
Integration of System-On-Chip Simulation
Models

Department of Informatics and Mathematical Modelling
Technical University of Denmark

M.Sc. Thesis No.13

Michael Storgaard (s011934)

28th February 2005

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

Reaching deep sub-micron technology within the near future makes it possible to
implement complex embedded Multiprocessor System-on-Chip (MPSoC) as a sin-
gle chip solution. Combined with the requirements for short time to market and
low production cost, make designs rely on IP core re-usability. To cope with the
increasing complexity of the software and hardware design space, the SoC designer
rely on simulation tools to be able to make crucial design decisions at an early stage
in the design phase; especially related to the SoC communication platform. For ef-
ficient and powerful design space exploration, the ultimate simulation tool consists
of a library from where the SoC designer can freely select from a variety of differ-
ent SoC models, representing IP cores at different abstraction level and then be able
to integrate these into a common SoC communication platform (e.g. NoC) having
the same interface to the different models. Thus constructing a simulation frame-
work for a particular design space can be fully customized, relative to representing
the abstraction level of the different IP cores as desired.

This project work contributes to reaching this goal by proposing a methodology
for extending a SystemC based high-level RTOS model for MPSoC[7] to support
inter-processor communication using OCP2.0 at TL1 and TL0. Also presented is
a methodology for configure a simulation framework in a fast and easy manner,
based on a configuration file. Further, a new SoC communication platform model
is proposed, allowing abstract modeling of different topologies, such as bus and
mesh, while still being able to support communication of real data; also at cycle
true level. Finally, different design space exploration experiments are presented
with the aim of showing the capabilities of the new models.

Preface

The work presented in this Masters thesis has been carried out by Michael Stor-
gaard and supervised by Jan Madsen, Proffessor, Ph.D. Special thanks to Shankar
Mahadevan and Kashif Virk for help and support through the project.

Date and My signature

3

Contents

1 Introduction 11

2 Related Work 15

3 System-Level Description Language 17
3.1 SystemC .17
3.2 Master-Slave library .17

4 SoC communication platform 19
4.1 Open Core Protocol .19
4.2 OCP Transaction Level Communication Library20

5 The abstract PE model 21
5.0.1 Periodic Task .22
5.0.2 Implementation .23

5.1 RTOS model .24
5.1.1 Synchronizer .24

5.2 Resource Allocator .25
5.3 Scheduler .25
5.4 Communication link and the message struct26
5.5 Monitor module . 27

6 Inter-processor communication methodology 29
6.1 Application partitioning . 29
6.2 SoC communication interface extension modules30

6.2.1 IO task synchronization and execution31
6.3 Task graph abstraction level refinement33

6.3.1 End-to-end task .33
6.4 Inter-dependency synchronization protocol35

6.4.1 Task ID encoding .35
6.4.2 Address encoding .35
6.4.3 Data encoding .36

5

6 CONTENTS

7 MPSoC framework overview 37
7.1 Top-level modules .38
7.2 Parser .38
7.3 Dependency controller .39
7.4 Performance monitor .40

7.4.1 PE performance .40
7.4.2 End-to-end deadline .40

7.5 IO task .41
7.6 IO device model .41
7.7 IO task-IO device communication link41
7.8 Periodic task model .42
7.9 PE module .42
7.10 Simulation data logging .43

8 The configuration file 45
8.1 Declaration types .45
8.2 Declaration syntax .46

8.2.1 module . 46
8.2.2 sub task map . 47
8.2.3 ee deadline . 47
8.2.4 dependency map . 49
8.2.5 log file . 49
8.2.6 vcd file . 50
8.2.7 screendump . 50

9 SoC communication platform model 53
9.1 Module descriptions .54
9.2 Module communication .55
9.3 Model behavior description .57

9.3.1 The communication task58
9.3.2 IO adapter model .59
9.3.3 SoC allocator .60
9.3.4 SoC resource usage buffer61
9.3.5 SoC scheduler .62

10 Design space exploration experiments 63
10.1 Example 1: Introduction .64

10.1.1 The simulation framework64
10.1.2 Application model .64
10.1.3 Simulation output data65
10.1.4 Analyzing the log file . 66
10.1.5 Analyzing the task scheduling and state68

10.2 Example 2: SoC communication topology exploration71
10.2.1 The simulation framework72

CONTENTS 7

10.2.2 Application modeling72
10.2.3 Bus topology simulation result74
10.2.4 1D mesh topology simulation results77
10.2.5 2D mesh topology simulation results79
10.2.6 SoC communication interface TL mixture80
10.2.7 Summary .81

10.3 Example 3: Complex system performance behavior analysis. . . .82
10.3.1 Application modeling82
10.3.2 Simulation results .84

11 Implementation: Abstract PE model 87
11.1 Abstract PE model modifications87

11.1.1 Communication link .87
11.1.2 High-level message struct extension88
11.1.3 RTOS modules .88
11.1.4 Periodic task .92
11.1.5 Monitor module . 95

11.2 PE construction module .95
11.2.1 Module construction .95

11.3 Parser .99
11.3.1 Parsing methodology .99
11.3.2 Error checking .100
11.3.3 Parsing flow .100
11.3.4 Configuration file scanning100
11.3.5 Declaration post check and processing103
11.3.6 Database description and access105
11.3.7 Maintenance .106

11.4 IO task-IO device communication link106
11.4.1 The link .107
11.4.2 The communication approach107

11.5 IO task .108
11.5.1 RTOS interface slave port109
11.5.2 IO device interface slave port110
11.5.3 Request transmission .111
11.5.4 Response transmission113
11.5.5 Write data processing .114
11.5.6 Response data processing114

11.6 IO device .115
11.6.1 OCP TL1 .115
11.6.2 Supported OCP TL1 configurations115
11.6.3 OCP TL1 Master .116
11.6.4 OCP TL1 Slave .121
11.6.5 OCP TL0 .126
11.6.6 Supported OCP TL0 configuration127

8 CONTENTS

11.7 Dependency controller .128
11.7.1 initializedatabase .129
11.7.2 pushtaskptr . 131
11.7.3 finish .131
11.7.4 mask .132

11.8 Performance monitor .134
11.8.1 Initialization .134
11.8.2 End-to-end deadline reporting methods135
11.8.3 PE utilization reporting methods136
11.8.4 IO task reporting method136
11.8.5 Data base updating .137
11.8.6 Monitoring summary methods137

12 Implementation: SoC communication platform model 139
12.1 IO port .139
12.2 Intermediate adapter .139

12.2.1 Internal databases .140
12.2.2 SoC communication layer interface slave port140
12.2.3 Request transmission .141
12.2.4 Response transmission142

12.3 IO port interface slave port .143
12.4 Request receiving .143
12.5 Response receiving .145
12.6 SoC allocator - 1D/2D mesh NoC topology model145

12.6.1 Initialization - defining a mesh grid146
12.6.2 The mesh database .146
12.6.3 The basic minimal path algorithm147
12.6.4 Mapping a node position to a mesh database entry148
12.6.5 Approach to link selection and reservation149
12.6.6 Transport message management150

12.7 SoC allocator - single shared bus model150
12.8 SoC resource usage buffer .151
12.9 SoC scheduler .152

13 Conclusion 153

14 Future work 157
14.1 RTOS framework .157
14.2 SoC communication platform framework158
14.3 Simulation presentation in general158

A Parser database descriptions 161

B sc link mp communication benchmarking 165

CONTENTS 9

C OCP channel configuration for examples 167

D Simulation logfile for example 1 169

Chapter 1

Introduction

In embedded system design the SoC communication platform is becoming an im-
portant aspect of consideration, due to the increasing numbers of IP cores. Se-
lecting an optimal topology and IP core placement is crucial for the system per-
formance. Thus the SoC designer rely heavily on different modeling techniques
and design tools to be able make decisions about the topology, which should be
done at an early stage in the design phase. The ultimate design tool for a SoC de-
signer, would consist of a library containing SoC models representing IP cores as
well as SoC communication platforms at different abstraction level. Based on this
library the designer would have the ability to construct a fully customized simula-
tion framework, integrating the different types of models through a common SoC
communication interface. Having a common SoC interface allows for easy and
fast model exchange and thus abstraction level refinement, as desired. The flex-
ibility of this methodology is indeed very powerful for design space exploration
experiments as well as in-depth SoC communication platform analysis. An exam-
ple of such a customized simulation framework is illustrated in figure 1.1, with the
different model types described next.

ARM
MPARM
model

TG
model

RTOS
model

SoC communication platform (e.g. NoC)

Memory
MPARM
model

Application
model

Application
model

Application
model

OCP 2.0

Figure 1.1: Example of a simulation framework integrating different SoC models
into a common SoC communication platform.

Building up such library tool set is an ongoing action at IMM, DTU. There are

11

12 Chapter 1. Introduction

currently following SystemC based models available for MPSoC simulations:

• MPARM1 which is a cycle-true homogeneous MPSoC simulation frame-
work, modeling IP cores such as ARM-processor, private processor memory,
shared semaphore memory as well as Network-on-Chip (NoC) architectures
based on AMBA, STBus and cross-pipes.

• OCP2.0 cycle true traffic generator2, for ARM processor emulation. This
model precedes from the MPARM simulation framework.

• Abstract Real-Time Operating System (RTOS) model3. The model forms the
foundation for the ARTS simulation framework, defining an abstract multi-
processor architecture, operating at transaction level and with applications
expressed as task graphs.

The MPARM and Traffic Generator models support SoC communication using
the OCP 2.0 protocol. However, it is not possible to use the abstract RTOS model
jointly with the other models, for SoC communication platform analysis, since it
has no SoC communication interface.

To deal with this issue, this project aiming integration of the abstract RTOS model
together with an OCP2.0 based SoC communication platform. The thesis proposes
a methodology for expanding the abstract RTOS model to support OCP2.0 based
SoC communication (inter-processor communication), related to inter-task depen-
dencies. The methodology emphasizes on modularity to support backward com-
patibility with the original model as well as making it easy to incorporate support
for other SoC communication protocols. Additionally, a methodology is proposed
for doing fast, easy and flexible configuration of a MPSoC simulation framework,
based on the abstract RTOS model. The foundation for the methodology is based
on a configuration file, written in a simple script language, defining design space
parameters such as task declarations/partitioning, scheduling policies etc. In con-
junction to this, a dedicated parser has been developed.

As an extension to the project, an abstract SoC communication platform model
is proposed as well. The model favorers from being able to support communication
of real data, at cycle true level, at the same time as having an abstract description of
the communication topology (e.g. simple bus or NoC). This model also emphasizes
on modularity, making it easy to implement support for new topologies as well as
different SoC communication protocols; also at different abstraction levels.

It must be clearly emphasized that this thesis does not cover integration of the
abstract RTOS modeltogether withan ARM model, in the sense to emulate or
support communication with an ARM processor model. Doing so has not been
possible, because getting access to the MPARM model was not possible before

1Developed at DEIS, University of Bologna.
2Developed in corporation with IMM, DTU and DEIS, University of Bologna [14]
3Developed at IMM DTU [7]

13

at a very late stage in the project phase. However, since both module now sup-
ports inter-processor communication through a common SoC interface (OCP2.0),
implementing this feature is indeed possible.

The rest of this thesis serves to document the work carried out in this project. The
report is organized in the following way:

• Chapter 2 presents related work.

• Chapter 3 gives an introduction to the system level description language
(SystemC and the Master/Slave library) used for modeling as well as the
motivation for this for.

• Chapter 4 gives an introduction to the OCP protocol, highlighting some of
the important features. It also gives a short introduction to the SystemC
based transaction level library, used for abstract OCP channel modeling.

• Chapter 5 gives an introduction to the abstract RTOS model for MPSoC and
highlights its characteristics and features.

• Chapter 6 presents a discussion of the approach used to extend the abstract
PE model, based on the RTOS model, to support low-level inter-processor
communication, related to inter-task dependency.

• Chapter 7 presents an overview of the new MPSoC simulation framework,
based on the extended abstract PE model, by giving a brief introduction to
the different modules, their behavior and how they interact.

• Chapter 8 presents the configuration file script language, used for configur-
ing an abstract PE based MPSoC simulation framework.

• Chapter 9 presents the abstract SoC communication platform model, includ-
ing and overview description.

• Chapter 10 presents three design space exploration experiments, based on
simulation frameworks integrating the abstract PE and SoC communication
platform models for showing their capabilities.

• Chapter 11 presents implementation specific details for the extended abstract
PE model. This also includes modifications and improvements done to the
original RTOS model.

• Chapter 12 presents implementation specific details for the abstract SoC
communication platform model.

• Chapter 13 wraps up and gives a final conclusion

• Chapter 14 presents suggestions for future work and improvements.

14 Chapter 1. Introduction

The report is relative long due to the implementation descriptions. Here is a sug-
gested way to this report: Chapter 2,3,4,5 serves as general introductions and may
be skipped or skimmed by readers already familiar with related work, SystemC,
OCP and the abstract RTOS model. Chapter 6,7,8,9,10 and 11 are essential for un-
derstanding the extended abstract PE model and the SoC communication platform
model. Chapter 11 and 12 may be skimmed or used as reference for readers not
interested in in-depth implementation specific details.

Chapter 2

Related Work

Different SoC models and frameworks have been proposed for MPSoC simulation
at different level of abstraction. [12] presents a SystemC based MPSoC simulation
framework for analyzing on-chip communication with cycle and bit true accuracy.
The framework (SWARM) consists of an adapted version of the ARM Instruction
Set Simulator [3] for processor modeling. It also consists of memory, interrupt and
semaphore devices as well as interconnection modeling based on AMBA AHB or
STBus. The authors demonstrate that the platform is suitable for doing benchmark-
ing and quantitative analysis (performance comparison and architectural design
space exploration between AMBA AHB and STBus), based on realistic workloads.
[14] focuses on performance improvement for cycle and bit true simulations, using
an OCP2.0 compliant traffic generator (TG) for ARM processor emulation. The
model precedes from the MPARM simulation framework, which is an extended
version of [12], also using OCP 2.0 protocol in the SoC communication interface.
The traffic generator (TG) model favorers from being reactive and able to handle
unpredictable network behavior like resource contention etc. Based on a reference
simulation, using the ARM processor model to emulate, the RTL communication
trace is analyzed and a TG program is generated using appropriate tools. The ad-
vantage of using a TG is, that the complex application specific details in the IP
model is abstracted away, thus reducing simulation time with a factor of 2..4. In
[13] an abstract modular RTOS model for MPSoC is presented. It operates at trans-
action level and uses task graphs for application modeling. The RTOS models basic
RTOS services, covering synchronization, resource allocation and task scheduling.
It has been implemented using SystemC and the Master/Slave library. The flexi-
bility of the model is clearly demonstrated in [23], where it forms the foundation
of an abstract Network-on-Chip (NoC) simulation framework for MPSoC. In the
simulation framework, all low level network details are abstracted away and net-
work communication is simulated using message tasks. The NoC communication
is managed and modeled by a dedicated communication processor, also based on
the abstract RTOS model. Additional, the abstract RTOS model can also be used
in conjunction to wireless sensor network modeling as demonstrated in [9].

15

16 Chapter 2. Related Work

The model presented in [10] also covers RTOS modeling and is similar to [13].
However, it has been implementedon top of SystemC, to overcome the lack of
support for modeling dynamic real-time behavior, like task synchronization and
preemption. This approach supports even higher level of abstraction (un-timed
system specification). It also features true multitask execution as well as power
consumption estimation for different scheduling algorithm, available from an as-
sociated RTOS library. Similar approach is presented in [8], but this model is based
on SpecC [4] as system-level-description-language (SLDL), with extensions added
to original SpecC language. Another, yet closely related work, is presented in [16]
and consists of a generic RTOS model. The model has been implemented on top
of the SystemC kernel, but using a set of generic classes instead. Compared to [8],
this model provides higher accuracy modeling of the RTOS and preemption, taking
into account parameters such as context switching and scheduling algorithm dura-
tion. The model also integrates into a graphical tool set [1], previously developed
by the same authors. This tool set features automatic code generation, of SystemC
based models, as well as graphical and numerical analysis of the simulation results.

Characteristic for the previous frameworks and models is that only [14] ex-
plores the possibility of mixing and integrating different abstraction level SoC
models, into a common SoC communication platform. Thus the work presented
in this thesis makes good sense, in conjunction to this, by proposing some new
modeling methodologies within the field of mixed abstraction level modeling.

Chapter 3

System-Level Description
Language

This section gives a short introduction to SystemC and the Master/Slave library,
used in this framework for modeling. Please refer to [22] and [21] for more infor-
mation.

3.1 SystemC

SystemC is a system-level description language (SLDL), intend for Co-design. It is
implemented as a set of classes, on top of the ANSI C++ programming language, to
support event driven simulation and threaded execution. The methodology of Sys-
temC makes it suitable for creating accurate executable specifications, algorithm
exploration, system-level models at multiple abstraction levels. It was introduced
in 1999 and had back then close similarities with VHDL and Verilog, thus useful
for RTL simulations. With the introduction of SystemC 2.0, the language became
more suitable for abstract modeling as well. However the current version of Sys-
temC 2.1 still lacks support for dynamic real-time behavior, found in embedded
system, using RTOS. This feature, however, is expected to be implemented in a
future release of SystemC (version 3.0) [15].

Today SystemC has grown high popularity and emerged to become an industry
standard for system-level modeling.

3.2 Master-Slave library

The Master/Slave class library is an abstract communication channel model for
SystemC. The library aiming simulation of SoC platforms, which uses bus commu-
nication in the producer/consumer style manner. It supports all abstraction levels,
ranging from un-timed down to cycle-accurate. The methodology introduced by
the library allows for easy and flexible separation of communication (bus protocol)

17

18 Chapter 3. System-Level Description Language

from behavior (IP core), which is very useful for abstraction level refinement of the
communication channel, during the design process.

Chapter 4

SoC communication platform

This section highlights the main features of the OCP2.0 protocol, being used in
this project work in the SoC communication interface. Also presented is a brief in-
troduction to the SystemC based Transaction Level (TL) Communication Library,
which will be used for modeling an OCP TL1 channel in the project. Further infor-
mation about the protocol and library can be found in [17] and [18] respectively.

4.1 Open Core Protocol

The Open Core Protocol (OCP), provided by OCP International Partnership (OCP-
IP) [2], is a protocol for on-chip synchronous RTL communication, between IP
cores. The communication is point-to-point and requires a master and slave de-
vice, connected to the channel. The master initiate commands (e.g. read or write
requests) to the slave, which in return may provide a response (e.g. response data
for a read request). The slave cannot initiates commands. A simple master/slave
setup is shown in figure 4.1.

Master Slave

System
initiator

System
target

request

response

OCP

Figure 4.1: Master/slave point-to-point communication

The protocol has gained high popularity, due to its flexible configuration abili-
ties and refinements of data, communication and test signals; all important aspect
in today design methodology, focusing on IP core reuse and easy integration. The
protocol supports many types of communication schemes, such as simple and burst
transactions, multi-threaded out-of-order transaction, pipelined and non-pipelined

19

20 Chapter 4. SoC communication platform

communications etc. Examples can be found in the OCP Specification [17].
The protocol also provides a methodology for documenting the property of an

IP core (address space encoding etc.) and it’s OCP interface (signals supported
etc.). This is done using aninterfaceandRTL configuration filerespectively, cre-
ated using a set of predefined conventions. The simplicity of the configuration file
makes it easy for the SoC designer to determine if an IP core, for an example, is
compatible with a certain OCP configuration.

4.2 OCP Transaction Level Communication Library

The OCP Transaction Level (TL) Communication Library is an OCP channel model
for SystemC, provided freely by OCP-IP [2]. The library targeting system level
models, using the OCP protocol as a SoC communication platform. It supports
modeling at transaction level 1 (TL1) and TL2 [5], which is suitable for close-to
cycle true modeling, but significantly faster. The methodology used for channel
communication is based on a set of dedicated commands (function calls), mak-
ing OCP transaction modeling easy, since protocol implementation details are ab-
stracted away. The channel model is very easy to configure (signal wise) and has
incorporated a real-time OCP checker, checking for non-compliant OCP transac-
tions.

Members of the OCP-IP community also have access to a set of library exten-
sions, consisting of an OCP monitor and a set of TL adapters. The OCP monitor
is used for monitoring the channel and saves the channel state, at each clock cycle,
into a file. This format is somewhat similar to a timing trace and can be analyzer
either using a text editor or the CoreCreator tool set, provided by OCP-IP. The
TL adapters are used for TL adaption between TL0/TL1 and TL1/TL2. However,
the adapters need to be customized manually, since the default channel support is
restricted to simple configurations only.

Chapter 5

The abstract PE model

The foundation for the MPSoC framework proposed in this thesis precedes from
the abstract RTOS model for MPSoC simulations, developed by Virk and Gonzalez
[7]. This chapter serves to give an introduction to the abstractprocess element(PE)
model, which is based on the abstract RTOS model. Readers already familiar with
the model may skip this chapter without any lose of consistence.

Figure 5.1 below the architecture of the abstract PE model.

Synchronnizer

Resource
Allocator

Scheduler

n1 2 . . .

Clock

Application

RTOS

Figure 5.1: Architecture for the abstract PE model

The model works at transaction level and consists of an abstract RTOS, used
for modeling basic RTOS services, covering synchronization, resource allocation
and scheduling. The applications running on top of the RTOS is modeled using
task graphs. Characteristic for the model is the modularity, which makes mod-
ule exchange an easy matter (for an example exchanging the scheduler module
for scheduling algorithm exploration). Modules communicating using high-level
messages, based on structs. This approach is described later.

21

22 Chapter 5. The abstract PE model

5.0.1 Periodic Task

For application modeling aperiodic task modeis available. It models periodic
execution of a group of instructions. The model support preemption. Figure 5.2
shows the task model, with the different timing parameters described next.

Resource
Access

RRT CSL

Execution time

Offset

Deadline

Period

Time

Figure 5.2: Task model timing for the first execution cycle.

Timing constrains

In the model, the exact functionality is abstracted away and instead described using
the following set of timing constrains:

• Execution time. The amount of time it takes to execute the set of in-
structions. Determined randomly (uniform) within a specified best-case and
worse-case execution time.

• Offset. A time offset, determining when the task is ready for being released
for execution. This offset is relative to zero-time and is only applicable for
the first execution cycle.

• Deadline. A time boundary within the execution must complete. The dead-
line is relative to the release of the task.

• Period. The time interval determines when the task should start executing
again.

The model also support even more accurate modeling, taking into account con-
text switch overhead, e.g. added by the scheduling algorithm. However it is default
not being used.

Resource requirement

A task may requires access to one ore more resource, during execution. Examples
of such resources are memory and peripheral devices (e.g. printers). In this model,
the abstract description of a task resource requirement is expressed by the following
parameters:

• Resource IDA number identifying the resource to request.

23

• Resource Request Time (RRT)The time offset, relative to the start of task
execution, when the task will request the resource.

• Critical section length (CSL) The amount of time the resource will be oc-
cupied by the task.

Whenever a running task requires access to a resource, it sends a requests to
the resource allocator.

5.0.2 Implementation

The periodic task model has been implemented using a 4-state FSM, as shown in
figure 5.3.

!run

readyready

ready preempted

run

Cperiod == 0

Cperiod > 0

Crunning == 0

preempt

resume

!resume!preempt &
Crunning > 0

Figure 5.3: State machine for the periodic task model.

State transition depends on control messages from the RTOS and local watch-
dog timers, used for managing the execution timing constrains. The watchdog
timers areCperiod, Crunning, Cdeadline associated with task period, execution time
and deadline monitoring respectively.Cperiod decrements in all states,Crunning

decrements in running state andCdeadline decrements in running state and pre-
empt state. IfCdeadline reaches zero, before execution finishes, a UI message will
be generated, informing that the deadline has been missed. Beside the execution
watchdog timers, the model also uses a series of watchdog timers for managing
RRT and CSL for each resource requests. They are only applicable and decrement
in running state. The meaning of the different states are summarized next.

• Idle. Task waiting to release itself. This happens whenCperiod becomes
zero. The task issues aREADYmessage to the synchronizer, indicating ready
for execution, and goes to ready state.

24 Chapter 5. The abstract PE model

• Ready. Task has been released and waits for execution. When aRUNmes-
sage is received from the scheduler, it goes to running state and execution
starts.

• Running. Task executing. WhenCrunning reaches zero, the execution com-
pletes and the task issues aFINISH message to the scheduler. If the task re-
ceives aPREEMPTmessage from the scheduler, the execution is preempted,
and the task goes to preempt state.

• Preempted. Task execution has been preempted. When aRESUMEmessage
is received from the scheduler, the task goes back to running state again and
resumes execution.

5.1 RTOS model

The abstract RTOS model consists of three modules: synchronizer, resource allo-
cator and scheduler.

5.1.1 Synchronizer

The synchronizer manages the dependencies between tasks. It ensures that a task
is not released for execution, before all data dependencies has been resolved. The
current synchronizer implements the Direct Synchronization (DS) protocol, pro-
posed by Sun and Liu [11].

The dependency database

Tasks dependencies are expressed using task graphs. In the synchronizer, task de-
pendencies are managed using a dependency database, somewhat similar to a task
graph. The dependency database is a boolean NxN matrix, where N equals the
number of tasks. The row and column number maps to the task ID. Columns en-
tries are associated withprecedingdependencies, while row entries are associated
succeedingdependencies. If entry(i, j) is true, data dependency exists, thus taski
cannot execute before taskj finishes execution. Figure 5.4 shows an example of a
task graph and the dependency database equivalent.

Tasks ready for execution, but with unresolved data dependencies, are kept in
a pending task queue. Each time a running task finishes execution, the queue is
checked up against the dependency database to check if any pending tasks can be
released for scheduling. When taskj finishes execution, the dependency database
is updated, by clearing (setting to false) all row entries in columnj. Checking if all
dependencies have been resolved for taski is done by performing an OR operation
of all column entries in rowi. If the result is false, all dependencies have been
resolved and taski may be released to the scheduler for execution scheduling.
Otherwise all dependencies have not been resolved yet and the task stays in the
queue.

5.2. Resource Allocator 25

1

2 3

4 5

6

7 8

9 10

1

1

1

1

1 1

1

1

1

1

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Succeeding dependencies

P
re

ce
di

ng
 d

ep
en

de
nc

ie
s

(A) Task graph (B) Dependency database equivalent

Figure 5.4: Task graph and dependency database equivalent

5.2 Resource Allocator

In real-time systems, resource contention often occurs, since multiple tasks are
competing over the same shared resource. Typically these resources are non-
preempt able, which means that lack of resource allocation eventually could lead
to data corruption, in situations with resource contention. In conjunction to this,
incautious management may lead to unbound priority inversion; a situation where
a low priority task blocks for a high priority task, because the high priority task
waits access to a resource currently occupied by the low priority task.

The resource allocator models the protocol for managing these situations. It
cooperates with the scheduler and ensures that only one task can have access to a
shared non-preemptive resource at any time. Whenever a running task has a re-
source request, it sends a request message to the resource allocator. The resource
allocator either grant resource access or refuses the request, causing the scheduler
to preempt the task, until the resource becomes available. The protocol imple-
mented in the current model is a simplified version of the Basic Priority Inheri-
tance protocol, suggested by Sha, Rajkumar and Lehoczky [19]. In conjunction to
this, the current implementation of the resource allocator does not support nested
resource requirement.

5.3 Scheduler

The scheduler manages the real-time scheduling of task, ready for execution, based
on the task priority. All tasks ready for execution are kept in a queue and sorted

26 Chapter 5. The abstract PE model

with respect to their assigned priorities. Currently RM and EDF scheduling is avail-
able for the model. The characteristics of RM and EDF scheduling is summarized
below.

• Rate-Monotonic (RM). Highest priority assigned to the task with theshort-
est period. The priority isstatic, meaning that the priority of a task waiting
for execution does not change.

• Earliest-Deadline-First (EDF) Highest priority assigned to the task with
theclosest deadline. The priority isdynamic, meaning the priority of a task
waiting for increases each clock cycle, since the deadline is getting closer.

5.4 Communication link and the message struct

Communication between the different modules in the PE module is based on
sc link mpcommunication link, provided by the SystemC Master/Slave library
[21]. The module communication is based on high-level struct messages. Table
5.1 shows the struct encoding and gives a brief description of the different entries.
Depending on the receiver of the message and the action type, some fields are
not applicable. Additionally, table 5.2 described the different types of high-level
messages, issued by the task and RTOS model, identified by thecommentry.

Type Name Description

unsigned int messageID Receiver of the message (e.g. task or synchronizer)
unsigned int snum Target scheduler and resource allocator
unsigned int tnum Task ID
unsigned int comm Action type (e.g. RUN or READY)
unsigned int resourceID Resource ID
unsigned int tper Task period
unsigned int tdl Task deadline
unsigned int priority Task priority
char* text A message describing the action. For monitoring purpose.

Table 5.1: High-level message struct encoding.

5.5. Monitor module 27

Action type Producer Consumer Description

READY Task Scheduler Task,tnum notifies the synchronizer/scheduler, that it is ready
for execution.

RUN Scheduler Task CPU time has been granted by the scheduler. Execution of
task,tnum may start.

REQUEST Task Resource al-
locator

Task, tnum requests access for resource,resourceID . Is-
sued during running-state when RRT has been reached for this
resource.

GRANT Resource al-
locator

Scheduler Resource,resourceID requested by the running task,tnum
has been granted and execution may continue.

REFUSE Resource al-
locator

Scheduler Resource,resourceID requested by the running task,tnum
is already occupied by another task. The scheduler must pre-
empt execution of the task.

PREEMPT Scheduler Task The running task,tnum must preempt execution, since a
higher priority task has been released for execution or a re-
source request has not been granted.

RESUME Scheduler Task The preempted task,tnum must resume execution now.

FINISH Task Scheduler Task, tnum notifies the scheduler that execution has com-
pleted.

Table 5.2: High-level message type descriptions.

5.5 Monitor module

Not shown in figure 5.1 is the monitor slave-module, connecting to the different
communication links. The module monitors the real-time state of the system-level
module, during simulation. Thus messages issued by the different module triggers
the monitor to prompt an associated UI message to the screen. As such the monitor
module is not a part of the model and may be left out. Missed deadlines will still
be reported by the periodic task module.

Chapter 6

Inter-processor communication
methodology

This chapter discusses the methodology used to make the abstract PE model, pre-
sented in chapter 5, supporting inter-processor communication at a lower transac-
tion level. The discussion presented forms the foundation for the implementation.

6.1 Application partitioning

In a distributed multiprocessor system, application partitioning is a very important
aspect of the design space exploration, since it concerns optimizing and balancing
the execution of the different applications running on top of an architecture. How-
ever, partitioning requires inter-processor communication, due to the data transfer-
ring between the partitioned parts of the application. For an example, selecting a
multi-processor architecture using slow processors can reduce the product cost, but
may cause an application not to meet its deadlines, if it is to be executed on a single
processor. For that matter task partitioning is essential, if the application allows for
parallel execution of some tasks.

Modeling this in a MPSoC simulation framework, using the abstract PE model
from chapter 5 for processor modeling, would be equivalent to partitioning a task
graph with parallel branches onto multiple processors. However, when the models
interface to a SoC communication platform model having a low level interface (e.g.
OCP2.0 TL0), transmission of dedicated data is required to do accurate modeling.
This model illustrated in figure 6.1, showing a partitioned task graph and two PE’s
connecting to SoC communication platform. The selected partitioning requires
inter-processor communication, since data dependency exists betweenτ1 andτ2

and both are mapped onto different PE’s. From a high-level perspective, the inter-
processor communication can also be considered as a task and is in the example
identified byτio.

29

30 Chapter 6. Inter-processor communication methodology

1

23

45

67

PE1 PE2

SoC comm. platform model

Application
model

Application
model

PE1

PE2
io

io

Figure 6.1: Example of task graph partitioning in a MPSoC simulation framework
using the abstract PE model.

6.2 SoC communication interface extension modules

Making the abstract PE model support low-level inter-processor communication,
requires a dedicated communication interface. The chosen approach has been to
refine this module into anIO deviceandIO taskmodel, added on top of the existing
model. This approach illustrated in block diagram in figure 6.2

RTOS

Application

IO task

IO device

Software modeling

Hardware modeling

SoC communication interface

Figure 6.2: Block diagram showing the abstract PE module including IO task and
IO device modules for SoC communication support.

The IO device model connects physically to the SoC communication platform
thus modeling a hardware IO port and managing the communication protocol. The
IO task models an IO device driver, controlling the IO device whenever there is an
inter-processor communication event (receiving/transmitting). It handles protocol
at application level, which here consists of encoding/decoding of data to/from the
SoC communication platform, being synchronization messages between tasks with
inter-dependencies. The approach is illustrated in figure 6.3.

When there is preceding inter-task dependency, the RTOS issues synchroniza-
tion message to the IO task, containing information relevant for the inter-processor
communication. Based on this message the IO task encodes a certain traffic patter,

6.2. SoC communication interface extension modules 31

RTOS IO task IO
device

taskID = 3
type = write
size = 10
addr = 0x100
 .
 .

addr list
 .

 .

data list
type = write

clk

addr

data
.
.

Synchronization
message Encoding Transmit

S
oC

 c
om

m
un

ca
tio

n
in

te
rfa

ce

RTOS IO task IO
device

taskID = 3
 .
 .

addr list
 .
 .

data list
type = write

clk

addr

data
.
.

Synchronization
message Decoding Receive

S
oC

 c
om

m
un

ca
tio

n
in

te
rfa

ce

Transmit

Receive

Figure 6.3: Block diagram showing the abstract PE module including IO task and
IO device modules for SoC communication support.

forwards this to the IO device, which starts the transmission. The procedure for
receiving is just the other way around.

6.2.1 IO task synchronization and execution

Integrating the IO task with the abstract RTOS model requires some small exten-
sions to the synchronizer to support messages to/from the IO task. It also requires
some extensions to the message structs (figure 5.1, page 26) as well as the periodic
task model. Below is a general description of the approach used for synchronizing
the IO task execution, in conjunction to inter-processor communication and inter-
task dependency handling. Understanding this description requires familiarity with
the behavior of the abstract RTOS model.

Transmit data

A task having preceding inter-task dependencies must issue aSOCTRANSFER
message when it completes execution. This new message type notifies task com-
pletion (equal to aFINISHED message) butalsothat an inter-processor communi-
cation event must start. Further, it must contain inter-processor communication re-
lated information such as transfer type (write, read or response), data transfer size,
target PE addresses etc. The message should cause the synchronizer to release the
IO task for execution immediately afterward. The scheduler starts the execution of
the IO task and the inter-processor communication starts by interacting with the IO
device. Any local pending task must not start executing before the inter-processor

32 Chapter 6. Inter-processor communication methodology

communication event has completed, which is identified by aFINISHED message
issued from the IO task. This means that the IO task has the highest priority and
is non-preemptive. The duration of the IO task execution depends on data transfer
size as well as bandwidth.

Receive data

When data is received from the SoC communication interface, the IO task sends
a READYmessage to the synchronizer, notifying it is ready be process data. This
should cause the synchronizer to release the IO task for execution immediately af-
terward. Any running tasks should be preempted by the scheduler, if no buffering
mechanism has been implemented in the IO device model. The IO task executes
until the request/response phase completes, after which it issues anFINISHED EXT
message to the synchronizer. This new message is similar to aFINISHED mes-
sage, except that it is associated with the non-local task, initiating the inter-processor
communication and not forwarded to the scheduler. Also, the non-local task ID is
decoded by the IO task. The message should causes the synchronizer to release any
pending tasks having succeeding dependencies to this non-local task. After having
issued theFINISH EXT, the IO task completes execution by issuing aFINISHED
message and any pending task may start executing afterward.

Figure 6.4 shows how the described approach applies to the timing of two task
having inter-dependencies, whereτ1 ≺ τ2 andτ1 7→ PE1 andτ2 7→ PE2.

PE1

PE2

SoC comm. latency

time

1
IO task

TX

IO task
RX 2

Figure 6.4: Timing for inter-task dependency.

To summarize, the important characteristics related to the integration of the IO
task extension of the RTOS model is listed below:

• The synchronizer does not have any prior knowledge about when the IO task
is going to be launched, in the sense that it is encoded into the dependency
database. Thus the IO task can be considered as beingdynamicallyreleased
for execution, relative to the message received from a task or from the IO
task itself.

• SoC communication specific information (transfer type, data transfer size
etc.) is stored in the task having preceding inter-task dependency. Thus any
tasks having preceding inter-task dependency need to be configured before
simulation starts.

6.3. Task graph abstraction level refinement 33

• The message struct must be expanded to carry inter-processor communica-
tion related information.

More implementation specific details regarding the RTOS model and the mes-
sage struct expanding is presented in section 11.1, page 87, while implementation
specific details for the IO task is presented in section 11.5, page 108.

6.3 Task graph abstraction level refinement

At the SoC communication interface, the abstract PE model must be able to support
read and write request and response. Response means in this context the returned
data to a read request.

The precedence nature of a task graph is somewhat equivalent to a write re-
quest, when considering an edge to be associated with data transfer. Thus a SoC
communication event related to an inter-task dependency can easily be modeled
using a write request. However, a task graph, like the one in figure 6.1 does not
obviously support read requests, since this would requires bidirectional edges, for
request and response phase respectively. An elegant solution to this problem is to
use end-to-end task, which is just an abstraction level refinement of a task graph.

6.3.1 End-to-end task

An end-to-end task is series of subtasks, connected in a chain. The definition is
an extension of the existing basic periodic task model, to make it more suitable
for distributed systems modeling [20]. It can be considered either as clustering a
group of preceding tasks together or refining the functionality of a task, into even
smaller subtasks. However, it is allowed for an end-to-end task to have only one
subtask. In this special case it is identical to the original periodic task model. From
a low-level perspective, an example of an end-to-end task, consisting of 4 subtasks,
could be to (1) generate some data in PE1, (2) transfer the data to PE2, (3) process
the data in PE2 and (4) output the data to a peripheral device, connected to PE2
(e.g. printer). Below summarizes the main formal definitions of an end-to-end task
[20]:

• An end-to-end task,Ti consists of a series of subtasks, connected in a chain.
Subtasks are always executed in a precedence order. Thus subtaskTi,j+1

cannot execute before subtaskTi,j completes execution.

• The end-to-end deadline forTi is relativeto release of the first subtask,Ti,1.

• The execution time of a subtask,Ti,j is bounded and must not exceed a
maximum execution time,τi,j .

• All subtasks have the same priority.

• Subtasks are statically assigned to PE’s.

34 Chapter 6. Inter-processor communication methodology

Figure 6.5 shows an example of an end-to-end system consisting of four sub-
tasks mapped onto three PE’s.

1,2

1,1

1,3

1,4

PE1

PE2

PE3

Figure 6.5: Example an end-to-end system.

Since a clustered group of subtasks always belongs to the same task group (end-to-
end task),Ti, the abstraction level provided from this, makes the data dependencies
between subtask suitable for modeling read transfer. However, some restrictions
apply to usage and mapping of subtasks, when used for read transfer modeling.
These are summarized below:

1. A read transfer is always associated with three adjacent subtasks:Ti,j trig-
gers the read request,Ti,j+1 receives the request and generates the response
data,Ti,j+2 receives the response data.

2. A subtask,Ti,j , triggering a read request must always be located in the same
PE as the subtask,Ti,j+2, receiving the response data.

3. A read transfer (covering request and response) must be kept within the same
end-to-end task,Ti. Thus triggering a read request after the third last subtask
is not allowed, since a complete read transfer requires three subtasks, as
stated in 1. This also means that an end-to-end task must have at least three
subtasks, to model a read transfer.

Dependencies between subtasks can also be used to modeling write transfer.
Here there are no restrictions with respect to usage and mapping of subtask, since
only two tasks with dependencies are required (a producer and consumer task).

Figure 6.6 illustrates an example of an end-to-end system, consisting of four
subtask, modeling write and read transfers.

6.4. Inter-dependency synchronization protocol 35

(B) Timing graph for the end-to-end system
time

End-to-end deadline

1,3 IO task
response TX

1,4

PE1

PE2

SoC comm. latency

IO task
read TX

IO task
response TX

(A) End-to-end system with four subtask

1,2

PE1

write

response

PE2

1,4

read

1,1

1,3

1,1 IO task
write TX

1,2IO task
write RX

IO task
read TX

Figure 6.6: Example of an end-to-end system modeling write and read transfers.

6.4 Inter-dependency synchronization protocol

To manage synchronization between tasks having inter-task dependency, a set of
simple rules have been defined for the address encoding as well as the data encod-
ing, related to response data. These rules describe the protocol at application level,
implemented by the IO task.

6.4.1 Task ID encoding

Each subtask has an unique task ID. This task ID carries information about the
(end-to-end) task group ID as well as the subtask ID. The task ID encoding has
been selected in such way that the lower and upper bits define the task group ID
and subtask ID respectively. Figure 6.7 shows an example for a 16-bit task ID. In
this example the subtask ID is defined by bit[0:3], which allows addressing up to
15 subtasks (subtask ID equal to zero is not allowed).

 Task group ID Subtask ID

03415

Figure 6.7: Example of a 16-bit task ID encoding.

6.4.2 Address encoding

Task having succeeding inter-task dependencies, related to a request, rely on trans-
fers to be done to a particular location in the address space, assigned to the PE.
This address location is always relative to the task ID.

The address encoding is very simple and defined asthe sum of the SoC com-
munication base-address of the target PE and the task ID of the subtask, issuing
the requests. If it is a burst request, the address remains constant.

Example:Subtask,τ1,1 finishes execution and triggers a write request to subtask,
τ1,2, located in a PE having a base-address of 0x100h. The task ID forτ1,1, using 4-

36 Chapter 6. Inter-processor communication methodology

bit subtask encoding, is 0x11h. Thus the address associated with the write request
becomes 0x111h. When the target PE receives the request, the IO task finds the
task ID of the non-local subtask, simply found by doing the reversed procedure (i.e.
subtracting the PE base address from the address, associated with the request).

6.4.3 Data encoding

Since a task in the abstract PE model does not implement any functionality, the
data to transmit for write transfer are dummy (e.g. zero or random). However,
for a response, the transmitted data must equal the task ID of the subtask, issuing
the response. This applies as well to all data packets, in multiple responses (burst
read).

Chapter 7

MPSoC framework overview

This chapter gives an introduction to the new MPSoC simulation framework, based
on the abstract PE model, extended to support low-level inter-processor communi-
cation. A brief introduction to the different new modules and extensions done will
be presented. The aim is to give an overview of the framework, before presenting
the implementation specific details in the following chapter.

Synchronizer

Resource
Allocator

Scheduler

IO1 i. . .

Master

OCP IO device

Slave

PE#1

OCP 2.0 on-chip communication interface

Parser

Performance monitor

Dependency
controller

Configuration file

OCP interface boundary

Task
configuration

method

Synchronizer

Resource
Allocator

Scheduler

IOi+1 j. . .

Master

OCP IO device

Slave

PE#2

Task
configuration

method

Synchronizer

Resource
Allocator

Scheduler

IOn+1 m. . .

Master

OCP IO device

Slave

PE#N

Task
configuration

method

Figure 7.1: Simplified framework block diagram

Figure 7.1 shows simplified block diagram of the framework; here withN
PE’s instantiated. Solid lines between objects aresc link mp communication
channels while dotted lines indicates objects access through pointers. Relative to
the block diagram with figure 5.1, presented in chapter 5, an abstract PE has been
extended with an IO task and an OCP2.0 compliant IO device model.

At top level, three other new modules have been incorporated: a parser, a global
synchronization database and a performance monitor. A single instance of each of
these modules connect to all PE. This connection is established through pointers

37

38 Chapter 7. MPSoC framework overview

to the modules, provided to the PE module constructor, during object creation.
Through the pointers, different public methods are accessed in the modules.

7.1 Top-level modules

The top level module combines the different modules in to a structural, defining
the simulation framework as illustrated in figure 7.1. However, this abstract PE
based MPSoC simulation framework relies on an OCP2.0 based SoC communi-
cation platform to be complete, unless two PE modules are connected in a back-
to-back configuration. Different examples of simulation framework configurations
are found on the enclosed CD-ROM in/ARTS Model/builds . These are:

pe ocp tl0/ Two PE’s connected in a back-to-back configuration, using OCP2.0 TL0
pe ocp tl1 clk/ Two PE’s connected in a back-to-back configuration, using OCP2.0 TL1
example1/ Two PE’s connected to a OCP2.0 TL0 bus.
example2/ Four PE’s connected to a OCP2.0 TL0/TL1 bus/1D mesh/2D mesh (mixed interface).
example3/ Nine PE’s connected to a OCP2.0 TL0 bus/1D mesh/2D mesh, using OCP2.0 TL1.

Example 1,2 and 3 are based on the SoC communication platform model, to
be presented in chapter 9, page 53. They are also being used in the design space
exploration experiments, presented in chapter 10, page 63.

7.2 Parser

In the original abstract PE model, RTOS configuration and task graphs were as-
signed statically in the sense that they were hard-coded. It meant, for an example,
that whenever a task graph modification was required, the model had to be rebuild
again. To avoid this very time consuming step and to introduce overall greater
configuration flexibility, a parser module has been developed.

The parser accepts a configuration file as an input, written in a simple script
language. This file defines the boundaries of a simulation with respect to parame-
ters such as task declarations/partitioning, resource requirements as well as RTOS
configuration (selection of scheduling policy etc.) for the different PE’s. It also
contains other parameters such as SoC communication address space assignment,
data logging filename declaration etc. An example of a configuration file is found
in figure 8.8, page 51. If parsing of a configuration file is successful, the differ-
ent parameters can be obtained via dedicated public methods and then used for
dynamic object creation (e.g. task modules) etc, before a simulation starts.

Section 11.3, page 99 presents the implementation specific details for parser
module.

7.3. Dependency controller 39

7.3 Dependency controller

The dependency controller module manages the database, describing the depen-
dencies between tasks, assigned to a simulation. It can be considered as aglobal
dependency database, since it connects to all synchronizers. A synchronizer ac-
cess module when a database entry has to be cleared (task finished) or when a
dependency-resolved check is performed, to see if a task can be released for ex-
ecution. In the original synchronizer, the database was located locally in a syn-
chronizer. However this approach is only suitable for intra-task dependencies and
will not work for inter-task dependencies, unless the synchronizer is common to
all PE’s or the synchronizer is modified significantly. To maintain a modular ap-
proach and still keep the original simplicity of the synchronizer, the approach has
been to implement a global synchronization database module, added on top of the
existing synchronizer. Database access is done indirectly through method calls to
the dependency controller module, using a pointer. This pointer is provided to the
synchronizers, during object creation. Using this approach, only very few changes
have been required in the original synchronizer (e.g. removal of the dependency
database and exchanging some functionality with methods call to the dependency
controller module).

Another problem with the original synchronizer was, that it did not allowed pe-
riodical execution of task graphs: once a task graph completed, the dependencies
were lost, and uncontrolled and concurrent task execution would follow afterward
(if the tasks were periodically). This problem has been solved in the new depen-
dency controller module, since the dependency database for a task graph is restored
whenever the task graph execution completes.

In conjunction to this, a newtask blocking/unblockingfeature has been im-
plemented. That is, a taskwith dependencies will automatically block itself, after
completed execution. By blocking meaning that a task cannot issues aREADY
message to the synchronizer, once it has completed execution. This is to avoid,
that a task does not accidentally starts executing again, if the task period becomes
shorter than the total task graph execution time1. Unblocking is managed by the
dependency controller and is initiated immediately after a task graph completes.
When this happens, all tasks belonging to the task graph gets unblocked. This
is accomplished by accessing a dedicated method in the periodic task module for
this purpose. In conjunction to this, the dependency controller has a database con-
taining pointers to all tasks objects. The task pointer database in being initialized,
during task object creation in the different PE’s. This is done by passing a pointer
to the task object, from the PE to the dependency controller, as soon as the task
object has been created.

Section 11.7, page 128 presents the implementation specific details for the de-
pendency controller.

1This would otherwise happens, since the dependencies remain lost, until the database is restored
again.

40 Chapter 7. MPSoC framework overview

7.4 Performance monitor

The performance monitor module serves to monitor different figures, covering PE
performance and the end-to-end deadline for task groups with multiple subtasks.
The figures are a part of the data logging and useful when doing design space
exploration. All tasks and PE’s access this module through a pointer to the object.

7.4.1 PE performance

PE performance coversutilizationandIO task executionfigures.

• Utilization is a measure for how efficient a PE is being used, defined as the
ratio between the no.of.clock cycles, used for task execution and the total
no.of simulation clock cycles. Thus an utilization of 1 would indicate a PE
has been in use for the entire simulation period, while an utilization of 0
would indicate that a PE has not been used at all.

• IO task executioncovers a series of activity figures, related to inter-processor
communication. They relate to the usage of the IO task for a particular action
(e.g. write transmit/receive etc.). The figure for a particular action is defined
as the ratio between the no.of clock cycles, used for this action and the total
no.of simulation the PE has been in use.

The PE performance figures are calculated, based on activity reporting done
by the tasks, when execution starts and finished. This is done by calling dedicated
reporting methods in the performance monitor module.

7.4.2 End-to-end deadline

The performance monitor module also monitors the end-to-end deadline for task
groups with multiple subtask. For this purpose, it keeps a database containing
information about task groups having multiple subtask (subtask count and end-to-
end deadlines). This database is initialized before simulation starts, by fetching
the information from the parser module. The database is being updated whenever
a task becomes ready or finishes execution. This is done by calling a dedicated
reporting method in the performance monitor module, causing the database entry
for the particular task group to be updated. At each clock cycle the database is
checked to see if any end-to-end task groups have missed their end-to-end deadline.
If a deadline has been missed (that is not all tasks have completed execution), the
module reports missed end-to-end deadline.

The performance module is not mandatory and may be left from the simulation
framework, if end-to-end task deadlines or PE performance figures are without
interests.

Section 11.8, page 134 presents the implementation specific details for the per-
formance monitor module.

7.5. IO task 41

7.5 IO task

The IO task models an IO device driver. It is used for protocol management at
application level, in conjunction to inter-processor communication. This covers
encoding/decoding of synchronization messages between local and external tasks,
having preceding/succeeding inter-task dependencies. It is based on the protocol
described in section 6.4, page 35. IO task execution follows the approach described
in section 6.2.1, page 31.

Section 11.5, page 108 presents the implementation specific details for the IO
task module.

7.6 IO device model

The IO device models the hardware IO device, implementing the protocol used in
the SoC communication interface. In this project the target protocol is OCP 2.0
and an IO device model has been developed for TL0 and TL1 respectively. Both
models have a fully multi-threaded OCP interface and are configurable (signal-
wise), relative to the channel they connect to. An IO device consists of an OCP
master and slave, to handle write and read requests. Further, buffers have been
implemented for received write and response data. A buffer exists for each thread
and the sizes are configurable. Usage of buffers allows for out-of-order thread
execution as well as IO task prioritizing, related to receiving data (not considered
in this framework).

Section 11.6, page 115 presents the implementation specific details for the IO
device modules.

7.7 IO task-IO device communication link

The communication link between the IO task and IO device is based on two

sc link mpchannels for transmitting/receiving messages between the modules.
The channels are not used for transporting physical, data related to inter-processor
communication (e.g. address/data), but used for high-level interrupt-like messages
only. It means that whenever anew inter-processor communication event starts
(e.g. a new request phase), a message will be send from the IO task or IO device
or vise versa. Access to the physical data and addresses is providedindirectly
through pointers, encapsulated in the message. These pointers point at buffers
(deque objects) from where address and/or data can be fetched. The advantage of
this approach is speed improvement, due to reducedsc link mpchannel activity.

Section 11.4, page 106 presents the communication link channel approach in
more detail.

42 Chapter 7. MPSoC framework overview

7.8 Periodic task model

Small extensions have been added on-top of the original periodical task model.
These are summarized below:

• Self-blocking. Means that whenever a task with dependencies finished exe-
cution, it cannot start executing again, before it gets unblocked by the depen-
dency controller. Self-blocking has been implemented for synchronization
reasons and previously been described in section 7.3. Enabling/disabling of
self-blocking as well as unblocking is controlled through calls to dedicated
methods in the periodic task module.

• Dynamic resource requirement allocationThis is a new improvement, al-
lowing support for a fully user defined number resource requirements. The
original task model always had three resource requirements, no matter what.

• Inter-dependency configurationA task having preceding interdependen-
cies must be configured to initiates an inter-processor communication event,
when task execution finishes (see also section 6.2.1, page 31). In conjunction
to this, it must hold all information related to the this (transaction type, data
transfer size, target PE addresses etc.). For this matter, a method has been im-
plemented for passing the SoC transaction information onto the task, which
will be stored in a database. Task configuration is done, before the simulation
starts and is managed by a task configuration method in the PE module.

• End-to-end task identificationDue to the new support for end-to-end task,
a task is now defined by group ID and subtask ID.

7.9 PE module

The PE module connects the different submodules into a structural, forming the
PE system-level model. RTOS modules and tasks are selected and created dynami-
cally, relative to the declarations done in the configuration file. Module objects are
created and connected in the PE module constructor.

The PE module contains a method for configuration of assigned tasks with pre-
ceding inter-dependencies. This method is called after the construction of the PE.
An algorithm scans the dependency database, obtained from the parser, and deter-
mines if outgoing inter-dependencies exists for any of the assigned tasks. If so,
information about the target task(s) (e.g. base address of the target PE) is provided
to the assigned task. The configuration ensures that an inter-processor communi-
cation will be initiated when task execution finishes.

7.10. Simulation data logging 43

7.10 Simulation data logging

The framework supports logging of different types of simulation data, ranging from
a text based log file, containing real time state of the different PE’s to a VCD
timing file showing the different task states versus time. Depending on the SoC
communication platform being OCP TL0 or TL1, different types of communication
trace logging is possible as well. The different types of simulation data will be
presented in section 10.1.3, page 65.

Chapter 8

The configuration file

This chapter gives a description of the configuration file as well as the syntax to use
when creating a configuration file. The configuration file defines the boundaries of
a simulation, with respect to task declaration, partitioning, RTOS configuration,
PE address assignment etc. It is being read by the parser module, and if parsing is
successful, the different information, from the file, can be obtained from the parser
and used for configuration as desired. In conjunction to this, it must be empha-
sized that themeaningof the different arguments, for a particular declaration, is
only applicable to implementation of this framework, due to the way it has been
integration with the parser module1.

Readers not interested in a more detailed description of the declaration syn-
tax may read section 8.1 and then skip ahead to figure 8.8, page 51, showing an
example of a configuration file.

8.1 Declaration types

The configuration file environment is very simple and based on a set ofdeclaration-
types mnemonics, identifying what to declare (e.g. dependency database or PE
module behavior). After a declaration-type mnemonic follows by theactualdecla-
ration, which for some declaration-types may consists of a series declarations. The
syntax to use for a declaration depends upon the declaration-type mnemonic. In
general the syntax is very simple and easy to understand and use.

The different types of declarations to include in the configuration file, for this
framework, is summarized in table 8.1 below. Some declarations may be left out,
while others are mandatory.

1The meaning of the different arguments are not dictated by the parser, thus other implementa-
tions might use the configuration data, available from the parser, differently.

45

46 Chapter 8. The configuration file

Declaration-type mnemonic Description Requirement

module PE module behavior declaration (e.g. what kind of
protocols to use in the RTOS)

Mandatory

sub task map Task declaration (timing constrains etc.) Mandatory
ee deadline End-to-end deadline declaration Optional†
dependency map Dependency database declaration Optional‡
vcd file VCD trace filename declaration (task state timing) Optional
log file Monitor log file declaration (message monitoring) Optional
screen dump Message monitoring screen dump enable/disable Optional

† Mandatory if an end-to-end task consists of multiple subtasks.
‡ Mandatory if there are end-to-end tasks with dependencies.

Table 8.1: Declaration-type and requirement overview.

8.2 Declaration syntax

This section describes the declaration syntax used in the configuration file. Before
presenting the syntax for the different types of declarations, a set of general rules
are summarized.

• Declaration-type mnemonics are not case sensitive.

• The order of the different types of declarations (identified by the declaration-
type mnemonic) may be arbitrary.

• The configuration file may include comments. A comment must always start
with #. Everything afterward is treaded as a comment until reaching newline.
Comments are in general allowed anywhere in the configuration file, also
after a completed declaration.

• Space and tab are allowed anywhere in the configuration file, also in a dec-
laration before and after a parameter separator (e.g. comma).

• Newline is also allowed anywhere in the configuration file, except in the
middle of an incomplete declaration (e.g. before or after a parameter separa-
tor). For declaration-types supporting multiple declarations, each declaration
must be separated by newline.

8.2.1 module

The module declaration-type mnemonic,module is used for defining the behavior
of the different PE to instantiated. This includes address assignment as well as
the types of protocols to use in the synchronizer, resource allocator and scheduler
respectively. An uniquemodule declaration is required for each PE, where the
PE is identified by ID argument associated with the"peID" declaration name. In
conjunction to this, all behavior declarations must be done within the boundary of
the declaration region, identified by the closed brace,{....}. The declaration order

8.2. Declaration syntax 47

may be arbitrary. Note that declaration names are case sensitive. Figure 8.1 shows
the syntax and an example for subtask declaration.

Syntax and example Argument description
<peID> ID of the target PE for the behaviour

description †
<low> Lower address boundary. †
<high> Upper address boundary. †
<synchronizer_type> Synchronizer protocol identifier†

0 = DS
<allocator_type> Resource allocator protocol identifier†

0 = Simplified basic PI
<scheduler_type> Scheduler protocol identifier†

0 = RM
1 = EDF

<flag> Message monitoring enable/disable flag
for the PR, identified by <peID>.

Disable = {0|no|false}
Enable = {1|yes|true}

Boolean mnemonic not case sensitive.

Module behaviour declaration

Syntax:

module {
 "peID" = <peID>
 "address" = <low>:<high>
 "synchronizer" = <synchronizer_type>
 "resource_allocator" = <allocator_type>
 "scheduler" = <scheduler_type>
 "monitor" = <flag>
}

Example:

module {
 "peID" = 1
 "address" = 0x0000:0x0ffc
 "synchronizer" = 0
 "resource_allocator" = 0
 "scheduler" = 0
 "monitor" = yes
}

† Parameter expressed using decimal or hexadecimal (e.g. 0xf or
0xF) notation.

Figure 8.1: Syntax and example formodule declaration.

8.2.2 sub task map

The subtask declaration-type mnemonic,sub task mapmust be declared before
doing any task declaration. The mnemonic is only allowed to be declared once in
the configuration file (multiple declaration would otherwise introduce ambiguity).
Thus all task declarations must be done within the boundary of the declaration
region, identified by the closed brace,{....}.

If a subtask has a resource requirement, it must be specified at the next line fol-
lowing the task declaration (comments in-between is allowed). Multiple resource
requirements must also be separated by a newline.

The subtask ID of a subtask belonging to a particular task group is not specified.
The reason is, that the ID will be assigned automatically by the parserin the same
order as the subtasks are declared.

Figure 8.2 shows the syntax and an example for subtask declaration.

8.2.3 ee deadline

The end-to-end deadline declaration-type mnemonic isee deadline and must
be used when declaring the end-to-end deadline for end-to-end tasks with multiple
subtasks. The mnemonic is only allowed to be used once in the configuration
file (multiple declaration would otherwise introduce ambiguity). Thus all deadline
declarations must be done within the boundary of the declaration region, identified
by the closed brace,{....}. For end-to-end tasks only consisting of one subtask, the
declaration will be ignored and the deadline, specified in the task declaration, will
be used instead. If all assigned end-to-end tasks only consist of one subtask, the

48 Chapter 8. The configuration file

Syntax and example Argument description
<name> Task name. Letters, digits and

underscore (_) is allowed. Space or
tab is not allowed.

<peID> ID of the target PE where to assign the
task. †

<parentID> ID of the parent (end-to-end) task, to
which the subtask belongs to. †

<p> Task period, specified in no. of clock
cycles. †

<BCET> Best-case execution time, specified in
no. of clock cycles. †

<WCET> Worse-case execution time, specified in
no. of clock cycles. †

<dl> Subtask deadline, specified in no.of
clock cycles. Only applicable if the
parent task consists of one subtask. †

<offs> Release offset for the first instance of
the subtask. Specified in no. of clock
cycles and relative to zero time. †

<comm> SoC transaction type identifier. The
identifier is either a mnemonic or digit.
Valid mnemonics are
null,write,read,response (not
case sensitive), while the corresponding
digits are 0,1,2,3.

<data> Amount of data associated with a SoC
transaction. Only applicable, if the
subtask has interdependency. †

<resourceID> ID of the resource to request. †
<RRT> Resource request time, relative to the

start of task execution. Specified in
no.of clock cycles. †

<CSL> Critical section length. Specified in no.
of clock cycles. †

† Parameter expressed using decimal or hexadecimal (e.g.
0xf or 0xF) notation.

Subtask declaration

Syntax:

sub_task_map {
 “<name>”,<peID>,<parentID>,<p>,<BCET>,<WCET>,<dl>,<offs>,<comm>,<data>
 <resourceID>,<RRT>,<CSL>

 .
 .

 “<name>”,<peID>,<parentID>,<p>,<BCET>,<WCET>,<dl>,<offs>,<comm>,<data>
 .
 .
}

Example:

sub_task_map {
 “EndToEnd_Task1_1”,2,1,6000,476,698,100000,0,write ,23
 “EndToEnd_Task1_2”,1,1, * ,476,698, * ,*,read ,10
 “EndToEnd_Task1_3”,2,*, * , 93,117, * ,*,response,10
 1,10,15
 2,20,27
 3,50,60
 “EndToEnd_Task1_4”,1,*, * ,108,216, * ,*,null ,0
}

* is a value-inheritance operator, causing the argument
from the previous declared subtask to be inheritated.
Cannot be used for resource declaration arguments.

Figure 8.2: Syntax and example forsub task mapdeclaration.

ee deadline declaration may be left out. Figure 8.3 shows the syntax and an
example for the end-to-end deadline declaration.

Syntax and example Argument description
<parentID> Parent ID of the end-to-end task to

assign an end-to-end deadline. †

<ee_dl> The end-to-end deadline, specified in
no. of clock cycles. †

End-to-end deadline declaration

Syntax:

ee_deadline {
<parentID> = <ee_dl>
 .
 .

}

Example:

ee_deadline {
1 = 20000
2 = 33000

}

† Parameter expressed using decimal or hexadecimal (e.g.
0xf or 0xF) notation.

Figure 8.3: Syntax and example foree deadline declaration.

8.2. Declaration syntax 49

8.2.4 dependency map

The dependency database declaration-type mnemonic isdependency map. The
dependency database declaration is a symmetrical NxN matrix, with boolean en-
tries. The matrix declaration must be done within the boundary of the declaration
region, identified by the closed brace,{....}. The row and column index maps to the
task group ID and a marked entry indicates a dependency between two end-to-end
tasks. Dependencies between subtasks in an end-to-end taskare not to be specified,
since they will be assigned automatically by the parser. If no dependency exists be-
tween any of the declared end-to-end task, the dependency declaration may be left
out. A description of the dependency database encoding is presented in section
5.1.1, page 24. Figure 8.4 shows the syntax and an example for the dependency
database declaration.

Syntax and example Argument description
Dependency declaration
Syntax:
relation_map {

<boolean>,<boolean>, . . . ,<boolean>
 <boolean>,<boolean>, . . . ,<boolean>

 .
 .

}

Example:
relation_map {

0,0,0,0,0
 0,1,0,0,0

0,0,1,0,0
0,0,0,1,0

}

<boolean> A Boolean value, expressing if a
dependency exists between two end-to-
end tasks. Valid values are 0 and 1. A
marked entry indicates a dependency.

Figure 8.4: Syntax and example fordependency mapdeclaration.

8.2.5 log file

The monitoring log file declaration-type mnemonic islog file . It must be de-
clared, if the message monitoring is to be logged to a file. Argument to be provided
is the filename. Only one log file declaration-type mnemonic is allowed. If the dec-
laration is left out, no log file will be created. Figure 8.5 shows the syntax and an
example for the log filename declaration.

Syntax and example Argument description
Log filename declaration
Syntax:

log_file = “<filename>”

Example:

log_file = “MP3_Decoder.log”

<filename> The filename of the UI monitor log file.
Letters, digits and underscore (_) is
allowed. Space or tab is not allowed.

Figure 8.5: Syntax and example forlog file declaration.

50 Chapter 8. The configuration file

8.2.6 vcd file

The VCD file declaration-type mnemonic isvcd file . If the declaration is in-
cluded in the configuration file, the states of the assigned tasks will be logged to
the VCD file, during simulation. Argument to be provided is the filename. Only
one VCD file declaration-type mnemonic is allowed. If the declaration is left out,
no VCD file will be created. Figure 8.6 shows the syntax and an example for the
VCD filename declaration.

Syntax and example Argument description
Log filename declaration
Syntax:
vcd_file = “<filename>”

Example:
vcd_file = “MP3_Decoder”

<filename> The filename of the VCD trace file.
Letters, digits and underscore (_) is
allowed. Space or tab is not allowed.
Extension is added automatically by the
framework. (.vcd)

Figure 8.6: Syntax and example forvcd file declaration.

8.2.7 screendump

The screen dump declaration-type mnemonic,screendump is used for enabling
or disabling the message monitoring dumping to the screen, during a simulation.
If the declaration is left out, screen dumping will be enabled as default. For long
simulations it is recommended to disable screen dumping, since it will increase
performance significantly. In this case it is recommended to enable the log file
option instead. Figure 8.7 shows the syntax and an example for the screen dump
declaration.

Syntax and example Argument description
Screendump flag declaration
Syntax:

screen_dump = <flag>

Syntax:

screen_dump = true

<flag> UI on-screen monitor enable/disable
Boolean flag.

Disable = {0|no|false}
Enable = {1|yes|true}

Boolean mnemonic not case sensitive.

Figure 8.7: Syntax and example forscreendump declaration.

8.2. Declaration syntax 51

screen_dump = no # if this declaration is left out, default will be yes
log_file = "MP3_logfile" # if this declaration is left out, no log file will be created
vcd_file = "MP3" # if this declaration is left out, no vcd file will be created

module {
 "peID" = 1
 "address" = 0x0000:0x0ffc
 # --------------------------------------
 # module behavior configuration for PE#1
 # --------------------------------------
 "synchronizer" = 0
 "resource_allocator" = 0
 "scheduler" = 0 # 0=RM|1=EDF
 "monitor" = yes
}

module {
 "peID" = 2
 "address" = 0x1000:0x1ffc
 # --------------------------------------
 # module behavior configuration for PE#2
 # --------------------------------------
 "synchronizer" = 0
 "resource_allocator" = 0
 "scheduler" = 0 # 0=RM|1=EDF
 "monitor" = yes
}

ee_deadline {
 17 = 25000 # for end-to-end task, groupID 17
 18 = 25000 # for end-to-end task, groupID 18
}

sub_task_map {
NOTE: * is an value-inheritance operator, causing the argument from the
previous declared task to be inherited.
+--+
| MP3 Decoder -> Will be mapped to task graph#0 |
+--
<name>,<peID>,<groupID>,<per>,<BCET>,<WCET>,<dl>,<offset>,<transer_type>,<transfer_size>
 "MP3_Decoder_Task1" ,1, 1, 30000, 45, 45, 25000,0,write,100
 "MP3_Decoder_Task2" ,1, 2, * , 19, 20, * ,0,null ,0
 "MP3_Decoder_Task3" ,2, 3, * , 19, 20, * ,0,null ,0
 "MP3_Decoder_Task4" ,1, 4, * , 1471, 1545, * ,0,null ,0
 "MP3_Decoder_Task5" ,2, 5, * , 1471, 1545, * ,0,null ,0
 "MP3_Decoder_Task6" ,1, 6, * , 567, 595, * ,0,null ,0
 "MP3_Decoder_Task7" ,2, 7, * , 567, 595, * ,0,write,100
 "MP3_Decoder_Task8" ,1, 8, * , 2557, 2685, * ,0,write,100
 "MP3_Decoder_Task9" ,2, 9, * , 103, 108, * ,0,null ,0
 "MP3_Decoder_Task10",1,10, * , 103, 108, * ,0,null ,0
 "MP3_Decoder_Task11",2,11, * , 852, 895, * ,0,null ,0
 "MP3_Decoder_Task12",1,12, * , 852, 895, * ,0,null ,0
 "MP3_Decoder_Task13",2,13, * , 5797, 6087, * ,0,null ,0
 "MP3_Decoder_Task14",1,14, * , 5797, 6087, * ,0,null ,0
 "MP3_Decoder_Task15",2,15, * ,10667,11200, * ,0,null ,0
 "MP3_Decoder_Task16",1,16, * ,10667,11200, * ,0,null ,0
+--------------------------------+
| end-to-end task, groupID 17 |
+--------------------------------+
 "EndToEnd_Task17_1" ,1,17, 50000, 1471, 1545,100000,0,read ,10
 "EndToEnd_Task17_2" ,2,17, * , 71, 105, * ,0,response,10
 "EndToEnd_Task17_3" ,1,17, * , 1471, 1545, * ,0,null ,0
+--------------------------------+
| end-to-end task, groupID 18 |
+--------------------------------+
 "EndToEnd_Task18_1" ,1,18, 60000, 476, 698,100000,0,write ,37
 "EndToEnd_Task18_2" ,2,18, * , 1071, 1105, * ,0,read ,29
 "EndToEnd_Task18_3" ,1,18, * , 931, 1245, * ,0,response,29
 1,10,5 # resource request 1
 2,20,17 # resource request 2
 3,200,8 # resource request 3
 4,700,33 # resource request 4
 "EndToEnd_Task18_4" ,2,18, * , 931, 1245, * ,0,null ,0
}

relation_map {
--
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 <-- this is the same as the groupID
--
MP3 Decoder dependencies
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 1
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 2
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 3
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 4
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 5
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 6
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 7
 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 # 8
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 # 9
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 # 10
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 # 11
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 # 12
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 # 13
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 # 14
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 # 15
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 # 16
}

Figure 8.8: Example of a configuration file.

Chapter 9

SoC communication platform
model

This chapter presents a SystemC based model for abstract SoC communication
modeling, developed in conjunction to the extended abstract PE model presented
in the previous chapter. The SoC communication platform model has the following
features and characteristics:

• Topology modeling (currently available):

1. 1D/2D mesh NoC based on packed switched traffic and minimal path
routing, where links are granted on a first-come-first-served principle
and routers are assumed to have infinite buffers and zero latency.

2. Single shared bus granted on a first-come-first-served principle.

• Communication:

1. Transmission of real data between nodes (e.g. RTL).

2. Support for multi threaded out-of-order communication.

3. Support for OCP 2.0 at TL0 and TL1.

• Implementation approach:

1. Modular architecture which makes it easy to implement different SoC
communication topologies as well as different communication proto-
cols; also at different abstraction levels.

2. Fully configurable node count.

Figure 9.1 shows the architecture of the SoC communication platform model.
What makes this model especially interesting is the ability to support communi-
cation at low level (e.g. RTL) while still maintaining an abstract description of
the underlying communication topology (e.g. mesh or bus). An advantage from

53

54 Chapter 9. SoC communication platform model

this approach is speed improvement simulation wise (relative to low level NoC
implementation). The drawback may be reduced accuracy, depending on the im-
plementation detailedness in the SoC allocator.

Intermediate
adapter1

Intermediate
adapter2

Intermediate
adapter3

Intermediate
adapterN

SoC allocator

SoC scheduler

SoC
resource usage

buffer

IO port1 IO port2 IO port3 IO portN

SoC communication interface (i.e. OCP 2.0)

. . .

SoC communication layer model

IO
 a

da
pt

or
 m

od
el

IO
 a

da
pt

or
 m

od
el

IO
 a

da
pt

or
 m

od
el

IO
 a

da
pt

or
 m

od
el

Figure 9.1: The SoC communication platform model architecture.

9.1 Module descriptions

From a top level point of view, the model consists of two main modules: aIO
adapter model(composed of an IO port and an intermediate adapter) and acom-
munication layer model- or SoC communication processor (composed of an allo-
cator, resource usage buffer and scheduler). The characteristics of the different sub
modules are briefly summarized below:

IO port Models the physical hardware port and implements and manages the SoC
communication protocol.

Intermediate adapter Manages request/response messages to/from the IO port
and serves as a message converter between the IO port and the SoC com-
munication platform model. For an example, when a request is received

9.2. Module communication 55

from the IO port, a correspondingtransport message(equivalent to a data
package) will be created and issued to the NoC at the same time as the inter-
mediate adapter starts fetching the actual data coming from the IO port.

SoC allocator Models the SoC communication topology (e.g. mesh or bus) and
serves to minimize conflicts over shared communication resources (e.g. links
and routers). It also manages the routing of the transport messages.

SoC resource usage bufferModels occupation of a shared communication re-
source (e.g. when a link is being used), by transport message buffering
during the resource usage period.

SoC schedulerModels the scheduling of transport messages in case of resource
contention. For an example, for a NoC topology it could be used to model
the management of network service requirements such as guaranteed service
(GS).

The motivation for having refined the IO adapter model into an IO port and
intermediate adapter has been done for modular reason; that is to separate the com-
munication handling to/from the SoC communication layer model from communi-
cation handling to/from the IP core. This also simplifies the implementation of the
IO port model.

The exact behavior of the different modules and how they interact will de-
scribed later in section 9.3, page 57.

9.2 Module communication

The communication between the modules are based on thesc link mp model
available from the SystemC Master/Slave library. Data transferred through links
arepointersto message objects, similar to the approach being used in the extended
abstract PE model. See also section 11.1.1, page 87.

The communication link between the IO port and the intermediate adapter dif-
fers from the remaining communication links in the SoC communication model,
with respect to the message type. This communication link follows the same pro-
tocol being used in the abstract PE model, between the IO task and IO device
model. See also section 11.4.2, page 107. This also means that an IO device model
used in the extended abstract PE model may be used as an IO port in the IO adapter
model and vise versa.

The remaining links in the model serves to communicate pointers to transport
messages. A transport message is generated by the intermediate adapter when-
ever a new inter-processor communication event starts; that is when a new re-
sponse/request phase is being received by the IO port to which it connects. The
transport message encapsulates information about the response/request and may
float around in the SoC communication layer model, until it is ready to be released
to the destination IO adapter. The transport message may also be considered as a

56 Chapter 9. SoC communication platform model

single request/response package encapsulating all the data, sinceonly onetransport
message will be generated for a particular inter-processor communication event
(e.g. burst write).

A transport message is being defined by the struct,noc message type de-
scribed in table 9.1. The struct consists of entries related to the inter-processor
communications, used and maintained by the intermediate adapter. It also consists
of entries used and maintained by the SoC communication layer model for routing
management. The upper and lower part of table 9.1 shows the entries related to the
inter-processor communication and routing management respectively.

Since a transport message encapsulates routing information as well as all the
data related to the inter-processor communication, it might be considered equiv-
alent to packed switched transmission. This however depends on the topology
modeled by the SoC allocator, and how it manages a transport message.

9.3. Model behavior description 57

Type Name Description

unsigned int type Identifying the transaction type. Valid mnemonics
are: WR, RD, RESP.

unsigned int threadID The thread ID associated with the particular transac-
tion.

bool singleReq Only applicable for a burst read request, and identi-
fies, if the request type is single (true) or non-single
(false).

unsigned int dataUnits Data transfer size. Equivalent to the burst length.

deque<unsigned int>* addrQ Pointer to a buffer containing the addresses associ-
ated with a request. The buffer is created and main-
tained by the intermediate adapter, initiating the trans-
port message.

deque<unsigned int>* dataQ Pointer to a buffer containing data associated with
a request/response. The buffer is created and main-
tained by the intermediate adapter, initiating the trans-
port message.

unsigned int comm Action identifier. Valid mnemonics are READY,
REFUSE, GRANT and RUN.

unsigned int from The source node ID (IO adapter) from where the
transport messages originate from.

unsigned int to Thedestinationnode ID (IO adapter) where the mes-
sage is hitting at.

unsigned int now A node ID identifying/modeling the current location
of the transport message in the SoC communication
layer.

unsigned int CSL Used as a critical section length watchdog timer in
conjunction to usage of a shared communication re-
source (e.g. link).

unsigned int (1x10 array) resourceID Identifying the shared communication resource cur-
rently used/required by the transport message. The ID
is an array, due to the implementation of the 1D/2D
mesh allocator (described later).

Table 9.1: Transport message struct,noc message type . Entries in the upper
part of the table relates to the inter-processor communication, while entries in the
lower part is used by the SoC communication layer model for routing management.

9.3 Model behavior description

This section presents a behavior description of the SoC communication platform
model, starting with the approach for communication task modeling. This is fol-

58 Chapter 9. SoC communication platform model

lowed by a more in-depth behavior description of the different modules.

9.3.1 The communication task

From a high-level perspective, an inter-processor communication can be consid-
ered as a task. Assume two PE’s, PE1 and PE2 are connected to the framework
and that a simple application, consisting of two tasks,τ1 andτ2, whereτ1 ≺ τ2,
have been partitioned in such way thatτ1 7→ PE1 andτ2 7→ PE2. Thus in this
simple scenario, inter-processor communication is required, due to the emergence
of an inter-task dependency. The inter-processor communication can modeled as a
communication task,τNoC in betweenτ1 andτ2. This is shown in figure 9.2.

PE1 PE2
1 2

SoC

SoC communication
interface

1 SoC 2

Architecture mappingTask decomposition

R1 L1 R2 L2 R3

SoC

Figure 9.2: inter-processor communication modeling.

Depending on the topology, the communication task,τSoC can be further de-
composed into a subset of tasks, connected in a chain. These tasks correspond to
the usage of shared communication resources like links and routers, used when
the data float around in the network layer. In this framework, the foundation for
the modeling of the communication task,τSoC is based on the transport message
issued by the intermediate adapter. This message will float around in the SoC com-
munication layer model, until it is ready for being released to the destination IO
adapter. The time interval between when an intermediate adapter issues a transport
message and when the message is being released to the target IO adapter and the
inter-processor communication has been done, corresponds to the communication
task execution time. This time interval is dynamic and depends on the following
basic factor:

• Data transfer size and bandwidth available.

• Topology and distance (link-wise) between source and destination IO adapter.

• Communication resource contention, if any.

The message floating is managed by the SoC allocator (since it models the
topology) and simply models the different subtasks that a communication task
may consists of (e.g. the usage of links and routers) In conjunction to the mod-
eling of shared communication resource usage, a transport message get buffered in
the SoC resource usage buffer, each time a new resource has been granted. The

9.3. Model behavior description 59

amount of time a message gets buffered, corresponds to a certain resource occupa-
tion time/critical section length (CSL), determined by the SoC allocator (relative
to data transfer size and bandwidth).

The next sections explain how the communication modeling has been imple-
mented, by giving a brief behavior description of the different modules. Imple-
mentation details are presented in section 12, page 139.

9.3.2 IO adapter model

The IO adapter model consists of the IO port and intermediate adapter model.

Receiving from the SoC interface

When an IO port receives a new request/response phase, it sends aREADYmessage
to the intermediate adapter. See table 11.6, page 111 for the types of messages
coming from the IO port model. This causes the intermediate adapter to perform
two operations:

1. Create buffer objects for address/data storage and initiates the fetching of ad-
dress/data available from the IO port (in each clock cycle, new address/data
is fetched pushed onto the buffers. This process continues until all the ad-
dresses/data, associated with the inter-processor communication event has
been fetched).

2. Create aREADYtransport message to the SoC communication layer model,
targeting the NoC allocator.

The transport message contains the pointers to the address/data buffer objects
as well as inter-processor communication information likes transaction type, data
transfer size and thread ID. The pointers will be used by the destination IO adapter
when fetching the address/data associated with the inter-processor communication
event. Besides the inter-processor communication information, the message also
contains arouting information, identifying the source and destination node ID’s
as well as the current initial position of the message (which initially equals the
source node ID). The routing information is store in thefrom , to andnow fields
in the message and used by the SoC allocator for the actual routing management.
See also table 9.1, page 57. Determining the destination node ID depends on the
inter-processor communication event being a request or a response to a previously
initiated read request. If it is a request, the intermediate adapter finds the desti-
nation node ID from the address using a look-up table defining the address space
mapping of the different IO adapters node ID (initialized before the simulation
starts). For a response, the node ID is found from a look-up table holding the
source ID of the IO adapter previously issued read request transport message. The
look-up table is addressed using the thread ID. Thus using the thread ID associated
with the response, the destination node ID is fetched from the table.

60 Chapter 9. SoC communication platform model

Transmitting to the SoC interface

When an intermediate adapter receives aRUNtransport message from the SoC
resource usage buffer, it means that the transport message has reached the desti-
nation IO adapter. This causes the intermediate adapter to issue a message to the
IO port, starting the actual inter-processor communication afterward. The message
contains the SoC communication information fetched from the transport message
(address/data buffer pointers, transaction type, thread ID etc.).

If the transport message relates to a read request, the source ID of the IO
adapter, initiating the transport message, is captured and stored in a look-up ta-
ble for later use, when the response is coming. See also the description in the
previous section, regarding the response handling procedure.

9.3.3 SoC allocator

The SoC allocator manages the usage of shared communication resources such as
link. Transport messages received by the SoC allocator are alwaysREADYmes-
sages and can be considered as a communication resource releaseandrequest mes-
sage at the same time.

When the NoC allocator receives a READY message it looks at the position in-
formation (from , to andnow) and determine what the next routing action should
be for the message and thus which resource to use. In conjunction to this, three
possible position scenarios exists:

• now == from : The transport message has been released from the initial
node position; that from the source IO adapter.

• now != from AND now != to : The message has reached a certain
node in the SoC communication layer. Here the message has been released
by the SoC resource usage buffer.

• now == to : The transport message has reached the destination IO adapter
and the inter-processor communication has been processed as well (i.e. inter-
processor communication completed). This message comes from NoC re-
source usage buffer.

If the message comes from the intermediate adapter (now == from) the SoC
allocator performs the following operations:

• Selects the next shared communication resource to use and updates the
resourceID entry in the message with the corresponding resource ID. The
resource selection is done relative to the current (now) and destination (to)
position and reflects the topology modeled by the NoC allocator

• Updatesnow to reflect the message position as it will beafter the resource
has been used. The is also topology dependent as well.

9.3. Model behavior description 61

• Initialize the CSL watchdog timer, relative to the data transfer size, available
from the transport message (dataUnits).

• Check if the requested resource is already occupied by evaluating anreser-
vation counterfor this particular resource. If already in use (the reservation
counter is non-zero), theREADYtransport message is changed to aREFUSE
and forwarded to the SoC scheduler, where it waits until the resource be-
comes available. If the resource is free, theREADYtransport message is
changed to aGRANTand forwarded to the SoC resource usage buffer instead.
In both scenarios the reservation counter, associated with the resource, will
be incremented.

The processing of a transport message coming from the SoC resource usage
buffer, whennow != from AND now != to follows the same procedure as
described above. However, since this message also relates to the release of a pre-
viously used resource, two operations are performed first:

1. Decrementing the reservation counter associated with the resource, identified
by the entry,resourceID from the transport message.

2. Issuing aRELEASEmessage to the SoC scheduler, if the reservation counter
is non-zero. If the counter is non-zero, it means that there is a transport
message waiting in the SoC scheduler for this resource to become free. The
RELEASEmessage contains the ID of the released resource and causes (in
the current SoC scheduler implementation) the first pending transport mes-
sages, waiting for this resource, to be released to the SoC resource usage
buffer.

If the message indicates completion of the inter-processor communication at
(now == to), the allocator releases the associated resource and delete the mes-
sage afterward.

9.3.4 SoC resource usage buffer

The SoC resource usage buffer models the actual resource usage mechanism, for
an example when using a link. Whenever a transport message has been granted a
shared resource by the SoC allocator, it gets forwarded to the SoC resource buffer,
which buffers the message during the critical section length (CSL). At each clock
cycle theCSL entry in the different buffered messages will be decremented, and
whenever CSL reaches zero for a message (i.e. when the resource usage occupation
time has been reached), it gets released and forwarded back to the SoC allocator
again.

However, before buffering the message, it first checks if the next target node
equals the destination IO adapter (now == to). If so, it means that the inter-
processor communication also should start. Thus, it creates a copy of the trans-
port message, changing it to a RUN message and forwards it to the destination

62 Chapter 9. SoC communication platform model

IO adapter. This ensures that the inter-processor communication starts when the
resource has been granted.

9.3.5 SoC scheduler

The SoC scheduler manages the scheduling of transport messages in case of re-
source contention. The current scheduler implementation does not support features
such as guaranteed service (GS). Thus pending transport messages, waiting for a
shared resource to become free, will be served in a first-come-first-served manner.

Whenever the SoC allocator refuses a transport message to use a shared re-
source, it gets forwarded to the SoC scheduler and buffered, until the resource
becomes available. Releasing a transport message happens when aRELEASEmes-
sage is received from the SoC allocator, indicating the release of a shared resource.
The scheduler searches through the pending transport messages, until the first mes-
sage waiting for this resource has been found. The transport message is removed
from the buffer, changed to aGRANTmessage and forwarded to the SoC resource
usage buffer.

Chapter 10

Design space exploration
experiments

In this chapter, the capabilities of the extended abstract PE model and SoC commu-
nication platform model will be demonstrated, through some design space explo-
ration examples. The examples integrate the abstract PE and SoC communication
models, forming different simulation frameworks for distributed MPSoC architec-
ture and application modeling. The examples demonstrate how the models easily
can be used for architecture optimization relative to the application running on top
of it.

Three examples will be presented in the mentioned order:

1. A basic introduction using a simple simulation framework for presenting the
output data available from a simulation.

2. SoC communication topology exploration and mixture of abstraction level
in the SoC communication interface.

3. Complex system performance behavior analysis.

For all examples, the following applies as well:

• Task ID encoding, used in conjunction to address generation, has been se-
lected such that bit[3:0] contains the subtask ID. See also section 6.4, page
35 for more information.

• Fixed OCP2.0 (TL1 and TL0) channel configuration for all example. See
also TL0 and TL1 configuration files in appendix C, page 167.

• Fictive selected data sizes associated task graph edges.

63

64 Chapter 10. Design space exploration experiments

10.1 Example 1: Introduction

This example serves as an introduction to the frameworks and presents the different
results available from a simulation. It is based on modeling a simple architecture,
consisting of two extended abstract PE’s communicating through a 32-bit OCP2.0
TL0 compliant bus. Application running on top is based on the MP3 Decoder task
graph available from [23].

The source code and configuration file for this example can be found on the
enclosed CD-ROM in the directory:/ARTS Model/builds/example1 .

10.1.1 The simulation framework

Figure 10.1 shows a block diagram of the simulation framework. The bus model is
based on the SoC communication platform model using the SoC allocator model
for a single shared bus. Both RTOS uses RM scheduling policy. The modeled
clock period will be 1ns.

RTOS
model

BUS model

OCP2.0
TL0

OCP2.0 TL0

OCP2.0 TL0

OCP2.0 TL0

OCP2.0 TL0

RTOS
model

Application Application

PE#0 PE#1

Figure 10.1: The system level model.

10.1.2 Application model

Assuming the BCET and WCET figures for the MP3 decoder application applies to
the PE’s to model, it can be found that the application is not able to execute success-
fully on a single PE, since the BCET is 41554ns while the deadline 25000ns. See
also the configuration file,example1.task or figure 10.2. Thus parallel tasks
must execute on different processors in order to meet the deadline requirement. For
this example the partition showed in figure 10.2 will be used. As it can be seen,
the selected partitioning introduces inter-task dependency between three tasks. All
inter-processor communication related inter-task dependency will be modeled as
write transaction of 10x32-bit data words.

10.1. Example 1: Introduction 65

Task ID BCET [ns] WCET [nS]

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

9,1

10,1

11,1

12,1

13,1

14,1

15,1

16,1

45 45

19 20

19 20

1471 1545

1471 1545

567 595

567 595

2557 2685

103 108

103 108

852 895

852 895

5797 6087

5797 6087

10667 11200

10667 11200

WR

WR

PE#1

PE#0

4,1

1,1

2,13,1

5,1

6,17,1

8,1

9,1 10,1

11,1 12,1

13,1 14,1

15,1 16,1

WR

Data [32bit]

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

dl [ns]

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

T [ns]

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

Figure 10.2: MP3 Decoder task graph (partitioned).

10.1.3 Simulation output data

When running the executable system level model,example1.x for 30000ns and
using the configuration file for this example,example1.task , the following
files will be generated:

• Text based log file(ex1 logfile), containing the real time state of the
system level model, presented in a readable text format. From this file it is
possible to see:

– Missed subtask and end-to-end deadlines (if any).

– Task graph execution completion time.

– RTOS states of the different PE’s versus time (e.g. task execution,
preemption etc.)

– Inter-processor communication event information (e.g. address infor-
mation, burst length, thread ID etc.).

– PE utilization figures, including IO task usage.

– Address space map for tasks having succeeding inter-task dependen-
cies.

• PE task scheduling VCD timing file(ex1 PE.vcd), contains the task ex-
ecution in the different PE’s versus time. From this file it is possible to see
which task is executing on a certain PE at a certain time.

• OCP2.0 TL0 VCD timing files (ex1 RTL0 PE#0 andex1 RTL0 PE#1),
containing the TL0/RTL trace in the OCP interface between the bus and the
PE0 and PE1 respectively.

• Task state VCD timing file (ex1 task.vcd), containing the states of the
assigned tasks (idle, running or preempted) versus time.

66 Chapter 10. Design space exploration experiments

10.1.4 Analyzing the log file

The text based log file may be useful for gaining information about the state of
the system level model at a particular time. The logging is done in a sequential
time-wise manner. Figure 10.3 shows a section of the log file for this example. For
convenience, the complete log file has been included in appendix D, page 169.

45 ns PE#0: task(1,1) (request to NoC: task(3,1),addr=0x1011,dataUnits=10)-> adaptor

45 ns PE#0: scheduler (start NoC write request) -> task(IO)

45 ns |OCP| PE0_TL0.IOdevice.master: sent BURST request.

| M | Data handshake: yes

| A | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1

| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

46 ns |OCP| soc_comm.tl0_io_a.slave: receiving BURST request.

| S | Data handshake: yes

| L | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1

| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

46 ns |OCP| soc_comm.tl0_io_b.master: sent BURST request.

| M | Data handshake: yes

| A | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1

| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

47 ns |OCP| PE1_TL0.IOdevice.slave: receiving BURST request.

| S | Data handshake: yes

| L | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1

| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

47 ns PE#1: task(IO) (write data ready) -> scheduler

47 ns synchronizer: READY from IO task

47 ns PE#1: scheduler (fetch data from SLAVE) -> task(IO)

55 ns |OCP| PE0_TL0.IOdevice.master: Request completed

55 ns PE#0: task(IO) (IO task finished) -> scheduler

55 ns synconizer: releases task(2,1)

55 ns PE#0: scheduler (run) -> task(2,1)

56 ns |OCP| soc_comm.tl0_io_b.master: Request completed

57 ns PE#1: task(1,1) (external task finished) -> scheduler

57 ns synconizer: releases task(3,1)

57 ns PE#1: task(IO) (IO task finished) -> scheduler

57 ns PE#1: scheduler (run) -> task(3,1)

Figure 10.3: A section of the log file.

From the log file section it can be seen, that when task(1,1) in PE0 finishes
execution at 45ns, the inter-processor communication consisting of a burst write
starts afterward. When the request is received in PE1, the IO task is launched at
47ns and data fetching starts. After 55ns, the IO task in PE0 has completed the
burst write, and task(2,1) starts executing. At 57ns, when all data associated with
the burst write have been received, the IO task completes and task(3,1), depending
on the data, starts to execute.

10.1. Example 1: Introduction 67

For small and simple simulations like this one, it may be easy to get an overview
of the system level performance from the log file alone, since only two PE’s and
a single task graph is considered. However, for more complex simulation this be-
comes almost impossible (or at least very difficult), due to the very high level of
detailedness in the log file. In these situations, the VCD files containing the task
scheduling/state information should be used instead, while the log file serves as a
reference.

Simulation summary

The end of the log file contains a small simulation summary report. This includes
the address map for tasks having interdependencies as well as PE utilization and
IO task usage figures. Figure 10.4

TASK ADDRESS MAP

PE#0 :

Task(1, 1) :

Task(2, 1) :

Task(4, 1) :

Task(6, 1) :

Task(8, 1) : 0x71

Task(10, 1) :

Task(12, 1) :

Task(14, 1) :

Task(16, 1) :

PE#1 :

Task(3, 1) : 0x1011

Task(5, 1) :

Task(7, 1) :

Task(9, 1) : 0x1081

Task(11, 1) :

Task(13, 1) :

Task(15, 1) :

PE UTILIZATION

PE#0 : 75.7967% (22739@30000)

PE#1 : 67.0833% (20125@30000)

IO TASK USAGE

PE#0 : 0.131932% (30@22739)

Write data TX : 0.0879546% (20@22739)

Write data RX : 0.0439773% (10@22739)

PE#1 : 0.149068% (30@20125)

Write data TX : 0.0496894% (10@20125)

Write data RX : 0.0993789% (20@20125)

Figure 10.4: Log file summary.

The address map shows the automatically assigned addresses the tasks mapped
to a particular PE. If no address has been assigned to a task, it means that it does not
have any succeeding inter-task dependency (i.e. does not depends on data from a
non-local task for being able to execute). In this example, the address map indicates
that task(3,1), task(8,1) and task(9,1) has succeeding inter dependencies, which is
also expected due to the selected task partitioning shown in figure 10.2. See also
section 6.4, page 35 for more information regarding address assignment.

The PE utilization figures indicate the amount of time a particular PE has been
used for task execution, relative to the total simulation time. The IO task usage

68 Chapter 10. Design space exploration experiments

figures indicate the amount of time spend on inter-processor communication han-
dling. These figures are relative to the total time used by the PE for task execution.
Thus in this example, the utilization of PE0 and PE1 is 75.7% and 67.1%, where
0.13% and 0.15% of this time has been spend on SoC communication handling
respectively.

The current summary report does not include information about task graph
execution times and no.of missed deadlines. But for this example there were no
missed deadlines and the task graph completed execution after 22775ns (also ob-
tained from the text based log file).

10.1.5 Analyzing the task scheduling and state

From thePE task schedulingand task state VCD timing filesit is possible to get
quick overview of the tasks executing on the different PE’s as well as the state of
the tasks. In figure 10.5, a section of the VCD plots for this example is shown.

0 22700 ps 45500 ps 68300 ps

$00000001 $FFFFFFFF $00000002 $00000004
$00000001
$00000000 $FFFFFFFF $00000003 $00000005
$00000000 $00000004 $00000001

Time
SystemC.clock=0
SystemC.PE0_groupID[31:0]=$00000004
SystemC.PE0_subtaskID[31:0]=$00000001
SystemC.PE1_groupID[31:0]=$00000005
SystemC.PE1_subtaskID[31:0]=$00000001

PE task scheduling VCD timing file.
0 23 ns 46 ns 69 ns

2 0
1 2 0
1 2 0
1 2
1 2
1
1
1
1
1
1
1
1
1
1
1

Time
SystemC.clock
SystemC.MP3_Decoder_Task1[7:0]
SystemC.MP3_Decoder_Task2[7:0]
SystemC.MP3_Decoder_Task3[7:0]
SystemC.MP3_Decoder_Task4[7:0]
SystemC.MP3_Decoder_Task5[7:0]
SystemC.MP3_Decoder_Task6[7:0]
SystemC.MP3_Decoder_Task7[7:0]
SystemC.MP3_Decoder_Task8[7:0]
SystemC.MP3_Decoder_Task9[7:0]
SystemC.MP3_Decoder_Task10[7:0]
SystemC.MP3_Decoder_Task11[7:0]
SystemC.MP3_Decoder_Task12[7:0]
SystemC.MP3_Decoder_Task13[7:0]
SystemC.MP3_Decoder_Task14[7:0]
SystemC.MP3_Decoder_Task15[7:0]
SystemC.MP3_Decoder_Task16[7:0]

Task state VCD timing file,

Figure 10.5: VCD plot sections.

In the VCD plot associated with the PE task scheduling VCD timing file, each
PE is identified by two traces showing the group ID (e.g.PE0 groupID) and the
subtask ID (e.g.PE0 subtaskID) of the task currently running. The IO task
execution is identified by the group ID being0xFFFFFFFFh , while the subtask
ID here identifies the action performed by the IO task (i.e. doing a write or read
transaction, fetching response data etc.). When the group ID and subtask ID is
zero, it means that the PE is in idle. For example, task(1,1) is executing on PE1
in the time between 0 to 45ns, since the group ID and subtask ID both equal 1.
Afterward starts the IO task execution, since the group equals0xFFFFFFFFh .
The action performed by the IO task is a write, since the subtask ID equals 1. See
alsoParameters.h identifying the mnemonic values for the IO task actions.

10.1. Example 1: Introduction 69

In the VCD plot associated with the task state VCD timing file, each task is
identified by a trace showing the state. The possible states are: 0 = idle, 1=ready,
2=run and 3=preempted. For example, task(1,1) is executing in the time between
0 to 45ns, since the state 1. Afterward the task goes into idle, since the state is 0.

Analyzing SoC communication

From thetext based log fileit can be found that inter-processor communication
is initiated at 45ns, 2140ns and 4721ns corresponding to when task(1,1) in PE0,
task(7,1) and PE1 and task(8,1) in PE0 finishes execution respectively. This is also
expected, since the tasks have preceding inter-task dependencies. See also figure
10.2.

The corresponding OCP2.0 communication traces can be observed from the
OCP2.0 TL0 VCD timing files. These are shown in figure 10.6, to 10.8. For each
SoC communication event, the trace is shown for the producer and consumer pro-
cessor respectively.

45050 ps 49150 ps 53240 ps

$000+ $00001011 $00000000
$000+ $0000000A $00000000

%110

%000 %001 %000

$000 $001 $000

$00000000 $000+ $000+ $000+ $000+ $000+ $000+ $000+ $000+ $000+ $00000000

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=1
SystemC.m_MAddr_PE#0[31:0]=$00001011
SystemC.m_MBurstLength_PE#0[31:0]=$0000000A
SystemC.m_MBurstPrecise_PE#0=1
SystemC.m_MBurstSeq_PE#0[2:0]=%110
SystemC.m_MBurstSingleReq_PE#0=1
SystemC.m_MCmd_PE#0[2:0]=%001
SystemC.m_MDataLast_PE#0=0
SystemC.m_MDataThreadID_PE#0[9:0]=$001
SystemC.m_MDataValid_PE#0=1
SystemC.m_MData_PE#0[31:0]=$00000000
SystemC.m_MReqLast_PE#0=1
SystemC.m_MRespAccept_PE#0=1
SystemC.m_MThreadID_PE#0[9:0]=$001
SystemC.m_SCmdAccept_PE#0=1
SystemC.m_SDataAccept_PE#0=1
SystemC.m_SData_PE#0[31:0]=$00000000
SystemC.m_SResp_PE#0[1:0]=%00
SystemC.m_SThreadID_PE#0[9:0]=$000

45ns: PE0 Starting burst write at (OCP Master signals) after task(1,1) finishes.
47260 ps 50900 ps 54540 ps

$00000000 $00001011 $0000+
$00000000 $0000000A $0000+

%110

%000 %001 %000

$000 $001 $000

$00000000 $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=1
SystemC.s_MAddr_PE#1[31:0]=$00001011
SystemC.s_MBurstLength_PE#1[31:0]=$0000000A
SystemC.s_MBurstPrecise_PE#1=1
SystemC.s_MBurstSeq_PE#1[2:0]=%110
SystemC.s_MBurstSingleReq_PE#1=1
SystemC.s_MCmd_PE#1[2:0]=%001
SystemC.s_MDataLast_PE#1=0
SystemC.s_MDataThreadID_PE#1[9:0]=$001
SystemC.s_MDataValid_PE#1=1
SystemC.s_MData_PE#1[31:0]=$00000000
SystemC.s_MReqLast_PE#1=1
SystemC.s_MRespAccept_PE#1=1
SystemC.s_MThreadID_PE#1[9:0]=$001
SystemC.s_SCmdAccept_PE#1=1
SystemC.s_SDataAccept_PE#1=1
SystemC.s_SData_PE#1[31:0]=$00000000
SystemC.s_SResp_PE#1[1:0]=%00
SystemC.s_SThreadID_PE#1[9:0]=$000

46ns: PE1 Receives the burst write data from task(1,1)

Figure 10.6: Inter-task dependency, task(1,1)→task(2,1)

70 Chapter 10. Design space exploration experiments

2141600 ps 2145240 ps 2148870 ps

$00000+ $00000071 $00000000
$00000+ $0000000A $00000000

%110

%000 %001 %000

$000 $001 $000

$00000000 $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $00000000

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=0
SystemC.m_MAddr_PE#1[31:0]=$00000000
SystemC.m_MBurstLength_PE#1[31:0]=$00000000
SystemC.m_MBurstPrecise_PE#1=0
SystemC.m_MBurstSeq_PE#1[2:0]=%110
SystemC.m_MBurstSingleReq_PE#1=0
SystemC.m_MCmd_PE#1[2:0]=%000
SystemC.m_MDataLast_PE#1=0
SystemC.m_MDataThreadID_PE#1[9:0]=$000
SystemC.m_MDataValid_PE#1=0
SystemC.m_MData_PE#1[31:0]=$00000000
SystemC.m_MReqLast_PE#1=0
SystemC.m_MRespAccept_PE#1=1
SystemC.m_MThreadID_PE#1[9:0]=$000
SystemC.m_SCmdAccept_PE#1=1
SystemC.m_SDataAccept_PE#1=1
SystemC.m_SData_PE#1[31:0]=$00000000
SystemC.m_SResp_PE#1[1:0]=%00
SystemC.m_SThreadID_PE#1[9:0]=$000

2140ns: PE1 Starting burst write at (OCP Master signals) after task(1,1) finishes.
0 ps 2142200 ps 2146300 ps 2150400 ps

$00000000 $00000071 $00000000
$00000000 $0000000A $00000000

%110

%000 %001 %000

$000 $001 $000

$00000000 $000+ $000+ $000+ $000+ $000+ $000+ $000+ $000+ $000+ $00000000

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=1
SystemC.s_MAddr_PE#0[31:0]=$00000071
SystemC.s_MBurstLength_PE#0[31:0]=$0000000A
SystemC.s_MBurstPrecise_PE#0=1
SystemC.s_MBurstSeq_PE#0[2:0]=%110
SystemC.s_MBurstSingleReq_PE#0=1
SystemC.s_MCmd_PE#0[2:0]=%001
SystemC.s_MDataLast_PE#0=0
SystemC.s_MDataThreadID_PE#0[9:0]=$001
SystemC.s_MDataValid_PE#0=1
SystemC.s_MData_PE#0[31:0]=$00000000
SystemC.s_MReqLast_PE#0=1
SystemC.s_MRespAccept_PE#0=1
SystemC.s_MThreadID_PE#0[9:0]=$001
SystemC.s_SCmdAccept_PE#0=1
SystemC.s_SDataAccept_PE#0=1
SystemC.s_SData_PE#0[31:0]=$00000000
SystemC.s_SResp_PE#0[1:0]=%00
SystemC.s_SThreadID_PE#0[9:0]=$000

2141ns: PE0 Receives the burst write data from task(7,1)

Figure 10.7: Inter-task dependency, task(7,1)→task(8,1)

As it can be seen, all transactions are burst writes with a burst length equal to
10x32-bit data words. Further, the communication is based on single request burst
writes with data-handshake, which is due to the selected channel configuration.
Notice also the address fields encoding which reflects from which task the data are
transmitted. In fact, it is possible to see the group and subtask ID directly, due to
the selected task ID encoding, where the subtask ID is located in bit[3:0]. For an
example, in figure 10.8 the address (MAddr) is 0x1081h , indicating that it is data
coming from task(8,1).0x1000h equals the base address for PE1. See also the
configuration file.

10.2. Example 2: SoC communication topology exploration 71

0 ps 4722680 ps 4726780 ps 4730880 ps

$00000000 $00001081 $00000000
$00000000 $0000000A $00000000

%110

%000 %001 %000

$000 $001 $000

$00000000 $000+ $000+ $000+ $000+ $000+ $000+ $000+ $000+ $000+ $00000000

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=1
SystemC.m_MAddr_PE#0[31:0]=$00001081
SystemC.m_MBurstLength_PE#0[31:0]=$0000000A
SystemC.m_MBurstPrecise_PE#0=1
SystemC.m_MBurstSeq_PE#0[2:0]=%110
SystemC.m_MBurstSingleReq_PE#0=1
SystemC.m_MCmd_PE#0[2:0]=%001
SystemC.m_MDataLast_PE#0=0
SystemC.m_MDataThreadID_PE#0[9:0]=$001
SystemC.m_MDataValid_PE#0=1
SystemC.m_MData_PE#0[31:0]=$00000000
SystemC.m_MReqLast_PE#0=1
SystemC.m_MRespAccept_PE#0=1
SystemC.m_MThreadID_PE#0[9:0]=$001
SystemC.m_SCmdAccept_PE#0=1
SystemC.m_SDataAccept_PE#0=1
SystemC.m_SData_PE#0[31:0]=$00000000
SystemC.m_SResp_PE#0[1:0]=%00
SystemC.m_SThreadID_PE#0[9:0]=$000

4721ns: PE0 Starting burst write at (OCP Master signals) after task(8,1) finishes.
4723160 ps 4726800 ps 4730430 ps

$00000000 $00001081 $00000000
$00000000 $0000000A $00000000

%110

%000 %001 %000

$000 $001 $000

$00000000 $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $0000+ $00000000

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=1
SystemC.s_MAddr_PE#1[31:0]=$00001081
SystemC.s_MBurstLength_PE#1[31:0]=$0000000A
SystemC.s_MBurstPrecise_PE#1=1
SystemC.s_MBurstSeq_PE#1[2:0]=%110
SystemC.s_MBurstSingleReq_PE#1=1
SystemC.s_MCmd_PE#1[2:0]=%001
SystemC.s_MDataLast_PE#1=0
SystemC.s_MDataThreadID_PE#1[9:0]=$001
SystemC.s_MDataValid_PE#1=1
SystemC.s_MData_PE#1[31:0]=$00000000
SystemC.s_MReqLast_PE#1=1
SystemC.s_MRespAccept_PE#1=1
SystemC.s_MThreadID_PE#1[9:0]=$001
SystemC.s_SCmdAccept_PE#1=1
SystemC.s_SDataAccept_PE#1=1
SystemC.s_SData_PE#1[31:0]=$00000000
SystemC.s_SResp_PE#1[1:0]=%00
SystemC.s_SThreadID_PE#1[9:0]=$000

4722ns: PE1 Receives the burst write data from task(8,1)

Figure 10.8: Inter-task dependency, task(8,1)→task(9,1)

10.2 Example 2: SoC communication topology exploration

This example serves to demonstrate how the models can be used in a simulation
framework for exploring different SoC communication topologies, relative to an
initial design space consisting two applications and four abstract PE’s. The exam-
ple will also demonstrates the possibility to do abstraction level mixture in the SoC
communication interface, by using a combination of OCP2.0 TL0 and TL1. Focus
for the simulations will be on results showing:

• Task graph execution time and missed deadlines.

• SoC communication platform real-time state (link contention etc).

• SoC communication traces for inter-processor communication through a mixed
abstraction level SoC communication interface (TL0-TL1).

In conjunction to monitoring the real-time state of the SoC communication
model, it has been extended to print out relevant information for the allocator and
scheduler to the screen.

72 Chapter 10. Design space exploration experiments

The source code and configuration file for this example can be found on the
enclosed CD-ROM in the directory:/ARTS Model/builds/example2 .

10.2.1 The simulation framework

The simulation framework is shown in figure 10.9. It consists of four PE’s, where
PE0 and PE2 interfaces to the SoC communication platform using OCP2.0 TL1.
PE1 and PE3 interfaces to the SoC communication platform using OCP2.0 TL0.
The SoC communication platforms to explore consist of a bus, 1D and 2D mesh.
The example will also show how the choice of topology may affect the task schedul-
ing as well. In all simulation scenario’s the scheduling policy will be based on RM.
Further, the modeled clock period will be 1ns.

RTOS
model

SoC communication platform

OCP2.0
TL1

OCP2.0 TL1

OCP2.0 TL1

OCP2.0 TL1

OCP2.0 TL1

RTOS
model

Application Application

PE#0 PE#2

OCP2.0 TL0

OCP2.0 TL0

RTOS
model

Application

PE#1

OCP2.0 TL0

OCP2.0 TL0

RTOS
model

Application

PE#3

OCP2.0
TL0

0 1 2 3

0 1 2 3

0 1 2 3 0 1

2 3

0 1

2 3

bus 1D mesh 2D mesh

Figure 10.9: The system level model.

10.2.2 Application modeling

Two application models are being used in this example: The MP3 Decoder [23]
also used in the previous example and afictiveend-to-end task consisting of four
subtasks. In this example, the MP3 decoder task graph has been grouped into
six end-to-end tasks to support read transactions. The grouping does not alter the
task graph characteristics but is just another level of abstraction. The partitioning
of the MP3 decoder is similar to the one being used in example 1, except that

10.2. Example 2: SoC communication topology exploration 73

task(2,2) and task(3,2)1 are mapped to PE0 and PE1 respectively and associated
response data to the succeeding read request initiated by task(2,1) and task(3,1)2

respectively. Further, both task(5,2) and task(6,2)3 has been mapped to PE3 and
also associated with a response data. For all cases of inter-task dependency, the
data transfer size has been chosen to 10x32-bit data words.

The fictive application, modeled as an end-to-end task with four subtasks, runs
independently of the MP3 decoder. It is defined by group ID 7 and with task(7,1)
and task(7,3) mapped onto PE2 and task(7,2) and task(7,4) mapped onto PE3. The
end-to-end task will initiate a read from PE3 followed by a write to PE3 when the
response has been received. Characteristic for this end-to-end task is the large data
transfer sizes associated with inter-task dependencies as well as having relative
short period, compared to the MP3 decoder task graph (6 time smaller). The write
requests and response consists of 200x32-bit and 5000x32-bit data words respec-
tively. The data transfer sizes, relative to the period, is quite unrealistic but will
later shows as a good example for how large data transfer may affect the simulated
system performance relative to the selected SoC communication topology.

Figure 10.10 shows the two task graphs and their timing figures. Also note
that BCET = WCET. This has been chosen to remove the random timing jitter
to make it easier to compare the system performance, when using different SoC
communication topologies.

Task ID ET [ns] Data [32bit]

1,1

2,1

3,1

2,2

3,2

2,3

3,3

4,1

5,1

6,1

5,2

6,2

5,3

6,3

5,4

6,4

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

WR

RDRD

RDRD

WR

RESPRESP

RESPRESP

PE#1

PE#0

2,2

1,1

2,13,1

3,2

2,33,3

4,1

5,1 6,1

5,2 6,2

5,3 6,3

5,4 6,4

WR

PE#0

PE#3

45

20

20

1545

1545

595

595

2685

108

108

895

895

6087

6087

11200

11200

RD

RESP

WR

7,1

7,2

7,3

7,4

PE#2 PE#3

Task ID ET [ns]

7,1

7,2

7,3

7,4

10

500

500

10

dl [ns]

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

25000

dl [ns]

15000

15000

15000

15000

PE#3

PE#1

T [ns]

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

30000

Data [32bit]

5000

5000

50

0

T [ns]

10000

10000

10000

10000

Figure 10.10: MP3 Decoder task graph and fictive end-to-end task (partitioned).

1equal to task(4,1) and task (5,1) in example 1
2equal to task(2,1) and task (3,1) in example 1
3equal to task(11,1) and task(12,1) in example 1

74 Chapter 10. Design space exploration experiments

10.2.3 Bus topology simulation result

First simulation performed uses bus topology. This is done by setting themodule
declaration parameter,"soc allocator" equal to zero in the configuration file,
example2.task .

When running the simulation for 35000ns, the simulation result showed in
figure 10.11 is obtained. Most of the data relate to the state of the SoC com-
munication model, but it is also possible to see when task graph execution com-
pletes and missed subtask deadlines/end-to-end deadlines. The data related to the
SoC communication consists of a time stamp, an action state, a link contention
counter, transaction type, address or response data and finally the routing informa-
tion (posID), identifying the source and destination node ID.

 11 ns GRANT RD 0x00003071 posID=(2,3) # RD@Task(7,1)
 13 ns BUS RELEASED RD posID=(2,3)
 46 ns GRANT WR 0x00000011 posID=(1,0) # WR@Task(1,1)
 57 ns BUS RELEASED WR posID=(1,0)
 76 ns GRANT RD 0x00000021 posID=(1,0) # RD@Task(2,1)
 78 ns BUS RELEASED RD posID=(1,0)
 79 ns GRANT RD 0x00001031 posID=(0,1) # RD@Task(2,1)
 81 ns BUS RELEASED RD posID=(0,1)
 513 ns GRANT RESP 0x00000072 posID=(3,2) # Response@Task(7,2)
 1625 ns ***REFUSE*** 1 RESP 0x00000022 posID=(0,1) # Response@Task(2,2) REFUSED
 1626 ns ***REFUSE*** 2 RESP 0x00000032 posID=(1,0) # Response@Task(3,2) REFUSED
 5514 ns BUS RELEASED RESP posID=(3,2)
 5514 ns SCHD RELEASE RESP 0x00000022 posID=(0,1,1) # Response@Task(2,2)
 5525 ns BUS RELEASED RESP posID=(0,1)
 5525 ns SCHD RELEASE RESP 0x00000032 posID=(1,0,0) # Response@Task(3,2)
 5536 ns BUS RELEASED RESP posID=(1,0)
 6016 ns GRANT WR 0x00003073 posID=(2,3) # WR@Task(7,3)
 6067 ns BUS RELEASED WR posID=(2,3)

 6077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
 6132 ns GRANT WR 0x00001033 posID=(0,1) # WR@Task(3,3)
 6143 ns BUS RELEASED WR posID=(0,1)
 8829 ns GRANT WR 0x00000041 posID=(1,0) # WR@Task(4,1)
 8840 ns BUS RELEASED WR posID=(1,0)
 8947 ns GRANT RD 0x00003061 posID=(1,3) # RD@Task(6,1)
 8949 ns BUS RELEASED RD posID=(1,3)
 8950 ns GRANT RD 0x00003051 posID=(0,3) # RD@Task(5,1)
 8952 ns BUS RELEASED RD posID=(0,3)
 9844 ns GRANT RESP 0x00000062 posID=(3,1) # Response@Task(6,2)
 9855 ns BUS RELEASED RESP posID=(3,1)
10011 ns GRANT RD 0x00003071 posID=(2,3) # RD@Task(7,1)
10013 ns BUS RELEASED RD posID=(2,3)
10513 ns GRANT RESP 0x00000072 posID=(3,2) # Response@Task(7,2)
15514 ns BUS RELEASED RESP posID=(3,2)
16016 ns GRANT WR 0x00003073 posID=(2,3) # WR@Task(7,3)
16067 ns BUS RELEASED WR posID=(2,3)

16077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
16309 ns GRANT RESP 0x00000052 posID=(3,0) # Response@Task(5,2)
16320 ns BUS RELEASED RESP posID=(3,0)
20011 ns GRANT RD 0x00003071 posID=(2,3) # RD@Task(7,1)
20013 ns BUS RELEASED RD posID=(2,3)
20513 ns GRANT RESP 0x00000072 posID=(3,2) # Response@Task(7,2)
 25 us (!) Task(5,4) has missed its deadline
 25 us (!) Task(6,4) has missed its deadline
25514 ns BUS RELEASED RESP posID=(3,2)
26016 ns GRANT WR 0x00003073 posID=(2,3) # WR@Task(7,3)
26067 ns BUS RELEASED WR posID=(2,3)

26077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
30011 ns GRANT RD 0x00003071 posID=(2,3) # RD@Task(7,1)
30013 ns BUS RELEASED RD posID=(2,3)
30513 ns GRANT RESP 0x00000072 posID=(3,2) # Response@Task(7,2)

33608 ns Task graph 0 completed. Now preparing for a new cycle:
 Restoring relation matrix

Figure 10.11: Simulation result using simple bus topology. Simulation runtime:
35000ns. Comments have been added manually to make it more readable. Com-
ments follows #.

10.2. Example 2: SoC communication topology exploration 75

First observation is that the fictive end-to-end task graph manages to executes
three times, before the MP3 decoder task graph completes at 33608ns. The fictive
end-to-end task finishes execution at 6077ns, 16077ns and 26077ns correspond-
ing to the expected period of 10000ns. Further, it always meets the deadline.
However, the MP3 decoder task graph misses the deadline at 25000ns, during the
execution of the last two task. This is because the actual task graph execution has
been significantly delayed, due to bus contention caused by the large data trans-
fer associated with the fictive end-to-end task. Referring back to the timing figures
from figure 10.10, this should come as no surprise, since the response coming from
task(7,2) startsbeforethe responses coming from task(2,2) and task(3,2) (MP3 de-
coder). Thus the response from task(7,2) occupies the bus for 5000ns, causing the
responses asserted by task(2,2) and task(3,2) to be blocked. This blocking time
contributes to the delayed execution of the MP3 decoder task graph and eventually
the deadline to be missed.

From the SoC communication simulation data in figure 10.11, this is also what
can be observed: At 513ns the response from task(7,2) starts. At 1625ns and
1626ns task(2,2) and task(3,2) start the response but are refused to use bus. Instead
the response data get buffered in the SoC communication interface. At 5514ns the
response phase for task(7,2) has completed and the bus is granted to the buffered
responses coming from task(2,2) followed by the responses from task(3,2) after-
ward. A quick calculation shows that the overhead added to the execution time
for the MP3 decoder, due to bus contention, becomes approx. 5514ns-1625ns =
3889ns. However, remember from the previous example that the task graph execu-
tion time for the MP3 decoder was 22775ns. Assuming this to be about the same
for this example and taking into account the bus contention overhead, the expected
execution time should be approx. 3889ns + 22775ns = 26664ns. But this does
not comply very well with the actual execution time of 33608ns. A closer look in
the text based log fileandtask state VCD timing filereveals the root cause is due
to preemption of task(5,2) in PE3. For convenience, the sections of interests from
the log file and VCD file are shown in figure 10.12. Preemption occurs since:

• Task(7,2) becomes ready for execution at 10012ns, after PE3 has received
the read request from task(7,1). This happens during execution of task(5,2)
and is associated with the second cycle of fictive end-to-end task.

• The scheduling policy is based on RM (i.e. shortest period→highest priority)
and the period for task(5,2) is larger than the period for task(7,2); that is.
60000ns >10000ns).

Thus task(7,2) executes for 500ns and starts the response phase of 5000x32-bit
data words afterward, causing task(5,2) to be preempted for 5500ns. This can also
be seen indirectly from figure 10.11, considering the data for the time interval from
8840ns to 16320ns. The preemption due to bad scheduling in PE3 means that the
total overhead added to the MP3 decoder task graph execution becomes approx.
3889ns + 5500ns = 9389ns! Changing scheduling policy in PE3 to EDF will not

76 Chapter 10. Design space exploration experiments

remove the preemption overhead, since the deadline for the fictive end-to-end task
always will be smaller than the deadline for the MP3 decoder task graph. Thus
task(7,2) still has higher priority than task(5,2). However,offsettingthe execution
of the fictive end-to-end task with 2000ns removes the preemption overhead, due
to a more optimal scheduling. Here the MP3 decoder task graph execution time
reduces to 26686ns; almost equal to the expected execution time, including the
bus contention overhead. Still, it does not meet the deadline.

400 ps 9895900 ps 9961400 ps 10027 ns
0 2 0
0 1 2
0 1
1 3 2 3
2 0

Time
SystemC.E2E_Task7_1[7:0]=0
SystemC.E2E_Task7_2[7:0]=2
SystemC.E2E_Task7_4[7:0]=1
SystemC.MP3_Decoder_Task5_2[7:0]=3
SystemC.MP3_Decoder_Task6_2[7:0]=0
SystemC.clock=1

(A) Section from the task state VCD timing file

 .
 .
 10012 ns |OCP| PE3_TL0.IOdevice.slave: receiving BURST request.
 | S | Data handshake: yes
 | L | MCmd: RD, MAddr: 0x3071, MThreadID: 0x7
 | A | MBurstSeq: UNKN, MBurstLength: 5000, MBurstSingleReq: 1

 10012 ns PE#3: task(7,1) (external task finished) -> scheduler
 10012 ns synconizer: releases task(7,2)
 10012 ns PE#3: scheduler (preempt) -> task(5,2)
 10012 ns PE#3: scheduler (run) -> task(7,2)

 10012 ns |OCP| soc_comm.tl0_io_b.master: Request completed
 10512 ns PE#3: task(7,2) (response to NoC: task(7,3),addr=0x2072,dataUnits=5000)-> adaptor
 10512 ns PE#3: scheduler (resume) -> task(5,2)
 10512 ns PE#3: scheduler (preempt) -> task(5,2)
 10512 ns PE#3: scheduler (start NoC Response) -> task(IO)

 10512 ns |OCP| PE3_TL0.IOdevice.slave: Starting response phase.
 | S | SThreadID: 0x7, dataUnits: 5000
 .
 .

(B) Section from the ext based log file

Figure 10.12: Preemption of task(5,2) as seen in the task state VCD timing
file and the log file at 10012ns. Possible states shown in the VCD plot is
0=idle|1=ready|2=run|3=preempted. The preemption of task(5,2) occurringbefore
it actually starts executing is because it is being released by the scheduler when
task(6,2) finishes, but becomes preempted immediately afterward, due to the IO
task being launched in conjunction to the transmission of the response data from
task(6,2).

Conclusion

A simple bus topology, based on the first-come-first-served principle, can be con-
cluded not to be suitable in this example, due to the large data transfers associated
with the fictive end-to-end task. This caused the MP3 decoder execution to be sub-
stantially delayed and eventually to miss the deadline. The simulation also exposed
the scheduling in PE3 as being a potential problem, since it was found that under
certain conditions (indirectly related to the bus contention), task(5,2) from the MP3
decoder task graph could become preempted by task(7,2) for 5500ns, causing the
delayed MP3 decoder task graph execution time to increase even further. A solu-
tion to this was to offset the execution of the fictive end-to-end task with 2000ns.

Regarding the bus contention, it is to believe that introducing a more complex

10.2. Example 2: SoC communication topology exploration 77

bus, for an example supporting TDM based transfers, would solve missed dead-
line issues for the MP3 decoder task graph; especially because the data transfer,
associated with MP3 decoder task graph inter-task dependencies is relative small.

10.2.4 1D mesh topology simulation results

Next topology to explore is a 1D mesh. Changing to this topology is done by
setting themodule declaration parameter,"soc allocator" equal to1,4
in the configuration file,example2.task . First argument selects the topology
(mesh) while the second argument selects the span. See also section 12.6.1, page
146) regarding mesh layout.

Running the simulation for 25000ns yields the result showed in figure 10.14.
The data format from the SoC communication model is similar to what has been
described for figure 10.14, except that the routing information,posID also iden-
tifies the next target node position (middle value). Further, the link used/released
is identified byresID , where the first value identifies if it is aforward (1) or re-
turn (0) link. The next values identify the row and column in the associated mesh
database and indirectly tells which link it is in the mesh. See also section 12.6.2,
page 146. For convenience, figure 10.13 shows the mapping between the 1D mesh
databases andresID . For example, consider the SoC communication data in fig-
ure 10.14 at 11ns.posID indicates data transfer from node 2 to 3, while resID
indicates using the forward link between node 2 and 3.

R0 R1 R2 R30

0 1 2 3 4 5 6

R0 R1 R2 R30

0 1 2 3 4 5 6

Forward
 used when resID=(1,x,x)

Return
 used when resID=(0,x,x)

Figure 10.13: Mapping ofresID to forward and return mesh databases.

The simulation result in figure 10.14 shows that no deadlines are missed. The
fictive end-to-end task finishes execution at 6077ns and 16077ns, similar what was
seen when using a bus topology (figure 10.11). More interesting is it to see that the
MP3 decoder task graph now meets the deadline since no link contention occurs
at all. Going back to the selected partitioning shown in figure 10.10, it is obvious
that link contention is avoided, when using a 1D mesh topology, since the large
data transfers associated with the fictive end-to-end task only happen between PE2
and PE3. Thus it does not affect the communication between PE0 and PE1, which
was the case when using the bus topology. This is also what can be seen from

78 Chapter 10. Design space exploration experiments

 11 ns GRANT RD 0x00003071 posID=(2,3,3) resID=(1,0,5) # RD@Task(7,1), R2->R3 link
 13 ns LINK RELEASED RD posID=(2,3,3) resID=(1,0,5)
 46 ns GRANT WR 0x00000011 posID=(1,0,0) resID=(0,0,1) # WR@Task(1,1), R1->R0 link
 57 ns LINK RELEASED WR posID=(1,0,0) resID=(0,0,1)
 76 ns GRANT RD 0x00000021 posID=(1,0,0) resID=(0,0,1) # RD@Task(2,1), R1->R0 link
 78 ns LINK RELEASED RD posID=(1,0,0) resID=(0,0,1)
 79 ns GRANT RD 0x00001031 posID=(0,1,1) resID=(1,0,1) # RD@Task(3,1), R0->R1 link
 81 ns LINK RELEASED RD posID=(0,1,1) resID=(1,0,1)
 513 ns GRANT RESP 0x00000072 posID=(3,2,2) resID=(0,0,5) # Response@Task(7,2), R3->R2 link
 1625 ns GRANT RESP 0x00000022 posID=(0,1,1) resID=(1,0,1) # Response@Task(2,2), R0->R1 link
 1626 ns GRANT RESP 0x00000032 posID=(1,0,0) resID=(0,0,1) # Response@Task(3,2), R1->R0 link
 1636 ns LINK RELEASED RESP posID=(0,1,1) resID=(1,0,1)
 1637 ns LINK RELEASED RESP posID=(1,0,0) resID=(0,0,1)
 2240 ns GRANT WR 0x00001033 posID=(0,1,1) resID=(1,0,1) # WR@Task(3,3), R0->R1 link
 2251 ns LINK RELEASED WR posID=(0,1,1) resID=(1,0,1)
 4937 ns GRANT WR 0x00000041 posID=(1,0,0) resID=(0,0,1) # WR@Task(4,1), R1->R0 link
 4948 ns LINK RELEASED WR posID=(1,0,0) resID=(0,0,1)
 5055 ns GRANT RD 0x00003061 posID=(1,2,3) resID=(1,0,3) # RD@Task(6,1), R1->R2 link
 5057 ns LINK RELEASED RD posID=(1,2,3) resID=(1,0,3)
 5057 ns GRANT RD 0x00003061 posID=(1,3,3) resID=(1,0,5) # RD@Task(6,1), R2->R3 link
 5058 ns LINK RELEASED RD posID=(1,3,3) resID=(1,0,5)
 5058 ns GRANT RD 0x00003051 posID=(0,1,3) resID=(1,0,1) # RD@Task(5,1), R0->R1 link
 5060 ns LINK RELEASED RD posID=(0,1,3) resID=(1,0,1)
 5060 ns GRANT RD 0x00003051 posID=(0,2,3) resID=(1,0,3) # RD@Task(5,1), R1->R2 link
 5061 ns LINK RELEASED RD posID=(0,2,3) resID=(1,0,3)
 5061 ns GRANT RD 0x00003051 posID=(0,3,3) resID=(1,0,5) # RD@Task(5,1), R2->R3 link
 5062 ns LINK RELEASED RD posID=(0,3,3) resID=(1,0,5)
 5514 ns LINK RELEASED RESP posID=(3,2,2) resID=(0,0,5)
 6016 ns GRANT WR 0x00003073 posID=(2,3,3) resID=(1,0,5) # WR@Task(7,3), R2->R2 link
 6067 ns LINK RELEASED WR posID=(2,3,3) resID=(1,0,5)

 6077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
 6973 ns GRANT RESP 0x00000052 posID=(3,2,0) resID=(0,0,5) # Response@Task(5,2), link R3->R2
 6984 ns LINK RELEASED RESP posID=(3,2,0) resID=(0,0,5)
 6984 ns GRANT RESP 0x00000052 posID=(3,1,0) resID=(0,0,3) # Response@Task(5,2), link R2->R1
 6995 ns LINK RELEASED RESP posID=(3,1,0) resID=(0,0,3)
 6995 ns GRANT RESP 0x00000052 posID=(3,0,0) resID=(0,0,1) # Response@Task(5,2), link R1->R0
 7006 ns LINK RELEASED RESP posID=(3,0,0) resID=(0,0,1)
 7373 ns GRANT RESP 0x00000062 posID=(3,2,1) resID=(0,0,5) # Response@Task(6,2), link R3->R2
 7384 ns LINK RELEASED RESP posID=(3,2,1) resID=(0,0,5)
 7384 ns GRANT RESP 0x00000062 posID=(3,1,1) resID=(0,0,3) # Response@Task(6,2), link R2->R1
 7395 ns LINK RELEASED RESP posID=(3,1,1) resID=(0,0,3)
10011 ns GRANT RD 0x00003071 posID=(2,3,3) resID=(1,0,5) # RD@Task(7,1), link R2->R3
10013 ns LINK RELEASED RD posID=(2,3,3) resID=(1,0,5)
10513 ns GRANT RESP 0x00000072 posID=(3,2,2) resID=(0,0,5) # Response@Task(7,2), link R3->R2
15514 ns LINK RELEASED RESP posID=(3,2,2) resID=(0,0,5)
16016 ns GRANT WR 0x00003073 posID=(2,3,3) resID=(1,0,5) # WR@Task(7,3), link R3->R2
16067 ns LINK RELEASED WR posID=(2,3,3) resID=(1,0,5)

16077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
20011 ns GRANT RD 0x00003071 posID=(2,3,3) resID=(1,0,5) # RD@Task(7,1), link R2->R3
20013 ns LINK RELEASED RD posID=(2,3,3) resID=(1,0,5)
20513 ns GRANT RESP 0x00000072 posID=(3,2,2) resID=(0,0,5) # Response@Task(7,2), link R3->R2

24682 ns Task graph 0 completed. Now preparing for a new cycle:
 Restoring relation matrix

Figure 10.14: Simulation result using 1D mesh topology. Simulation runtime:
25000ns. Comments have been added manually to make it more readable. Com-
ments follows #.

the simulation results, where the link used for the response from task(7,2) is the
R3→R2 link (513ns), while the links used for the responses from task(2,2) and
task(3,2) is R0→R1 (1625ns) and R1→R0 (1626ns) respectively.

Another important issue to notice is the avoidance of link contention also does
that the potential scheduling problem in PE3 will not occur. This can be seen, since
the responses from task(5,2) and task(6,2) in PE3 starts at 6973ns and 7373ns
respectively, while the second execution cycle of task(7,2) starts at 10012ns. Thus
the release of task(7,2) does not cause preemption, since task(5,2) and task(6,2) has
already completed. In conjunction to this, the timing headroom is approx. 10012ns
- 7373ns = 2639ns.

10.2. Example 2: SoC communication topology exploration 79

Conclusion

The simulation using a 1D mesh NoC as SoC communication topology showed
that all deadlines were met and that no link contention occurred. Besides this, the
potential scheduling problem in PE3 did not occurred, due to the avoidance of the
link contention. Thus is can be concluded that the 1D mesh topology is to prefer
for this example.

10.2.5 2D mesh topology simulation results

The last SoC communication topology to explore is a 2D mesh. Changing to this
topology is done by setting themodule declaration parameter,"soc allocator"
equal to1,2 in the configuration file,example2.task . First argument selects
the topology (mesh) while the second argument selects the span. See also section
12.6.1, page 146) regarding mesh layout.

Running the simulation for 25000ns yields the simulation result showed in fig-
ure 10.16. The simulation result format is similar to figure 10.14. For convenience,
figure 10.13 shows the mapping between the 2D mesh databases andresID . For
example, consider the SoC communication data in figure 10.14 at 11ns.posID
indicates data transfer from node 2 to 3, while resID indicates using the forward
link between node 2 and 3.

R0 R1

0 1 2

Return
 used when resID=(0,x,x)

R2 R3

0

1

2

R0 R1

0 1 2

Forward
 used when resID=(1,x,x)

R2 R3

0

1

2

Figure 10.15: Mapping ofresID to forward and return mesh databases.

As it can be seen from the simulation result in figure 10.16, it is almost iden-
tical when using 1D mesh topology (figure 10.14): no missed deadlines, no link
contention and similar task graph execution times. This is also expected since the
2D mesh layout does not affect the communication between PE0-PE1 and PE2-PE
(where most of the communication occurs). Notice however the differences in the
link usage associated with read request from task(5,1) in PE0 and task (6,1) in PE1
and the associated responses from task(5,2) and task(6,2) in PE3.

Conclusion

Usage of a SoC communication topology based on a 2D mesh showed similar
system performance as when using a 1D mesh. For the particular application, task
mapping and no.of PE’s, a 2D mesh topology is not to prefer, since nothing is

80 Chapter 10. Design space exploration experiments

 11 ns GRANT RD 0x00003071 posID=(2,3,3) resID=(1,2,1) # RD@Task(7,1), R2->R3 link
 13 ns LINK RELEASED RD posID=(2,3,3) resID=(1,2,1)
 46 ns GRANT WR 0x00000011 posID=(1,0,0) resID=(0,0,1) # WR@Task(1,1), R1->R0 link
 57 ns LINK RELEASED WR posID=(1,0,0) resID=(0,0,1)
 76 ns GRANT RD 0x00000021 posID=(1,0,0) resID=(0,0,1) # RD@Task(2,1), R1->R0 link
 78 ns LINK RELEASED RD posID=(1,0,0) resID=(0,0,1)
 79 ns GRANT RD 0x00001031 posID=(0,1,1) resID=(1,0,1) # RD@Task(3,1), R0->R1 link
 81 ns LINK RELEASED RD posID=(0,1,1) resID=(1,0,1)
 513 ns GRANT RESP 0x00000072 posID=(3,2,2) resID=(0,2,1) # Response@Task(7,2), R3->R2 link
 1625 ns GRANT RESP 0x00000022 posID=(0,1,1) resID=(1,0,1) # Response@Task(2,2), R0->R1 link
 1626 ns GRANT RESP 0x00000032 posID=(1,0,0) resID=(0,0,1) # Response@Task(3,2), R1->R0 link
 1636 ns LINK RELEASED RESP posID=(0,1,1) resID=(1,0,1)
 1637 ns LINK RELEASED RESP posID=(1,0,0) resID=(0,0,1)
 2240 ns GRANT WR 0x00001033 posID=(0,1,1) resID=(1,0,1) # WR@Task(3,3), R0->R1 link
 2251 ns LINK RELEASED WR posID=(0,1,1) resID=(1,0,1)
 4937 ns GRANT WR 0x00000041 posID=(1,0,0) resID=(0,0,1) # WR@Task(4,1), R1->R0 link
 4948 ns LINK RELEASED WR posID=(1,0,0) resID=(0,0,1)
 5055 ns GRANT RD 0x00003061 posID=(1,3,3) resID=(1,1,2) # RD@Task(6,1), R1->R3 link
 5057 ns LINK RELEASED RD posID=(1,3,3) resID=(1,1,2)
 5058 ns GRANT RD 0x00003051 posID=(0,2,3) resID=(1,1,0) # RD@Task(5,1), R0->R2 link
 5060 ns LINK RELEASED RD posID=(0,2,3) resID=(1,1,0)
 5060 ns GRANT RD 0x00003051 posID=(0,3,3) resID=(1,2,1) # RD@Task(5,1), R2->R3 link
 5061 ns LINK RELEASED RD posID=(0,3,3) resID=(1,2,1)
 5514 ns LINK RELEASED RESP posID=(3,2,2) resID=(0,2,1)
 6016 ns GRANT WR 0x00003073 posID=(2,3,3) resID=(1,2,1) # WR@Task(7,3), R2->R3 link
 6067 ns LINK RELEASED WR posID=(2,3,3) resID=(1,2,1)

 6077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
 6973 ns GRANT RESP 0x00000052 posID=(3,1,0) resID=(0,1,2) # Response@Task(5,2), R3->R1 link
 6984 ns LINK RELEASED RESP posID=(3,1,0) resID=(0,1,2)
 6984 ns GRANT RESP 0x00000052 posID=(3,0,0) resID=(0,0,1) # Response@Task(5,2), R1->R0 link
 6995 ns LINK RELEASED RESP posID=(3,0,0) resID=(0,0,1)
 7373 ns GRANT RESP 0x00000062 posID=(3,1,1) resID=(0,1,2) # Response@Task(6,2), R3->R1 link
 7384 ns LINK RELEASED RESP posID=(3,1,1) resID=(0,1,2)
10011 ns GRANT RD 0x00003071 posID=(2,3,3) resID=(1,2,1) # RD@Task(7,1), R2->R3 link
10013 ns LINK RELEASED RD posID=(2,3,3) resID=(1,2,1)
10513 ns GRANT RESP 0x00000072 posID=(3,2,2) resID=(0,2,1) # Response@Task(7,2), R3->R2 link
15514 ns LINK RELEASED RESP posID=(3,2,2) resID=(0,2,1)
16016 ns GRANT WR 0x00003073 posID=(2,3,3) resID=(1,2,1) # WR@Task(7,3), R2->R3 link
16067 ns LINK RELEASED WR posID=(2,3,3) resID=(1,2,1)

16077 ns Task graph 1 completed. Now preparing for a new cycle:
 Restoring relation matrix
20011 ns GRANT RD 0x00003071 posID=(2,3,3) resID=(1,2,1) # RD@Task(7,1), R2->R3 link
20013 ns LINK RELEASED RD posID=(2,3,3) resID=(1,2,1)
20513 ns GRANT RESP 0x00000072 posID=(3,2,2) resID=(0,2,1) # Response@Task(7,2), R3->R2 link

24672 ns Task graph 0 completed. Now preparing for a new cycle:
 Restoring relation matrix

Figure 10.16: Simulation result using 2D mesh topology. Simulation runtime:
25000ns. Comments have been added manually to make it more readable. Com-
ments follows #.

gained from the increased bandwidth. Thus a 2D mesh is an over-dimensioned
solution, adding unnecessary production cost. However if more applications are to
be added later and/or the SoC communication traffic increases, the 2D mesh might
be the solution to prefer.

10.2.6 SoC communication interface TL mixture

This example also demonstrates the possibility of doing abstraction level mixture in
the SoC communication interface. Referring back to architectures shown in 10.9,
page 72. It can be seen PE0 and PE2 interface to the SoC communication platform
using TL1, while PE1 and PE3 use TL0.

As an example on the abstraction level mixture, figure 10.17 shows the com-
munication traces, related to the write request issued at 45ns from task(1,1) in PE1
to task(3,1) in PE0. The upper trace shows the TL0 trace from PE1 while the lower

10.2. Example 2: SoC communication topology exploration 81

trace is a section from the OCP TL1 monitor file4 of the OCP channel, connecting
to the OCP slave in PE3. The traces also show that it is a single request burst write,
using data handshake and with a burst length of 10.

42540 ps 47270 ps 51990 ps

$00000000 $00000011 $000000
$00000000 $0000000A $000000

%110

%000 %001 %000

$000 $001 $000

0 1 2 3 4 5 6 7 8 9 0

$000 $001 $000

$00000000
%00
$000

Time
SystemC.clk=1
SystemC.m_MAddr_PE#1[31:0]=$00000011
SystemC.m_MBurstLength_PE#1[31:0]=$0000000A
SystemC.m_MBurstPrecise_PE#1=1
SystemC.m_MBurstSeq_PE#1[2:0]=%110
SystemC.m_MBurstSingleReq_PE#1=1
SystemC.m_MCmd_PE#1[2:0]=%001
SystemC.m_MDataLast_PE#1=0
SystemC.m_MDataThreadID_PE#1[9:0]=$001
SystemC.m_MDataValid_PE#1=1
SystemC.m_MData_PE#1[31:0]=0
SystemC.m_MReqLast_PE#1=1
SystemC.m_MRespAccept_PE#1=1
SystemC.m_MThreadID_PE#1[9:0]=$001
SystemC.m_SCmdAccept_PE#1=1
SystemC.m_SDataAccept_PE#1=1
SystemC.m_SData_PE#1[31:0]=$00000000
SystemC.m_SResp_PE#1[1:0]=%00
SystemC.m_SThreadID_PE#1[9:0]=$000

(A) OCP2.0 TL0 trace from PE1 (OCP Master)

.

.
44 0 xxxx x xxxx x x x x 0 xxxxxxxx 0 x x 0 0 x xxxxxxxx 000
45 0 xxxx x xxxx x x x x 0 xxxxxxxx 0 x x 0 0 x xxxxxxxx 000
46 0 xxxx x xxxx x x x x 0 xxxxxxxx 0 x x 0 0 x xxxxxxxx 000
47 1 0011 1 000a 1 6 1 1 1 00000000 1 1 0 1 0 x xxxxxxxx 000
48 0 xxxx x xxxx x x x x 1 00000001 1 1 0 1 0 x xxxxxxxx 000
49 0 xxxx x xxxx x x x x 1 00000002 1 1 0 1 0 x xxxxxxxx 000
50 0 xxxx x xxxx x x x x 1 00000003 1 1 0 1 0 x xxxxxxxx 000
51 0 xxxx x xxxx x x x x 1 00000004 1 1 0 1 0 x xxxxxxxx 000
52 0 xxxx x xxxx x x x x 1 00000005 1 1 0 1 0 x xxxxxxxx 000
53 0 xxxx x xxxx x x x x 1 00000006 1 1 0 1 0 x xxxxxxxx 000
54 0 xxxx x xxxx x x x x 1 00000007 1 1 0 1 0 x xxxxxxxx 000
55 0 xxxx x xxxx x x x x 1 00000008 1 1 0 1 0 x xxxxxxxx 000
56 0 xxxx x xxxx x x x x 1 00000009 1 1 1 1 0 x xxxxxxxx 000
57 0 xxxx x xxxx x x x x 1 xxxxxxxx 0 x x 1 0 x xxxxxxxx 000

.

.

(B) Section from the OCP2.0 TL1 monitor file for PE0 (OCP slave)

Figure 10.17: OCP2.0 TL0 and TL1 SoC communication traces from PE1 and
PE0.

10.2.7 Summary

The aim with this example was to show how the extended abstract PE model and
the SoC communication platform models can be integrated and used to evaluate
different SoC communication topologies as well as doing abstraction level mixture
in the SoC communication interface. The system level model was based on four
PE’s and two applications running on top (modeled using the MP3 decoder task
graph and a fictive end-to-end task). Three topologies was considered: a simple bus
and a NoC based on a 1D and a 2D mesh. The bus topology showed to introduce
significant system performance degradation, due to bus contention. This eventually
causing the deadline for the MP3 decoder task graph to be missed. It also revealed
a potential scheduling problem i PE3. Simulation using a NoC based on a 1D
and 2D mesh showed identical performance, where no deadlines were missed and

4Graphical analysis requires the SOCCREATOR tool available from OCP-IP corporation.

82 Chapter 10. Design space exploration experiments

no link contention occurred. Assuming the SoC communication traffic will not
increase/change (i.e. if a new application was to be added later), the simulations
showed that a 1D mesh topology is to prefer for this example.

10.3 Example 3: Complex system performance behavior
analysis.

The last example demonstrates how the models can be used for performing a more
behavior based performance analysis of a complex system level model, by tweak-
ing different system parameters. The simulation framework consists of nine PE’s
and two applications running on top. All inter-processor communication is based
on OCP2.0 TL1.

In the example the system performance will be evaluated, relative to tweaking
the following parameters:

• RTOS scheduling policy.

• Data transfer size associated with inter-task dependency.

• SoC communication topology.

Task graph partitioning will be fixed in the different simulation scenarios, but
selected in an almost random fashion to introduce complex (or somewhat pseudo
random) SoC communication traffic patterns.

The source code and configuration file for this example can be found on the
enclosed CD-ROM in the directory:/ARTS Model/builds/example3 .

10.3.1 Application modeling

The two application models are based on the MP3 decoder and GSM decoder task
graphs [23]. To support read transaction, the MP3 decoder task has been grouped
into six end-to-end task, similar to the approach being used in example 2. See also
figure 10.10, page 73. Any SoC communication associated with GSM decoder
inter-task dependency will be modeled as write requests. Further, execution time
for all tasks has been changed to from a random to a fixed execution time equal to
WCET. This has been done to be able to compare the outcome from the different
simulation scenarios.

Figure 10.18 shows the timing figures and the task graph for the GSM decoder,
while figure 10.19 shows the task partitioning.

10.3. Example 3: Complex system performance behavior analysis. 83

1,1 8,1

9,1 2,1 7,131,1 28,1 25,1 22,1

32,1 29,1 26,1 23,1

33,1 30,1 27,1 24,1

19,1

11,1

12,1 3,1 10,1

14,1

15,1 4,1 13,1

17,1

18,1 5,1 16,1

20,1

34,1 20,1

6,1

Task ID ET [ns]
1,1 121
2,1 8
3,1 8
4,1 8
5,1 8
6,1 4
7,1 41
8,1 17
9,1 124

10,1 41
11,1 17
12,1 124
13,1 41
14,1 17
15,1 124
16,1 41
17,1 17
18,1 124
19,1 84
20,1 6
21,1 121
22,1 5
23,1 23
24,1 638
25,1 5
26,1 23
27,1 688
28,1 5
29,1 23
30,1 638
31,1 44
32,1 23
33,1 5893
34,1 655

dl [ns]
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000

T [ns]
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000

Figure 10.18: GSM decoder timing parameters and task graph.

PE0 PE1 PE2

PE3 PE4 PE5

PE6 PE7 PE8

MP3
1

MP3
2

MP3
3

MP3
4

MP3
5

MP3
6

MP3
7

MP3
8

MP3
9

MP3
10

MP3
11

MP3
12

MP3
13

MP3
14

MP3
15

MP3
16

GSM
0

GSM
1

GSM
2

GSM
3

GSM
4

GSM
5

GSM
6

GSM
7

GSM
8

GSM
9

GSM
10

GSM
11

GSM
12

GSM
13

GSM
14

GSM
15

GSM
16

GSM
17

GSM
18

GSM
19

GSM
20

GSM
21

GSM
22

GSM
23

GSM
24

GSM
25

GSM
26

GSM
27

GSM
28

GSM
29

GSM
30

GSM
31

GSM
32

GSM
33

Figure 10.19: MP3 and GSM decoder task graph partitioning.

84 Chapter 10. Design space exploration experiments

10.3.2 Simulation results

Simulations scenarios were done using a combination of the following conditions:

• Common inter-task dependency data transfer size: 10,20,50,100 x 32bit.

• RTOS scheduling policy: RM and EDF.

• SoC communication topology: bus, 1D mesh and 2D mesh.

Since the period of the GSM and MP3 decoder applications are 30000ns and
60000ns respectively, the simulation run time is selected to 60000ns. Using longer
simulation run time will not provide any further useful information, since the ap-
plications are not mutual aperiodically.

The collected data for each simulation is the SoC communication contention
count and the MP3 and GSM decoder task graph execution times. The results are
summarized in table 10.20, 10.21 and 10.22.

10x32-bit 20x32-bit 50x32-bit 100x32-bit
RM EDF RM EDF RM EDF RM EDF

Bus 81 75 86 82 86 85 86 87

1D mesh 64 62 72 69 80 78 90 83

2D mesh 25 23 22 21 27 25 28 27

Figure 10.20: SoC communication refuse count.

10x32-bit 20x32-bit 50x32-bit 100x32-bit
RM EDF RM EDF RM EDF RM EDF

Bus 32833 31807 33373 32257 34107 33606 36607 35947

1D mesh 31988 31692 32333 31987 33454 32857 40605 34307

2D mesh 32773 31768 33171 32055 34346 33061 36387 34852

Figure 10.21: MP3 task graph execution time [ns].

10x32-bit 20x32-bit 50x32-bit 100x32-bit
RM EDF RM EDF RM EDF RM EDF

Bus 8528
8540

8283
9929

9001
8976

8756
10502

10890
10784

10816
11228

13090
12884

13166
15108

1D mesh 9202
9202

8313
10653

9551
9551

8552
11179

10653
10652

9277
12762

10605
10605

10473
13919

2D mesh 8477
8477

8232
9915

8760
8760

8454
10312

9310
9310

9042
11647

10428
10428

9942
13889

Figure 10.22: GSM task graph execution times for first and second execution cycle
[ns].

10.3. Example 3: Complex system performance behavior analysis. 85

When running the different simulations it was found that the MP3 decoder
task graph was not able to meet the deadline. This was also to expect, due to the
selected partitioning and the fact that it has a tight deadline (25000n), relative to the
expected execution time (approx. 22500ns). For the GSM decoder task graph the
deadline was always met. But also this was expected, since the deadline (20000ns)
is not so tight, relative to the expected execution time (approx. 10000ns).

From the tables the following general trends can be observed.

• Link contention as well as execution times increase as the data transfer size
increases.

• Link contention reduces when moving from bus topology to 1D mesh and
finally 2D mesh.

• Second execution cycle of the GSM decoder task graph increases when using
EDF scheduling (since pending MP3 decoder tasks will have higher priority,
because the tasks are closer to their deadlines that the GSM decoder tasks).

These results are expected. However, an interesting observation is the EDF
scheduling in general introduces better system performance than RM scheduling,
with respect to shorter execution times and reduced link contention.

Conclusion

This example showed how the models can be used for a behavior based perfor-
mance analysis of a more complex simulation framework, consisting of nine PE’s
and two applications running on top. By selecting different RTOS scheduling poli-
cies, SoC communication topologies and data transfer sizes, associated with inter-
task dependencies, it was possible to observe how the system performed, relative
to the selected task partitioning and with respect to execution times and link con-
tentions. The simulations showed a general better system performance using EDF
scheduling policy compared to RM scheduling policy.

Chapter 11

Implementation: Abstract PE
model

This chapter presents the implementation specific details of the different modules,
forming the extended abstract PE model. It ishighly recommended to use the
source code for reference, when reading this chapter. The source code can be
found on the enclosed CD-ROM and may be used as reference. Please consult the
README file for a directory contents description.

11.1 Abstract PE model modifications

The aim has been to avoid modifying the original abstract PE model as much as
possible, to keep the simplicity and modularity of the model. Thus new exten-
sions like the IO task, parser module, performance monitor etc. must be able to be
added/removed to the framework as desired.

The new model is not backward compatible. Thus modules from the original
model cannot be used. However, simulation frameworks (e.g. a single abstract PE
or the abstract MPSoC NoC model [6]) with a behavior similar to the originals,
can be constructed using the new modules. The lack of backward compatibility
is mostly due to a change in the link model, with respect to message passing, but
also due to the introduction of the global synchronization database (dependency
controller module), required by the new synchronizer to support periodical task
graph execution. However these changes can be considered as improvement to the
original model.

11.1.1 Communication link

To reduce simulation time, thesc link mpcommunication data-type, has been
changes from struct messages (message type) to pointersto struct messages
(message type*). Investigations have shown a speed improvement of 10...20%
using this approach. See appendix B, page 165 for more information.

87

88 Chapter 11. Implementation: Abstract PE model

Since the communication is based on producer/consumer style, the approach
has been create the message in the producer, usingnew operator and delete the
message in the target consumer module, usingdelete operator, when it has been
processed. In some situations, a message might be reused and send back again
to the initiator module, to avoid creating a new message (further performance im-
provement). The two approaches are illustrated in figure 11.1A and 11.1B respec-
tively.

11.1.2 High-level message struct extension

Extra fields have been added to the message struct (message type) to control
the IO task. These fields define for an example what action to be performed by the
IO task, the data transfer size etc. It must be emphasized that these extensions are
“invisible” to the RTOS modules (synchronizer, resource allocator, scheduler), in
the sense that the modules does not access/uses these fields at all. Table 11.1 gives
a summary of the field extension. For reference, the original struct message can be
found in table 5.1 in section 5.4.

Type Name Description

unsigned int initiatorTaskID The ID of the task issuing an inter-processor
communication event. †

unsigned int threadID A thread ID associated with the inter-
processor communication.

unsigned int type Identifies the type of action to perform by the
IO task (e.g.WRfor write request). See also
section 11.5, page 108.

unsigned int dataUnits Data transfer size for the inter-processor
communication event.

vector<soc commnfo type>* soc Pointer to a vector containing struct ob-
jects with address information of the target
PE’s and the ID of the external tasks having
data succeeding dependencies with the task
initiating the inter-processor communication
event. See also section 11.1.4, page 92.†

† Only applicable when a local task initiates an inter-processor communication event.

Table 11.1: High-level message struct extensions.

The exact functionality of the different fields will be described in section 11.5,
covering the implementation of the IO task.

11.1.3 RTOS modules

The RTOS modules are the synchronizer, resource allocator and scheduler. In gen-
eral, only few changes have been done in these module. Common for all mod-

11.1. Abstract PE model modifications 89

Producer (master)

sc_link_mp

sc_outmaster<message_type*> out

Consumer (slave)
sc_inslave<message_type*> in

// create message
message_type* p
p = new message_type
 .
 .
out = p

// process message
 .
 .
 .
delete in

Producer (master)
sc_outmaster<message_type*> out

Consumer (slave)
sc_inslave<message_type*> in

// create message
message_type* p
p = new message_type
 .
 .
out = p

// process message
 .
 .
 .
delete in

Consumer (slave)
sc_inslave<message_type*> in

// process message
 .
 .
 .
delete in

Producer (master)
sc_outmaster<message_type*> out

// resuse message
message_type* p
p = in
 .
 .
out = p

Module A Module B

Consumer (slave)
sc_inslave<message_type*> in

Producer (master)
sc_outmaster<message_type*> out

Module A Module B

(A) Message creation/deletion flow

(B) Message creation/deletion flow with reuse

sc_link_mp

sc_link_mp

sc_link_mp

Figure 11.1: Message creation/deletion flow.

ule is the change in the communication link to manage the new approach using
pointers to messages. The main change has been done in the synchronizer module
to support communication with the dependency controller module and to support
release of the IO task, when a task with inter-task dependencies requests for an
inter-processor communication event.

90 Chapter 11. Implementation: Abstract PE model

A general bug fix: memory leakage

All original modules used dynamic memory allocation when creating communica-
tion link messages. This was done using thenew operator. However, no memory
clean-up, usingdelete operator, was performed after a message was asserted
onto the communication link. Thus very long simulations could eventually cause
an out-of-memory situation, since all previous messages remained intact in the
memory.

EDF scheduler

Small errors were found in the EDF scheduler. One issue was related to an inverted
priority handling, which caused the highest priority to be assigned to a task with
the largest deadline. The error was due to an incorrect comparisonoperator
declaration of< and≤ (declared inmessage type struct), causing incorrect
sorting of the task priority queue, implemented using avector list.

Another issue was the lack of support for messages coming from the resource
allocator. Thus a running task, requesting an already occupied resource would not
be preempted, since the scheduler did not responded to theREFUSE-message from
the resource allocator.

The above issues have been fixed in the new EDF scheduler module.

RM scheduler

The RM scheduler originally used apriority queue for the task queue. How-
ever, the changed comparisonoperator -declaration of< and≤, to fix the EDF
scheduler issues, caused inverted priority sorting, when usingpriority queue .
To fix this issue, avector list is being used in the new RM scheduler module in-
stead1.

DS Synchronizer

In the synchronizer module, the local dependency database (relations) and as-
sociated management methods have been replaced with calls to methods in the de-
pendency controller module, which manages the global synchronization database.
Accessing the methods are done through a pointer to the object, provided to the
constructor of the synchronizer. In conjunction to this, a newlocal task ID list
(taskID list) has been implemented in the synchronizer, containing theen-
codedtask ID2 of the local tasks, assigned to a PE. The list is avector object and
is being initialized, during the construction of the PE module, by calling the new
method,push taskID whenever a new task object is created in the PE module.
Argument to the method is the encoded task ID. The list is being used in context

1Using priority queue in the EDF scheduler is not possible, due to the priority updating
approach.

2see section 6.4.1, page 35

11.1. Abstract PE model modifications 91

with dependency controller method calls, to ensure thatonlyentries associated with
the local tasks are considered/affect when accessing/modifying the global depen-
dency database.

The dependency controller methods called arefinished and mask. The
finish method is called when a task (local or global) finishes execution. This is
managed in thesynchronize method. Arguments to thefinish method are
the finished task ID and the local task ID list. Providing the local task ID list as
argument ensures that only the dependency database entries, associated with local
tasks will be cleared. Themask method is called incheck pending task queue
when the synchronizer checks if the dependencies for a particular task, located in
the pending task list, has been resolved. The method returns false, if all dependen-
cies has been resolved. Otherwise true. Argument to the method is the encoded
task ID.

The modifications done in the synchronizer to support release of the IO task are
very simply. Whenever a local task, with preceding inter-task dependency, com-
pletes execution, it sends aSOCTRANSFERmessage to the synchronizer, instead
of a FINISHED message. This causes the synchronizer to perform the following
actions:

1. The global dependency database is updated by calling thefinish method,
with the encoded task ID as argument. The pending task list isnot checked
afterward, since the IO task is to be released.

2. The message is changed to aFINISHED message (by altering thecomm-
field in the message) and then forwarded to the scheduler.

3. Immediately afterward aduplicatedversion of the initialSOCTRANSFER
message is changed to aREADYmessage with the subtask ID (tnum now
being equal to the IO task (defined byIOTASK ID). Also, the period (tper
and deadline (tdl) is changed to 1 to ensure the IO task has the highest
priority. Then the message is forwarded to the scheduler.

No other actions are required by the synchronizer, since theSOCTRANSFER
message contains all information required for the IO task to start an inter-processor
communication event. See also table 11.1. This information comes from the task
initiating this.

For debug purpose a clocked thread process,check task running has been
implemented, used for monitoring the number of tasks running. If more than one
task is running, the process terminates the simulation and asserts a UI notification
error. At the rising edge of the clock signal, the process evaluates the variable,
task running . The variable serves as a counter and depends on thestate mes-
sages, issued by the tasks. A state message will be issued whenever a task starts

92 Chapter 11. Implementation: Abstract PE model

(run/resume) or stops (finish/preempt) execution, causing the counter to be incre-
mented or decremented respectively. The process and transmission of state mes-
sages, from the tasks, can be excluded by setting the conditional compiler flag,
DB CHECKTASK RUNNINGto false, before building the framework. Doing so

will also reduce simulation time.

Some UI message reporting, for monitoring purpose, was also done by the synchro-
nizer, whenever a pending subtask was released for execution or when a subtask
was pushed onto the pending task queue. The new synchronizer now supports log-
ging to a file and disabling/enabling of UI message logging to screen. In case of file
logging, a pointer to anofstream object must be provided to the constructor of
the module. Disabling/enabling of logging to screen is controlled using a boolean,
also provided the constructor.

11.1.4 Periodic task

The behavior of the new periodic task module is very similar to the original, with
some extra functionality added on top. These are:

• Task self blocking.

• Dynamic resource requirement assignment.

• Support for inter-processor communication requesting and configuration.

Task self blocking

Task self blocking enabling/disabling is controlled by the boolean variable,
blocking enable . Default value, set in the module constructor is false, indi-
cating blocking disabled. Thus the task behaves as default as the original task mod-
ule. Enabling blocking is done by calling the task method,set blocking flag ,
with true as argument. This should normally be done before simulation starts.
However, it is possible to disable/enable the blocking, during simulation, if it for
some reason is needed (not done in this framework).

If blocking has been enabled, the actual state-of-blocking is controlled by the
boolean variable,blocking . This variable is evaluated and set in the idle-state.
If blocking is false (the default value, set in the constructor), the task is not
blocked and it may issue aREADYmessage whenever the period watchdog timer
has expired. Simultaneously as theREADYmessage is issued, theblocking vari-
able will be set to true, indicating blocking. Thus when execution completes and
the task goes back to idle-state, it remains in this state, until it becomes unblocked
again and the period watchdog timer has expired. Unblocking a task is done by
calling the task method,unblock . This clears theblocking variable.

For convenience the state machine for the new task module is shown in fig-
ure11.2, even though it is very similar to the original, shown in 5.3, page 23. By

11.1. Abstract PE model modifications 93

!run

readyidle

running preempted

run

!blocking &
Cperiod == 0

Cperiod > 0 | blocking

Crunning == 0

preempt

resume

!resume!preempt &
Crunning > 0

Figure 11.2: State machine for the new periodic task model.

comparing the figures, it can be seen the only change relates to the condition re-
quired for going from idle to ready state.

Dynamic resource requirement assignment

The new support for dynamic resource requirement assignment is based on the ap-
proach of having a vector,resource list holdingresource requirement struct
objects, dynamically created and appended to the list. A resource requirement
struct object (resource req info type) contains the resource requirement
information (RRT, CSL and resource ID) and the watchdog timers for RRT and
CSL. The struct object is shown in 11.2. At each clock cycle, in the running-
state, the resource list scanned and the watchdog timers in the different objects are
checked and updated. If the RRT or CSL watchdog timer has expired, in a cer-
tain resource request object, a correspondingREQUESTor RELEASEmessage is
issued to the resource allocator respectively.

Assigning a new resource requirement is done by calling the task method,
new resource requirement , with resource ID, RRT and CSL as arguments.
The method creates a new resource requirement object and push this onto the vec-
tor, resource list . Assigning resources must be done before the simulation
starts.

Inter-processor communication requesting and configuration

A task having one or more preceding inter-task dependencies must be configured
to generate aSOCTRANSFERmessage to the synchronizer when execution com-
pletes (causing the synchronizer to release the IO task afterward). The message
is required to contain all relevant information, required by the IO task, to start an

94 Chapter 11. Implementation: Abstract PE model

Type Name Description

unsigned int ID Resource ID.
unsigned int RRT Resource request time.
unsigned int CSL Critical section length.
unsigned int RRTtimer Serves as a watchdog timer for RRT.
unsigned int CSL timer Serves as a watchdog timer for CSL.

Table 11.2: Resource requirement struct,resource req info type .

inter-processor communication event. This includes addresses for the target PE’s,
transfer type, data transfer size and thread ID. See also table 11.1 on page 88.

Transfer type, data transfer size and thread ID must always be provided to the
constructor of the task module. They are kept in the variables,soc transfer type ,
dataUnits andthreadID respectively and are to be included in the

SOCTRANSFERmessage. The new task module also keeps a vector,soc contain-
ing struct objects (soc commnfo type) with information about the addresses of
the target PE’s as well as the encoded task ID of non-local tasks, to which it has
preceding inter-task dependency to. The struct object is shown in table 11.3.

Type Name Description

unsigned int subtaskID The unique subtask ID.
unsigned int addrLO Lower SoC communication address for the target PE.
unsigned int addrHI Upper SoC communication address for the target PE

Table 11.3: SoC communication struct object,soc commnfo type .

Pushing information on to the list is done by calling the method,

push soc commnfo with the encoded non-local task ID and the low and high
address of the target PE as arguments. This must be done before the simulation
starts and is in this framework, managed by the task configuration method in the
PE module. See also section 11.2, page 95.

Figure 11.3 shows an example of the contents of the vector,soc after con-
figuration of task(1,1) having inter-task dependencies to task(2,1), task(3,1) and
task(4,1).

Controlling if the task should issue aFINISHED of SOCTRANSFERmessage
is controlled by the state of the boolean variable,soc transfer enable . If a
task has inter-task dependencies as described above the boolean must be set to
true, causing the message to be aSOCTRANSFER. This is done by calling the
method,set soc transfer with true as argument. When a subtask issues a
SOCTRANSFERmessage, it includes a pointer to thesoc -list as well as the other
information, shown in table 11.1.

11.2. PE construction module 95

1,1

PE#A

2,1

PE#B

3,1

PE#C

4,1

PE#D

0x1000:0x1ffc

0x2000:0x2ffc

0x3000:0x3ffc

subtask ID = 0x21 (2,1)
addrLO = 0x1000
addrHI = 0x1ffc
subtask ID = 0x31 (3,1)
addrLO = 0x2000
addrHI = 0x2ffc
subtask ID = 0x41 (4,1)
addrLO = 0x3000
addrHI = 0x3ffc

soc

The contents of soc after
configuration of task(1,1)

Figure 11.3: Example of the contents ofsoc -vector after configuration.

11.1.5 Monitor module

The monitor module, used for monitoring the real-time state of a PE, has been
changed to support message logging to a file as well as disabling/enabling of log-
ging to screen. A pointer to anofstream object must be provided to the con-
structor of the module, in case of file logging. Disabling/enabling of logging to
screen is controlled using a boolean, also provided to the constructor.

11.2 PE construction module

The PE construction module connects the RTOS modules, the periodic tasks, the
IO task and IO device modules, into a structural forming the extended abstract
PE model. Selection of RTOS modules and assignment of tasks is done dynami-
cally, based on the configuration file declarations. The architecture of the module
is shown in figure 11.4. See also figure 7.1, page 37 showing an example of a
complete simulation framework, with multiple PE modules instantiated. Dotted
lines indicate pointers to external objects, provided during module construction.
For simplicity the monitor module as well as a pointer to an externalofstream
object (for message monitoring logging to file) have been left out from figure 11.4.

A PE construction module is available for OCP2.0 TL0 and TL1. These are
defined by the classesPE TL0 andPE TL1 respectively. Whenever a new abstract
PE model is to be instantiated, these are the modules to use. The simplified UML
class diagram for the abstract OCP2.0 TL0/TL1 PE module is shown in figure 11.5.

11.2.1 Module construction

The module construction can be divided into three steps:

1. Module architecture construction. RTOS, IO device and IO task modules

96 Chapter 11. Implementation: Abstract PE model

Synchronizer

Resource
Allocator

Scheduler

IO1 i. . .

Master

OCP IO device

Slave

PE

O
C

P
ch

an
ne

l

O
C

P
ch

an
ne

l

Task
configuration

method

Performance
monitor

object pointer

Dependency
controller

object pointer

Parser
object
pointer

Figure 11.4: Architecture of the abstract PE module.

are created and connected. The selected RTOS modules depends on the pro-
tocol declarations done in the configuration file.

2. Dynamic task creation. Periodic task modules are created dynamically,
based on the selected task partitioning.

3. Inter-task dependency configuration. Any created tasks having preceding
inter-task dependency are configured to issue aSOCTRANSFERmessage,
when execution completes.

Step 1 and 2 is done in the module constructor, while step 3 is done by calling
the methodconfigure tasks , after module construction. Step 1, 2 and 3 uses
the module, task and dependency database declaration information, available from
the parser, respectively. See also section 8.2.1, page 46.

Module architecture construction

The different modules, describing the architecture, are created and connected in
the constructor of the PE module. The required arguments to the module construc-
tor is the SystemC module name, the assigned PE ID, a boolean controlling dis-
abling/enabling of UI monitoring logging to screen, and pointers to the dependency
controller, performance monitor, log file and parser objects. The modules selected
for construction of the RTOS will depend on the protocol declarations done in the
configuration file. At first themodule declaration for this PE is fetched by calling
the parser methodmodule search , with "peID" as parameter name and the
ID of the PE as parameter value. When a module declaration, containing these

11.2. PE construction module 97

PE_<type>

Synchronizer

Resource_Allocator

RM_Scheduler

EDF_Scheduler

Monitor

ioTask

<type>_IO

PerTask*

1

1

1

1

1

1

1

Router
1

<type>_Master
1

<type>_Slave
1

Relation_controlParser Performance_monitorofstream

Figure 11.5: Simplified UML class diagram for the abstract PE module.<type>
identifies if it is being a TL0 or TL1 PE module, where<type> =[TL0|TL1].

parameters, has been found, the method returns a pointer to a vector containing
the module declarations. This vector is analyzed and the declarations for the syn-
chronizer, resource allocator and scheduler is extracted and then used for selecting
which RTOS modules to create and connect. Besides this, the message monitoring
enable/disable flag is fetched from the module declaration and evaluated. Monitor-
ing disabled causes the monitor message logging, to screen and log file, to disabled
in all modules doing this3.

If no module declaration exists for this PE or if there is an illegal or missing
declarations, an error message will be asserted.

During module creation, the different constructor arguments are forwarded to
modules as required. For an example, the pointer to the dependency controller is
required by the synchronizer constructor.

Also created is the IO task and device module. Further, the assigned SoC com-
munication address range for the PE is provided to the IO task. This is done by
fetching the address range from the parser by calling the parser methodget address 4

3These are the monitor, synchronizer, IO task, IO device and periodic task modules
4This is a macro method in the parser. The same information could also have been obtained from

98 Chapter 11. Implementation: Abstract PE model

with the PE ID as argument, followed by a call to IO task method,
set address range with the returned address range as argument. If no address
range has been assigned to the PE, an error message will be asserted.

Dynamic task creation

Periodic task objects are created dynamically, depending on the task declaration
and partitioning, specified in the configuration file. This procedure follows, when
the other modules have been created and connected. The task declaration list,
available from the parser, is scanned and whenever a task has been assigned to
current PE ID a new periodic task object is being created and connected. Get-
ting an entry in the task declaration list is done by calling the parser method
get task from list with an index as argument. The method returns a pointer
to struct, containing the task declaration (e.g. target PE ID, best-case/worse-case
execution time, deadline etc.).

Each time a new periodic task object has been created, a pointer to the object is
pushed onto the local task pointer vector,local task list . The pointers are
being used, when configuring the tasks and when deleting the task objects in the
module destructor. A pointer is also being provided to the dependency controller,
by calling the methodpush back task ptr with the pointer as argument. The
dependency controller uses this pointer to access a task method for unblocking a
blocked task (see also section 11.7, page 128). Finally, the encoded task ID5 is
stored in a local task ID vector,taskID and provided to the synchronizer module,
by calling the method,push taskID with the task ID as argument. The local
task ID list is being used during task configuration, while the synchronizer uses the
ID when accessing the global dependency database (see also section 11.1.3, page
90).

Inter-task dependency configuration

After a PE module has been constructed, any assigned tasks having preceding inter-
task dependency must be configured to generated aSOCTRANSFERmessage,
when execution completes. This is required, since the default completion mes-
sage isFINISHED . During inter-task dependency configuration, a task is being
provided with information about the ID of all the non-local tasks (to which it has
preceding dependencies to) as well as the address ranges of the PE’s to which these
have been mapped to. This information will be included in theSOCTRANSFER
message.

Inter-task dependency configuration is initiated by calling the PE module method,
configure tasks with a pointer to the parser module as argument. An al-
gorithm scans the dependency database, available from the parser, and checks if
any of the local tasks have preceding inter-task dependency. This is simply done

the module declaration, but requires some more computation steps
5see section 6.4.1, page 35

11.3. Parser 99

by scanning all rows using a fixed column ID6, which maps to a local task ID,
fetched from the local task ID list,taskID . Getting an entry from the dependency
database is done by calling the parser method,get relation with a row and
column index as argument. It returns true or false, were true indicates a marked
entry (dependency). Whenever an entry is marked, the algorithm checks if the
row ID is associated with one of the other local task ID’s from the task ID list,
taskID . If so, the dependency is local (intra-dependency) and nothing is done.
Otherwise an inter-task dependency exists and the task declaration information,
associated with the non-local task ID, is found by scanning the task declaration list
available from the parser module. An entry from the list is fetched by calling the
parser method,get task from list with an index as argument. The method
returns a struct containing the task declaration. When the task declaration for the
non-local task has been found, the PE ID, to which the task has been mapped to, is
extracted and the associated address information is obtained by calling the parser
methodget address , with the PE ID as argument. Afterward the pointer to the
task to configure is found in the local task pointer list,local task list and the
address information and the non-local task ID is forwarded to the task by calling
the task method,push soc commnfo , with this information as argument. Fi-
nally, the subtask is configured to issue theSOCTRANSFERmessage, by calling
the method,set soc transfer with true as argument.

The algorithm completes execution, when all local tasks have been checked for
inter-task dependency.

11.3 Parser

The parser module supports parsing of a very simple script language, used for
describing PE module behavior, task declarations and dependencies etc. It accepts
a configuration file as input, parses this and provides access to the different declared
data, through a dedicated group of public methods. For a general description of the
syntax form, and the way it is being used in this framework, please consult chapter
8, page 45. Currently seven declaration types are supported.

11.3.1 Parsing methodology

The simplicity of the syntax has also lead to a relative simple implementation of
the module. The actual parsing methodology isevent basedin the sense that the
configuration file is scanned char by char and processed “on-the-fly”. That is, data
declarations are stored in databases, as they are being detected during scanning.
The database selection is relative to the type of declaration.

6See also section 5.1.1, page 24 for a description of the dependency database.

100 Chapter 11. Implementation: Abstract PE model

11.3.2 Error checking

The parser implements two types of error checking: (1) a lexical grammar and
syntax check and (2) a declaration post check. The lexical grammar check is per-
formed during the scanning, as a natural consequence of the event based parsing. If
an unknown or illegal declaration is detected, the parsing terminates with an associ-
ated error message. The declaration post check follows a successful scanning; that
is when all declarations have been successfully stored in the different databases.
The post check consists of checking some of the declarations up against some pre-
defined constrains. An example is the checking of SoC communication address
overlap between two PE’s. The different types of post check will be described
later.

11.3.3 Parsing flow

The parsing flow is shown in figure 11.6. At first a parser object must be cre-
ated. Provided arguments to the constructor are the expected number of arguments
associated with a task (arg1) and resource requirement (arg2) declaration re-
spectively. The figures are being used for reference, during the syntax check.

Parsing starts by calling the method,start parsing with the configuration
filename as argument. This starts the configuration file scanning followed by the
declaration post check and processing. If any error occurs, the parsing terminates
with an error message andstart parsing returns false. If parsing is successful
it returns true, and afterward the different databases, containing the declaration
data, can be accessed through different public method.

11.3.4 Configuration file scanning

Configuration file read approach

Reading the configuration file is done by fetching one char at a time. Fetching
a char is done by calling the private method,nextch , which returns the next
char from the file. The char is stored in the private variable,ch always containing
the current char and accessible in all private methods. For multi-char declarations
like names and digits, a string will be constructed. Figure 11.7A and 11.7B are
examples of code sequences, used forname(e.g. declaration-type mnemonic or
task name) anddigit string construction respectively. The foundation is based on
pointer operations, since it is fast and simple. The string construction stops when-
ever a fetched char is not of a certain type (e.g. digit for digit string construction),
or if the string length exceeds a certain limit. Afterward the string can be processed
as required. For the digit string construction example, this consists of converting
the string to an unsigned integer; also done using pointer operations. The examples
illustrate the general approach used for string constructions in the parser. String
construction and char fetching is done in the different private methods, associated
with the configuration file scanning.

11.3. Parser 101

Configuration file scanning

Concurrent actions perfomed:
Map data to databases
Lexical grammar and syntax
check

Declaration post check
and processing

Finalizing dependency matrix
Checking different
declarations up against some
predefined constrains

Create parser object
Parser object(arg1,arg2)

Initiate parsing
object.scan_file(<filename>)

Get declaration data

error?

no

Stop

yes

Example:
char* n = object.get_log_file()

Figure 11.6: Parsing flow.

The scanning control algorithm

Figure 11.8 shows asimplifiedflowchart of the scanning control algorithm, imple-
mented inscan file . First action performed consists of opening the configura-
tion file for reading, which is done by calling the private method,openfile with
a pointer to the filename as argument. Afterward starts the actual parsing, which
continues until an error occurs (indicated by theterminate flag) or end-of-file
(EOF) has been reached. The scanning can be divided into adeclaration-type
mnemonic scananddeclaration parameter scan, executed in the mentioned order.

Thedeclaration-type mnemonic scanserves to determine the type of declara-
tion, by scanning and evaluating the declaration-type mnemonic. Remember from
chapter 8, page 45 that a declaration always must start with a declaration-type
mnemonic followed by the actual declaration. The declaration-type mnemonic
scan is managed by the macro method,scan symbol . The method requires a
symbol table as input, scans the configuration file and returns a pointer to a char,
containing the symbol name, if the scanned symbol were found in the symbol table
(otherwise it returns null). The symbol table to be provided is avector , contain-
ing symbol structs (sym DB type). A symbol struct consists of asymbol name
and adeclaration counter, which is being incremented inscan symbol each
time a symbol detection is declared. The counter can be evaluated later (decla-
ration post check), to check how many times a certain symbol has been declared.
The symbol table for the declaration-type mnemonic issym declarationID . It

102 Chapter 11. Implementation: Abstract PE model

(A) Name string construction
char *p; // pointer to a char

 static char buffer[64]; // a buffer used for holding the string
 unsigned int N; // a string length counter

 p = buffer; // point at the start of the buffer
 N = 0; // initialize string length counter

// construct name string
 while((_letter() | _digit() | ch=='_') && N<63) {
 *p++ = ch; // copy char copy into buffer
 N++; // increment string length counter
 ch = _nextch(); // and get next char from configuration file
 }

 *p++ = ‘\0’; // terminate string with null
 p = buffer; // and point at the start of the buffer

// ...do something using the name string, accessed from p

(B) Unsigned integer string construction and conversion
char *p; // pointer to a char

 static char buffer[64]; // a buffer used for holding the string
 unsigned int N; // a string length counter

 _remove_leading_zeros(); // A macro removing leading zeros, if any

// construct unsigned integer string
 while(_digit() && N < 9) {

 *p++ = ch; // copy char copy into buffer
 N++; // increment string length counter

 ch = _nextch(); // and get next char from configuration file
 }

 *p++ = ‘\0’; // terminate string with null
 p = buffer; // and point at the start of the buffer

// convert to unsigned integer
if(N<9) {
while(*p)

 value += ((unsigned int)(*p++)-48)*_pow(10,(N--)-1);
 }

// ...do something using the value

Figure 11.7: C++ code examples for name and digit string construction.

contains seven entries forscreen dump, log file , vcd file , sub task map,
dependency map, ee deadline andmodule respectively and is created in
the constructor.

Thedeclaration parameter scanserves to scan the actual declaration data and
store this in an associated database. For each declaration type, a dedicated method
has been implemented, since the declaration syntax in general differs from decla-
ration type to declaration type. Method selection is based on the declaration-type
mnemonic (symbol name), returned fromscan symbol . For an example, if the
returned declaration-type mnemonic issub task mapthe method,scan task
is called, starting the task declaration parameter scanning. All methods return a
status flag, indicating successful/unsuccessful scanning. False indicates successful
scanning, while true indicates an error. Error messages, related to illegal syntax is
generated inside the different methods.

Comments, space, tab and newline are removed at the different stages in scan-
ning, by calling the private method,remove separators . Also, a collection
of handy macro functions has been implemented. For an example, checking if the
current fetched char (stored inch) is a letter or digit can be done by calling the

11.3. Parser 103

_scan_symbol

screen_dump

log_file

vcd_file

sub_task_map

dependency_map

ee_deadline

module

ch=EOF | terminate

_scan_screendump

_scan_filename

_scan_filename

_scan_task

_scan_dependency

_scan_ee_deadline

_scan_ee_deadline

_openfile

unknown – error!
terminate = true

name

yes

yes

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

noterminate = true

EOF = true

_closefile

Start
declaration
post check

terminate

return false

Declaration type
mnemonic scan

Declaration
parameter scan

Figure 11.8: Simplified flowchart for configuration file scanning.

method letter or digit , returning a boolean, indicating yes or no.

11.3.5 Declaration post check and processing

Declaration post check and processing follows the configuration file scanning, if no
grammar or syntax errors were found. The main operation performed is checking
some of the declarations up against a set of predefined constrains. Besides error
checking, the dependency matrix (defining the dependency database) is also final-
ized in this stage; that is expanded to include dependencies between subtasks as
well. Figure 11.9 shows the simplified flowchart for the declaration post check and
processing.

Declaration post check

The different types of post checks are implemented in the methods, seen on figure
11.9. They operate on the data available from the databases. All methods return a
status flag, where true indicates an error. In case of error and warnings, the methods
will assert a corresponding message. The behavior of the different methods are
described briefly below.

104 Chapter 11. Implementation: Abstract PE model

_chk_declarations

_finalize_dependency_matrix

_chk_address_map

_chk_parentID

_chk_subtask_partitioning

_chk_eedl_declaration

terminate

terminate

terminate

terminate

terminate

terminate

no

no

no

no

no

return true return false

no

yes

yes

yes

yes

yes

yes

End configuration file scanning
(no errors)

Figure 11.9: Simplified flowchart for the declaration post check and processing.

• chk declarations . Checks if all mandatory declarations has been de-
clared in the configuration file (see also table 8.1, page 46). This is sim-
ply done by evaluating the associated declaration counter in the symbol list,
sym declarationID containing the declaration type mnemonics.

• chk address map. Checks for illegal address declaration in themodule
declarations (e.g. address overlap between two PE’s). A check will only be
done formodule declarations, containing"peID" and"address" dec-
larations.

• chk groupID . Checks that none of the end-to-end tasks have a group ID
equal to zero, since this is not allowed by the scheduler.

• chk subtask partitioning . Checks for illegal subtask partitioning
issuing read-response transfer. See also the set of rules, defined in section
6.3.1, page 33.

11.3. Parser 105

• chk eedl declaration . Checks for missing or non-used end-to-end
deadline declarations for end-to-end task consisting multiple and one subtask
respectively.

Dependency matrix finalizing

The dependency database to be provided to the dependency controller must be
refined to include dependencies between subtasks as well. However, the approach
used for dependency declaration in the configuration file, is only to define a database
expressing the dependencies between end-to-end task groups, since a group of sub-
tasks, belonging to the same end-to-end task, always will be connected in a chain7

[20]. The motivation has been to keep the dependency database declaration as sim-
ple as possible and mask away declarations, which can be assigned automatically.
Thus the parser has to extend the declared dependency database also to include
dependencies between subtasks.

Dependency database extension (or finalizing) is managed by the private method,
finalize dependency matrix . The algorithm implemented simply looks

for all end-to-end tasks, consisting of multiple subtasks, and then creates a new
database including these dependencies as well. However, addressing an entry in
the database is a bit more complicated, since a task is identified by a group ID and a
subtask ID. Dealing with this is done by creating a look up table (mapping nfo),
containing a row/columnindex offsetfor each group ID, indicating the row/column
index associated with first subtask for a certain group ID. Thus when addressing
an entry for a particular subtask, theabsoluterow/column index to use is found by
fetching the index offset, from the look up table, using the group ID as argument,
and then add the subtask ID.

Figure 11.10 shows an example of a finalized dependency database for three
end-to-end task groups,T1, T2 andT3 all having multiple subtasks. A dependency
exists betweenT1 andT3. Figure 11.10A shows a section of the configuration
file, containing task and dependency declarations while figure 11.10B shows the
finalized database. For example, the absolute row/column index associated with
τ3,2 is 7, when addressing the finalized database, since the index offset is 58 for
group ID 3 and the subtask ID is 2.

All information related to the dependency database is encapsulated in a struct
(relation matrix type), containing parameters such as the original and ex-
panded dependency database and the index offset look-up table.

11.3.6 Database description and access

Please refer to appendix A, page 161 for a brief description of the database types
associated with the different declarations, as well as the method available for ac-
cess.

7see also section section6.3.1, page 33
8The index offset is not 6, since the first subtask ID always is 1

106 Chapter 11. Implementation: Abstract PE model

sub_task_map {
<name>,<peID>,<threadID>,<groupID, .. , ..

end-to-end task T1
"Task_1_2" , 1, 3, 1, .. , ..
"Task_1_3" , 2, 3, 1, .. , ..
"Task_1_4" , 1, 3, 1, .. , ..

end-to-end task T2
"Task_2_1" , 1, 3, 2, .. , ..
"Task_2_2" , 2, 3, 2, .. , ..

end-to-end task T3
"Task_3_1" , 2, 3, 3, .. , ..
"Task_3_2" , 1, 3, 3, .. , ..
"Task_3_3" , 2, 3, 3, .. , ..
"Task_3_4" , 1, 3, 3, .. , ..
}

relation_map {
0 1 2 3

 0, 0, 0, 0 # 0
 0, 0, 0, 0 # 1
 0, 0, 0, 0 # 2
 0, 1, 0, 0 # 3
 0, 0, 0, 0 # 4
}

(A) Section of the configuration with task
declarations and end-to-end dependency database.

0
1
2
3
4
5
6
7
8
9

1
1

1
1

1
1

1

0 1 2 3 4 5 6 7 8 9

1 2 3 group ID

index

(B) Finalized dependency database, now
including dependencies between subtasks.

T1 T2

T3

Figure 11.10: Example of a finalized dependency database

11.3.7 Maintenance

Adding new declaration types to the parser is very simple9, due to the emphasis on
modularity. See also figure 11.8, page 103 showing the scanning control algorithm.
Following steps are required.

• Define new declaration-type mnemonic and add this to the declaration type
mnemonic list,sym declarationID in the constructor.

• Add new if-statement inscan file for this declaration-type mnemonic.

• Define new database type and create a new declaration parameter scan method,
managing the actual scanning of the declarations. Using the implemented
macro method makes this easy.

• Define new methods for database access.

However, for most situations themodule declaration type will probably be
sufficient, since it allows clustering of declarations, each identified by a name and
one or multiple values. See also how themodule declaration is being used in this
framework in section 8.2.1, page 46.

11.4 IO task-IO device communication link

This section presents the communication link between the IO task and IO device.
Understanding this is essential to be able to add other types of IO tasks or IO device
models to the abstract PE model.

9As long as the declaration type follows the same syntax rules, used in the current implemented
declarations; that is adeclaration-type mnemonicfollowed by thedeclaration parameters

11.4. IO task-IO device communication link 107

11.4.1 The link

The communication link is based on thesc link mpmodel, from the SystemC
master/slave library. The actual communication is based on high-level struct mes-
sages (io message type), similar to the approach used in the RTOS communi-
cation link. The different entries in the message struct are described in table 11.4.

Type Name Description

unsigned int comm Action identifier.
unsigned int type Action type (e.g. inter-processor

communication transfer type).
unsigned int threadID A thread ID associated with the

SoC communication.
unsigned int dataUnits Data transfer size associated with

the SoC communication.
deque<unsigned int>* dataQ Pointer to a buffer containing data.
deque<unsigned int>* addrQ Pointer to a buffer containing ad-

dresses.
char* text A text describing the message. May

be used for monitoring.

Table 11.4: IO task-device message struct,io message type .

11.4.2 The communication approach

The message communication between the IO task and IO device can be considered
as high-level interrupt messages, where the actual inter-processor communication
data are providedindirectly and not asserted onto the communication link. For an
example, when the IO task is to start a new inter-processor communication event,
it sendsonly onemessage to the IO device. This message contains all information
required by the IO device to start the transfer; that is request type (read, write or
response) identified bytype , the data transfer size, identified bydataUnits
etc. The data associated is providedindirectly, through pointers to deque objects,
from where the IO device must fetch the addresses and/or data. One advantage of
the usage of address and data deque objects is that they serve as buffers for burst
transfer. It means the IO task eventually could push new data and addresses onto
the deques, concurrent10 with addresses and data being fetched (pop) by the IO
device. See also the example in figure 11.11. In conjunction to this,dataUnits
serves as a reference for the data transfer size. Thus, in case the buffers become
empty, but not all data have been transmitted, the IO device could either just wait
for data to become ready in the buffers (by evaluating, in each clock cycle, if a
deque is empty, e.g.addrQ->empty()) or go into a sleep mode. Before going
into sleep mode it should send a message to the IO task, notifying that it must
wake-up the IO device, whenever new data are ready in the buffers. Sleep-mode
means in this context that the IO device does not have to evaluate if a deque is
empty, which otherwise could lead to performance degradation, simulation wise.

10In the same clock cycle

108 Chapter 11. Implementation: Abstract PE model

Wake-up is done by sending a new interrupt message to the IO device, similar to
the initial SoC communication request message.

IO task IO
devicesc_link_mp

addrQ dataQ

memory

addrQ->push_back(addr)
dataQ->push_back(data)

addr = addrQ->pop_front()
data = dataQ->pop_front()

Figure 11.11: Illustration of the approach for indirect addressing.addrQ and
dataQ illustrates the deque objects in memory, accessible from both the IO task
and IO device.

The example is also applicable when the IO device is being the interrupt mes-
sage initiator (when data is being received from the SoC communication interface).
In this case, the address and data deque objects are located in the IO device.

The main motivation for the communication approach, described above, is the
performance improvement obtained by providing dataindirectly, compared to us-
ing the channel fordirect data transfer. In case ofdirect data transfer, multiple
messages must be send for a burst transfer, while only one message is required for
theindirectapproach (since pointers to the deque objects, where to fetch addresses
and data, only have to be provided once).

11.5 IO task

The IO task models an IO device driver and implements the protocol, described in
chapter 6, page 29. It serves as an inter-task dependency synchronization message
encoder/decoder between the RTOS and the IO device. The IO task can handle
multi-threaded SoC communication; a functionality implemented to support the
multi-threaded OCP IO device model. It also supports preemption during fetch-
ing of response and write data, received from the SoC communication interface.
However, IO task prioritizing has not been covered in this framework, meaning it
always has the highest priority. Thus preemption will never occur.

The IO task interfaces to the IO device as well as the RTOS model (see figure
11.4, page 96), using thesc link mpmodel. It incorporates a master and slave
port in the interface to the RTOS and IO device for bidirectional communication.

Figure 11.12 shows a simplified block diagram of the IO task, defined by the
ioTask class. Oval figures indicate thread processes (SC THREADorSC SLAVE)

11.5. IO task 109

while rectangular figures indicate normal C++ methods. A name associated with a
connection to process (e.g.request start) indicates the name of ansc event
object, used for triggering the process execution.

rx_scheduler_comm

request_start

response_start

fetch_response_data_start

fetch_write_data_start

rx_io_comm

request_done

response_done

read_request_ready

send_ext_finish_indication

set_IOdevice_flag

send_finish_indication

C
om

m
un

ic
at

io
n

lin
k

to
/fr

om
 R

TO
S

start_response_tx

C
om

m
un

ic
at

io
n

lin
k

to
/fr

om
 IO

 d
ev

ic
e

send_IOdevice_request_indication

process_request

SC_SLAVE SC_SLAVE

fetch_write_data

fetch_response_data

s
c

_
l

i
n

k
_

m
p

<
m

e
s

s
a

g
e

_
t

y
p

e
*

>

s
c

_
l

i
n

k
_

m
p

<
i

o
_

m
e

s
s

a
g

e
_

t
y

p
e

*
>

Figure 11.12: Simplified IO task block diagram.

The IO task has been implemented without any use of a state-machine. Instead
the actual protocol is implemented in the four main thread processes, seen on fig-
ure 11.12. Other protocol types are easily implemented, simply by changing the
behavior of the processes.

• process request manages the issuing of write and read requests in con-
junction to the methods,prepare wr request andprepare rd request
(not shown in figure 11.12).

• start response tx manages the response transmission for a previously
received read request.

• fetch response data manages the response data received for previ-
ously initiated read request.

• fetch write data manages the write data for a received write request.

The next sections present a more detailed behavior description of the different
processes and also how they interact together.

11.5.1 RTOS interface slave port

The processes,rx scheduler commcontains the slave port interfacing to the
RTOS. It decodes the message received from the scheduler and determines the type

110 Chapter 11. Implementation: Abstract PE model

of action to perform. ForRUNor RESUMEmessages, it triggers a process, accord-
ing to the action type, identified by thetype field in the message. Process trig-
gering is done by asserting an associated notification event. For an example, when
the IO task is to transmit response data, the message received will beRUNwith
type set toRESP. Thus it will assert the notification eventresponse start ,
causing the process,start response tx to execute and the response phase
to begin. ForPREEMPTmessages, a corresponding preemption flag will be set
(fetch response data preempt or fetch write data preempt) caus-
ing the associated process (fetch response data or fetch write data),
to terminate. The flag will be cleared when the associatedRESUMEmessage is
received.

The different types of supported messages and their meaning is described in
table 11.5. Non-supported messages will cause the IO task to assert an error mes-
sage.

comm type Description

RUN
WR Start write request.
RD Start read request.
RESP Start response (to a read)
RDRESPREADY Start fetching the response data received.
WRDATAREADY Start fetching the write data received.

PREEMPT
RDRESPREADY Preempt response data fetching.
WRDATAREADY Preempt write data fetching.

RESUME
RDRESPREADY Resume fetching the response data received.
WRDATAREADY Resume fetching the write data received.

Table 11.5: Supported messages types, received from the scheduler.command
type refers to the declaration in the message. See also table 11.1, page 88

For simplicity, notations notation like,RUN@WRmight be used in the following
sections. This notation means a message wherecommandtype entries are equal
to RUNandWRrespectively.

11.5.2 IO device interface slave port

rx io commdecodes the messages received from the IO device. An IO device
message either indicates the completion of a previously initiated inter-processor
communication event or that some data have been received from the SoC com-
munication interface. These are represented byFINISHED or READYmessages
respectively. The different types of messages supported and their meaning is de-
scribed in table 11.6. Non-supported messages will cause the IO task to assert an
error message.

When aFINISHED message is received, a notification event is asserted to the
thread process previously initiated the transfer (for an examplerequest done
when a request has been completed). This notification is expected by the process,
causing it to do a certain operation (See description forprocess request and

11.5. IO task 111

comm type Description

READY
RESP A read request has been received.
RDRESPREADY Response data, associated with a previously

initiated read has been received and now
ready to be fetched.

WRDATAREADY A write request has been received and data is
now ready to be fetched.

FINISHED
WR The initiated write request has completed.
RD The initiated read request has completed.
RESP The response phase (to a previously received

read request) has completed.

Table 11.6: Supported messages types, received from the IO device.command
type refers to the declaration in the message. See also table 11.4, page 107.

start response tx in section 11.5.3 and 11.5.4 respectively).
When aREADYmessage is received,rx io commcaptures the message in-

formation and store this in a database. The selected database and the information
to store depends on the type beingRESP, RDRESPREADYor WRDATAREADY.
After a database has been updated a similarREADYmessage is issued to the sched-
uler, indicating the IO task is ready to process the received IO device request.

The databases are used when the IO task processes the IO device requests.
They hold information such as pointer to the address and data deque objects and a
counter for keeping track of the amount of data received. This information is ac-
cessed and used in the different thread processes, executing the IO device requests.
Table 11.7 shows the available database types (structs). The actual databases have
been implemented as arrays of structs, to support threaded IO communication.
Thus addressing a particular struct is done using the thread ID, associated with the
IO device request (will be forwarded in theREADYmessage issued to the sched-
uler).

11.5.3 Request transmission

The process,process request manages the issuing of write and read request
messages to the IO device. It is being triggered by therequest start event,
whenrx scheduler commreceives aRUN@WRor RUN@RDmessage from the
scheduler, indicating a write or read request respectively. The processdoes not
create messages but fetches the messages from a request queue,requestQ con-
taining pointers to request messages. The actual messages are created and pushed
onto the request queue in the methodsprepare wr request and
prepare rd request (not shown on figure 11.12). These methods are called
before issuing the actual notification event.prepare wr request creates and
prepares the address and data deque objects for write request, while
prepare rd request prepares the address deque for read requests. For broad-
casting of write data to multiple PE’s,prepare wr request will creates mul-
tiple requests messages.

112 Chapter 11. Implementation: Abstract PE model

Database for response data. Keeps track of the response data deque pointer and a counter
for monitoring the amount of responses received. The counter is updated when the IO task
issues the read request, and decremented when response data is being fetched.

Database is updated when receiving a READY@RESP message from the IO device .
(only respDataQ is updated).

Struct name : respDataQ_DB_type
Database name : respDataQ_DB

Type Name Description
unsigned int respDataCounter A reference counter used

for keeping track of the
amount responses to
received for a read request.

deque<unsigned int>* respDataQ Pointer to the deque,
containing the response
data.

Database for write requests. Keeps track of the address and data deque pointers and a counter
for monitoring the amount of data received. The counter is initialized with the amount of data to
receive, and decremented when write data is being fetched.

Database updated when receiving a READY@WR_DATA_READY message from the IO device.

Struct name : writeDataQ_DB_type
Database name : writeDataQ_DB

Type Name Description
unsigned int writeDataCounter A reference counter used

for keeping track of the
amount data received.

deque<unsigned int>* dataQ Pointer to the deque,
containing the write data.

deque<unsigned int>* addrQ Pointer to the deque,
containing the write
addresses.

Database for read requests. Keeps track of the address deque pointer and a counter used for
monitoring the number of responses transmitted. The counter is initialized with the amount of
responses to transmit, and decremented whenever a response is transmitted

Database is updated when receiving a READY@RD_RESP_READY message from the IO device.

Struct name : readRequestQ_DB_type
Database name : readRequestQ_DB

Type Name Description
unsigned int requestCounter A reference counter used

for keeping track of the
amount responses to
transmit.

deque<unsigned int>* addrQ Pointer to the deque,
containing the read
addresses.

Table 11.7: IO task database types.

After a request message has been issued to the IO device,process request
waits for arequest done event, fromrx io comm. This event indicates that

11.5. IO task 113

the request has been completed by the IO device and it may now accept a new
request. If the request queue is not empty, the next request messages from the
queue is processed in the same manner.process request completes when
the request queue becomes empty. Before the thread completes execution, it calls
send finish indication , causing aFINISHED message to be issued to the
scheduler, indicating the IO task execution has completed.

11.5.4 Response transmission

The process,start response tx manages the response to a previously re-
ceived read request. It is being triggered by therequest start event, when
the slave process,rx scheduler commreceives aRUN@RESP. This happens
after the task, triggered by the read request, finishes execution. First operation
performed is getting the address deque pointer and the data transfer size. This is
done by accessing the database,readRequestQ DB using the thread ID from
the messages, received from the scheduler. This database entry has previously
been updated in the slave process,rx io commwhen it received the read request
message from the IO device. In conjunction to this, the thread ID used for gaining
access to the database is the same as the one associated with the read request.

Afterward, the process creates and prepares the response data deque. This is
done simply by pushing the encoded ID of the task, triggering the response, onto
the data deque. The number of responses created/pushed onto the data deque equals
the number of addresses11 fetched from the address deque. Also, the
requestCounter , used for keeping track of the number of responses, is decre-
mented correspondingly. It then sends aRUN@RESPmessage to the IO device,
causing it to start the response phase for this particular thread. Afterward, it checks
if all responses have been transmitted by evaluating ifrequestCounter has
become zero. If not, it means that the initial read request was a non-single burst re-
quest, and that all requests have not been received yet. Thusstart response tx
must wait for the remaining request to come before asserting any further responses.
The process then goes into sleep-mode and informs the IO device that it must sends
a newRUN@RESPmessage (wake-up message) to the IO task whenever it receives
the next pending read request for this particular thread. This is done by calling
the methodset IOdevice flag , which issues aREADY@RDREQNOTIFY
message to the IO device. Afterward the process waits for an event to be as-
serted onstart response tx , which happens whenrx io commreceives
a READY@RESPmessage from the IO device for this thread. The event causes
the process to wake up and the response phase to be resumed. In conjunction to
this, the process sends theRUN@RESPmessage to the IO device again. When
the response phase completes, it callssend finish indication , causing a
FINISHED message to be issued to the scheduler, indicating the IO task execution
has completed. It also calls the methodset IOdevice flag again, for notify-

11The read addresses are not being used for anything in this IO task

114 Chapter 11. Implementation: Abstract PE model

ing the IO device that it must send a message when it receives a new read request
on this thread.

11.5.5 Write data processing

The process,fetch write data manages the data coming from a received
write request. It is being triggered by thefetch write data start event,
whenrx scheduler commreceives aRUN@WRDATAREADYfrom the sched-
uler. The message can be considered as an echo of theREADY@WRDATAREADY
message, previously initiated byrx io comm, when it received the write request
from the IO device. From the message it uses the thread ID for gaining access to
thewriteDataQ DBdatabase entry, containing the data counter,
writeDataCounter and the pointers to the address and data deque objects,
associated with the write request. The data fetching is done, by popping an element
off the address and data deques and decrements the data counter in each clock
cycle. When the deques becomes empty, it checks if all data has been received
by evaluating if the data counter is zero. If the data counter is nonzero, the IO
task execution suspends, until new write data is ready again. This leaves room for
other task to execute meantime. Before suspending, it notifies the IO device that a
new RUN@WRDATAREADYmessage must be send, when new data are received
for this particular thread. This is done by callingset IOdevice flag , causing
a READY@WRDATANOTIFY message to be issued to the IO device. Afterward
the process callssend finish indication , causing aFINISHED message
to be issued to the scheduler, indicating the IO task execution has stopped/been
suspended.

Resuming the write data fetching starts whenrx scheduler commreceives
aRUN@WRDATAREADYfor this thread again.

When the write request completes (i.e. data counter,writeDataCounter
equals zero), any local tasks depending on the data can be released for execu-
tion. This is done by callingsend ext finish indication with the en-
coded ID of task12, initiating the write request, as argument. The method issues a
FINISHED EXT message the synchronizer for this task. Before the process sus-
pends and the IO task completes execution, it callsset IOdevice flag again
followed by a call tosend finish indication .

11.5.6 Response data processing

The process,fetch response data manages the fetching of response data,
received for a previously initiated read request. It is being triggered by the
fetch write data start event, whenrx scheduler commreceives a
RUN@RDRESPREADY. The behavior is similar to the processfetch write data ,
but it operates on the database,respDataQ DB. See also section 11.5.5, describ-
ing fetch write data .

12extracted from the write address, by subtracting the PE base address

11.6. IO device 115

11.6 IO device

The IO device models the physical IO hardware port and manages the SoC commu-
nication protocol. The modular approach makes it easy to implement support for
various types of SoC communication protocols, since the interface between the IO
task and the IO device is well defined (See also section 11.4.2). In the current ver-
sion of the framework, two IO device models have been implemented, supporting
the OCP 2.0 protocol at TL1 and TL0. Common features for the models are:

• Configurable (signal-wise), relative to the OCP channel they connect to.

• Support for multi-threaded OCP interface. Further, the OCP slave supports
out-of-order thread execution.

• Write data (OCP Slave) and response data (OCP master) buffers for each
thread, with configurable size.

The next sections present the implementation of the OCP 2.0 TL1 and TL0 IO
device models.

11.6.1 OCP TL1

The foundation of the OCP2.0 TL1 IO device model is based on the SystemC
OCP Transaction Level Communication Channel, available from [2]. TL1 is also
known as the transfer layer abstraction and provides cycle true simulation, but is
faster than RTL simulation [18]. The communication is done through theclocked
OCPTL1 Channel object, supportingsingle command operationsfor initiating
OCP specific transactions like request, response and data handshake. This channel
is inherited from the genericTL Channel , which actually supports transfer of any
kind of data (also non-OCP compliant). Please consult [18] for more information.

TheTL1 IO class defines the OCP 2.0 TL1 IO device model. It is composed of an
IO task message router (Router), a master (TL1 Master) and slave (TL1 Slave)
to support request initiating and receiving respectively. The router simply ensures
correct routing of messages coming from the IO task (e.g. messages targeting the
master is only being received by the master). This is done by evaluating thetype
declaration in the message.A simplified UML composition diagram is shown in
figure 11.13.

Connecting the master and slave to an OCP channel is done after channel
and module construction, by calling the methodsconnect OCPMaster and
connect OCPSlave respectively, with a pointer to the TL1 channels.

11.6.2 Supported OCP TL1 configurations

The OCP TL1 device model supports the OCP configuration, listed in table 11.8.
The model automatically configures itself relative to the channel it connects to.

116 Chapter 11. Implementation: Abstract PE model

TL1_IO

TL1_Master TL1_SlaveRouter

1 1 1

Figure 11.13: Simplified OCP2.0 TL1 IO device model UML composition dia-
gram.

This is done in theend of elaboration method in the master and slave and
happens after the module has been created and connected to the TL1 channel, but
before the simulation starts. Channel parameters are fetched from the OCP channel
by calling theOCPTL1 Channel method,GetParamCl returning aParamCl
object, containing the actual parameters.

Configuring an OCP TL1 channel

The OCP channel can be configured using theOCP configuration parameters. The
configuration is done after a channel has been created, by calling the
OCPTL1 Channel channel method,setConfiguration with a configura-
tion parameter map object as argument. The configuration parameter map object is
a STL C++ MAP (available from the<map> library) and must contain the different
configuration parameter names and their associated types and values [18].

In this framework, the generation of the configuration parameter map is done
by reading contents from a configuration parameter file, before a simulation starts.
The filename must be provided as argument and the map will be generated in the
top-level module. Table 11.9 shows an example a section of such a file.

11.6.3 OCP TL1 Master

Figure 11.15 shows a simplified block diagram of the OCP TL1 Master, defined by
theTL1 Master class. It interfaces to the IO device task throughsc link mp
and the TL1 channel. Oval figures indicate thread processes (SC THREADor
SC SLAVE) while rectangular figures indicate normal C++ methods. A name asso-
ciated with a connection to process (e.g.mRequestEvent) indicates the name
of ansc event object, used for triggering the process execution. The dotted box
shows response data buffers for the different threads.

The OCP Master does not use a state machine for protocol handling. The
implementation is more high-level and uses dedicated clocked thread processes
instead. The threads related this are:

• requestThreadProcess manages the issuing and protocol handling re-
lated to read and write requests.

11.6. IO device 117

Signal Configuration Parameter Comment

Request group
MCmd Always (1)
MAddr addr Required
MData mdata Required
MReqLast reqlast Optional
SCmdAccept cmdaccept Optional
Response
MRespAccept respaccept Optional (2)
SData sdata Required
SResp resp Required (4)
Burst extension
MBurstSeq burstseq Optional (5)
MBurstSingleReq burstsinglereq Optional
MBurstPrecise burstprecise Required if MBurstSeq
MBurstLength burstlength Required if MBurstSeq
Data handshake datahandshake Optional (7)
MDataThreadID threads>1 Optional
MDataLast datalast Optional
SDataAccept dataaccept Optional (3)
Thread extension
MThreadID threads>1
SThreadID threads>1
MThreadBusy mthreadbusy Optional (2)
SThreadBusy sthreadbusy Optional

sthreadbusy exact Optional (6)
SDataThreadBusy sdatathreadbusy Optional (3)

sdatathreadbusy exact Optional (6)

(1) WR and RD are required to be supported by the OCP channel. Other types
currently not supported.
(2) Either MRespAccept or MThreadBusy must be used (in conjunction with
responses). Disabling both parameters are not allowed.
(3) Either SDataAccept or SDataThreadBusy must be used when data hand-
shaking is enabled.
(4) Write (WR) response enable is optional usingwriteresp enable pa-
rameter.
(5) The master currently only support assertion of UNKN.
(6) Usage follows the protocol semantics, defined in [17], pp.49.
(7) If data handshake is disabled, all signals related to datahandshake becomes
non-applicable.

Table 11.8: OCP configuration supported by the OCP2.0 TL1 IO device.

• clearThreadBitProcess monitors response data buffers, if a buffer
becomes full for a particular thread. It clears the thread bit (MThread-
Busy) whenever buffer space becomes available again. Only applicable if
MThreadBusy is a part of channel.

• responseThreadProcess manages the protocol related to response data
receiving and the buffering of response data. It also controls the issuing of
notification messages to the IO task, when new response data become ready

118 Chapter 11. Implementation: Abstract PE model

addr i:1
addr wdth i:16
addrspace i:0
burstlength i:1
burstlength wdth i:16
burstprecise i:1
burstseq i:1
burstseq unkn enable i:1
burstsinglereq i:1
cmdaccept i:1
dataaccept i:1
datahandshake i:1
datalast i:1

.

.

Table 11.9: A section of an OCP configuration parameter file.

m_RequestEvent

sendRespReadyIndication

C
om

m
un

ic
at

io
n

lin
k

to
/fr

om
 IO

 ta
sk

s
c

_
l

i
n

k
_

m
p

<
i

o
_

m
e

s
s

a
g

e
_

t
y

p
e

*
>

O
C

P
_

T
L

1
_

M
a

s
t

e
r

P
o

r
t

O
C

P
 2

.0
 T

L1
 c

ha
nn

el

sendFinishIndication

requestThreadProcess

responseThreadProcess

clearThreadBitProcess

OCP_master

SC_SLAVE

m
_

t
h

r
e

a
d

B
u

s
y

OCPRequestGrp
OCPDataHSGrp

OCPResponseGrp

...
...

...

. . .

thread#0 thread#1 thread#N-1

m_respDataQ[N]

Response
data

Figure 11.14: Simplified block digram for OCP2.0 TL1 Master.

in a buffer.

The next sections present a more detailed behavior description of the different
processes and also how they interact together.

IO task interface slave port

TheSC SLAVEprocess,OCPslave decodes the messages coming from the IO
task and determine what action to perform. The message types supported are de-
scribed in table 11.10. Non-supported messages will cause the TL1 master to assert
an error message.

11.6. IO device 119

comm type Description

RUN
WR Start a write request.
RD Start a read request.

SET FLAG
RDRESPNOTIFY Tells the master that it must issue a notifica-

tion message, when read response data are
being received on a particular thread.

Table 11.10: Supported IO task messages types.command type refers to the
declaration in the message. See also table 11.4, page 107.

RUNmessages causes a request to start by triggering the event,
mRequestStart while theSET FLAG message causes the process to set an
entry in themrespNotify boolean table to true.mrespNotify serves as a
response notification database, and accessed using the threadID. The purpose of
the database will be described in section 11.6.3.

The master contains no buffers for request messages (should be managed by
the IO task). Thus receiving a RUN message in the middle of a request phase will
cause an error message to be asserted.

Request handling

A request phase starts when the process,requestThreadProcess gets trig-
gered by the event,mRequestEvent . Before starting the request, it checks if
SThreadBusy must be used. If so, it checks if the thread bit is set for the thread
associated with the request to initiate. If set, the slave cannot accept any new re-
quests and the process waits until the thread bit becomes cleared, before asserting
the request.

For write requests, the process selects an appropriate transaction method, based
on the channel configuration. For an example, single request burst write will always
be used, if data handshake and MBurstSingleReq is supported by the channel, and
if the write request is associated with multiple data transfer.

The address and data used for the write request is fetched from the deque ob-
jects, created by the IO task. Accessing the objects are done through the pointers,
addrQ and dataQ provided by the IO task request message (see also section
11.5.3, page 111). If the data/address deques becomes empty and not all data has
been transmitted, the request/data handshake phase stalls until new data are avail-
able again. However, in the current implementation of the IO task, this scenario
will never occur, since all data will be available when a request message is issued.

For a read request, the transaction method also depends on the channel config-
uration. If MBurstSingleReq is a part of channel, single request burst read will be
used for a burst read requests. Read request addresses are fetched from the address
deque, by gaining access to the object using the pointer,addrQ) provided by the
IO task request message.

When a request phase completes, the process calls the method,

120 Chapter 11. Implementation: Abstract PE model

sendFinishIndication , before completing. This methodreusesthe initial
task request message created by the IO task, alter this to aFINISHED message
and returns the pointer back to the IO task again, indicating that the request has
been completed.

After the method,sendFinishIndication has completed executed the
process suspends itself and waits forOCPmaster to trigger a new request.

It must be emphasized that the current master implementation has following limi-
tations:

• MCmd mnemonic supported are WR and RD.

• MBurstSeq will always be UNKN for burst requests.

However the implementation can easily be modified to support other types of
MCmd and MBurstSeq.

Response handling

Receiving of response data are managed by the process,
responseThreadProcess . When a valid response is being received (SResp =
DVA) the response data are being pushed onto a response data deque,mrespDataQ
selected relative to the response thread ID (SThreadID). In conjunction to this,
mrespDataQ is implemented as an array of deques, with an array size equal to
the number of threads supported by the channel (defined by the OCP configuration
parameter,threads).

Afterward, the boolean response notification database,mrespNotify is checked
to see if a response notification message must be issued to the IO task. This is
done by gaining access to the database using the thread ID. If the entry is true, it
means a notification must be send to the IO. Thus the process will call the method,
sendRespReadyIndication , which creates and issues aRDRESPREADY
message to the IO task (see also table 11.6, page 111). This message also contains
a pointer to the associated response data deque, containing the response data. After
the method has been executed, the entry inmrespNotify is cleared, to ensures
that no notification message will be send next time response data are received on
this thread13. Thus only the response data will be pushed onto the response data
deque.

If the size of the response data deque has reached the maximum buffer size, de-
fined by MASTERQUEUELIMIT , the process will stall any responses coming af-
terward, for the particular thread. If MThreadBusy is a part of the channel, then this
is done by asserting the associated thread bit. If MRespAccept is a part of channel

13This is not required since the IO task now has the pointer to the response data deque object and
also know the data transfer size, associated with this thread.

11.6. IO device 121

instead, it will be de-asserted until buffer space becomes available again. When us-
ing MThreadBusy, the process will also trigger the event,mthreadbusy , caus-
ing the response data buffer size monitor,clearThreadBitProcess to exe-
cutes. At each clock cycle, the process monitors the size of the buffers and clears a
thread bit, when space becomes available in an associated previous full buffer. The
process suspends itself whenever there is space left in all the buffers (i.e. when
MThreadBusy equals zero).

11.6.4 OCP TL1 Slave

Figure 11.15 shows a simplified block diagram of the OCP TL1 Slave, defined by
the TL1 Slave class. It interfaces to the IO device task throughsc link mp
and the TL1 channel. Oval figures indicate thread processes (SC THREADor
SC SLAVE) while rectangular figures indicate normal C++ methods. A name as-
sociated with a connection to process (e.g.respQ ready) indicates the name of
a sc event object, used for triggering the process execution. The dotted boxes
illustrates address and data buffers.

respQ_ready

processRequest

C
om

m
un

ic
at

io
n

lin
k

to
/fr

om
 IO

 ta
sk

s
c

_
l

i
n

k
_

m
p

<
i

o
_

m
e

s
s

a
g

e
_

t
y

p
e

*
>

O
C

P
_

T
L

1
_

S
l

a
v

e
P

o
r

t
O

C
P

 2
.0

 T
L1

 c
ha

nn
el

responseThreadProcess

DataHSThreadProcess

requestThreadProcess

OCP_slave

SC_SLAVE
m

_
t

h
r

e
a

d
B

u
s

y

OCPDataHSGrp

..

Thread#0

write request data

sendFinishIndication
respQ_empty

startResponse

clearThreadBitProcess
..

Thread#N-1

. .

..

Thread#0

..

Thread#N-1

. .

.. ..

Thread#N-1

. .

Thread#0

m_write_addrQ[N]m_write_dataQ[N] m_read_addrQ[N]

read request addressWrite
request
address

sendWriteDataReady

sendReadReqReady

start_response

OCPResponseGrp

OCPRequestGrp

Figure 11.15: Simplified block digram for OCP2.0 TL1 Slave.

The OCP Slave does not use a state machine for protocol handling. The imple-
mentation is more high-level and uses dedicated clocked thread processes instead.
The threads related this are:

• startResponse prepares response data to transmit for a previous re-
ceived read request.

• responseThreadProcess transmit response data, prepared by
startResponse , to the OCP channel and manages the protocol related to
this.

• requestThreadProcess manages the received requests from the OCP
channel.

122 Chapter 11. Implementation: Abstract PE model

• dataHSThreadProcess manages the protocol and all signals related to
data handshake. Only applicable, if data handshake is a part of the channel
(datahandshake = 1).

• clearThreadBitProcess monitors the write data buffers in case a buffer
becomes full. It clears the thread bit (SThreadBusy orSDataThreadBusy)
whenever buffer space becomes available again. Only applicable if SThread-
Busy or SDataThreadBusy (data handshake) is a part of channel.

The next sections present a more detailed behavior description of the different
processes and also how they interact together.

Data and address buffers

The slave incorporates buffers for each thread for buffering write addresses and
data as well as read request addresses. Buffer size is controlled using the com-
piler statement, SLAVEQUEUELIMIT . The different buffer types are imple-
mented as arrays of deque objects, where the array size equals the number of
threads, supported by the OCP channel (defined by the OCP configuration param-
eter,threads). The deque objects,mwrite addrQ andmwrite dataQ are
used for buffering addresses and data associated with a write request respectively,
while mread addrQ is used for buffering addresses associated with a read re-
quest. Selecting a buffer for a particular thread is done using the thread ID.

Request notification database

The slave also implements arequest notification databasefor write and read re-
quests. The databases are linked to the address and data buffers and holds in-
formation about the burst lengths of pending requests available in a buffer for a
particular thread. This information is being used when sending a request notifica-
tion message to the IO task (the exact purpose will become clearer in the example
following later).

The read and write request databases are implemented inmreadReqReadyQ
andmwriteReqReadyQ , which are arrays of the struct type,request DB type ,
where the array size equals the number of threads supported by the OCP channel.
The entries in the struct is described in table 11.11. Updating a database is done
each time a request is being processed in the method,processRequest . This
procedure is described in section 11.6.4 following later.

The following example tends to clarify the link between the buffers and the
database as well as its usage with respect to notification message generation to
the IO task: Assumed that threedifferentburst write request has been buffered for
thread#114. These having a burst length of 21, 6 and 12 respectively and buffered

14This scenario would be possible if the slave were in a middle of a very long response phase, since
request and response may happen concurrent. Thus the IO task cannot process the request before the
response phase has completed

11.6. IO device 123

Type Name Description

bool notify Indicates if the slave must issue a notifica-
tion message to the IO task when a request is
received (required if true).

unsigned int counter Used to keep track of the number of re-
quests/data received for a burst request.

deque<unsigned int> burstlength A FIFO buffer containing the burst length of
pending requests currently stored in the as-
sociated buffer.

deque<bool> singlerequest A boolean, indicating if the request is a sin-
gle request (true) or not (false). Only appli-
cable for single request burst read.

Table 11.11: Request notification database struct,request DB type .

in the mentioned order. Here theburstlength FIFO buffer in the request noti-
fication data base for thread#1 (mwriteReqReadyQ[1]) will contain the burst
length, also buffered in the mentioned order. This is illustrated in figure 11.16.

writeAddrQ[1]

writeDataQ[1]

request 3

request 3

request 1

request 1

request 2

request 2

21

Burst length = 12 Burst length = 5 Burst length = 21

Back of buffer Front of buffer

5

12

Front of buffer

writeReqReadyQ[1].burstlength

Figure 11.16: example

When the IO task sends a notification, that it is ready for receiving a write
request again on thread#1, the burst length information available from the front of
theburstlength FIFO will be fetched and included in the notification message
issued to the IO task. Thus this message will be associated with the first burst
write request, available from the buffer and having a burst length of 21. When this
request has been processed, the next request, in front of the buffer is request 2,
which is to be processed next etc.

IO task interface slave port

Messages from the IO task is decoded by theSC SLAVEprocess,OCPslave .
Depending on the type of message, an action will be initiated by the process. The
message types supported are described in table 11.12. Non-supported messages

124 Chapter 11. Implementation: Abstract PE model

will cause the TL1 slave to assert an error message.

comm type Description

RUN RESP Start response phase to a previous received
read request

SET FLAG
WRDATANOTIFY Tells the slave that it must issue a notifica-

tion message, when it receives a write re-
quest/write data on a particular thread

RDREQNOTIFY Tells the slave that it must issue a notification
message, when it receives a read request on
a particular thread

Table 11.12: Supported IO task messages types.command type refers to the
declaration in the message. See also table 11.4, page 107.

A RUNmessage causes the process to initiates a response transaction, by trig-
gering the event,start response . When aSET FLAGmessages is received,
the IO task notifies the slave, that it must issue a message whenever there is a
new request/data ready on a particular thread. At first, the process checks an as-
sociated request notification database (mreadReqReadyQ if messagetype =
RDREQNOTIFYormwriteReqReadyQ if messagetype = WRDATANOTIFY)
to see if there is a pending request already available in the buffer. This is done by
evaluating theburstlength FIFO buffer. If no pending request is available, the
notify entry is set to true, causing a notification message to be issued, whenever
a request is being received on this thread next time. However, if there is a pend-
ing request in the buffer, the bust length is popped from theburstlength FIFO
and the methodsendWriteDataReady or sendReadReqReady is called,
depending on theSET FLAGmessagetype beingWRDATANOTIFY or
RDREQNOTIFY respectively.

The method,sendWriteDataReady will create and issue aWRDATAREADY
message to the IO task, indicating that a write request is ready, while the method
sendReadReqReady will create and issue aRESPmessage to the IO task, indi-
cating a read request is ready and a response is now expected. AWRDATAREADY
message also contains pointer to the associated write address and data buffers,
while theRESPmessage contains a pointer to an associated read address buffer. In
both scenarios the fetched burst length will be included (indataUnits) as well,
telling the IO task the data transfer size associated.

Request handling

Request receiving from the OCP channel is managed by the process,
requestThreadProcess . This process operates on theOCPRequestGrp
object, which contains all request group signals, also including MData, if data
handshake is not a part of channel. When a request is received, the associated
protocol handling will be done relative to the OCP channel configuration. After-
ward the request is forwarded the method,processRequest which process the

11.6. IO device 125

request.
For a write request, the method pushes the address and data onto the buffers

associated with the request thread ID. Then the request notification database,
mwriteReqReadyQ is updated, by decrementing thecounter entry. This
counter is used for keeping track of the amount of data received for a burst write.
If the counter equals zero, when the database is being updated, it means that the
request is new, since the data does not belonging to a previous burst write request.
Thus the counter will be initialized to burst length-1. If thenotify entry is false,
the IO task is not ready to receive a write request ready notification, and the burst
length for the new request will be pushed onto theburstlength FIFO instead.
Otherwise the method callssendWriteDataReady which issues a write re-
quest ready notification message to the IO task. If a write data buffer becomes full,
and SThreadBusy or SDataThreadBusy is a part of the OCP channel, the method
will trigger the event,mthreadbusy , causing the write data buffer size monitor,
clearThreadBitProcess to executes. At each clock cycle, the process mon-
itors the size of the buffers and clears a thread bit, when space becomes available
in an associated previous full buffer. The process suspends itself whenever there
is space left in all the buffers (i.e. when SThreadBusy or SDataThreadBusy equal
zero).

Processing of the read requests and updating the request notification database
(mreadReqReadyQ) is done in a similar manner as for write requests. However,
read request addresses will be pushed onto the associated read address request
buffer in mread addrQ , selected relative to the request thread ID. Also, for a
single request burst read, the method will prepare the address sequence and push
this onto the read address buffer.

It must be emphasized that the current slave implementation has following limita-
tions:

• MCmd mnemonic supported are WR and RD.

• Assertion of SThreadBusyor transaction stalling by not asserting SCmdAc-
cept only relates to full write data buffers.

Data handshake

Managing write request, when data handshake is a part of the OCP channel
(datahandshake==1), is done in a different way, since the write data, MData
will be transmitted together with the data handshake signals, contained in the
OCPDataHSGrpobject. In this configuration, all data handshake signals are man-
aged by the process,DataHSThreadProcess . The motivation for separating
the request and data handshake management is because the OCP protocol allows
for time-wise separation of the request and data handshake phase. It means that a
write request may be received at one point in time, but the actual data handshake
phase may come several clock cycles later. The approach of separating request and

126 Chapter 11. Implementation: Abstract PE model

data handshake handling also allows for support of out-of-order thread execution,
since a request on another thread eventually could be processed, in the time interval
in-between a request-handshake phase.

Managing the linking between a request and data handshake is done using a re-
quest buffer,reqQ . The buffer is an array of deque objects holdingOCPRequestGrp
objects, where array size equals the number of threads supported by the OCP chan-
nel. When a write request is received and the data handshake has not started
yet, the process,requestThreadProcess pushes the received request ob-
ject onto the buffer associated with the request thread ID (MThreadID). When
DataHSThreadProcess receives the data handshake, it fetches the request
object from the front of the request queue (selected relative to the thread ID,
MDataThreadID), fills in the received data and forwards the request object to the
method,processRequest which then process the request. For single burst
write request,requestThreadProcess pushes N copies of the request object
onto the request queue, where N equals the burst length.

Response handling

A response phase starts when a notification event is asserted onstart response
by theOCPslave process. This causes the process,startResponse to exe-
cute, which serves to prepare the response data, before starting the actual response.
The process fetches the response data from the response data deque object (through
the pointer,dataQ provided in the message from the IO task), converts this into
OCPResponseGrp object and pushes this onto a deque object,respQ serving
as a FIFO buffer for responses ready to transmit. For each response data, an
object will be created and pushed onto the buffer. When all response data has
been converted, the process initiates the response phase by asserting a notification
event onrespQ ready . This causesresponseThreadProcess to execute,
which manages the assertion of response data onto the OCP channel as well as the
protocol related to this. At each clock cycle the process fetches a new response
group object from FIFO buffer,respQ and assert this onto the OCP channel. This
continue until the FIFO buffer becomes empty and the response phase ends. Be-
fore responseThreadProcess suspends execution, it asserts a notification
event onrespQ empty , informing startResponse that the response phase
has ended. If there are no pending responses left to transmit,startResponse
suspends as well. Otherwise is waits for response data to become ready in the
buffer again and the procedure described above is repeated, until all responses has
been transmitted.

11.6.5 OCP TL0

The OCP 2.0 TL0 model implements support for cycle true simulations at RTL
level. However, the model does currently not support propagation delay emulation,
with respect to delayed signal assertion. The implementation follows theexact

11.6. IO device 127

same approach used for the implementation of the TL1 model, except that the OCP
TL1 channel model has been replaced with dedicatedsc in andsc out ports for
the different OCP input output signals. Please refer to section 11.6.3, page 116 and
11.6.4, page 121 for an implementation description of the TL1 master and slave
respectively.

Further, the TL0 slave uses the OCP signal mnemonic and signal group objects,
OCPRequestGrp andOCPResponseGrp, available from the OCP transaction
level library, from the header fileocp globals.h . This is being done as a con-
venient way to encapsulate all information related to a request or response into a
single object. For an example, when a request is being received, all request infor-
mation from the TL0 interface will be stored in anOCPRequestGrp object and
forwarded toprocessRequest for processing.

The OCP TL0 model is defined by theTL0 IO class, where the TL0 master
and slave are defined by the classes,TL0 Master andTL0 Slave respectively.

11.6.6 Supported OCP TL0 configuration

The TL0 Model can be configured relative to the channel it connects to. However,
compared with the TL1 model this must be done during building the framework.
Thus a new channel configuration requires rebuilding of the model. The different
configuration parameters are implemented as compiler statements and specified in
the header file,TL0 OCPconfiguration.h . Table 11.8 lists the configura-
tions supported by the TL0 model.

128 Chapter 11. Implementation: Abstract PE model

Signal Configuration Parameter Comment

Request group
MCmd Always (1)
MAddr Required
MData Required
MReqLast reqlast Optional
SCmdAccept cmdaccept Optional (2)
Response
MRespAccept respaccept Optional (3)
SData Required
SResp Required
Burst extension
MBurstSeq Required
MBurstSingleReq Required
MBurstPrecise Required
MBurstLength Required
Data handshake datahandshake Optional (5)
MDataThreadID Required
MDataLast datalast Optional
SDataAccept dataaccept Optional (4)
Thread extension
MThreadID Required
SThreadID Required
MThreadBusy mthreadbusy Optional (3)
SThreadBusy sthreadbusy Optional (2)
SDataThreadBusy sdatathreadbusy Optional (4)

(1) WR and RD are required to be supported by the OCP channel. Other types
currently not supported by the IO device.
(2) Either SCmdAccept or SThreadBusy must be used. Disabling/enabling of
both parameters are not allowed. When using SThreadBusy, the model follows
thesthreadbusy exact semantic.
(3) Either MRespAccept or MThreadBusy must be used (in conjunction with
responses). Disabling/enabling both parameters are not allowed. When using
MThreadBusy, the model follows themthreadbusy exact semantic.
(4) Either SDataAccept or SDataThreadBusy must be used when data hand-
shaking is enabled. Disabling/enabling both parameters are not allowed. When
using SDataThreadBusy, the model follows thesdatathreadbusy exact
semantic.
(5) If data handshake is disabled, all signals related to data handshake becomes
non-applicable.

Table 11.13: OCP configuration supported by the OCP2.0 TL0 IO device.

11.7 Dependency controller

The dependency controller module manages the task dependency database, de-
scribing the dependencies between the tasks assigned to a simulation. The database
is global in the sense, that it is being shared between the synchronizers in the
different PE’s in a controlled and well defined manner. Accessing the database
from the synchronizers is done through a pointer to the dependency controller ob-
ject, provided during PE module construction (see also section 11.2.1, page 96).

11.7. Dependency controller 129

The dependency controller also manages the unblocking of tasks, when a task
graph/application completes. In conjunction to this, the dependency controller
keeps a database containing pointers to all the task objects. A pointer is used for
gaining access to the unblocking method in a task object.

Figure 11.17 is a block diagram showing the connection between the depen-
dency controller and the synchronizer and task objects. The dotted line indicates a
pointer to the object.

dependency_controller

Synchronizer1 PerTask1

Synchronizer2

SynchronizerN-1

PerTask2

PerTaskM-1

.

. .
.

Figure 11.17: Block diagram showing the connection between the dependency
controller and the synchronizer and task objects.

The dependency controller is defined by the class,dependency controller .
It has four public methods:

• initialize database. Initializes the dependency database.

• push task ptr. Called when a pointer to a task object is provided to the
dependency controller (done during PE module construction and task object
creation).

• finish. Called by the synchronizer, when a task finishes and the database
has to be updated.

• mask. Called by the synchronizer, when a check is done to see if all depen-
dencies for a particular task has been resolved.

The implementation of the methods are described in the next sections.

11.7.1 initialize database

The method,initialize database serves to initialize the global dependency
data base. It is being called at the top-level module, after the parsing has completed
but before the simulation starts.

When calling the method, a pointer to the parser object is provided as argument,
since the method needs to fetch the dependency database information from the
configuration file.

First operation performed is copying themapping information look-up table
from the parser (mapping nfo), which describes how an (end-to-end) task ID,

130 Chapter 11. Implementation: Abstract PE model

defined by a group ID and subtask ID, maps to the extended dependency database15.
This information will be used, whenever a synchronizer addresses an entry in the
global dependency database, since addressing is always based on the end-to-end
task ID. The mapping information is stored in the private unsigned integer matrix,
mapping nfo .

Afterward starts the task graph separation scanning algorithm. This algorithm
scans the extended dependency matrix available from the parser, and extract all
independent tasks graphs, which execute in parallel. It is being done by analyzing
all dependencies. Separation of task graphs are required in conjunction to the man-
agement of task graph execution completion and task unblocking. For each task
graph, the algorithm creates an unique dependency database object only containing
the dependencies and other relevant information for this task graph. A dependency
database object is a struct of the typerm type . Table 11.14 describes the different
entries in this database struct.

Type Name Description

unsigned int (NxN matrix) matrix Holds the dependency database.

unsigned int (1x2 array) boundary Holds an upper and lower row/column
index, defining a boundary in the de-
pendency data base, containing the task
graph dependencies. boundary[0]
holds the lower row/column boundary
index, boundary[1] holds the upper
row/column boundary index. Entries outside
boundaries are don’t cares since they are not
a part of this task graph.

bool (1xN array) task used A look-up table identifying the tasks belong-
ing to the task graphs. The index maps di-
rectly to a row/column indexes used in the
dependency database,matrix . An index
marked as true indicates that this particular
task belongs to the task graph.

Table 11.14: Task graph dependency data base struct,rm type .

During the task graphs extraction scanning, the algorithm also checks for illegal
task graphs, containing feedback edges. If such a task graph is detected, an error
message will be asserted.

When the algorithm completes, the vector objects,rm list andrm list img
will contain pointers to the different task graph dependency databases created.
Thus, it is the different dependency database objects together which makes up the
global dependency database. The synchronizers operate on the database objects as-
sociated withrm list , while the database objects associated withrm list img
are original copies used for reference, when a task graph completes execution and
the dependencies are to be restored.

15Please consult section 11.3.5, page 105 for a description of the extended relation database and
the mapping information.

11.7. Dependency controller 131

The example in figure 11.18, page 133 tends to illustrates outcome from the task
graphs extraction. In the example two independent task graphs are considered,
only composed of end-to-end tasks with one subtask. The top of the figure shows
the task graphs, while the dependency database, as declared in the configuration, is
shown below. When the task graph extraction algorithm finishes, two dependency
data base objects will have been created; one for task graph 1 and another for task
graph 2 respectively. The contents of the databases are shown in the bottom of the
figure. The marked area in thematrix indicates the region containing the depen-
dencies, as defined by theboundary . Notice inmatrix , that the last task in a
branch has been marked with 2. This is a special mark, inserted by the algorithm,
used for end-of-branch indication. The mark is being used in the algorithm, de-
tecting when a task graph has completed execution (implemented in thefinish
method described later).

11.7.2 pushtask ptr

Whenever a new task object is being created, the dependency controller must be
provided with a pointer to the object. The pointer is be used for gaining access to
the unblocking method in the task object, if the task has dependencies and when-
ever the associated task graph completes.

Calling push task ptr is be done during the dynamic task creation pro-
cess, which is a part of PE module construction. See also section 11.2.1, page 98.
When the method is called the provided pointer is pushed onto the vector object,
task list img holding the different task pointers.

11.7.3 finish

Thefinish method is called from a synchronizer, whenever it receives aFINISHED
message associated with a local task or external task (coming from the IO task).
The operations performed by the method are:

• Clear dependencies in the dependency data base for local tasks.

• Checking if task graph execution has completed.

When calling the method, two arguments must be provided: the encoded ID16

of the finished task and a pointer to a vector object, holding the ID’s of the local
tasks assigned to the particular PE in which the synchronizer is located17.

Clear dependencies in the dependency data base for local tasks

First operation performed is resolving/clearing the dependencies to the local tasks.
At first, the data base associated with the finished task ID is found from therm list

16see section 6.4.1, page 35
17the local task ID list is located in the synchronizer and is initialized during the dynamic task

assignment phase. See also section 11.2.1, page 98.

132 Chapter 11. Implementation: Abstract PE model

by analyzing thetask used look up table in the different data base objects. If an
entry associated with the finished task ID is true, then the correct data base has been
found, since true indicates that the finish task belongs to the task graph encapsu-
lated in the database. Afterward follows the clearing of the selected entries, based
on the finished task ID and the local task ID’s available from the task list, is cleared.
The finished task ID is associated with column addressing while a local task ID is
associated with row addressing. In conjunction to this, the actual row/column in-
dexes are found using the mapping information, stored inmapping nfo .

Checking if task graph execution has completed

After the database has been updated a check is performed to see if the particu-
lar task graph has completed execution. This is simply done by evaluating if all
entries inmatrix , within the defined boundary, has been cleared. If so, task
graph execution has completed and a new execution cycle may start. First the de-
pendencies are restored again, using information from the corresponding original
reference database object, available fromrm list img . Afterward follows the
task unblocking. Which task to unblock is found by determine the ID’s of the
task belonging to the task graph. This is done simply by scanningtask used .
Whenever an entry is true, the associated index is converted back to a task ID (using
mapping nfo look-up table) and a search in the task pointer list (task list img
is done, until the associated task object is found. Identifying a task object is done
by calling the task object method,GetTaskID which returns the encoded task
ID. When there is a task ID match, the correct task object has been found and the
method,unblock is called, causing the task to get unblocked. The procedure
described above is repeated until all the tasks have been unblocked.

11.7.4 mask

The mask method is called whenever a synchronizer needs to checks if all de-
pendencies has been resolved for a task. The method returns false if all depen-
dencies have been resolved. Otherwise true. Argument provided to the method
is the encoded task ID. First operation performed is finding the mapped index to
use when addressing the dependency database. This is done based on the task ID
and using themapping nfo look up table. Next step consists of finding the cor-
rect database object inrm list , associated with the task ID. This is done by a
look-up in task used , using the mapped index, until true is found in a database
object (indicates the task ID belongs to the particular task graph). When the correct
data base object has been found, all column entries inmatrix within the defined
boundaries are added together, using a fixed row index, identified by the mapped
ID. If the result is zero, then all dependencies have been resolved.

11.7. Dependency controller 133

1,1

2,1 3,1

4,1 5,1 8,1 9,1

7,1

6,1

Task graph 1 Task graph 2

1

1

1 2 3 4 5 6 7 8 9 10

9

8

7

6

5

4

3

2

1

1

1

1

1

1

1

1

1 2 3 4 5 6 7 8 9

1

1

2 2

1 1 1 1 1

1

1

1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

1

22

1 1 1 1

9

8

7

6

5

4

3

2

1

matrix

task_used

matrix

task_used

boundary[0] = 1
boundary[1] = 5

boundary[0] = 6
boundary[1] = 9

Task graph extraction algorithm

Dependency data base equivalent

Applications

Dependency data base object for
task graph 1

Dependency data base object for
task graph 2

Figure 11.18: Example illustrating the task graph extraction.

134 Chapter 11. Implementation: Abstract PE model

11.8 Performance monitor

The performance monitor module monitors the end-to-end deadline for task groups
with multiple as well as the performance of the different PE’s assigned to the frame-
work. PE performance covers utilization and IO task usage. The different types of
monitoring is based onreporting method callsto performance monitor. For an
example, in conjunction to the end-to-end deadline monitoring, a task calls a dedi-
cated method in the performance monitor when execution starts end finishes.

Calling the reporting methods, form the different modules doing reporting, is
done through a pointer to the performance monitor object, provided during PE
module construction. Modules calling reporting method are the periodic tasks and
IO task modules. Reporting done by the periodic task relates to end-to-end deadline
and PE utilization monitoring, while IO task reporting relates to IO task usage
monitoring.

Figure 11.19 is a block diagram showing the connection between the perfor-
mance monitor and the IO task and periodic task objects. The dotted lines indicate
pointer to the object.

Performance_monitor

ioTask1 PerTask1

ioTask2

ioTaskN-1

PerTask2

PerTaskM-1

.

.
.
.

Figure 11.19: Block diagram showing the connection between the performance
monitor and the IO task and periodic task objects.

The performance monitor is not a required module and may be left out when
building the framework. In fact, doing so will reduce the simulation time. The
performance monitor is defined by thePerformance monitor class.

11.8.1 Initialization

After a performance monitor module object has been created, the different internal
databases must be initialized. This must be done after parsing but before the sim-
ulation starts. Initialization is done by calling the method,initialize with a
pointer to the parser object and the number of PE’s as arguments. From the parser
object, it gets the number of subtasks for each end-to-end task as well as the end-
to-end deadline. This information is stored in the Nx2 unsigned integer database,
subtask DBand will be used when initializing the associated end-to-end dead-
line counter, for an end-to-end task group. Row is associated with the end-to-end
task group ID, while column 0 and 1 holds the no.of subtasks and the deadline re-

11.8. Performance monitor 135

spectively. If no end-to-end deadlines are declared at all (meaning that there are not
any end-to-end tasks with multiple subtasks) the end-to-end deadline monitoring
will be disabled.

The no.of PE’s is used for initializing the PE utilization and IO task usage
databases,cpu DBandiotask DBeach being an array of the struct type,
cpu DB type andiotask DB type respectively and with an array size equal
to the no.of PE’s. Thus gaining access to a database, for a particular PE, is ac-
complished by using the PE ID. Table 11.15 and 11.16 describes the entries in the
structs.

Type Name Description

bool idle A flag identifying if the PE is in idle (true if
so)

double count A counter used for keeping track of the
no.of clock cycles a PE has been in used.
Only incremented when not in idle (i.e.
idle =false).

Table 11.15: PE utilization data base struct,cpu DB type .

Type Name Description

unsigned int type Identifies the current state of the IO task; e.g.
being in idle (0), doing a write request (1)
etc. The value oftype maps directly to
the differenttype valid for the IO taskRUN
message. See also table 11.5, page 110.

double (1x6 array) count A counter used for keeping track of the no
of clock cycles used in the different states.
When the counter is updated, the value of
state is used for index selection.

Table 11.16: IO task data base struct,iotask DB type .

11.8.2 End-to-end deadline reporting methods

The methods,subtaskRun and subtaskFinished is called by a periodic
task object when execution starts and completes respectively. Provided arguments
to the methods are the group ID and subtask ID. The method,subtaskRun has
only a meaning when called by the first subtask in an end-to-end task. When this
happens adeadline counter objectfor the current task group is created and initial-
ized and pushed onto the vector,eedl DB holding deadline counter objects for
activate end-to-end tasks. A counter object is a struct of the type,eedl DB type .
The different struct entries is described in table 11.17.

During deadline counter object initialization, the number of subtask and the
end-to-end deadline is fetched fromsubtask DBand stored in
pendingSubTasks aeedl respectively.

136 Chapter 11. Implementation: Abstract PE model

Type Name Description

unsigned int groupID The end-to-end task group ID associated
with the deadline counter object.

unsigned int pendingSubTasks Identifying the number of subtask left in the
group. Is decremented each time a subtask
in the group finishes execution.

unsigned int nextSubTask Identifying the ID of the next expected sub-
task to finish. Used for error monitoring pur-
pose only; that is if next subtask finishing ex-
ecution has a different subtask ID than the
one identified bynextSubTask , an error
message will be asserted.

unsigned int eedl The end-to-end deadline counter. Is decre-
mented in each clock cycle.

Table 11.17: End-to-end deadline counter struct,eedl DB type .

WhensubtaskFinished is called, the counter object associated with the
group ID, provided as argument, is found in the vector,
eedl DBandpendingSubTasks is decremented whilenextSubTask is in-
cremented. IfpendingSubTasks is zero after being decremented, it means that
all subtask has been completed and the end-to-end task has finished execution.
Thus the deadline counter object is erased fromeedl DBafterward.

11.8.3 PE utilization reporting methods

The methods,cpu busy andcpu idle are used when notifying the performance
monitor that a PE is busy or in idle respectively. The methods are called from a
periodic task object, when task execution starts and completes. Required argument
to the methods are the PE ID. Callingcpu busy causing theidle flag to be
set to false in the associated data base entry incpu DB, while callingcpu idle
causing the flag to be set to true. Addressing the data base entry incpu DBis done
using the provided PE ID.

When idle is false the utilization counter,count will be incremented each
clock cycle.

11.8.4 IO task reporting method

An IO task reports to the performance monitor by calling the method,iotask state .
Whenever the IO task is launched for execution or finishes, it calls the method with
the PE ID and thetypeof execution as argument (identified by thetype entry in
the message received from the scheduler. See also table 11.5, page 110). Using the
PE ID, the method accesses a database entry iniotask DBand settype equal
to the execution type.

11.8. Performance monitor 137

When incrementing the IO task usage counter, in each clock cycle, the value of
type will determines which entry to increment incount .

11.8.5 Data base updating

Updating the counters in the different databases are managed by theSC THREAD
process,update monitor DB which executes at the rising edge of the clock.
For the end-to-end deadline counter objects, located ineedl DB, theeedl entry
is decremented. Ifeedl has reached zero, it means that the end-to-end deadline
has been missed for the particular task group, and a notification will be asserted to
screen/log file. For the CPU utilization and IO usage databases, all the database
entries, associated with the different PE’s, are accesses and the counters are being
incremented, if enabled.

11.8.6 Monitoring summary methods

A PE utilization and IO task usage summary is obtained by calling the methods,
pe utilization summary andiotask usage summary respectively.

pe utilization summary will print the percentage utilization of the dif-
ferent PE’s,defined as the no.of clock cycles a PE has been in use, relative to the
total no. of simulation clock cycles.

iotask usage summary will print the percentage usage of the IO task,
defined as the no.of clock cycles the IO task has been executed, relative to the
total no. of clock cycles the associated PE has been in use. Also printed is the
percentage usage for write requests, read request, write data receiving etc.

Chapter 12

Implementation: SoC
communication platform model

This chapter presents the implementation specific details for the different modules,
forming the SoC communication platform model. It ishighly recommended to use
the source code for reference, when reading this chapter. The source code can be
found on the enclosed CD-ROM and may be used as reference. Please consult the
README file for a directory contents description.

12.1 IO port

The IO ports modules currently available supports OCP2.0 at TL0 and TL1. These
modules are the same being used for the IO device modules in the extended abstract
PE model. Please consult section 11.6, page 115 for an implementation description.

12.2 Intermediate adapter

The intermediate adapter manages the interfacing between the IO port and the SoC
communication layer model and is defined by the class,SoC comminter adapt .
Whenever a transport message is received, it initiates a message to the IO port caus-
ing it to start a transaction. Similar, the intermediate adapter will issue a transport
message to the SoC communication layer model, whenever a new SoC communi-
cation event (request/response) is received by the IO port. In conjunction to this, it
uses asc link mpmaster and slave port in the interface to the SoC communica-
tion layer model and IO port.

Figure 12.1 shows a simplified block diagram of the intermediate adapter. Oval
figures indicate thread processes (SC THREADor SC SLAVE) while rectangular
figures indicate normal C++ methods. A name associated with a connection to a
process (e.g.request start) indicates the name of ansc event object, used
for triggering the process execution.

139

140 Chapter 12. Implementation: SoC communication platform model

The next sections describe the implementation of the different methods and
processes and how the interact together.

C
om

m
un

ic
at

io
n

lin
k

to
/fr

om
 N

oC
 a

llo
ca

to
r

s
c

_
l

i
n

k
_

m
p

<
n

o
c

_
m

e
s

s
a

g
e

_
t

y
p

e
*

>

s
c

_
l

i
n

k
_

m
p

<
i

o
_

m
e

s
s

a
g

e
_

t
y

p
e

*
>

C
om

m
un

ic
at

io
n

lin
k

to
/fr

om
 IO

 d
ev

ic
e

send_io_request_message

SC_SLAVE

SC_SLAVE

send_io_response_message

prepare_io_request_message

prepare_io_request_message

rx_noc_comm

request_start

response_start

rx_io_comm

request_monitor

request_monitor

set_IOdevice_flag

start_request_mon

start_response_mon

response_done

request_done

Figure 12.1: Simplified block diagram of the intermediate adapter.

12.2.1 Internal databases

The intermediate adapter incorporates databases for the management the request
and response data received from the IO port. The request database is contained in
request mon DBand is an array of the struct type,request mon DB type .
The response database is contained inresponse mon DBand is an array of the
struct type,response mon DB type . The array size for both databases equal
the number of threads supported by the SoC communication interface (initialized
in the class constructor). Thus there exist a database for each thread, since re-
quest/response data for the different threads must be treaded independently (also
to support out-of-order execution).

The request and response databases are maintained by the clockedSC THREAD
processes,request monitor andresponse monitor respectively. The ex-
act procedure for this will be explained later.

Table 12.1 and 12.2 describes the entries contained in the structs,
request mon DB type andresponse mon DB type .

12.2.2 SoC communication layer interface slave port

TheSC SLAVEprocess,rx noc commcontains the slave port interfacing to the
SoC communication layer. It decodes the transport message coming from the SoC
allocator and determines the type of transfer to initiate. The supported message
types and their meaning is described in table 12.3.

12.2. Intermediate adapter 141

Type Name Description

bool done A flag used in therequest monitor process, for
controlling when all data has been received for a re-
quest. The flag will be set to true when the request
phase completes.

unsigned int type Holds the type of request (WR or RD)

unsigned int dataUnits Data transfer size. This is the same as the burst length.

unsigned int counter A counter used for monitoring the amount of data re-
ceived for a requests. Incremented each time new data
are fetched from the IO port data/address buffer.

deque<unsigned int>* addrQ Pointer to a deque object, used for buffering the
addresses fetched from the IO port request address
buffer.

deque<unsigned int>* dataQ Pointer to a deque object, used for buffering the data
fetched from the IO port request data buffer. Only
applicable for write requests.

deque<unsigned int>* ioDev addrQ Pointer to deque object in the IO port, where to fetch
request addresses from.

deque<unsigned int>* ioDev dataQ Pointer to deque object in the IO port, where to fetch
request data from.

Table 12.1: Request database struct,request mon DB type .

12.2.3 Request transmission

A request transmission will be initiated when the process,rx noc commreceives
a RUNtransport message with thetype entry beingWRor RD, indicating write
or read request respectively. If the transport message is associated with a read
request, the corresponding response database entry fromresponse mon DB is
updated (selected usingthreadID). Updating consists of fetching the entries,
from anddataUnits from the transport message and store this in the response
database. See also table 12.2. This information will be used, when the response for
the particular thread is received by the IO port. Afterward the process issues a call
to the method,prepare io request message which creates an IO port mes-
sage (io message type), fetches the SoC communication related information
from the transport message (transaction type, thread ID, data units and data/address
deque pointers), copy this into the message object and finally pushes a pointer to
the message onto the queue,requestQ (deque object) holding pending IO port
request messages. Next, a notification onrequest start is asserted, causing
the process,send io request message to fetch the message pointer from
requestQ and forwards this to the IO port. The process now waits until a no-
tification is asserted onrequest done , indicating the request phase has been

142 Chapter 12. Implementation: SoC communication platform model

Type Name Description

bool done A flag used in theresponse monitor process, for
controlling when all responses has been received for a
previously initiated read request. The flag will be set
to true when the response phase completes.

unsigned int from Holds the IO adapter ID from where the read request
came from. Used for identifying the target for the
transport message to issue, when the response phase
starts.

unsigned int dataUnits The burst length of the read request. Used as a refer-
ence for identifying when all responses has been re-
ceived.

unsigned int counter A counter used for monitoring the amount of response
data received. Incremented each time new response
data are fetched from the IO port response data buffer.

deque<unsigned int>* dataQ Pointer to a deque object, used for buffering the re-
sponse data fetched from the IO port response data
buffer.

deque<unsigned int>* ioDev dataQ Pointer to a deque object in the IO port, where to fetch
response data from.

Table 12.2: Response database struct,response mon DB type .

comm type Description

RUN
WR Start a write request.
RD Start a read request.
RESP Start a response phase (to a previously re-

ceived read request).

Table 12.3: Supported transport messages types, received from the IO device.
command type refers to the declaration in the transport message. See also ta-
ble 9.1, page 57.

completed by the IO port. It then checks if there are any pending request messages
buffered in the queue. If so, the next message pointer is fetched, and the same
procedure described above is repeated, until the queue becomes empty. Then the
process suspends itself.

12.2.4 Response transmission

A response transmission will be initiated when the process,rx noc commre-
ceives aRUNtransport message with thetype entry beingRESP. The procedure
is similar to the request transmission handling, but using the method,
prepare io response message for IO port message preparation and the

12.3. IO port interface slave port 143

process,send io response message for managing the message pointer for-
warding to the IO port. In conjunction to this, the queue,responseQ is used
for holding pointers to pending response messages, whileresponse start and
response done is used for notifying the process,send io response message
when a response message is ready and when a response phase has been completed
by the IO port respectively.

12.3 IO port interface slave port

TheSC SLAVEprocess,rx io commreceives the messages coming from the IO
port. Whenever a message is received, it is being decoded and an associated action
will be initiated. An IO port message either indicates that some data have been
received from the SoC communication interface (a request or response) or that a
previous initiated request or response phase has been completed. The different
types of supported IO port messages and their meaning is listed in table 12.41.

comm type Description

READY
RESP A read request has been received.
RDRESPREADY Response data, associated with a previously

initiated read has been received and now
ready to be fetched.

WRDATAREADY A write request has been received and data is
now ready to be fetched.

FINISH
WR The initiated write request has completed.
RD The initiated read request has completed.
RESP The response phase (to a previously received

read request) has completed.

Table 12.4: Supported messages types, received from the IO port.commandtype
refers to the declaration in the message. See also table 11.4, page 107.

When receiving aFINISH message for a previously initiated request or re-
sponse, the process asserts a notification onrequest done or response done .
See also the previous sections describing the request and response transmission.

12.4 Request receiving

When the process,rx io commreceives request message from the IO port, it
performs the following actions in the described order:

Creating and initializing a new transport messageThe thread ID (threadID)
and burst length (dataUnits) is fetched from the IO port message and
stored in the associated entries in the transport message. If the request being
a read or write, thetype entry in the transport message will be set toRD

1This table is similar to table 11.6, page 111, but repeated here for convenience.

144 Chapter 12. Implementation: SoC communication platform model

or WRrespectively. Also initialized in the transport message is theposition
indicationentries. from andnow is set equal the current node/IO adapter
ID, while to is found by calling the method,get target nodeID (not
shown in figure 12.1) with the first provided request address as argument.
From the look up table,node address matrix containing the address
space for the different IO adapters, it finds the ID of the target IO adapter
and returns this.

Create deque objects for request address/data bufferingNew data and address
deque objects are created, for buffering the addresses and data from the re-
quest. Pointers to these objects are included in the transport message (in the
addrQ anddataQ entries), since the destination IO adapter must be able
to fetch the data from the buffers when it receives the transport message and
starts the request. If the request being a read, only an address deque object
will be created.

Update the request databaseThis is required by the process,request monitor
which manages the request phase and fetching of data from the IO port. Se-
lecting the correct database entry is done using the request thread ID. Up-
dating consists of storing the request type and data transfer size associated.
Also stored are the pointers to newly created address/data buffers as well as
the pointers to the address/data buffers provided by the IO port (from where
to fetch the request address/data). Finally is the entry,done set to false,
indicating a pending request on this thread, and the request counter entry,
counter is initialized to 1 (since the first data from the request has been
pre-fetched and stored in the request buffers as well). See also table 12.1,
page 141.

Issues the transport message to the SoC communication layer modelThis is done
after the request database entry has been updated.

Start request monitoring and data fetching After issuing the transport message,
a notification is asserted onstart request mon. This causes the clocked
SC THREADprocess,request mon to executes. At each clock cycles it
checks all database entries and do the following actions for threads associ-
ated with an ongoing request (identified bydone==0):

• fetches a new address/data from the IO task request buffers and pushes
this onto the address/data buffers to be used by the target IO adapter.
If the IO device request buffers are empty and the request phase is
incomplete (indicating an interrupted burst request), then no operation
is done.

• Increments the request counter entry,counter if an address/data was
fetched from the IO port buffer.

12.5. Response receiving 145

When all requests have been received for a particular thread (that is when
counter==dataUnits) the entry,done will be set to true, telling

request monitor that there are no longer any ongoing request on this
thread. Also, aSET FLAGmessage is issued to the IO port, notifying that it
must issue aREADYmessage when a new request phase starts on this thread.
The notification message is issued by calling the method,

set IOdevice flag with the thread ID (equals to the database entry ad-
dressing index) and a notification identifier (RDREQNOTIFY if read re-
quest orWRDATANOTIFY if write request) as arguments.

The request monitor process suspends itself if there are no ongoing
requests on any threads.

12.5 Response receiving

The actions performed when the process,rx io commreceives a response mes-
sage from the IO port is similar to what is being done when receiving a request mes-
sage. See also previous section. The only difference is that the response database,
response mon DB and the clockedSC THREADprocessed,response mon
is being used for the response management. In conjunction to this, the event,
start response monwill be used for triggering the execution ofresponse mon.

12.6 SoC allocator - 1D/2D mesh NoC topology model

The SoC allocator module defined by the class,SoC commalloc mesh models
a 1D/2D mesh NoC topology with packet switched traffic. The routing is based on
a minimal path algorithm. Selection of a minimal path will be done dynamically,
relative to avoid link contentions whenever possible. The allocator can also be used
for modeling a 1D mesh, by setting the meshspan parameter to 1, during module
construction (see also the next section).

It must be emphasized that the current model considering links as being the
only shared communication resources. From a modeling perspective, it means
routers are assumed to have infinite buffers and zero latency.

The SoC allocator consists of a single process and method:

• allocate . A SC SLAVEprocess managing the transport messages and
implementing the actual algorithm, modeling the topology. It receives and
transmit transport message pointers.

• send release message . A method called fromallocate whenever
a link, having a having pending reservation, is released.

The next sections explain the implementation approach used for modeling a 1D/2D
mesh with minimal path routing. The descriptions relate to the code found in
allocate .

146 Chapter 12. Implementation: SoC communication platform model

12.6.1 Initialization - defining a mesh grid

The layout of a mesh is configurable, using parameter,span provided to class con-
structor during object creation. This parameter defines the number of nodes per
row/column, yielding a symmetrical mesh. Thus ifspan = 3 the corresponding
modeled symmetrical mesh consists of3x3 nodes. If the number of nodes con-
necting SoC allocator is smaller or larger thanspan2, the modeled mesh becomes
asymmetrical. A special case exists, withspan = 1, which always will model a 1D
mesh. Figure 12.2 illustrates different kinds of mesh grid configuration, relative to
the value of span and the no. of network adapters connected (equivalent to the IO
adapters in figure 9.1, page 54).

0 1 2

3 4 5

6 7 8

IP0 IP1 IP2

IP3 IP4 IP5

IP6 IP7 IP8

0 1 2

3 4 5

6 7 8

IP0 IP1 IP2

IP3 IP4 IP5

0 1 2

3 4 5

6 7 8

IP0 IP1 IP2

0 1

2 3

4 5

IP0 IP1

IP2 IP3

IP4 IP5

6 7

IP6 IP7

0

1

2

IP0

IP1

IP2

3

IP3

1D mesh
span =1
NA = 4

2D mesh
span =2
NA = 8

2D mesh
span =3
NA = 9

2D mesh
span =3
NA = 6

1D mesh
span =3
NA = 3

Figure 12.2: Examples of mesh grid configuration. NA defines the number of
network adapters.

12.6.2 The mesh database

To manage the usage of the different network communication resources (in this
model only consisting of links), two mesh databases,link return and

link forward , are being used. Each database is implemented as anNxN un-
signed integer matrix.link return and link forward is used in associ-
ation with return and forward links respectively. The value ofN is defined as
N = (2·span)−1 wherespan equals the number of router nodes in a row/column,
yielding a symmetrical mesh. Figure 12.3 shows an example how the routers nodes
and links maps to the matrices. The example assumes a 2D mesh with span = 3.

As it can be seen, each entry in a mesh database corresponds to a certain po-
sition in the mesh, being a node or link. The mapping between the mesh and the
database is straightforward. For an example, node 2 maps to entry(0, 4) while the
link between node 2 and 5 maps to entry(1, 4).

The value of an entry in a mesh database is used for identifying the state of a
particular link. Following scenarios exists:

12.6. SoC allocator - 1D/2D mesh NoC topology model 147

0 1 2

3 4 5

6 7 8

2D symetrical mesh
with span=3

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

node
0 link

n.a

node
1

node
2

node
3

node
4

node
5

node
6

node
7

node
8

n.a n.a

n.a

link

link link link

link link

link link link

link link

node
0 link

n.a

node
1

node
2

node
3

node
4

node
5

node
6

node
7

node
8

n.a n.a

n.a

link

link link link

link link

link link link

link link

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

Return links Forward links

link_return link_forward

Figure 12.3: An example showing how a 2D mesh maps tolink return and
link forward .

Entry value State
0 The link is free/not in use
1 The link is occupied but there is no pending reservation in the NoC scheduler.

>1 The link is occupied and there is a pending reservation on this link in the SoC
scheduler. The number of reservations equals: entry value - 1.

For an example, if the value in entry(1, 4) in link forward is non-zero it
means that the forward link between node 2 and 5 is in use.

Whenever a link is being reserved, the associated entry is incremented. When
it is being released again, the entry is decremented.

12.6.3 The basic minimal path algorithm

The routing algorithm implemented by the SoC allocator aims to find the minimal
path through the mesh. It is based on the pseudo code algorithm shown in figure
12.4.

Initial input to the algorithm is a current position,(i, j) and a destination po-
sition, (m,n) in a 2D mesh. During each iteration in the while-loop, the current
position,(i, j) moves closer and closer to the destination,(m,n) until the position
eventually is the same, after which the while loop terminates. The algorithm is
very simple and tends to reduce the horizontal and vertical delta distances during
each iteration. Whenever a horizontal or vertical delta distance equals zero (e.g.
i = m or j = n) the position is not changed any further. Following the movement

148 Chapter 12. Implementation: SoC communication platform model

 # (i,j) identifies the current position
 # (m,n) identifies the destination position

 while i<>m AND j<>n do
 # select horizontal minimal path

if i<>m then
if i<m then

 i = i + 1
else

 i = i - 1
end if

end if

 # select vertical minimal path
if j<>n then
if j<n then

 j = j + 1
else

 j = j - 1
end if

end if

 end while

Figure 12.4: Pseudo code for the basic minimal path algorithm for a 2D mesh

of current position,(i, j) from start to finish, it can be observed that this always
will equal the minimal path in a 2D mesh.

The actual implementation of the algorithm is not fully identical to the pseudo
code in figure 12.4. However, the computation steps for finding the next horizontal
or vertical routing path in the mesh is similar.

12.6.4 Mapping a node position to a mesh database entry

When the allocator receives a transport message, the next link to use will be based
on the routing information entries,now andto available from the message.now
indicates the current node position of the message (node ID), whileto indicates
the destination node ID.

From the routing information entries, it is not possible directly to see the lo-
cations in the mesh since they do no contain any information about the topology.
Thus to be able to select which link to use next, the entries must be mapped to the
mesh, as it is being described by the mesh databases. The mapping will result in a
position defined by a row and column index,(i, j). Finding the mapped row and
column for a node ID is simply done by performing aninteger divisionandmodulo
divisionbetween the node ID and the span and multiply by two, respectively. The
equations are also shown below:

Row i = 2 · (nodeID/span)
Column j = 2 · (nodeID%span)

12.6. SoC allocator - 1D/2D mesh NoC topology model 149

Example:If the current node ID is 3 and the destination node ID is 2 and the span
is 3, the corresponding mapping yields:nodeID = 3 7→ (2, 0) andnodeID =
2 7→ (0, 4). See eventually also figure 12.3, page 147.

12.6.5 Approach to link selection and reservation

After the position ID mapping, the next link to use if found from the mapping
index, relative to the selecting a minimal routing path, as defined by the algorithm
in figure 12.4. Depending on the relative placement of the current and destination
node, it may be possible to use either a vertical or horizontal link. The following
illustrates this:

Example:From the previous example, it was found that the current and destination
node ID of 3 and 2 would map to(2, 0) and(0, 4) respectively. Here the minimal
path algorithm finds the next possible link to use to be either thevertical return
link identified by(1, 0) or thehorizontal forward linkidentified by(2, 1). This is
also illustrated in figure 12.5 showing the links in the mesh and the corresponding
entries in the mesh databases.

node
0 link

n.a

node
1

node
2

node
3

node
4

node
5

node
6

node
7

node
8

n.a n.a

n.a

link

link link

link

link link link

link link

0 1 2 3 4

0

1

2

3

4

0 1 2

3 4 5

6 7 8

re
tu

rn
 li

nk
(1

,0
)

forward link
(2,1)

Destination
node

Current
node

return
link

link

(A) Possible links to use (B) Corresponding entries in the
link_return mesh database

node
0 link

n.a

node
1

node
2

node
3

node
4

node
5

node
6

node
7

node
8

n.a n.a

n.a

link

link link

link

link link link

link link

0 1 2 3 4

0

1

2

3

4

forward
link

link

(C) Corresponding entries in the
link_forward mesh database

Figure 12.5: The next possible next links to use. Figure A shows the links in the
2D mesh while figure B shows the corresponding entries

Whenever it is possible to use either a vertical or horizontal link, the imple-
mented algorithm always tries to reserve a vertical link first. If the link is being
occupied (the associated entry in the selected mesh database in non-zero) and it is
possible to use a horizontal link, it will reserve this instead; also if it is being occu-
pied. If it is only possible to use a certain link (vertical or horizontal), a reservation
will be put on this link, no matter if it is being occupied or not.

In conjunction to link reservation, this is being done by incrementing the asso-
ciated entry in the selected mesh database. Also, mesh database selection depends
on the delta distance to move in the mesh being negative or positive, index-wise.

Example:Considering the example from before (see also figure 12.5), it is now as-
sumed that a reservation of the horizontal forward link, identified by(2, 1) is to be

150 Chapter 12. Implementation: SoC communication platform model

done. Here the selected mesh database would belink forward since the delta
distance to move is positive. After selection, the entry in(2, 1) in link forward
is incremented.

12.6.6 Transport message management

In a transport message, the entry,resourceID is used for identifying the shared
resource used or to be used by the message (see also table 9.1, page 57). For this
SoC allocator, it refers to a particular link in the mesh and is implemented as a1x3
matrix, encoded as shown in table 12.5.

Entry Description
0 Identifies the link type, where 0=reverse and 1=forward.
1 The horizontal link position in the mesh database.
2 The vertical link position in the mesh database.

Table 12.5: Encoding ofresourceID .

When the process,allocate receives a transport message not coming from
an intermediate adapter, is means that a previous link, identifiedresourceID has
been released. Based on the entries inresourceID , a mesh database is selected
and the associated value in the database entry is decremented. If there is a pending
reservation on this link, a call is made to the method,send release message .
This method issues aRELEASEmessage to the scheduler, containing the resource
ID information, causing the pending transport message to be released.

Afterward a check is done to see if the transport message has reached the desti-
nation node, by evaluating if the position indicators,now andto are equal. If so, it
means that the destination adapter has completed the inter-processor communica-
tion event and the message may now be deleted. If the transport messages has not
reached the destination node yet, the next link to use is found using the approach
described in the previous sections. In conjunction to this the entry,resourceID
is updated to reflect which link to use, while current node ID position,to is updated
to reflect the next node ID position of the message. Also, the entry,CSLidentifying
for how long time the link is to be occupied, is initialized a value equal to the data
transfer size (identified by the entry,dataUnits . If there was no link contention,
the transport message is finally changed to aGRANTmessage and forwarded to the
SoC allocator. Otherwise it is changed to aREFUSEmessage and forwarded to the
SoC scheduler.

12.7 SoC allocator - single shared bus model

The SoC allocator module, defined by the class,SoC commalloc bus models
a single shared bus, with the bus being granted on a first-come-first-served basis.
The model is shown in figure 12.6.

12.8. SoC resource usage buffer 151

IP2IP1 IP4

arbiter

IP3

bus

Figure 12.6: Single shared bus model.

The implementation is similar to the 1D/2D Mesh model, except that there is
only one link available. Otherwise the approach for doing link reservation and
transport message management is exactly the same.

The model consists of a process and a method:

• allocate . A SC SLAVEprocess managing the transport messages and
the bus database. It receives and transmit transport message pointers.

• send release message . A method called fromallocated whenever
the bus is released and there is a pending reservation on the link.

The bus database is defined by the unsigned int variable,bus .

12.8 SoC resource usage buffer

The SoC resource usage buffer is used for buffering transport messages while using
a shared communication resource. It is defined by the class,SoC commres buff
and consists of the following processes:

• rx noc message . A SC SLAVEprocess receiving transport message point-
ers from the SoC allocator. Whenever it receives aGRANTtransport mes-
sage, the pointer is pushed onto the resource usage buffer,buffer (a deque
object, holding pointers to transport messages).

It also checks ifnow == to . If this condition is met, it means that message
is to reach the destination IO adapter, since the current resource connects to
the destination node. Thus the destination IO adapter may start the SoC
communication event simultaneously with the resource being granted. This
is accomplished by creating a copy of the transport message, change it to a
RUNmessage and forwards this to the destination intermediate adapter.

• update buffer . A clocked SC THREADprocess for maintaining the
buffer. In each clock cycle theCSLentry in the different buffered messages
is decremented and wheneverCSL has reached zero, the transport message
pointer is removed from the queue and forwarded back to the SoC allocator
again.

152 Chapter 12. Implementation: SoC communication platform model

12.9 SoC scheduler

The SoC scheduler is used for buffering transport messages waiting for a shared
communication resource to become free. Scheduling is done according to the first-
come-first-served principle. The SoC scheduler is defined by the class,
SoC commscheduler and consists of a process and a method:

• rx noc message . A SC SLAVEprocess receiving transport message point-
ers from the SoC allocator. AREFUSEtransport message, causes the trans-
port message pointer to be pushed back onto the queue,Q (a deque object,
holding pointers to transport messages). ARELEASEmessage initiates a
call to the method,check queue .

• check queue . Scans the transport message pointer queue,Quntil finding
the first pending message waiting for this resource (identified by the entry,
resourceID). When the message has been found it is being changed to a
GRANTtransport message, forwarded to the SoC usage buffer and the pointer
is removed from the queue,Q.

Chapter 13

Conclusion

The aim with this project has been to integrate an abstract SystemC based RTOS
model for MPSoC [7], together with a OCP2.0 based communication platform for
low-level inter-processor communication. The motivation for this is to expand the
ability to mix and integrate different SoC models, operating at different abstraction
levels, into a common SoC communication platform having the same interface to
all models. Having the ability to select from a variety of SoC models, represent-
ing IP cores a different abstraction levels, will serve as a powerful tool for SoC
designers, since it becomes possible to customize a simulation framework, relative
to the design space exploration experiments to perform (e.g. for SoC communica-
tion platform analysis). Thus IP core abstraction level refinement can be done as
desired.

As an extension to the project, a SystemC based abstract SoC communication
platform model has been developed as well.

The original abstract RTOS based PE[7] model has been extended to support low-
level SoC communication by implementing an IO device and IO task module on
top of it. The IO device models a physical hardware port while the IO task models
a device driver application, used for controlling the hardware port and managing
data/address encoding, related to inter-task dependency. Two IO device modules
has been implemented, supporting OCP2.0 at TL0 and TL1 respectively. They
have a multi-threaded interface ans support out-of-order thread execution. Further,
they are configurable (signal-wise) relative to the channel they connect to.

In conjunction to the management of inter-task dependencies, a newtask de-
pendency modulehas been added on top of the original synchronizer module. The
module serves as a common synchronization database, since all synchronizers con-
nect to this module. It also fixes the lack of support for periodically task graph
execution, which was a serious issue in the original synchronizer module, limiting
the simulation time to a single task graph period.

Further, the abstract RTOS based PE model has been extended to support end-
to-end tasks [20], which is being used in conjunction to the implementation of

153

154 Chapter 13. Conclusion

read/response based inter-processor communication.
A newperformance monitor modulehas been implemented as well. This mod-

ule monitors the performance of the different PE’s, with respect to utilization and
time spend on inter-processor communication etc., thus providing useful informa-
tion to the SoC designer. It also serves to monitor the deadline for end-to-end tasks,
consisting of multiple subtasks.

Finally, the performance of the model has been improved 10..15% by changing
the sc mp link module communication approach from message object passing
to pointersto message object passing.

To provide the SoC designer with an easy and flexible method for configur-
ing an abstract PE based MPSoC simulation framework, a dedicatedconfiguration
file parser modulehas been implemented as well. The parser accepts a configu-
ration file as input, describing different parameters for a simulation (task assign-
ment/partitioning etc.), using a simple script language as showed in the example in
figure 8.8, page 51. From the configuration file declarations, a simulation frame-
work can be dynamically created/configured, without having to rebuild the system-
level model again. Further, the simplicity and modularity of the parser makes it
very easy to implement new script commands and data types, if needed.

All new modules have been implemented with emphasis on modularity, to ensure
backward compatibility with any previous simulation frameworks, based on the ab-
stract RTOS model. This approach also makes it easy to implement new hardware
port and IO device driver models, since the interface to the modules is well-defined.

In conjunction to the extended abstract PE model, a SystemC based abstract SoC
communication platform model has been developed as well. It supports modeling
of different topologies, ranging from a simple bus to a 1D/2D mesh based NoC,
using minimal path routing and packet switched traffic. It favorers from being
able to support transmission of real data, while still having an abstract description
of the underlying communication topology. Further, the modular implementation
approach makes it easy to implement new topology models as well as other SoC
communication protocols. Another interesting feature arising from the modular-
ity, is the ability to integrate/mix communication protocols operating at different
abstraction levels (e.g. OCP2.0 TL0 and TL1) or for that matters different SoC
communication protocols (e.g. OCP and Wishbone). The current model supports
OCP2.0 TL0 and TL1 SoC communication protocols.

With the new extensions added to the abstract PE model, the power and flexibil-
ity of the model has increased to even new heights. Especially the introduction
of the configuration file parser, has moved the model up to a level, where it has
become useful in practice, since a simulation framework no longer needs to be re-
build each time design parameters such as task partitioning or scheduling policies
are changed. The usefulness of the extended abstract PE model as well as the new
SoC communication model was clearly demonstrated using a series of different de-

155

sign space exploration experiments, ranging from analysis of a simple architecture,
consisting of a bus and two abstract PE’s, to a more complex performance analysis
of an architecture, consisting of nine abstract PE’s connected in a 2D mesh. Thus
it can be concluded that the objectives for the project are successfully met.

Chapter 14

Future work

This chapter highlight some of the suggested future work, related to the RTOS and
SoC communication frameworks.

14.1 RTOS framework

• New method for doing task dependency declarationThe current approach
using a dependency matrix works fine, but for many tasks (>100) the method
becomes cumbersome, also increasing the chances for making errors. A new
approach could be define the precedence or succeeding dependencies for
each task in the task declaration.

• Support for multiple transaction types (write and/or read) for a task
having multiple inter dependenciesIn the current framework the same
transaction type will be used for all preceding edges associated with inter
dependency.

• Better summary reporting after simulation completesThat is also includ-
ing information such as no.of missed deadline, average execution time etc.
for the different task graphs. See also section 10.1.4, page 67 presenting an
example of the current summary reporting.

• Support for transmission of real data between tasksThis is required for
doing MPARM behavior emulation and relates to the implementation of the
task model.

• Support for conditional task graph execution/branching Emulation of
non-static task graphs and features such as semaphore and mutexes. Relates
to the implementation of the synchronizer, task model and IO task.

157

158 Chapter 14. Future work

14.2 SoC communication platform framework

• Extend the SoC allocator for mesh based NoC modelingThe current
model assumes a router node has infinite buffer and zero latency. This is
too unrealistic/optimistic and should modeled as a shared communication
resource as well.

• Better real-time and summary reporting The current approach, as for an
example, shown in figure 10.13, page 77 is far from optimal.

14.3 Simulation presentation in general

As stated above, it is common for both frameworks, that the simulation result pre-
sentation is non-optimal. Getting a quick overview of the system performance
and potential bottlenecks, related to parameters such as bad scheduling and task
partitioning, becomes difficult when doing real complex system-level modeling
(e.g. nine PE’s and five applications) and using very long simulation times. Imple-
menting a well organized summary reporting method is therefore essential, if the
frameworks are to become easy to use for very complex design space exploration
experiments.

Bibliography

[1] Cofluent studio. http://www.cofluentdesign.com.

[2] Ocp international partnership. http://www.ocpip.org.

[3] Software arm. http://www.g141.com/projects/swarm.

[4] Specc. http://www.specc.org.

[5] Systemc based soc communication modeling for the ocp protocol.
http://www.ocpip.org. white paper.

[6] Network-Centric System-Level Model for Multiprocessor SoC Simulation.
2004.

[7] A SystemC-Based Abstract Real-Time Operating System Model for Multipro-
cessor System-on-Chip. Morgan Kaufmann Publishers, October 2004.

[8] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. Rtos modeling for
system level design. InProceedings of the conference on Design, Automation
and Test in Europe, page 10130. IEEE Computer Society, 2003.

[9] Knud Martin Hansen. Simulation framework for wireless sensor networks.
Master’s thesis, Technical University of Denmark, IMM, 2004.

[10] Fabiano Hessel, Vitor M.da Rosa, Igor M.Reis, Ricardo Planner, Cı̈¿½ar
A.M.Marcon, and Altamiro A.Susin. Abstract rtos modeling for embed-
ded systems. InIEEE International Workshop on Rapid System Prototyping,
2004.

[11] J.Sun and J.Liu. Synchronization protocols in distributed real-time sys-
tems. InThe 16th International Conference on Distributed Computer Sys-
tems, pages 48–45, May 1996.

[12] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca Benini, and Roberto
Zafalon. Analyzing on-chip communication in a mpsoc environment. In
Proceedings of the conference on Design, automation and test in Europe,
page 20752. IEEE Computer Society, 2004.

159

160 BIBLIOGRAPHY

[13] Jan Madsen, Kashif Virk, and M.Gonzalez. Abstract rtos modelling for mul-
tiprocessor system-on-chip. InInternational Symposium on System-on-Chip,
pp.147-150, 2003.

[14] Shankar Mahadevan, Federico Angiolini, Michael Storgaard, Rasmus Grn-
dahl Olsen, Luca Benini, Jens Spars, and Jan Madsen. A network traffic
generator model for fast network-on-chip simulation. InInternational Sym-
posium on System-on-Chip, 2005.

[15] Grant Martin. Design-to-volume: Cadence nanometer design strat-
egy. http://lina.ee.ntu.edu.tw/course/HWSW Codesign2004/slides/Part-IV-
SystemC-03092004.pdf.

[16] R. Le Moigne, O. Pasquier, and J-P. Calvez. A generic rtos model for real-
time systems simulation with systemc. InProceedings of the conference on
Design, automation and test in Europe, page 30082. IEEE Computer Society,
2004.

[17] OCP-IP Association, 5440 SW Westgate Drive, Suite 217 Portland, OR
97221.Open Core Specification Protocol 2.0, revision 1.1.1 edition, 2003.

[18] OCP-IP Association, 5440 SW Westgate Drive, Suite 217 Portland, OR
97221. A SystemC OCP Transaction Level Communication Channel, revi-
sion 2.0.3 edition, 2004.

[19] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. InIEEE Transactions
on computers, vol.39, no. 9, September 1990.

[20] Jun Sun. Fixed-Priority End-to-End Scheduling In Distributed Real-Time
Systems. PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[21] SystemC. SystemC Version 2.0.1 Master-Slave Communication Library,
2002.

[22] SystemC.SystemC Version 2.0.1 User’s Guide, 2002.

[23] Kashif Virk and Jan Madsen. A system-level multiprocessor system-on-chip
modeling framework. InInternational Symposium on System-on-Chip, 2004.

Appendix A

Parser database descriptions

161

162 Chapter A. Parser database descriptions

1. Declaration type mnemonic: screen_dump

Database type description
A boolean variable, screen_dump.

Access methods

Name Description
get_screen_dump Returns the value of screen_dump

2. Declaration type mnemonic: log_file

Database type description:
Array of chars, log_file[] holding the log filename.
Access methods

Name Description
get_log_file Returns a pointer to log_file

3. Declaration type mnemonic: vcd_file

Database type description
Array of chars, vcd_file[] holding the VCD filename.

Access methods

Name Description
get_log_file Returns a pointer to vcd_file

4. Declaration type mnemonic: sub_task_map

Database type description
A vector, task_list holding pointers to struct objects (task_type), encapsulating the
subtask task declarations (vector<task_type*>). The struct, task_type contains the
following entries.

Type Name Descripition
char (array) name The task name
unsigned int
(array)

arg The different task parameters
vector<res_type> resource A vector holding structs, containing the different resource

requirement. res_type is the struct and consists of an
unsigned integer array, arg holding the resource
requirement parameters

Access methods

Name Description
task_list_size Returns the size of task_list.
get_task_from_list Returns the pointer (task_type*) to task declaration struct object

no. N, where N is the argument provided to the method.
Get_subtaskID Returns the ID of the subtask, associated task declaration struct

object no. N, where N is the argument provided to the method.

163

5. Declaration type mnemonic: dependency_database

Database type description
A struct object, rm of the type dependency_matrix_type, containing the end-to-end
dependency database as well as the extended/finalized database, with subtask dependencies.
Also includes the size of each database and the index offset look-up table, associated with the
finalized database.

Type Name Descripition
unsigned int
(matrix)

parent The end-to-end dependency database, as specified in
the configuration file.

Unsigned int
(array)

parent_size Row and column size of the end-to-end dependency
database.

unsigned int
(matrix)

subtask The finalized dependency database, with subtask
dependencies.

unsigned int
(array)

subtask_size Row and column size of the finalized database
unsigned int
(matrix)

mapping_nfo A look-up table, holding the index offset for each end-
to-end task as well as the no. of subtask in each end-to-
end task.
[k][0] = no.of subtask belonging to parent ID, k.
[k][1] = index offset for parent ID, k.

Access methods

Name Description
dependency_matrix_size Returns the size of the finalized dependency database,

subtask.
get_dependency Returns an entry from the finalized dependency database,

subtask. The row and column index is provided as
argument to the method.

get_mapping_nfo Returns a value from the mapping_nfo look-up table.
Argurmnts to be provided are the parent ID, k and the
data selection value (0 or 1)
(k,0) returns no.of subtask belonging to parent ID, k.
(k,1) returns the index offset for parent ID, k.

get_dependency_matrix Returns a pointer to the struct object, rm containing all
information related to the dependency database (See table
above).

6. Declaration type mnemonic: ee_deadline

Database type description
A vector, dl_list holding pointers to struct objects (ee_deadline_type), encapsulating the
parent ID and associated end-to-end deadline (vector<ee_deadline_type*>). A struct,
ee_deadline_type consists of an unsigned integer array, arg with two entries, were arg[0]
holds the parent ID and arg[1] holds the end to end deadline.

Access methods

Name Description
get_ee_deadline Returns the end-to-end deadline associated with parent ID, provided

as argument. Target variable for the returned end-to-end deadline must
be provided as argument as well. The function returns true if an end-
to-end deadline exists for the parent ID. Otherwise false.

164 Chapter A. Parser database descriptions

7. Declaration type mnemonic: module

Database type
A vector, module_list holding pointers to other vector objects, holding struct objects
(module_type), encapsulating the different module declarations. A declaration consists of a
name and one or multiple values. The struct, module_type contains the following entries.

Type Name Descripition
char (array) name The parameter name
unsigned int
(array)

arg The different values associated with name

For each module declaration in the configuration file there will be generated a vector object,
and a pointer to this is stored in module_list (vector<vector<module_type*>*>).

Access methods

Name Description
module_search Search for a module in module_list, containing a certain declaration

name and value (e.g. “peID”, 3) provided as argument to the method.
Returns a pointer to the first detected module having the declaration.
The pointer points to the vector, holding the module declarations
(vector<module_type*>). If no modules have this declaration the
method returns null.

get_module Returns a pointer to the k’th module declaration, where k is provided as
argument to the method. The pointer points to the vector, holding the
module declarations (vector<module_type*>). If k is out of bound, the
method returns null.

get_address A macro method returning the SoC communication address declaration
for a PE, where the ID for this PE is provided as argument. The macro
will only search through module declarations, containing a “peID” and
“address” name declaration. Target variables for the returned address
(low, high limit) must be provided as argument as well. When a module
is found the method returns true. Otherwise false.

Appendix B

sc link mp communication
benchmarking

The experiment presented in this appendix describes a simulation performance
benchmarking test procedure, used for investigating differentsc link mp
communication approaches. The source code can be found on the enclosed
CD-ROM in /ARTS Model/builds/test . Two approaches are considered:

• Message objects passing (sc link mp<message type>)

• Message pointer object passing (sc link mp<message type*>)

Test configuration

The test configuration consists of a module having master and slave port
(sc outmaster andsc inslave). Two modules are instantiated and
connected in a back-to-back configuration. At each clock cycle, a master will
transmit 100 messages to slave in the other module, which fetches a value from
the message. Before starting a new transmission sequence a message is created.
After the end transmission sequence, the message is deleted again.

The implementation is the same for both communication scenarios. The only
difference is the data type asserted onto thesc link mp. Table B.1A and B.1B
shows the C++ source code using pointer and message passing respectively.

Running benchmarking

Each benchmark program was executed in a sequential manner for 100 times,
using a fixed simulation time and clock period of to 20000ns and 1ns respectively.
Simulation time was logged onto a file and processed in MS Office Excel
afterward. Platform used for simulations was Fedora Core 2 running on a Asus

165

166 Chapter B. sclink mp communication benchmarking

void test_ptr::slave()
{

unsigned int type;
 message_type* temp = in;
 type = temp->type;
}

void test_ptr::master()
{
 message_type* temp;
 while(true) {
 wait();
 temp = new message_type;
 for(unsigned int i=0;i<100;i++) {
 temp->type = i;
 out = temp;
 }

delete temp;
 }
}

(A) Message object passing
 sc_link_mp<message_type>

void test_msg::slave()
{

unsigned int type;
 message_type temp = in;
 type = temp.type;
}

void test_msg::master()
{

 message_type* temp;
 while(true) {
 wait();
 temp = new message_type;

for(unsigned int i=0;i<100;i++) {
 temp->type = i;
 out = *temp;
 }

delete temp;
 }
}

(P) Message pointer passing
sc_link_mp<message_type*>

Table B.1: C++ source code for benchmarking.

L3800 laptop@2.2GHz Pentium mobile. Figure B.1 shows an error bar plot of the
different simulation times obtained for the two benchmark programs. The X-axis
is the simulation time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time [sec]

Message passing
Pointer passing

Pointer passing
Average = 7.3 sec

Message passing
Average = 10.8 sec

Figure B.1: Simulation times using message object passing and pointer parsing.

Conclusion

As it can be seen, the average simulation time by passing message objects and
message pointers is 10.8 sec. and 7.3 sec respectively. Thus, by passing pointers
to message objects instead of message objects gives an performance improvement
of approx. 1.47. The reason for this is because message object
construction/destruction is avoided. However it is to believe that difference in the
program code may yield different benchmark figures.

Appendix C

OCP channel configuration for
examples

parameter vaule

addr wdth 32
burstlength wdth 32
cmdaccept 1
dataaccept 1
datahandshake 1
datalast 1
data wdth 32
mthreadbusy 0
reqlast 1
respaccept 1
sdatathreadbusy 0
sthreadbusy 0
threads 10

Table C.1: OCP2.0 TL0 channel configuration (declared in
TL0 OCPconfiguration.h).

167

168 Chapter C. OCP channel configuration for examples

parameter vaule

addr 1
addr wdth 16
addrspace 0
burstlength 1
burstlength wdth 16
burstprecise 1
burstseq 1
burstseq unkn enable 1
burstsinglereq 1
cmdaccept 1
dataaccept 1
datahandshake 1
datalast 1
data wdth 32
mdata 1
mthreadbusy 1
mthreadbusy exact 1
rdlwrc enable 0
readex enable 0
read enable 1
reqlast 0
mreset 0
sreset 0
reqdata together 1
resp 1
respaccept 0
sdata 1
sthreadbusy 0
sdatathreadbusy 0
sthreadbusy exact 0
threads 10
write enable 1
writenonpost enable 0
writeresp enable 0

Table C.2: OCP2.0 TL1 channel configuration (declared in the parameter file,
ocp .)

Appendix D

Simulation logfile for example 1

0 s PE#0: task(1,1) (ready) -> scheduler
0 s synchronizer: READY from task(1,1) received.

all dependencies resolved
0 s PE#0: scheduler (run) -> task(1,1)
0 s PE#0: task(2,1) (ready) -> scheduler
0 s synchronizer: task(2,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(4,1) (ready) -> scheduler
0 s synchronizer: task(4,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(6,1) (ready) -> scheduler
0 s synchronizer: task(6,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(8,1) (ready) -> scheduler
0 s synchronizer: task(8,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(10,1) (ready) -> scheduler
0 s synchronizer: task(10,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(12,1) (ready) -> scheduler
0 s synchronizer: task(12,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(14,1) (ready) -> scheduler
0 s synchronizer: task(14,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#0: task(16,1) (ready) -> scheduler
0 s synchronizer: task(16,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(3,1) (ready) -> scheduler
0 s synchronizer: task(3,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(5,1) (ready) -> scheduler
0 s synchronizer: task(5,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(7,1) (ready) -> scheduler
0 s synchronizer: task(7,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(9,1) (ready) -> scheduler
0 s synchronizer: task(9,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(11,1) (ready) -> scheduler
0 s synchronizer: task(11,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(13,1) (ready) -> scheduler
0 s synchronizer: task(13,1) has a dependency.

pushed on the Pending Tasks Queue
0 s PE#1: task(15,1) (ready) -> scheduler
0 s synchronizer: task(15,1) has a dependency.

pushed on the Pending Tasks Queue
45 ns PE#0: task(1,1) (request to NoC: task(3,1),addr=0x1011,dataUnits=10)-> adaptor
45 ns PE#0: scheduler (start NoC write request) -> task(IO)

45 ns |OCP| PE0_TL0.IOdevice.master: sent BURST request.
| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

169

170 Chapter D. Simulation logfile for example 1

46 ns |OCP| soc_comm.tl0_io_a.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

46 ns |OCP| soc_comm.tl0_io_b.master: sent BURST request.
| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

47 ns |OCP| PE1_TL0.IOdevice.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1011, MThreadID: 0x1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

47 ns PE#1: task(IO) (write data ready) -> scheduler
47 ns synchronizer: READY from IO task
47 ns PE#1: scheduler (fetch data from SLAVE) -> task(IO)

55 ns |OCP| PE0_TL0.IOdevice.master: Request completed

55 ns PE#0: task(IO) (IO task finished) -> scheduler
55 ns synconizer: releases task(2,1)
55 ns PE#0: scheduler (run) -> task(2,1)

56 ns |OCP| soc_comm.tl0_io_b.master: Request completed
57 ns PE#1: task(1,1) (external task finished) -> scheduler
57 ns synconizer: releases task(3,1)

57 ns PE#1: task(IO) (IO task finished) -> scheduler
57 ns PE#1: scheduler (run) -> task(3,1)

74 ns PE#0: task(2,1) (finished) -> scheduler
74 ns synconizer: releases task(4,1)
74 ns PE#0: scheduler (run) -> task(4,1)

76 ns PE#1: task(3,1) (finished) -> scheduler
76 ns synconizer: releases task(5,1)
76 ns PE#1: scheduler (run) -> task(5,1)

1571 ns PE#0: task(4,1) (finished) -> scheduler
1571 ns synconizer: releases task(6,1)
1571 ns PE#0: scheduler (run) -> task(6,1)

1573 ns PE#1: task(5,1) (finished) -> scheduler
1573 ns synconizer: releases task(7,1)
1573 ns PE#1: scheduler (run) -> task(7,1)

2138 ns PE#0: task(6,1) (finished) -> scheduler
2140 ns PE#1: task(7,1) (request to NoC: task(8,1),addr=0x71,dataUnits=10)-> adaptor
2140 ns PE#1: scheduler (start NoC write request) -> task(IO)

2140 ns |OCP| PE1_TL0.IOdevice.master: sent BURST request.
| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x71, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

2141 ns |OCP| soc_comm.tl0_io_b.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x71, MThreadID: 0x1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

2141 ns |OCP| soc_comm.tl0_io_a.master: sent BURST request.
| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x71, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

2142 ns |OCP| PE0_TL0.IOdevice.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x71, MThreadID: 0x1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

2142 ns PE#0: task(IO) (write data ready) -> scheduler
2142 ns synchronizer: READY from IO task
2142 ns PE#0: scheduler (fetch data from SLAVE) -> task(IO)

2150 ns |OCP| PE1_TL0.IOdevice.master: Request completed

2150 ns PE#1: task(IO) (IO task finished) -> scheduler

171

2151 ns |OCP| soc_comm.tl0_io_a.master: Request completed
2152 ns PE#0: task(7,1) (external task finished) -> scheduler
2152 ns synconizer: releases task(8,1)

2152 ns PE#0: task(IO) (IO task finished) -> scheduler
2152 ns PE#0: scheduler (run) -> task(8,1)
4721 ns PE#0: task(8,1) (request to NoC: task(9,1),addr=0x1081,dataUnits=10)-> adaptor
4721 ns PE#0: scheduler (start NoC write request) -> task(IO)

4721 ns |OCP| PE0_TL0.IOdevice.master: sent BURST request.
| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x1081, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

4722 ns |OCP| soc_comm.tl0_io_a.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1081, MThreadID: 0x1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

4722 ns |OCP| soc_comm.tl0_io_b.master: sent BURST request.
| M | Data handshake: yes
| A | MCmd: WR, MAddr: 0x1081, MThreadID: 0x1
| S | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

4723 ns |OCP| PE1_TL0.IOdevice.slave: receiving BURST request.
| S | Data handshake: yes
| L | MCmd: WR, MAddr: 0x1081, MThreadID: 0x1
| A | MBurstSeq: UNKN, MBurstLength: 10, MBurstSingleReq: 1

4723 ns PE#1: task(IO) (write data ready) -> scheduler
4723 ns synchronizer: READY from IO task
4723 ns PE#1: scheduler (fetch data from SLAVE) -> task(IO)

4731 ns |OCP| PE0_TL0.IOdevice.master: Request completed

4731 ns PE#0: task(IO) (IO task finished) -> scheduler
4731 ns synconizer: releases task(10,1)
4731 ns PE#0: scheduler (run) -> task(10,1)

4732 ns |OCP| soc_comm.tl0_io_b.master: Request completed
4733 ns PE#1: task(8,1) (external task finished) -> scheduler
4733 ns synconizer: releases task(9,1)

4733 ns PE#1: task(IO) (IO task finished) -> scheduler
4733 ns PE#1: scheduler (run) -> task(9,1)

4837 ns PE#0: task(10,1) (finished) -> scheduler
4837 ns synconizer: releases task(12,1)
4837 ns PE#0: scheduler (run) -> task(12,1)

4839 ns PE#1: task(9,1) (finished) -> scheduler
4839 ns synconizer: releases task(11,1)
4839 ns PE#1: scheduler (run) -> task(11,1)

5701 ns PE#0: task(12,1) (finished) -> scheduler
5701 ns synconizer: releases task(14,1)
5701 ns PE#0: scheduler (run) -> task(14,1)

5703 ns PE#1: task(11,1) (finished) -> scheduler
5703 ns synconizer: releases task(13,1)
5703 ns PE#1: scheduler (run) -> task(13,1)

11696 ns PE#0: task(14,1) (finished) -> scheduler
11696 ns synconizer: releases task(16,1)
11696 ns PE#0: scheduler (run) -> task(16,1)

11698 ns PE#1: task(13,1) (finished) -> scheduler
11698 ns synconizer: releases task(15,1)
11698 ns PE#1: scheduler (run) -> task(15,1)

22773 ns PE#0: task(16,1) (finished) -> scheduler

22775 ns PE#1: task(15,1) (finished) -> scheduler

22775 ns Task graph 0 completed. Now preparing for a new cycle:
Restoring relation matrix
Unblocking task (1,1)
Unblocking task (2,1)
Unblocking task (3,1)
Unblocking task (4,1)

172 Chapter D. Simulation logfile for example 1

Unblocking task (5,1)
Unblocking task (6,1)
Unblocking task (7,1)
Unblocking task (8,1)
Unblocking task (9,1)
Unblocking task (10,1)
Unblocking task (11,1)
Unblocking task (12,1)
Unblocking task (13,1)
Unblocking task (14,1)
Unblocking task (15,1)
Unblocking task (16,1)

TASK ADDRESS MAP
PE#0 :
Task(1, 1) :
Task(2, 1) :
Task(4, 1) :
Task(6, 1) :
Task(8, 1) : 0x71
Task(10, 1) :
Task(12, 1) :
Task(14, 1) :
Task(16, 1) :

PE#1 :
Task(3, 1) : 0x1011
Task(5, 1) :
Task(7, 1) :
Task(9, 1) : 0x1081
Task(11, 1) :
Task(13, 1) :
Task(15, 1) :

PE UTILIZATION
PE#0 : 75.7967% (22739@30000)
PE#1 : 67.0833% (20125@30000)

IO TASK USAGE
PE#0 : 0.131932% (30@22739)
Write data TX : 0.0879546% (20@22739)
Write data RX : 0.0439773% (10@22739)

PE#1 : 0.149068% (30@20125)
Write data TX : 0.0496894% (10@20125)
Write data RX : 0.0993789% (20@20125)

	Introduction
	Related Work
	System-Level Description Language
	SystemC
	Master-Slave library

	SoC communication platform
	Open Core Protocol
	OCP Transaction Level Communication Library

	The abstract PE model
	Periodic Task
	Implementation

	RTOS model
	Synchronizer

	Resource Allocator
	Scheduler
	Communication link and the message struct
	Monitor module

	Inter-processor communication methodology
	Application partitioning
	SoC communication interface extension modules
	IO task synchronization and execution

	Task graph abstraction level refinement
	End-to-end task

	Inter-dependency synchronization protocol
	Task ID encoding
	Address encoding
	Data encoding

	MPSoC framework overview
	Top-level modules
	Parser
	Dependency controller
	Performance monitor
	PE performance
	End-to-end deadline

	IO task
	IO device model
	IO task-IO device communication link
	Periodic task model
	PE module
	Simulation data logging

	The configuration file
	Declaration types
	Declaration syntax
	module
	sub_task_map
	ee_deadline
	dependency_map
	log_file
	vcd_file
	screendump

	SoC communication platform model
	Module descriptions
	Module communication
	Model behavior description
	The communication task
	IO adapter model
	SoC allocator
	SoC resource usage buffer
	SoC scheduler

	Design space exploration experiments
	Example 1: Introduction
	The simulation framework
	Application model
	Simulation output data
	Analyzing the log file
	Analyzing the task scheduling and state

	Example 2: SoC communication topology exploration
	The simulation framework
	Application modeling
	Bus topology simulation result
	1D mesh topology simulation results
	2D mesh topology simulation results
	SoC communication interface TL mixture
	Summary

	Example 3: Complex system performance behavior analysis.
	Application modeling
	Simulation results

	Implementation: Abstract PE model
	Abstract PE model modifications
	Communication link
	High-level message struct extension
	RTOS modules
	Periodic task
	Monitor module

	PE construction module
	Module construction

	Parser
	Parsing methodology
	Error checking
	Parsing flow
	Configuration file scanning
	Declaration post check and processing
	Database description and access
	Maintenance

	IO task-IO device communication link
	The link
	The communication approach

	IO task
	RTOS interface slave port
	IO device interface slave port
	Request transmission
	Response transmission
	Write data processing
	Response data processing

	IO device
	OCP TL1
	Supported OCP TL1 configurations
	OCP TL1 Master
	OCP TL1 Slave
	OCP TL0
	Supported OCP TL0 configuration

	Dependency controller
	initialize_database
	push_task_ptr
	finish
	mask

	Performance monitor
	Initialization
	End-to-end deadline reporting methods
	PE utilization reporting methods
	IO task reporting method
	Data base updating
	Monitoring summary methods

	Implementation: SoC communication platform model
	IO port
	Intermediate adapter
	Internal databases
	SoC communication layer interface slave port
	Request transmission
	Response transmission

	IO port interface slave port
	Request receiving
	Response receiving
	SoC allocator - 1D/2D mesh NoC topology model
	Initialization - defining a mesh grid
	The mesh database
	The basic minimal path algorithm
	Mapping a node position to a mesh database entry
	Approach to link selection and reservation
	Transport message management

	SoC allocator - single shared bus model
	SoC resource usage buffer
	SoC scheduler

	Conclusion
	Future work
	RTOS framework
	SoC communication platform framework
	Simulation presentation in general

	Parser database descriptions
	sc_link_mp communication benchmarking
	OCP channel configuration for examples
	Simulation logfile for example 1

