1 : 0.149068% (30@20125)
Write data TX : 0.0496894% (10@20125)
Write data RX : 0.0993789% (20@20125)

Figure 10.4: Log file summary.

The address map shows the automatically assigned addresses the tasks mapped
to a particular PE. If no address has been assigned to a task, it means that it does not
have any succeeding inter-task dependency (i.e. does not depends on data from a
non-local task for being able to execute). In this example, the address map indicates
that task(3,1), task(8,1) and task(9,1) has succeeding inter dependencies, which is
also expected due to the selected task partitioning shown in 10.2. See also
sectior] 6.4, pade B5 for more information regarding address assignment.

The PE utilization figures indicate the amount of time a particular PE has been
used for task execution, relative to the total simulation time. The IO task usage
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figures indicate the amount of time spend on inter-processor communication han-
dling. These figures are relative to the total time used by the PE for task execution.
Thus in this example, the utilization of PEO and PE1 is 75.7% and 67.1%, where
0.13% and 0.15% of this time has been spend on SoC communication handling
respectively.

The current summary report does not include information about task graph
execution times and no.of missed deadlines. But for this example there were no
missed deadlines and the task graph completed execution after22{@&8o ob-
tained from the text based log file).

10.1.5 Analyzing the task scheduling and state

From thePE task schedulingndtask state VCD timing file is possible to get
quick overview of the tasks executing on the different PE’s as well as the state of
the tasks. In figurg 10.5, a section of the VCD plots for this example is shown.

Time ) 22700 ps 45500 ps 68300 ps

SystemC.clock=0

SystemC.PE0_groupID[31:0] (500000001 [SFFFFFFEF [500000002 [500000004
SystemC.PEQ_subtaskID([31:0]=$00000001 [500000001

SystemC.PE1_groupID[31:0] 5  [500000000 [SFFFFFFEF__[500000003 [500000005

SystemC.PE1_subtaskID[31:0]=$00000001 [500000000 [$00000004 [500000001

PE task scheduling VCD timing file.
Time ) 23 ns 46 ns 69 ns

SystemC.clock
SystemC.MP3_Decoder Task1[7:0] [2 [0
SystemC.MP3 Decoder Task2[7:0] [T [2 [o

SystemC.MP3_Decoder Task3[7:0] [1 [2 [0
SystemC.MP3_Decoder Task4[7:0] [T 2

SystemC.MP3 Decoder Task5[7:0] [T [2
SystemC.MP3_Decoder Task6[7:0] [I
SystemC.MP3_Decoder Task7(7:0] [L
SystemC.MP3_Decoder Task8[7:0] [L
SystemC.MP3_Decoder Task9[7:0] [L

SystemC.MP3_Decoder_Task10(7:0] [L
SystemC.MP3_Decoder_Task11([7:0] [1
SystemC.MP3_Decoder Task12[7:0] [I
SystemC.MP3_Decoder Task13[7:0] [1
SystemC.MP3_Decoder Task14[7:0] [I
SystemC.MP3_Decoder Task15(7:0] [1
SystemC.MP3_Decoder Task16(7:0] [L

Task state VCD timing file,
Figure 10.5: VCD plot sections.

In the VCD plot associated with the PE task scheduling VCD timing file, each
PE is identified by two traces showing the group ID (€2§0_groupID ) and the
subtask ID (e.g.PEO_subtaskiD ) of the task currently running. The IO task
execution is identified by the group ID beifgFFFFFFFFh, while the subtask
ID here identifies the action performed by the 10 task (i.e. doing a write or read
transaction, fetching response data etc.). When the group ID and subtask ID is
zero, it means that the PE is in idle. For example, task(1,1) is executing on PE1
in the time between 0 to 45, since the group ID and subtask ID both equal 1.
Afterward starts the 10 task execution, since the group eduweéis-FFFFFFh.
The action performed by the 10 task is a write, since the subtask ID equals 1. See
alsoParameters.h  identifying the mnemonic values for the 10 task actions.
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In the VCD plot associated with the task state VCD timing file, each task is
identified by a trace showing the state. The possible states are: 0 = idle, 1=ready,
2=run and 3=preempted. For example, task(1,1) is executing in the time between
0 to 49, since the state 1. Afterward the task goes into idle, since the state is 0.

Analyzing SoC communication

From thetext based log filét can be found that inter-processor communication

is initiated at 45, 214Ms and 4724s corresponding to when task(1,1) in PEO,
task(7,1) and PE1 and task(8,1) in PEO finishes execution respectively. This is also
expected, since the tasks have preceding inter-task dependencies. See also figure
[10.2.

The corresponding OCP2.0 communication traces can be observed from the
OCP2.0 TLO VCD timing filesThese are shown in figufe 1D.6,[to 10.8. For each
SoC communication event, the trace is shown for the producer and consumer pro-
cessor respectively.

Time 45050 ps 49150 ps 53240 ps
SystemC.clk=1 1L
SystemC.m_MAddr PE#0(31:0]=500001011 000+ [$00001011 [500000000
SystemC.m_MBurstLength PE#0[31:0]=50000000A 5000+ [S0000000A [500000000
SystemC.m MBurstPrecise PE#0=1 1
SystemC.m_MBurstSeq PE#0[2:0]=%110 $110
SystemC.m MBurstSingleReq PE#0=1
SystemC.m MCmd_PE#0[2:0]=%001 $000 [3001 [3000
SystemC.m _MDatalLast PE#0=0 [ 1
SystemC.m MDataThreadID PE#0[9:0]=$001 000 [$001 [3000
SystemC.m MDataValid PE#0=1
SystemC.m MData_PE#0[31:0]=$00000000 00000000 [5000+ [5000+ [5000+ [5000+ [$000+ [$000+ [5000+ [5000+ [5000+ [500000000
SystemC.m MReqLast_PE#0=1 1
SystemC.m_MRespAccept_ PEH#0=1
SystemC.m_MThreadID PE#0[9:0]=$001 000 [$001 [5000
SystemC.m_SCmdAccept PE#0=1
SystemC.m_SDataAccept PE#0=1
SystemC.m_SData PE#0[31:0]=$00000000 00000000
SystemC.m SResp PE#0[1:0]=%00 %00
SystemC.m_SThreadID PE#0[9:0]=$000 000

45ns: PEO Starting burst write at (OCP Master signals) after task(1,1) finishes.
Time 47260 ps 50900 ps 54540 ps
SystenC.clk=1 e e e e o S Py
SystemC.s MAddr PE#1[31:0]=$00001011 00000000 00001011 [50000+
SystemC.s_MBurstLength PE#1[31:0]=$0000000A 00000000 0000000A [50000+
SystemC.s MBurstPrecise PE#l=1
SystemC.s MBurstSeq PE#1[2:0]=3110 %110
SystemC.s MBurstSingleReq PE#1=1 1
SystemC.s MCmd PE#1[2:0]=%001 %000 %001 (%000
SystemC.s_MDataLast PE#1=0 [ 1
SystemC.s MDataThreadID PE#1[9:0]=5001 000 001 [5000
SystemC.s MDataValid PE#1=1
SystemC.s MData PE#1[31:0] 00000000 [50000+ [$0000+ [50000+ [$0000+ [$0000+ [$0000+ [$0000+ [$0000+ [50000+ [50000+

SystemC.s MReqlast PE#1=1 |
SystemC.s_MRespAccept PE#1=1
SystemC.s_MThreadID PE#1[9:0]=$001 000 001 [5000
SystemC.s_SCmdAccept PE#1=1

SystemC.s_SDataAccept PE#l=1

SystemC.s_SData PE#1[31:0]=5$00000000 00000000
SystemC.s_SResp_PE#1[1:0]=%00 $00
SystemC.s_SThreadID_PE#1([9:0]=5000 000

46ns: PE1 Receives the burst write data from task(1,1)

Figure 10.6: Inter-task dependency, task(3;13sk(2,1)
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Time 2141600 ps 2145240 ps 21488010 ps

SystenC.clk=0 0 S e e S e e e e e e S e
SystemC.m MAddr PE#1[31:0]=$00000000 00000+ [500000071 [500000000
SystemC.m MBurstLength PE#1[31:0]=500000000 00000+ [$0000000A [500000000
SystemC.m MBurstPrecise PE#1=0 1

SystemC.m_MBurstSeq PE#1[2:0]=%110 %110

SystemC.m MBurstSingleReq PE#1=0 1

SystemC.m MCmd PE#1[2:0]=%000 %000 %001 [%000

SystemC.m_MDataLast_PE#1=0 [ 1
SystemC.m_MDataThreadID PE#1([9:0]=$000 000 001 [5000
SystemC.m_MDataValid_PE#1=0

SystemC.m MData PE#1[31:0]=$00000000 0000000 [50000+ [50000+ [50000+ [50000+ [50000+ [50000+ [50000+ [$0000+ [$0000+ [$00000000

SystemC.m_MReqLast_PE#1=0
SystemC.m_MRespAccept PE#1=1
SystemC.m_MThreadID_PE#1[9:0]=$000 000 001 [S000
SystemC.m_SCmdAccept PE#1=1
SystemC.m_SDataAccept PE#1=1

SystemC.m_SData_PE#1[31:0]=$00000000 0000000

SystemC.m SResp_PE#1[1:0]=%00 %00

SystenC.m_SThreadID PE#1[9:0]=$000 000

214hs: PEL Starting burst write at (OCP Master signals) after task(1,1) finishes.
Time ) ps 2142200 ps 2146300 ps 2150400 ps
SystenC.clk=1 I S S e ) sy o A
SystemC.s_MAddr_PE#0[31:0]=500000071 00000000 00000071 [500000000
SystemC.s_MBurstLength PE#0[31:0]=50000000A 00000000 00000002 [$00000000
SystemC.s_MBurstPrecise PE#0=1 1

SystemC.s_MBurstSeq PE#0[2:0]=%110 %110

SystemC.s _MBurstSingleReq PE#0=1 1

SystemC.s MCmd_PE#0[2:0]=%001 %000 %001 [%000

SystemC.s MDatalLast PE#0=0 [ 1
SystemC.s_MDataThreadID PE#0[9:0]=5001 000 001 [8000
SystemC.s_MDataValid PE#0=1

SystemC.s_MData_PE#0[31:0]=$00000000 00000000 [5000+ [5000+ [5000+ [5000+ [5000+ [5000+ [5000+ [5000+ [$000+ [$00000000
SystemC.s_MReqLast_PE#0=1 1

SystemC.s_MRespAccept PE#0=1

SystemC.s_MThreadID_PE#0[9:0]=5$001 000 001 [5000
SystemC.s_SCmdAccept PE#0=1

SystemC.s_SDataAccept PE#0=1

SystemC.s_SData_PE#0[31:0]=$00000000 00000000

SystemC.s_SResp_PE#0[1:0]=%00 %00

SystemC.s_SThreadID_PE#0[9:0]=$000 000

214Ins: PEO Receives the burst write data from task(7,1)

Figure 10.7: Inter-task dependency, task(7#13sk(8,1)

As it can be seen, all transactions are burst writes with a burst length equal to
10x32-bit data words. Further, the communication is based on single request burst
writes with data-handshake, which is due to the selected channel configuration.
Notice also the address fields encoding which reflects from which task the data are
transmitted. In fact, it is possible to see the group and subtask ID directly, due to
the selected task ID encoding, where the subtask ID is located in bit[3:0]. For an
example, in figurg 108 the addre84Addr) is 0x1081h , indicating that it is data
coming from task(8,1)0x1000h equals the base address for PE1. See also the
configuration file.
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Time 0 ps 4722680 ps 4726780 ps 4730880 ps
SystemC.clk=1 A S S ) )
SystemC.m MAddr PE#0[31:0]=$00001081 00000000 00001081 [500000000
SystemC.m MBurstLength PE#0[31:0]=$0000000A $00000000 0000000A [500000000
SystemC.m_MBurstPrecise PE#0=1 1

SystemC.m_MBurstSeq PE#0[2:0]=%110 5110

SystenC.m_MBurstSingleReq PE#0=1 1

SystemC.m_MCmd_PE#0[2:0]=%001 %000 $001]5000

SystemC.m_MDataLast_PE#0=0 1
SystemC.m MDataThreadID_PE#0[9:0]=$001 000 001 [5000
SystemC.m MDataValid PE#0=1

SystemC.m_MData_ PE#0[31:0]=$00000000 00000000 [5000%+ [5000+ [5000+ [5000+ [5000+ [5000+ [5000+ [$000+ [$000+ (500000000

SystemC.m MReqlast PE#0=1
SystemC.m MRespAccept PE#0=1
SystemC.m_MThreadID PE#0[9:0]=$001 000 001 [5000
SystemC.m_SCmdAccept PE#0=1
SystemC.m_SDataAccept PE#0=1

SystemC.m_SData PE#0[31:0]=$00000000 00000000

SystemC.m_SResp PE#0[1:0]=%00 %00

SystemC.m_SThreadID PE#0[9:0]=5000 000

4721ns: PEO Starting burst write at (OCP Master signals) after task(8,1) finishes.
Time 4723160 ps 4726800 ps 4730430 ps

SystenC. clk=1 1 1 e e S A
SystemC.s_MAddr_PE#1(31:0]=500001081 00000000 (500001081 [$00000000
SystemC.s_MBurstLength PE#1(31:0] 00000000 [50000000A [500000000
SystenC.s_MBurstPrecise_PE#1=1 1

SystemC.s_MBurstSeq PE#1[2:0]=%110 %110

SystemC.s_MBurstSingleReq PE#1=1

SystenC.s_MCmd_PE#1[2:0] =3001 000 %001 3000

SystemC.s_MDatalast_PE#1=0

SystemC.s_MDataThreadID_PE#1[9:0]=$001 000 001 [5000
SystenC.s_MDataValid PE#1=1

SystemC.s_MData PE#1[31:0] 00000000 [50000+ [50000+ [50000+ [50000+ [$0000+ [$0000+ [$0000+ [$0000+ [$0000+ [$00000000

SystemC.s MReglast PE#1=1

SystemC.s_MRespAccept PE#l=1
SystenC.s_MThreadID_PE#1[9:0]=$001 000 001 [5000
SystenC.s_SCmdAccept PE#1=1
SystenC.s_SDataAccept PE#1=1

SystenC.s SData PE#1[31:0] 00000000
SystenC.s_SResp PE#1[1:0]=%00 500
SystemC.s_SThreadID PE#1[9:0]=5000 000

4722ns. PE1 Receives the burst write data from task(8,1)

Figure 10.8: Inter-task dependency, task(8;13sk(9,1)

10.2 Example 2: SoC communication topology exploration

This example serves to demonstrate how the models can be used in a simulation
framework for exploring different SoC communication topologies, relative to an
initial design space consisting two applications and four abstract PE’s. The exam-
ple will also demonstrates the possibility to do abstraction level mixture in the SoC
communication interface, by using a combination of OCP2.0 TLO and TL1. Focus
for the simulations will be on results showing:

« Task graph execution time and missed deadlines.
* SoC communication platform real-time state (link contention etc).

» SoC communication traces for inter-processor communication through a mixed
abstraction level SoC communication interface (TLO-TL1).

In conjunction to monitoring the real-time state of the SoC communication
model, it has been extended to print out relevant information for the allocator and
scheduler to the screen.
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The source code and configuration file for this example can be found on the
enclosed CD-ROM in the directoryARTS _Model/builds/example2

10.2.1 The simulation framework

The simulation framework is shown in figUre 70.9. It consists of four PE’s, where
PEO and PE2 interfaces to the SoC communication platform using OCP2.0 TL1.
PE1 and PES interfaces to the SoC communication platform using OCP2.0 TLO.
The SoC communication platforms to explore consist of a bus, 1D and 2D mesh.
The example will also show how the choice of topology may affect the task schedul-
ing as well. In all simulation scenario’s the scheduling policy will be based on RM.
Further, the modeled clock period will be4.

| | | | | | | |
I | | I | I I |
| | | I | I | |
1 Application } 1 Application } 1 Application } 1 Application }
| | | | | |
| rTos | /| RTOs | | RTOS | | RTOS |
'l model || /| model || /| model || 'l model ||
| | | | | | | |
|| ocP20TLL | | || ocpzoTLa | | || ocpzoTLO | | || ocr20TLO ||
ocp20 s oo oo e oo
TLL TLO
OCP2.0 TL1 ‘ ‘ 0CP2.0 TL1 ‘ ‘ 0CP2.0 TLO ‘ ‘ 0CP2.0 TLO

SoC communication platform

R oot

bus 1D mesh 2D mesh

Figure 10.9: The system level model.

10.2.2 Application modeling

Two application models are being used in this example: The MP3 Decoder [23]
also used in the previous example anficive end-to-end task consisting of four
subtasks. In this example, the MP3 decoder task graph has been grouped into
six end-to-end tasks to support read transactions. The grouping does not alter the
task graph characteristics but is just another level of abstraction. The partitioning
of the MP3 decoder is similar to the one being used in example 1, except that
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task(2,2) and task(3|2)are mapped to PEO and PE1 respectively and associated
response data to the succeeding read request initiated by task(2,1) and @sk(&l)
respectively. Further, both task(5,2) and task@mas been mapped to PE3 and
also associated with a response data. For all cases of inter-task dependency, the
data transfer size has been chosen to 10x32-bit data words.

The fictive application, modeled as an end-to-end task with four subtasks, runs
independently of the MP3 decoder. It is defined by group ID 7 and with task(7,1)
and task(7,3) mapped onto PE2 and task(7,2) and task(7,4) mapped onto PE3. The
end-to-end task will initiate a read from PE3 followed by a write to PE3 when the
response has been received. Characteristic for this end-to-end task is the large data
transfer sizes associated with inter-task dependencies as well as having relative
short period, compared to the MP3 decoder task graph (6 time smaller). The write
requests and response consists of 200x32-bit and 5000x32-bit data words respec-
tively. The data transfer sizes, relative to the period, is quite unrealistic but will
later shows as a good example for how large data transfer may affect the simulated
system performance relative to the selected SoC communication topology.

Figure[10.ID shows the two task graphs and their timing figures. Also note
that BCET = WCET. This has been chosen to remove the random timing jitter
to make it easier to compare the system performance, when using different SoC
communication topologies.
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Data [32bit]

dl [ns]

TIns]

11

45

10

25000

30000

Task ID

ET [ns]

Data [32bit]

dl [ns]

T[ns]

2,1

20

10

25000

30000

7,1

10

5000

15000

10000

2,2

1545

10

25000

30000

7.2

500

5000

15000

10000

2,3

595

10

25000

30000

73

500

50

15000

10000

3,1

20

10

25000

30000

74

10

0

15000

10000

3,2

1545

10

25000

30000

33

595

10

25000

30000

4,1

2685

10

25000

30000

51

108

10

25000

30000

5,2

895

10
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25000

30000
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30000

6,3

6087

10

25000

30000
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25000

30000

PE#2 | PE#3

Figure 10.10: MP3 Decoder task graph and fictive end-to-end task (partitioned).

equal to task(4,1) and task (5,1) in example 1
2equal to task(2,1) and task (3,1) in example 1
Sequal to task(11,1) and task(12,1) in example 1
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10.2.3 Bus topology simulation result

First simulation performed uses bus topology. This is done by settingdlelle
declaration parametéisoc _allocator" equal to zero in the configuration file,
example2.task

When running the simulation for 35008, the simulation result showed in
figure[10.11 is obtained. Most of the data relate to the state of the SoC com-
munication model, but it is also possible to see when task graph execution com-
pletes and missed subtask deadlines/end-to-end deadlines. The data related to the
SoC communication consists of a time stamp, an action state, a link contention
counter, transaction type, address or response data and finally the routing informa-
tion (posID ), identifying the source and destination node ID.

11 ns GRANT RD 0x00003071  posiD=(2,3) # RD@Task(7,1)
13 ns BUS RELEASED RD posiD=(2,3)
46 ns GRANT WR 0x00000011  posID=(1,0) # WR@Task(l,1)
57 ns BUS RELEASED WR posID=(1,0)
76 ns GRANT RD 0x00000021  posID=(1,0) # RD@Task(2,1)
78 ns BUS RELEASED RD posID=(1,0)
79 ns GRANT RD 0x00001031 posiD=(0,1) # RD@Task(2,1)
81 ns BUS RELEASED RD posID=(0,1)

513 ns GRANT RESP  0x00000072 posiD=(3,2) # Response@Task(7,2)
1625 ns ***REFUSE*** 1 RESP  0x00000022 posiD=(0,1) # Response@Task(2,2) REFUSED
1626 ns ***REFUSE*** 2 RESP  0x00000032 posID=(1,0) # Response@Task(3,2) REFUSED
5514 ns BUS RELEASED RESP posiD=(3,2)

5514 ns SCHD RELEASE RESP  0x00000022 posID=(0,1,1) # Response@Task(2,2)
5525 ns BUS RELEASED RESP posiD=(0,1)
5525 ns SCHD RELEASE RESP  0x00000032  poslID=(1,0,0) # Response@Task(3,2)
5536 ns BUS RELEASED RESP posiD=(1,0)
6016 ns GRANT WR 0x00003073  posiD=(2,3) # WR@Task(7,3)
6067 ns BUS RELEASED WR posID=(2,3)
6077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
6132 ns GRANT WR 0x00001033  posID=(0,1) # WR@Task(3,3)
6143 ns BUS RELEASED WR posiD=(0,1)
8829 ns GRANT WR 0x00000041  posID=(1,0) # WR@Task(4,1)
8840 ns BUS RELEASED WR posiD=(1,0)
8947 ns GRANT RD 0x00003061 posID=(1,3) # RD@Task(6,1)
8949 ns BUS RELEASED RD posID=(1,3)
8950 ns GRANT RD 0x00003051 pos1D=(0,3) # RD@Task(5,1)
8952 ns BUS RELEASED RD posID=(0,3)
9844 ns GRANT RESP  0x00000062 posID=(3,1) # Response@Task(6,2)
9855 ns BUS RELEASED RESP posID=(3,1)
10011 ns GRANT RD 0x00003071 posID=(2,3) # RD@Task(7,1)
10013 ns BUS RELEASED RD posID=(2,3)
10513 ns GRANT RESP  0x00000072 posiD=(3,2) # Response@Task(7,2)
15514 ns BUS RELEASED RESP posID=(3,2)
16016 ns GRANT WR 0x00003073  posiD=(2,3) # WR@Task(7,3)
16067 ns BUS RELEASED WR posID=(2,3)
16077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
16309 ns GRANT RESP  0x00000052 pos1D=(3,0) # Response@Task(5,2)
16320 ns BUS RELEASED RESP pos1D=(3,0)
20011 ns GRANT RD 0x00003071  posiD=(2,3) # RD@Task(7,1)
20013 ns BUS RELEASED RD posiD=(2,3)
20513 ns GRANT RESP  0x00000072 posiD=(3,2) # Response@Task(7,2)
25 us (1) Task(5,4) has missed its deadline
25 us (1) Task(6,4) has missed its deadline
25514 ns BUS RELEASED RESP posID=(3,2)
26016 ns GRANT WR 0x00003073  posID=(2,3) # WR@Task(7,3)
26067 ns BUS RELEASED WR posID=(2,3)
26077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
30011 ns GRANT RD 0x00003071  posID=(2,3) # RD@Task(7,1)
30013 ns BUS RELEASED RD posID=(2,3)
30513 ns GRANT RESP  0x00000072 posID=(3,2) # Response@Task(7,2)
33608 ns Task graph 0 completed. Now preparing for a new cycle:
Restoring relation matrix

Figure 10.11: Simulation result using simple bus topology. Simulation runtime:
35000:s. Comments have been added manually to make it more readable. Com-
ments follows #.
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First observation is that the fictive end-to-end task graph manages to executes
three times, before the MP3 decoder task graph completes at336D8e fictive
end-to-end task finishes execution at 604,71607 hs and 26077%.s correspond-
ing to the expected period of 10000 Further, it always meets the deadline.
However, the MP3 decoder task graph misses the deadline at250fxing the
execution of the last two task. This is because the actual task graph execution has
been significantly delayed, due to bus contention caused by the large data trans-
fer associated with the fictive end-to-end task. Referring back to the timing figures
from figurg 10.1D, this should come as no surprise, since the response coming from
task(7,2) startbeforethe responses coming from task(2,2) and task(3,2) (MP3 de-
coder). Thus the response from task(7,2) occupies the bus fon50€8using the
responses asserted by task(2,2) and task(3,2) to be blocked. This blocking time
contributes to the delayed execution of the MP3 decoder task graph and eventually
the deadline to be missed.

From the SoC communication simulation data in figure 70.11, this is also what
can be observed: At 513 the response from task(7,2) starts. At 162%nd
1626ns task(2,2) and task(3,2) start the response but are refused to use bus. Instead
the response data get buffered in the SoC communication interface. At 581!
response phase for task(7,2) has completed and the bus is granted to the buffered
responses coming from task(2,2) followed by the responses from task(3,2) after-
ward. A quick calculation shows that the overhead added to the execution time
for the MP3 decoder, due to bus contention, becomes approx.ns86Rms =
388%.s. However, remember from the previous example that the task graph execu-
tion time for the MP3 decoder was 227#/% Assuming this to be about the same
for this example and taking into account the bus contention overhead, the expected
execution time should be approx. 3889+ 227755 = 26664.s. But this does
not comply very well with the actual execution time of 33608ns. A closer look in
thetext based log filandtask state VCD timing fileeveals the root cause is due
to preemption of task(5,2) in PE3. For convenience, the sections of interests from
the log file and VCD file are shown in figure 10[12. Preemption occurs since:

» Task(7,2) becomes ready for execution at 1004 &fter PE3 has received
the read request from task(7,1). This happens during execution of task(5,2)
and is associated with the second cycle of fictive end-to-end task.

» The scheduling policy is based on RM (i.e. shortest peribiyhest priority)
and the period for task(5,2) is larger than the period for task(7,2); that is.
60000:s >10000u5).

Thus task(7,2) executes for 5@0and starts the response phase of 5000x32-bit
data words afterward, causing task(5,2) to be preempted fors50his can also
be seen indirectly from figufe 10]11, considering the data for the time interval from
884hs to 1632Ms. The preemption due to bad scheduling in PE3 means that the
total overhead added to the MP3 decoder task graph execution becomes approx.
388%s + 550 = 938%hs! Changing scheduling policy in PE3 to EDF will not
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remove the preemption overhead, since the deadline for the fictive end-to-end task
always will be smaller than the deadline for the MP3 decoder task graph. Thus
task(7,2) still has higher priority than task(5,2). Howewdfsettingthe execution

of the fictive end-to-end task with 2088 removes the preemption overhead, due

to a more optimal scheduling. Here the MP3 decoder task graph execution time
reduces to 26686s; almost equal to the expected execution time, including the
bus contention overhead. Still, it does not meet the deadline.

Time 100 ps 9895900 ps 9961400 ps 10027 1S

|SystenC.E2E Task7 1([7:0]=0 2 1

|Systenc.E2E Task7 2(7:0]=2 T
[

[T
B T2 3

&
b
2
a
g
=
=
3
=
S

r T
coder_Taské_2(7:0]=0

| systenc. clock=

(A) Section from the task state VCD timing file

CP| PE3_TLO.lOdevice.slave: receiving BURST request.

S | Data handshake: yes

| L | MCmd: RD, MAddr: 0x3071, MThreadlD: Ox7

| A | MBurstSeq: UNKN, MBurstLength: 5000, MBurstSingleReq: 1

10012 ns 10
|

10012 ns PE#3: task(7,1) (external task finished) -> scheduler

10012 ns synconizer: releases task(7,2)

10012 ns PE#3: scheduler (preempt) -> task(5,2)

10012 ns PE#3: scheduler (run) -> task(7,2)

10012 ns |OCP| soc_comm.tl0_io_b.master: Request completed

10512 ns PE#3: task(7,2) (response to NoC: task(7,3),addr=0x2072,dataUnits=5000)-> adaptor
10512 ns PE#3: scheduler (resume) -> task(5,2)

10512 ns PE#3: scheduler (preempt) -> task(5,2)

10512 ns PE#3: scheduler (start NoC Response) -> task(10)

10512 ns JOCP| PE3_TLO.lOdevice.slave: Starting response phase.

| S | SThreadID: 0x7, dataUnits: 5000

(B) Section from the ext based log file

Figure 10.12: Preemption of task(5,2) as seen in the task state VCD timing
file and the log file at 100k. Possible states shown in the VCD plot is
O=idle|1=ready2=rurn3=preempted. The preemption of task(5,2) occurbafpre

it actually starts executing is because it is being released by the scheduler when
task(6,2) finishes, but becomes preempted immediately afterward, due to the 10
task being launched in conjunction to the transmission of the response data from
task(6,2).

Conclusion

A simple bus topology, based on the first-come-first-served principle, can be con-
cluded not to be suitable in this example, due to the large data transfers associated
with the fictive end-to-end task. This caused the MP3 decoder execution to be sub-
stantially delayed and eventually to miss the deadline. The simulation also exposed
the scheduling in PE3 as being a potential problem, since it was found that under
certain conditions (indirectly related to the bus contention), task(5,2) from the MP3
decoder task graph could become preempted by task(7,2) forss568using the
delayed MP3 decoder task graph execution time to increase even further. A solu-
tion to this was to offset the execution of the fictive end-to-end task with2000
Regarding the bus contention, it is to believe that introducing a more complex
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bus, for an example supporting TDM based transfers, would solve missed dead-
line issues for the MP3 decoder task graph; especially because the data transfer,
associated with MP3 decoder task graph inter-task dependencies is relative small.

10.2.4 1D mesh topology simulation results

Next topology to explore is a 1D mesh. Changing to this topology is done by
setting themodule declaration parametetsoc _allocator" equal to1,4
in the configuration fileexample2.task . First argument selects the topology
(mesh) while the second argument selects the span. See also 12.6.1, page
[14§) regarding mesh layout.

Running the simulation for 25003 yields the result showed in figure 10]14.
The data format from the SoC communication model is similar to what has been
described for figurg 10.14, except that the routing informatpms|D also iden-
tifies the next target node position (middle value). Further, the link used/released
is identified byresID , where the first value identifies if it isfarward (1) or re-
turn (0) link. The next values identify the row and column in the associated mesh
database and indirectly tells which link it is in the mesh. See also s¢ction]12.6.2,
pagg 14p. For convenience, figlire 10.13 shows the mapping between the 1D mesh
databases an@sID . For example, consider the SoC communication data in fig-
ure[10.1# at 11nsposID indicates data transfer from node 2 to 3, while resID
indicates using the forward link between node 2 and 3.

O|/ROH-——-#/ Rl H-———4/ R2 || ———— b R3 )

Forward
used when resID=(1,x,Xx)

0 1 2 3 4 5 6

O|/ROJ#---+{RL 4---4{R2 Jj#——--R3 )

Return
used when res1D=(0,x,X)

Figure 10.13: Mapping afesID to forward and return mesh databases.

The simulation result in figue 10.14 shows that no deadlines are missed. The
fictive end-to-end task finishes execution at 627@&nd 16077, similar what was
seen when using a bus topology (figure 1P.11). More interesting is it to see that the
MP3 decoder task graph now meets the deadline since no link contention occurs
at all. Going back to the selected partitioning shown in figure 10.10, it is obvious
that link contention is avoided, when using a 1D mesh topology, since the large
data transfers associated with the fictive end-to-end task only happen between PE2
and PE3. Thus it does not affect the communication between PEO and PE1, which
was the case when using the bus topology. This is also what can be seen from
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11 ns GRANT RD 0x00003071  posID=(2,3,3) resID=(1,0,5) # RD@Task(7,1), R2->R3 link

13 ns LINK RELEASED RD posID=(2,3,3) resID=(1,0,5)

46 ns GRANT WR 0x00000011  posID=(1,0,0) resID=(0,0,1) # WR@Task(1,1), R1->R0 link

57 ns LINK RELEASED WR posID=(1,0,0) resiD=(0,0,1)

76 ns GRANT RD 0x00000021  posID=(1,0,0) reslID=(0,0,1) # RD@Task(2,1), R1->R0 link

78 ns LINK RELEASED RD posiD=(1,0,0) resiD=(0,0,1)

79 ns GRANT RD 0x00001031  posID=(0,1,1) resID=(1,0,1) # RD@Task(3,1), RO->R1 link

81 ns LINK RELEASED RD posID=(0,1,1) resiD=(1,0,1)

513 ns GRANT RESP  0x00000072 poslID=(3,2,2) reslID=(0,0,5) # Response@Task(7,2), R3->R2 link
1625 ns GRANT RESP  0x00000022 posiD=(0,1,1) reslID=(1,

,1) # Response@Task(2,2), RO->R1 link
1626 ns GRANT RESP  0x00000032 # Response@Task(3,2), R1->RO link
1636 ns LINK RELEASED RESP

1637 ns LINK RELEASED RESP

0) resliD=(0,
1) resliD=(1,
0) resliD=(0,

2240 ns  GRANT WR  0x00001033 ,1) resID=(1,0,1) # WR@Task(3,3), RO->R1 link
2251 ns LINK RELEASED  WR 1) reslID=(1,

4937 ns  GRANT WR  0x00000041 resiD=(0,0,1) # WR@Task(4,1), R1->R0 link
4948 ns LINK RELEASED  WR ,0) resiD=(0,0,1)

5055 ns GRANT RD  0x00003061 ,3) resID=(1,0,3) # RD@Task(6,1), R1->R2 link
5057 ns LINK RELEASED  RD ,3) resliD=(1,0,3)

5057 ns GRANT RD  0x00003061 ,3) resID=(1,0,5) # RD@Task(6,1), R2->R3 link
5058 ns LINK RELEASED  RD ,3) resiD=(1,0,5)

5058 ns GRANT RD  0x00003051 ,3) resID=(1,0,1) # RD@Task(5,1), RO->R1 link
5060 ns LINK RELEASED  RD ,3) resiD=(1,0,1)

5060 ns GRANT RD  0x00003051 ,3) resID=(1,0,3) # RD@Task(5,1), R1->R2 link
5061 ns LINK RELEASED  RD ,3) resiD=(1,0,3)

5061 ns GRANT RD  0x00003051 ,3) resID=(1,0,5) # RD@Task(5,1), R2->R3 link

5062 ns LINK RELEASED RD
5514 ns LINK RELEASED RESP

,3) resliD=(1,
,2) resliD=(0,

O
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6016 ns GRANT WR 0x00003073 ,3) resiD=(1,0,5) # WR@Task(7,3), R2->R2 link
6067 ns LINK RELEASED WR posiD=(2,3,3) reslID=(1,0,5)
6077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
6973 ns  GRANT RESP  0x00000052 poslID=(3,2,0) reslID=(0,0,5) # Response@Task(5,2), link R3->R2
6984 ns LINK RELEASED RESP posID=(3,2,0) reslD=(0,0,5)
6984 ns GRANT RESP  0x00000052  poslID=(3,1,0) reslD=(0,0,3) # Response@Task(5,2), link R2->R1
6995 ns LINK RELEASED RESP posID=(3,1,0) resiD=(0,0,3)
6995 ns GRANT RESP  0x00000052  poslD=(3,0,0) reslD=(0,0,1) # Response@Task(5,2), link R1->R0O
7006 ns LINK RELEASED RESP posID=(3,0,0) resiD=(0,0,1)
7373 ns GRANT RESP 0x00000062 3,2,1) reslD=(0,0,5) # Response@Task(6,2), link R3->R2
7384 ns LINK RELEASED RESP ,2,1) reslD=(0,0,5)
7384 ns GRANT RESP  0x00000062 ,1,1) resiID=(0,0,3) # Response@Task(6,2), link R2->R1
7395 ns LINK RELEASED RESP ,1,1) resiD=(0,0,3)
10011 ns GRANT RD 0x00003071 ,3,3) resiID=(1,0,5) # RD@Task(7,1), link R2->R3
10013 ns LINK RELEASED RD ,3,3) resiD=(1,0,5)
10513 ns GRANT RESP  0x00000072 ,2,2) reslD=(0,0,5) # Response@Task(7,2), link R3->R2
15514 ns LINK RELEASED RESP ,2,2) reslD=(0,0,5)
16016 ns GRANT WR 0x00003073 ,3,3) resID=(1,0,5) # WR@Task(7,3), link R3->R2
16067 ns LINK RELEASED WR posiD=(2,3,3) resID=(1,0,5)
16077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
20011 ns GRANT RD 0x00003071 poslID=(2,3,3) reslID=(1,0,5) # RD@Task(7,1), link R2->R3
20013 ns LINK RELEASED RD posID=(2,3,3) reslD=(1,0,5)
20513 ns GRANT RESP  0x00000072  poslD=(3,2,2) reslD=(0,0,5) # Response@Task(7,2), link R3->R2
24682 ns Task graph 0 completed. Now preparing for a new cycle:

Restoring relation matrix

Figure 10.14: Simulation result using 1D mesh topology. Simulation runtime:
25000:s. Comments have been added manually to make it more readable. Com-
ments follows #.

the simulation results, where the link used for the response from task(7,2) is the
R3—R2 link (513:s), while the links used for the responses from task(2,2) and
task(3,2) is R&-R1 (162%s) and R1-R0 (1626:s) respectively.

Another important issue to notice is the avoidance of link contention also does
that the potential scheduling problem in PE3 will not occur. This can be seen, since
the responses from task(5,2) and task(6,2) in PE3 starts an6%® 7373s
respectively, while the second execution cycle of task(7,2) starts at #60TBus
the release of task(7,2) does not cause preemption, since task(5,2) and task(6,2) has
already completed. In conjunction to this, the timing headroom is approx. 40012
- 7373s = 263%s.
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Conclusion

The simulation using a 1D mesh NoC as SoC communication topology showed
that all deadlines were met and that no link contention occurred. Besides this, the
potential scheduling problem in PE3 did not occurred, due to the avoidance of the
link contention. Thus is can be concluded that the 1D mesh topology is to prefer
for this example.

10.2.5 2D mesh topology simulation results

The last SoC communication topology to explore is a 2D mesh. Changing to this
topology is done by setting tieodule declaration parametéisoc _allocator"

equal tol,2 in the configuration fileexample2.task . First argument selects

the topology (mesh) while the second argument selects the span. See also section
[12.6.1, page 146) regarding mesh layout.

Running the simulation for 250@@3 yields the simulation result showed in fig-
ure[I0.16. The simulation result format is similar to figure I0.14. For convenience,
figure[10.1B shows the mapping between the 2D mesh databasess#dd. For
example, consider the SoC communication data in figure 10.14 at phstD
indicates data transfer from node 2 to 3, while resID indicates using the forward
link between node 2 and 3.

0 1 2 0 1 2
0|/ RO 4--—-|{ R1) 0|/ RO H----+{R1)
+ + i |
1| i 1| i
I I I I
1 Il
2|/ R2 )j—-—-t-R3) 2 R2 -~ - R3 )
Return Forward
used when res1D=(0,x,x) used when resID=(1,Xx,x)

Figure 10.15: Mapping afesID to forward and return mesh databases.

As it can be seen from the simulation result in figure ID.16, it is almost iden-
tical when using 1D mesh topology (figyre 10.14): no missed deadlines, no link
contention and similar task graph execution times. This is also expected since the
2D mesh layout does not affect the communication between PEO-PE1 and PE2-PE
(where most of the communication occurs). Notice however the differences in the
link usage associated with read request from task(5,1) in PEO and task (6,1) in PE1
and the associated responses from task(5,2) and task(6,2) in PE3.

Conclusion

Usage of a SoC communication topology based on a 2D mesh showed similar
system performance as when using a 1D mesh. For the particular application, task
mapping and no.of PE’s, a 2D mesh topology is not to prefer, since nothing is
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11 ns GRANT RD 0x00003071  posiD=(2,3,3) resID=(1,2,1) # RD@Task(7,1), R2->R3 link
13 ns LINK RELEASED RD posID=(2,3,3) reslID=(1,2,1)
46 ns GRANT WR 0x00000011  posID=(1,0,0) resID=(0,0,1) # WR@Task(1,1), R1->R0 link
57 ns LINK RELEASED  WR posID=(1,0,0) reslID=(0,0,1)
76 ns GRANT RD 0x00000021  posID=(1,0,0) resID=(0,0,1) # RD@Task(2,1), R1->R0 link
78 ns LINK RELEASED RD posID=(1,0,0) reslID=(0,0,1)
79 ns  GRANT RD 0x00001031  posiD=(0,1,1) resID=(1,0,1) # RD@Task(3,1), RO->R1 link
81 ns LINK RELEASED RD posiID=(0,1,1) resiD=(1,0,1)

513 ns GRANT RESP  0x00000072 posID=(3,2,2) reslD=(0,2,1) # Response@Task(7,2), R3->R2 link
1625 ns GRANT RESP  0x00000022 posiD=(0,1,1) resiD=(1,0,1) # Response@Task(2,2), RO->R1 link
1626 ns GRANT RESP  0x00000032 pos1D=(1,0,0) resiD=(0,0,1) # Response@Task(3,2), R1->R0 link
1636 ns LINK RELEASED RESP posiD=(0,1,1)  resiD=(1,0,1)

1637 ns LINK RELEASED RESP posID=(1,0,0) resiD=(0,0,1)
2240 ns GRANT WR 0x00001033  posID=(0,1,1) resID=(1,0,1) # WR@Task(3,3), RO->R1 link
2251 ns LINK RELEASED WR posiD=(0,1,1) reslD=(1,0,1)
4937 ns  GRANT WR 0x00000041  posID=(1,0,0) resID=(0,0,1) # WR@Task(4,1), R1->R0 link
4948 ns LINK RELEASED WR posID=(1,0,0) reslD=(0,0,1)
5055 ns GRANT RD 0x00003061  posiD=(1,3,3) resID=(1,1,2) # RD@Task(6,1), R1->R3 link
5057 ns LINK RELEASED RD posiD=(1,3,3) resiD=(1,1,2)
5058 ns GRANT RD 0x00003051  posiD=(0,2,3) resID=(1,1,0) # RD@Task(5,1), RO->R2 link
5060 ns LINK RELEASED RD posiD=(0,2,3) resiD=(1,1,0)
5060 ns GRANT RD 0x00003051  posID=(0,3,3) resID=(1,2,1) # RD@Task(5,1), R2->R3 link
5061 ns LINK RELEASED RD pos1D=(0,3,3) resiD=(1,2,1)
5514 ns LINK RELEASED RESP posID=(3,2,2) reslID=(0,2,1)
6016 ns GRANT WR 0x00003073 posiD=(2,3,3) resiD=(1,2,1) # WR@Task(7,3), R2->R3 link
6067 ns LINK RELEASED WR posID=(2,3,3) reslID=(1,2,1)
6077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
6973 ns GRANT RESP  0x00000052 posiD=(3,1,0) resiD=(0,1,2) # Response@Task(5,2), R3->R1 link
6984 ns LINK RELEASED RESP posiD=(3,1,0) resiD=(0,1,2)
6984 ns GRANT RESP  0x00000052 posID=(3,0,0) resID=(0,0,1) # Response@Task(5,2), R1->R0 link
6995 ns LINK RELEASED RESP posID=(3,0,0) resiD=(0,0,1)
7373 ns  GRANT RESP  0x00000062 posID=(3,1,1) resiD=(0,1,2) # Response@Task(6,2), R3->R1 link
7384 ns LINK RELEASED RESP posiD=(3,1,1) resiD=(0,1,2)
10011 ns GRANT RD 0x00003071 posiD=(2,3,3) resiD=(1,2,1) # RD@Task(7,1), R2->R3 link
10013 ns LINK RELEASED RD posiD=(2,3,3) resiD=(1,2,1)
10513 ns GRANT RESP  0x00000072 posiD=(3,2,2) resiD=(0,2,1) # Response@Task(7,2), R3->R2 link
15514 ns LINK RELEASED RESP posiD=(3,2,2) resiD=(0,2,1)
16016 ns GRANT WR 0x00003073 posiD=(2,3,3) resiD=(1,2,1) # WR@Task(7,3), R2->R3 link
16067 ns LINK RELEASED WR posID=(2,3,3) reslID=(1,2,1)
16077 ns Task graph 1 completed. Now preparing for a new cycle:
Restoring relation matrix
20011 ns GRANT RD 0x00003071  posiD=(2,3,3) resID=(1,2,1) # RD@Task(7,1), R2->R3 link
20013 ns LINK RELEASED RD posiD=(2,3,3) resiD=(1,2,1)
20513 ns GRANT RESP  0x00000072 posID=(3,2,2) resiD=(0,2,1) # Response@Task(7,2), R3->R2 link
24672 ns Task graph O completed. Now preparing for a new cycle:

Restoring relation matrix

Figure 10.16: Simulation result using 2D mesh topology. Simulation runtime:
25000:s. Comments have been added manually to make it more readable. Com-
ments follows #.

gained from the increased bandwidth. Thus a 2D mesh is an over-dimensioned
solution, adding unnecessary production cost. However if more applications are to
be added later and/or the SoC communication traffic increases, the 2D mesh might
be the solution to prefer.

10.2.6 SoC communication interface TL mixture

This example also demonstrates the possibility of doing abstraction level mixture in
the SoC communication interface. Referring back to architectures shgwn jn 10.9,
pagg 7R. It can be seen PEO and PE2 interface to the SoC communication platform
using TL1, while PE1 and PE3 use TLO.

As an example on the abstraction level mixture, figure J0.17 shows the com-
munication traces, related to the write request issuedrat #6m task(1,1) in PE1
to task(3,1) in PEQO. The upper trace shows the TLO trace from PE1 while the lower
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trace is a section from the OCP TL1 monitorteac the OCP channel, connecting
to the OCP slave in PE3. The traces also show that it is a single request burst write,
using data handshake and with a burst length of 10.

ime 42540 ps 47270 ps 51990 ps
SystenC. clk=1 A )y Y ) oy ) B
SystemC.m MAddr PE#1[31:0]=$00000011 00000000 00000011 [$000000
SystemC.m_MBurstLength PE#1[31:0] 0 0 00000004 [5000000
SystemC.m MBurstPrecise PE#1=1
SystemC.m MBurstSeq PE#1([2:0]=%110 3110
SystemC.m_MBurstSingleReq PE#1=1 1
SystemC.m_MCmd_PE#1[2:0]=%001 5000 5001 2000
SystemC.m MDatalast PE#1=0
SystemC.m_MDataThreadID_PE#1[9:0]=§001 000 001 [$000
SystemC.m MDataValid PE#1=1

SystemC.m_MData PE#1[31:0]=0 i 1 2 3 [4 [5 [6 [7 I8 Il [o
SystemC.m_MReqLast_PE#1=1 1

SystemC.m_MRespAccept PE#1=1
SystemC.m MThreadID PE#1([9:0]=$001 000 001 [$000
SystemC.m_SCmdAccept PE#1=1

SystemC.m SDataAccept PE#1=1

SystemC.m_SData PE#1[31:0] 00000000
SystemC.m_SResp_PE#1[1:0]=%00 %00
SystemC.m_SThreadID_PE#1([9:0]=$000 000

(A) OCP2.0 TLO trace from PE1 (OCP Master)

XXXXXXXX

44 0 XXXX X XXXX X X X X 0 0 x x 0 0 x xxxxxxxx 000
45 0 XXXX X XXXX X X X X 0 xxxxxxxx 0 X X 0 0 X xxxxxxxx 000
46 0 XXXX X XXXX X X X X 0 xxxxxxxx 0 x x 0 0 x xxxxxxxx 000
47 10011 1 000a 1 6 1 1 1 00000000 1 1 0 1 O x Xxxxxxxx 000
48 0 XXXX X XXXX X X X X 1 00000001 1 1 0 1 0 X XXXxxxxx 000
49 0 XXXX X XXXX X X X X 1 00000002 1 1 0 1 0 x xxXxxxxxx 000
50 0 xxxx X XXXX X X X X 1 00000003 1 1 0 1 0 X XXXXXXxx 000
51 0 XXXX X XXXX X X X X 1 00000004 1 1 0 1 0 x xxxxxxxx 000
52 0 xxxX X XXXX X X X X 1 00000005 1 1 0 1 0 X XXXXXXxx 000
53 0 XXXX X XXXX X X X X 1 00000006 1 1 0 1 0 x xxxxxxxx 000
54 0 XxxX X XXXX X X X X 1 00000007 1 1 0 1 0 X XXXXXXxx 000
55 0 XXXX X XXXX X X X x 1 00000008 1 1 0 1 0 X XXXXxxXx 000
56 0 XxXX X XXXX X X X X 1 00000009 1 1 1 1 0 x xxxxxxxx 000
57 0 XXXX X XXXX X X X X 1 X X 1 0 X XXXXXXxX 000

XXXXXXXX O

(B) Section from the OCP2.0 TL1 monitor file for PEO (OCP slave)

Figure 10.17: OCP2.0 TLO and TL1 SoC communication traces from PE1 and
PEO.

10.2.7 Summary

The aim with this example was to show how the extended abstract PE model and
the SoC communication platform models can be integrated and used to evaluate
different SoC communication topologies as well as doing abstraction level mixture
in the SoC communication interface. The system level model was based on four
PE’s and two applications running on top (modeled using the MP3 decoder task
graph and a fictive end-to-end task). Three topologies was considered: a simple bus
and a NoC based on a 1D and a 2D mesh. The bus topology showed to introduce
significant system performance degradation, due to bus contention. This eventually
causing the deadline for the MP3 decoder task graph to be missed. It also revealed
a potential scheduling problem i PE3. Simulation using a NoC based on a 1D
and 2D mesh showed identical performance, where no deadlines were missed and

4Graphical analysis requires the SOCCREATOR tool available from OCP-IP corporation.
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no link contention occurred. Assuming the SoC communication traffic will not
increase/change (i.e. if a new application was to be added later), the simulations
showed that a 1D mesh topology is to prefer for this example.

10.3 Example 3: Complex system performance behavior
analysis.

The last example demonstrates how the models can be used for performing a more
behavior based performance analysis of a complex system level model, by tweak-
ing different system parameters. The simulation framework consists of nine PE’s
and two applications running on top. All inter-processor communication is based
on OCP2.0 TL1.

In the example the system performance will be evaluated, relative to tweaking
the following parameters:

¢ RTOS scheduling policy.
 Data transfer size associated with inter-task dependency.
* SoC communication topology.

Task graph partitioning will be fixed in the different simulation scenarios, but
selected in an almost random fashion to introduce complex (or somewhat pseudo
random) SoC communication traffic patterns.

The source code and configuration file for this example can be found on the
enclosed CD-ROM in the directoryARTS _Model/builds/example3

10.3.1 Application modeling

The two application models are based on the MP3 decoder and GSM decoder task
graphs([23]. To support read transaction, the MP3 decoder task has been grouped
into six end-to-end task, similar to the approach being used in example 2. See also
figure[10.1D, pagk 73. Any SoC communication associated with GSM decoder
inter-task dependency will be modeled as write requests. Further, execution time
for all tasks has been changed to from a random to a fixed execution time equal to
WCET. This has been done to be able to compare the outcome from the different
simulation scenarios.

Figure 10.1B shows the timing figures and the task graph for the GSM decoder,
while figure[10.IP shows the task partitioning.
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Task ID ET [ns] dl [ns] T [ns]
1,1 121 20000 30000
2,1 8 20000 30000
31 8 20000 30000
4,1 8 20000 30000
51 8 20000 30000
6,1 4 20000 30000
71 41 20000 30000
8,1 17 20000 30000
9,1 124 20000 30000
10,1 41 20000 30000
11,1 17 20000 30000
12,1 124 20000 30000
131 41 20000 30000
14,1 17 20000 30000
15,1 124 20000 30000
16,1 41 20000 30000
17,1 17 20000 30000
18,1 124 20000 30000
19,1 84 20000 30000
20,1 6 20000 30000
21,1 121 20000 30000
22,1 5 20000 30000
231 23 20000 30000
24,1 638 20000 30000
25,1 5 20000 30000
26,1 23 20000 30000
27,1 688 20000 30000
28,1 5 20000 30000
29,1 23 20000 30000
30,1 638 20000 30000
31,1 44 20000 30000
32,1 23 20000 30000
33,1 5893 20000 30000
34,1 655 20000 30000

33,1 @

y

34,1 )t

]
ONS

g\’\@

i\
N
\\\\

Figure 10.18: GSM decoder timing parameters and task graph.
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10.19: MP3 and GSM decoder task graph partitioning.
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10.3.2 Simulation results

Simulations scenarios were done using a combination of the following conditions:
« Common inter-task dependency data transfer size: 10,20,50,100 x 32bit.
» RTOS scheduling policy: RM and EDF.
e SoC communication topology: bus, 1D mesh and 2D mesh.

Since the period of the GSM and MP3 decoder applications are 2608
600005 respectively, the simulation run time is selected to 66G0Q©sing longer
simulation run time will not provide any further useful information, since the ap-
plications are not mutual aperiodically.

The collected data for each simulation is the SoC communication contention
count and the MP3 and GSM decoder task graph execution times. The results are

summarized in table 10.P0, 10]21 and 10.22.
10x32-bit 20x32-hit 50x32-hit 100x32-hit
RM EDF RM EDF RM EDF RM EDF
Bus 81 75 86 82 86 85 86 87
1D mesh 64 62 72 69 80 78 90 83
2D mesh 25 23 22 21 27 25 28 27

Figure 10.20: SoC communication refuse count.

10x32-bit 20x32-bit 50x32-bit 100x32-bit
RM EDF RM EDF RM EDF RM EDF
Bus 32833 | 31807 | 33373 | 32257 | 34107 | 33606 | 36607 | 35947

1D mesh 31988 | 31692 | 32333 | 31987 | 33454 | 32857 | 40605| 34307

2D mesh 32773 | 31768 | 33171 | 32055| 34346| 33061 | 36387 | 34852

Figure 10.21: MP3 task graph execution time [ns].

10x32-bit 20x32-bit 50x32-bit 100x32-bit
RM EDF RM EDF RM EDF RM EDF
Bus 8528 8283 9001 8756 | 10890 | 10816 | 13090 | 13166
8540 9929 8976 | 10502 | 10784 | 11228 | 12884 | 15108
1D mesh 9202 8313 9551 8552 | 10653 9277 | 10605| 10473
9202 | 10653 9551 | 11179 | 10652 | 12762 | 10605 | 13919
2D mesh 8477 8232 8760 8454 9310 9042 | 10428 9942
8477 9915 8760 | 10312 9310 | 11647 | 10428 | 13889

Figure 10.22: GSM task graph execution times for first and second execution cycle
[ns].
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When running the different simulations it was found that the MP3 decoder
task graph was not able to meet the deadline. This was also to expect, due to the
selected partitioning and the fact that it has a tight deadline (290@8lative to the
expected execution time (approx. 2256 For the GSM decoder task graph the
deadline was always met. But also this was expected, since the deadlines{20000
is not so tight, relative to the expected execution time (approx. 12§00

From the tables the following general trends can be observed.

* Link contention as well as execution times increase as the data transfer size
increases.

« Link contention reduces when moving from bus topology to 1D mesh and
finally 2D mesh.

« Second execution cycle of the GSM decoder task graph increases when using
EDF scheduling (since pending MP3 decoder tasks will have higher priority,
because the tasks are closer to their deadlines that the GSM decoder tasks).

These results are expected. However, an interesting observation is the EDF
scheduling in general introduces better system performance than RM scheduling,
with respect to shorter execution times and reduced link contention.

Conclusion

This example showed how the models can be used for a behavior based perfor-
mance analysis of a more complex simulation framework, consisting of nine PE’s
and two applications running on top. By selecting different RTOS scheduling poli-
cies, SoC communication topologies and data transfer sizes, associated with inter-
task dependencies, it was possible to observe how the system performed, relative
to the selected task partitioning and with respect to execution times and link con-
tentions. The simulations showed a general better system performance using EDF
scheduling policy compared to RM scheduling policy.






Chapter 11

Implementation: Abstract PE
model

This chapter presents the implementation specific details of the different modules,
forming the extended abstract PE model. Ihighly recommended to use the
source code for reference, when reading this chapter. The source code can be
found on the enclosed CD-ROM and may be used as reference. Please consult the
README file for a directory contents description.

11.1 Abstract PE model modifications

The aim has been to avoid modifying the original abstract PE model as much as
possible, to keep the simplicity and modularity of the model. Thus new exten-
sions like the 10 task, parser module, performance monitor etc. must be able to be
added/removed to the framework as desired.

The new model is not backward compatible. Thus modules from the original
model cannot be used. However, simulation frameworks (e.g. a single abstract PE
or the abstract MPSoC NoC model [6]) with a behavior similar to the originals,
can be constructed using the new modules. The lack of backward compatibility
is mostly due to a change in the link model, with respect to message passing, but
also due to the introduction of the global synchronization database (dependency
controller module), required by the new synchronizer to support periodical task
graph execution. However these changes can be considered as improvement to the
original model.

11.1.1 Communication link

To reduce simulation time, thec _link _mpcommunication data-type, has been
changes from struct messageseSsage _type ) to pointersto struct messages
(message _type* ). Investigations have shown a speed improvement of 10...20%
using this approach. See apper{djx B, 165 for more information.
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Since the communication is based on producer/consumer style, the approach
has been create the message in the producer, nswgoperator and delete the
message in the target consumer module, udeigte operator, when it has been
processed. In some situations, a message might be reused and send back again
to the initiator module, to avoid creating a new message (further performance im-
provement). The two approaches are illustrated in figurg 11.1A anfl 11.1B respec-
tively.

11.1.2 High-level message struct extension

Extra fields have been added to the message stmetgage _type ) to control

the 10 task. These fields define for an example what action to be performed by the
10 task, the data transfer size etc. It must be emphasized that these extensions are
“invisible” to the RTOS modules (synchronizer, resource allocator, scheduler), in
the sense that the modules does not access/uses these fields at dll. Table 11.1 gives
a summary of the field extension. For reference, the original struct message can be
found in tablé 511 in sectidn §.4.

[ Type [ Name | Description ]
unsigned int initiatorTaskiD The ID of the task issuing an inter-processor
communication event. T
unsigned int threadID A thread ID associated with the inter-
processor communication.
unsigned int type Identifies the type of action to perform by the

10 task (e.g.WRor write request). See alsp

sectiorf T1.p, pade 1p8.

unsigned int dataUnits Data transfer size for the inter-processor
communication event.

vector<soc _commnfo _type>* soc Pointer to a vector containing struct ol
jects with address information of the targe
PE’s and the ID of the external tasks havi
data succeeding dependencies with the task
initiating the inter-processor communicatign

event. See also sectipn 11]1.4, 92.1

Q ~

Tt Only applicable when a local task initiates an inter-processor communication event.

Table 11.1: High-level message struct extensions.

The exact functionality of the different fields will be described in sedtion|11.5,
covering the implementation of the IO task.
11.1.3 RTOS modules

The RTOS modules are the synchronizer, resource allocator and scheduler. In gen-
eral, only few changes have been done in these module. Common for all mod-
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(B) Message creation/deletion flow with reuse

Figure 11.1: Message creation/deletion flow.

ule is the change in the communication link to manage the new approach using
pointers to messages. The main change has been done in the synchronizer module
to support communication with the dependency controller module and to support
release of the 10 task, when a task with inter-task dependencies requests for an
inter-processor communication event.
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A general bug fix: memory leakage

All original modules used dynamic memory allocation when creating communica-
tion link messages. This was done using tiesv operator. However, no memory
clean-up, usinglelete operator, was performed after a message was asserted
onto the communication link. Thus very long simulations could eventually cause
an out-of-memory situation, since all previous messages remained intact in the
memory.

EDF scheduler

Small errors were found in the EDF scheduler. One issue was related to an inverted
priority handling, which caused the highest priority to be assigned to a task with
the largest deadline. The error was due to an incorrect compasiserator
declaration of< and < (declared inmessage _type struct), causing incorrect
sorting of the task priority queue, implemented usinggator  list.

Another issue was the lack of support for messages coming from the resource
allocator. Thus a running task, requesting an already occupied resource would not
be preempted, since the scheduler did not responded RERE)SEmessage from
the resource allocator.

The above issues have been fixed in the new EDF scheduler module.

RM scheduler

The RM scheduler originally usedpsiority ~ _queue for the task queue. How-
ever, the changed comparisoperator -declaration o< and<, to fix the EDF
scheduler issues, caused inverted priority sorting, when gsiagty ~ _queue .

To fi>é]this issue, arector list is being used in the new RM scheduler module in-
steadl

DS Synchronizer

In the synchronizer module, the local dependency databbalstions ) and as-
sociated management methods have been replaced with calls to methods in the de-
pendency controller module, which manages the global synchronization database.
Accessing the methods are done through a pointer to the object, provided to the
constructor of the synchronizer. In conjunction to this, a heeal task ID list
(taskID _list ) has been implemented in the synchronizer, containingetire
codedtask IEﬂof the local tasks, assigned to a PE. The listvgetor object and

is being initialized, during the construction of the PE module, by calling the new
method,push _taskiID whenever a new task object is created in the PE module.
Argument to the method is the encoded task ID. The list is being used in context

lUsing priority  _queue in the EDF scheduler is not possible, due to the priority updating
approach.

’see sectiop 6.4.1, pape]35
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with dependency controller method calls, to ensuredhbtentries associated with
the local tasks are considered/affect when accessing/modifying the global depen-
dency database.

The dependency controller methods called famsshed  and mask. The
finish  method is called when a task (local or global) finishes execution. This is
managed in theynchronize  method. Arguments to thinish  method are
the finished task ID and the local task ID list. Providing the local task ID list as
argument ensures that only the dependency database entries, associated with local
tasks will be cleared. Thmask method is called icheck _pending _task _queue
when the synchronizer checks if the dependencies for a particular task, located in
the pending task list, has been resolved. The method returns false, if all dependen-
cies has been resolved. Otherwise true. Argument to the method is the encoded
task ID.

The modifications done in the synchronizer to support release of the 10 task are
very simply. Whenever a local task, with preceding inter-task dependency, com-
pletes execution, it sendsSDCTRANSFERmessage to the synchronizer, instead

of aFINISHED message. This causes the synchronizer to perform the following
actions:

1. The global dependency database is updated by callinfytise method,
with the encoded task ID as argument. The pending task lisitishecked
afterward, since the 1O task is to be released.

2. The message is changed t¢-BNISHED message (by altering thmomm
field in the message) and then forwarded to the scheduler.

3. Immediately afterward duplicatedversion of the initialSOCTRANSFER
message is changed tcREADYmessage with the subtask IEngm now
being equal to the 1O task (defined B TASK_ID ). Also, the periodtper
and deadlinet@l ) is changed to 1 to ensure the 10 task has the highest
priority. Then the message is forwarded to the scheduler.

No other actions are required by the synchronizer, sSiInc6METRANSFER
message contains all information required for the 10 task to start an inter-processor
communication event. See also table 11.1. This information comes from the task
initiating this.

For debug purpose a clocked thread procebeck _task _running has been
implemented, used for monitoring the number of tasks running. If more than one
task is running, the process terminates the simulation and asserts a Ul notification
error. At the rising edge of the clock signal, the process evaluates the variable,
task _running . The variable serves as a counter and depends ostadte mes-
sagesissued by the tasks. A state message will be issued whenever a task starts
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(run/resume) or stops (finish/preempt) execution, causing the counter to be incre-
mented or decremented respectively. The process and transmission of state mes-
sages, from the tasks, can be excluded by setting the conditional compiler flag,
_DB.CHECKTASK RUNNINGo false, before building the framework. Doing so

will also reduce simulation time.

Some Ul message reporting, for monitoring purpose, was also done by the synchro-
nizer, whenever a pending subtask was released for execution or when a subtask
was pushed onto the pending task queue. The new synchronizer now supports log-
ging to a file and disabling/enabling of Ul message logging to screen. In case of file
logging, a pointer to aofstream object must be provided to the constructor of

the module. Disabling/enabling of logging to screen is controlled using a boolean,
also provided the constructor.

11.1.4 Periodic task

The behavior of the new periodic task module is very similar to the original, with
some extra functionality added on top. These are:

» Task self blocking.
« Dynamic resource requirement assignment.

« Support for inter-processor communication requesting and configuration.

Task self blocking

Task self blocking enabling/disabling is controlled by the boolean variable,
blocking _enable . Default value, set in the module constructor is false, indi-
cating blocking disabled. Thus the task behaves as default as the original task mod-
ule. Enabling blocking is done by calling the task metrs®d, blocking _flag ,
with true as argument. This should normally be done before simulation starts.
However, it is possible to disable/enable the blocking, during simulation, if it for
some reason is needed (not done in this framework).

If blocking has been enabled, the actual state-of-blocking is controlled by the
boolean variableblocking . This variable is evaluated and set in the idle-state.
If blocking is false (the default value, set in the constructor), the task is not
blocked and it may issue READYmessage whenever the period watchdog timer
has expired. Simultaneously as READYmessage is issued, thimcking  vari-
able will be set to true, indicating blocking. Thus when execution completes and
the task goes back to idle-state, it remains in this state, until it becomes unblocked
again and the period watchdog timer has expired. Unblocking a task is done by
calling the task methodinblock . This clears thélocking variable.

For convenience the state machine for the new task module is shown in fig-
ur¢11.2, even though it is very similar to the original, showp i 5.3, pape 23. By
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Cperiod > 0 | blocking Irun

Iblocking &
Cperlod ==0

Crunmng ==0

preempted
resume )
Ipreempt & Iresume
Crunning >0

Figure 11.2: State machine for the new periodic task model.

comparing the figures, it can be seen the only change relates to the condition re-
quired for going from idle to ready state.

Dynamic resource requirement assignment

The new support for dynamic resource requirement assignment is based on the ap-
proach of having a vectoresource _list holdingresource requirement struct
objects dynamically created and appended to the list. A resource requirement
struct object fesource _req _.info _type ) contains the resource requirement
information (RRT, CSL and resource ID) and the watchdog timers for RRT and
CSL. The struct object is shown jn TI[L.2. At each clock cycle, in the running-
state, the resource list scanned and the watchdog timers in the different objects are
checked and updated. If the RRT or CSL watchdog timer has expired, in a cer-
tain resource request object, a correspondREQUESTr RELEASEmessage is
issued to the resource allocator respectively.

Assigning a new resource requirement is done by calling the task method,
new_resource _requirement , with resource ID, RRT and CSL as arguments.
The method creates a new resource requirement object and push this onto the vec-
tor, resource _list . Assigning resources must be done before the simulation
starts.

Inter-processor communication requesting and configuration

A task having one or more preceding inter-task dependencies must be configured
to generate SOCTRANSFERnNessage to the synchronizer when execution com-
pletes (causing the synchronizer to release the IO task afterward). The message
is required to contain all relevant information, required by the 10 task, to start an
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[ Type | Name | Description ]
unsigned int ID Resource ID.
unsigned int RRT Resource request time.
unsigned int CSL Critical section length.
unsigned int RRT.timer Serves as a watchdog timer for RRT.
unsigned int CSL.timer Serves as a watchdog timer for CSL.

Table 11.2: Resource requirement struesource _req _info _type .

inter-processor communication event. This includes addresses for the target PE’s,
transfer type, data transfer size and thread ID. See alsd table 11.1 dn page 88.

Transfer type, data transfer size and thread ID must always be provided to the
constructor of the task module. They are keptin the variabtis, transfer  _type ,
dataUnits andthreadID respectively and are to be included in the

SOCTRANSFERnessage. The new task module also keeps a vectorcontain-

ing struct objectsqoc .commnfo _type ) with information about the addresses of
the target PE’s as well as the encoded task ID of non-local tasks, to which it has
preceding inter-task dependency to. The struct object is shown irf table 11.3.

[ Type [ Name | Description ]
unsigned int subtaskID The unique subtask ID.
unsigned int addrLO Lower SoC communication address for the target PE.
unsigned int addrHlI Upper SoC communication address for the target PE

Table 11.3: SoC communication struct objestic _commnfo _type .

Pushing information on to the list is done by calling the method,

push _soc _commnfo with the encoded non-local task ID and the low and high
address of the target PE as arguments. This must be done before the simulation
starts and is in this framework, managed by the task configuration method in the
PE module. See also sectjon 11.2, gade 95.

Figure[11.B shows an example of the contents of the vestar, after con-
figuration of task(1,1) having inter-task dependencies to task(2,1), task(3,1) and
task(4,1).

Controlling if the task should issueFANISHED of SOCTRANSFERnessage
is controlled by the state of the boolean varialsie; _transfer _enable . Ifa
task has inter-task dependencies as described above the boolean must be set to
true, causing the message to bS@QCTRANSFERThis is done by calling the
method,set _soc _transfer with true as argument. When a subtask issues a
SOCTRANSFERnessage, it includes a pointer to s -list as well as the other
information, shown in table 11.1.



11.2. PE construction module 95

The contents of soc after
configuration of task(1,1)

0x2000:0x2ffc

Figure 11.3: Example of the contentssafc -vector after configuration.

11.1.5 Monitor module

The monitor module, used for monitoring the real-time state of a PE, has been
changed to support message logging to a file as well as disabling/enabling of log-
ging to screen. A pointer to anfstream object must be provided to the con-
structor of the module, in case of file logging. Disabling/enabling of logging to
screen is controlled using a boolean, also provided to the constructor.

11.2 PE construction module

The PE construction module connects the RTOS modules, the periodic tasks, the
IO task and IO device modules, into a structural forming the extended abstract
PE model. Selection of RTOS modules and assignment of tasks is done dynami-
cally, based on the configuration file declarations. The architecture of the module
is shown in figurg 11]4. See also figure|7.1, page 37 showing an example of a
complete simulation framework, with multiple PE modules instantiated. Dotted
lines indicate pointers to external objects, provided during module construction.
For simplicity the monitor module as well as a pointer to an exteofgtleam
object (for message monitoring logging to file) have been left out from flguré 11.4.
A PE construction module is available for OCP2.0 TLO and TL1. These are
defined by the classé¥_TLO andPE_TL1 respectively. Whenever a new abstract
PE model is to be instantiated, these are the modules to use. The simplified UML
class diagram for the abstract OCP2.0 TLO/TL1 PE module is shown in figure 11.5.

11.2.1 Module construction

The module construction can be divided into three steps:

1. Module architecture construction. RTOS, IO device and IO task modules
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Figure 11.4: Architecture of the abstract PE module.

are created and connected. The selected RTOS modules depends on the pro-
tocol declarations done in the configuration file.

2. Dynamic task creation Periodic task modules are created dynamically,
based on the selected task partitioning.

3. Inter-task dependency configuration Any created tasks having preceding
inter-task dependency are configured to isSBOLTRANSFERMessage,
when execution completes.

Step 1 and 2 is done in the module constructor, while step 3 is done by calling
the methocconfigure  _tasks , after module construction. Step 1, 2 and 3 uses
the module, task and dependency database declaration information, available from
the parser, respectively. See also sedtion B.2.1,[page 46.

Module architecture construction

The different modules, describing the architecture, are created and connected in
the constructor of the PE module. The required arguments to the module construc-
tor is the SystemC module name, the assigned PE ID, a boolean controlling dis-
abling/enabling of Ul monitoring logging to screen, and pointers to the dependency
controller, performance monitor, log file and parser objects. The modules selected
for construction of the RTOS will depend on the protocol declarations done in the
configuration file. At first thenodule declaration for this PE is fetched by calling

the parser methothodule _search , with "pelD" as parameter name and the

ID of the PE as parameter value. When a module declaration, containing these



11.2. PE construction module 97

T T e
4’ “
,,,,,,,,,,,,,,,,,,,,,,,,,,
I
:
1 |
77777777777777777777777777 !

I

I

I

}

1 |
<type>_lO }
I

I

I

I

I

I

I

I

|

I

|

I

|

1
Router
1
<type>_Master ---———————— i
1
<type>_Slave = F---—-——————1

Figure 11.5: Simplified UML class diagram for the abstract PE modige>
identifies if it is being a TLO or TL1 PE module, wheséype> =[TLO|TL1].

parameters, has been found, the method returns a pointer to a vector containing
the module declarations. This vector is analyzed and the declarations for the syn-
chronizer, resource allocator and scheduler is extracted and then used for selecting
which RTOS modules to create and connect. Besides this, the message monitoring
enable/disable flag is fetched from the module declaration and evaluated. Monitor-
ing disabled causes the monitor message logging, to screen and log file, to disabled
in all modules doing thi%

If no module declaration exists for this PE or if there is an illegal or missing
declarations, an error message will be asserted.

During module creation, the different constructor arguments are forwarded to
modules as required. For an example, the pointer to the dependency controller is
required by the synchronizer constructor.

Also created is the 10 task and device module. Further, the assigned SoC com-
munication address range for the PE is provided to the IO task. This is done by
fetching the address range from the parser by calling the parser ngghodddress E]

3These are the monitor, synchronizer, 10 task, |10 device and periodic task modules
“This is a macro method in the parser. The same information could also have been obtained from
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with the PE ID as argument, followed by a call to 10 task method,
set _address _range withthe returned address range as argument. If no address
range has been assigned to the PE, an error message will be asserted.

Dynamic task creation

Periodic task objects are created dynamically, depending on the task declaration
and partitioning, specified in the configuration file. This procedure follows, when
the other modules have been created and connected. The task declaration list,
available from the parser, is scanned and whenever a task has been assigned to
current PE ID a new periodic task object is being created and connected. Get-
ting an entry in the task declaration list is done by calling the parser method
get _task _from _list with anindex as argument. The method returns a pointer
to struct, containing the task declaration (e.g. target PE ID, best-case/worse-case
execution time, deadline etc.).

Each time a new periodic task object has been created, a pointer to the object is
pushed onto the local task pointer veclogal _task _list . The pointers are
being used, when configuring the tasks and when deleting the task objects in the
module destructor. A pointer is also being provided to the dependency controller,
by calling the methogbush _back _task _ptr with the pointer as argument. The
dependency controller uses this pointer to access a task method for unblocking a
blocked task (see also section 11.7, pagd 128). Finally, the encoded faisk ID
stored in a local task ID vectaigskiD and provided to the synchronizer module,
by calling the methodpush _taskID with the task ID as argument. The local
task ID list is being used during task configuration, while the synchronizer uses the
ID when accessing the global dependency database (see also 11.1.3, page

90).

Inter-task dependency configuration

After a PE module has been constructed, any assigned tasks having preceding inter-
task dependency must be configured to generats&®©&@TRANSFERmMessage,

when execution completes. This is required, since the default completion mes-
sage isFINISHED . During inter-task dependency configuration, a task is being
provided with information about the ID of all the non-local tasks (to which it has
preceding dependencies to) as well as the address ranges of the PE’s to which these
have been mapped to. This information will be included in S @CTRANSFER
message.

Inter-task dependency configuration is initiated by calling the PE module method,
configure _tasks with a pointer to the parser module as argument. An al-
gorithm scans the dependency database, available from the parser, and checks if
any of the local tasks have preceding inter-task dependency. This is simply done

the module declaration, but requires some more computation steps

*see sectiop 6.4.1, pabe]35



11.3. Parser 99

by scanning all rows using a fixed cqumn,DNhich maps to a local task ID,
fetched from the local task ID listaskID . Getting an entry from the dependency
database is done by calling the parser metlyed, _relation with a row and
column index as argument. It returns true or false, were true indicates a marked
entry (dependency). Whenever an entry is marked, the algorithm checks if the
row ID is associated with one of the other local task ID’s from the task ID list,
taskID . If so, the dependency is local (intra-dependency) and nothing is done.
Otherwise an inter-task dependency exists and the task declaration information,
associated with the non-local task ID, is found by scanning the task declaration list
available from the parser module. An entry from the list is fetched by calling the
parser methodget _task _from _list with an index as argument. The method
returns a struct containing the task declaration. When the task declaration for the
non-local task has been found, the PE ID, to which the task has been mapped to, is
extracted and the associated address information is obtained by calling the parser
methodget _address , with the PE ID as argument. Afterward the pointer to the
task to configure is found in the local task pointer listal _task _list andthe
address information and the non-local task ID is forwarded to the task by calling
the task methodpush _soc .commnfo , with this information as argument. Fi-
nally, the subtask is configured to issue 8@®CTRANSFERnessage, by calling

the methodset _soc _transfer  with true as argument.

The algorithm completes execution, when all local tasks have been checked for
inter-task dependency.

11.3 Parser

The parser module supports parsing of a very simple script language, used for
describing PE module behavior, task declarations and dependencies etc. It accepts
a configuration file as input, parses this and provides access to the different declared
data, through a dedicated group of public methods. For a general description of the
syntax form, and the way it is being used in this framework, please consult chapter
[, pagg 4b. Currently seven declaration types are supported.

11.3.1 Parsing methodology

The simplicity of the syntax has also lead to a relative simple implementation of
the module. The actual parsing methodologgvent basedh the sense that the
configuration file is scanned char by char and processed “on-the-fly”. That is, data
declarations are stored in databases, as they are being detected during scanning.
The database selection is relative to the type of declaration.

®See also sectidn 5.1.1, pdgég 24 for a description of the dependency database.



100 Chapter 11. Implementation: Abstract PE model

11.3.2 Error checking

The parser implements two types of error checking: (1) a lexical grammar and
syntax check and (2) a declaration post check. The lexical grammar check is per-
formed during the scanning, as a natural consequence of the event based parsing. If
an unknown or illegal declaration is detected, the parsing terminates with an associ-
ated error message. The declaration post check follows a successful scanning; that
is when all declarations have been successfully stored in the different databases.
The post check consists of checking some of the declarations up against some pre-
defined constrains. An example is the checking of SoC communication address
overlap between two PE’s. The different types of post check will be described
later.

11.3.3 Parsing flow

The parsing flow is shown in figufe 11.6. At first a parser object must be cre-
ated. Provided arguments to the constructor are the expected number of arguments
associated with a taskaigl ) and resource requiremerdr¢2 ) declaration re-
spectively. The figures are being used for reference, during the syntax check.
Parsing starts by calling the methatlart _parsing with the configuration
filename as argument. This starts the configuration file scanning followed by the
declaration post check and processing. If any error occurs, the parsing terminates
with an error message astart _parsing returns false. If parsing is successful
it returns true, and afterward the different databases, containing the declaration
data, can be accessed through different public method.

11.3.4 Configuration file scanning
Configuration file read approach

Reading the configuration file is done by fetching one char at a time. Fetching
a char is done by calling the private methadextch , which returns the next
char from the file. The char is stored in the private variatitealways containing

the current char and accessible in all private methods. For multi-char declarations
like names and digits, a string will be constructed. Fidure|11.7Aand 11.7B are
examples of code sequences, usedn@mme(e.g. declaration-type mnemonic or
task name) andigit string construction respectively. The foundation is based on
pointer operations, since it is fast and simple. The string construction stops when-
ever a fetched char is not of a certain type (e.g. digit for digit string construction),
or if the string length exceeds a certain limit. Afterward the string can be processed
as required. For the digit string construction example, this consists of converting
the string to an unsigned integer; also done using pointer operations. The examples
illustrate the general approach used for string constructions in the parser. String
construction and char fetching is done in the different private methods, associated
with the configuration file scanning.
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Figure 11.6: Parsing flow.

The scanning control algorithm

Figure[11.8 shows simplifiedflowchart of the scanning control algorithm, imple-
mented inscan _file . First action performed consists of opening the configura-
tion file for reading, which is done by calling the private methaghenfile  with
a pointer to the filename as argument. Afterward starts the actual parsing, which
continues until an error occurs (indicated by teeminate  flag) or end-of-file
(EOF) has been reached. The scanning can be divided idiclkaration-type
mnemonic scaanddeclaration parameter scaexecuted in the mentioned order.
Thedeclaration-type mnemonic scaerves to determine the type of declara-
tion, by scanning and evaluating the declaration-type mnemonic. Remember from
chaptef B, pagk 45 that a declaration always must start with a declaration-type
mnemonic followed by the actual declaration. The declaration-type mnemonic
scan is managed by the macro methatan _symbol . The method requires a
symbol table as input, scans the configuration file and returns a pointer to a char,
containing the symbol name, if the scanned symbol were found in the symbol table
(otherwise it returns null). The symbol table to be providedveetor , contain-
ing symbol structsgfym_DB.type ). A symbol struct consists of symbol nhame
and adeclaration counterwhich is being incremented irscan _symbol each
time a symbol detection is declared. The counter can be evaluated later (decla-
ration post check), to check how many times a certain symbol has been declared.
The symbol table for the declaration-type mnemongyisi_declarationlD t
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(A) Name string construction

char *p; // pointer to a char
static char buffer[64]; // a buffer used for holding the string
unsigned int N; // a string length counter
p = buffer; // point at the start of the buffer
N = 0; // initialize string length counter
// construct name string
while((letter() | _digit(Q) | ch=="_") && N<63) {
*p++ = ch; // copy char copy into buffer
N++; // increment string length counter
ch = _nextch(Q; // and get next char from configuration file
*p++ = “\07; // terminate string with null
p = buffer; // and point at the start of the buffer

// ...do something using the name string, accessed from p

(B) Unsigned integer string construction and conversion

char *p; // pointer to a char

static char buffer[64]; // a buffer used for holding the string
unsigned int N; // a string length counter
_remove_leading_zeros(); // A macro removing leading zeros, if any

// construct unsigned integer string
while(_digitQ && N < 9) {

*p++ = ch; // copy char copy into buffer

N++3 // increment string length counter

ch = _nextch(Q); // and get next char from configuration file
3
*p++ = “\0”; // terminate string with null
p = buffer; // and point at the start of the buffer

// convert to unsigned integer
if(N<9) {
while(*p)
value += ((unsigned int)(*p++)-48)*_pow(10, (N--)-1);
3

// ...do something using the value

Figure 11.7: C++ code examples for name and digit string construction.

contains seven entries fecreen _dump, log _file ,vcd _file ,sub_task _map,
dependency _map, ee_deadline andmodule respectively and is created in
the constructor.

Thedeclaration parameter scaserves to scan the actual declaration data and
store this in an associated database. For each declaration type, a dedicated method
has been implemented, since the declaration syntax in general differs from decla-
ration type to declaration type. Method selection is based on the declaration-type
mnemonic (symbol name), returned frastan _symbol . For an example, if the
returned declaration-type mnemonisish _task _mapthe method,scan _task
is called, starting the task declaration parameter scanning. All methods return a
status flag, indicating successful/unsuccessful scanning. False indicates successful
scanning, while true indicates an error. Error messages, related to illegal syntax is
generated inside the different methods.

Comments, space, tab and newline are removed at the different stages in scan-
ning, by calling the private methodiemove _separators . Also, a collection
of handy macro functions has been implemented. For an example, checking if the
current fetched char (stored am) is a letter or digit can be done by calling the
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_openfile
terminat e
<+0

Y

terminate = true

Ch=EOF | terminate

EOF = true

|
|
Start
declaration

post check

_closefile _scan_symbol

_scan_screendump }»4»
_scan_filename }»»
_scan_filename }»»

_scan_task }»»

_scan_dependency }»4»

_scan_ee_deadline }»4»
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module » _scan_ee_deadline T

unknown — error!
terminate = true

Declaration type Declaration
mnemonic scan parameter scan

Figure 11.8: Simplified flowchart for configuration file scanning.

method_letter  or _digit , returning a boolean, indicating yes or no.

11.3.5 Declaration post check and processing

Declaration post check and processing follows the configuration file scanning, if no
grammar or syntax errors were found. The main operation performed is checking
some of the declarations up against a set of predefined constrains. Besides error
checking, the dependency matrix (defining the dependency database) is also final-
ized in this stage; that is expanded to include dependencies between subtasks as
well. Figurg 11.9 shows the simplified flowchart for the declaration post check and
processing.

Declaration post check

The different types of post checks are implemented in the methods, seen on figure
[11.9. They operate on the data available from the databases. All methods return a
status flag, where true indicates an error. In case of error and warnings, the methods
will assert a corresponding message. The behavior of the different methods are
described briefly below.
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End configuration file scanning
(no errors)
|

v

_chk_declarations

_chk_address_map

_chk_parentlD

_chk_subtask_partitioning

_chk_eedl_declaration

no

Y
< return true > < return false >

Figure 11.9: Simplified flowchart for the declaration post check and processing.

* _chk _declarations . Checks if all mandatory declarations has been de-
clared in the configuration file (see also taple| 8.1, gage 46). This is sim-
ply done by evaluating the associated declaration counter in the symbol list,
sym_declarationID containing the declaration type mnemonics.

« _chk _address _map. Checks forillegal address declaration in thedule
declarations (e.g. address overlap between two PE’s). A check will only be
done formodule declarations, containintpelD" and"address" dec-
larations.

» _chk _groupID . Checks that none of the end-to-end tasks have a group ID
equal to zero, since this is not allowed by the scheduler.

e _chk _subtask _patrtitioning . Checks for illegal subtask partitioning
issuing read-response transfer. See also the set of rules, defined in section

[6.3:1, pagg 33.
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e _chk _eedl _declaration . Checks for missing or non-used end-to-end
deadline declarations for end-to-end task consisting multiple and one subtask
respectively.

Dependency matrix finalizing

The dependency database to be provided to the dependency controller must be
refined to include dependencies between subtasks as well. However, the approach
used for dependency declaration in the configuration file, is only to define a database
expressing the dependencies between end-to-end task groups, since a group of sub-
tasks, belonging to the same end-to-end task, always will be connected in|§ chain
[20]. The motivation has been to keep the dependency database declaration as sim-
ple as possible and mask away declarations, which can be assigned automatically.
Thus the parser has to extend the declared dependency database also to include
dependencies between subtasks.

Dependency database extension (or finalizing) is managed by the private method,
finalize  _dependency _matrix . The algorithm implemented simply looks
for all end-to-end tasks, consisting of multiple subtasks, and then creates a new
database including these dependencies as well. However, addressing an entry in
the database is a bit more complicated, since a task is identified by a group ID and a
subtask ID. Dealing with this is done by creating a look up taimiagping _nfo ),
containing a row/columimdex offsefor each group ID, indicating the row/column
index associated with first subtask for a certain group ID. Thus when addressing
an entry for a particular subtask, thbsoluterow/column index to use is found by
fetching the index offset, from the look up table, using the group ID as argument,
and then add the subtask ID.

Figure[11.1ID shows an example of a finalized dependency database for three
end-to-end task group®;, 7> andT3 all having multiple subtasks. A dependency
exists betweer?; and73. Figure[I1.IDA shows a section of the configuration
file, containing task and dependency declarations while figure [11.10B shows the
finalized database. For example, the absolute row/column index associated with
732 IS 7, when addressing the finalized database, since the index oﬁﬁfds 5
group ID 3 and the subtask ID is 2.

All information related to the dependency database is encapsulated in a struct
(relation  _matrix _type ), containing parameters such as the original and ex-
panded dependency database and the index offset look-up table.

11.3.6 Database description and access

Please refer to appendiX A, pdge [L61 for a brief description of the database types
associated with the different declarations, as well as the method available for ac-
cess.

“see also section sectjon6]3.1, p 33
8The index offset is not 6, since the first subtask ID always is 1
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sub_task_map {
# <name>,<pelD>,<threadID>,<groupID, .. , ..

# end-to-end task T1
"Task 12" , 1,3, 1, .. , ..
"Task_13" , 2, 3, 1, .. , ..
"Task 14" , 1,3, 1, .. , ..

# end-to-end task T2
"Task 21" , 1,3, 2, .. , ..

“Task 22" . 2. 3, 2. 1 2 3 <«— group ID
} [} [} 1
# end-to-end task T3 I I I I il
“Task 31" . 2. 3, 3, 0!1 2 3!4 5!6 7 8 9!«— index
“Task_3_.2" , 1, 3, 3, 0
"Task_3 3" , 2, 3, 3, 1
“Task 34" . 1, 3, 3,
3 2 \
3 1

relation_map {
#0 1 2 3 4 T1 \ \ |2
L, s e

o, 0,0#0

0,0,0,0#1 6 \];}

0,0,0,0#2 7 1 T

0,1, 0, 0#3

0,0,0,0#4 8 N
3 9 \D
(A) Section of the configuration with task (B) Finalized dependency database, now

declarations and end-to-end dependency database. including dependencies between subtasks.

Figure 11.10: Example of a finalized dependency database

11.3.7 Maintenance

Adding new declaration types to the parser is very siﬁ,pﬂae to the emphasis on
modularity. See also figufe 11.8, page|103 showing the scanning control algorithm.
Following steps are required.

« Define new declaration-type mnemonic and add this to the declaration type
mnemonic listsym_declarationID in the constructor.

« Add new if-statement iscan _file  for this declaration-type mnemonic.

» Define new database type and create a new declaration parameter scan method,
managing the actual scanning of the declarations. Using the implemented
macro method makes this easy.

+ Define new methods for database access.

However, for most situations thmodule declaration type will probably be
sufficient, since it allows clustering of declarations, each identified by a name and
one or multiple values. See also how thedule declaration is being used in this
framework in sectiop 8.2/1, pafe]46.

11.4 10 task-10 device communication link

This section presents the communication link between the 10 task and IO device.
Understanding this is essential to be able to add other types of 10 tasks or 10 device
models to the abstract PE model.

9As long as the declaration type follows the same syntax rules, used in the current implemented
declarations; that is declaration-type mnemonfollowed by thedeclaration parameters
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11.4.1 Thelink

The communication link is based on tke _link _mpmodel, from the SystemC
master/slave library. The actual communication is based on high-level struct mes-
sagesip _message _type ), similar to the approach used in the RTOS communi-
cation link. The different entries in the message struct are described ity tafle 11.4.

[ Type [ Name | Description ]

unsigned int comm Action identifier.

unsigned int type Action type (e.g. inter-processor
communication transfer type).

unsigned int threadID A thread ID associated with the
SoC communication.

unsigned int dataUnits Data transfer size associated with
the SoC communication.

deque<unsigned int>* dataQ Pointer to a buffer containing data

deque<unsigned int>* addrQ Pointer to a buffer containing ad-
dresses.

char* text A text describing the message. May
be used for monitoring.

Table 11.4: 10 task-device message striect, message _type .

11.4.2 The communication approach

The message communication between the 10 task and 10 device can be considered
as high-level interrupt messages, where the actual inter-processor communication
data are providethdirectly and not asserted onto the communication link. For an
example, when the 10 task is to start a new inter-processor communication event,
it sendsonly onemessage to the 10 device. This message contains all information
required by the 10 device to start the transfer; that is request type (read, write or
response) identified byype , the data transfer size, identified bgtaUnits

etc. The data associated is providedirectly, through pointers to deque obijects,
from where the 10 device must fetch the addresses and/or data. One advantage of
the usage of address and data deque objects is that they serve as buffers for burst
transfer. It means the 10 task eventually could push new data and addresses onto
the deques, concurr@twith addresses and data being fetched (pop) by the 10
device. See also the example in figure I[L.11. In conjunction todataUnits

serves as a reference for the data transfer size. Thus, in case the buffers become
empty, but not all data have been transmitted, the 10 device could either just wait
for data to become ready in the buffers (by evaluating, in each clock cycle, if a
deque is empty, e.cqaddrQ->empty() ) or go into a sleep mode. Before going

into sleep mode it should send a message to the 10 task, notifying that it must
wake-up the IO device, whenever new data are ready in the buffers. Sleep-mode
means in this context that the 10 device does not have to evaluate if a deque is
empty, which otherwise could lead to performance degradation, simulation wise.

199N the same clock cycle
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Wake-up is done by sending a new interrupt message to the IO device, similar to
the initial SoC communication request message.

4 \

( T

memory |
\

addrQ dataQ \\\
N ]
\ /
</ % % ‘//
b |
L AN I 4
/TN
/ AN
/ \
addrQ->push_back(addr) / \ addr = addrQ->pop_front()
dataQ->push_back(data) / data = dataQ->pop_front()
|
10 task ) sc_link_mp 10

device

-t

Figure 11.11: lllustration of the approach for indirect addressiaddrQ and
dataQ illustrates the deque objects in memory, accessible from both the 10 task
and |10 device.

The example is also applicable when the 10 device is being the interrupt mes-
sage initiator (when data is being received from the SoC communication interface).
In this case, the address and data deque objects are located in the 10 device.

The main motivation for the communication approach, described above, is the
performance improvement obtained by providing datirectly, compared to us-
ing the channel fodirect data transfer. In case dfirect data transfer, multiple
messages must be send for a burst transfer, while only one message is required for
theindirectapproach (since pointers to the deque objects, where to fetch addresses
and data, only have to be provided once).

11.5 IO task

The 10 task models an 10 device driver and implements the protocol, described in
chaptef B, page 29. It serves as an inter-task dependency synchronization message
encoder/decoder between the RTOS and the IO device. The 10 task can handle
multi-threaded SoC communication; a functionality implemented to support the
multi-threaded OCP 10 device model. It also supports preemption during fetch-
ing of response and write data, received from the SoC communication interface.
However, 10 task prioritizing has not been covered in this framework, meaning it
always has the highest priority. Thus preemption will never occur.

The 10 task interfaces to the 10 device as well as the RTOS model (see figure
[11.4, pagé 96), using tree link _mpmodel. It incorporates a master and slave
port in the interface to the RTOS and |0 device for bidirectional communication.

Figure[11.1IP shows a simplified block diagram of the 10 task, defined by the
ioTask class. Ovalfiguresindicate thread procesS&THREADr SC SLAVE
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while rectangular figures indicate normal C++ methods. A name associated with a
connection to process (e.gquest _start )indicatesthe name of &t _event
object, used for triggering the process execution.
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Figure 11.12: Simplified 10 task block diagram.

The 10 task has been implemented without any use of a state-machine. Instead
the actual protocol is implemented in the four main thread processes, seen on fig-
ure[I1.I2. Other protocol types are easily implemented, simply by changing the
behavior of the processes.

e process _request manages the issuing of write and read requests in con-
junction to the methodgrepare _wr_request andprepare _rd _request

(not shown in figurg 11.12).

e start _response _tx manages the response transmission for a previously
received read request.

« fetch _response _data manages the response data received for previ-
ously initiated read request.

- fetch _write _data manages the write data for a received write request.

The next sections present a more detailed behavior description of the different
processes and also how they interact together.
11.5.1 RTOS interface slave port

The processesx _scheduler _commcontains the slave port interfacing to the
RTOS. It decodes the message received from the scheduler and determines the type
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of action to perform. FORUNor RESUMEnessages, it triggers a process, accord-
ing to the action type, identified by thgpe field in the message. Process trig-
gering is done by asserting an associated notification event. For an example, when
the 10 task is to transmit response data, the message received VRIUNgvith
type set toRESP Thus it will assert the notification evergsponse _start
causing the processtart _response _tx to execute and the response phase
to begin. ForPREEMPTmessages, a corresponding preemption flag will be set
(fetch _response _data _preempt orfetch _write _data _preempt )caus-
ing the associated procegstth _response _data orfetch _write _data ),
to terminate. The flag will be cleared when the associ&E&UMENessage is
received.

The different types of supported messages and their meaning is described in
table[11.5. Non-supported messages will cause the 10 task to assert an error mes-
sage.

[ comm [ type | Description ]
RUN WR Start write request.
RD Start read request.
RESP Start response (to a read)

RDRESPREADY Start fetching the response data received.
WRDATAREADY Start fetching the write data received.

PREEMPT RDRESPREADY Preempt response data fetching.
WRDATAREADY Preempt write data fetching.

RESUME RDRESPREADY Resume fetching the response data received.
WRDATAREADY Resume fetching the write data received.

Table 11.5: Supported messages types, received from the schedomemand
type refers to the declaration in the message. See also[table 11.1, page 88

For simplicity, notations notation lik®RUN@W#ight be used in the following
sections. This notation means a message wtemanandtype entries are equal
to RUNandWRrespectively.

11.5.2 10 device interface slave port

rx _io _commdecodes the messages received from the 10 device. An 10 device
message either indicates the completion of a previously initiated inter-processor
communication event or that some data have been received from the SoC com-
munication interface. These are representedFINISHED or READYmessages
respectively. The different types of messages supported and their meaning is de-
scribed in tabl¢ 11]6. Non-supported messages will cause the 10 task to assert an
error message.

When aFINISHED message is received, a notification event is asserted to the
thread process previously initiated the transfer (for an examggeest _done
when a request has been completed). This notification is expected by the process,
causing it to do a certain operation (See descriptiorpfocess _request and
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[ comm [ type | Description ]
READY RESP A read request has been received.
RDRESRPREADY Response data, associated with a previously

initiated read has been received and now
ready to be fetched.
WRDATAREADY A write request has been received and data
now ready to be fetched.

S

FINISHED WR The initiated write request has completed.
RD The initiated read request has completed.
RESP The response phase (to a previously received

read request) has completed.

Table 11.6: Supported messages types, received from the 10 dexdoanand
type refers to the declaration in the message. See also[table 11.4, page 107.

start _response _tx insectiorf 11.5]3 ar{d 11.5.4 respectively).

When aREADYmessage is receivedy _io _.commcaptures the message in-
formation and store this in a database. The selected database and the information
to store depends on the type beRESE RDRESPREADYor WRDATAREADY
After a database has been updated a sifRBADYmessage is issued to the sched-
uler, indicating the IO task is ready to process the received IO device request.

The databases are used when the |0 task processes the IO device requests.
They hold information such as pointer to the address and data deque objects and a
counter for keeping track of the amount of data received. This information is ac-
cessed and used in the different thread processes, executing the 10 device requests.
Table[11.} shows the available database types (structs). The actual databases have
been implemented as arrays of structs, to support threaded 10 communication.
Thus addressing a particular struct is done using the thread ID, associated with the
IO device request (will be forwarded in tiREADYmessage issued to the sched-
uler).

11.5.3 Request transmission

The processprocess _request manages the issuing of write and read request
messages to the 10 device. It is being triggered byrduypiest _start event,
whenrx _scheduler _commreceives RUN@WiR RUN@RMDessage from the
scheduler, indicating a write or read request respectively. The prdoessnot
create messages but fetches the messages from a requestrqgaastQ con-
taining pointers to request messages. The actual messages are created and pushed
onto the request queue in the methpdspare _wr _request and

prepare _rd _request (not shown on figurg 11.12). These methods are called
before issuing the actual notification eveptepare _wr_request creates and
prepares the address and data deque objects for write request, while

prepare _rd _request prepares the address deque for read requests. For broad-
casting of write data to multiple PE’'prepare _wr _request will creates mul-

tiple requests messages.
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Database for response data. Keeps track of the response data deque pointer and a counter
for monitoring the amount of responses received. The counter is updated when the 10 task
issues the read request, and decremented when response data is being fetched.

Database is updated when receiving a READY@RESP message from the 10 device .
(only respDataqQ is updated).

Struct name . respDataQ_DB_type

Database name . respDataQ_DB

Type Name Description

unsigned int respDataCounter A reference counter used
for keeping track of the
amount responses to
received for a read request.

deque<unsigned int>* respDataQ Pointer to the deque,
containing the response
data.

Database for write requests. Keeps track of the address and data deque pointers and a counter
for monitoring the amount of data received. The counter is initialized with the amount of data to
receive, and decremented when write data is being fetched.

Database updated when receiving a READY@WR_DATA_READY message from the 10 device.

Struct name . writeDataQ_DB_type

Database name . writeDataQ DB

Type Name Description

unsigned int writeDataCounter A reference counter used
for keeping track of the
amount data received.

deque<unsigned Int>* dataQ Pointer to the deque,
containing the write data.

deque<unsigned int>*  addrQ Pointer to the deque,
containing the write
addresses.

Database for read requests. Keeps track of the address deque pointer and a counter used for
monitoring the number of responses transmitted. The counter is initialized with the amount of
responses to transmit, and decremented whenever a response is transmitted

Database is updated when receiving a READY@RD_RESP_READY message from the 10 device.

Struct name . readRequestQ_DB_type

Database name . readRequestQ_DB

Type Name Description

unsigned int requestCounter A reference counter used
for keeping track of the
amount responses to
transmit.

deque<unsigned int>*  addrQ Pointer to the deque,
containing the read
addresses.

Table 11.7: 10 task database types.

After a request message has beenissued to the IO dpvizsess _request
waits for arequest _done event, fromrx _io _.comm This event indicates that
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the request has been completed by the |10 device and it may now accept a new
request. If the request queue is not empty, the next request messages from the
queue is processed in the same manmencess _request completes when

the request queue becomes empty. Before the thread completes execution, it calls
send _finish  _indication , causing &INISHED message to be issued to the
scheduler, indicating the 10 task execution has completed.

11.5.4 Response transmission

The processstart _response _tx manages the response to a previously re-
ceived read request. It is being triggered by thquest _start event, when
the slave processx _scheduler _commreceives RUN@RESH his happens
after the task, triggered by the read request, finishes execution. First operation
performed is getting the address deque pointer and the data transfer size. This is
done by accessing the databassgdRequestQ _DB using the thread ID from
the messages, received from the scheduler. This database entry has previously
been updated in the slave process,io _.commwhen it received the read request
message from the 10 device. In conjunction to this, the thread ID used for gaining
access to the database is the same as the one associated with the read request.
Afterward, the process creates and prepares the response data deque. This is
done simply by pushing the encoded ID of the task, triggering the response, onto
the data deque. The number of responses created/pushed onto the data deque equals
the number of addres§egetched from the address deque. Also, the
requestCounter , used for keeping track of the number of responses, is decre-
mented correspondingly. It then sendREN@RESRessage to the 10 device,
causing it to start the response phase for this particular thread. Afterward, it checks
if all responses have been transmitted by evaluatimgdiiestCounter has
become zero. If not, it means that the initial read request was a non-single burst re-
quest, and that all requests have not been received yet.stdmis _response _tx
must wait for the remaining request to come before asserting any further responses.
The process then goes into sleep-mode and informs the 10 device that it must sends
a newWRUN@RESRessage (wake-up message) to the 10 task whenever it receives
the next pending read request for this particular thread. This is done by calling
the methodset _IOdevice _flag , which issues READY @RREQNOTIFY
message to the IO device. Afterward the process waits for an event to be as-
serted onstart _response _tx , which happens whemx _io _commreceives
a READY @RESRessage from the 10 device for this thread. The event causes
the process to wake up and the response phase to be resumed. In conjunction to
this, the process sends tRUN@RESRessage to the 10 device again. When
the response phase completes, it callad _finish  _indication , causing a
FINISHED message to be issued to the scheduler, indicating the 10 task execution
has completed. It also calls the metiset _[Odevice _flag again, for notify-

UThe read addresses are not being used for anything in this 10 task
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ing the 10 device that it must send a message when it receives a new read request
on this thread.

11.5.5 Write data processing

The processfetch _write _data manages the data coming from a received
write request. It is being triggered by tlietch _write _data _start event,
whenrx _scheduler _commreceives RUN@WBRATAREADYfrom the sched-
uler. The message can be considered as an echo BEHADY @WBPATAREADY
message, previously initiated by .io _.comm when it received the write request
from the 10 device. From the message it uses the thread ID for gaining access to
thewriteDataQ _DBdatabase entry, containing the data counter,
writeDataCounter and the pointers to the address and data deque objects,
associated with the write request. The data fetching is done, by popping an element
off the address and data deques and decrements the data counter in each clock
cycle. When the deques becomes empty, it checks if all data has been received
by evaluating if the data counter is zero. If the data counter is nonzero, the 10
task execution suspends, until new write data is ready again. This leaves room for
other task to execute meantime. Before suspending, it notifies the 10 device that a
new RUN@WBRATAREADYmessage must be send, when new data are received
for this particular thread. This is done by callisgt _IOdevice _flag , causing
a READY @WPATANOTIFY message to be issued to the 10 device. Afterward
the process callsend _finish  _indication , causing &FINISHED message
to be issued to the scheduler, indicating the 10 task execution has stopped/been
suspended.

Resuming the write data fetching starts wienscheduler _commreceives
aRUN@WRATAREADYfor this thread again.

When the write request completes (i.e. data coumtateDataCounter
equals zero), any local tasks depending on the data can be released for execu-
tion. This is done by callingend _ext _finish _indication with the en-
coded ID of tas@, initiating the write request, as argument. The method issues a
FINISHED _EXT message the synchronizer for this task. Before the process sus-
pends and the 10 task completes execution, it gdts_IOdevice _flag again
followed by a call tosend _finish  _indication

11.5.6 Response data processing

The processfetch _response _data manages the fetching of response data,
received for a previously initiated read request. It is being triggered by the

fetch _write _data _start event, whenx _scheduler _commreceives a
RUN@RBESPREADYThe behavior is similar to the procdssch _write _data ,
but it operates on the databasespDataQ _DB. See also sectign 11.5.5, describ-
ing fetch _write _data .

L2extracted from the write address, by subtracting the PE base address
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11.6 10 device

The 10 device models the physical 10 hardware port and manages the SoC commu-
nication protocol. The modular approach makes it easy to implement support for

various types of SoC communication protocols, since the interface between the 10
task and the 10 device is well defined (See also seftion 11.4.2). In the current ver-
sion of the framework, two 10 device models have been implemented, supporting

the OCP 2.0 protocol at TL1 and TLO. Common features for the models are:

» Configurable (signal-wise), relative to the OCP channel they connect to.

» Support for multi-threaded OCP interface. Further, the OCP slave supports
out-of-order thread execution.

* Write data (OCP Slave) and response data (OCP master) buffers for each
thread, with configurable size.

The next sections present the implementation of the OCP 2.0 TL1 and TLO IO
device models.

1161 OCPTL1

The foundation of the OCP2.0 TL1 IO device model is based on the SystemC
OCP Transaction Level Communication Channel, available from [2]. TL1 is also
known as the transfer layer abstraction and provides cycle true simulation, but is
faster than RTL simulation [18]. The communication is done througtclheked
OCPTL1 Channel object, supportingingle command operatiorier initiating

OCP specific transactions like request, response and data handshake. This channel
is inherited from the generitL _Channel , which actually supports transfer of any

kind of data (also hon-OCP compliant). Please consult [18] for more information.

TheTL1_IO class defines the OCP 2.0 TL1 10 device model. It is composed of an
IO task message routéR@uter ), amasterTL1_Master ) andslaveTL1 _Slave )
to support request initiating and receiving respectively. The router simply ensures
correct routing of messages coming from the 10 task (e.g. messages targeting the
master is only being received by the master). This is done by evaluatitgpthe
declaration in the message.A simplified UML composition diagram is shown in
figure[11.18.

Connecting the master and slave to an OCP channel is done after channel
and module construction, by calling the methasminect . OCPMaster and
connect _OCRSlave respectively, with a pointer to the TL1 channels.

11.6.2 Supported OCP TL1 configurations

The OCP TL1 device model supports the OCP configuration, listed in[table 11.8.
The model automatically configures itself relative to the channel it connects to.
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TL1_Master Router TL1_Slave

i i

EN N

TL1_IO

Figure 11.13: Simplified OCP2.0 TL1 IO device model UML composition dia-
gram.

This is done in theend _of _elaboration method in the master and slave and
happens after the module has been created and connected to the TL1 channel, but
before the simulation starts. Channel parameters are fetched from the OCP channel
by calling theOCPTL1 _Channel method,GetParamCl returning aParamcCl

object, containing the actual parameters.

Configuring an OCP TL1 channel

The OCP channel can be configured using@@&P configuration parameter§he
configuration is done after a channel has been created, by calling the

OCPRTL1 _Channel channel methodsetConfiguration with a configura-

tion parameter map object as argument. The configuration parameter map object is
a STL C++ MAP (available from themap>library) and must contain the different
configuration parameter names and their associated types and values [18].

In this framework, the generation of the configuration parameter map is done
by reading contents from a configuration parameter file, before a simulation starts.
The filename must be provided as argument and the map will be generated in the
top-level module. Table 17.9 shows an example a section of such a file.

11.6.3 OCP TL1 Master

Figureg/ 11.1p shows a simplified block diagram of the OCP TL1 Master, defined by
the TL1 _Master class. It interfaces to the IO device task throwghlink _mp
and the TL1 channel. Oval figures indicate thread procesSE€sTHREADor
SC.SLAVE) while rectangular figures indicate normal C++ methods. A hame asso-
ciated with a connection to process (engRequestEvent ) indicates the name
of ansc _event object, used for triggering the process execution. The dotted box
shows response data buffers for the different threads.

The OCP Master does not use a state machine for protocol handling. The
implementation is more high-level and uses dedicated clocked thread processes
instead. The threads related this are:

* requestThreadProcess manages the issuing and protocol handling re-
lated to read and write requests.
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Signal Configuration Parameter Comment
Request group
MCmd Always (1)
MAddr addr Required
MData mdata Required
MRegLast reglast Optional
SCmdAccept cmdaccept Optional
Response
MRespAccept respaccept Optional (2)
SData sdata Required
SResp resp Required (4)
Burst extension
MBurstSeq burstseq Optional (5)
MBurstSingleReq burstsinglereq Optional
MBurstPrecise burstprecise Required if MBurstSeq
MBurstLength burstlength Required if MBurstSeq
Data handshake datahandshake Optional (7)
MDataThreadID threads>1 Optional
MDatalLast datalast Optional
SDataAccept dataaccept Optional (3)
Thread extension
MThreadID threads>1
SThreadID threads>1
MThreadBusy mthreadbusy Optional (2)
SThreadBusy sthreadbusy Optional
sthreadbusy _exact Optional (6)
SDataThreadBusy sdatathreadbusy Optional (3)
sdatathreadbusy  _exact Optional (6)

(1) WR and RD are required to be supported by the OCP channel. Other types
currently not supported.
(2) Either MRespAccept or MThreadBusy must be used (in conjunction with
responses). Disabling both parameters are not allowed.

(3) Either SDataAccept or SDataThreadBusy must be used when data hand-

shaking is enabled.
(4) Write (WR) response enable is optional usimgteresp

rameter.

_enable pa-

(5) The master currently only support assertion of UNKN.
(6) Usage follows the protocol semantics, defined in [17], pp.49.
(7) If data handshake is disabled, all signals related to datahandshake becomes

non-applicable.

Table 11.8: OCP configuration supported by the OCP2.0 TL1 IO device.

* clearThreadBitProcess monitors response data buffers, if a buffer
becomes full for a particular thread. It clears the thread bit (MThread-
Busy) whenever buffer space becomes available again. Only applicable if
MThreadBusy is a part of channel.

* responseThreadProcess manages the protocol related to response data
receiving and the buffering of response data. It also controls the issuing of
notification messages to the 10 task, when new response data become ready
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addr i:1

addr _wdth i:16
addrspace i:0
burstlength i:1
burstlength  _wdth i:16
burstprecise i:1
burstseq i:1

burstseq _unkn _enable i:1
burstsinglereq i:1
cmdaccept i:1
dataaccept i:1
datahandshake i:1
datalast i:1

Table 11.9: A section of an OCP configuration parameter file.
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Figure 11.14: Simplified block digram for OCP2.0 TL1 Master.

in a buffer.

The next sections present a more detailed behavior description of the different
processes and also how they interact together.

IO task interface slave port

The SCSLAVEprocessQOCPslave decodes the messages coming from the 10
task and determine what action to perform. The message types supported are de-
scribed in tablg I1.10. Non-supported messages will cause the TL1 master to assert
an error message.



11.6. 10O device 119

[ comm [ type | Description ]
RUN WR Start a write request.
RD Start a read request.

RDRESPNOTIFY Tells the master that it must issue a notifica-
tion message, when read response data|are
being received on a particular thread.

SETFLAG

Table 11.10: Supported 10 task messages tymesnmandtype refers to the
declaration in the message. See also tablg 11.4[page 107.

RUNmessages causes a request to start by triggering the event,
mRequestStart  while the SET_FLAG message causes the process to set an
entry in themrespNotify boolean table to truemrespNotify  serves as a
response notification database, and accessed using the threadID. The purpose of
the database will be described in secfion 11.6.3.

The master contains no buffers for request messages (should be managed by
the 10 task). Thus receiving a RUN message in the middle of a request phase will
cause an error message to be asserted.

Request handling

A request phase starts when the procesguestThreadProcess gets trig-

gered by the eventmRequestEvent . Before starting the request, it checks if
SThreadBusy must be used. If so, it checks if the thread bit is set for the thread
associated with the request to initiate. If set, the slave cannot accept any new re-
quests and the process waits until the thread bit becomes cleared, before asserting
the request.

For write requests, the process selects an appropriate transaction method, based
on the channel configuration. For an example, single request burst write will always
be used, if data handshake and MBurstSingleReq is supported by the channel, and
if the write request is associated with multiple data transfer.

The address and data used for the write request is fetched from the deque ob-
jects, created by the 10 task. Accessing the objects are done through the pointers,
addrQ anddataQ provided by the 10 task request message (see also section
[11.5.3, pagg 111). If the data/address deques becomes empty and not all data has
been transmitted, the request/data handshake phase stalls until new data are avail-
able again. However, in the current implementation of the 10 task, this scenario
will never occur, since all data will be available when a request message is issued.

For a read request, the transaction method also depends on the channel config-
uration. If MBurstSingleReq is a part of channel, single request burst read will be
used for a burst read requests. Read request addresses are fetched from the address
deque, by gaining access to the object using the poiatielrQ ) provided by the
IO task request message.

When a request phase completes, the process calls the method,
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sendFinishindication , before completing. This methadusesthe initial
task request message created by the 10 task, alter this-INISHED message
and returns the pointer back to the 10 task again, indicating that the request has
been completed.

After the methodsendFinishindication has completed executed the
process suspends itself and waits@CPmaster to trigger a new request.

It must be emphasized that the current master implementation has following limi-
tations:

*« MCmd mnemonic supported are WR and RD.
* MBurstSeq will always be UNKN for burst requests.

However the implementation can easily be modified to support other types of
MCmd and MBurstSeq.

Response handling

Receiving of response data are managed by the process,
responseThreadProcess . When avalid response is being received (SResp =
DVA) the response data are being pushed onto a response datamegapDataQ
selected relative to the response thread ID (SThreadID). In conjunction to this,
mrespDataQ is implemented as an array of deques, with an array size equal to
the number of threads supported by the channel (defined by the OCP configuration
parameternthreads ).

Afterward, the boolean response notification databrasespNotify  is checked
to see if a response notification message must be issued to the IO task. This is
done by gaining access to the database using the thread ID. If the entry is true, it
means a notification must be send to the 10. Thus the process will call the method,
sendRespReadylndication , Which creates and issueRDRESPREADY
message to the 10 task (see also table|11.6, pade 111). This message also contains
a pointer to the associated response data deque, containing the response data. After
the method has been executed, the entmypiespNotify is cleared, to ensures
that no notification message will be send next time response data are received on
this threa Thus only the response data will be pushed onto the response data
deque.

If the size of the response data deque has reached the maximum buffer size, de-
fined by MASTERQUEUBRLIMIT , the process will stall any responses coming af-
terward, for the particular thread. If MThreadBusy is a part of the channel, then this
is done by asserting the associated thread bit. If MRespAccept is a part of channel

13This is not required since the 10 task now has the pointer to the response data deque object and
also know the data transfer size, associated with this thread.
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instead, it will be de-asserted until buffer space becomes available again. When us-
ing MThreadBusy, the process will also trigger the evemthreadbusy , caus-

ing the response data buffer size monitearThreadBitProcess to exe-

cutes. At each clock cycle, the process monitors the size of the buffers and clears a
thread bit, when space becomes available in an associated previous full buffer. The
process suspends itself whenever there is space left in all the buffers (i.e. when
MThreadBusy equals zero).

11.6.4 OCP TL1 Slave

Figure[11.1b shows a simplified block diagram of the OCP TL1 Slave, defined by
the TL1 _Slave class. It interfaces to the IO device task throwgghlink _mp

and the TL1 channel. Oval figures indicate thread procesSEsTHREADor
SC.SLAVE) while rectangular figures indicate normal C++ methods. A name as-
sociated with a connection to process (easpQ _ready ) indicates the name of
asc _event object, used for triggering the process execution. The dotted boxes
illustrates address and data buffers.

sage_type*>

el

L sendWriteDataReady

Communication link toffrom 10 task

sc_link_mp<io_nes:
0CP_TL1_SlavePort
OCP 2.0 TL1 chani

cccccccccccc
DataHSThreadProcess

clearThreadBitProcess

Figure 11.15: Simplified block digram for OCP2.0 TL1 Slave.

The OCP Slave does not use a state machine for protocol handling. The imple-
mentation is more high-level and uses dedicated clocked thread processes instead.
The threads related this are:

« startResponse prepares response data to transmit for a previous re-
ceived read request.

» responseThreadProcess transmit response data, prepared by
startResponse , to the OCP channel and manages the protocol related to

this.

* requestThreadProcess manages the received requests from the OCP
channel.
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« dataHSThreadProcess = manages the protocol and all signals related to
data handshake. Only applicable, if data handshake is a part of the channel
(datahandshake = 1 ).

* clearThreadBitProcess monitors the write data buffers in case a buffer
becomes full. It clears the thread 8T hreadBusy orSDataThreadBusy )
whenever buffer space becomes available again. Only applicable if SThread-
Busy or SDataThreadBusy (data handshake) is a part of channel.

The next sections present a more detailed behavior description of the different
processes and also how they interact together.

Data and address buffers

The slave incorporates buffers for each thread for buffering write addresses and
data as well as read request addresses. Buffer size is controlled using the com-
piler statement, SLAVEQUEUBR.IMIT . The different buffer types are imple-
mented as arrays of deque objects, where the array size equals the number of
threads, supported by the OCP channel (defined by the OCP configuration param-
eter,threads ). The deque objectspwrite _addrQ andmwrite _dataQ are

used for buffering addresses and data associated with a write request respectively,
while mread _addrQ is used for buffering addresses associated with a read re-
quest. Selecting a buffer for a particular thread is done using the thread ID.

Request notification database

The slave also implementsraquest notification databader write and read re-
quests. The databases are linked to the address and data buffers and holds in-
formation about the burst lengths of pending requests available in a buffer for a
particular thread. This information is being used when sending a request notifica-
tion message to the 10 task (the exact purpose will become clearer in the example
following later).

The read and write request databases are implementedsiadReqReadyQ
andmwriteRegReadyQ , which are arrays of the struct typequest _DB.type ,
where the array size equals the number of threads supported by the OCP channel.
The entries in the struct is described in tgble I[1.11. Updating a database is done
each time a request is being processed in the meflrodessRequest . This
procedure is described in sectjon 11]6.4 following later.

The following example tends to clarify the link between the buffers and the
database as well as its usage with respect to notification message generation to
the 10 task: Assumed that threéferentburst write request has been buffered for
thread#@. These having a burst length of 21, 6 and 12 respectively and buffered

14This scenario would be possible if the slave were in a middle of a very long response phase, since
request and response may happen concurrent. Thus the IO task cannot process the request before the
response phase has completed
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[ Type | Name | Description ]
bool notify

Indicates if the slave must issue a notifica-
tion message to the |10 task when a request is
received (required if true).

unsigned int counter Used to keep track of the number of re-
guests/data received for a burst request.

deque<unsigned int> burstlength A FIFO buffer containing the burst length af
pending requests currently stored in the as-
sociated buffer.

deque<bool> singlerequest A boolean, indicating if the request is a sin-

gle request (true) or not (false). Only applj-
cable for single request burst read.

Table 11.11: Request notification database strequiest _DBtype .

in the mentioned order. Here thearstlength FIFO buffer in the request noti-
fication data base for thread#h (vriteReqReadyQ[1] ) will contain the burst
length, also buffered in the mentioned order. This is illustrated in figure [11.16.

Burst length = 12 \‘/Burs! length = 5\‘/

-~

Burst length = 21

N
x* * g
writeAddrQ[1] request 3 request 2 request 1
writeDataQ[1] request 3 request 2 ‘ request 1
A \ \ 1 /
N \ \
\\\ \\ \\
Back of buffer AN \\\ \ Front of buffer
\ N Y\
N \
N \
Ny e Ta 21 |—— Front of buer
N T 5
T 12

writeReqReadyQ[1] -burstlength

Figure 11.16: example

When the 10 task sends a notification, that it is ready for receiving a write
request again on thread#1, the burst length information available from the front of
theburstlength FIFO will be fetched and included in the notification message
issued to the 10 task. Thus this message will be associated with the first burst
write request, available from the buffer and having a burst length of 21. When this

request has been processed, the next request, in front of the buffer is request 2,
which is to be processed next etc.

IO task interface slave port

Messages from the 10 task is decoded by 8@&SLAVE process OCPslave
Depending on the type of message, an action will be initiated by the process. The
message types supported are described in fable]11.12. Non-supported messages
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will cause the TL1 slave to assert an error message.

[ comm [ type | Description
RUN RESP Start response phase to a previous receiyed
read request
SETFLAG WRDATANOTIFY Tells the slave that it must issue a notifica-

tion message, when it receives a write re-
quest/write data on a particular thread

RDREQNOTIFY Tells the slave that it must issue a notificatig
message, when it receives a read request on
a particular thread

=}

Table 11.12: Supported 10 task messages tymesnmandtype refers to the
declaration in the message. See also tablg 11.4[page 107.

A RUNmessage causes the process to initiates a response transaction, by trig-
gering the eventstart _response . When aSET_FLAGmessages is received,
the 10 task notifies the slave, that it must issue a message whenever there is a
new request/data ready on a particular thread. At first, the process checks an as-
sociated request notification databaserdadRegReadyQ if messagdype =
RDREQNOTIFY ormwriteReqReadyQ if messageype =WRDATANOTIFY)
to see if there is a pending request already available in the buffer. This is done by
evaluating théourstlength FIFO buffer. If no pending request is available, the
notify  entry is set to true, causing a notification message to be issued, whenever
a request is being received on this thread next time. However, if there is a pend-
ing request in the buffer, the bust length is popped fronbtimstiength FIFO
and the methodendWriteDataReady  or sendReadReqReady is called,
depending on th8ET_FLAGmessagéype beingWRDATANOTIFY or
RDREQNOTIFY respectively.

The methodsendWriteDataReady  will create and issue WRDATAREADY
message to the 10 task, indicating that a write request is ready, while the method
sendReadReqReady will create and issue RESPmessage to the 10 task, indi-
cating a read request is ready and a response is now expectéBRDATAREADY
message also contains pointer to the associated write address and data buffers,
while theRESPmessage contains a pointer to an associated read address buffer. In
both scenarios the fetched burst length will be includedi&taUnits ) as well,
telling the 10 task the data transfer size associated.

Request handling

Request receiving from the OCP channel is managed by the process,
requestThreadProcess . This process operates on t&PRequestGrp

object, which contains all request group signals, also including MData, if data
handshake is not a part of channel. When a request is received, the associated
protocol handling will be done relative to the OCP channel configuration. After-
ward the request is forwarded the methpohcessRequest  which process the
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request.

For a write request, the method pushes the address and data onto the buffers
associated with the request thread ID. Then the request naotification database,
mwriteRegReadyQ is updated, by decrementing tleeunter entry. This
counter is used for keeping track of the amount of data received for a burst write.

If the counter equals zero, when the database is being updated, it means that the
request is new, since the data does not belonging to a previous burst write request.
Thus the counter will be initialized to burst length-1. If thetify  entry is false,

the 10 task is not ready to receive a write request ready notification, and the burst
length for the new request will be pushed onto Iiuestlength FIFO instead.
Otherwise the method callsendWriteDataReady  which issues a write re-
quest ready notification message to the 10 task. If a write data buffer becomes full,
and SThreadBusy or SDataThreadBusy is a part of the OCP channel, the method
will trigger the eventmthreadbusy , causing the write data buffer size monitor,
clearThreadBitProcess to executes. At each clock cycle, the process mon-
itors the size of the buffers and clears a thread bit, when space becomes available
in an associated previous full buffer. The process suspends itself whenever there
is space left in all the buffers (i.e. when SThreadBusy or SDataThreadBusy equal
zero).

Processing of the read requests and updating the request notification database
(mreadReqReadyQ ) is done in a similar manner as for write requests. However,
read request addresses will be pushed onto the associated read address request
buffer in mread _addrQ, selected relative to the request thread ID. Also, for a
single request burst read, the method will prepare the address sequence and push
this onto the read address buffer.

It must be emphasized that the current slave implementation has following limita-
tions:

*« MCmd mnemonic supported are WR and RD.

« Assertion of SThreadBusy transaction stalling by not asserting SCmdAc-
cept only relates to full write data buffers.

Data handshake

Managing write request, when data handshake is a part of the OCP channel
(datahandshake==1 ), is done in a different way, since the write data, MData

will be transmitted together with the data handshake signals, contained in the
OCPDataHSGrpobiject. In this configuration, all data handshake signals are man-
aged by the procesBataHSThreadProcess . The motivation for separating

the request and data handshake management is because the OCP protocol allows
for time-wise separation of the request and data handshake phase. It means that a
write request may be received at one point in time, but the actual data handshake
phase may come several clock cycles later. The approach of separating request and
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data handshake handling also allows for support of out-of-order thread execution,
since a request on another thread eventually could be processed, in the time interval
in-between a request-handshake phase.

Managing the linking between a request and data handshake is done using a re-
quest bufferreqQ . The buffer is an array of deque objects holddGPRequestGrp
objects, where array size equals the number of threads supported by the OCP chan-
nel. When a write request is received and the data handshake has not started
yet, the processtequestThreadProcess pushes the received request ob-
ject onto the buffer associated with the request thread ID (MThreadID). When
DataHSThreadProcess receives the data handshake, it fetches the request
object from the front of the request queue (selected relative to the thread ID,
MDataThreadID), fills in the received data and forwards the request object to the
method, processRequest  which then process the request. For single burst
write requestrequestThreadProcess pushes N copies of the request object
onto the request queue, where N equals the burst length.

Response handling

A response phase starts when a notification event is asserségrbn _response

by theOCPslave process. This causes the procestartResponse  to exe-

cute, which serves to prepare the response data, before starting the actual response.
The process fetches the response data from the response data deque object (through
the pointerdataQ provided in the message from the 10 task), converts this into
OCPResponseGrp object and pushes this onto a deque objextpQ serving

as a FIFO buffer for responses ready to transmit. For each response data, an
object will be created and pushed onto the buffer. When all response data has
been converted, the process initiates the response phase by asserting a notification
event onrespQ _ready . This causesesponseThreadProcess to execute,

which manages the assertion of response data onto the OCP channel as well as the
protocol related to this. At each clock cycle the process fetches a new response
group object from FIFO bufferespQ and assert this onto the OCP channel. This
continue until the FIFO buffer becomes empty and the response phase ends. Be-
fore responseThreadProcess suspends execution, it asserts a notification
event onrespQ _empty , informing startResponse  that the response phase

has ended. If there are no pending responses left to transtanitiResponse

suspends as well. Otherwise is waits for response data to become ready in the
buffer again and the procedure described above is repeated, until all responses has
been transmitted.

11.6.5 OCPTLO

The OCP 2.0 TLO model implements support for cycle true simulations at RTL
level. However, the model does currently not support propagation delay emulation,
with respect to delayed signal assertion. The implementation followsxhet
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same approach used for the implementation of the TL1 model, except that the OCP
TL1 channel model has been replaced with dedicatedh andsc _out ports for

the different OCP input output signals. Please refer to section 11.6.3, pdge 116 and
[11.6.4, pagé 121 for an implementation description of the TL1 master and slave

respectively.

Further, the TLO slave uses the OCP signal mnemonic and signal group objects,
OCPRequestGrp andOCPResponseGrp, available from the OCP transaction
level library, from the header filecp _globals.h . This is being done as a con-
venient way to encapsulate all information related to a request or response into a
single object. For an example, when a request is being received, all request infor-
mation from the TLO interface will be stored in &CPRequestGrp object and
forwarded toprocessRequest  for processing.

The OCP TLO model is defined by tid.0_IO class, where the TLO master
and slave are defined by the classEs) _Master andTLO_Slave respectively.

11.6.6 Supported OCP TLO configuration

The TLO Model can be configured relative to the channel it connects to. However,
compared with the TL1 model this must be done during building the framework.
Thus a new channel configuration requires rebuilding of the model. The different
configuration parameters are implemented as compiler statements and specified in
the header fileTLO_OCPconfiguration.h . Table[11.B lists the configura-
tions supported by the TLO model.
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Signal Configuration Parameter Comment
Request group

MCmd Always (1)
MAddr Required
MData Required
MRegLast _reqlast Optional
SCmdAccept _cmdaccept Optional (2)
Response

MRespAccept _respaccept Optional (3)
SData Required
SResp Required
Burst extension

MBurstSeq Required
MBurstSingleReq Required
MBurstPrecise Required
MBurstLength Required
Data handshake _datahandshake Optional (5)
MDataThreadID Required
MDataLast _datalast Optional
SDataAccept _dataaccept Optional (4)
Thread extension

MThreadID Required
SThreadlD Required
MThreadBusy _mthreadbusy Optional (3)
SThreadBusy _sthreadbusy Optional (2)
SDataThreadBusy _sdatathreadbusy Optional (4)

(1) WR and RD are required to be supported by the OCP channel. Other types
currently not supported by the 10 device.

(2) Either SCmdAccept or SThreadBusy must be used. Disabling/enabling of
both parameters are not allowed. When using SThreadBusy, the model follows
thesthreadbusy _exact semantic.

(3) Either MRespAccept or MThreadBusy must be used (in conjunction with
responses). Disabling/enabling both parameters are not allowed. When using
MThreadBusy, the model follows thrathreadbusy _exact semantic.

(4) Either SDataAccept or SDataThreadBusy must be used when data hand-
shaking is enabled. Disabling/enabling both parameters are not allowed. When
using SDataThreadBusy, the model follows sdatathreadbusy  _exact
semantic.

(5) If data handshake is disabled, all signals related to data handshake becomes
non-applicable.

Table 11.13: OCP configuration supported by the OCP2.0 TLO 1O device.

11.7 Dependency controller

The dependency controller module manages the task dependency database, de-
scribing the dependencies between the tasks assigned to a simulation. The database
is global in the sense, that it is being shared between the synchronizers in the
different PE’s in a controlled and well defined manner. Accessing the database
from the synchronizers is done through a pointer to the dependency controller ob-
ject, provided during PE module construction (see also seftion 11.2.1] page 96).
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The dependency controller also manages the unblocking of tasks, when a task
graph/application completes. In conjunction to this, the dependency controller
keeps a database containing pointers to all the task objects. A pointer is used for
gaining access to the unblocking method in a task object.

Figure[11.1f is a block diagram showing the connection between the depen-
dency controller and the synchronizer and task objects. The dotted line indicates a
pointer to the object.

dependency_controller

A T T T
444 [
} } | [
e
} I Il
I I
| |
. | I :
I I
. ! ! :
I I
fffff R S T

Figure 11.17: Block diagram showing the connection between the dependency
controller and the synchronizer and task objects.

The dependency controller is defined by the cldependency _controller
It has four public methods:

« initialize _database. Initializes the dependency database.

e push _task _ptr. Called when a pointer to a task object is provided to the
dependency controller (done during PE module construction and task object
creation).

« finish. Called by the synchronizer, when a task finishes and the database
has to be updated.

* mask. Called by the synchronizer, when a check is done to see if all depen-
dencies for a particular task has been resolved.

The implementation of the methods are described in the next sections.

11.7.1 initialize database

The methodinitialize _database serves to initialize the global dependency
data base. Itis being called at the top-level module, after the parsing has completed
but before the simulation starts.

When calling the method, a pointer to the parser object is provided as argument,
since the method needs to fetch the dependency database information from the
configuration file.

First operation performed is copying tineapping information look-up table
from the parserrapping _nfo ), which describes how an (end-to-end) task ID,
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defined by a group ID and subtask ID, maps to the extended dependency @abase
This information will be used, whenever a synchronizer addresses an entry in the
global dependency database, since addressing is always based on the end-to-end
task ID. The mapping information is stored in the private unsigned integer matrix,
mapping _nfo .

Afterward starts the task graph separation scanning algorithm. This algorithm
scans the extended dependency matrix available from the parser, and extract all
independent tasks graphs, which execute in parallel. It is being done by analyzing
all dependencies. Separation of task graphs are required in conjunction to the man-
agement of task graph execution completion and task unblocking. For each task
graph, the algorithm creates an unique dependency database object only containing
the dependencies and other relevant information for this task graph. A dependency
database object is a struct of the typetype . Tablg 11.1I§ describes the different
entries in this database struct.

[ Type | Name

Description ]

unsigned int  (NxN matrix) matrix Holds the dependency database.

unsigned int  (1x2 array) boundary Holds an upper and lower row/colum
index, defining a boundary in the de-
pendency data base, containing the task
graph dependencies. boundary[0]
holds the lower row/column boundar|
index, boundary[1] holds the upper
row/column boundary index. Entries outside
boundaries are don't cares since they are not
a part of this task graph.

bool (1xN array) task _used A look-up table identifying the tasks belong-
ing to the task graphs. The index maps di-
rectly to a row/column indexes used in the
dependency databasmatrix . An index
marked as true indicates that this particular
task belongs to the task graph.

Table 11.14: Task graph dependency data base strudtpe .

During the task graphs extraction scanning, the algorithm also checks for illegal
task graphs, containing feedback edges. If such a task graph is detected, an error
message will be asserted.

When the algorithm completes, the vector objectslist andrm_list _img
will contain pointers to the different task graph dependency databases created.
Thus, it is the different dependency database objects together which makes up the
global dependency database. The synchronizers operate on the database objects as-
sociated withrm_list , while the database objects associated withist _img
are original copies used for reference, when a task graph completes execution and
the dependencies are to be restored.

*Please consult secti.5, p 105 for a description of the extended relation database and
the mapping information.
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The example in figurg 11.18, page 133 tends to illustrates outcome from the task
graphs extraction. In the example two independent task graphs are considered,
only composed of end-to-end tasks with one subtask. The top of the figure shows
the task graphs, while the dependency database, as declared in the configuration, is
shown below. When the task graph extraction algorithm finishes, two dependency
data base objects will have been created; one for task graph 1 and another for task
graph 2 respectively. The contents of the databases are shown in the bottom of the
figure. The marked area in tineatrix  indicates the region containing the depen-
dencies, as defined by thundary . Notice inmatrix , that the last task in a
branch has been marked with 2. This is a special mark, inserted by the algorithm,
used for end-of-branch indication. The mark is being used in the algorithm, de-
tecting when a task graph has completed execution (implemented fimitte

method described later).

11.7.2 pushtask_ptr

Whenever a new task object is being created, the dependency controller must be
provided with a pointer to the object. The pointer is be used for gaining access to
the unblocking method in the task object, if the task has dependencies and when-
ever the associated task graph completes.

Calling push _task _ptr is be done during the dynamic task creation pro-
cess, which is a part of PE module construction. See also s¢ction|11.2.1, page 98.
When the method is called the provided pointer is pushed onto the vector object,
task _list _img holding the different task pointers.

11.7.3 finish

Thefinish  method is called from a synchronizer, whenever it receiFeISI#ISHED
message associated with a local task or external task (coming from the 10 task).
The operations performed by the method are:

» Clear dependencies in the dependency data base for local tasks.
« Checking if task graph execution has completed.

When calling the method, two arguments must be provided: the encod ID
of the finished task and a pointer to a vector object, holding the ID’s of the local
tasks assigned to the particular PE in which the synchronizer is I§éated

Clear dependencies in the dependency data base for local tasks

First operation performed is resolving/clearing the dependencies to the local tasks.
At first, the data base associated with the finished task ID is found frormtHist

“*see sectiop 6.4.1, pabe]35

Ythe local task ID list is located in the synchronizer and is initialized during the dynamic task
assignment phase. See also se1.2.1,@ge 98.
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by analyzing theask _used look up table in the different data base objects. If an
entry associated with the finished task ID is true, then the correct data base has been
found, since true indicates that the finish task belongs to the task graph encapsu-
lated in the database. Afterward follows the clearing of the selected entries, based
on the finished task ID and the local task ID’s available from the task list, is cleared.
The finished task ID is associated with column addressing while a local task ID is
associated with row addressing. In conjunction to this, the actual row/column in-
dexes are found using the mapping information, storedapping _nfo .

Checking if task graph execution has completed

After the database has been updated a check is performed to see if the particu-
lar task graph has completed execution. This is simply done by evaluating if all
entries inmatrix , within the defined boundary, has been cleared. If so, task
graph execution has completed and a new execution cycle may start. First the de-
pendencies are restored again, using information from the corresponding original
reference database object, available framlist _img. Afterward follows the

task unblocking. Which task to unblock is found by determine the ID’s of the
task belonging to the task graph. This is done simply by scanaisig _used .
Whenever an entry is true, the associated index is converted back to a task ID (using
mapping _nfo look-up table) and a search in the task pointertesk _list _img

is done, until the associated task object is found. Identifying a task object is done
by calling the task object methoGetTasklD which returns the encoded task

ID. When there is a task ID match, the correct task object has been found and the
method,unblock is called, causing the task to get unblocked. The procedure
described above is repeated until all the tasks have been unblocked.

11.7.4 mask

The mask method is called whenever a synchronizer needs to checks if all de-
pendencies has been resolved for a task. The method returns false if all depen-
dencies have been resolved. Otherwise true. Argument provided to the method
is the encoded task ID. First operation performed is finding the mapped index to
use when addressing the dependency database. This is done based on the task ID
and using thenapping _nfo look up table. Next step consists of finding the cor-
rect database object im_list , associated with the task ID. This is done by a
look-up intask _used, using the mapped index, until true is found in a database
object (indicates the task ID belongs to the particular task graph). When the correct
data base object has been found, all column entriesaitnix ~ within the defined
boundaries are added together, using a fixed row index, identified by the mapped
ID. If the result is zero, then all dependencies have been resolved.
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11.8 Performance monitor

The performance monitor module monitors the end-to-end deadline for task groups
with multiple as well as the performance of the different PE’s assigned to the frame-
work. PE performance covers utilization and 10 task usage. The different types of
monitoring is based oreporting method call¢o performance monitor. For an
example, in conjunction to the end-to-end deadline monitoring, a task calls a dedi-
cated method in the performance monitor when execution starts end finishes.

Calling the reporting methods, form the different modules doing reporting, is
done through a pointer to the performance monitor object, provided during PE
module construction. Modules calling reporting method are the periodic tasks and
IO task modules. Reporting done by the periodic task relates to end-to-end deadline
and PE utilization monitoring, while 10 task reporting relates to 10 task usage
monitoring.

Figure[11.1p is a block diagram showing the connection between the perfor-
mance monitor and the 10 task and periodic task objects. The dotted lines indicate
pointer to the object.

Performance_monitor

‘A A44
|
|
|
|
|
|
|
|
|

ioTask; - [ PerTask;

fffff b

Figure 11.19: Block diagram showing the connection between the performance
monitor and the 10 task and periodic task objects.
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The performance monitor is not a required module and may be left out when
building the framework. In fact, doing so will reduce the simulation time. The
performance monitor is defined by tRerformance _monitor class.

11.8.1 Initialization

After a performance monitor module object has been created, the different internal
databases must be initialized. This must be done after parsing but before the sim-
ulation starts. Initialization is done by calling the methatialize with a
pointer to the parser object and the number of PE’s as arguments. From the parser
object, it gets the number of subtasks for each end-to-end task as well as the end-
to-end deadline. This information is stored in the Nx2 unsigned integer database,
subtask _DBand will be used when initializing the associated end-to-end dead-
line counter, for an end-to-end task group. Row is associated with the end-to-end
task group 1D, while column 0 and 1 holds the no.of subtasks and the deadline re-
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spectively. If no end-to-end deadlines are declared at all (meaning that there are not
any end-to-end tasks with multiple subtasks) the end-to-end deadline monitoring
will be disabled.

The no.of PE’s is used for initializing the PE utilization and 10 task usage
databasegpu _DBandiotask _DBeach being an array of the struct type,
cpu _DB.type andiotask _DBtype respectively and with an array size equal
to the no.of PE’s. Thus gaining access to a database, for a particular PE, is ac-
complished by using the PE ID. Talple 11.15 and 111.16 describes the entries in the
structs.

[ Type [ Name | Description ]
bool idle A flag identifying if the PE is in idle (true if
S0)
double count A counter used for keeping track of the

e

no.of clock cycles a PE has been in use
Only incremented when not in idle (i.e.
idle =false).

Table 11.15: PE utilization data base stragt) DB type .

[ Type [ Name Description ]

unsigned int type Identifies the current state of the 10 task; elg.
being in idle (0), doing a write request (1
etc. The value otype maps directly to
the differenttype valid for the 10 taskRUN

message. See also taple 11.5, 110.

~

o

double (1x6 array) count A counter used for keeping track of the n
of clock cycles used in the different states.
When the counter is updated, the value |of
state is used for index selection.

Table 11.16: 10 task data base structask _DBtype .

11.8.2 End-to-end deadline reporting methods

The methodssubtaskRun and subtaskFinished is called by a periodic
task object when execution starts and completes respectively. Provided arguments
to the methods are the group ID and subtask ID. The methdataskRun has
only a meaning when called by the first subtask in an end-to-end task. When this
happens aeadline counter objedor the current task group is created and initial-
ized and pushed onto the vecteedl _DB holding deadline counter objects for
activate end-to-end tasks. A counter object is a struct of the egu##, DB type .
The different struct entries is described in tdble 111.17.

During deadline counter object initialization, the number of subtask and the
end-to-end deadline is fetched freubtask _DBand stored in
pendingSubTasks aeedl respectively.
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[ Type | Name | Description ]

unsigned int grouplD The end-to-end task group ID associated
with the deadline counter object.

unsigned int pendingSubTasks Identifying the number of subtask left in the
group. Is decremented each time a subtask
in the group finishes execution.

unsigned int nextSubTask Identifying the ID of the next expected sub-
task to finish. Used for error monitoring pur-
pose only; that is if next subtask finishing ex-
ecution has a different subtask ID than the
one identified bynextSubTask , an error
message will be asserted.

unsigned int eed| The end-to-end deadline counter. |s decre-
mented in each clock cycle.

Table 11.17: End-to-end deadline counter streetyl _DB.type .

WhensubtaskFinished is called, the counter object associated with the
group ID, provided as argument, is found in the vector,
eedl _DBandpendingSubTasks is decremented whileextSubTask is in-
cremented. IpendingSubTasks is zero after being decremented, it means that
all subtask has been completed and the end-to-end task has finished execution.
Thus the deadline counter object is erased femdl _DBafterward.

11.8.3 PE utilization reporting methods

The methods;pu _busy andcpu _idle are used when notifying the performance
monitor that a PE is busy or in idle respectively. The methods are called from a
periodic task object, when task execution starts and completes. Required argument
to the methods are the PE ID. Callimgu _busy causing thedle flag to be
set to false in the associated data base entopin DB while callingcpu _idle
causing the flag to be set to true. Addressing the data base enpy iDBis done
using the provided PE ID.

Whenidle is false the utilization countecount will be incremented each
clock cycle.

11.8.4 10 task reporting method

An 10 task reports to the performance monitor by calling the metiotaisk _state
Whenever the 10 task is launched for execution or finishes, it calls the method with
the PE ID and théypeof execution as argument (identified by ttype entry in

the message received from the scheduler. See alsq table 11.5, page 110). Using the
PE ID, the method accesses a database eniptask _DBand setype equal

to the execution type.
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When incrementing the 10 task usage counter, in each clock cycle, the value of
type will determines which entry to increment gount .

11.8.5 Data base updating

Updating the counters in the different databases are managed BCiREIREAD
processupdate _monitor _DBwhich executes at the rising edge of the clock.

For the end-to-end deadline counter objects, locatedi DB, theeedl entry

is decremented. kéedl has reached zero, it means that the end-to-end deadline
has been missed for the particular task group, and a notification will be asserted to
screen/log file. For the CPU utilization and |0 usage databases, all the database
entries, associated with the different PE’s, are accesses and the counters are being
incremented, if enabled.

11.8.6 Monitoring summary methods

A PE utilization and 10 task usage summary is obtained by calling the methods,
pe _utilization _summary andiotask _usage _summary respectively.

pe _utilization _summary will print the percentage utilization of the dif-
ferent PE’s,defined as the no.of clock cycles a PE has been in use, relative to the
total no. of simulation clock cycles.

iotask _usage _summary will print the percentage usage of the 10 task,
defined as the no.of clock cycles the 10 task has been executed, relative to the
total no. of clock cycles the associated PE has been in use. Also printed is the
percentage usage for write requests, read request, write data receiving etc.






Chapter 12

Implementation: SoC
communication platform model

This chapter presents the implementation specific details for the different modules,
forming the SoC communication platform model. Ihighly recommended to use

the source code for reference, when reading this chapter. The source code can be
found on the enclosed CD-ROM and may be used as reference. Please consult the
README file for a directory contents description.

12.1 10 port

The 10 ports modules currently available supports OCP2.0 at TLO and TL1. These
modules are the same being used for the 10 device modules in the extended abstract
PE model. Please consult secfion 11.6, 115 for an implementation description.

12.2 Intermediate adapter

The intermediate adapter manages the interfacing between the 10 port and the SoC
communication layer model and is defined by the cl&s§; comminter _adapt .
Whenever a transport message is received, it initiates a message to the IO port caus-
ing it to start a transaction. Similar, the intermediate adapter will issue a transport
message to the SOC communication layer model, whenever a new SoC communi-
cation event (request/response) is received by the 1O port. In conjunction to this, it
uses a&c _link _mpmaster and slave port in the interface to the SoC communica-
tion layer model and 1O port.

Figurg 12.1 shows a simplified block diagram of the intermediate adapter. Oval
figures indicate thread process&C(THREADor SC SLAVE while rectangular
figures indicate normal C++ methods. A name associated with a connection to a
process (e.grequest _start ) indicates the name of &t _event object, used
for triggering the process execution.

139



140 Chapter 12. Implementation: SoC communication platform model

The next sections describe the implementation of the different methods and
processes and how the interact together.

request_start

‘@‘]

send_io_response_message

‘ oreare_o_reques_message ‘

prepare_io_request_message ‘

p<noc_message_type*>
p<io_message_type*>

‘Communication link to/from 10 device

SC_SLAVE

SC_SLAVE

x_noc_comm

Communication link to/from NoC allocator

sc_link_m
sc_link_m

rx_io_comm

request_monitor
start_response_mon

Figure 12.1: Simplified block diagram of the intermediate adapter.

12.2.1 Internal databases

The intermediate adapter incorporates databases for the management the request
and response data received from the 10 port. The request database is contained in
request _mon.DBand is an array of the struct typesquest _mon.DBtype .
The response database is containegesponse _monDBand is an array of the
struct typeresponse _monDBtype . The array size for both databases equal
the number of threads supported by the SoC communication interface (initialized
in the class constructor). Thus there exist a database for each thread, since re-
quest/response data for the different threads must be treaded independently (also
to support out-of-order execution).

The request and response databases are maintained by the GatkKetREAD
processegequest _monitor andresponse _monitor respectively. The ex-
act procedure for this will be explained later.

Table[12.11 anfl 12]2 describes the entries contained in the structs,
request _monDBtype andresponse _monDBtype .

12.2.2 SoC communication layer interface slave port

The SC.SLAVEprocessrx _noc _commcontains the slave port interfacing to the
SoC communication layer. It decodes the transport message coming from the SoC
allocator and determines the type of transfer to initiate. The supported message
types and their meaning is described in table[12.3.
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[ Type | Name | Description ]

bool done A flag used in theequest _monitor process, for
controlling when all data has been received for a fe-
quest. The flag will be set to true when the request
phase completes.

unsigned int type Holds the type of request (WR or RD)

unsigned int dataUnits Data transfer size. This is the same as the burst length.

unsigned int counter A counter used for monitoring the amount of data re-
ceived for a requests. Incremented each time new data
are fetched from the 10 port data/address buffer.

deque<unsigned int>* addrQ Pointer to a deque object, used for buffering the
addresses fetched from the 10 port request addfess
buffer.

deque<unsigned int>* dataQ Pointer to a deque object, used for buffering the data
fetched from the 1O port request data buffer. Only
applicable for write requests.

deque<unsigned int>* ioDev _addrQ | Pointer to deque object in the 10 port, where to fetch
request addresses from.

deque<unsigned int>* ioDev _dataQ | Pointer to deque object in the 10 port, where to fetch
request data from.

Table 12.1: Request database stromfjuest _mon DB type .

12.2.3 Request transmission

A request transmission will be initiated when the processnoc _commreceives

a RUNtransport message with thgpe entry beingWRor RD indicating write

or read request respectively. If the transport message is associated with a read
request, the corresponding response database entryrégponse _monDBis
updated (selected usirtreadID ). Updating consists of fetching the entries,
from anddataUnits from the transport message and store this in the response
database. See also taple 12.2. This information will be used, when the response for
the particular thread is received by the 10 port. Afterward the process issues a call
to the methodprepare _io _request _message which creates an IO port mes-
sage {0 _-message _type ), fetches the SoC communication related information
from the transport message (transaction type, thread ID, data units and data/address
deque pointers), copy this into the message object and finally pushes a pointer to
the message onto the quewuequestQ (deque object) holding pending 10 port
request messages. Next, a notificationrequest _start is asserted, causing

the processsend _io _request _message to fetch the message pointer from
requestQ and forwards this to the 10 port. The process now waits until a no-
tification is asserted orequest _done, indicating the request phase has been
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Type | Name

Description ]

bool done Aflag used in theesponse _monitor process, for
controlling when all responses has been received for a
previously initiated read request. The flag will be get
to true when the response phase completes.

unsigned int from Holds the 10 adapter ID from where the read request
came from. Used for identifying the target for the
transport message to issue, when the response phase
starts.

unsigned int dataUnits The burst length of the read request. Used as a refer-
ence for identifying when all responses has beeni|re-
ceived.

unsigned int counter A counter used for monitoring the amount of resporjse
data received. Incremented each time new respgnse
data are fetched from the 10 port response data buffer.

deque<unsigned int>* dataQ Pointer to a deque object, used for buffering the fe-
sponse data fetched from the 10 port response data
buffer.

deque<unsigned int>* ioDev _dataQ | Pointerto a deque objectinthe IO port, where to fetch
response data from.

Table 12.2: Response database stm@sponse _mon.DB.type .

[ comm [ type | Description ]
RUN WR Start a write request.
RD Start a read request.
RESP Start a response phase (to a previously re-
ceived read request).

Table 12.3: Supported transport messages types, received from the 10 device.
commandtype refers to the declaration in the transport message. See also ta-

ble[9.1, pagg §7.

completed by the 10 port. It then checks if there are any pending request messages
buffered in the queue. If so, the next message pointer is fetched, and the same
procedure described above is repeated, until the queue becomes empty. Then the
process suspends itself.

12.2.4 Response transmission

A response transmission will be initiated when the processnoc _commre-
ceives aRUNtransport message with tligpe entry beingRESP The procedure
is similar to the request transmission handling, but using the method,

prepare _io _response _message for IO port message preparation and the
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processsend _io _response _message for managing the message pointer for-
warding to the 10 port. In conjunction to this, the quevesponseQ is used

for holding pointers to pending response messages, Wwdslgonse _start and

response _done is used for notifying the processend _io _response _message

when a response message is ready and when a response phase has been completed
by the 10 port respectively.

12.3 10 port interface slave port

The SC SLAVEprocessrx _io _commreceives the messages coming from the 10
port. Whenever a message is received, it is being decoded and an associated action
will be initiated. An IO port message either indicates that some data have been
received from the SoC communication interface (a request or response) or that a
previous initiated request or response phase has been completed. The different
types of supported 10 port messages and their meaning is listed in takite 12.4

[ comm [ type | Description ]
READY RESP A read request has been received.
RDRESPREADY Response data, associated with a previously

initiated read has been received and now
ready to be fetched.
WRDATAREADY A write request has been received and data
now ready to be fetched.

S

FINISH WR The initiated write request has completed.
RD The initiated read request has completed.
RESP The response phase (to a previously receiyed

read request) has completed.

Table 12.4: Supported messages types, received from the |ICGcpartmandtype
refers to the declaration in the message. See also[table 11.4, page 107.

When receiving &INISH message for a previously initiated request or re-
sponse, the process asserts a notificatioreqnest _done orresponse _done.
See also the previous sections describing the request and response transmission.

12.4 Request receiving

When the procesgx _io _.commreceives request message from the 10 port, it
performs the following actions in the described order:

Creating and initializing a new transport message The thread IDthreadID )
and burst lengthdataUnits ) is fetched from the 1O port message and
stored in the associated entries in the transport message. If the request being
a read or write, théype entry in the transport message will be seRD

"This table is similar to table 11.6, page 111, but repeated here for convenience.
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or WRrespectively. Also initialized in the transport message ispibstion
indication entries.from andnow is set equal the current node/lO adapter
ID, while to is found by calling the methodjet _target _nodelD (not
shown in figurg 12]1) with the first provided request address as argument.
From the look up tablenode _address _matrix containing the address
space for the different 10 adapters, it finds the ID of the target IO adapter
and returns this.

Create deque objects for request address/data bufferingNew data and address
deque objects are created, for buffering the addresses and data from the re-
quest. Pointers to these objects are included in the transport message (in the
addrQ anddataQ entries), since the destination |0 adapter must be able
to fetch the data from the buffers when it receives the transport message and
starts the request. If the request being a read, only an address deque object
will be created.

Update the request databaseThis is required by the procesgguest _monitor
which manages the request phase and fetching of data from the 10 port. Se-
lecting the correct database entry is done using the request thread ID. Up-
dating consists of storing the request type and data transfer size associated.
Also stored are the pointers to newly created address/data buffers as well as
the pointers to the address/data buffers provided by the IO port (from where
to fetch the request address/data). Finally is the edpe set to false,
indicating a pending request on this thread, and the request counter entry,
counter is initialized to 1 (since the first data from the request has been
pre-fetched and stored in the request buffers as well). See alsq table 12.1,

pagg T4]L.

Issues the transport message to the SoC communication layer modehis is done
after the request database entry has been updated.

Start request monitoring and data fetching After issuing the transport message,
anotification is asserted @tart _request _mon. This causes the clocked
SC THREADprocessrequest _monto executes. At each clock cycles it
checks all database entries and do the following actions for threads associ-
ated with an ongoing request (identified dgne==0 ):

« fetches a new address/data from the 10 task request buffers and pushes
this onto the address/data buffers to be used by the target 10 adapter.
If the 10 device request buffers are empty and the request phase is
incomplete (indicating an interrupted burst request), then no operation
is done.

 Increments the request counter entguinter  if an address/data was
fetched from the 10 port buffer.
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When all requests have been received for a particular thread (that is when
counter==dataUnits ) the entrydone will be set to true, telling

request _monitor that there are no longer any ongoing request on this
thread. Also, SET_FLAGmessage is issued to the 1O port, notifying that it
must issue & EADYmessage when a new request phase starts on this thread.
The notification message is issued by calling the method,

set _I0device _flag with the thread ID (equals to the database entry ad-
dressing index) and a notification identifidRREQNOTIFY if read re-
guest oWRDATANOTIFY if write request) as arguments.

Therequest _monitor process suspends itself if there are no ongoing
requests on any threads.

12.5 Response receiving

The actions performed when the process,io _.commreceives a response mes-
sage from the 10 port is similar to what is being done when receiving a request mes-
sage. See also previous section. The only difference is that the response database,
response _mon.DB and the clocked/sC THREADprocessedresponse _mon

is being used for the response management. In conjunction to this, the event,
start _response _monwill be used for triggering the execution@sponse _mon

12.6 SoC allocator - 1D/2D mesh NoC topology model

The SoC allocator module defined by the cl&sC_commalloc _mesh models

a 1D/2D mesh NoC topology with packet switched traffic. The routing is based on
a minimal path algorithm. Selection of a minimal path will be done dynamically,
relative to avoid link contentions whenever possible. The allocator can also be used
for modeling a 1D mesh, by setting the megtan parameter to 1, during module
construction (see also the next section).

It must be emphasized that the current model considering links as being the
only shared communication resources. From a modeling perspective, it means
routers are assumed to have infinite buffers and zero latency.

The SoC allocator consists of a single process and method:

e allocate . A SCSLAVEprocess managing the transport messages and
implementing the actual algorithm, modeling the topology. It receives and
transmit transport message pointers.

* send _release _message. A method called fronallocate  whenever
a link, having a having pending reservation, is released.

The next sections explain the implementation approach used for modeling a 1D/2D
mesh with minimal path routing. The descriptions relate to the code found in
allocate
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12.6.1 |Initialization - defining a mesh grid

The layout of a mesh is configurable, using parameter, provided to class con-
structor during object creation. This parameter defines the number of nodes per
row/column, yielding a symmetrical mesh. Thussifan = 3 the corresponding
modeled symmetrical mesh consists3aB nodes. If the number of nodes con-
necting SoC allocator is smaller or larger thamn?, the modeled mesh becomes
asymmetrical. A special case exists, wiglun = 1, which always will model a 1D
mesh. Figurg 122 illustrates different kinds of mesh grid configuration, relative to
the value of span and the no. of network adapters connected (equivalent to the 10

adapters in figurg 9.1, pape|54).

]

(3)—{4)—(5) ) e(D)—(5

1]

6 J¢—(7 )j=—(8

S TS S
@—®—O

2D mesh 1D mesh
span =3 span =3
NA=6 NA=3

Figure 12.2: Examples of mesh grid configuration. NA defines the number of
network adapters.

12.6.2 The mesh database

To manage the usage of the different network communication resources (in this
model only consisting of links), two mesh databasie® _return and

link _forward , are being used. Each database is implemented a&a un-
signed integer matrix.link _return andlink _forward is used in associ-
ation with return and forward links respectively. The valueNofis defined as

N = (2-span)—1 wherespan equals the number of router nodes in a row/column,
yielding a symmetrical mesh. Figdre I2.3 shows an example how the routers nodes
and links maps to the matrices. The example assumes a 2D mesh with span = 3.

As it can be seen, each entry in a mesh database corresponds to a certain po-
sition in the mesh, being a node or link. The mapping between the mesh and the
database is straightforward. For an example, node 2 maps to(éntrywhile the
link between node 2 and 5 maps to entty4).

The value of an entry in a mesh database is used for identifying the state of a
particular link. Following scenarios exists:
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Return links 2D symetrlcal mesh Forward links
with span=3
0 1 2 3 4 0 1 2 3 4
node | . node | . node node | . node | . node
0 link 1 link 5 0 0 link 1 link > 0
link | na | link | na | link | 1 link | na | link | na | link | 1
node | . node | . node node | . node | | node
3 link 2 link 5 2 3 link 2 link 5 2
link | na | link | na | link | 3 link | na | link | na | link | 3
node | . node | . node node | . node | . node
6 link 7 link 8 4 5 link 7 link 8 4
link_return link_forward

Figure 12.3: An example showing how a 2D mesh mapknto _return and
link _forward

Entry value  State

0 The link is free/not in use
1 The link is occupied but there is no pending reservation in the NoC scheduler.
>1 The link is occupied and there is a pending reservation on this link in the [SoC

scheduler. The number of reservations equals: entry value - 1.

For an example, if the value in ent(y, 4) in link _forward is non-zero it
means that the forward link between node 2 and 5 is in use.

Whenever a link is being reserved, the associated entry is incremented. When
it is being released again, the entry is decremented.

12.6.3 The basic minimal path algorithm

The routing algorithm implemented by the SoC allocator aims to find the minimal
path through the mesh. It is based on the pseudo code algorithm shown in figure
[12.4.

Initial input to the algorithm is a current positiofy, j) and a destination po-
sition, (m, n) in a 2D mesh. During each iteration in the while-loop, the current
position, (i, j) moves closer and closer to the destination, n) until the position
eventually is the same, after which the while loop terminates. The algorithm is
very simple and tends to reduce the horizontal and vertical delta distances during
each iteration. Whenever a horizontal or vertical delta distance equals zero (e.qg.
1 = m or j = n) the position is not changed any further. Following the movement
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# (i,j) identifies the current position
# (m,n) identifies the destination position

while i<>m AND j<>n do
# select horizontal minimal path
if i<>m then
if i<m then
i=i+1
else
i=i-1
end if
end if

# select vertical minimal path
if j<>n then
if j<n then
j=j+1
else
i=i-1
end if
end if

end while

Figure 12.4: Pseudo code for the basic minimal path algorithm for a 2D mesh

of current position(i, j) from start to finish, it can be observed that this always
will equal the minimal path in a 2D mesh.

The actual implementation of the algorithm is not fully identical to the pseudo
code in figurg¢ 12}4. However, the computation steps for finding the next horizontal
or vertical routing path in the mesh is similar.

12.6.4 Mapping a node position to a mesh database entry

When the allocator receives a transport message, the next link to use will be based
on the routing information entrieapw andto available from the messagerow
indicates the current node position of the message (node ID), wehil@dicates

the destination node ID.

From the routing information entries, it is not possible directly to see the lo-
cations in the mesh since they do no contain any information about the topology.
Thus to be able to select which link to use next, the entries must be mapped to the
mesh, as it is being described by the mesh databases. The mapping will result in a
position defined by a row and column ind€x, j). Finding the mapped row and
column for a node ID is simply done by performingiateger divisiorandmodulo
divisionbetween the node ID and the span and multiply by two, respectively. The
equations are also shown below:

Row i =2 (nodel D/span)
Column j =2 (nodel D%span)
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Example:If the current node ID is 3 and the destination node ID is 2 and the span
is 3, the corresponding mapping yieldsodeI D = 3 — (2,0) andnodel D =
2+ (0,4). See eventually also figure 1P.3, page|147.

12.6.5 Approach to link selection and reservation

After the position ID mapping, the next link to use if found from the mapping
index, relative to the selecting a minimal routing path, as defined by the algorithm
in figure[I2.4. Depending on the relative placement of the current and destination
node, it may be possible to use either a vertical or horizontal link. The following
illustrates this:

Example:From the previous example, it was found that the current and destination
node ID of 3 and 2 would map t®, 0) and(0, 4) respectively. Here the minimal
path algorithm finds the next possible link to use to be eithew#récal return

link identified by(1,0) or thehorizontal forward linkidentified by(2,1). This is

also illustrated in figurg 12.5 showing the links in the mesh and the corresponding
entries in the mesh databases.

Destination

node
node node node node
\ link ink 0 | link ink 0
0 1 0 1
a in n.a in nk na ink n.a in

- node node node ode node node
8) 5 link 7 ink . 4 5 link - ink ; 4

(A) Possible links to use (B) Corresponding entries in the (C) Corresponding entries in the
link_return mesh database 1ink_forward mesh database

Figure 12.5: The next possible next links to use. Figure A shows the links in the
2D mesh while figure B shows the corresponding entries

Whenever it is possible to use either a vertical or horizontal link, the imple-
mented algorithm always tries to reserve a vertical link first. If the link is being
occupied (the associated entry in the selected mesh database in non-zero) and it is
possible to use a horizontal link, it will reserve this instead; also if it is being occu-
pied. Ifitis only possible to use a certain link (vertical or horizontal), a reservation
will be put on this link, no matter if it is being occupied or not.

In conjunction to link reservation, this is being done by incrementing the asso-
ciated entry in the selected mesh database. Also, mesh database selection depends
on the delta distance to move in the mesh being negative or positive, index-wise.

Example:Considering the example from before (see also fiureg 12.5), it is now as-
sumed that a reservation of the horizontal forward link, identified2yy) is to be
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done. Here the selected mesh database woulhlbe _forward since the delta
distance to move is positive. After selection, the entrg2inl) in link _forward
is incremented.

12.6.6 Transport message management

In a transport message, the entggourcelD is used for identifying the shared
resource used or to be used by the message (see alsp table 91, |page 57). For this
SoC allocator, it refers to a particular link in the mesh and is implementedx a
matrix, encoded as shown in table 12.5.

Entry  Description

0 Identifies the link type, where O=reverse and 1=forwajrd.
1 The horizontal link position in the mesh database.

2 The vertical link position in the mesh database.

Table 12.5: Encoding aksourcelD

When the processllocate  receives a transport message not coming from
an intermediate adapter, is means that a previous link, identdgxlircelD  has
been released. Based on the entrieesourcelD , a mesh database is selected
and the associated value in the database entry is decremented. If there is a pending
reservation on this link, a call is made to the mettsmhd _release _message.

This method issuesRELEASEmMessage to the scheduler, containing the resource
ID information, causing the pending transport message to be released.

Afterward a check is done to see if the transport message has reached the desti-
nation node, by evaluating if the position indicatarey andto are equal. If so, it
means that the destination adapter has completed the inter-processor communica-
tion event and the message may now be deleted. If the transport messages has not
reached the destination node yet, the next link to use is found using the approach
described in the previous sections. In conjunction to this the enesgurcelD
is updated to reflect which link to use, while current node ID positioris updated
to reflect the next node ID position of the message. Also, the éb8lyjdentifying
for how long time the link is to be occupied, is initialized a value equal to the data
transfer size (identified by the entdataUnits . If there was no link contention,
the transport message is finally changed @RANTmMessage and forwarded to the
SoC allocator. Otherwise it is changed tREFUSENessage and forwarded to the
SoC scheduler.

12.7 SoC allocator - single shared bus model

The SoC allocator module, defined by the cl&sC_.commalloc _bus models
a single shared bus, with the bus being granted on a first-come-first-served basis.
The model is shown in figufe 12.6.
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Figure 12.6: Single shared bus model.

The implementation is similar to the 1D/2D Mesh model, except that there is
only one link available. Otherwise the approach for doing link reservation and
transport message management is exactly the same.

The model consists of a process and a method:

e allocate . A SCSLAVEprocess managing the transport messages and
the bus database. It receives and transmit transport message pointers.

* send _release _message. A method called fronallocated  whenever
the bus is released and there is a pending reservation on the link.

The bus database is defined by the unsigned int varibbte,

12.8 SoC resource usage buffer

The SoC resource usage buffer is used for buffering transport messages while using
a shared communication resource. Itis defined by the Gas3 commres _buff
and consists of the following processes:

* rx _noc _message . A SC_.SLAVEprocess receiving transport message point-
ers from the SoC allocator. Whenever it receiveSRANTiransport mes-
sage, the pointer is pushed onto the resource usage tuffear (a deque
object, holding pointers to transport messages).

It also checks ihow == to . If this condition is met, it means that message

is to reach the destination 10 adapter, since the current resource connects to
the destination node. Thus the destination 10 adapter may start the SoC
communication event simultaneously with the resource being granted. This
is accomplished by creating a copy of the transport message, change it to a
RUNmessage and forwards this to the destination intermediate adapter.

e update _buffer . A clocked SCTHREADprocess for maintaining the
buffer. In each clock cycle th€SL entry in the different buffered messages
is decremented and wheneveEL has reached zero, the transport message
pointer is removed from the queue and forwarded back to the SoC allocator
again.
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12.9 SoC scheduler

The SoC scheduler is used for buffering transport messages waiting for a shared
communication resource to become free. Scheduling is done according to the first-
come-first-served principle. The SoC scheduler is defined by the class,
SoC.commscheduler and consists of a process and a method:

* rXx _noc _message . A SC SLAVEprocess receiving transport message point-
ers from the SoC allocator. REFUSHransport message, causes the trans-
port message pointer to be pushed back onto the qug(sedeque object,
holding pointers to transport messages).RELEASEmessage initiates a
call to the methodgheck _queue.

» check _queue . Scans the transport message pointer qu@umtil finding
the first pending message waiting for this resource (identified by the entry,
resourcelD ). When the message has been found it is being changed to a
GRANTransport message, forwarded to the SoC usage buffer and the pointer
is removed from the queu®
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Conclusion

The aim with this project has been to integrate an abstract SystemC based RTOS
model for MPSoCI][7], together with a OCP2.0 based communication platform for
low-level inter-processor communication. The motivation for this is to expand the
ability to mix and integrate different SoC models, operating at different abstraction
levels, into a common SoC communication platform having the same interface to
all models. Having the ability to select from a variety of SoC models, represent-
ing IP cores a different abstraction levels, will serve as a powerful tool for SoC
designers, since it becomes possible to customize a simulation framework, relative
to the design space exploration experiments to perform (e.g. for SoC communica-
tion platform analysis). Thus IP core abstraction level refinement can be done as
desired.

As an extension to the project, a SystemC based abstract SOC communication
platform model has been developed as well.

The original abstract RTOS based PE[7] model has been extended to support low-
level SoC communication by implementing an 10 device and IO task module on
top of it. The 10 device models a physical hardware port while the 10 task models
a device driver application, used for controlling the hardware port and managing
data/address encoding, related to inter-task dependency. Two IO device modules
has been implemented, supporting OCP2.0 at TLO and TL1 respectively. They
have a multi-threaded interface ans support out-of-order thread execution. Further,
they are configurable (signal-wise) relative to the channel they connect to.

In conjunction to the management of inter-task dependencies, daskvwde-
pendency modulleas been added on top of the original synchronizer module. The
module serves as a common synchronization database, since all synchronizers con-
nect to this module. It also fixes the lack of support for periodically task graph
execution, which was a serious issue in the original synchronizer module, limiting
the simulation time to a single task graph period.

Further, the abstract RTOS based PE model has been extended to support end-
to-end tasks[[20], which is being used in conjunction to the implementation of
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read/response based inter-processor communication.

A new performance monitor moduleas been implemented as well. This mod-
ule monitors the performance of the different PE’s, with respect to utilization and
time spend on inter-processor communication etc., thus providing useful informa-
tion to the SoC designer. It also serves to monitor the deadline for end-to-end tasks,
consisting of multiple subtasks.

Finally, the performance of the model has been improved 10..15% by changing
thesc _mplink  module communication approach from message object passing
to pointersto message object passing.

To provide the SoC designer with an easy and flexible method for configur-
ing an abstract PE based MPSoC simulation framework, a dedicatéidjuration
file parser modulénas been implemented as well. The parser accepts a configu-
ration file as input, describing different parameters for a simulation (task assign-
ment/partitioning etc.), using a simple script language as showed in the example in
figure[8.8, pagg §1. From the configuration file declarations, a simulation frame-
work can be dynamically created/configured, without having to rebuild the system-
level model again. Further, the simplicity and modularity of the parser makes it
very easy to implement new script commands and data types, if needed.

All new modules have been implemented with emphasis on modularity, to ensure
backward compatibility with any previous simulation frameworks, based on the ab-
stract RTOS model. This approach also makes it easy to implement new hardware
port and IO device driver models, since the interface to the modules is well-defined.

In conjunction to the extended abstract PE model, a SystemC based abstract SoC
communication platform model has been developed as well. It supports modeling
of different topologies, ranging from a simple bus to a 1D/2D mesh based NoC,
using minimal path routing and packet switched traffic. It favorers from being
able to support transmission of real data, while still having an abstract description
of the underlying communication topology. Further, the modular implementation
approach makes it easy to implement new topology models as well as other SoC
communication protocols. Another interesting feature arising from the modular-
ity, is the ability to integrate/mix communication protocols operating at different
abstraction levels (e.g. OCP2.0 TLO and TL1) or for that matters different SoC
communication protocols (e.g. OCP and Wishbone). The current model supports
OCP2.0 TLO and TL1 SoC communication protocols.

With the new extensions added to the abstract PE model, the power and flexibil-
ity of the model has increased to even new heights. Especially the introduction
of the configuration file parser, has moved the model up to a level, where it has
become useful in practice, since a simulation framework no longer needs to be re-
build each time design parameters such as task partitioning or scheduling policies
are changed. The usefulness of the extended abstract PE model as well as the new
SoC communication model was clearly demonstrated using a series of different de-
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sign space exploration experiments, ranging from analysis of a simple architecture,
consisting of a bus and two abstract PE’s, to a more complex performance analysis
of an architecture, consisting of nine abstract PE’s connected in a 2D mesh. Thus
it can be concluded that the objectives for the project are successfully met.






Chapter 14

Future work

This chapter highlight some of the suggested future work, related to the RTOS and
SoC communication frameworks.

14.1 RTOS framework

« New method for doing task dependency declaratioif he current approach
using a dependency matrix works fine, but for many taski0Q) the method
becomes cumbersome, also increasing the chances for making errors. A new
approach could be define the precedence or succeeding dependencies for
each task in the task declaration.

« Support for multiple transaction types (write and/or read) for a task
having multiple inter dependenciesin the current framework the same
transaction type will be used for all preceding edges associated with inter
dependency.

» Better summary reporting after simulation completesThat is also includ-
ing information such as no.of missed deadline, average execution time etc.
for the different task graphs. See also sedfion 1D.1.4,[pgdge 67 presenting an
example of the current summary reporting.

» Support for transmission of real data between tasksThis is required for
doing MPARM behavior emulation and relates to the implementation of the
task model.

« Support for conditional task graph execution/branching Emulation of
non-static task graphs and features such as semaphore and mutexes. Relates
to the implementation of the synchronizer, task model and 10 task.
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14.2 SoC communication platform framework

» Extend the SoC allocator for mesh based NoC modelinghe current
model assumes a router node has infinite buffer and zero latency. This is
too unrealistic/optimistic and should modeled as a shared communication
resource as well.

 Better real-time and summary reporting The current approach, as for an
example, shown in figuje T0/13, pdge 77 is far from optimal.

14.3 Simulation presentation in general

As stated above, it is common for both frameworks, that the simulation result pre-
sentation is non-optimal. Getting a quick overview of the system performance
and potential bottlenecks, related to parameters such as bad scheduling and task
partitioning, becomes difficult when doing real complex system-level modeling
(e.g. nine PE’s and five applications) and using very long simulation times. Imple-
menting a well organized summary reporting method is therefore essential, if the
frameworks are to become easy to use for very complex design space exploration
experiments.
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1. Declaration type mnemonic: screen_dump

Database type description
A boolean variable, screen_dump.

Access methods

Name Description
get_screen_dump Returns the value of screen_dump

2. Declaration type mnemonic: log_file

Database type description:
Array of chars, 1og_file[] holding the log filename.
Access methods

Name Description
get_log_file Returns a pointer to log_file

3. Declaration type mnemonic: ved_file

Database type description
Array of chars, ved_file[] holding the VCD filename.

Access methods

Name Description
get_log_file Returns a pointer to ved_file

4. Declaration type mnemonic: sub_task_map

Database type description

A vector, task_list holding pointers to struct objects (task_type), encapsulating the
subtask task declarations (vector<task_type*>). The struct, task_type contains the
following entries.

Type Name Descripition
char (array) name The task name
?ar:rsa ; )gned int arg The different task parameters

vector<res_type> resource A vector holding structs, containing the different resource
requirement. res_type is the struct and consists of an
unsigned integer array, arg holding the resource
requirement parameters

Access methods

Name Description

task_list_size Returns the size of task_list.

get_task_from_list Returns the pointer (task_type*) to task declaration struct object
no. N, where N is the argument provided to the method.

Get_subtaskID Returns the 1D of the subtask, associated task declaration struct
object no. N, where N is the argument provided to the method.
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5. Declaration type mnemonic: dependency_database

Database type description

A struct object, rm of the type dependency_matrix_type, containing the end-to-end
dependency database as well as the extended/finalized database, with subtask dependencies.
Also includes the size of each database and the index offset look-up table, associated with the
finalized database.

Type Name Descripition
t‘g;riig)“ed int  parent The end-to-end dependency database, as specified in

) ) ) the configuration file.
Unsigned int  parent size Row and column size of the end-to-end dependency

(array) database.
z::tri_gyed int  subtask The finalized dependency database, with subtask
1X;

dependencies.

Emsi)gned int  subtask_size  Row and column size of the finalized database
array’
unsigned int  mapping_nfo A look-up table, holding the index offset for each end-

(matrix) to-end task as well as the no. of subtask in each end-to-
end task.
[k][0] = no.of subtask belonging to parent ID, k.
[k1[1] = index offset for parent ID, k.

Access methods

Name Description

dependency_matrix_size  Returns the size of the finalized dependency database,
subtask.

get_dependency Returns an entry from the finalized dependency database,

subtask. The row and column index is provided as
argument to the method.
get_mapping_nfo Returns a value from the mapping_nfo look-up table.
Argurmnts to be provided are the parent ID, k and the
data selection value (0 or 1)
(k,0) returns no.of subtask belonging to parent ID, k.
(k, 1) returns the index offset for parent ID, k.
get_dependency_matrix Returns a pointer to the struct object, rm containing all
information related to the dependency database (See table
above).

6. Declaration type mnemonic: ee_deadl ine

Database type description

A vector, dI_list holding pointers to struct objects (ee_deadline_type), encapsulating the
parent ID and associated end-to-end deadline (vector<ee_deadline_type*>). A struct,
ee_deadline_type consists of an unsigned integer array, arg with two entries, were arg[0]
holds the parent ID and arg[1] holds the end to end deadline.

Access methods

Name Description

get_ee_deadline Returns the end-to-end deadline associated with parent ID, provided
as argument. Target variable for the returned end-to-end deadline must
be provided as argument as well. The function returns true if an end-
to-end deadline exists for the parent ID. Otherwise false.
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7. Declaration type mnemonic: module

Database type

A vector, module_list holding pointers to other vector objects, holding struct objects
(module_type), encapsulating the different module declarations. A declaration consists of a
name and one or multiple values. The struct, module_type contains the following entries.

Type Name Descripition

char (array) name  The parameter name

F"S' )gned int arg The different values associated with name
array’

For each module declaration in the configuration file there will be generated a vector object,
and a pointer to this is stored in module_list (vector<vector<module_type*>*>).

Access methods

Name Description

module_search  Search for a module in module_list, containing a certain declaration
name and value (e.g. “pelD”, 3) provided as argument to the method.
Returns a pointer to the first detected module having the declaration.
The pointer points to the vector, holding the module declarations
(vector<module_type*>). If no modules have this declaration the
method returns null.

get_module Returns a pointer to the k’th module declaration, where k is provided as
argument to the method. The pointer points to the vector, holding the
module declarations (vector<module_type*>). If k is out of bound, the
method returns null.

get_address A macro method returning the SoC communication address declaration
for a PE, where the ID for this PE is provided as argument. The macro
will only search through module declarations, containing a “pe 1D and
“address” name declaration. Target variables for the returned address
(low, high limit) must be provided as argument as well. When a module
is found the method returns true. Otherwise false.




Appendix B

sc link _mp communication
benchmarking

The experiment presented in this appendix describes a simulation performance
benchmarking test procedure, used for investigating diffesenink _mp
communication approaches. The source code can be found on the enclosed
CD-ROM in/ARTS _Model/builds/test . Two approaches are considered:

* Message objects passirgg(link _mp<message_type> )

* Message pointer object passirgg (link _mp<message_type*> )

Test configuration

The test configuration consists of a module having master and slave port

(sc _outmaster andsc _inslave ). Two modules are instantiated and

connected in a back-to-back configuration. At each clock cycle, a master will
transmit 100 messages to slave in the other module, which fetches a value from
the message. Before starting a new transmission sequence a message is created.
After the end transmission sequence, the message is deleted again.

The implementation is the same for both communication scenarios. The only
difference is the data type asserted ontodtidink _mp TablgB.1A an{{BJ1B
shows the C++ source code using pointer and message passing respectively.

Running benchmarking
Each benchmark program was executed in a sequential manner for 100 times,
using a fixed simulation time and clock period of to 20000ns and 1ns respectively.

Simulation time was logged onto a file and processed in MS Office Excel
afterward. Platform used for simulations was Fedora Core 2 running on a Asus

165



166 Chapter B. sclink_mp communication benchmarking

void test_ptr::slave() void test_msg::slave()
unsigned int type; unsigned int type;
message_type* temp = in; message_type temp = in;
type = temp->type; type = temp.type;
void test_ptr::master() void test_msg::master()
{ {
message_type* temp;
while(true) { message_type* temp;
waitQ; while(true) {
temp = new message_type; waitQ);
for(unsigned int i=0;i<100;i++) { temp = new message_type;
temp->type = i; for(unsigned int i=0;i<100;i++) {

out = temp; temp->type = i;
¥ out = *temp;
delete temp;

3 3
¥

}
delete temp;

(A) Message object passing (P) Message pointer passing
sc_link_mp<message_type> sc_link_mp<message_type*>

Table B.1: C++ source code for benchmarking.

L3800 laptop@2.2GHz Pentium mobile. Fig{ire|B.1 shows an error bar plot of the
different simulation times obtained for the two benchmark programs. The X-axis
is the simulation time.

Pointer passing Message passing
Average = 7.3 sec Average = 10.8 sec
| | | O M om ®» o

# Message passing
W Pointer passing

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time [sec]

Figure B.1: Simulation times using message object passing and pointer parsing.
Conclusion

As it can be seen, the average simulation time by passing message objects and
message pointers is 10.8 sec. and 7.3 sec respectively. Thus, by passing pointers
to message objects instead of message objects gives an performance improvement
of approx. 1.47. The reason for this is because message object
construction/destruction is avoided. However it is to believe that difference in the
program code may Yyield different benchmark figures.



Appendix C

OCP channel configuration for

examples

parameter

| vaule |

addr _wdth
burstlength
cmdaccept
dataaccept
datahandshake
datalast

data _wdth
mthreadbusy
reglast
respaccept
sdatathreadbusy
sthreadbusy
threads

_wdth

32
32
1

=

N

POORRPROWRR

o

Table C.1:

OCP2.0 TLO

channel

TLO _OCRconfiguration.h ).
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| parameter | vaule |
addr 1
addr _wdth 16
addrspace 0
burstlength 1
burstlength  _wdth 16
burstprecise

burstseq

burstseq _unkn _enable
burstsinglereq
cmdaccept
dataaccept
datahandshake
datalast

data _wdth

mdata

mthreadbusy
mthreadbusy _exact
rdiwrc _enable
readex _enable

read _enable

reglast

mreset

sreset

reqdata _together
resp

respaccept

sdata

sthreadbusy
sdatathreadbusy
sthreadbusy _exact
threads 0

write _enable
writenonpost  _enable
writeresp  _enable

ORPRRPOOORORRFRPROOOROORRRWRRERRRERRERRERELR

o

Table C.2: OCP2.0 TL1 channel configuration (declared in the parameter file,
ocp.)



Appendix D

Simulation logfile for example 1

0s PE#0: task(1,1) (ready) -> scheduler
0s synchronizer: READY from task(1,1) received.
all dependencies resolved
0s PE#0: scheduler (run) -> task(1,1)
0s PE#0: task(2,1) (ready) -> scheduler
0s synchronizer: task(2,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(4,1) (ready) -> scheduler
0s synchronizer: task(4,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(6,1) (ready) -> scheduler
0s synchronizer: task(6,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(8,1) (ready) -> scheduler
0s synchronizer: task(8,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(10,1) (ready) -> scheduler
0s synchronizer: task(10,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(12,1) (ready) -> scheduler
0s synchronizer: task(12,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(14,1) (ready) -> scheduler
0s synchronizer: task(14,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#0: task(16,1) (ready) -> scheduler
0s synchronizer: task(16,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(3,1) (ready) -> scheduler
0s synchronizer: task(3,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(5,1) (ready) -> scheduler
0s synchronizer: task(5,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(7,1) (ready) -> scheduler
0s synchronizer: task(7,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(9,1) (ready) -> scheduler
0s synchronizer: task(9,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(11,1) (ready) -> scheduler
0s synchronizer: task(11,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(13,1) (ready) -> scheduler
0s synchronizer: task(13,1) has a dependency.
pushed on the Pending Tasks Queue
0s PE#1: task(15,1) (ready) -> scheduler
0s synchronizer: task(15,1) has a dependency.
pushed on the Pending Tasks Queue
45 ns PE#0: task(1,1) (request to NoC: task(3,1),addr=0x1011,dataUnits=10)-> adaptor
45 ns PE#0: scheduler (start NoC write request) -> task(lO)
45 ns |OCP| PEO_TLO.IOdevice.master: sent BURST request.

| M | Data handshake: yes
| A| MCmd: WR, MAddr: 0x1011, MThreadID: Ox1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
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46 ns |OCP| soc_comm.tl0_io_a.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1011, MThreadID: Ox1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

46 ns |OCP| soc_comm.tl0_io_b.master: sent BURST request.
| M | Data handshake: yes

| A| MCmd: WR, MAddr: 0x1011, MThreadID: Ox1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
47 ns |OCP| PE1_TLO.IOdevice.slave: receiving BURST request.

| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1011, MThreadID: Ox1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

47 ns PE#1: task(lO) (write data ready) -> scheduler
47 ns synchronizer: READY from 10 task
47 ns PE#1: scheduler (fetch data from SLAVE) -> task(lO)
55 ns |OCP| PEO_TLO.IOdevice.master: Request completed
55 ns PE#0: task(IO) (10 task finished) -> scheduler
55 ns synconizer: releases task(2,1)
55 ns PE#0: scheduler (run) -> task(2,1)
56 ns |OCP| soc_comm.tl0_io_b.master: Request completed
57 ns PE#1: task(1,1) (external task finished) -> scheduler
57 ns synconizer: releases task(3,1)
57 ns PE#1: task(IO) (IO task finished) -> scheduler
57 ns PE#1: scheduler (run) -> task(3,1)
74 ns PE#0: task(2,1) (finished) -> scheduler
74 ns synconizer: releases task(4,1)
74 ns PE#0: scheduler (run) -> task(4,1)
76 ns PE#1: task(3,1) (finished) -> scheduler
76 ns synconizer: releases task(5,1)
76 ns PE#1: scheduler (run) -> task(5,1)
1571 ns PE#0: task(4,1) (finished) -> scheduler
1571 ns synconizer: releases task(6,1)
1571 ns PE#0: scheduler (run) -> task(6,1)
1573 ns PE#1: task(5,1) (finished) -> scheduler
1573 ns synconizer: releases task(7,1)
1573 ns PE#1: scheduler (run) -> task(7,1)
2138 ns PE#0: task(6,1) (finished) -> scheduler
2140 ns PE#1: task(7,1) (request to NoC: task(8,1),addr=0x71,dataUnits=10)-> adaptor
2140 ns PE#1: scheduler (start NoC write request) -> task(lO)
2140 ns |OCP| PE1_TLO.IOdevice.master: sent BURST request.

| M | Data handshake: yes

| A | MCmd: WR, MAddr: 0x71, MThreadID: Ox1

| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
2141 ns |OCP| soc_comm.tl0_io_b.slave: receiving BURST request.

| S | Data handshake: yes

| L | MCmd: WR, MAddr: 0x71, MThreadID: Ox1

| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
2141 ns |OCP| soc_comm.tl0_io_a.master: sent BURST request.

| M | Data handshake: yes

| A | MCmd: WR, MAddr: 0x71, MThreadID: Ox1

| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
2142 ns |OCP| PEO_TLO.IOdevice.slave: receiving BURST request.

| S | Data handshake: yes

| L | MCmd: WR, MAddr: 0x71, MThreadID: 0x1

| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1
2142 ns PE#0: task(lO) (write data ready) -> scheduler
2142 ns synchronizer: READY from 10 task
2142 ns PE#0: scheduler (fetch data from SLAVE) -> task(lO)
2150 ns |OCP| PE1_TLO.IOdevice.master: Request completed

2150 ns PE#1: task(lO) (IO task finished) -> scheduler
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2151
2152
2152

2152
2152
4721
4721

4721

4722

4722

4723

4723
4723
4723

4731

4731
4731
4731

4732
4733
4733

4733
4733

4837
4837
4837

4839
4839
4839

5701
5701
5701

5703

5703

5703
11696
11696
11696
11698
11698
11698
22773
22775

22775

ns
ns
ns

ns
ns
ns

|OCP|
PE#0:

PE#0:
PE#0:
PE#0:
PE#0:

|OCP|

PE#1:
PE#1:
|ocp

PE#0:
PE#0:
|ocp

PE#1:
PE#1:
PE#1:
PE#0:
PE#0:
PE#1:
PE#1:
PE#0:
PE#0:
PE#1:
PE#1:
PE#0:
PE#0:
PE#1:
PE#1:
PE#0:

PE#1:

soc_comm.tl0_io_a.master: Request completed
task(7,1) (external task finished) -> scheduler
synconizer: releases task(8,1)

task(I0) (10 task finished) -> scheduler
scheduler (run) -> task(8,1)

task(8,1) (request to NoC: task(9,1),addr=0x1081,dataUnits=10)-> adaptor

scheduler (start NoC write request) -> task(lO)

PEO_TLO.IOdevice.master: sent BURST request.
Data handshake: yes
MCmd: WR, MAddr: 0x1081, MThreadID: Ox1

MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq:

soc_comm.tl0_io_a.slave: receiving BURST request.
Data handshake: yes
MCmd: WR, MAddr: 0x1081, MThreadID: Ox1

MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq:

soc_comm.tl0_io_b.master: sent BURST request.
Data handshake: yes
MCmd: WR, MAddr: 0x1081, MThreadID: Ox1

MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq:

PE1_TLO.IOdevice.slave: receiving BURST request.
Data handshake: yes
MCmd: WR, MAddr: 0x1081, MThreadID: Ox1

MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq:

task(lO) (write data ready) -> scheduler
synchronizer: READY from 10 task
scheduler (fetch data from SLAVE) -> task(lO)

PEOQ_TLO.IOdevice.master: Request completed

task(I0) (10 task finished) -> scheduler
synconizer: releases task(10,1)
scheduler (run) -> task(10,1)

soc_comm.tl0_io_b.master: Request completed
task(8,1) (external task finished) -> scheduler
synconizer: releases task(9,1)

task(l0) (IO task finished) -> scheduler
scheduler (run) -> task(9,1)

task(10,1) (finished) -> scheduler
synconizer: releases task(12,1)
scheduler (run) -> task(12,1)

task(9,1) (finished) -> scheduler
synconizer: releases task(11,1)
scheduler (run) -> task(11,1)

task(12,1) (finished) -> scheduler
synconizer: releases task(14,1)
scheduler (run) -> task(14,1)

task(11,1) (finished) -> scheduler
synconizer: releases task(13,1)
scheduler (run) -> task(13,1)

task(14,1) (finished) -> scheduler
synconizer: releases task(16,1)
scheduler (run) -> task(16,1)
task(13,1) (finished) -> scheduler
synconizer: releases task(15,1)
scheduler (run) -> task(15,1)
task(16,1) (finished) -> scheduler

task(15,1) (finished) -> scheduler

Task graph 0 completed. Now preparing for a new cycle:
Restoring relation matrix

Unblocking task (1,1)

Unblocking task (2,1)

Unblocking task (3,1)

Unblocking task (4,1)



172

Chapter D. Simulation logfile for example 1

TASK ADDRESS
PE#0 :
Task(
Task(
Task(
Task(
Task(
Task( 10, 1) :
Task( 12, 1) :
Task( 14, 1) :
Task( 16, 1) :

-
=

PO ANPE
=

PE#1 :

Task( 3, 1) :
Task( 5, 1) :
Task( 7 :
Task( 9, 1) :
Task( 11, 1) :
Task( 13, 1) :
Task( 15, 1) :

P

m

UTILIZATION

Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
Unblocking
MAP

0x1011

0x1081

task
task
task
task
task
task
task
task
task
task
task
task

(5.1)
(6,1)
(7.1)
(8,1)
(9.1)
(10,1)
(11,1)
(12,1)
(13,1)
(14,1)
(15,1)
(16,1)

PE#0 : 75.7967% (22739@30000)
PE#1 : 67.0833% (20125@30000)

10 TASK USAGE

PE#0 : 0.131932% (30@22739)
: 0.0879546% (20@22739)
1 0.0439773% (10@22739)

Write data TX
Write data RX

PE#1 : 0.149068% (30@20125)
: 0.0496894% (10@20125)
: 0.0993789% (20@20125)

Write data TX
Write data RX
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