
Speaker Identi�cation for Hearing Instruments

Maïa E.M. Weddin

Master's Thesis

? ?

IMM, Denmarks Technical University

March 2005



ii



iii

Every day you may make progress. Every step may be fruitful. Yet there will stretch out
before you an ever-lengthening, ever-ascending, ever-improving path. You know you will
never get to the end of the journey. But this, so far from discouraging, only adds to the

joy and glory of the climb.

Sir Winston Churchill
British politician (1874 - 1965)
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Abstract

This thesis proposes a speaker identi�cation system that can di�erentiate between
members of a small set of speakers as well as being able to detect an impostor sound
and classify it accordingly. The identi�cation system is text-independent, so no speci�c
words or sounds have to be uttered for the identi�cation to work. In cooperation with
GN ReSound, the ultimate implementation of this system would be in hearing aids, more
speci�cally, those designed for children, as they have more di�culty adjusting a hearing
instrument when such an adjustment becomes necessary. A variety of speech feature sets
are extracted, including fundamental frequency estimates, LPCC, warped LPCC, PLPCC,
MFCC and the LPC residual. Three classi�ers are used to establish which combination
of feature set and classi�er is optimal. These classi�cation methods are the Mixture of
Gaussians models, k-Nearest Neighbour and the nonlinear Neural Network. The classi�-
cation results are obtained for each frame of a test sentence and the performance of each
system setup is measured both in identi�cation rate of the small set of speakers, that is
calculated using consensus over the individually classi�ed frames for each sentence, and
in the percentage of correctly classi�ed frames. The Neural Network classi�er proves to
be more robust than the Mixture of Gaussians classi�er and already results in a 100%
correct identi�cation rate for the 8MFCC feature set.

As the ultimate aim of this research is the implementation of a speaker identi�cation
system in a hearing instrument, a method for detecting impostors is implemented. This
is done by using density modelling with the Mixture of Gaussians classi�er and a rate of
90% impostor detection is obtained for the 12∆MFCC feature set.

Finally, the small set of speakers is divided into a group of female speakers and a
group of male speakers based on fundamental frequency estimates. A division of feature
sets is implemented so that subsets based on whether a frame is voiced, unvoiced, voiced
preceded by a voiced frame, or unvoiced preceded by a voiced frame, are formed. For the
12∆MFCC feature set used with the Neural Network classi�er, the correct identi�cation
of all speakers using a limited amount of data is only obtained when using the voiced pre-
ceded by unvoiced and the unvoiced preceded by voiced features subsets, and the correct
frame rate using these subsets combined with gender separation is increased by up to 23%.

Keywords: Fundamental frequency estimation, MFCC, LPCC, PLPCC, Mixture of Gaus-
sians, impostor detection, nonlinear neural network, voiced/unvoiced speech
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Chapter 1

Introduction

1.1 Speaker Recognition
The possibilities that automatic speaker recognition systems provide are exciting, numer-
ous and powerful. A lot of research has therefore been invested in the development of
such systems, though a number of questions remain unanswered.
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Figure 1.1: The Scope of Speaker Recognition

Speech processing techniques over the past few decades have developed to such an
extent that it is now possible to construct both automatic speech recognition systems and
automatic speaker recognition systems. Speech recognition is achieved when a system can
reliably recognise a given word or other utterance regardless of the person who produced
the sound. On the other hand, the aim of speaker recognition is to make a decision on
which speaker made an utterance regardless of the speech content.
Speaker recognition can be divided into two parts: Speaker Identi�cation (SID) and

1



2 CHAPTER 1. INTRODUCTION

Speaker Veri�cation(SV), see Figure 1.1. For speaker identi�cation, the aim is to answer
the question: Which speaker does this voice belong to? The expected response is a choice
of one speaker out of many possibilities. In SV, the query is: Is the claimed speaker cor-
rectly identi�ed? The answer here is of a binary form; Accept or Reject the identity claim.

An SID system can be divided into two parts:

1. An enrollment phase

2. A test phase

During the enrollment phase, the voices of a set of reference speakers, i.e. speakers that
the system will be expected to be able to identify, are recorded. This will be referred to as
the training speech. The reference speakers provide speech both for training and testing
purposes, though during the enrollment phase the training speech is used exclusively. The
training speech undergoes some front-end processing that is described in Section 3.3. It is
hereafter processed further by extracting certain features and creating feature vectors that
are the input to the speaker modelling system. The optimal system parameters for the
speaker models are obtained based on this training data. These speaker models are also
referred to as voiceprints. If the SID task is text dependent, the training and test utterance
must be identical. In the case where the identi�cation process is text independent, the
training and test utterances are di�erent.
After the enrollment phase, the ability of the SID system to identify a speaker is evaluated
during a test phase. In the test phase, the test speech is processed by the same front-end
processing and feature extraction processes as were implemented to obtain the training
data. This gives rise to test patterns that can be compared with the reference speaker
patterns that were created during the enrollment phase. Given the test pattern, the
reference model with the highest probability of having produced the test data is found
and the test speech can be classi�ed accordingly, using a prede�ned decision logic. The
SID system thus identi�es a speaker as speaker i if the probability of the ith speaker model
is the highest.

Speaker identi�cation can therefore be said to consist of three parts that work in-
teractively: Feature extraction, pattern matching, and classi�cation. The identi�cation
process is divided into two phases, the enrollment phase and the test phase. A schematic
representation of the process in the test phase is shown in Figure 1.2.

The details concerning feature selection and extraction methods will be presented in
Chapter 3. One of the fundamental problems with feature extraction is the inevitable
redundant data that is included in each feature set. This data is not useful for the iden-
ti�cation of di�erent speakers and can therefore be seen as noise within the feature set.
It is not known which speech segments and which feature extraction methods are the
ones that contain most of the highly speaker-dependent information content in the speech
signal, which is why it is necessary to base the feature extraction methods on di�erent
criteria that are discussed in Chapter 3.

The input to the SID system can be further divided into either being closed-set or open-
set. A closed-set problem is only expected to identify a speaker from the reference model
database, while a system based on an open-set of input speakers must be able to iden-
tify a test sequence that does not match any of the reference speakers. This extra class



1.1. SPEAKER RECOGNITION 3

 

 

FRONT-END 

PROCESSING 

FEATURE 

VECTORS 

REFERENCE 

SPEAKER 

MODELS 

PATTERN 

MATCHING 

SPEECH 

FROM 

UNKNOWN 

SPEAKER 

 

DECISION 

LOGIC 

S1 

 

S2 

 

S3 

. 

. 

. 

. 

. 

SN 

SPEAKER 2 

IDENTIFIED 

Figure 1.2: A basic Speaker Identi�cation System, adapted from [9]

is referred to as the impostor class. The impostor class should be detected before the
�nal pattern matching is implemented so as to spare computational time and minimize
classi�cation error in the classi�cation process. The necessity of rooting out impostors is
undoubtable given the amount of people (not to mention other sounds) that the wearer
of a hearing instrument is exposed to everyday. Most of these would not be stored as
reference speaker models. The impostor detection method is based on density estimation
and is described fully in Chapter 5. A schematic representation of the process is shown
in Figure 1.3, which is a modi�cation of the basic outline shown in Figure 1.2.
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Figure 1.3: A Speaker Identi�cation system with density estimation for impostor detection

In speaker veri�cation, a decision has to be made between two hypotheses. The �rst



4 CHAPTER 1. INTRODUCTION

hypothesis (H1) is that the voice is from the claimed speaker, the second is that the voice
is from an impostor (H2). Depending on a match score when comparing the test speech
with the reference model, one of the two hypotheses is chosen. The decision is therefore
either "Accept" (if H1 is chosen) or "Reject"(if H2 is chosen). The score matching can be
done by implementing a usually empirically de�ned threshold value so that for threshold
value Θ, the probability pi(y) that the test characteristics y belong to speaker i is used
to classify speaker i as the correct speaker if pi(y) > Θ, otherwise the claim is rejected.
Two types of errors are thus associated with the SV system, the false acceptance rate that
measures how often a speaker that should be rejected is accepted, and the false rejection
rate that measures the amount of times a speaker that should be accepted is rejected.
The threshold Θ can be adjusted according to the balance that is desired between these
two types of error. Impostor detection is closely related to speaker veri�cation as an
impostor detector system rejects an impostor speaker for all reference speaker models in
the system, thus implementing the binary decision making process several times for each
test pattern.

The work that is presented in the remainder of this report is concerned with:

• A Speaker Identi�cation system

• An open-set problem

• Input that is text-independent

1.2 Outline of Project
The application of automatic speaker identi�cation in hearing instruments would enable
the instrument to detect a certain speaker and adjust its speech processing setting ac-
cordingly, thus facilitating the use of such instruments. Although this is the long-term
practical motivation for the work in this thesis, the actual implementation of such a sys-
tem lies beyond the scope of this project.

Our work is �rst concerned with extracting certain features from speech signals. These
features must reduce dimensionality and contain speaker-dependent information. As no
standard feature has yet been found for the optimal solution of the SID problem, several
possibilities will be explored. Several classi�ers are also implemented and tested.
The report is divided into the following chapters:

Chapter 2 provides an introduction to the basics of speech production and speech mod-
elling.

Chapter 3 goes into detail about the choice and extraction of feature sets. Explana-
tions as to why certain features should provide good speaker-dependent represen-
tations of speech will be provided along with a description of how these features
are obtained. Some of the features that are included are the Linear Prediction
cepstral coe�cients [9], the Perceptual Linear Prediction cepstral coe�cients [62],
the Mel-Frequency cepstral coe�cients [5], pitch-related features [26] and the LPC
residual [22].
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Chapter 4 describes the concepts that are common for all the classi�ers that are imple-
mented. These include the decision rule, impostor detection and sentence classi�-
cation using consensus over frame classi�cation.

Chapter 5 provides a broad view on density modelling for speaker identi�cation and a
detailed description of the Mixture of Gaussians classi�er [59] and its implementation
for speaker identi�cation and impostor detection.

Chapter 6 describes the structure and implementation of the k-Nearest Neighbour clas-
si�er [16].

Chapter 7 provides theory on the nonlinear neural network [15] and discusses its imple-
mentation.

Chapter 8 describes the ELSDSR database that is the source of all the speech data used
in this thesis.

Chapter 9 provides the results of all the trials implemented with the di�erent feature
sets and classi�ers, as well as an analysis of the e�ects on system performance of
dividing feature sets into groups depending on speaker gender and on the voicing
information of the frames.

Chapter 10 concludes on the �ndings of this thesis and gives suggestions for future work.

1.3 Use of the Database
The full description of the ELSDSR database that is used as a source of speech signals
for this thesis is provided in Chapter 8. To facilitate understanding of the results that
are already obtained in earlier chapters, a brief explanation is provided here. Of the 22
speakers that make up the database, 6 are used as the reference speaker set for most of
the implementations presented in this report. Of these, there are 3 male speakers and 3
female speakers. The other speakers in the set can be used as impostors when the need to
test for impostor detection arises. Each speaker has provided 7 training sentences. These
are labelled as sentence a, b, c, d, e, f and g and are identical for all speakers in the
database. Each speaker also provided 2 test sentences that are di�erent for each speaker.
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Chapter 2

Speech Signals

2.1 Speech Production
People are able to identify each other by listening to one another. Each person has a unique
voice, but also a unique way of speaking that is not directly related to the actual quality
of the voice. This is because speech is produced by a combination of the physiological
traits and the learned characteristics such as intonation and language usage [17]. In the
following we will examine the physiological aspects of speech production.

Figure 2.1: The human speech production mechanism, taken from [33]

Speech is produced by pushing air up from the lungs (see Figure 2.1) and through the

7
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vocal cords (larynx), into the throat and the oral cavity to the lips. Sometimes the air
�ow is directed through the nasal cavity, too [33]. The vocal tract begins just after the
vocal cords and ends at the input to the lips, see Figure 2.1. The nasal tract begins at the
soft palate, or velum, which controls whether sounds are emitted through the oral cavity
or the nasal cavity or both.

The air that is expelled from the lungs and pushed up through the trachea causes the
vocal cords to vibrate. These resultant air pulses are the source of excitation of the vocal
tract, and are often referred to as the glottal1 pulses. The nature of the air �ow through
the glottis de�nes whether the speech is voiced or unvoiced. Voiced speech is produced
by tensing the vocal cords periodically, causing the vibration of the air �ow that passes
through them and thus resulting in glottal pulses that are quasi-periodic [2]. The vibra-
tion rate of these glottal pulses is denoted as the fundamental frequency, F0. The value of
F0 is dependent on the physical shape and positioning of the vocal cords. Voiced sounds
that are produced by the periodic glottal pulses include all the vowels as well as the nasal
consonants such as /m/ and /n/ [8].

The acoustic wave formed by the air �ow from the lungs and past the glottis is altered
by the resonances of the vocal tract and by the lip radiation. The vocal tract resonances
depend on the length and shape of the throat and the position of the jaw, tongue and
velum, ie. the physical attributes of the speaker. The vocal tract resonances are called
formants [14]. The formant frequencies in voiced speech vary when di�erent vowels are
produced. This means that in voiced speech, the resulting waveform is not only dependent
on the fundamental frequency, but also on the formant frequencies, where the former is a
result of the physical attributes of the vocal cords and the latter a representation of the
physical characteristics of the vocal tract.

When the vocal cords are relaxed and air is pushed through them, a constriction at
some point along the vocal tract results in turbulence and the unvoiced sounds are pro-
duced. In this case the sound can be modelled as a stochastic process such as white noise.
As the glottis does not vibrate to create these sounds, they do not contain fundamental
frequency information though they do contain information pertaining to the vocal tract
characteristics. The unvoiced sounds include virtually all consonants. One group of con-
sonants that are produced in this way are the fricatives, produced by a turbulent �ow
of air which results in such sounds as 'sh' and 'f', while another group contains the stop
consonants referred to as plosives, such as 'b' and 'p' [9].

2.2 Speech Modelling
The way that speech is modelled is often referred to as the source-�lter model [2]. This
is because the speech that is ultimately produced by the process that is described in Sec-
tion 2.1 depends on two factors: The source characteristics of the speaker and the system
characteristics. The system comprises of the vocal tract and lip radiation, i.e. physical
attributes, while the source factors are the pulses produced by the air �ow through the
vocal cords and include such information as the fundamental frequency. The process by

1Glottis = vocal cords and the space between them
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which the vocal tract causes changes to the glottal waveform can be modelled as a �ltering
of the source (glottal pulse) spectrum by the system (vocal tract) characteristics. This
model is represented in Figure 2.2. The resulting speech signal thus has an output energy
spectrum that is the product of the source function and the system transfer function. The
source function is periodic in the time domain, and therefore has a discrete spectrum in
the frequency domain [13]. This spectrum decreases with the square of the frequency, see
Figure 2.2. The system �lter function is approximately periodic and its peaks indicate the
formant frequencies [2]. The resultant output spectrum has peaks that represent these
formant frequencies formed by the vocal tract system characteristics. The vocal tract can
be modelled as a cylindrical tube and it is the resonant frequencies of this tube that are
the formants [39]. By changing the shape of such a tube, f.ex. by movement of the tongue,
the positions of the resonant frequencies are shifted, thus allowing di�erent sounds to be
produced.

Figure 2.2: Source Spectrum, System Filter Function and Output Spectrum, taken
from [11]

At the core of the source-system speech model is the fact that the source and �lter
spectra are independent of one another. The power of this model is therefore that it opens
the possibility of separating the spectra and modelling just the �lter function which can
reliably be found in most speech segments, as will be discussed in Chapter 3. The complete
speech production model is shown schematically in Figure 2.3.

The source-system model can be represented mathematically by referring to Figure 2.3.
In discrete time, we let u(n) represent the excitation signal, which can be the glottal wave-
form or turbulence or both, depending on the sound being produced. For voiced speech,
the excitation signal is quasi-periodic with fundamental period T0. (The corresponding
rate of vibration is the fundamental frequency, F0 = 1

T0
). For unvoiced speech the excita-

tion signal is modelled as noise [2]. The vocal tract is represented by the �lter function
H(z) while the e�ect of lip radiation on the speech signal is denoted as R(z). In the time
domain, this leads to the following simpli�ed mathematical model for speech production:

s(n) = u(n)⊗ h(n)⊗ r(n) (2.1)

In the frequency domain, this can be written as:

S(z) = U(z) ·H(z) ·R(z) (2.2)

U(z) is the excitation spectrum, H(z) is the vocal tract spectrum and the impedance
caused by the lips is approximated by R(z) [1]. The transformation to the frequency
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Figure 2.3: Source-Filter Model of Speech Production, adapted from [38]

domain is de�ned by the Fourier transform [13], given by:

X(z) ≡
N−1∑

n=0

x(n)z−n, z = ej 2π
N (2.3)

By using the source-�lter model we can derive several di�erent types of features, either
in the time domain or in the frequency domain. This means that for some features (such
as those involving the fundamental frequency), it is possible to analyze the speech signal
in the time domain, while it is necessary to transform the signal to the frequency domain
in order to enable the extraction of other features, f.ex. the Mel-Frequency cepstral
coe�cients. The choice of feature sets also depends on whether the aim is to model the
excitation signal (the source) or the vocal tract �lter (the system).



Chapter 3

Choosing and Extracting Feature Sets

3.1 Representing Speech
The question of interest when speech is to be processed for the purpose of speaker identi-
�cation is: What is it in a speech signal that conveys the speaker's identity? The attempt
to answer this question forms the basis of the �rst part of the speaker identi�cation task
- the selection of certain features from the speech signal. These features are grouped
into feature vectors that serve the purpose of reducing dimensionality and redundancy in
the input to the SID system, while retaining ample speaker-speci�c information. As the
presence of irrelevant information with regards to speaker discrimination is a common
problem for all feature sets, it is the topic of ongoing research that strives to determine
feature sets of reduced complexity that can be applied to speaker identi�cation.

This research is signi�cant as the performance of a speaker identi�cation system depends
heavily on the selection of the feature sets. Apart from being unique for each individual
speaker, attributes that make features desirable are [2]:

- Frequent and natural occurence in speech

- Simple to measure

- Not varying over time, ie. robust against ageing e�ects

- Not sensitive to illness that may a�ect speech, e.g. a cold

- Independent of speci�c transmission characteristics and background noise, e.g. mi-
crophone characteristics

- Di�cult to imitate

To date, there is no feature set that satis�es all of the above conditions, so it is
necessary to extract several feature sets and observe how well the classi�cation can be
performed for each one. A feature extraction method is based on certain criteria, though.
Firstly, it is of vital importance that the features can be extracted reliably. This is a
common factor for all feature extraction methods.

The exact nature of the feature set depends on what part of a speech signal the features are

11
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expected to represent and thus what type of information is to be extracted. This is why
feature sets can be grouped as being source based features or system based features. In
Chapter 2, the source is described as being the actual sound wave that is transmitted from
the diaphragm through the glottis and so these features are concerned with determining
the characteristics of the vocal cords, where this waveform is shaped. The particularities
of an individual's speech in the form of linguistic information [17](behavioural style of
speaking) contain a high level of speaker-speci�c information and are known as the high-
level features. These features are di�cult to extract automatically from the speech signal
and lack reliability, especially when there is not a lot of training and test material available
as they are calculated from relatively long segments of speech. In this thesis, the features
representing the source characteritics are mostly limited to estimating the fundamental
frequency. This is a basic measurement that de�nes the time between the series of vocal
fold openings that are executed when a voiced word or sound is being produced, and can
be extracted from short segments of speech.

The extraction of system based features, or low-level features, has an intrinsic advan-
tage over the source feature extraction methods. They can be extracted through simple
acoustic measurements and where the glottal pulse is exclusively present in voiced speech,
the system characteristics are also present in unvoiced segments of speech. This means
that low-level features can be extracted easily and reliably, especially when using speech
from the ELSDSR database as these signals are not contaminated by noise and no mis-
match between training and testing material exists. The system characteristics can be
extracted for the vocal tract, the nasal cavity and the lip radiation, though it is common
to focus on the formant frequencies (see Section 2.1) of the vocal tract.

For each feature extraction method, it is therefore necessary to know exactly what is
being extracted so as to avoid imprecisions and ambiguity. As phase information in a
speech signal is not signi�cant for discrimination between speakers, it can be omitted in
order to simplify calculations, i.e. the magnitude of the spectrum of the speech signal is
used. Additionally, knowledge of the �ltering of speech in the ear can also be applied in
the derivation of features. The use of these techniques are mentioned when they are used
in conjunction with a particular feature set.

The features that will be extracted are divided into two groups:

Source Features -
Features that are concerned with modelling the original sound wave that passes through
the glottis. The most feasible parameter that can be determined is F0. In [3], the values
of F0 are given as approximately:

• 125Hz for men

• 250Hz for women

• 300Hz for children

System/Filter Features -
These features model the �lter characteristics of the vocal tract that can be derived from
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information contained in voiced and unvoiced speech. This information includes the for-
mant frequencies that are predominantly present in vowels. The system features re�ect
the physiology of the speaker.

The feature sets that will be extracted in this thesis and their grouping are listed in
Table 3.1.

Source based features System based features
Fundamental Frequency Linear Prediction Cepstral Coe�cients

LPC Residual warped Linear Prediction Cepstral Coe�cients
Perceptual Linear Prediction Cepstral Coe�cients

Mel-Frequency Cepstral Coe�cients

Table 3.1: List of source- and system-based features

The traditional and to date most reliable way to represent speech for recognition pur-
poses is by modelling the system characteristics. In the source-�lter model, this means
that the source features are not used to identify the speaker. The most commonly used
system-based features are the cepstral coe�cients. The two types of cepstral coe�cients
that are widely applied are:

1. Linear Predictive Cepstral Coe�cients (LPCC) [5]

2. Mel-frequency Cepstral Coe�cients (MFCC) [21]

The derivations of these coe�cients are presented in Sections 3.5 and 3.8, respectively.

As it is assumed that the system and source characteristics are uncorrelated, it is worth-
while to study the in�uence each kind of feature set has on the SID system's performance.
An analysis into the possibility of classifying speakers based on only selected frames that
contain a high level of speaker dependent information is commenced in Section 3.10 and
is completed in Chapter 9. The remainder of this chapter is concerned with the selection
and extraction of the features listed in Table 3.1.

3.2 Spectrographic Analysis
Before describing the extraction of the feature sets, a spectrograhic analysis is carried out.
A spectrogram is a short-time Fourier transform (see Eq.(2.3)) that shows the energy of
a signal as a function of positive time and frequency [25], thus allowing us to locate areas
of energy in the speech signal. It only represents the amplitude of the speech signal,
as no phase information is retained. This is not perceived as a problem, though, as
phase information is not necessary for speaker identi�cation purposes [1]. The short-time
Fourier transform is computed for each window of a speech signal that has a preset length
corresponding to N samples. As time and frequency are inversely proportional, a longer
window in the time domain yields a narrowband spectrogram in the frequency domain,
and a short time window results in a wideband frequency analysis. In Figure 3.1, the
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wideband and narrowband spectrograms for a female speaker for training sentence a are
shown, while in Figure 3.2 the waveform and spectrograms for a male speaker are shown
for the same sentence.

The fundamental frequency is the zero'th harmonic and contains the highest level of
energy, to be followed by a few harmonics that represent the �rst formant, second for-
mant, and so on. In the narrowband spectrograms (bottom plots of Figures 3.1 and 3.2),
the fundamental frequency and its harmonics are easily observable. The wideband spec-
trogram is seen to have a poor frequency resolution and the fundamental and formant
frequencies cannot be discerned here. Notice the increased speech activity that can be
observed in the higher frequency area of the spectrogram for the female speaker in Fig-
ure 3.1. These show a tendency to be gender speci�c, as they are for the most part missing
in Figure 3.2, where the energy level above 4kHz is almost non-existant. The spectro-
graphic analysis leads to the conclusion that when using a feature extraction method in
the frequency domain, the fundamental frequency information must be extracted using a
time frame that cannot be chosen arbitrarily.

3.3 Preprocessing
Prior to the feature extraction phase, the speech signal that is used either as training or as
test input data to the SID system is preprocessed. The preprocessing steps are described
here and are implemented as the initial step in all the feature extraction methods that
follow.

• Preprocessing step 1: ADC
An analog-to-digital converter converts the analog speech signal to a digital signal
at a sampling frequency of Fs. All the speech signals in the ELSDSR database are
sampled at F0 = 16kHz.

• Preprocessing step 2: Pre-emphasis
A FIR high-pass �lter with the transfer function shown in Eq.(3.1) is used to �atten
the signal spectrum.

H(z) = 1− az−1 (3.1)
where a usually lies in the interval 0.9 ≤ a ≤ 1.0 [8]. The high frequencies of the
speech signal formed in the vocal tract are attenuated as the sound passes through
the lips [1]. By dampening some of the low-frequency information in the resultant
speech signal a more equal balance between high- and low- frequency information
is achieved in the spectrum.
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Figure 3.1: The waveform and spectrograms of FAML_Sa: Wideband spectrogram uses
a window length of 4ms and at a sampling rate of 16kHz that corresponds to a window
of 64 samples, while the narrowband spectrogram uses a window length of 32ms, ie. 512
samples for Fs=16kHz
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Figure 3.2: The waveform and spectrograms of MCBR_Sa: Wideband spectrogram uses
a window length of 4ms and at a sampling rate of 16kHz that corresponds to a window
of 64 samples, while the narrowband spectrogram uses a window length of 32ms, ie. 512
samples for Fs=16kHz
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• Preprocessing step 3: Windowing
The pre-emphasized signal is divided into short frame blocks, and a window is
applied to these frames. The frame length can vary, but based on empirical results,
is often chosen from 20 to 30ms [5]. This length depends on the speci�c feature
extraction method that is applied. For the speech signals in the ELSDSR database,
a frame length of 30ms corresponds to frames containing 480 samples. Framing
using this length and an overlap of 10ms (160 samples) is implemented. The window
function that is applied is preferably not rectangular, as this can lead to distortion
due to vertical frame boundaries [8]. The windowed speech waveform for frame j is
de�ned as:

s(n) = w(n) · sj(n), n = 0, 1, 2, ....N − 1 (3.2)
where w(n) is the window function.
A common choice for the non-rectangular window is the Hamming window [1].
The mathematical function of the Hamming window is shown in Eq.(3.3) and the
Hamming waveform is shown in Figure 3.3.

w(n) = 0.54− 0.46 cos
2πn

N − 1
, n = 0, 1, 2, ....N − 1 (3.3)
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3.4 Fundamental Frequency Estimation
One of the source based features that are extracted is the fundamental frequency, F0. As
described in Section 2.1, F0 represents the periodicity of the voiced sounds, these being
predominantly vowels. Although pitch and fundamental frequency are often assumed to
mean the same thing, it must be pointed out that this is not the case. It has been estab-
lished that pitch is the human ear's perception of a sound's fundamental frequency, which
is not identical to the actual fundamental frequency of the sound being produced [1].
The methods of fundamental frequency extraction that will be presented in the following
are all concerned with the true fundamental frequency value and not the perceived pitch
value. A number of di�erent F0 estimators have been developed to date and extensive
work is ongoing in this �eld [50]. The challenge for all these estimators lies in the imper-
fect nature of the periodicity of a segment of a speech signal. In addition to the fact that
only certain, voiced, sounds are periodic, even these waveforms are only quasi-periodic,
causing estimation of the periodicity to be di�cult. The formant frequencies may also
confuse the F0 estimation process.

To illustrate the di�erence between the periodic and stochastic segments of a speech
signal, two frames of length 30ms are extracted from a training sentence for Speaker 1.
One frame contains a voiced, quasi-periodic, segment of speech, another a low-energy,
unvoiced segment of speech. These two frames can be seen in Figure 3.4.
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Figure 3.4: Voiced and unvoiced segments of speech from Speaker 1

Alternative methods of �nding the fundamental frequency can be divided into two
groups: the Time-Domain methods and the Frequency-Domain methods.

3.4.1 Time-Domain methods: The Autocorrelation Method
F0 can be extracted by using the autocorrelation method [36]. The autocorrelation func-
tion of a signal is a representation of the amount of overlap contained within the signal,
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at di�erent time lags. At a time lag of zero, the maximum of the autocorrelation func-
tion is found. The estimated autocorrelation function of a speech signal s(n) is shown in
Eq.(3.4):

Rss(τ) =
1

N

N−τ−1∑

n=0

s(n)s(n + τ) (3.4)

The autocorrelation function of a periodic signal is also periodic [13]. For a perfectly
periodic waveform, this is because the signal is repeated at a certain time lag at which the
autocorrelation function has its maximum peaks. The Rss function thus has a periodicity
P that results in peaks at samples 0, ±P , ±2P , . . . . For the analysis of a speech signal,
the �rst peak of the autocorrelation function, found at the smallest non-zero time lag,
indicates the fundamental period of the speech waveform.

In Figure 3.5, the autocorrelation function of the segment of speech shown in the upper
plot of Figure 3.4 is shown.

−400 −300 −200 −100 0 100 200 300 400
−0.01

−0.005

0

0.005

0.01

0.015
Autocorrelation function for Speaker 1, frames 40.000−40.480 (2.5s−2.53s)

Lag indices

Aut
oco

rrel
atio

n v
alu

e

Figure 3.5: The autocorrelation function of the voiced segment from Speaker 1

From Figure 3.5, the smallest lag index that yields a considerable peak is found at
roughly τ = 90, corresponding to a periodicity of 178Hz for Fs = 16kHz. As Speaker 1
is a woman, this is a possibility. A lower bound on the range of τ indices to be included
in the search for the maximum peak is necessary to avoid the risk of always �nding this
peak at τ = 0. The lower bound is set as the τ index for the �rst dip after the maximum
peak at the origin, while the upper bound is the length of the autocorrelation function
for a frame. As the function is symmetric, only the positive indices need to be searched.

A number of factors can reduce the ability of the autocorrelation method to determine
F0. The quasi-periodic nature of the waveform may cause the higher order harmonics of
the fundamental period to form additional, smaller, peaks in the autocorrelation function.
The larger peaks must thus be di�erentiated from these. One procedure that attempts
to do away with eventual ambiguity due to the formant frequencies is the center-clipping
autocorrelation method [36]. The �rst and last third of the signal segment are analyzed
so that the smallest of the peak amplitudes sets a threshold value. The clipping factor
is set to 60% of this threshold. The parts of the speech segment that fall below this
value are removed, thus �attening the speech spectrum and reducing the complexity of
the resulting autocorrelation function.

The autocorrelation clipping algorithm can be extended to include a voiced/unvoiced
decision-making functionality. Each block of the speech signal is labelled as being voiced
or unvoiced speech. The value of the autocorrelation function is compared to a pre-
speci�ed threshold so that all frames that do not yield a value above the threshold are
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classi�ed as being unvoiced. Although this cannot be used as a feature set for speaker
identi�cation, the interest here lies in establishing whether the classi�cation of a frame
shows a dependency on whether the frame is voiced or unvoiced.

To facilitate the implementation of an automatic method that chooses the correct peak,
the blocks of speech that are used to extract F0 must be long enough for the zero'th
harmonic to be found, i.e. two cycles of the fundamental period must be present. As the
range of some of the formant frequencies overlap that of the fundamental frequency, it is
not possible to implement �ltering that eliminates the possibility of estimating a formant
frequency instead of F0.

The dependency of the F0 estimate on the length of the blocks of speech segments
used is analyzed and the results are listed in Table 3.2. The clipping value is set at 0.6
and the 7 training sentences from each speaker in the reference speaker set were used in
order to obtain the median values of the F0 estimates, given in Hz, over all the voiced
frames in the sentence. The labels FAML, FDHH, and so forth identify each speaker, the
�rst letter "F" denoting women and "M" denoting men, as explained in Chapter 8.

frame length FAML FDHH FEAB MASM MCBR MFKC
64ms 190 188 195 131 107 119
32ms 188 188 195 131 105 116
16ms 188 188 192 132 97 104

Table 3.2: F0 for varying frame lengths and clipping factor 0.6

The reduction of frame length in the time domain corresponds to an increase in the
range of frequencies that are included in the F0 estimation analysis. When the frame
length is decreased to 16ms, the estimates for the last two male speakers deviate from the
previously found values. This may be attributed to the short length of the time frame,
which does not allow the completion of two full cycles of the periodic waveform and so
results in a less precise estimation of the the fundamental frequency. The frame length
must thus be set to at least 32ms in accordance with these results and those obtained
from the spectrographic analysis in Section 3.2.

From Table 3.2, it is clear that there is a signi�cant di�erence between the estimates for
the female and the male speakers. This could be useful for gender separation of speakers,
which could then greatly simplify the classi�cation process as the number of speakers to
identify would be reduced. This possibility is studied in Chapters 6 and 9.

3.4.2 Time-Domain methods: The YIN Estimator
The YIN estimator [48] was developed by Alain de Cheveigné and Hideki Kawahara in
2001. It is based on the autocorrelation method of fundamental frequency estimation,
but introduces a number of modi�cations to circumvent many of the weaknesses that al-
ternative autocorrelation methods, including the center-clipping autocorrelation method,
su�er from, thus making the YIN estimator more precise than these.

The �rst step in implementing these modi�cations is the replacement of the autocor-
relation function of Eq.(3.4) by a di�erence function. The speech signal s(n) is modelled
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as a periodic function with period T , so that the di�erence between the signal at time n
and at time n+T is zero for all n. The square of this di�erence is thus also zero and so a
function, dn(τ), can be de�ned as being the average of the square of the aforementioned
di�erence:

dn(τ) =
1

N

N∑

n=1

(s(n)− s(n + τ))2 (3.5)

This di�erence between the waveform at s(n) and the delayed waveform at s(n + τ)
must be minimized in order to determine eventual periodicity in the signal. This is in
opposition to what is done when using the autocorrelation function, as in the latter case
the product of the original and delayed waveform must be maximized in order to establish
periodicity. Otherwise, the di�erence between dn(τ) and Rn(τ) is not signi�cant. The
vital improvement on the autocorrelation method is described below.

With the di�erence function, a problem that remains is that the voiced parts of the
speech signal are quasi-periodic as opposed to perfectly periodic and thus dn(τ) is only
zero for τ = 0. The average of the di�erence function is therefore evaluated so that
each new value of dn(τ) is compared to its average over smaller-lag values. Where this
decrease is considerable, causing a dip, the period is assumed to have been found. The
new, averaged di�erence function is denoted as d̃n(τ) and is called the cumulative mean
normalized di�erence function:

d̃n(τ) =





1, τ = 0
dn(τ)

1
τ

∑τ

j=1
(dn(j))

, τ 6= 0 (3.6)

One of the advantages of using d̃n(τ) is that this function starts at 1 and not zero.
This e�ectively removes the need to set a lower bound on the range of admissible lag
values, as there no longer exists the risk that the di�erence function is minimized at zero
lag. There is thus no upper limit for the fundamental frequency search range. This makes
the YIN estimator e�ective especially when working with music, where higher frequencies
than those that are predominant in speech may occur. The advantage of using YIN for
speaker identi�cation is that it may provide more precise estimations of the fundamental
frequency than many other time domain algorithms are capable of.

At the core of this higher level of precision is the cumulative mean normalized di�er-
ence function of Eq.(3.6). With its implementation, a threshold is set so that the smallest
time lag for which the dip in d̃n(τ) that falls below this threshold is accepted as being
the dip that denotes the signal segment periodicity. In the absence of any values falling
below the threshold, the global minimum of d̃n(τ) is chosen. The YIN estimator also
makes use of parabolic interpolation and a best estimate method in order to re�ne the
period estimation process. The YIN estimator article (de Cheveigné and Kawahara,[48])
provides a detailed description of this sequence of modi�cations to the original autocor-
relation method as well as derivations of additional measures that counter the e�ects of
amplitude variation, frequency variation, and the presence of various types of noise.

In [48], it is recorded that the YIN F0 estimation is substantially more precise than a
variety of other autocorrelation-based estimators, so the YIN estimator will be used as
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one of the methods that estimate the fundamental frequency for each speaker in the ref-
erence set. As the YIN algorithm does not make voiced/unvoiced decisions, these will be
obtained from the autocorrelation with clipping algorithm.

3.4.3 Frequency-Domain methods: Real Cepstrum Method
The speech in the ELSDSR database was recorded in conditions that were largely free of
noise and thus the speech data has a high signal-to-noise ratio. This, however, will not
be the case when a hearing instrument is exposed to daily sounds in all kinds of environ-
ments. The time domain fundamental frequency estimation methods risk not to be robust
for low signal-to-noise conditions, meaning that the autocorrelation method and even the
YIN estimator may lack reliability. In order to eventually obtain more reliable estimations
of F0 a frequency-domain method for F0 estimation is implemented. The selected method
is the Real Cepstrum method [1].

The following steps are implemented in order to extract an estimate for F0 in the fre-
quency domain: �rst, the frequency spectrum of a speech segment is calculated using the
Fourier transform of Eq.(2.3). As described in Section 2.2, the convolution of the excita-
tion signal with the �lter response becomes a multiplication in the frequency domain. By
taking the logarithm of this function, an additive (linear) relation is obtained instead of
a multiplicative (nonlinear) one:

S(z) = U(z) ·H(z) (3.7)
log(S(z)) = log(U(z)) + log(H(z)) (3.8)

U(z) is the excitation spectrum and H(z) is the simpli�ed system �lter response. The
resultant log(S(z)) is reduced to a more usable scale than the original spectrum is, while
maintaining periodicity in the frequency domain if the original speech segment is periodic.
This periodicity indicates the fundamental frequency of the speech segment. By taking
the inverse Fourier transform of the log(S(z)), the result is referred to as the cepstrum of
the signal and is measured as a function of quefrency. The word "cepstrum" is a play on
the word "spectrum", and "quefrency" on "frequency". The fast variations that are due
to the excitation from glottal pulses are represented at high quefrency values, while the
slower variations that are attributed to the vocal system resonances are found at the lower
end of the quefrency scale. In association with this, a separation of the fast variations from
the slow variations can be implemented by a �ltering technique referred to as liftering, a
corresponding play on the word "�ltering". Low-time liftering is analogous to low-pass
�ltering, and where in the latter the higher frequencies can be sorted from a spectrum,
in the former the variations at higher quefrencies can be sorted. Precise separation is
only possible in ideal conditions, though, that cannot be assumed to prevail in practical
applications, where overlap often arises between the fast glottal variations and the slow
system variations on the quefrency axis.
The quefrency scale is very closely related to the time scale, and its unit is seconds.
The fundamental frequency is extracted from the real cepstrum, where the periodicity
of the original waveform is indicated by a dominant peak. The complex cepstrum is
not used because phase information can be discarded for F0 estimation, thus reducing
computational complexity. To summarize, the real cepstrals are derived as the inverse
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Discrete Time Fourier Transform(DTFT) [1] of the logarithm of the real DTFT of the
speech signal:

c(n) = F−1
DTFT{log|FDTFT{s(n)}|} (3.9)

In Figure 3.6, the real cepstrum of a section of sentence a from Speaker 1 is shown as a
function of quefrencies. The search range has a lower bound set at 40ms on the quefrency
scale, so that the frequency range is kept below 400Hz. The lower bound in the frequency
range is set at 50Hz.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

quefrency/samples

R
ea

l C
ep

st
ru

m

The real cepstrum for Speaker 1, sentence a

Fundamental frequency estimate 

Figure 3.6: The Real Cepstrum and F0 estimate for Speaker 1, sentence a

From Figure 3.6, the maximum peak is seen to be situated at the quefrency at sample
index of approximately 85, which corresponds to an estimate of F0 = 188Hz for Speaker
1.

The length and type of the window used to create blocks of speech signal to be an-
alyzed by the real cepstrum method is signi�cant. As with the time-domain methods,
it is important that the block be long enough to allow two entire cycles of the periodic
waveform. Once the window meets the necessary requirements, it is relatively easy to
extract the peak that indicates F0.

3.4.4 Comparison of Fundamental Frequency Estimators
Using each of the three fundamental frequency estimators that are discussed in Sec-
tions 3.4.1-3.4.3, an average F0 for each speaker in the reference set is obtained. The
estimation of the fundamental frequencies of all six reference speakers is implemented by
�rst estimating a value for each sentence - all 9 sentences from each speaker are used,
including both training and test data. A median value calculated over the estimate for
every frame in each sentence is used for the real cepstrum and autocorrelation methods,
while the output of the YIN estimator yields a "best" estimate of F0 for the entire sen-
tence. This estimate is determined at the dip in the cumulative mean nomalized di�erence
function discussed in Section 3.4.2 that is found at the minimum lag value. As the other
two F0 estimators return an estimate for F0 for each frame, the median must be calculated
to provide one estimate for the entire sentence. For each speaker, the average F0 is found
as the mean of the estimates over all 9 sentences. The results for all three estimators are
shown in Figure 3.7.

The YIN estimator was implemented with default parameters, as numerous trials with
varying threshold values and frame lengths yielded no signi�cant change in the results.
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Figure 3.7: Fundamental frequency estimation for Autocorrelation CC, YIN and Real
Cepstrum methods

The lower frequency bound is set at F0,min = 30Hz and the window length set to the
sampling frequency divided by this value, see Eq.(3.10), as this is assumed to be enough
to determine the signal periodicity. For the speakers in the ELSDSR database, this gives
a window length of W = 33ms.

W =
Fs

F0,min

(3.10)

The optimal frame lengths for the other F0 estimators were determined by trial and
error: 30ms for the autocorrelation with center clipping method, and 64ms for the real
cepstrum method.

Figure 3.7 shows that the YIN estimator has a tendency to produce higher estimates
of the fundamental frequency than the other two estimators. The results from all three
estimators, however, show that while the di�erences between gender groups are large -
this can be seen as the �rst 3 speakers are women, the last 3 men - the variation within
each gender group is very small, especially for the women, and it is thus unlikely that
this feature is well suited for the general speaker identi�cation task. According to the
documentation in [48], the deviance between the fundamental frequency estimates are
larger between the YIN estimates and the other two sets of data because YIN is more
precise.

Results based on all feature sets and an analysis to determine whether the voiced/unvoiced
decisions in�uence system performance will be discussed in Chapter 9. The time required
by each method to return a fundamental frequency estimate is considered here. Averaged
over all 7 training sentences and both test sentences for each speaker, these times are
shown in Figure 3.8. The training and testing data sets are kept separate because of the
di�erence in length of the sentences contained in each set. The results are averaged over
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all 6 reference speakers.
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Figure 3.8: The average computation time for each fundamental frequency estimator

From Figure 3.8 F0 estimation is seen to be most rapid using the real cepstrum method,
while the YIN estimator requires a signi�cant increase in computational time when com-
pared to the other two methods. The choice of estimator, however, will be left until
further trials in Chapter 9 have been completed.

The fundamental frequency that has been determined so far has been a single value, aver-
aged over the sequence of frames that combined constitute sentences from each speaker.
The way that the fundamental frequency changes as a function of time when a speaker
is talking is not represented in this analysis, though this may prove to be interesting as
a possible feature for speaker identi�cation. In Figure 3.9, the trajectories of fundamen-
tal frequency estimates for entire sequences of frames are shown. The two top speech
sequences are of women's voices and the two bottom plots are of male voices. The sen-
tence used was arbitrarily chosen, though identical for all speakers to ensure that the
trajectories depicted are comparable. Sentence d is used. The original scaling has not
been modi�ed in order to achieve a uniformity that would facilitate the comparison of
these plots, as the di�erences are in some places so signi�cant that this was not feasible.
It is precisely these di�erences, though, that lead to the observation that the range of
each speaker's fundamental frequency varies considerably, f.ex. the F0 values for Speaker
1 have a range of roughly 300Hz, while for Speaker 6 they vary within a range of only
approximately 130Hz. The number of frames is not equal for all speakers and this shows
that the speed with which each speaker utters sentence d is speaker dependent. Despite
these di�erences, it is easily seen that a large amount of each speaker's fundamental fre-
quency estimates lie within the intervals that are de�ned by the fundamental frequencies
of the other speakers. This leads to the assumption that there is little possibility that
the trajectory of the fundamental frequency will prove e�cient in discriminating between
speakers.

In Figure 3.10, more evidence is found that supports the assumption that the sequence
of F0 estimates may not be an e�ective feature vector in speaker identi�cation. The top
plot shows the F0 estimates for two training sentences from Speaker 1 and the bottom
plot shows a corresponding analysis for two di�erent speakers, but for the same sentence.
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Figure 3.9: Fundamental frequency trajectories for di�erent speakers

The number of frames for each sentence is as follows listed below:
- Speaker 1, sentence a: 169

- Speaker 1, sentence b: 251

- Speaker 2, sentence a: 145
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Figure 3.10: Pitch trajectory data, for di�erent speakers and sentences

Although Figure 3.10 reveals slightly more overlap between the two sets of points
in the top plot, the di�erence is not signi�cant and it is di�cult to see how a classi�er
would di�erentiate between the speakers if the pitch trajectories were used as features for
SID. This feature will be tested, however, as there may be enough variance between some
speakers to allow a degree of separation that is greater than seen here.

The feature sets that have been derived in Section 3.4 are representative of the source
information in a speech signal and will be tested with di�erent classi�ers in Chapter 9.
The next few sections are dedicated to describing the derivation of other feature sets.
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3.5 Linear Prediction Coding
The focus is now shifted onto the system based features. One method of representing the
system �lter characteristics is Linear Prediction Coding (LPC). The results of the LPC
analysis are converted to cepstral coe�cients that are used as a feature set.

In Section 2.2, speech is modelled as the product of the models for the excitation source,
the vocal tract and the lip radiation. To enable the implementation of LPC analysis, it
is necessary to have an all-pole model for the �lter characteristics of the speech model.
An all-pole model is implemented because it enables a computationally simple way to
derive the coe�cients that de�ne it, i.e. by solving a system of linear equations. Only
the spectral magnitude is predicted in the all-pole model, while phase information is
lost [1]. As the latter is known not to be necessary in order to be able to discriminate
between speakers' voices, this is of limited importance. The loss of phase information
corresponds to listening to someone talking while they are moving, and whereas the
human ear can perceive the shift in phase, the information gathered from the speech
about speaker identity is not dependent on this movement. An illustration of the all-pole
model is shown in Figure 3.11, which has been adapted from [38].
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Figure 3.11: All-pole source-�lter model of speech production

The all-pole model shows that the input from the excitation of the speech signal can
either be glottal pulses or stochastic processes that can be modelled as white noise. This
excitation is �ltered by the all-pole �lter that corresponds to the physical characteristics
of the vocal tract and the radiation through the lips.

The lip radiation digital �lter model R(z) can be de�ned as:

R(z) = 1− z−1 (3.11)

The right-hand side of Eq.(3.11) contains a zero, which is assumed to be cancelled out
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by one of the poles in the vocal tract �lter [1], rendering it possible to de�ne the vocal
tract (system) model by means of the LPC coe�cients ai in the following digital �lter
model:

H(z) =
S(z)

U(z)
=

G

1−∑p
i=0 aiz−i

(3.12)

where G is a gain factor, U(z) is the excitation spectrum, H(z) is the �lter response of
the vocal tract and S(z) is the resultant speech spectrum. The value of p is the order of
the LPC analysis that determines how well the LPC resultant all-pole spectrum models
the short-term spectrum of the speech signal [20].

The LPC analysis is implemented as follows: in the discrete time domain, the LPC
model of a signal is a linear combination of past values and a scaled value of the present
input [9]:

s(n) =
p∑

i=1

ais(n− i) + G · u(n) (3.13)

This is an autoregressive process dependent on the values of ai. For each fragment of
speech, the prediction coe�cients (ai) are representative of the system characteristics of
the vocal tract. u(n) is the input excitation signal at time n and G is the gain factor.
When the vocal tract resonance is su�ciently high, the �rst term is the dominant one as
it depends on these system characteristics. The LPC analysis exclusively estimates these
characteristics, so that

ŝ(n) =
p∑

i=1

ais(n− i) (3.14)

is the LPC estimate that does not include a representation of the nonlinearities of the
source signal. A prediction error, e(n), is the di�erence between the actual speech signal
and the LPC estimate.

e(n) = s(n)− ŝ(n) = s(n)−
p∑

i=1

ais(n− i) (3.15)

LPC coe�cients are obtained when the mean square of the prediction error is mini-
mized. The mean squared error, E, is determined by the following equation:

E =
∑
n

e2(n) =
∑
n

[
s(n)−

p∑

i=1

ais(n− i)
]2 (3.16)

In order to determine the ai coe�cients, Eq.(3.16) is di�erentiated with respect to aj

and set to zero:
∂E

∂aj

= 0 (3.17)

This di�erentiation gives the following:

∑
n

s(n)s(n− j) =
∑
n

[ p∑

i=1

ais(n− i)
]
· s(n− j) (3.18)

(3.19)
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The function φn(j, i) is de�ned as:

φn(j, i) =
∑
n

s(n− j)s(n− i) (3.20)

So that Eq.(3.18) can be rewritten as:
p∑

i=1

aiφ(j, i) = φn(j, 0) (3.21)

as φ(j, i) is a symmetric function.
The mean square prediction error of Eq.(3.16) can also be rewritten as:

E =
∑
n


s(n) · s(n)−

p∑

i=1

ai · s(n)s(n− i) +

( p∑

i

ai · s(n− i)

)2

 (3.22)

E = φn(0, 0)−
p∑

i=1

aiφn(0, i) (3.23)

as the �rst two terms of Eq.(3.22) are assumed to be dominant. The solution to Eq.(3.21),
known as the Yule-Walker equation [9], yields the values of the linear prediction coe�-
cients.

In order to solve Eq.(3.21), a constraint is placed on the interval used for the evaluation,
so the upper bound is set to N − 1. We begin by de�ning the autocorrelation function
for the speech segments s(n):

R(i) =
1

N

N+i−1∑

n=0

s(n)s(n + i) i = 0, . . . , p (3.24)

where the limit is set to N + i− 1 as it is assumed that values outside the interval N − 1
are zero. By de�ning an auxiliary variable q = N − 1− (j − i), Eq.(3.20) becomes:

φn(j, i) =
q∑

n=0

s(n− j)s(n + j − i) (3.25)

From Eq.(3.24), it can be seen that this corresponds to the autocorrelation function
for s(n), so that:

φ(j, i) = Rn(j − i) (3.26)

The linear prediction Yule-Walker equation shown in Eq.(3.21) can thus be expressed
as follows:

p∑

i=1

aiRn(|j − i|) = Rn(j) (3.27)

This method of solving for the linear prediction coe�cients is therefore referred to as
the autocorrelation method [24].
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The system of equations that are derived using Eq.(3.27) can be written in matrix
form as:

~r = R~a (3.28)
where the elements of R and ~r are the autocorrelation values and the elements of ~a are
the desired LPC coe�cients, see Eq.(3.29).




R(1)
R(2)
R(3)
...

R(p)




=




R(0) R(1) R(2) . . . R(p− 1)
R(1) R(0) R(1) . . . R(p− 2)
R(2) R(1) R(0) . . . R(p− 3)
... ... ... . . . ...

R(p− 1) R(p− 2) R(p− 3) . . . R(0)







a1

a2

a3
...
ap




(3.29)

As R is a symmetric Toeplitz matrix, the recursive Durbin algorithm can be used to
calculate the LPC parameters [9]. The Durbin algorithm is derived in [9] and [24] and is
shown below

The Durbin algorithm

E0 = R(0)
ki = [R(i)−∑i−1

j=1 a
i−1
j R(i− j)]/Ei−1

a
(i)
i = ki

a
(i)
j = a

(i−1)
j + kia

i−1
i−j

E(i) = (1− k2i)E
i−1

From Eq.(3.12), the LPC transfer function can be written as:

H(z) =
S(z)

U(z)
=

G

1−∑p
i=1 aiz−i

=
G

A(z)
(3.30)

where A(z) is an inverse �lter of the all-pole model [9] that represents the vocal tract
resonances and is de�ned by the LPC coe�cients ai.

These coe�cients are called the LPC autoregressive (AR) coe�cients and are used
in the computation of the Linear Prediction cepstral coe�cients (LPCC). A high order
LPC analysis allows an extended search range for formant frequencies, which are what
the analysis models. If the order is too high, F0 may be found instead, while formant
peaks may be missed altogether if the analysis is of too low an order. Determining an
optimal value for p must be done empirically, though some values are known to work
better than others. The initial LPC order in this thesis is chosen on the basis of common
use in speaker identi�cation applications.

3.5.1 Linear Prediction Cepstral Coe�cients
The cepstral coe�cients, cm, are calculated using the AR coe�cients from the LPC anal-
ysis [5]. Calculating the cepstral coe�cients implements further smoothing to the speech
spectrum that has already been smoothed in the sense that the excitation signal has been
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removed in the LPC analysis. Results obtained in [40] and some other works show that
the use of cepstral coe�cients can lead to better speech classi�cation than results based
on the LPC ai coe�cients can. The p LPC AR coe�cients are converted to M cepstral
coe�cients by the following recursion formulae:

c0 = ln(G) (3.31)

cm =
−mam +

∑m−1
k=1 akcm−k(m− k)

m
, 1 ≤ m ≤ p (3.32)

cm =

∑m−1
k=1 akcm−k(m− k)

m
, p ≤ m ≤ M (3.33)

Each cepstral coe�cient contains di�erent information about the speech signal, and
speaker identi�cation success can vary depending on the order of the LPCC analysis. The
higher cepstrals contain information about the �ner detail of the vocal tract characteris-
tics.

3.5.2 The LPC Residual
We recall from Section 3.5 that the LPC coe�cients only represent the system character-
istics of the speech system as a linear model. It can thus not describe the nonlinearities
that might be present in the speech signal, i.e. the source signal. The LPC residual may
therefore be assumed to contain some additional, complementary information that can be
of use to identify a speaker. The residual error of the linear prediction analysis is obtained
by subtracting the LPC estimate from the original speech signal, see Eq.(3.15). The resid-
ual error is thus equal to the input signal G · u(n) from Eq.(3.13). For convenience, these
equations are rewritten here and the equality made explicit:

s(n) = −
p∑

i=1

ais(n− i) + G · u(n) (3.34)

ŝ(n) = −
p∑

i=1

ais(n− i) (3.35)

e(n) = s(n)− ŝ(n) = s(n)−
p∑

i=1

ais(n− i) (3.36)

e(n) = G · u(n) (3.37)

Some source information in the input signal frame u(n) is thus present in the LP resid-
ual, and so the residual energy is selected as a possible feature. In Figure 3.12, the speech
waveform of a female speaker for training sentence c is shown with the corresponding LPC
residual energy, the 2nd LPC coe�cient and the 2nd LPC cepstral coe�cient. The LPC
analysis implemented here is of order p = 12.

3.6 Warped LPCC
An alternative way of performing feature extraction is to attempt an approximation to
the frequency analysis that is executed within the human ear. This approximation places
weight on the perceptually signi�cant parts of speech, and this may have a positive in�u-
ence on the SID task. The Bark scale [47] is one that models the bank of �lters that is
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used as an approximation to the frequency analysis processes that take place in the inner
ear. A detailed description of the Bark scale and this �lter bank is provided in Appendix
A. The Bark scale has a linear relation to the frequencies of incoming sounds up to 500Hz;
after this, the relation is logarithmic, as can be seen in Figure 3.13, where the Bark values
are shown as a function of the logarithmic frequency scale.

The linear prediction analysis models the vocal tract that in�uences the formation of a
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speech sound. In order to approximate this sound as it is heard in a human ear, the LPC
coe�cients, ai, are warped to the Bark scale. The warping is implemented by shifting the
poles of the all-pole �lter by a variable λ that is determined by the Bark mapping of the
sampling frequency, Fs. This mapping is given in [49] as:

λFs ≡ 1.0674
(

2

π
arctan

(
0.06583Fs

1000

))1/2

− 0.1916 (3.38)

The poles are shifted by using a �rst-order all-pass �lter that depends on this variable.
The transfer function, G(z), of the all-pass �lter is given by Eq.(3.39).

G(z) =
z−1 − λ

1− λz−1
(3.39)

In Eq.(3.30), the inverse �lter polynomial A(z) is given as

A(z) = 1−
p∑

i=1

aiz
−i (3.40)

The process of warping the linear prediction coe�cients ai is achieved by replacing
the delay term, z−i, with the all-pass �lter de�ned by the transfer function G(z):

Â(z) = 1−
p∑

i=1

aiG(z)i (3.41)

By applying the warping transformation on the LPC coe�cients, the resonant frequen-
cies estimated by the LPC model are modi�ed to approximate the frequency analysis in
the human auditory system. Once the warping process is completed, the cepstral recursive
formulae of Eq.(3.31)-Eq.(3.33) are used in order to obtain the warped LPCC feature set.

3.7 Perceptual Linear Prediction
An additional feature set that implements an approximation to the human auditory system
is the Perceptual Linear Prediction (PLP) analysis [62]. As the name implies, Percep-
tual Linear Prediction is a combination between spectral analysis and linear prediction
analysis. The PLP analysis gives rise to modi�ed autocorrelation coe�cients, ãi, that
correspond to the LPC analysis ai coe�cients, and once again the cepstral recursion for-
mulae (Eq.(3.31)-Eq.(3.33)) are used in order to calculate the PLPCC coe�cients. The
di�erence from the warped LPCC feature lies in that the PLP analysis consists of a pre-
processing that not only warps the speech segments power spectrum to the Bark scale,
but also applies other auditory approximations to obtain a more precise modelling of the
processes in the ear. In addition, the warping implemented here is done prior to the
derivation of the AR coe�cients and thus the input to the linear prediction analysis is
speech that is already modi�ed so that it contains perceptually signi�cant information.

The speech data that is to be analyzed using PLP is divided into framed blocks as de-
scribed in Section 3.3. The power spectrum of each segment is then calculated using
the discrete Fourier Transform. This spectrum is then warped to the Bark scale. The
warped spectrum is convolved with the critical band masking curve, see Appendix A. This
corresponds to multiplying the spectrum with the critical band transfer functions:



34 CHAPTER 3. CHOOSING AND EXTRACTING FEATURE SETS

S̃(b) =
N−1∑

n=0

|Hb(n)|2|X(n)|2 (3.42)

where X(n) is the frequency representation of the signal segment and Hb(n) is the transfer
function of the critical band �lter b that is uniformly spaced on the Bark scale.

The resultant warped power spectrum is then pre-emphasized with the equal-loudness
curve, which is given in Eq.(3.43).

E(b) =
(b2 + 56.8 · 106)b4

(b2 + 6.3 · 106)2(b2 + 0.38 · 109)
(3.43)

where b denotes the frequencies warped to the Bark scale and E(b) is the transfer
function that represents the human ear's sensitivity to di�erent frequencies at roughly
40dB.

The equal-loudness pre-emphasis is used in order to approximate the sensitivity of
the human ear to certain frequencies. It has been established that some frequencies are
emphasized more than others. Not surprisingly, the frequencies in the area of human
speech are among those that the ear shows heightened sensitivity to.

By multiplying the equal-loudness transfer function with the warped power spec-
trum, the perceptual intensity, I(b), of the sound in each speech segment is obtained,
see Eq.(3.44). Further modi�cation to approximate human auditory perception is im-
plemented by determining the perceived loudness, Y (b), of this intensity. The perceived
loudness of a tone is approximately proportional to the cubic root of the tone's intensity,
thus reducing the amplitude of the spectrum. This auditory compression that simulates
the relationship between intensity and perceived loudness is de�ned in Eq.(3.45).

I(b) = E(b) · S̃(b) (3.44)
Y (b) ≈ 3

√
I(b) (3.45)

Loudness is measured in the unit Son, and as can be derived from Eq.(3.45), a doubling
of loudness requires approximately a 10dB increase in intensity.

The next step in the process of extracting PLP coe�cients is executed by taking the
inverse Fourier transform of the spectrum of Eq.(3.45) and the perceptual autocorrelation,
R̃(m) is obtained so that:

R̃(m) =
p∑

i=1

ãiR̃(|m− k|) (3.46)

The perceptual autocorrelation is analogous to the function of Eq.(3.28) and can thus
be written in matrix form:

~̃r = R̃~̃a (3.47)
The Durbin algorithm from Section 3.5 is used to determine the PLP coe�cients, ãi,

which are then transformed into cepstral coe�cients by applying the cepstral recursion
formulae of Eq.(3.31)-Eq.(3.33). The results are the perceptual linear prediction cepstral
coe�cients, the PLPCC, with coe�cients c̃(m).
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Figure 3.14: The derivation of the PLPCC feature set

The PLP analysis is illustrated by a block diagram in Figure 3.14.
As described above, the derivation of PLPCC coe�cients requires a preprocessing that

is performed in the frequency domain prior to the LPC analysis for the purpose of adding
weight to the perceptually signi�cant portions of the speech signal's spectrum. It is hoped
that this approximation to the biological processes that are executed in the human ear and
the consequent smoothing of the spectrum will prove helpful in the e�ective discernment
between di�erent speakers by the SID system.

3.8 Mel Frequency Cepstral Coe�cients
Another feature set that represents the �lter characteristics of the source-�lter model is
the mel-frequency Cepstral Coe�cient feature set. Here, the mel frequency scale is used
in order to mimic the cochlear �ltering processes in the ear which places more emphasis
on certain frequencies [2]. The reference point of the mel scale is at a tone of 1000Hz
which is set equal to a pitch of 1000mels. Hereafter the mel intervals become logarithmi-
cally distributed. The mel scale was experimentally derived by measuring the di�erence
between a linear frequency scale and the perceived pitch that human listeners registered
during a series of tests [1].

In order to warp the frequency spectrum to the mel-frequency spectrum, the following
calculation is required [21]:

fmel(f) = 2595 · log
(

1 +
f

700Hz

)
(3.48)

The mel scale de�nes a mel �lter bank. Each �lter's center frequency follows the mel
scale in such a way as to imitate the audiological critical band, see Appendix A. The mel
�lters are triangular and spaced about 150mels apart, each triangle being 300mels wide.
The �lter bank consists of 20 �lters in total.

The Mel-Frequency cepstral coe�cients are derived by the following procedure:
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1. The signal is frame-blocked and windowed, as described in Section 3.3
s(n) = u(n) ∗ h(n)

2. The FFT of the signal is taken
S(z) = U(z) ·H(z)

3. The magnitude is taken, thus discarding the phase information
|S(z)| = |U(z) ·H(z)|

4. The spectrum is warped using a mel-�lterbank
S̃(k) =

∑N/2
z=0 S(z) ·Mk(z) where Mk is the kth �lter from the �lter bank.

5. The logarithm is taken
log(S̃(k)) = log(Ũ(k)) + log(H̃(k))

6. A Discrete Cosine Transform (DCT) is used to derive the MFCC's
cu(n) + ch(n)

This process is shown in Figure 3.15
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The logarithm of step 5 performs a deconvolution of the source and system features.
In step 6, let Sk de�ne the logarithm of the kth �lter of the signal. In all there are K
log-spectral coe�cients. The Q cepstral coe�cients are then derived according to the
following DCT transform [5]:

cn =
K∑

k=1

Sk · cos
[
n(k − 1

2
)
π

K

]
, n = 1, . . . , Q (3.49)

The DCT has the advantage of being able to decorrelate the statistically dependent spec-
tral coe�cients into independent cepstral coe�cients. The zeroth cepstral coe�cient, c0,
describes the overall energy in the spectrum, while c1 measures how the energy is dis-
tributed between the high and low frequencies [23]. The remaining coe�cients show the
�ner detail of the spectrum, and are thus used as features.

3.9 The Temporal Derivatives of Cepstral Coe�cients
The temporal derivatives (denoted ∆) of all the cepstral coe�cient feature sets (LPCC,
warped LPCC, PLPCC and MFCC) can be determined using the function shown in
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Eq.(3.50). To include dynamic information about how the speech signal and thus the
cepstral vectors vary with time, the temporal derivatives of these vectors are calculated.
The performance of a speaker identi�cation system might be improved when the �rst and
second order cepstral derivatives are included so that the �nal feature set is 3M long [5],
where M is the length of the original feature set, i.e. the order of the LPCC or PLPCC
or MFCC extraction. Although these derivatives can be obtained from a computation
over only two frames, subtracting the previous cepstral vector from the present one, this
method is not very representative and thus the computation is based on a window of
length θ cepstral vectors (one vector per frame), where θ > 2 [23]. The computation of
the �rst order derivatives is thus:

∆cm(n) =
1

θ

(
c(n + θ)− c(n− θ)

)
(3.50)

for the mth frame.
The second-order derivatives (∆∆) are computed in the same way from the �rst order
derivatives. The value of θ is set to 16 for the feature extraction methods implemented
for the SID task of this thesis.

To observe the di�erence between a cepstral coe�cient and its temporal derivatives,
the waveform of the speech signal of training sentence c from Speaker 1 is once again
shown in Figure 3.16 and below it, the 2nd LPCC coe�cient is depicted, followed by the
�rst and second time derivatives of this coe�cient.
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By observing the plots of Figure 3.16, it is possible to see that the temporal derivatives
of the LPC cepstral coe�cients vary in time in closer accordance with the original wave-
form than the LPCC coe�cient does. The �rst and second temporal derivatives of the
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cepstral coe�cient feature sets are implemented and tested in Chapter 9 for the di�erent
classi�ers in order to establish whether these aid the speaker recognition process.

3.10 Principal Component Analysis of Cepstral Coe�-
cients

As di�erent sets of cepstral coe�cients have been derived, it is of interest to conduct
a preliminary test on each feature set's ability to separate speakers. This is done by
implementing a Principal Component Analysis (PCA) [15] for the 12MFCC+12∆MFCC,
12LPCC+12∆LPCC, 12 warped LPCC+12∆ warped LPCC and 13PLPCC+13∆PLPCC
feature sets. The orders of these feature extraction methods are chosen because they are
commonly used for speech processing applications [1]. The feature sets are extracted from
training sentence a for Speaker 1 and Speaker 2, both women. The choice of the same
training sentence ensures that the speech uttered is identical for both speakers and so it is
each speaker's physiological characteristics that are modelled by the system based feature
sets that are the only source of di�erence between the sentences. This allows an analysis
that can highlight which feature sets separate speakers e�ectively.

The PCA results in the projection of the data in the feature matrices in the directions
that provide most variance. The projection of data in the direction of the �rst two
principal components is shown in Figure 3.17. It is desirable that the variance between
two speakers ensures a good separation of the two speech signals by being larger than the
variance within a speaker's feature set.

The MFCC feature set seems to have a lot of overlap between the two speakers, while
the PCA on the LPCC yields a cluster of overlapping data points, but also two groups
of data that exclusively belong to one or the other speaker. The warped LPCC and PLP
coe�cients result in data points that are grouped in less dense clusters than those for
MFCC and are thus subject to a lesser of overlap between di�erent speaker data.

To establish whether the fact that a frame of speech is voiced or unvoiced has an e�ect on
the separation of di�erent speakers for feature sets, another PCA analysis is implemented.
This is of interest as the possible reduction of a feature set while preserving the majority
of speaker-dependent information would signi�cantly improve the speed and performance
of a SID system. The �rst and simplest step in this direction is to use the results gained
from the autocorrelation with center clipping algorithm to divide each feature set into
a voiced feature set and an unvoiced one. The voiced/unvoiced decisions are made for
frames that are 30ms in length, with an overlap of 10ms. The number of voiced frames in
each case is roughly 4 times that of unvoiced frames, hence the di�erence in the number
of frames used in each analysis. The number of frames is divided as shown in Table 3.3.
All numbers are for frames of 10ms.

Speech signal Total Voiced Unvoiced
Speaker 1,sentence a 1328 1076 252
Speaker 2, sentence a 1118 864 254

Table 3.3: Number of voiced and unvoiced frames in training sentence a
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Figure 3.18 shows the results of PCA on the voiced frames of sentence a from Speakers 1
and 2, while the corresponding results for the unvoiced frames are presented in Figure 3.19.
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In Figure 3.18 the separation of features in the directions of most variance for voiced
frames do not show any general improvement compared to the results for all frames shown
in Figure 3.17, though a few changes are visible. There is more overlap between data points
using the LPCC feature extraction method and less overlap for the warped LPCC fea-
tures. The plots for the MFCC features and PLPCC features remain almost unchanged.
The corresponding analysis for the unvoiced frames that is shown in Figure 3.19 does not
lead to good separation of the data from Speakers 1 and 2. Although the reduced amount
of data in these sets make it super�cially seem like there is less overlap, there is no clear
division of the points into two groups for any of the feature sets and so there is a high
degree of overlap here.

Regardless of these early observations, all feature sets will be used in the trials that
are executed in Chapter 9, as by using di�erent classi�ers the distribution of data in
feature space may prove suitable for speaker identi�cation depending on the classi�cation
method applied. This preliminary analysis may, however, prove useful in understanding
some of the results that will be recorded at a later stage.

3.11 Discussion of Feature Sets
The derivation of the cepstral coe�cients is computationally e�ective and reliable, and
they generally perform well for speaker recognition tasks. For these reasons it is common
practice to implement speaker recognition systems using cepstral coe�cients as the se-
lected speaker-dependent features. There are, however, a couple of problems associated
with this solution. One of these is that cepstral coe�cients are not robust against channel
distortion and background noise, though this has limited signi�cance for this project as
there is no mismatch between the training and the test set data in the ELSDSR database.
Additionally, some speaker-dependent information is invariably lost when only the power
spectral envelope of the system characteristics is used [10]. There have been numerous
attempts at exploiting source and prosodic information1 for speaker recognition. Most
experiments show that these feature sets used in isolation perform poorly in compari-
son with the cepstral features. They do, however, provide complementary information
about the speech signal, which means that combining the two types of features can lead
to increased performance when compared to performance based exclusively on the use
of cepstral coe�cients. These conclusions are drawn on the basis of the work presented
in [22], [19], [6], [26], [17] and [18]. In [29], [30] and [35], feature selection procedures are
implemented and it is shown that a combination of system-based features can also lead
to a reduction in error. In this thesis the feature sets will be implemented individually
and the performance of the SID system for each classi�er noted. In this way it will be
possible to assess which feature set is optimal for the speaker identi�cation task involving
a small group of speakers that provide a limited amount of data that is free of noise and
mismatch. These results are presented in Chapter 9.

1Prosody is the pattern of stress and intonation in a language and features that can be extracted that
contain this information are discussed in [17]



Chapter 4

Fundamentals of Classi�cation

Once the feature sets of speaker data have been extracted, a classi�er must be imple-
mented. The classi�er uses the training and test data sets as input data sets and it
produces an output of classi�cation labels for each test data set, identifying the speaker
who uttered the speech contained within the set. This corresponds to the "Pattern Match-
ing" and "Decision Logic" steps of Figure 1.2. The structure of a speaker identi�cation
system classi�er can vary, as can the decision rule that is implemented to make the �nal
identi�cation.

In Chapter 3 di�erent feature sets are discussed as an optimal feature extraction method
for speaker identi�cation does not exist. A similar situation a�ects the choice of classi-
�ers for SID, as each classi�er has its share of trade-o�s. The performance of the entire
SID system is heavily dependent on the type of features that are extracted, but it is also
signi�cantly a�ected by the type of classi�er that is implemented. There is no absolute
answer as to which classi�er is most suited for the speaker identi�cation task. Three
di�erent types of classi�ers are therefore implemented in order to establish which one is
optimal for the SID task of this thesis. The implementation of di�erent classi�ers also
enables a more thorough analysis of the suitability of the di�erent feature sets for speaker
identi�cation.

The three classi�ers that are implemented are:

• Mixture of Gaussians Models (MoG)

• k-Nearest Neighbour (k-NN)

• nonlinear Neural Network (NN)

The speci�c details concerning each of the three classi�ers are presented in Chap-
ters 5, 6 and 7. Despite the various di�erent ways that classi�ers are structured, a number
of concepts are relevant for all of them and will therefore be described here.

4.1 The Decision Rule
The decision rule is vital in the classi�cation process, as it e�ectively decides which class
a test data sample for the nth frame of feature data, xn, belongs to after matching it

43
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to the training data or parameters adjusted by the training data during the enrollment
stage. The nth data sample contains a feature vector of dimension d that depends on
which feature set is used. An optimal decision rule minimizes the risk of an incorrect
classi�cation. Although each classi�er has a unique structure to process data, the decision
rule for all three classi�ers that are implemented can be described using a probabilistic
interpretation. In order to obtain a decision rule from probability distributions, Bayes'
Theorem [15] is used. Bayes' theorem determines the posterior probability P (Ci|xn) for
a speaker represented by the class Ci, i = 1, . . . , S, where S is the number of speakers,
given that the test frame xn is observed, and is derived as

P (Ci|xn) =
p(xn|Ci)P (Ci)

p(xn)
(4.1)

where p(xn|Ci) is the class-conditional probability density function that evaluates the
probability of xn having been generated for the given class Ci. Details of the estimation
of the class-conditional density function are discussed in Chapter 5. P (Ci) is the prior
probability for the speaker class i, and p(xn) is the unconditional density function for xn.
The purpose of having p(xn) as the denominator is to provide a scaling factor that ensures
that the posterior probabilities sum to unity, i.e. ∑S

i=1 P (Ci|xn) = 1. The unconditional
density is computed in Eq.(4.2).

p(xn) =
S∑

i=1

p(xn|Ci)P (Ci) (4.2)

The unconditional probability of xn is thus not dependent on the di�erent classes as it
simply de�nes the probability density function of the test feature set for frame n. From
Eq.(4.1), it can be deduced that the posterior probability derived from Baye's theorem is
proportional to the class-conditional density function and the prior probabilities, as seen
in Eq.(4.3).

P (Ci|xn) ∝ p(xn|Ci)P (Ci) (4.3)

For this speaker identi�cation task, the prior probability for the di�erent reference
speakers is not known. The prior probability P (Ci) is therefore set to being equal for
all speakers. For S speakers in total, each speaker's prior probability is thus assumed to
be P (Ci) = 1

S
. From Eq.(4.3) the proportionality factor leads to the conclusion that the

functions that ultimately discriminate between speakers are the class-conditional proba-
bility density functions, p(xn|Ci).

In Chapter 5, a method that estimates the class-conditional probability density func-
tions and then applies them to Bayes' Theorem is described. Density estimation with the
k-nearest neighbour classi�er is brie�y discussed in Chapter 6, while in Chapter 7 it is
shown that the neural network yields results in the form of posterior probabilities.

Common for all these methods of classi�cation is that the decision of which speaker a
test frame is assigned to corresponds to maximizing the posterior probability for that
speaker. The advantage of applying Bayes' Theorem in many cases is that while the
posterior probability in itself may be di�cult to calculate, the probability functions that
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it depends on can be estimated and then used to derive the posterior probability as seen
in Eq.(4.1).

4.2 The Curse of Dimensionality
The curse of dimensionality plays a central role in a�ecting the performance of di�er-
ent classi�ers. It is closely connected to the probability density functions discussed in
Section 4.1. A probability density function estimates the distribution of data points in
feature space by mapping this distribution with a number of parameters. If P is the
number of parameters needed to estimate a distribution for the 1-dimensional point xn,
then P d parameter values must be determined for the d-dimensional vector xn, where
xn = xn

1 ,x
n
2 , . . . ,x

n
d . As the number of parameters to be estimated increases exponen-

tially, so should the number of frames used to estimate the probability density function.
For a large number of dimensions, this means that the required data set becomes exponen-
tially large, but as a limited amount of data is available for the speakers in the ELSDSR
database, this increase cannot be provided. The data sets used to estimate distributions
of high dimensionality are thus sparse and the resulting probability density estimation
becomes a poor representative of the underlying distribution of input data. This provides
motivation to seek a way in which to limit the dimensionality of the input data set without
decreasing the performance of classi�ers. As will be discussed in Chapters 5, 6 and 7, the
curse of dimensionality a�ects some classi�er types worse than others.

4.3 Impostor detection
The reason that imposter detection must be implemented is that the speaker identi�cation
task is open-set. The implementation of impostor detection can also be described using a
probabilistic approach. The class-conditional density, p(xn|Ci), if estimated reliably, will
yield a far higher density value for class i, if speaker i uttered the speech segment in xn,
than for any other class. It can therefore be assumed that

p(xn
i |Ci) À p(xn

j |Ci), j 6= i

As the class Ci can only be one of the 6 reference speaker classes that are used to provide
training data for each classi�er, the impostor test frame xn

Imp should yield a low class
conditional probability density for all S reference classes. Whether this always holds true
depends on the accuracy of the probability estimation as well as on the eventual overlap of
data points in the feature sets of di�erent speakers. The process of detecting an impostor is
more reminiscent of speaker veri�cation than speaker identi�cation, as instead of selecting
the speaker class that yields the maximum posterior probability for a given test frame,
the criteria for detecting an impostor is that the test frame is rejected as being one of the
reference speakers for all speakers in the reference set. This requires the determination of
speaker speci�c thresholds that correspond to Θ. Each threshold must be high enough to
prevent impostors from being accepted and low enough for test frames from the correct
speaker to be accepted. As density estimates are not always reliable and because it is
not certain that the test frame contains a high level of speaker-speci�c information, it
is not possible to determine Θ so that errors never occur. A balance must be struck
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between the amount of false rejections and false acceptances that are desirable and Θ
set accordingly. A detailed description of the implementation of an impostor detection
method is provided in Section 5.6. The structures of all three classi�ers are described for
use in a closed-set speaker identi�cation task, as the impostor detector is implemented
prior to the commencement of the SID systems classi�cation stage, as seen in Figure 1.3.

4.4 Consensus
As the principle of classi�cation by consensus is used repetitively throughout the next few
chapters, it will be described free of any case-speci�c references here. Consensus in itself
means the reaching of an agreement by a group as a whole, and is therefore commonly also
referred to as majority voting. For the classi�ers that will be presented in Chapters 5, 6
and 7, each test data frame xn is classi�ed as belonging to a particular class. In our case,
these classes can be Sp1, Sp2 . . . Sp6 for the 6 reference speakers, or an impostor class.

Let us assume that a test speech sequence consists of a sentence that is divided into
N frames. The feature vectors extracted for each frame are used as input to a classi�er,
one at a time, so that the classi�cation is executed N times. A very simpli�ed repre-
sentation of the classi�cation of one frame is shown in Figure 4.1, where the classi�er is
unspeci�ed and therefore represented by a "black" box.

 

Test sequence, 

N = 8 frames 

Classifier using 

frame n as input 

Classification of 

frame n as 

belonging to 

speaker i 

Figure 4.1: Classi�cation of one frame of a test sequence

The sequence of frames is thus transformed into a sequence of N labels, each indicating
class membership. The correct class for the entire test sentence x = x1,x2, . . . ,xN is then
chosen as the one that is present in the relative majority of these classi�ed frames, when
all class scores are compared. Classi�cation of a sequence of frames into di�erent classes
is shown in Figure 4.2.

In Figure 4.2, it is assumed that an impostor can be classi�ed as an additional class,
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Figure 4.2: Classi�cation of N frames into S classes

hence the classi�cation of one of the frames as belonging to I, meaning that the classi�er
has detected an impostor frame. As Speaker 2 is the class that 3

8
of the frames belong

to, and all the other speaker classes claim a lesser share of the classi�ed frames, by
consensus, this test sequence would be classi�ed as Speaker 2. There is an advantage when
�nding the correct speaker by using majority voting in this way as there is uncertainty
as to which frames contain truly speaker dependent information so it is not possible to
exclusively select "usable" frames as input to the classi�er. By implementing classi�cation
by consensus, a probability is obtained, based on the frequency of classi�cation of test
frames. The speaker is thus identi�ed on the basis that it has the highest probability of
being the correct speaker. It is possible to implement speaker identi�cation using other
methods than consensus, however the latter is used in this thesis as it provides a means
by which to analyze classi�cation results on a frame-by-frame basis. This enables an
investigation of what frames are usable for speaker identi�cation, a process that would
not be possible if just one class label was returned for an entire test sentence. The frame-
by-frame analysis is discussed in Chapter 9.

4.5 Confusion Matrices
The confusion matrix is a good measure of performance for each classi�er implemented
as part of the SID system. It contains information about the actual labels of data and
the corresponding estimated labels of the same data. Each row in the confusion matrix
represents a reference speaker and each column represents an estimated reference speaker.

A small example, using a set of just three hypothetical speakers, illustrates the use of
the confusion matrix. These speakers are denoted as reference speakers A, B, and C
with the corresponding estimated reference speakers denoted as A,B and C. The results
of classi�cation are in percentage. If the classi�er assigns all test frames to the correct
speakers, then all the frames in the confusion matrix are located in the diagonal, as all
the frames for reference speaker A are estimated as belonging to Speaker A, and so forth,
as seen in Figure 4.3.

In the more realistic case where only a certain amount of frames are correctly classi�ed,
values will be observed outside the diagonal of the confusion matrix. For the case where
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A 100 0 0
B 0 100 0
C 0 0 100

A B C

Figure 4.3: The confusion matrix for all frames classi�ed correctly

as an example the test frames from Speaker A are classi�ed as belonging to estimated
speakers A,B and C at a rate of 59%, 12% and 29% respectively, the confusion matrix is
shown in Figure 4.4, where similar situations apply for reference speakers B and C.

A 59 12 29
B 23 72 5
C 18 34 48

A B C

Figure 4.4: The confusion matrix using for majority fraction of frames classi�ed correctly

In the case shown in Figure 4.4 the identi�cation of speakers is still correct in each
case as the largest fraction of frames is found in the diagonal for each speaker, but there
is less certainty as to which speaker is correct as a certain amount of frames are assigned
to incorrect speakers.

Summing up the number of frames in the diagonal of a confusion matrix and then dividing
this with the total amount of frames in the matrix provides a measure of how many frames
are correctly classi�ed in total. It can also be practical to use a confusion matrix in order
to establish which speakers the wrongly classi�ed frames are assigned to and thus detect
eventual bias towards one speaker in a set. Confusion matrices are used in Chapters 5, 6
and 7 to display performance results for all three classi�ers.



Chapter 5

Speaker Density Models

5.1 Introduction
The topic of this chapter is the creation of stochastic models that can be used for
speaker identi�cation. Each speaker i is represented by a model, λi. Based on these
models, the class-conditional probability of a speaker who has uttered a test utterance
X = (x1,x2, . . . ,xN), where N is the total number of frames, can be computed for each
frame of the observed test sequence. xn is a feature vector extracted from the speech
segment in frame n using one of the feature extraction methods discussed in Chapter 3.

The reference speaker models, λi, i = 1 . . . S, are created during the enrollment phase
of the SID system, using data from the training sentences uttered by each speaker. When
the enrollment phase is completed, each speaker is represented by a model that has unique,
speaker dependent, parameter values.

During the test phase, the test utterance is classi�ed frame by frame, so that the
input to the classi�er is xn. The class-conditional probability density function that is
evaluated using the reference density models is denoted as p(xn|λi) and represents the
probability that the speaker model λi generated the test frame data sample xn. The
speaker identi�cation is executed by determining the speaker model that maximizes this
class-conditional probability density, as according to Section 4.1 this in turn corresponds to
maximizing the posterior probability for the ith speaker model when xn is given, P (λi|x).
In the case of a sequence of independent feature vectors, the overall class-conditional
density function is de�ned as the product of the density function for each test frame, as
shown in Eq.(5.1), and the principle behind the identi�cation of a speaker is shown in
Eq.(5.2).

p(X|λi) =
N∏

n=1

p(xn|λi) (5.1)

i∗ = arg max
1≤i≤S

p(X|λi) (5.2)

The identi�cation rule of Eq.(5.2) does not apply to the implementation of the density
models described in this chapter, as the density estimate of interest is that of each frame
and not of an entire sequence of frames. Entire sequences will be classi�ed according to

49
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consensus over the classi�cation results of all frames. Eq.(5.2) can be applied to one test
frame instead of the entire sequence:

i∗ = arg max
1≤i≤S

p(xn|λi) (5.3)

Using Bayes' Theorem, the posterior probability for speaker model λi given the test
vector xn is calculated as:

P (λi|xn) =
p(xn|λi)P (λi)

p(xn)
(5.4)

Each frame is classi�ed as a member of the speaker model class that maximizes this
posterior probability.

As the class models in this chapter are de�ned as functions of a set of parameters,
the class-conditional densities are referred to as likelihood functions and they de�ne the
likelihood that, given λi, the test data point xn is generated. These likelihood functions
and the parameter set that they are dependent on are described in the next section.

Speaker density modelling is implemented for two purposes:

- speaker identi�cation

- impostor detection

The speaker identi�cation task is executed as described above, using the rule described
in Eq.(5.3). Speaker identi�cation using density modelling is discussed in detail in Sec-
tions 5.5. Although impostor detection can be included as a part of speaker identi�cation
in an open-set case, here it is implemented in a pre-classi�cation phase. In Section 5.6,
the impostor detection implementation using probability density functions is described.
When an impostor is detected, the corresponding test data is excluded from the �nal
classi�cation phase. This alleviates the data load that is used as input to the classi�er
and should help in optimizing the SID system's performance.

5.2 Gaussian Mixture Models
The choice of a stochastic model for speaker identi�cation has to be made with certain
criteria in mind. Density models are used to describe the distribution of a data set,
meaning that the model that is chosen must be able to �t the training data. The model
must also be able to recognize test data that has a distribution similar to that of the
training data. This ability is referred to as the generalization ability of the model. It
deteriorates if the model is too �nely tuned to the training data, as this means that test
data cannot be recognized if it deviates a little from the training data.

There are two main subsets of density models; parametric and non-parametric. The
non-parametric method does not have a pre-speci�ed form and depends entirely on the
data itself with no prior assumptions made. This leads to the ability to estimate the real
density probability very closely, though for data sets of large dimensionality the problems
of inadequate storage space and lengthy computational time may arise. In cases where
there may be missing data points, the non-parametric model does not provide a good
representation of the data.



5.2. GAUSSIAN MIXTURE MODELS 51

The parametric methods, on the other hand, have a pre-speci�ed functional form that
depends on a number of parameters that can be adjusted. These adjustments are made
when the parametric model is �tted to the data set during the training, or enrollment,
phase. When data is sparse, the model retains to a certain level its ability to represent
the input data. The disadvantage of these methods is that the density model may be
unable to provide a good representation of the true input data density, as the latter may
deviate substantially from the model's basic form. A third alternative to these methods
are the semi-parametric methods [15].

The advantage of using semi-parametric methods is that they allow many degrees of
freedom, making them more �exible and sensitive to the true density function of the input
data than the parametric density models. The structure and parameters within the semi-
parametric model, however, ensure that the density function has a known way of behaving
and is thus more robust when dealing with sparse data than the non-parametric methods
are, though they are subject to the curse of dimensionality explained in Section 4.2.

Semi-parametric distributions can be realized as mixture distributions [15]. The den-
sity model that is implemented here is the Mixture of Gaussians (MoG) model [41]. MoG
models are chosen as they are known to be able to approximate any density with arbitrary
precision, and because they have been proven to be very well suited for speech modelling
tasks and subsequent text-independent speaker identi�cation [59].

A MoG model consists of, as the name implies, a mixture of Gaussian distributions.
A Gaussian distribution is de�ned by two parameters: µ, the mean, and σ2, the variance.
These parameters are de�ned in d-dimensional space as the mean vector µ of dimension
d × 1 and the covariance matrix Σ of dimension d × d. The Gaussian density model,
N (x; µ,Σ), is de�ned in Eq.(5.5). The dimensionality is determined by the dimension of
the feature sets that are modelled. The frame of input data x is used free of frame index
n here so as to simplify the initial derivations.

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
(5.5)

A third parameter de�nes the Mixture of Gaussians model. This is the mixing weight
vector of dimensionality M × 1, where M is the number of Gaussian components in the
model. The MoG model is thus de�ned as a weighted sum of Gaussian density functions
that is dependent on M Gaussian components and their corresponding mixing weights,
denoted as P (j), j = 1, . . . , M . The mixing weights are all positive and sum to unity.
The MoG is de�ned in Eq.(5.6).

p(x) =
M∑

j=1

P (j)N (x; µj,Σj) (5.6)

where M is the number of mixture components, N (x; µj,Σj) is the jth Gaussian compo-
nent density function, P (j) is the probability for the jth component and p(x) is the MoG
model for the feature vector of an observation sequence. The constraints that apply to
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the probabilities that contribute to the mixture model are listed below:
M∑

j=1

P (j) = 1, 0 ≤ P (j) ≤ 1,
∫

p(x|j)dx = 1

The number, M , of Gaussian components in the model has to be prespeci�ed. Initially,
a common value for M will be determined, whereafter separate values for each speaker
model, Mi, will be implemented to determine whether this leads to an increase in overall
classi�cation performance. Apart from the number of components, the mixture model is
�exible and not dependent on any prior knowledge of the distribution of data points in
the feature vectors that are used as input for training or for testing. More speci�cally,
this means that the MoG model is suitable for the text-independent task, as no prede�ned
sequence of words has to be used as input to the model.

Each speaker is represented by a MoG model that is de�ned by a parameter set θi,
so that p(x) of Eq.(5.6) can be denoted as p(x; θi). The speaker-speci�c parameter set
consists of the parameters Pi(j), µi,j and Σi,j, for 1 ≤ i ≤ S and 1 ≤ j ≤ M .

To illustrate a basic MoG, a simple 1-dimensional MoG is derived. The data used to
estimate the model is 100 frames from the training sentence a for Speaker 1, and the
feature vector used is the 5th MFCC. The distribution of these data points is shown in
Figure 5.1.

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

5
Data points for 5th MFCC, Sp1, sentence a

Frame index

5t
h 

M
FC

C
 v

al
ue

Figure 5.1: The values of the 5th MFCC for 100 frames of Sp1, sentence a

The MoG model is implemented with M = 3 components. In Figure 5.2, the three
Gaussian components are shown and the resulting overall model is drawn, based on the
weights of each of the mixture components.

The means of the three Gaussians in the MoG model vary from -19 to 0, which roughly
corresponds to the region that the data points in Firgure 5.1 occupy, as can be seen from
the values of these points along the y-axis.
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Figure 5.2: The 1-dimensional Mixture of Gaussians model for M = 3, the 5th MFCC for
100 frames from Sp1, sentence a

5.3 The EM Algorithm
The parameters of the MoGmodel are estimated using the iterative Expectation-Maximization
(EM) algorithm [60], [15], [43]. This algorithm uses the given data - the training sequence
feature vectors - to determine the unknown parameters of the MoG model.

The training data points are denoted as xn, so that for each time frame n there is
a feature vector xn. The subscript is used for n to avoid confusion with the test data
points xn. The problem that must be solved is: given an observed data sample xn that
is generated by a MoG, estimate the means, variances and weights of the M mixtures
of this MoG model. Basically, the optimal parameter set is obtained by maximizing the
likelihood that the given training data is generated by the mixture model de�ned by this
parameter set.

For the likelihood problem to be feasible, however, the data set must be complete, mean-
ing that for each feature vector xn, there is a corresponding class label, zn. In this case,
each class label represents which Gaussian mixture component j is responsible for having
generated the data point xn. The class labels correspond therefore to the mixture weights
P (j), meaning that P (j) = 1 if the jth Gaussian component is responsible for having
generated the data point xn. When the class label information is not available, the data
set is incomplete and the estimation of the model parameters is referred to as unsupervised
learning.

The EM-algorithm is able to determine a solution for the unsupervised learning prob-
lem based on incomplete data by substituting the labels zn with the posterior probability
for each component. This is done using the following iterative procedure:

1. An initial parameter set for the MoG model is chosen

2. Expectation (E) step: Using Bayes' theorem, the old parameters are used to de-
termine the posterior probability for each class (Gaussian component), given the
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training data sequence:
P (j|xn) =

p(xn|j)P (j)

p(xn)

and the expectation function is determined.

3. Maximization (M) step: By maximizing the expectation likelihood function found
in step 2, the new parameter set is determined.

4. If convergence is not reached, return to step 2.

The initialization of the EM algorithm and the detailed descriptions of the E-step and
M-step to estimate parameters are provided in Appendix B.

Convergence of the EM algorithm is obtained when the new parameter set is equal to
the old one, or if the di�erence between these parameter values becomes smaller than a
certain tolerance threshold. With each new estimate of the parameter values, the like-
lihood that the resulting model generated the test sequence increases, while the relative
improvement of the likelihood decreases.

The speed of convergence for the EM-algorithm that is implemented using [44] is shown
in Figure 5.3. This EM algorithm has to meet two criteria to carry on iterating back to
the E-step once the M-step is completed: the relative likelihood improvement is higher
than a small, predetermined threshold and the amount of iterations does not exceed a
preset maximum value. The likelihood improvement is shown as a function of iterations
of the EM algorithm where M = 16 for 3 feature sets of di�ering dimensionality: the
12MFCC (d = 12), the 12∆MFCC (d = 24) and the 12∆∆MFCC (d = 36) feature sets.
The number of training points (frames from sentence a) is 1328.
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Figure 5.3: Convergence of the EM algorithm for all 6 speakers, sentence a, 12 MFCC
feature sets, MoG of order 16

From Figure 5.3, it can be seen that the EM-algorithm converges rapidly, almost
reaching convergence within the �rst 8 iterations for all 3 feature sets. From the discussion
in B concerning the initialization of parameters when implementing the EM algorithm,
this is not necessarily a measure of good performance, as rapid convergence does not ensure
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rapid convergence to an extremum. Under the assumption that the drastic decrease in
log-likelihood improvement does correspond to the approach towards a minimum (as the
minimum of the negative log-likelihood is what is sought after here), the best results (in
the form of the most rapid convergence) are achieved for the 12∆∆ feature set. This
could be due to the fact that more information is available in the feature set that includes
the �rst and second temporal derivatives when compared to the other sets, though a large
number of additional computations are required because of the increased dimensionality.
The EM algorithm is implemented with full covariance matrices that are computationally
heavy and could have been approximated with diagonal covariance matrices instead. A
discussion on the convergence issues of the EM algorithm is not included here but can be
found by referring to [61].

5.4 Reference Density Models
Using the concepts of Chapter 4 and the theory of the previous sections of this chapter,
density modelling for speaker identi�cation is now put into perspective. Each reference
speaker is represented by a corresponding MoG density model. The input data to these
models is the training set that consists of d-dimensional feature vectors, one for each
of N frames. The EM algorithm is implemented to estimate the parameters of the d-
dimensional Mixture of M Gaussians model. Figure 5.4 is identical to Figure 1.3, and
shows the signi�cance of density estimation in the SID system.
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Figure 5.4: A Speaker Identi�cation system with density estimation for impostor detection

Mathematically, the probability estimate of each training data sequence generated by
a speaker reference model can be represented by the density function shown in Eq.(5.7).

p(xi,n|λi) =
M∑

j=1

Pi(j) · pi(xi,n|j) (5.7)

where xi,n is a sequence of frames from the training set for speaker i.
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The reference speaker models are created in the enrollment phase and used in the test
phase as a template with which to match patterns, as described in Section 1.1. An un-
known sequence of test frames, Xtest = {x1,x2 . . . ,xN} is classi�ed, frame by frame,
based on the value of the likelihood evaluation p(xn|λi). The likelihood is calculated for
each speaker model λi, i = 1, . . . , S. This likelihood for test frame xn, given the model
for speaker i, is derived in Eq.(5.8).

p(xn|λi) =
M∑

j=1

Pi(j) · 1

(2π)d/2|Σi,j|1/2
exp

{
− 1

2
(xn − µi,j)

TΣi,j
−1(xn − µi,j)

}
(5.8)

where Pi(j) is a scalar that represents the weight of the jth component for speaker i.

The process of calculating the class-conditional density of a test data point xn using
a MoG model is depicted in Figure 5.5.
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Figure 5.5: The process of probability estimation using a MoG model

The implementation of the density evaluation procedure is executed by �rst taking
the natural logarithm of the right-hand side of Eq.(5.8). This is done to ensure a higher
level of precision and more numerical stability, esp. in the case where data points deviate
signi�cantly from the average distribution and thus cause very large di�erences in the
exponent of Eq.(5.8). The �nal results are obtained by transforming the results back to
the original domain by using the inverse of the natural logarithm.

5.5 Speaker Identi�cation using MoG Models
Once the probability density function of a test frame data sample for each reference
speaker model is determined, decision logic in the form of Bayes' theorem is implemented.
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Depending on the relative values of the posterior probabilities obtained (in order to deter-
mine the maximum posterior probability), each frame of a given test sequence is classi�ed
as belonging to Speaker 1 - S, where S = 6 in this case. When an entire test sequence of
frames has been classi�ed, the speaker identi�cation is based on consensus. In this sec-
tion, the closed-set identi�cation task is analyzed, to be followed by the implementation
of an impostor detection method that is capable of providing a pre-classi�cation solution
to the open-set problem.

In Figure 5.6, one frame, x39, of a test sequence is used as input to the MoG classi-
�er and the density function for this test frame is evaluated for each reference model.
As the maximum density estimates for one speaker model can di�er from the remaining
density estimates by a factor 10 or more, the natural logarithm of these likelihoods is
taken so that the values are restricted to a more useable scale. The results of taking the
logarithm of the likelihood evaluation for test frame x39 are shown in Figure 5.6. The
six subplots each represent test speech from one of the six speakers. In each subplot the
x-axis shows what speaker model is used and the y-axis the resultant density estimation
after taking the logarithm.
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Figure 5.6: The log-likelihood evaluation for each reference speaker for one frame

From the log-likelihood values in Figure 5.6, it is possible to see that for all speakers
excluding Speaker 3, the maximum log-likelihood of the correct speaker is only approached
by one or two of the other likelihood values for the remaining speaker models, while for
Speaker 3 there exists a lot more ambiguity as to which speaker is the correct one. Al-
though this analysis is based on one frame only, it does show the tendencies that are
observable when entire test sequences of frames are considered.

In Chapter 9, di�erent feature sets will be used to evaluate the classi�er's performance. It
is therefore not convenient to allow too many other variable parameters in the classi�er.
As a preliminary measure to allow the initial implementation to be executed, the values
of a few parameters are determined here. These parameters include M , the number of
mixtures in the MoG model, and N , the number of test frames needed to enable iden-
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ti�cation. The feature set comprised of 12MFCC + 12∆MFCC coe�cients is used as
a yardstick, as this feature set is commonly used in speaker recognition tasks and so is
assumed to be reliable. However, for the SID system presented in this thesis, this feature
set has not been proven to outperform the alternative feature sets at this point in time.
For future reference, this 24-dimensional feature set is called the reference feature set.

During the preliminary trials, it was observed that the parameter set
[
Pi, µi and Σi

]

varies with each run of the EM-algorithm. At times a tendency to classify all test sen-
tences as belonging to one reference speaker was noted. This means that no one model
re�ects an absolute speaker model parameter set for a particular training set and this
is a source of unreliability in the classi�cation process. Although this problem remains
untreated for the testing implemented in what follows, it must be considered as a pos-
sible reason for the inability of the MoG classi�er to perform well in some cases. The
instability of the MoG model is due to the high dimensionality of the reference speaker
set that leads to the sparse training data problem that is the direct result of the curse of
dimensionality. F.ex., there are 9896 training frames for Speaker 1 and the dimensionality
of the covariance matrices for each Gaussian component j is 24 × 24 = 576. As there is
no additional data available for the reference speakers, the MoG classi�er is implemented
as is and the testing commenced, using in each case the reference speaker model that
yields the best performance for classifying test frames, chosen after training is executed
a number of times with the same training set.

Once the speaker models have been estimated, the preliminary testing to determine cer-
tain variables is implemented. An important variable parameter in the MoG model that
needs to be determined is the number of mixture components, M . It can be expected
that the higher the number of Gaussian components, the better the density model can
�t to the real training set distribution as the model is more �exible. However, the model
must not be too complex either, as this would increase computing time and the model
would risk �tting the training data too accurately. Over-�tting the training data set leads
to a decrease in robustness in the general case, and the ability to classify test data is
therefore decreased. In order to observe how the number of components a�ects the rate
of correct classi�cation of frames in the system, M is varied from M = 2 to M = 48
Gaussian components and the percent of correctly classi�ed frames is recorded for each
di�erent value of M . This is done for N = 800 frames, corresponding to 8s, of test data
from each of the reference speakers. The training set contains all 7 training sentences for
each speaker. This corresponds to between 68.4s and 93.6s of speech from each reference
speaker (see Table 8.1).

The results are shown in Figure 5.7.
The dotted line in Figure 5.7 represents the total percentage of correctly classi�ed

frames, divided by the number of speakers. This is done because the results for di�erent
speakers vary so much for each value of M that the average over the entire set of reference
speakers must be used to establish which model has the best overall performance. From
M = 2 to M = 12, the average is quite stable and the best result is obtained for M = 12,
though by a small margin. As the number of Gaussian components is increased, the
amount of correctly classi�ed frames for individual speakers increases signi�cantly, yet as
the other speakers' results drop considerably, the average is decreased. It is interesting
to note that for M = 16, it is possible to identify Speaker 3, who in this case is identi�ed
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Figure 5.7: The percentage of correctly classi�ed frames for N = 800 and varying number
of components

correctly in almost 50% of the frames. Yet as the number of correctly classi�ed frames
for the other speakers is greatly reduced, the number of Gaussian components to be used
is thus set to M = 12, despite the low performance for Speaker 3. A reevaluation of the
e�ect of the number of components in the MoG model on the correct frame classi�cation
rate must be executed for the di�erent feature sets that are implemented.

As the number of mixtures can now be set to a constant value of 12 for the reference
feature set, the parameter N can be determined. N is the number of frames that must
be included in the consensus to ensure a reliable classi�cation result. This number can
also vary for di�erent speakers and for di�erent feature sets. A basic idea of how the
number of frames a�ects the ability of the classi�er to make a reliable identi�cation is
established by using the reference feature set. In Figure 5.8 it is observed that as the
number of frames in the test sequence is increased, the total percentage of frames that are
correctly classi�ed is also increased. This holds true for all 6 reference speakers, although
the increase in percentage is minimal for Speaker 3 when compared to the signi�cant and
almost linear increase recorded for Speakers 1 and 2.

The classi�cation of all N = 800 frames from each reference speaker's test data is
shown in Figures 5.9 and 5.10. The colourbars on the right-hand side of each classi�ed
sequence of frames shows which colour indicates the corresponding reference speaker.
F.ex. Speaker 1 is represented by a dark brown colour, thus every frame that is coloured
dark brown for the test data from Speaker 1 is correctly classi�ed.

The total classi�cation based on consensus over all 800 frames is a correct identi�cation
of Speakers 1,2,4,5 and 6. The number of frames that are correctly classi�ed for the speech
utterance made by Speaker 3 is so small that it is obvious why the system fails to identify
this speaker, see Figure 5.9. The majority of frames here are classi�ed as belonging to
Speaker 1. This is in accordance with the various results that are recorded and displayed
in Figures 5.6, 5.7 and 5.8.

Based on Figure 5.8, a larger number of frames yields a better identi�cation rate.
However, a small number of frames would decrease the time needed to decide on a class so
it is interesting to determine how many frames are su�cient in order for the identi�cation
to be reliable. This number is di�erent for each of the di�erent speakers, as can be seen
in Figure 5.11. Classi�cation by consensus is implemented for a varying total number of
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Figure 5.8: The percentage of correctly classi�ed frames as a function of the number of
frames
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Figure 5.9: Classi�cation of N = 800 frames for the female speakers, M = 12
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MoG classification using test data from speaker 4, M=12, 12MFCC + 12delta
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Figure 5.10: Classi�cation of N = 800 frames for the male speakers, M = 12
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Figure 5.11: The correct classi�cation of each speaker for varying number of frames

For each N the classi�cation of the test sequence frames is labelled as being correct
(yellow) if the classi�cation matches the identity of the speaker that uttered the test
sentence, or incorrect (red) if this is not the case.

While the identi�cation of Speakers 1, 2, 4, 5 and 6 is successful for a relatively small
number of frames (correct classi�cation is achieved for all these speakers at just above 1

2
s

of test speech), it is interesting to note that for Speaker 4 this classi�cation seems coin-
cidental until the number of frames is greatly increased, at which time the classi�cation
becomes more reliable. This stability is already achieved at a much lower total frame
count for Speakers 1,2,5 and 6, where practically the entire test sequence is correctly clas-
si�ed. From Figure 5.11 it can be seen that Speaker 3 is not correctly identi�ed for any
length of test data speech, up to N = 800. Here, increasing N is of no signi�cance, as the
majority of frames are continually classi�ed as belonging to Speaker 1. This may be due
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to an imprecise modelling of Speaker 3's training data, a very plausible possibility when
the high dimensionality of the reference set is taken into consideration with the e�ects
of curse of dimensionality in mind. Other feature sets may prove more suitable for MoG
model classi�cation of Speaker 3.

In order to get a better idea as to how many frames are allocated to each reference
speaker and to establish the possible existence of bias for a certain speaker, the confusion
matrix for the identi�cation using the MoG model classi�er is shown below.

CMoG =




76.88 12.00 1.88 2.38 3.13 3.75
23.50 71.63 0 2.00 0.38 2.50
64.50 14.63 9.25 1.25 1.00 9.38
33.88 10.88 4.63 35.88 1.38 13.38
23.00 8.75 1.38 10.50 34.88 21.50
24.75 16.00 3.13 0.88 1.38 53.88




From the confusion matrix it can be seen that there is a bias towards Speaker 1, as
this is the speaker that claims the most frames for Speakers 1 and 3, and the second most
frames for the remaining reference speakers. As Speaker 1 is identi�ed on the basis of a
very large percentage of classi�ed frames, a method of removing bias can be implemented
by setting a minimum threshold for the number of frames classi�ed as Speaker 1 before a
speaker is estimated as being Speaker 1. This does not, however, remedy the misclassi�-
cation of Speaker 3, as this speaker would then be classi�ed as Speaker 2. As this speaker
is also identi�ed by a substantial amount of frames, a threshold for removing bias towards
Speaker 2 can also be implemented. This would, however, result in that Speaker 3 is
classi�ed as Speaker 6. As Speaker 6 is not classi�ed with a large percentage of correct
frames, it is not feasible to also remove bias here. Removing bias towards Speaker 1 is
thus not implemented as it does not enable the system to recognize speech from Speaker 3.
It can be used, if desired, to remove ambiguity within the classi�er for the other speakers,
in this case notably for Speaker 4.

Up to now, the identi�cation of a speaker has been based on majority voting imple-
mented by simply taking all available classi�ed frames and deciding on the speaker that
claims the majority of frames. Alternatively, a rule could be implemented that if the
amount of frames belonging to one speaker is higher than a pre-speci�ed threshold, then
the test sequence was uttered by this speaker.

The threshold is denoted as η and an attempt to derive it for the reference feature set
is made. The rate of correct classi�cation is measured for each increase in the value of η.
It is found that η > 50% gives the optimal results. The value of η is obviously dependent
on the amount of test data available, as an increase in the length of the speech segment
leads to a smaller η being needed, based on the results shown in Figure 5.11. As the
results in the confusion matrix CMoG reveal that both Speakers 4 and 5 were correctly
classi�ed even though the fraction of frames correctly classi�ed here was below 50% sheds
doubt as to how practical such a thresholding technique is. It may require a very large
amount of frames to obtain a 50% correct classi�cation rate for one speaker, while simply
determining the maximum fraction of classi�ed frames might prove more e�cient.
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Although the number of mixtures used for all the preceding preliminary trials was set
at M = 12, it could result in a computational advantage if this number could be reduced
without adversely a�ecting system performance. Once again, if we study Figure 5.7, it is
observed that the di�erence between the average correct classi�cation rate from M = 2-
M = 12 mixtures does not vary much. In order to establish whether a number of mixtures
lower than 12 can yield good performance, a number of runs were executed for di�ering
numbers of components and over the set of all 22 speakers from the ELSDSR database
in order to avoid dependency on speci�c speakers. Although the overall performance for
this much larger set of speakers is decreased when compared to performance with the
smaller set of the 6 reference speakers (only 50% of speakers could be identi�ed) , it was
possible to ascertain that the most recurring and best results were achieved for M = 2.
The numbers of Gaussian mixtures were also made speaker speci�c but this yielded the
same results, i.e. that little could be gained from using more than M = 2 for all speakers.
Varying the number Mi for each speaker would be more bene�cial if there was a greater
di�erence between the amount of training data available for each speaker, as larger data
sets are modelled more accurately with a larger number of Gaussian components than
small data sets are. The number of Gaussian components is thus set to M = 2 and as
many test frames as possible are included for the tests that are implemented using MoG
classi�cation of other feature sets in Chapter 9.
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5.6 Impostor Detection using MoG Models
As a person wearing a hearing aid is unavoidably in contact with numerous unfamiliar
people (and other sources of sounds) in the course of a single day, closed-set identi�cation
limits the optimal use of the instrument. Every single voice and sound that is registered
is classi�ed as being one of the reference speakers and in doing so the settings for that
reference speaker are chosen. These settings risk not being appropriate for the impostor,
leading to an experience of decreased performance by the wearer of the hearing instru-
ment. The purpose of detecting an impostor is therefore to prevent this from happening,
and to enable the eventual implementation of a separate, general, setting that is more
suitable for impostors. Here, a method of detecting impostors based on probability den-
sity estimation is described.

From Section 4.3, impostor detection is based on the estimation of class-conditional den-
sity functions, where the assumption that the likelihood of a test frame from the correct
speaker model is much larger than that of an incorrect speaker can be written as:

p(xn
i |λi) À p(xn

j |λi), j 6= i (5.9)

Through extension of this observation, impostor detection can be implemented: It
is assumed that an impostor will have a relatively low likelihood score for all the refer-
ence models. A method of exploiting this in order to detect impostors is to determine
a threshold for each reference density model. This threshold de�nes the boundary be-
tween the likelihood value of a reference speaker and that of an impostor. For a reference
speaker model λi, all speakers other than speaker i are viewed as impostors, irrespective
of whether it is another reference speaker or a complete outsider.

The speaker-speci�c threshold value is related to the Θ threshold of speaker veri�cation,
only here as many thresholds there are reference speakers must be determined. These
thresholds are denoted as τi. When deriving the optimal value of τi, certain consider-
ations must be taken into account. The challenge is to determine a value for τi that is
small enough to ensure that the highest possible number of frames that do actually belong
to speaker i get classi�ed as such, while making it large enough that the fewest possible
impostor frames are accepted as being from speaker i.

The trade-o� between the two conditions that must be satis�ed when determining
a value for τi is shown in Figure 5.12. Here speaker 1's reference density model, λ1, is
used. A small number of frames, N = 5, is taken from Speakers 1's test data as well
as from the other reference speakers and some speakers from outside the reference set, 9
speakers in total. Two threshold values are found; one that is relatively large (1

2
of the

average reference density for all training frames of reference Speaker 1), and one that is
smaller (1

4
of the average reference density). The results for these two values are shown

in Figure 5.12.
The second row of images in Figure 5.12 shows the true class membership of the

frames.
For a larger τ1 (top left-hand corner of Figure 5.12), only one of the �ve frames from

Speaker 1 is correctly identi�ed. When the threshold is made smaller (top right-hand
corner), an additional two frames are correctly identi�ed but now there is also an increase
in the number of impostor frames that are incorrectly accepted and classi�ed as Speaker
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Figure 5.12: The detection of impostors using a large and a small value for τ1

1 instead of impostors. A trade-o� criteria must be established as it is not possible to
completely eliminate one error rate without adversely a�ecting the other. This leads to
the method for determining a value for τi for each reference speaker model, which will be
described in the following.

The trade-o� problem discussed in Section 4.3 means that in order to determine τi, a
balance must be struck between two kinds of errors - the false acceptance and the false
rejection error. The false acceptance error measures how often an impostor speaker is
labelled as being reference speaker i. The false rejection error re�ects how many times
the test data from speaker i is classi�ed as coming from an impostor. It is established by
the results obtained in Figure 5.12 that for small values of τi, the false acceptance rate
is high and the false rejection rate is low, while when τi is increased, the amount of false
acceptances will fall while the opposite is true for false rejections. In order to �nd the
optimal value for τi, the total error must be as small as possible. In the case of speaker
identi�cation for a hearing instrument, it is more critical that the false rejection error is
very low, as this corresponds to minimizing the risk that a reference speaker is classi�ed as
an impostor, which is more serious than if an impostor is accepted as a reference speaker.
Once again, �nal classi�cation is based on consensus.

In order to derive a value for τi, the following procedure is implemented: the test data
from each speaker is divided into two subsets. One set is used to determine an optimal
value for τi, while the other set is used to test τi in order to establish how e�ective it is at
separating impostors from reference speakers in a text-independent situation. The subset
of data used to determine τi is referred to as the validation set, while the set used to test
τi is referred to as the test set. A varying threshold value is tested for each frame of the
validation set sentences. The threshold is initialized at a low value, and the false rejection
and false acceptance errors are registered. For each increment of τi, the two errors are
noted. The total error is based on the sum of the two errors in percentage. Two criteria
for determining the optimal value of τi are tested: the minimum error rate and the equal
error rate, denoted by the corresponding threshold values τi,min and τi,eer. The minimum
error rate is simply the minimum value of the total error. The equal error rate is the
point where the false acceptance rate is equal to the false rejection rate, i.e. where as
many impostors are classi�ed as reference speakers (in percentage) as reference speakers
are classi�ed as impostors. The derivation of this error is discussed in more detail in [30].
Of importance here is to establish which type of error leads to better overall performance
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in the impostor detection phase.

Once the optimal value for τi has been empirically determined using the validation set of
likelihood estimates, the test set is used to establish the MoG impostor detectors ability
to di�erentiate between reference and impostor speakers. This is done frame by frame, so
that the choosing of a correct speaker can be written as:

p(xn|λi) > τi ⇒ H1 (5.10)
p(xn|λi) ≤ τi ⇒ H2 (5.11)

where H1 corresponds to the "Accept" decision of a test frame as belonging to speaker i
and H2 corresponds to the "Reject" option, i.e. the detection of an impostor, as explained
in Section 1.1.

When all the test frame samples have been classi�ed, majority voting is applied: if
more than half the classi�ed frames in the sequence are labelled as belonging to either a
reference speaker or an impostor, this is the �nal result.

The reference feature set for a randomly selected reference speaker, Speaker 3, is used
to test the impostor detection procedure. The validation and test sets are both comprised
of N = 300 frames of data from Speaker 3's test data in the reference feature set. The
sets do not overlap. This means that there is roughly 3s of speech available to determine
τ3 and 3s to test it. As impostor speakers, the remaining 5 reference set speakers and
10 other speakers are used. Validation and test sets of the same length as for Speaker
3 are also extracted for these speakers. The false rejection and false acceptance errors
are recorded and the two errors are shown in Figure 5.13. As expected, the false rejec-
tion error increases as the threshold value gets larger, as more reference speaker frames
are classi�ed as impostors. The opposite holds true for the false acceptance rate, which
decreases as τ3 becomes larger.
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Figure 5.13: False rejection error and false acceptance error for the validation set
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As can be seen in Figure 5.13, the minimum total error is found at a lower threshold
value than for the equal error rate. This is due to the fact that, after a short while, the
false rejection of reference speaker frames increases at a faster pace than the acceptance
error rate decreases for each increase of τ3. As the objective is to preferably accept too
many impostors rather than risk rejecting a high number of reference speaker frames, the
minimum error rate is a better choice, as it ensures that the false rejection rate is still
quite low, while the false acceptance rate is not at its maximum.

The performance for each of these types of error is obtained by applying both τ3,min

and τ3,eer to the test set. The results are listed in Table 5.1.

Minimum Error Criteria Equal Error Criteria
False acceptances 1231 911
False rejections 40 61
Overall test error 26.48% 20.25%
Correct id. of ref. speaker Yes Yes
Impostors classi�ed as ref. speaker (out of 15) 4 3

Table 5.1: Results using the minimum and equal error rates

The overall test error is seen to be lowest for the equal error rate, and fewer impostors
are accepted, as can be expected. It is clear, though, that the risk of rejecting a reference
speaker test frame is much smaller for the minimum total error criteria. The minimum
error was determined at a value that is factor 103 smaller than the average reference den-
sity for the training data of Speaker 3, while τ3,eer is only a factor 102 smaller than this.

The impostor detection method is thus implemented for all reference speaker models
trained on the 12∆MFCC feature set by using τi,min as the threshold value. The clas-
si�cation of reference speakers and impostors is based on consensus when the density
estimation of all the frames have resulted in a classi�cation of each frame as a reference
speaker or an impostor. The reference speakers are all correctly classi�ed as such, while
of the 10 impostors, 1 is classi�ed as being a reference speaker. This gives an impostor
detection rate of 90% and a reference speaker detection rate of 100%. Interestingly, for
only 100ms of test speech available, the reference speakers are still detected but 40% of
the impostors are classi�ed as being reference speakers. Limiting test data length thus
does not lead to inferior performance in the case of classifying reference speakers, but it
has the undesirable e�ect of decreasing the number of impostors that are detected and
this includes more irrelevant data in the closed-set classi�cation phase.

Once an impostor has been detected, the relevant speech data can be excluded from
the �nal classi�cation phase. The density function estimates that are not rejected as im-
postors are used to determine the posterior probabilities of each reference speaker model.
This procedure is identical to the closed-set case as the speakers that are not detected as
impostors are assumed to be reference speakers. The results of using density modelling
as a classi�cation method and for impostor detection for di�erent feature sets will be
implemented are presented in Chapter 9.
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Chapter 6

k-Nearest Neighbour

6.1 Introduction
A simple, straightforward and relatively �exible classi�er, k-Nearest Neighbour (k-NN)
is a non-parametric classi�cation method that does not require a training stage in which
system parameters are optimized. There is therefore no need for prior knowledge of the
distribution of test and training data points in feature space. The k-NN classi�er is simple
to implement and practical for the purpose of comparing its results with those obtained
from the more complex classi�ers.

As the k-NN method is non-parametric, there is no separation of an enrollment phase
from a test phase, and so the input to the classi�er consists of both labelled training data
and unlabelled test data. The labels associated with each frame of the training feature
set indicates class membership of one of the six classes that correspond to the speakers
in the reference data set. The labelled training points are used as reference points in the
d-dimensional feature space of the classi�er, where d is the number of data points in each
training and test set feature vector. Each new test data point, xn, consisting of the feature
vector for one frame of a test sentence, is then compared to these reference samples in
order to establish the class to which it belongs. The comparison is implemented by using
a distance metric that determines the test point's k nearest reference points (neighbours).
The test point is hereafter assigned to the class that has a majority representation among
these k nearest neighbours.

To illustrate the classi�cation process in k-NN for k = 3 in 2-dimensional space, we
refer to Figure 6.1, taken from [16].

In Figure 6.1, the point "B?" represents the unknown test data point. As it has two
circles (corresponding to points from class B) and only one square (class A) as it's 3
nearest neighbours, the pattern is assigned to class B.

The k-NN classi�er structure is, however, not entirely dependent on the input data, as
two internal parameters must be de�ned prior to the commencement of the classi�cation
process: the distance metric and the value of k. A common distance metric used to calcu-
late the distance between the labelled training points and the unknown test points is the
Euclidian distance. An assumption is made that all the data points can be represented
in Euclidean space, i.e. x ε <d. Subsequently, it is possible to implement the Squared
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Figure 6.1: k-Nearest Neighbour selection for k = 3

Euclidean distance [37] that determines the distance between two points in the space <d.
k-NN classi�cation is instance-based, so that each test feature vector is interpreted as
one instance that has to be compared with another instance, in this case with a train-
ing set feature vector. A test feature vector is denoted as xn = xn(1), xn(2), . . . , xn(d)
and a training vector for frame n as xn = xn(1), xn(2), . . . , xn(d). The squared Euclidean
distance that measures the distance between two patterns xn and xn is shown in Eq.(6.1).

dist(xn,xn) =

√√√√
d∑

z=1

(xn(z)− xn(z))2 (6.1)

E�ectively computing the square root of the sum of squares of the di�erence between two
instances.

The Euclidean distance will be used in the implementation of the k-NN classi�er in all the
trials that are conducted in Sections 6.2 and 6.3 and in Chapter 9. The optimal choice
of the parameter k must be determined empirically, based on identi�cation results. It is
important that k not be too small, as in this case the classi�er can become highly sensitive
to each data point and the variance within the classi�er becomes large, while if k is too
large some class-speci�c information may be lost, as the k nearest neighbours may then
encompass a merging between two or more classes. The optimal value of k is determined
when a trade-o� between these two extremities is found and the k-NN performance is
optimal.

Once the distances between a test and training instance within the classi�er have been
determined, a decision rule is implemented to enable classi�cation of the test vector. This
is a relatively straightforward rule. In the case where there is an equal representation of
two classes within the k nearest neighbour reference points, a random selection of one of
the two classes is implemented. Otherwise, the class that is most heavily represented in
the group of selected neighbouring reference data points is interpreted as being the one
that has the highest probability of having generated the test data point xn. It is thus
possible to write the k-NN decision rule as a special case of density modelling by viewing
the class-conditional density estimate as being:
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p(xn|Ci) =
ki

NiV n
(6.2)

where ki is the number of nearest neighbour points that are members of the class Ci,
Ni is the number of training points in class Ci and V n denotes the volume of the D-
dimensional hypersphere that contains the test point xn and it's k nearest neighbours.
This volume gives an indication of the density of data points in feature space: when the
points are placed far apart, the volume is large and the density thus small, while the
opposite is true for a high concentration of points contained within the hypersphere.

Using Bayes' Theorem, shown in Eq.(4.1), the decision rule can once again be de�ned
here as classifying a given data point as belonging to the class that maximizes the posterior
probability. The prior probability is given as the fraction of points that belong to class
Ci, see Eq.(6.3). The unconditional probability density is de�ned as the estimation of all
data points regardless of class membership, as shown in Eq.(6.4).

P (Ci) =
Ni

N
(6.3)

p(xn) =
k

NV n
(6.4)

Using Bayes' Theorem, the posterior probability is computed as:

P (Ci|xn) =
p(xn|Ci)P (Ci)

p(xn)
(6.5)

=
kiNiNV n

NiV nNk
(6.6)

=
ki

k
(6.7)

The test data point xn is thus assigned to the class that yields the largest posterior
probability, corresponding to selecting the class to which the largest fraction of total
nearest neighbours belongs to. Analogous to the classi�cation method for MoG model
classi�cation as described in Chapter 5, each data point xn is classi�ed and the classi�-
cation of the entire test sequence is then based on consensus so that the correct class is
the one with a majority representation amongst the identi�ed frames.

As the k-NN classi�er is interpreted above as a special case of density modelling, a form
of impostor detection could be implemented here. The conditional density can be es-
timated from Eq.(6.2), and as discussed in Section 5.6, a suitable threshold could be
set so that a test data point that has a density estimate below this threshold for all
classes can be classi�ed as an impostor. As the impostor detection method of Section 5.6
works satisfactorily, the subject will not be delved into with respect to the k-NN classi�er.
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The downside of k-NN classi�cation is that it is necessary for the k-NN classi�er to
store all the training data points that it receives and this places considerable demands on
computer storage capacity which risks to be limited, especially in a hearing instrument.
As the dimensionality of the feature space grows with the dimensionality of the input
data, the k-NN classi�er can rapidly reach an unwieldy number of dimensions. Addi-
tionally, the lack of a training phase means that all computations take place at the time
of classi�cation and this can be extremely time-consuming in the case where d is very
large. This makes it desirable, once more, to determine a way in which feature sets can
be reduced while still allowing e�cient classi�cation, if k-NN classi�cation is to be feasible.

On the other hand, an advantage over the MoG model classi�er is that the k-NN classi�er
does not model a density distribution for the data points, and is therefore more robust
in the case of sparse data, especially when working with data sets of high dimensions.
Isolated data points have a limited impact on k-NN classi�cation. For these reasons, as
well as the fact that the k-NN classi�er is simple to implement, it is included as one of
the classi�ers that will be used as part of the SID system.
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6.2 Gender Classi�cation
Prior to testing with the more high-dimensional feature sets, an initial attempt to test
whether gender separation is indeed possible using the k-NN classi�er is implemented,
based on the observations made in Section 3.4.4. The dimensionality of the feature sets
produced by the fundamental frequency estimators is much lower than that of the re-
mainder of the feature sets, as instead of having [N × d] matrices, where N is the number
of frames in a sequence and d is the dimensionality of the feature set, each speaker is
represented by a [1× 7] vector of training data and a test vector of dimension [1× 2] (one
estimate per sentence). Due to this low dimensionality, the F0 feature sets should not
place excessive computational demands on the k-NN classi�er.

The k-NN classi�er is implemented with k = 2, the number of nearest neighbours be-
ing kept at a minimum with the low dimensionality of the data set kept in mind. A
limited number of Euclidean distance calculations that have to be executed also lead to
less computation time being needed in order to classify each test point. The feature set
used is the Real Cepstrum F0 estimations, though it was observed that the results for
similar gender classi�cation trials with the autocorrelation with center clipping method
and the YIN estimator were identical to those presented here. Using the Real Cepstrum
feature set results in a complete separation of male and female speakers in a computation
time of 0.70s. The gender classi�cation can be seen in Figure 6.2.
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Figure 6.2: k-NN Gender classi�cation using real cepstral F0 estimates

This rapid discernment between genders might prove useful for various applications, as
once it has been implemented, it halves the amount of speakers that have to be classi�ed.
How much in�uence this has on the SID task will be analyzed along with all other results
in Chapter 9. Although the classi�cation of di�erent feature sets using the k-NN classi�er
will also be recorded in Chapter 9, a few initial trials are conducted here in order to
determine a value for k and to observe basic di�erences between the Mixture of Gaussians
classi�cation and the k-NN classi�cation.
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6.3 Preliminary Trials
The same feature set as was used for all the preliminary testing of the MoG is used here,
i.e. the 12MFCC + 12∆MFCC feature set. The k-NN classi�er placed too many demands
on memory storage to permit training with all the data points available, as was done with
the MoG classi�er. Instead, 10s of training material is used from each speaker. Once
again, 8s of test data from each speaker is used. The limitation of the training sequence
length also ensures that an equal amount of reference data points is present for each
speaker and prevents bias towards speakers who have larger amounts of training material
available. Due to the creation of a separate MoG model for each speaker in Chapter 5,
this equalization was not necessary.

The initial test is conducted by increasing the number of nearest neighbours that are
included in the classi�cation and observing this e�ect on the results. In all cases, from
k = 2 to k = 32, the identi�cation rate was the same: Speaker 4 could not be recognized
and the total percentage of frames that are classi�ed correctly is approximately 41%. A
substantial increase in calculation time is only seen when the number of nearest neigh-
bours is increased to 32, and was otherwise stable around 45s. The number of nearest
neighbours is thus chosen to be k = 2.

The results of k-NN classi�cation using the reference feature set and for k = 2, with
10s of training data and 8s of test data from each reference speaker, are shown in Fig-
ures 6.3 and 6.4.
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Figure 6.3: The k-NN classi�cation of 800 test frames from Speakers 1-3, 12∆MFCC
feature set

Figures 6.3 and 6.4 show that although all but Speaker 4 were identi�ed, the frames
seem to be far less homogenous in their classi�cation than was the case with MoG clas-
si�cation (see Figure 5.9 and Figure 5.10), so that each sequence here is a more varied
combination of the six di�erent classes. The actual percentage of correctly classi�ed
frames is almost as high as for the MoG classi�cation, which leads to the conclusion that
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Figure 6.4: The k-NN classi�cation of 800 test frames from Speakers 4-6, 12∆MFCC
feature set

the assignment of correct frames must be more evenly distributed over the six speakers,
and that there is less bias towards one or two speci�c speakers here than was observed
with the MoG models. This can be veri�ed by comparing the confusion matrix of the
k-NN classi�er with the one given for the MoG classi�cation in Section 5.5.

Ck−NN =




44.38 18.50 19.38 7.00 7.00 3.75
12.00 56.63 12.25 5.25 7.50 6.38
23.88 17.63 31.50 8.38 10.63 8.00
16.50 8.25 14.38 22.00 27.38 11.50
7.00 4.13 8.75 18.00 52.63 9.50
14.13 14.00 11.5 8.50 16.25 35.63




The confusion matrix Ck−NN reveals that there is indeed a far more even assignment
of correctly identi�ed frames to each speaker than can be observed in CMoG. In contrast
to the latter, Ck−NN reveals no overwhelming bias for Speakers 1 and 2, and except for
the case of Speaker 4, the value in the diagonal is a good deal higher than those on either
side of it meaning that there is little ambiguity as to which speaker is the correct one. It
is interesting to note that the total amount of correctly classi�ed frames is a mere 41%.
Although this does not yield 100% correct identi�cation, it does indicate that far from the
majority of speech segments are needed in order to be able to identify a speaker. Including
all frames thus corresponds to using noisy data as a lot of the information contained in
the input data is obviously irrelevant for the SID task. The problem of which frames to
keep and which can be excluded is one that remains to be solved, though, and will be
treated in Chapter 9.



76 CHAPTER 6. K-NEAREST NEIGHBOUR



Chapter 7

Arti�cial Neural Network

7.1 Introduction
A powerful, highly �exible classi�er, the Neural Network (NN) is suitable for non-linear
classi�cation tasks of varying degrees of complexity. It consists of a set of units whose
interconnections represent a large number of degrees of freedom that lead to an adjustable
total transfer function. It is this malleable quality of the NN structure that renders it
capable of solving a large variety of classi�cation problems. For highly non-linear classi-
�cation problems in feature space of multiple dimensions the NNs �exibility gives it an
advantage over the MoG classi�er as it does not place constraints on the distribution of
input data and it is less sensitive to the curse of dimensionality.

The units within the NN are referred to as neurons, after the nerve cells that constitute
the biological neural network in the brain, which the NN classi�er attempts to model. The
brain has numerous advantages over digital computers: it can learn by experience and
apply acquired knowledge to deal with associated problems. Functionality can be retained
even when parts of the brain are destroyed and it is a far more powerful computing tool
than the digital computer, capable of e�ciently handling large and noisy input data sets.
These reasons lie behind the motivation to create arti�cial neural networks that imitate
the processes of the biological neural network. The functionality of the latter is brie�y
outlined in Appendix C.1.

In the arti�cial neural network, the synapses 1 of the biological neural network are re-
placed by weights that can be adjusted. The output of each neuron is weighted by
multiplication with these values, thus causing the weights to in�uence the input to the
following neuron. One neuron receives its input from several other neurons, but has only
one output. The arti�cial neuron is described in Appendix C.2, which includes a diagram.

The combination of weights within a network is in e�ect the major deciding factor of
the network's ability to model and recognize a data set. Weights have to be speci�cally
adjusted in order to obtain the optimal mapping solution for a particular set of data. The
determination of these weight values is what constitutes the training phase of the NN.

1The synapsis is the area between two neurons in the brain that transmits electrochemical impulses
from one neuron to the other, explained in Appendix C.1
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The versatility of the NN comes from its ability to learn during the above mentioned
training phase. Learning from speci�c data leads to the network being an "expert" at
solving a particular problem and this is the source of its increasing popularity. The use
of neural networks for classi�cation purposes started in the 1950's, but promising results
gained especially in the last two decades have led to ongoing research into what type of
network is optimal for the solution of a variety of problem de�nitions, including speaker
identi�cation.

7.2 The Multi-Layer Perceptron
The type of network chosen for this text-independent speaker identi�cation task is a non-
linear network capable of both forward and back propagation of data: the Multi-Layered
Perceptron(MLP) [15]. Input data is fed to the MLP and at the output, the value of a
prede�ned error function is calculated based on the di�erence between the network out-
put and the correct answer that is provided for the input data. This error is then fanned
backwards (back propagation) through the network so that each connection weight can be
adjusted in order to reduce the error. This process is repeated until the network reaches
convergence, meaning that the error rate becomes acceptable or that the network cannot
yield better performance for the given data. This process is described in Section 7.3 and
7.4.

The MLP that is implemented consists of three layers of neurons. The layers are the
input, hidden and output layers. The three layers are connected to one another by two
sets of weights, Win representing the weights connecting the input to the hidden layer
and Wout de�ning the weights from the hidden to the output layer. This organization is
shown in Figure 7.1.

 

Input 

HHHiiiddddddeeennn   
Output 

Win Wout 

Figure 7.1: The input, hidden and output layers of a neural network

The number of units shown in each layer does not correspond to what is actually used,
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but is reduced for schematic purposes in Figure 7.1.

The training data used as input to the MLP during the training stage are the frames
containing feature vectors extracted from the training sentences of the reference speakers,
as well as a corresponding class membership label for each frames feature vector. The
training feature vectors are denoted as xn and the associated class label as tn (target
values). The training data is normalized and then fed to the input layer of the MLP from
where the data is fanned to the hidden layer, where some data processing is applied before
sending the data to the output layer for �nal classi�cation and where the network error
is evaluated. The �ow of data from the input to the hidden and from the hidden to the
output layer is the forward propagation of data through the network. As will be seen in
the following sections, forward propagation of data is implemented for both training and
test data.

7.3 Design Details
Although training data is used in the notations of this section, the processes described here
are relevant for both training and test data, except where noted otherwise. The input layer
works with preprocessed data, x̄n. The input feature vectors are preprocessed so as to
scale all values to a uniform scale, preventing high variance within the set. Normalization
is implemented by subtracting the mean x̃n of the feature vector from each element within
the set and then dividing the result with the standard deviation σ̃n:

x̄n =
xn − x̃n

σ̃n

(7.1)

The output of each input unit is multiplied with its corresponding weight before it is
used as an input to a hidden unit. In the hidden units, the sum of the contributions from
the input layer is transformed by an activation function. This function can be nonlinear
when required for the solution of a nonlinear classi�cation problem. The described process
is shown in Eq.(7.2), where whk denotes the value of the weight for the connection from
input unit k to hidden unit h, x̄n is the normalized feature vector for the nth frame in
the training sequence, and g is the activation function. This process is also described in
Appendix C.2.

zn(h) = g

(
D∑

k=0

whkx̄n(k)

)
(7.2)

The activation function that is implemented is nonlinear in this case to allow for a
smooth mapping of nonlinear feature data. The activation function must be di�erentiable
to allow for back propagation of the error function, which will duly be explained. The tanh
function is chosen as it meets these requirements and returns values within a restricted
range of [-1,1]. It is de�ned in Eq.(7.3) and shown graphically in Figure 7.2.

g(ah) ≡ tanh(ah) ≡ eah − e−ah

eah + e−ah
(7.3)

where ah is the summed input, or activation, of hidden input h, as calculated in Ap-
pendix C.2.
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Figure 7.2: The tanh activation function

The outputs zn(h) from the hidden units are multiplied by the weights that connect
the hidden and the output layers and these results are then used as input to the output
layer. The output on(j) from the output unit j is a linear transformation of the activation
formed by the sum of the output from each hidden unit h multiplied with the weight wjh:

on(j) =
Nh∑

h=0

wjhzn(h) (7.4)

The number of hidden units starts at zero, as does the number of input units. This
is because there is a bias parameter associated with each of these two layers, represented
by a zero'th unit that has a �xed output of zk = zh = 1 for k = h = 0.

The NN must be able to classify input data as one of multiple classes. In order to
obtain the network outputs as probabilities, the softmax function is applied to the values
that are determined in Eq.(7.4). The softmax function is the normalized exponential of
the output that returns all values within the range [0,1]. Large output values are assigned
a value close to one, while the lower outputs are mapped closer to zero. The resultant
set of values sum to unity and thus each output from the softmax transformation can be
interpreted as a probability, more speci�cally the posterior probability P (Cj|xn) of class
j, as it is the probability that the class is the jth speaker when the feature vector xn is
observed. Eq.(7.5) shows the softmax function.

yj =
exp(oj)∑
j′ exp(oj′)

(7.5)

The class with the largest posterior probability is then selected as being the correct
class for the given training or test feature vector. The results of the classi�cation are
compared with the class membership labels, the target values tn, that were provided with
the input feature vector. The di�erence between the network output and these target
values is the network error that de�nes the value of a cost function. The network training
consists of minimizing this cost function by adjusting the network's weight values. The set
of optimal weight values should thus correspond to the cost function minimum. The cost
function Ex that is implemented is the cross-entropy error [15], [58]. As the classes that
must be recognized are independent of one another, the probability of observing the target
values tn given the input training pattern xn is the product of all the classes' posterior
probabilities given this pattern. From Eq.(7.5), these results are denoted as yn,j for the
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nth pattern. Each pattern has its associated target vector that is used in the evaluation
of the probability of these patterns so that:

p(tn|xn) =
S∏

j=1

(yn,j)
tn,j (7.6)

The negative log-likelihood is obtained to de�ne the cross-entropy cost function that
has the form:

Ex = −
N∑

n=1

S∑

j=1

tn,j log(yn,j) (7.7)

Ex is the total error function over all n training patterns. For the nth training pattern,
the cost function is denoted as Ex

n. In order to determine a minimum for the cost function
by adjusting weight values, the former is di�erentiated with respect to the hidden-to-
output weights and the input-to-hidden weights. First, we de�ne the activation of a unit
by referring to Appendix C.2, where the summed input from the input neurons to a hidden
unit h is denoted as the activation ah:

ah =
d∑

k=0

whkx̄n(k) (7.8)

The corresponding activation in an output unit, aj, is derived analogously.
In order to obtain the cost function's derivatives w.r.t. all the network weights, the

chain rule is used. The cost function derivatives for the hidden-to-output weights and for
the input-to-hidden weights are shown in Eq.(7.9) and Eq.(7.10), respectively:

∂Ex
n

∂wjh

=
∂Ex

n

∂aj

∂aj

∂wjh

(7.9)

∂Ex
n

∂whk

=
∂Ex

n

∂ah

∂ah

∂whk

(7.10)

where aj and ah are the summed and weighted input (activation) to an output and a hidden
unit, respectively. The second term of the right-hand side of Eq.(7.9) and Eq.(7.10) is the
derivative of the activation w.r.t. the input weights and is therefore the raw output of the
previous unit, denoted as z in Appendix C.2. The �rst term in Eq.(7.9) and Eq.(7.10) is
called the back propagation error [15] and for the output and hidden layer is denoted as
δj and δh, respectively. The cost function derivatives can now be written as:

∂Ex
n

∂wjh

= δj · zk (7.11)

∂Ex
n

∂whk

= δh · zh (7.12)

It is by the backwards �ow of data in the form of the cost function and its derivatives
that it becomes possible to assign "responsibility" for the size of the cost function to the
weights within the network.

The cost function and the two sets of cost function weight derivatives are used as input
to the network training algorithm that proceeds to determine the optimal weight values.
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The algorithm that is implemented is the BFGS algorithm, described in Appendix D and
in [46] and [45].

The results of the BFGS algorithm are the updated weight values and some updated
hyperparameters that are used to check whether network convergence has been reached.
If this is the case, the network is considered trained and ready for use as a classi�er.
In the event that convergence has not been reached, the cost function and its deriva-
tives are reevaluated and once again propagated back through the network to be assigned
as input to the BFGS weight optimizing algorithm. Convergence is checked again. The
process is repeated until the convergence conditions, described in Section 7.4, are satis�ed.

Once the network has converged, the training data is forward propagated once more
through the network with no modi�cations being made to any of the weight values. The
�nal training error is then obtained, indicating how well the network has modelled the
training data feature set. The test error is found by using the above described methods
for the forward �ow of data through the network using the test feature vector xn and the
corresponding target vector, tn, as input to be able to calculate the test error. In this case
the cost function is not di�erentiated with respect to weight values as back propagation
of the error is exclusively used to train the network. During the testing phase, the per-
formance of the network is established as its ability to recognize patterns that it has not
been trained on, a vital performance measure for the text-independent speaker identi�-
cation task. The performance is obtained as the amount of times that the class with the
highest posterior probability corresponds to the correct target value. The identi�cation
process is implemented for each test frame xn and as before, the �nal classi�cation of an
entire sequence of test frames from one speaker is based on consensus over these classi�ed
frames.

7.4 Generalization
In order to ensure that test data can be classi�ed, a trade-o� is associated with the
learning process of the NN classi�er. The ability of the NN to model the training set
too accurately can prevent it from performing well when unknown (test) data samples
are used as input. Correctly classifying data that the network has not trained on is a
re�ection of the network's generalization ability. The trade-o� is between this ability
and the ability to accurately model the given training data set. There is a risk that the
network over�ts the training data, meaning that too much information, including noise,
is modelled and the generalization capability of the network becomes greatly decreased
as the mapping of the test samples then bear little or no resemblance to the mapping of
the patterns that were used to train the network. Several parameters can be adjusted in
order to ensure a good trade-o�.

One of these parameters is the number of hidden units, Nh. If this number is large,
the network can approximate very complex distributions of training feature data but may
become too specialized to allow for generalization. In this case, there exists a lot of vari-
ance in the network mapping of the input data. Excessesively restricting the size of the
hidden layer, on the other hand, does not allow for a �exible mapping of the training data
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and may result in high bias. Nh cannot be determined mathematically, and is therefore
obtained through the observation of network performance using di�erent numbers of hid-
den units, though the amount and complexity of available data can give an indication as
to how many units should be implemented.

Furthermore, a cost function exclusively based on the training error of the network is
clearly not suitable if the network must be able to generalize. This problem is addressed
by introducing an additional parameter that ensures generalization is not sacri�ced for
the purpose of a very precise �t of training data. This is the regularization parameter, α.
It is incorporated into the cost function so that it must also be minimized if the network is
to converge. The direct purpose of the regularization parameter is to limit the variance in
updated weight values and thereby prevent the formation of decision boundaries between
the multiple classes that are too rough to allow for optimal classi�cation of test patterns.

The regularization thus takes the form of a penalty that is implemented so that it grows
larger for larger weights, and as the network cannot converge as long as α is too large,
it forces the weight values to fall within a restricted range in order to achieve network
convergence. There is one penalty term associated with input-to-hidden weights (αin)
and another for hidden-to-output weights (αout).

The regularization term is multiplied with a decay constant γ that determines how
much in�uence the former has on the cost function. For the actual implementation,
γ = 0.5. The cross-entropy cost function of Eq.(7.7) with regularization becomes:

Êx = Ex + γ · αin

Nh∑

h=0

d∑

k=0

(whk)
2 + γ · αout

S∑

j=1

Nh∑

h=0

(wjh)
2 (7.13)

The method used to estimate values for αi and αo is Mackay's evidence scheme [56].
An additional parameter, the outlier probability β [54] is implemented in the MLP

but as shown in the following section, does not play a signi�cant role in this speaker
identi�cation task.

The network training is completed when αin, αout and β fall below a preset low threshold.
To provide an alternative, a maximum number of iterations is set so that if convergence
is not obtainable, the training does eventually cease when this limit is reached. These
are the convergence conditions that are associated with the iterative training process de-
scribed in Section 7.3.

The neural network that is implemented is provided by [57], including the regulariza-
tion functionality, the outlier probability evaluation and the BFGS weight optimization
algorithm, leaving the only variable parameters being the number of hidden units and the
length of training and test data to be used.

7.5 Preliminary Trials
Repeating the process for the MoG and k-NN classi�ers, the NN classi�er is tested in a
preliminary round of trials in order to observe some initial results and determine some
variable parameters, while the bulk of the testing with the NN is presented in Chapter 9.
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Figure 7.3: NN performance as a function of varying training and test sequence length

Once again, the 12MFCC + 12∆MFCC feature set is used as a reference set. The number
of input units corresponds to the dimensionality of the feature set, so that the entire
feature vector can be contained by the input layer. For the reference feature set, this
yields an input layer consisting of d = 24 units. As discussed above, the number of
hidden units cannot be calculated and is thus initially set to Nh = 15. This number,
being below that of the input units, should be able to model the main characteristics of
the data without conforming too precisely to the input pattern. The number of output
units depends on the number of di�erent classes that are used as target labels, in this case
corresponding to the number of speakers that the network must be able to di�erentiate
from one another, and is so set to S = 6.

The weight values are initialized with random values chosen from a normal distribu-
tion with mean 0 and unit standard deviation.

There exists no absolute rule for how much training and test data must be available
to the MLP for it to perform satisfactorily. Therefore, di�erent lengths of training and
test data sequences are used in order to establish the NN performance's dependency on
the amount of both data sets. The trials are implemented by keeping the length of train-
ing data constant and varying the length of test sequences. When the di�erent lengths of
test data have been implemented, the length of the training data sequence is altered and
once again a series of tests with test data of di�erent lengths is implemented for a constant
training set length. This is done for 3 di�erent training set lengths and 4 di�erent test
set lengths.

As the amount of data for each speaker is di�erent from one another, the upper bound
for the training data is set to a common limit of ttrain = 65s, so that a maximum of 65s
of randomly selected training frames is used per speaker. Both test sentences are used
for each speaker, allowing ttest = 8s as the maximum amount of test data available per
speaker. The results are shown as 3-dimensional learning curves in Figure 7.3.

The curves in Figure 7.3 show that for increased training data length (along the
x-axis), the performance for the classi�er invariably also increases. The availability of
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Figure 7.4: The NN classi�cation of 800 test frames from Speakers 1-3, 12MFCC +
12∆MFCC feature set

more training data would yield even higher correct classi�cation rates but this cannot be
con�rmed empirically in this thesis due to the limited amount of speech in the ELSDSR
database. The increased length of test data sequences also leads to improved performance
until ttest = 5s. Hereafter, when all 8s of test material is included in the analysis, the
performance drops in all cases. As each test sentence is di�erent this does not show
any conclusive evidence. It does suggest that the test data set for each speaker contains
varying speaker-dependent information and so when the performance deviates from what
is expected this does not necessarily indicate a fault that can be attributed to the classi�er.
Despite the drop in classi�cation rate when additional test material is added, all of it is
included in the �rst few tests of the network's performance, as it is generally better to use
as much test data as is available and because it cannot be assumed that test data free of
ambiguity can be obtained in real life circumstances.

It is encouraging, however, that with 5s of test material the performance of the NN
for speaker identi�cation of the 6 reference speakers is highly satisfactory. It is observed
that for the trials using from ttrain = 50s and upwards, the identi�cation of all 6 speakers
is 100% successful for both the 5s and the 8s test material sequences. This means that all
6 speakers are identi�ed correctly by using consensus over all the test frame classi�cations
for each speaker.

In Figures 7.4 and 7.5, the results of neural network classi�cation for 8s of test speech
from each speaker, using the reference feature set and 65s of training data per speaker,
are shown.

When Figures 7.4 and 7.5 are compared with the corresponding Figures 6.3 and 6.4
for k-NN classi�cation, it is instantly clear that more frames are identi�ed correctly when
using the neural network. This can be con�rmed by observing the confusion matrix for
the NN classi�cation. All values in the confusion matrix are in %.



86 CHAPTER 7. ARTIFICIAL NEURAL NETWORK

Neural Network classification for Speaker 4

100 200 300 400 500 600 700 800
Sp1

Sp2

Sp3

Sp4

Sp5

Sp6

Neural Network classification for Speaker 5

100 200 300 400 500 600 700 800
Sp1

Sp2

Sp3

Sp4

Sp5

Sp6

Frame index

Neural Network classification for Speaker 6

100 200 300 400 500 600 700 800
Sp1

Sp2

Sp3

Sp4

Sp5

Sp6

Figure 7.5: The NN classi�cation of 800 test frames from Speakers 4-6, 12MFCC +
12∆MFCC feature set

CNN =




62.25 18.88 12.63 4.88 3.50 2.88
5.00 75.88 5.63 8.38 1.00 4.13
32.38 13.75 36.75 8.38 3.13 5.63
9.13 3.00 7.88 44.25 23.00 12.75
2.50 1.50 5.75 14.38 65.38 10.50
5.38 9.75 11.00 6.25 6.00 61.63




Of signi�cance when observing the confusion matrix for the neural network in com-
parison with those obtained for the same feature set with the MoG and k-NN classi�ers
is that all maximum values are situated in the diagonal, meaning that all six speakers are
identi�ed correctly. As was assumed, a larger amount of frames per speaker is assigned
correctly here than in the case with k-NN. Additionally, the distribution of correctly clas-
si�ed frames is more evenly distributed between all 6 speakers here than in the case with
MoG classi�cation. There still exists a bias towards Speaker 1 in the case of Speaker 3,
though not to the extent that misclassi�cation of the latter speaker occurs. The total
amount of correctly identi�ed frames when using the neural network is 58%, which is 17%
more than the k-NN classi�er yielded and 11% more than was obtained with the MoG
classi�er, because the latter had such a high correct classi�cation rate for a few speakers
and a very low one for others. When the 12MFCC and their temporal derivatives are
extracted as features, the optimal classi�er to use would thus be the neural network.

In order to establish whether using 15 hidden units is suitable for use with the refer-
ence feature set, the network is tested with other values for Nh. Having more than 17
units in the hidden layer caused memory storage problems and so this was set as the
maximum value. The NN performance, here presented as the percentage of correctly
classi�ed test frames, is shown for four di�erent values for Nh in Table 7.1. All tests were
implemented with ttrain = 65s and ttest = 8s.
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Nh 10 14 15 17
Correct frame ID rate 57% 58% 63% 63%

Table 7.1: NN performance for di�erent numbers of hidden units

The network's ability to correctly identify speakers is decreased (Speaker 3 is not
identi�ed) when the number of hidden units is limited to 10, though no signi�cant im-
provement is observed when Nh = 17. The identi�cation of all six speakers is still possible
for Nh = 14, though a slight drop in correctly classi�ed frames is observed. It can thus be
assumed that the original value of 15 is satisfactory both with respect to modelling the
training feature data and retaining the ability to generalize when test data is applied.

Before leaving the topic of the structure of the neural network, a note about the out-
lier probability, β, is made. It is mentioned in Section 7.4 that it has little in�uence on
the implementation for the reference set of speakers. This is because it is known, before
hand, which speaker uttered each sentence and thus there is very little chance that the
training data frames are matched with the wrong label, which is what is detected using
the outlier probability, as described in [54]. One of the convergence criteria of the NN
is that β < 1 · 10−4. During the preliminary trials, the value of β never exceeded this
threshold, as can be seen in Figure 7.6 for the analysis using the reference feature set.
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Figure 7.6: β for the NN classi�cation of the 12∆MFCC reference feature set
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Chapter 8

The Database

The database that is used for all the experiments conducted in connection with this the-
sis is the English Language Speech Database for Speech Recognition (ELSDSR). It was
created by Ling Feng during the course of and for use in her Master's Thesis [34]. The
recording of training and test speech took place during the early summer of 2004 at the
Department of Informatics and Mathematical Modelling (IMM) at the Technical Univer-
sity of Denmark (DTU). 22 speakers participated in the recording sessions. All recorded
speech is in the English language. The training material consists of a set of 7 sentences
that have been chosen to ensure that as many di�erent parts of speech as possible are
present for each speaker. The test sentences are randomly drawn from a text and here
only 2 sentences are recorded for each speaker. All recordings were executed in the same
room with the same equipment, so there is no mismatch between the training and test
sequences. For more information pertaining to the recording setup and the backgrounds
(such as age and nationality) of the speakers that partook in the recordings, refer to [34].

Each speaker is labelled as a male or female denoted as M and F, respectively. This
letter is followed by three initials that identify the speaker. There are 10 women and 12
men, aged from 24 to 63. The length of total training speech uttered varies from speaker
to speaker despite being produced from identical sentences, as each individual speaks with
a unique speed and pause duration. As the test sentences are all di�erent, the lengths of
these vary to a greater extent. The test material di�ers not only between speakers but
also from the training sentences, so that the identi�cation problem becomes text inde-
pendent. In Table 8.1, the length of training and test speech available from each speaker
in the database is listed. The speakers are numbered as they are used in this thesis: The
�rst six speakers are a combination of three women and three men used for the purpose
of determining an optimal system for a small set of reference speakers. The remaining
speakers aren't used in a particular order, so they appear as they do in the database, i.e.
alphabetically. The 6 reference speakers are highlighted in bold print.
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Speaker no. Gender Initials Train/s Test/s
1 female FAML 99.1 18.7
2 female FDHH 77.3 12.7
3 female FEAB 92.8 24.0
4 male MASM 81.2 20.9
5 male MCBR 68.4 13.1
6 male MFKC 91.6 15.8
7 female FHRO 86.6 21.2
8 female FJAZ 79.2 18.0
9 female FMEL 76.3 18.2
10 female FMEV 99.1 24.1
11 female FSLJ 80.2 18.4
12 female FTEJ 102.9 15.8
13 female FUAN 89.5 25.1
14 male MKBP 69.9 15.8
15 male MLKH 76.8 14.7
16 male MMLP 79.6 13.3
17 male MMNA 73.1 10.9
18 male MNHP 82.9 20.3
19 male MOEW 88.0 23.4
20 male MPRA 86.8 9.3
21 male MREM 79.1 21.8
22 male MTLS 66.2 14.05

Table 8.1: The length of training and test material for each speaker



Chapter 9

Experimental Results

In this chapter, the results of the extraction and implementation of the feature sets de-
scribed in Chapter 3 used in conjunction with the classi�ers of Chapter 5, 6 and 7 are
presented. All of the testing is implemented using the small reference set of 6 speakers
that is taken from the ELSDSR database as described in Chapter 8, unless the use of ad-
ditional speakers is explicitly noted. When the computation time is provided, the times
are registered for a Pentium 4.40GHz processor.

9.1 Preprocessing
The speech signals of the ELSDSR database that were used in all of the applications that
are described in the following sections are preprocessed with a high-pass �rst order �lter
that has the transfer function

H(z) = 1− 0.97z−1 (9.1)
to attenuate the lower frequencies in the speech signal and thus emphasize the higher
frequencies and thus create a balance between the low- and high- frequency representation
in the speech spectrum. The pre-emphasized signals are then divided into frame blocks,
each of them 30ms in length and with an overlap of 10ms for all feature sets, unless
otherwise speci�ed. The Hamming window was applied to each frame to ensure smooth
transitions at frame boundaries.

9.2 Feature set extraction
9.2.1 F0 Estimates
The three fundamental frequency estimators described in Sections 3.4.1, 3.4.2, and 3.4.3
and the implemented frame length for speech segments that are analyzed by each method
are listed in Table 9.1.

There are three feature sets extracted using F0 estimation:

- YIN F0: contains one F0 estimate for each sentence, calculated by the YIN estimator.

- RC F0: contains an average F0 estimate for each sentence, calculated by the Real
Cepstrum method.
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F0 Estimator Frame length
Autocorrelation CC 30ms

YIN 33ms
Real Cepstrum 64ms

Table 9.1: The frame lengths for each F0 estimator

- F0 Trajectories: contains the F0 estimate of each frame in each sentence, calculated
by the real cepstrum method.

The autocorrelation with center clipping method is used to return a voiced/unvoiced
label for each frame in each sentence. It is not implemented as a feature set as the
YIN estimator is assumed to be more precise in its estimations that its time-domain
counterpart. Including the real cepstrum feature set ensures that both a time-domain
and a frequency-domain method of extracting F0 are represented.

9.2.2 LPCC, LPC Residual, Warped LPCC, PLPCC, MFCC
The LPCC, warped LPCC, PLPCC and MFCC feature sets are derived by the processes
described in Sections 3.5, 3.6, 3.7 and 3.8, respectively. The LPC residual is derived from
the LPC analysis as described in Section 3.5.2. The orders of the cepstral coe�cient
feature sets are chosen to be 12, except for the PLPCC set, where the initial order is 13.
These values are selected on the grounds that they are commonly used with success in
speech and speaker recognition applications and are therefore assumed to be suitable for
the representation of the vocal tract characteristics of each speaker [1]. As a reduction
of the dimensionality of the feature sets while preserving SID system performance is one
of the aims of this thesis, the orders of the cepstral coe�cient feature sets are changed
to lower values and the e�ect of this on the speaker identi�cation task is observed. The
LPCC, warped LPCC and MFCC features are extracted for an analysis order of 8 and
10 as well as for the starting value of 12. The corresponding lower analysis orders for the
PLPCC feature set are 9 and 11. The LPC residual is derived for each analysis order of the
LPCC. The �rst temporal derivatives of the LPCC, warped LPCC, PLPCC and MFCC
feature sets are calculated and these sets are denoted as f.ex. 12∆MFCC that implicitly
includes the original 12MFCC feature vectors, so that this feature set contains 24 feature
data points for each frame. The labelling of the second order derivatives is analogous to
this. The second order temporal derivatives of the LPCC, PLPCC and MFCC feature
sets are implemented. When the cepstral coe�cient feature sets are used, each frame
of speech from the training and test sentences contains a feature vector of dimension d
that depends on the order of the analysis. The LPC Residual returns one value for each
frame, the prediction error of the analysis that is shown in Eq.(3.15). All of the cepstral
coe�cient feature sets are derived from framed segments of speech that are 30ms in length
with a 10ms increment.

The F0 estimates and the LPC residual are the source based features tested in this thesis
while the system based features include the LPCC, warped LPCC, PLPCC and MFCC
features sets.
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9.3 Classi�er settings
9.3.1 MoG Classi�er
Six reference MoG models are trained with all of the training data available for each
reference speaker. The sizes of these training data sets are listed in Table 8.1. As the
optimal number of Gaussian components was established in Section 5.5 as being 2, this
number was used in each case and then increased in order to observe the e�ect this had on
the system performance for each feature set. In the majority of cases, M = 2 proved to be
the optimal choice. An increase to M = 4, however, was necessary to improve classi�cation
performance in the case of the warped LPCC feature sets. The MoG model classi�er was
observed to be instable due to the unreliability of density estimation in high dimensions
and so the results obtained from this method are not representative of an unambiguous
classi�cation process, but should rather be seen as one out of several possible outcomes.
The preliminary trials with the MoG classi�er are described in Section 5.6.

9.3.2 k-NN Classi�er
The feature sets are all implemented with the k-NN classi�er using k = 2 nearest neigh-
bours and the Euclidean distance metric. The preliminary trials for the k-NN classi�er
are described in Section 6.3.

9.3.3 Neural Network
The neural network was tested with the number of hidden units set to Nh = 15. Although
this is the number that has only been proven to be suitable for the 12∆MFCC feature set,
it is assumed that it is also appropriate for the other cepstral coe�cient feature sets. The
source based features, i.e. the F0 estimates and the LPC residual, are not implemented
with the neural network as they yielded poor performance for the other two classi�ers
and so due to the computational time that was required in order to train the neural
network for each new feature set, no trial time was allocated for these feature sets based
on the assumption that they do not contain enough speaker-speci�c information to enable
successful speaker identi�cation. Results for the NN are thus obtained for the feature sets
that yield the most promising results when using the k-NN and MoG classi�ers. These
proved to be the system based features. The preliminary trials with the NN classi�er are
described in Section 7.5.

9.4 Impostor Detection
The impostor detection method of Section 5.6 was implemented for the 12∆MFCC fea-
ture set so that closed-set classi�cation could be implemented for the speakers that were
accepted as being reference speakers. The test data of each speaker was split into a
validation and a test set and the likelihood estimates of each of these sets were used to
determine the speaker-speci�c thresholds τi. The values that were determined for τi are
listed in Table 9.2. The logarithm of these values is also shown as this transforms the
values of τi to a more useable scale.
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Speaker Threshold, τi log(τi)
1 3.3 ·1010 24.22
2 5.4 ·109 22.41
3 7.76 ·1011 27.38
4 8.1 ·109 22.82
5 2.1 ·109 21.47
6 5.0 ·1010 24.64

Table 9.2: The likelihood and log-likelihood values of the speaker speci�c impostor detec-
tion thresholds

Impostor detection is implemented by �rst calculating each test frames class-conditional
density estimate on the original scale and comparing it to the correpsonding τi values.
The τi values are based on a minimum error criteria. This method of impostor detection,
as noted in Section 5.6, resulted in a 90% correct rate of impostor detection and a 100%
correct reference speaker detection rate. The process of determining the speaker-speci�c
thresholds and then calculating the minimum error from the sum of the rejection and
acceptance errors is time-consuming and the only other feature set that this method was
implemented for is the 12∆LPCC set. The results for this set are poorer than for the
12∆MFCC set as it proved di�cult to determine suitable thresholds for Speakers 1 and 3.
This lead to the acceptance of a large number of impostors so that the impostor detection
rate fell to 60% while the reference speaker detection rate was maintained at 100%. The
problem of determining good speaker-speci�c threshold values is assumed to be due to
the limited amount of data available for each speaker. The impostor detection method is
not implemented for other feature sets but as it is assumed that this method works to a
certain degree for all feature sets, so these are implemented in closed-set system setups
so as to enable the evaluation of the performance of each SID system for a small set of
reference speakers.

9.5 SID System Performance Using All Frames

In Chapters 5, 6 and 7, the results for each classi�er using the 12MFCC+12∆MFCC
were obtained. Here, additional feature sets are implemented and each classi�er's per-
formance is measured. As the classi�ers cannot all handle an equal amount of data, the
training and test data are set to the values listed in Table 9.3 for all the trials that yielded
the results listed in this section.

Classi�er Training Data Test Data
MoG ALL 8s
k-NN 10s 8s
NN 50s 8s

Table 9.3: Training and test data lengths for each classi�er

Each amount of data listed in Table 9.3 is per speaker, and "ALL" indicates that all
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available training data is used. The length of the training data for each reference speaker
is provided in Table 8.1. The training data in the case of the k-NN and NN classi�ers
are restricted because an equal representation for each speaker is required and because an
excessive memory usage requirement that could not be provided for was noted for some
of the feature sets if more training data is included. All of the test data is limited to 8s
as the lower bound for the test material of the reference speakers is above this value and
using the same length in all cases provides a fair basis for comparison and the possibility
for a frame-by-frame analysis that is started in Figures 5.9, 5.10, 6.3, 6.4, 7.4 and 7.5,
where the di�erent classi�ers performances are visualized as the classi�cation of each test
frame from each reference speaker.

All classi�cation tasks are based on the principle of consensus so that not only the rate
of correct identi�cation of speakers from a whole test sequence are obtained, but the
percentage of correctly classi�ed frames in each case is also recorded. This measurement
reveals details as to the SID system's ability to recognize a speaker from speci�c frames.

The results for each test conducted for the di�erent feature sets and the three classi-
�ers are shown in Tables 9.4, 9.5, 9.6 , 9.7 and 9.8. The abbreviation "wLPCC" stands
for warped LPCC coe�cients.

The results recorded as "ID" show the total number of speakers that were identi�ed
by using consensus over all test frames. As there are 6 speakers in the set, a 100% correct
identi�cation rate is noted as 6. A complete failure to identify any of the speakers is
signi�ed by 0, and all values inbetween indicate how many reference speakers out of 6 are
correctly identi�ed. "Frames" measures the correctly classi�ed frame rate in percentage.
This is calculated from the number of frames that are assigned to the correct speaker
out of the 8s(800 frames) of test speech. For the F0 estimates, "Frames" are actually
entire sentences. Although the correct frame rate in itself is not su�cient to determine
the performance of the SID system, it is interesting in that it shows which feature sets
contain frames that are more easily classi�ed as belonging to the correct speaker and are
therefore more rich in speaker-speci�c information. This knowledge introduces a measure
of reliability for each system setup combining a feature set and a classi�er. The distri-
bution of correctly classi�ed frames is also a useful performance measure. This is what
was used in the comparisons of the preliminary trials with the three classi�ers, where the
confusion matrices were analyzed. It was revealed that although the MoG classi�er had a
higher correct frame classi�cation rate than the k-NN classi�er, the distribution of these
was so uneven that the rate of identi�cation of speakers was the same for both classi�ers.
As there is no simple way to represent this distribution however, it is not included as a
performance measure in Tables 9.4-9.8. A good distribution of correctly classi�ed frames
is, however, represented by the identi�cation of speakers rate. When all 6 speakers are
correctly identi�ed, the confusion matrix contains a large majority of the classi�ed test
frames in its diagonal.

The source based features, the system performance of which is listed in Table 9.8,
prove to be unsuitable for speaker identi�cation. The F0 estimates for the RC method
are the best source features for speaker classi�cation when using the k-NN classi�er, as
for this set 4 reference speakers are identi�ed and a large percentage of the test sentences
are classi�ed correctly. Referring to Figure 3.7 no evidence as to why this is the case
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Classi�er Measure 8 MFCC 8∆MFCC 10 MFCC 10∆MFCC 12 MFCC 12∆MFCC 12∆∆MFCC

MoG ID 4 4 4 5 5 5 5
MoG Frames 41% 42% 45% 47% 46% 48% 43%
k-NN ID 6 6 5 6 5 6 5
k-NN Frames 37% 39% 40% 42% 40% 43% 41%
NN ID 6 6 6 6 6 6 6
NN Frames 52% 54% 53% 56% 55% 60% 61%

Table 9.4: The performance of di�erent classi�ers for MFCC feature sets

Classi�er Measure 8 LPCC 8∆LPCC 10 LPCC 10∆LPCC 12 LPCC 12∆LPCC 12∆∆LPCC

MoG ID 6 6 6 6 6 6 6
MoG Frames 45% 50% 50% 54% 57% 62% 68%
k-NN ID 6 6 5 5 6 6 6
k-NN Frames 32% 33% 34% 35% 38% 38% 38%
NN ID 5 5 5 5 5 6 5
NN Frames 43% 46% 48% 49% 52 54% 59%

Table 9.5: The performance of di�erent classi�ers for LPCC feature sets

Classi�er Measure 8 wLPCC 8∆wLPCC 10 wLPCC 10∆wLPCC 12 wLPCC 12∆wLPCC

MoG ID 6 6 6 6 6 6
MoG Frames 37% 41% 37% 43% 40% 46%
k-NN ID 4 5 4 5 6 6
k-NN Frames 28% 29% 31% 31% 34% 34%
NN ID 6 5 6 6 6 6
NN Frames 40% 46% 43% 46% 48% 43%

Table 9.6: The performance of di�erent classi�ers for warped LPCC feature sets

Classi�er Measure 9 PLPCC 9∆PLPCC 11 PLPCC 11∆PLPCC 13 PLPCC 13∆PLPCC 13∆∆PLPCC

MoG ID 6 6 6 6 6 6 6
MoG Frames 55% 58% 55% 59% 59% 63% 71%
k-NN ID 6 5 6 6 6 6 6
k-NN Frames 41% 40% 41% 43% 45% 45% 45%
NN ID 6 6 5 6 6 6 5
NN Frames 54% 56% 55% 56% 60% 61% 68%

Table 9.7: The performance of di�erent classi�ers for PLPCC feature sets
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Classi�er Measure 8 LPC residual 10 LPC residual 12 LPC residual YIN F0 RC F0 F0 Trajectory

MoG ID 1 1 1 1 1 1
MoG Frames 18% 17% 17% 0% 0% 6%
k-NN ID 2 2 0 2 4 2
k-NN Frames 18% 18% 17% 42% 67% 34%

Table 9.8: The performance of di�erent classi�ers for source based feature sets

for the real cepstrum and not for the YIN estimates can be found, as the relative dif-
ferences within the two sets is not large. As there are only 2 test sentences, though, a
single correct classi�ation can make a big di�erence in the total results. The extremely
small amount of points in the source-based feature sets made it impossible for the MoG
classi�er to estimate a density function with any precision. The LPC residual leads to
poor performance in all cases. The F0 trajectories of the real cepstrum method lead to
results for both classi�ers that con�rm that these features are not rich in speaker-speci�c
information, as was already observed in Figure 3.10.

From Table 9.4 the NN is seen to be the only classi�er that can successfully identify
all 6 speakers based on all the MFCC feature sets. The low frame classi�cation rate of
the MoG classi�er may be due to the overlap in feature space of MFCC coe�cents that is
observed in the PCA analysis of Figure 3.17. Combined with a restricted amount of data
points, the MoG classi�er has di�culty in estimating speaker speci�c density functions.
Although the highest frame classi�cation rate is obtained for the 12∆∆MFCC feature set
implemented with the NN classi�er, the NN is capable of identifying all 6 speakers for
the 8MFCC feature set, as can the k-NN classi�er. Using MFCC as a feature is thus best
done in a SID system setup using the NN.

From Tables 9.5 and 9.6 it is observed that warping the LPCC coe�cients leads to a de-
crease in correctly classi�ed frames for all classi�ers. The correct identi�cation of speakers
rate, however, does not deviate much between the two types of features. These results
show that for this SID task, no improvement in performance is gained from the warping
of the LPC autoregressive coe�cients to the bark scale. All the LPCC feature sets result
in optimal speaker identi�cation rates of 100% for the MoG classi�er while the NN clas-
si�er requires the information contained within the 12∆LPCC feature set to be able to
identify all 6 speakers. The much lower dimensional 8LPCC feature set is su�cient for
good classi�cation of speakers using the MoG classi�er, while the k-NN classi�er, as for
the MFCC set, can identify all 6 speakers for a few of the LPCC feature sets.

Of all the feature sets, the PLPCC lead to the best performance of the SID system.
For almost all the combinations shown in Table 9.7, the speaker identi�cation rate is
100% and the correct frame classi�cation rate is higher than that for the other feature
sets. The preprocessing of the PLPCC coe�cients that approximates the audiological
frequency analysis in the ear and places weight on the perceptually signi�cant parts of
speech thus leads to an improvement in the speaker identi�cation system performance.
For almost all the PLPCC feature sets, 100% correct speaker identi�cation is obtained for
all 3 classi�ers. The preprocessing does require more computational time and so if this is
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of vital importance, the MFCC or LPCC feature sets should be used instead.

The reason that the NN classi�cation of the 12∆∆LPCC and 13∆∆PLPCC feature sets
is not 100% correct is that the amount of training data used for the tests involving the
second derivatives was limited to 30s instead of 50s as the NN otherwise experienced
memory storage di�culties. To summarize the results obtained in Tables 9.4-9.7, the best
performance for each classi�er is listed in Table 9.9. The performance is based on which
feature set yields 100% correct speaker identi�cation with the highest level of reliability,
i.e. the largest number of correctly classi�ed frames. If a situation arises where several
feature sets resulted in the same performance, the feature set of lowest dimension is cho-
sen. The feature set or sets that generally lead to reliable performance for each classifer
are also listed.

Classi�er Optimal Feature Set Good Feature Set(s)
MoG 13∆∆PLPCC LPCC, wLPCC, PLPCC
k-NN 13PLPCC LPCC, PLPCC
NN 13∆PLPCC MFCC

Table 9.9: The optimal feature sets for di�erent classi�ers

Although Table 9.9 shows that the optimal performance for all classi�ers is achieved
with the 13PLPCC feature set and its temporal derivatives, the NN classi�er is most
reliable when used to classify speakers using any of the MFCC feature sets, despite the
slightly lower correct frame rate when compared to the PLPCC. For all 4 cepstral coef-
�cient feature sets, the inclusion of the temporal derivatives of each feature set usually
leads to a better speaker identi�cation rate and a higher correct frame classi�cation per-
centage. More speaker-speci�c information is thus available when the temporal variations
of the speech signal are analyzed. This can f.ex. be seen in Table 9.4, where using the
12∆MFCC feature set instead of the 12MFCC set with the NN classi�er leads to a 5%
increase in correct frame classi�cation rate. The temporal derivatives are thus relevant
for the speaker identi�cation task.

In order to limit the amount of feature sets used in further trials, four feature sets that
result in 100% correct speaker identi�cation rate and high correct frame classi�cation
rates are selected for additional testing: the 12∆MFCC, the 12∆LPCC, the 12∆wLPCC
and the 13∆PLP feature sets. Apart from the MFCC features, all of these sets resulted in
100% correct identi�cation rate for all classi�ers. As the NN classi�er is more stable than
the MoG classi�er and more e�cient than the k-NN classi�er, it is chosen to implement
the various types of tests that are presented in Sections 9.6 and 9.7.

9.6 Gender Separation
The rapid separation of genders based on a single F0 estimate for each sentence was
shown to be possible using the k-NN classi�er for all F0 feature sets in Section 6.2. It is
thus interesting to measure the eventual improvement in performance for a more complex
classi�er if the reference speakers are split into two groups of three speakers each, based
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on gender classi�cation. Using the 12∆MFCC, 12∆LPCC and 13∆PLP feature sets, the
NN classi�er is implemented for the male and the female speakers separately. For the
test speech that is classi�ed as belonging to a male speaker, the NN classifer that is
only trained with the male speakers' training data is used, while the estimated female
test speech is classi�ed by the NN trained on the female training data. The results are
obtained for a system setup using ttrain = 50s and ttest=8s. For ease of comparison, the
results that were obtained for classi�cation of all 6 speakers are noted alongside the gender
speci�c classi�cation results in Table 9.10. As the correct speaker identi�cation rate is
100% in each case, only the correct frame classi�cation rate is presented as a measure of
performance.

Feature Set All Female Male
12∆MFCC 60% 67% 73%
12∆LPCC 54% 65% 74%
13∆PLP 61% 69% 78%

Table 9.10: NN results for gender separated data sets

As seen in Table 9.10, the results of NN classi�cation when using gender separation are
greatly improved in reliability, as up to a 20% increase in the amount of correctly classi�ed
frames is obtained. This considerably reduces the possibility of classi�cation ambiguity
between speakers. Although the most substantial increase in correct classi�cation rate is
achieved for the male speakers, it was noted that this required, in each case, roughly 3
times more training time than for the female speakers. As an example, for the 12∆LPCC
set, the entire training and classi�cation process of female speakers took a little over 2
hours, while the corresponding process occupied 6 hours for the male speakers. Similar
observations were made for the MFCC and PLPCC feature sets. Once the networks were
trained however, both executed rapid classi�cation of the gender separated speech in the
test phase.

As two separate, gender-speci�c NN classi�ers are trained, this means that if one of
the male speakers' test data is classi�ed by the network trained on female speakers' data,
the identi�cation will invariably be wrong. This situation did not arise, however, as the
gender separation was accurate in 100% of cases.

9.7 Voiced/Unvoiced Analysis
The voiced/unvoiced analysis is introduced as a step in the direction of eventually stream-
lining the number of frames that are needed in order to achieve optimal SID performance.
All results have shown that a relatively large number of test data frames are misclassi�ed,
meaning that frames that cannot be identi�ed as belonging to the correct speaker are
included. The information contained within these frames is thus not speaker-dependent
and can therefore be viewed as noise in the SID system.

The analysis is commenced by classifying all the training and test frames as being voiced
or unvoiced. This is done by using the autocorrelation with center clipping method of
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Section 3.4.1, where a frame is labelled as being voiced if the autocorrelation function has
a value above 30% of the maximum peak value found at τ = 0. Any frames not meet-
ing this requirement are classi�ed as being unvoiced. The classi�cation of frames from
a test sentence as belonging to di�erent speakers in comparison with the same sentence
divided into voiced/unvoiced frames may reveal whether a correlation exists between the
voicing of a frame and its content of speaker speci�c information. For visualization of this
comparison, the 13∆PLPCC feature set is used, as it yielded the highest correct frame
classi�cation results in the series of tests conducted in Section 9.5. In Figure 9.1, the
classi�cation of 800 frames (8s) of test material using the 13∆PLPCC feature set for all
classi�ers is shown for Speaker 1, a woman (FAML). The top row of classi�ed frames are
the results of k-NN classi�cation, the second row the MoG model classi�cation, the third
row the NN classi�cation and the bottom row is the sequence of voiced/unvoiced decisions
for the test sequence. An analogous analysis for a male speaker, Speaker 4 (MASM), is
shown in Figure 9.2. The value 0 is used to denote the unvoiced label, 1 denotes both
Speaker 1 and the voiced label and numbers 2-6 each correspond to a speaker in the
reference set as listed in Chapter 8.
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Figure 9.1: Classi�cation results for Sp1, 13PLPCC + 13∆PLPCC

Although it is di�cult to draw conclusions from Figures 9.1 and 9.2, a few observations
can be made that are relevant for both speakers. Firstly, there is no clear division in the
classi�ed frames from any of the classi�ers according to the voiced/unvoiced decisions.
However, it can be seen that an incorrectly assigned frame in the speaker identi�cation
results is often associated with an unvoiced frame. There are wrong classi�cations made
for voiced frames, too, but the di�erence lies in the fact that it appears to be a rule that
the frames that are unvoiced are incorrectly assigned to a speaker while misclassi�cation
occurs more randomly for the voiced frames. In short, a voiced frame is not sure to
be classi�ed correctly while an unvoiced frame has a high probability of being classi�ed
incorrectly.

These results are for one feature set only and dependent on the parameters of each
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Figure 9.2: Classi�cation results for Sp1, 13PLPCC + 13∆PLPCC

classi�er and so cannot be seen as conclusive. In order to shed more light on the clas-
si�cation compared with the voiced/unvoiced sequence, consensus between the results of
the two best performing classi�ers, the MoG and NN, is analyzed w.r.t. to the voicing
of frames. The results are shown as correct classi�cations, so that only two options are
permitted: "Correct" and "Incorrect". The voiced and unvoiced labels correspond to the
colours for the correct and incorrect labels, respectively, though this is done to permit
all the sequences to be shown at once and not because voiced frames are considered in
any way as being "correct" and unvoiced ones as "incorrect". These results are shown in
Figure 9.3 for Speaker 1 and in 9.4 for Speaker 4. The top row in both �gures shows the
correctly classi�ed frames for the MoG classi�er, the second row for the NN classi�er, the
third row for the consensus between these two classi�ers and the fourth row shows the
voiced/unvoiced classi�cations.

Although it remains problematic to observe conclusive trends, there seems to be ev-
idence in Figures 9.3 and 9.4 that while classi�cation tends to be di�cult for unvoiced
frames, the frames immediately after these are more frequently correctly identi�ed. This
may be connected to the theory that a considerable amount of speech information is con-
tained in the acoustic transients of a speech signal [63]. The transients are areas of rapid
change in the spectral envelope of a speech signal and the rich information that they carry
may well be speaker-dependent. As it is confusing to try to decipher whether this is true
from the sequences of 800 frames that have been shown, a few trials are implemented to
test whether the theory holds.

Each of the four feature sets is divided into �ve subsets, as listed below.

1. Voiced(V): contains all the frames classi�ed as being voiced

2. Unvoiced(UV): contains all the frames classi�ed as unvoiced
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Figure 9.3: Correct Classi�cation results for Sp1, 13PLPCC + 13∆PLPCC, including
consensus between MoG and NN classi�ers

Incorrect

Correct

Frame Index

V
/U

V
  

  
  

  
  

  
  

 N
N

+
M

o
G

  
  

  
  

  
  

  
  
  

N
N

  
  

  
  

  
  
  

  
M

o
G

13dPLPCC Correct classification of Speaker 4 test frames (MoG, NN)

100 200 300 400 500 600 700 800

Figure 9.4: Correct Classi�cation results for Sp4, 13PLPCC + 13∆PLPCC, including
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3. Unvoiced-Voiced(UVV): contains only the voiced fames that are preceded by an
unvoiced frame

4. Voiced-Unvoiced(VUV): contains only the unvoiced frames that are preceded by a
voiced frame

5. ALL: contains all frames not sorted according to voicing labels

The temporal changes in the speech signal may not always be represented by the
transition between a voiced and unvoiced segment, but this analysis will still provide
clues as to how heavily the identi�cation depends voiced/unvoiced state of the frames
and the order that these occur in. An initial experiment was conducted with the k-NN
classi�er which proved incapable of identifying all 6 speakers based on anything else but
the mixed sequence of frames. All the available material, up to ttrain =10s, is used in
this analysis and so the limited number of frames in the UVV and VUV sets may cause
a decline in identi�cation rate. Despite this, it was observed that for all four feature sets,
the percentage of correctly classi�ed frames was highest for the VUV and UVV sets. This
can be seen in Figure 9.5.
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Figure 9.5: k-NN results for the voiced/unvoiced analysis

Figure 9.5 shows the same tendency for all feature sets: that the lowest amount of
correctly classi�ed frames is obtained for the unvoiced frames, while the highest rate is ei-
ther for the unvoiced-voiced feature set or the voiced-unvoiced feature set. From the PCA
analysis of voiced and unvoiced frames using the 12∆MFCC feature set in Section 3.10,
it is not surprising that these subsets do not provide good features for speaker identi�ca-
tion. As none other than the complete set of frames yielded a successful identi�cation of
all 6 reference speakers, these results just provide pointers to the fact that the areas of
transition between voiced and unvoiced frames certainly contain information that is vital
for speaker identi�cation and that classi�cation based on the voiced or unvoiced frames
alone performs more poorly than when there is a combination of the two (in the ALL
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data set).

Classi�cation using the MoG models could not be implemented with the reduced fea-
ture sets divided along the lines of the voicing decisions. This produced very sparse data
for very high dimensionality (D = 24 for MFCC and LPCC, and D = 26 for PLPCC)
and so the ability of the MoG classi�er to model the distributions was greatly reduced.
In the few trials that were implemented the results displayed a high level of instability
and always showed overwhelming bias for just one speaker. As there is no additional data
available for the reference speakers, the voiced/unvoiced analysis for the MoG classi�er
was not implemented.

The �nal series of tests is conducted with the NN classi�er. Here, the training data
sets were all limited to just 9s of speech for each speaker and 2.5s of test speech. These
are the upper bounds set by the smaller feature sets, i.e. the UVV and VUV sets. The
same amount of data for each feature set provides a platform for fair comparison of per-
formance results. The �rst �ve feature subsets to be implemented are those pertaining to
the 12∆MFCC feature vectors, which was the original reference feature set. The results
measured for this series of tests are listed in Table 9.11.

Performance measure ALL V UV UVV VUV
ID rate 5 4 5 6 6

Correct frames 43% 41% 35% 50% 49%

Table 9.11: NN results for the voiced/unvoiced analysis using 12∆MFCC

The most signi�cant di�erence shown in Table 9.11 is the correct identi�cation of
speakers rate. The correct frame rate increases for the VUV and UVV feature sets, but
this alone, as was seen in Section 9.5, is not of vital importance, while the fact that this
leads to the correct identi�cation of all six speakers in the reference set is of far greater
weight. It suggests that not only are more frames correctly classi�ed, but also that these
correctly classi�ed frames are evenly distributed among all 6 speakers.

The next step in searching a way to optimize the classi�cation process is the imple-
mentation of the voiced/unvoiced subsets used in conjunction with gender separation.
Following the implementation of gender separation based on F0 estimates with the k-NN
classi�er, the NN is implemented with the �ve subsets of the original 12∆MFCC feature
set and the results obtained are listed in Table 9.12. As there are only 3 speakers in each
group, the ID rate that represents 100% correctly identi�ed speakers is 3.

From Table 9.12 it is observed that the previously obtained results are con�rmed, both
for gender separation and for the V/UV analysis. The results from the gender and voicing
separation displays improved performance when compared to simply implementing the
V/UV subsets for all six speakers, which shows that gender separation once more causes
an increased rate of correct classi�cation of the frames. The ID rate does not change much
though, and the only two subsets that result in 100% identi�cation for the combined set
and the male and female subgroups can be seen in Tables 9.11 and 9.12 as being the UVV
and VUV sets. It is interesting to note that while most of the results in Table 9.12 are
similar for male and female speakers, a discrepancy exists for the "voiced" and "unvoiced"
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Performance measure Gender Group MIX V UV UVV VUV
ID rate Male 2 2 3 3 3

Correct frames Male 54% 44% 55% 64% 66%
ID rate Female 3 2 2 3 3

Correct frames Female 56% 58% 43% 66% 65%

Table 9.12: NN results for the voiced/unvoiced analysis using gender grouped 12∆MFCC

frames. Here, the male speakers are recognized at a higher rate for the unvoiced frames,
while the opposite holds true for the female speakers. The UVV and VUV subsets yield
a more substantial increase in correct frame classi�cation rate than the case for the 6
mixed speakers. For both male and female speakers, using these subsets results in a 10%
increase in correct frame classi�cation rate compared to the unsorted feature set for each
gender group.

The division of a feature set into 5 subsets labelled with V/UV details was implemented
for the 12∆LPCC, 12∆wLPCC and 13∆PLPCC resulted in classi�cation of only one
speaker possible in each case, showing extreme bias towards the one correctly identi�ed
speaker. The results obtained for the 12∆MFCC feature set could thus not be reproduced
using other feature sets with the NN classi�er.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions
The aim of this thesis was to create a system that could solve an open-set, text-independent
speaker identi�cation task. Several combinations of feature sets and classi�ers have been
implemented so that an optimal system for a small set of reference speakers could be
determined. The work comprised of researching each part of the SID system individually
before creating and analyzing the system in its entirety. The ultimate use of the SID
system is for implementation in hearing intruments, but this thesis focusses on determin-
ing the optimal combination of feature set and classi�er and does not include an analysis
of the constraints such an implementation involves. The research work was divided into
three stages:

1. Preprocessing of speech signals.

2. Selection and extraction of features.

3. Selection and implementation of classi�ers.

The performance of the SID system created by combining the di�erent feature sets
with the various classi�ers has been analyzed in two ways:

1. A complete analysis for each system setup using the data sets as they were.

2. A comparative analysis for a few of these setups when the data sets are split into
feature subsets depending on whether the frames contained within the set were
voiced, unvoiced, voiced with an unvoiced frame preceding it, unvoiced with a voiced
frame preceding it, or unsorted.

Six speakers were chosen from the ELSDSR database1 to be used as reference speakers
throughout this thesis. The speakers were randomly chosen but intentionally an equal
amount of male and female speakers were included. The preprocessing of the speech sig-
nals that each of these speakers provided resulted in pre-emphasized signals that were
divided into short-term segments from which features could be extracted. The feature
extraction methods were split into two groups. One consisted of the features that model

1see Chapter 8
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the source signal in speech, which are more robust to noise but complex to extract reliably.
In this thesis the source based features that are extracted are the fundamental frequency,
F0, and the LPC residual. The other group consisted of the system based features that
represent the physical characteristics of the vocal tract of a speaker. While these fea-
tures are less robust to noise than their source based counterparts, they are far simpler
to calculate automatically. The system based features were transformed into cepstral co-
e�cients that implement spectral smoothing that is commonly used in speech processing
applications. The cepstral coe�cients proved very e�cient for the speaker identi�cation
task. It must be taken into account that the speech signals in the ELSDSR database are
uncontaminated by noise.

The method of classi�cation for all classifers is one of consensus over the sequence of
classi�ed short-term frames of a speech signal.

The use of density modelling using Mixture of Gaussians models has been documented
as being highly suitable for the speaker recognition task [59] and was implemented for
all the feature sets. The results were unstable due to the high dimensionality of most of
the feature sets and showed a large amount of bias towards the reference speaker labelled
as Speaker 1. The best performance for the MoG classi�er was achieved when using the
13PLPCC feature set with its �rst and second order temporal derivatives, as here a total
classi�cation rate of the frames from all 6 reference speakers is 71% and the speaker iden-
ti�cation rate is 100%. The MoG classi�er perfromed particularly poorly for the MFCC
feature sets.

A method of impostor detection was implemented using MoG density estimation. This
method determined a speaker-speci�c threshold τi and used this to compare all density
estimates of a sequence of frames. For the 12∆MFCC feature set, this method resulted
in 100% reference speaker detection and 90% impostor detection. The impostor detection
was implemented so that the classi�cation stage only started if the speaker was identi�ed
as being a reference speaker. The processing of the impostor speech after it has been
detected has not been treated in this thesis. The impostor detection method was not
tested with all of the feature sets, due to the amount of time needed to establish each
feature speci�c τi. It was tested with the 12∆LPCC feature set and yielded a less reliable
rate of 60% impostor detection. The performance of this method is thus dependent on
the feature set used. A larger amount of data for each speaker would have facilitated the
determination of the thresholds. It was assumed that impostor detection can be imple-
mented for all feature sets and so the setups that were implemented were used to evaluate
performance for a closed-set SID system for the 6 reference speakers.

The k-NN classi�er is simple to implement and an evaluation of the SID performance
using this method yielded a highest percentage of correctly classi�ed frames when all ref-
erence speakers are identi�ed for the 13PLPCC feature set, at 45%. k-NN is exceedingly
heavy in computations due to the lack of a separate training and test phase and the high
dimensionality of the feature sets used. The highest level of performance for the k-NN
classi�er was obtained with the PLPCC and the LPCC feature sets.

Neither the MoG nor the k-NN classi�er performed satisfactorily using the source based
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features, as none of these yielded 100% correct identi�cation of speakers. These feature
sets were therefore omitted from the trials with the neural network. The F0 estimates
using the real cepstrum method implemented with the k-NN classi�er resulted in the best
performance for the source based feature SID system, with a correct sentence classi�cation
rate of 67% and an identi�cation rate of 4 speakers out of 6.

The NN classi�er proved to be more robust than the MoG classi�er when working with
feature sets of high dimensionality and limited size, resulting in less bias towards speci�c
speakers, and computationally far more e�ective than the k-NN classi�er. The opti-
mal feature sets used with the NN classi�er were the 12∆∆MFCC feature set and the
13∆PLPCC feature set that each resulted in 61% correct frame classi�cation rate. The
NN classi�er was capable of identifying all reference speakers correctly for all of the lowest
order cepstral coe�cient feature sets that were extracted, i.e. for the 8MFCC, 8LPCC,
8wLPCC and 9PLPCC feature sets.

In order to obtain 100% correct speaker identi�cation of the 6 reference speakers, the
12∆LPCC, 12∆warped LPCC and 13∆PLPCC feature sets can be used in combination
with all 3 classi�ers. The 12∆MFCC feature only yields this level of performance for the
k-NN and NN classi�ers. While the MFCC and LPCC features are usually implemented
in speaker identi�cation applications, the PLPCC feature set is more common in for use
in speech recognition tasks and so the promising results that this feature set yielded had
not been expected [65].

It was possible to classify speakers according to gender using any one of the 3 funda-
mental frequency estimators. 100% correct classi�cation of male and female speakers was
achieved for the autocorrelation with center clipping, the YIN and the real cepstrum es-
timators. Once the speakers had been divided into gender groups, the NN classi�er was
implemented for each group. For the 12∆MFCC feature set, the correct frame classi�ca-
tion rate was increased by 7% and 13% for the female and the male group, respectively.
Similar increases were noted for the 12∆LPCC and 13∆PLPCC feature sets, thus leading
to the conclusion that the SID system's performance is improved if gender separation is
implemented prior to the �nal classi�cation phase.

The autocorrelation with clipping algorithm also made it possible to divide the frames
of each training and test sentence feature vector into �ve subsets depending on whether
they were voiced (V), unvoiced (UV), voiced preceded by a voiced frame (UVV), unvoiced
preceded by an unvoiced frame (VUV), or unsorted (ALL). A separation of speakers based
on the voiced and unvoiced frames was shown both with a PCA analysis and with the
k-NN and NN implementations that these 2 feature subsets do not improve the ability of
the system to identify speakers.

The k-NN classi�er implemented using the 12∆LPCC, 12∆warped LPCC, 13∆PLPCC
and 12∆MFCC feature sets resulted in an increase in correctly classi�ed frames for the
UVV and VUV feature subsets. For the 12∆MFCC feature set implemented with the NN
classi�er, the feature subsets only resulted in 100% correct identi�cation of all 6 speakers
for the UVV and VUV subsets and a correct frame classi�cation rate increase of 7% and
6%, respectively.
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Combining the gender separation method with the feature subsets resulted in the ob-
servation that 100% correct speaker identi�cation is only obtained with the VUV and
UVV subsets for both male and female speakers. For the limited amount of training
data (9s) and test data (2.5s) for each reference speaker using the 12∆MFCC feature
implemented with the NN classi�er, the identi�cation rate is increased from 5 out of the
6 speakers to all 6 speakers by using the VUV and UVV feature subsets. Implementing
both gender separation and the UVV set, the correct classi�cation rate was increased by
23% for female speakers and 22% for male speakers. This con�rms that there is a high
level of speaker-speci�c information present in the transient areas of speech though it gives
no indication that frames that are voiced preceded by an unvoiced frame contain more
information than the unvoiced frames preceded by a voiced frame, or that the opposite is
true. A similar voiced/unvoiced analysis to the one executed here could not be found in
the litterature.

The results for the NN classi�er could not be reproduced using the 12∆LPCC, 12∆
warped LPCC and 13∆PLPCC feature sets.

To summarize, the most robust feature set for this SID task was found to be the PLPCC
features that model the �ltering that takes place in the ear and thus places emphasis on
the perceptually signi�cant parts of speech. The di�erent combinations of feature sets
with 3 di�erent classi�ers has shown that in the case of a small reference speaker set,
the NN classi�er can reliably identify all speakers with limited training and test data for
several system based cepstral coe�cient feature sets, notably for PLPCC and MFCC,
especially when these feature sets' temporal derivatives are included. A SID system setup
using the k-NN and MoG classi�ers performs less satisfactorily. An impostor detection
method using MoG density modelling performed well with a 90% impostor detection rate
but needs to be perfected. The analysis of the voicing decisions for the test sentences
showed that some frames contain more speaker-speci�c information than others. Exploit-
ing this information could lead to streamlining input data sets so that frames that are
irrelevant for the speaker identi�cation task can be excluded from the input data set to
the SID system. It has been found that using the frames that are situated at the transient
areas of the speech signals can yield up to 23% better performance for the SID system
when used in conjunction with gender separation.

10.2 Future Work
Work to improve the capabilities of the MoG classi�er is necessary. An eventual averaging
of the models estimated from several runs of the EM-algorithm for one speakers' training
data could be implemented in order to obtain more reliable results. As the amount of
training data is limited, the method of adapting the Mixture of Gaussians model from a
Universal Background Model (UBM) as described in [64] might be worth consideration.
Using the UBM approach to speaker veri�cation with the log-likelihood computation that
is also presented in [64] could be implemented for the imposotor detection task and this
should be investigated.
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It would be interesting to research the voiced/unvoiced analysis in more detail and see
whether there exist other subsets of frames that improve SID performance. A larger pool
of data is needed for MoG classi�cation based on the UVV and VUV sets to be possible.
For the gender separated UVV and VUV sets, work should be done to implement a way
to make the preprocessing of feature sets into these groups and subgroups as e�cient and
automated as possible so that an eventual application in hearing aids could be considered.

The performance of the MoG classi�er, the impostor detector and NN classifer could all
be improved if larger data sets were used, and so these methods should be implemented
with speech from other databases than the ELSDSR. Testing the methods described in
this thesis with speech signals from other databases would allow an analysis of how noise
and mismatched training and test conditions a�ect the SID system's performance.
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Appendix A

The Bark Scale

The Bark scale, which will shortly be explained, is used in the derivation of two feature
sets: The warped LPCC feature set and the perceptual linear prediction coe�cients. The
Bark scale is introduced with the intent of more precisely approximating the frequency
scaling that is executed in the biological ear, which may prove bene�cial in the identi�-
cation process.

In order to describe the processes that occur in the human auditory system, a brief
description of the di�erent parts of the ear is presented here, though for a detailed de-
scription refer to [3] and [52]. The ear is made up of three peripheral parts, the fourth
part being the nerve connection from the ear to the brain. The three peripheral parts
are referred to as the outer, middle and inner ear. The outer ear receives sounds and
conveys them to the inner ear through the ear canal. The ear canal modi�es the reso-
nance of the frequencies that pass through it. At the end of the ear canal, the tympanic
membrane is situated. The vibrations of this membrane are transmitted to the �uid that
is found in the inner ear by the workings of the chain of three tiny bones (called the
Hammer, Stirrup and Anvil) in the middle ear. Within the inner ear, the Basilar Mem-
brane(BM) is situated, and it is the movements of this membrane that transmits impulses
to the brain through hair cells that constitute the organ of Corti. A diagram of the ear
and the di�erent organs mentioned here can be seen in Figure A, which is taken from [52].

The hair cells of the organ of Corti are divided into the outer and inner hair cells. The
outer hair cells have the ability to amplify the vibrations of the Basilar membrane if
the latter is exposed to weak sounds, to ensure that the inner hair cells transmit the
sound. The Basilar Membrane is of vital importance as it e�ectively acts as the ear's
frequency analyzer. Changes in the frequency of incoming sounds cause movement along
the membrane. This means that di�erent frequencies are interpreted by the variation of
the position along the BM. An envelope can be modelled to contain the pattern on the
BM that is produced by a frequency and it is the width of the peak of this envelope that
indicates the frequency selectivity within the inner ear. The selectivity is thus interpreted
as a bank of �lters. Each �lter has a critical bandwidth (CB) that varies depending on
the center frequency of the incoming sound signal. Each �lter is labelled with a number
on the Bark scale.

The Bark scale is named after Barkhausen, a German acoustician. The scale consists
of values 0 to 23 Bark, as there is space for just 24 critical band �lters on the basilar
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membrane. Up to a center frequency of 500Hz, there exists a linear relation between the
frequency and Bark scale. In this interval the CB is 100Hz, meaning, as an example, that
the frequency bandwidth band from 200Hz-300Hz corresponds to 3 Bark. Above 500Hz,
the relation between frequency and Bark becomes logarithmic, notably in the interval
from 600Hz - 7kHz. F.ex., the 8th Bark indicates the �lter with a center frequency of
1kHz and that has a bandwidth of 160Hz. The critical band rate z, in Bark, is de�ned
in [47] as:

z =

[
26.81

1 + 1960/f

]
− 0.53, f in Hz (A.1)

In Figure A.2, the curve of the Bark scale is seen to be linear for the �rst few Bark
values and logarithmic as the values increase. The blue curve shows the relation between
the Bark scale and the frequency of incoming signals and the red curve depicts the critical
bandwidth of each �lter as a function of the Bark values.

The CB in Hz and the incoming frequencies that correspond to the Bark scale are
listed in Table A.1.

Frequency/Hz CB-rate/Bark Critical Bandwidth/Hz
20 0 80
100 1 100
200 2 100
300 3 100
400 4 110
510 5 120
630 6 140
770 7 150
920 8 160
1080 9 190
1270 10 210
1480 11 240
1720 12 280
2000 13 320
2320 14 380
2700 15 450
3150 16 550
3700 17 700
4400 18 900
5300 19 1100
6400 20 1300
7700 21 1800
9500 22 2500
12000 23 3500

Table A.1: Input frequencies and the corresponding Bark values and Critical Bandwidths
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Figure A.1: Diagram of the outer, middle and inner ear
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Appendix B

Parameter Estimation using the
EM-algorithm

First, the parameters of the MoG model - the mean vector µ, covariance matrix Σ and
mixture weights P (j) - are initialised. The initial values can be found either randomly or
by a scheme such as the k-means algorithm [42]. The former alternative is not desirable,
though, as the EM-algorithm is never guaranteed to converge at a global maximum of
the likelihood function rather than a local one, especially in a high-dimensional case. The
choice of initial values determines which local maximum the algorithm converges towards,
and the quality of the resultant parameter estimation depends on this. If the initialisation
is in an area far from any local maximum, there is a risk that the EM-algorithm converges
before the extremum is reached. This can occur because as the likelihood increases, the
covergence slows down and is often stopped by some stopping criteria, such as a maximum
number of steps being reached or a su�ciently small change in likelihood is recorded.

During the �rst iteration, the initial model is referred to as the old model. The pa-
rameters of this model are kept constant during the E-step. For each iteration of the
EM algorithm, the new parameter values are estimated during the M-step and then kept
constant and used as the old parameter set for the derivation of an updated expectation
function in the E-step.

From Section 5.3, it is established that the training data feature vectors make up the
incomplete data set that does not have a class label assigned to each training sample. To
�ll in as a class label, the component j that has the highest probability of having produced
the training data sample xn is determined. This probability corresponds to a posterior
probability and is therefore obtained using Bayes' Theorem, which for convenience is
shown again here:

P (j|xn) =
p(xn|j)P (j)

p(xn)
(B.1)

The computation of the posterior probability, P (j|xn), is executed in the E-step for
each Gaussian component, using parameter values that are obtained in the previous iter-
ation (or, in the case if the �rst iteration, the initial model parameter set).

After determining the posterior probabilities P (j|xn), the E-step consists of computing
the conditional expectation of the complete data set log-likelihood, Q, given the data
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point xn and the current parameter set.

For a complete data set, including both xn and zn, the likelihood, Lc, is denoted in
Eq.(B.2).

Lc =
N∏

n=1

pnew(xn, zn) (B.2)

By maximizing Lc with respect to each of the model's adjustable parameters, one can
obtain the model parameter set that is most likely to have generated the given training
data. Instead of �nding the maximum likelihood, it is common practice to determine the
maximum log-likelihood. Taking the logarithm of a multiplicative problem, we obtain an
additive one, and as the logarithm is a monotonic function, it is analytically easier to
manipulate in order to determine the minimum negative log-likelihood, yet its solution
corresponds to �nding the parameter set that yields the maximum likelihood.

The negative log-likelihood of the complete data set is derived in Eq.(B.3).

− lnLc = −
N∑

n=1

ln
{
pnew(xn, zn)

}
= −

N∑

n=1

ln
{
P new(zn)pnew(xn|zn)

}
(B.3)

For the actual data set, where the class labels are replaced by the posterior probabilities
P (j|xn), the negative log-likelihood for each component j is:

− lnLj = −
N∑

n=1

P old(j|xn) ln
{
P new(j)pnew(xn|j)

}
(B.4)

Finally, the expectation of the negative log-likelihood is obtained by evaluating the
sum of the negative log-likelihood functions over all M components:

Q = −
N∑

n=1

M∑

j=1

P old(j|xn) ln
{
P new(j)pnew(xn|j)

}
(B.5)

where the negative log-likelihood expectation function, Q, is the error function that must
be minimized in order to obtain the optimal MoG model parameter set.

During the M-step, the minimum of the expectation function Q is found by determining
the �rst derivative of Q w.r.t the new parameters and setting it to zero, then �nding
the solution with provisions made for the constraints that are listed in connection with
Eq.(5.6). This leads to the equations for the updated values of the MoG model parameters.
These updates are shown in Eq.(B.6)-(B.8).

P (j)new =
1

N

N∑

n=1

P old(j|xn) (B.6)

µnew
j =

∑N
n=1 P old(j|xn)xn∑N

n=1 P old(j|xn)
(B.7)

Σnew
j =

∑N
n=1 P old(j|xn)(xn − µnew

j )(xn − µnew
j )T

∑N
n=1 P old(j|xn)

(B.8)
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The above equations execute the E-step and the M-step simultaneously. The esti-
mation of the new component weight values belongs to the E-step, while the mean and
covariance updates are performed in the M-step.

The updates of the various parameters are quite logical: In Eq.(B.6), it can be seen
that when using the maximum likelihood solution to obtain the new prior probability for
the jth component, this is given by the average posterior probability for that component,
given xn, over the entire data set. The updated mean in Eq.(B.7) is just the mean of
the data vectors, weighted by the posterior probabilities that the data vectors were gen-
erated by the jth component. Finally, in Eq.(B.8), the updated covariance matrix is also
weighted by the posterior probabilities and derived from the distance of the data samples
from the jth component mean.
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Appendix C

The Biological and Arti�cial Neuron

C.1 The Biological Neuron
The brain consists of billions of nerve cells called neurons. The biological neuron consists
of four main parts: the soma, dendrites, axon and the synapses, which is the area that
transmits signals between neurons. In addition, the neuron contains a cell nucleus and
a hillock. All of these parts are shown in the biological neuron schematic in Figure C.1,
taken from [55].

 

Figure C.1: Schematic of a biological neuron

The body of the neuron is the soma. The dendrites that extend from the soma are the
neuron's input channels. They receive signals from other neurons through the synapses,
which can connect them to thousand of other neurons. These signals are in the form of
electrically charged ions. The input from the dendrites are added together in the soma,
which then decides how to react. The neuron can be in two states: the resting and the
"�ring" state. The states change depending on the input that is received and once a
certain threshold is reached, the neuron "�res" - sending an impulse towards the synapse.

121



122 APPENDIX C. THE BIOLOGICAL AND ARTIFICIAL NEURON

The hillock is situated at the origin of the axon and generates the outgoing pulses. At
the ends of the axon, the terminal buttons, otherwise called boutons, are found. Here,
chemical neurotransmitters are produced that activate the synapses. The synapses may
cause the neurons that are connected to it to �re, or prevent some of them from �ring.
It is the combination of impulses received through the synapses between the axon of one
neuron and the dendrite of another neuron that is then summed up with numerous other
signals received in the latter neuron's remaining dendrites, and so forth. The operation
of the neuron can be altered by continuously stimulating it with a certain combination
of input signals, which can cause its resting potential to be modi�ed. This means that
the neuron can learn to recognize an input combination so that connections that the
neuron is exposed to frequently may cause a more rapid transfer of impulses to other
neurons. In this way, the operation of the neuron is de�ned by comparing its internal
parameters with the incoming signals. The structure and workings of the biological neuron
are complex and this streamlined description is only meant to provide a brief introduction
in order to understand the motivation behind the structure of arti�cial neural networks.
For a detailed description of the operation of the biological neural network, one can refer
to [53].
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C.2 The Arti�cial Neuron
The arti�cial neuron is modelled according to the biological neuron, and therefore imitates
some of the latter's functionality. Inputs from several preceding neurons are weighted by
the connections (weights) between neurons and summed up in the receiving neuron. The
sum of these inputs is referred to as the activity, ak, of the neuron.

ak =
I∑

i=0

wkizi (C.1)

wki denotes the weight connecting unit i to unit k and zi denotes the output from unit i.

A transfer function, g, "�res" when the summed input increases above a certain threshold
if it is a step function. A transfer function like tanh that is used in the perceptron that is
discussed in Section 7.3 results in di�erent values in the range [−1, 1] for di�erent input
combinations.

zk = g(ak) (C.2)
The output, zk, is then weighted by the next layer of connections and used as input

to the following neurons. This is repeated for as many layers of neurons as are necessary
for the solution of a problem. A diagram of the arti�cial neuron is shown in Figure C.2.
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Figure C.2: Diagram of an arti�cial neuron

In the multi-layer perceptron, the weight values are changed according to how much
error is found at the output of the entire network, and thus changes the weight combina-
tions to each neuron until a good approximation of the input pattern is determined, as
described in Sections 7.3 and 7.4.
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Appendix D

BFGS algorithm to train network
weights

In order to determine the optimal weight values during the training phase, the BFGS algo-
rithm [45] is implemented. This stands for Broyden, Fletcher, Goldfarb and Shanno, who
are responsible for the creation of this iterative updating algorithm. When called with
the network parameters (the cost function and its derivatives w.r.t the network weights),
this algorithm returns the optimal weight values of the network for the given input data
set. The way that this training is executed cannot be adequately explained without a
brief introduction to the theory behind the determination of optimal weight values as the
process of minimizing a function, and so this introduction is presented in what follows.
For a complete derivation, refer to [45].

The process of determining an optimal weight matrix entails determining the minimum of
the given cost function. Often a local minimum is found, as it is too complex to implement
a search method to �nd the global minimum.

The fundamental aim of the optimization algorithm is to �nd w∗ in Eq.(D.1)

w∗ = arg min
w

F (w), F : <m 7→ < (D.1)

where F is the cost function and m is the number of elements in w. A simple illus-
tration of w∗ is given in Figure D.1, where the function shown is

F (w) = (w21 − w32 − 2)2 + 50 · (w21 − w32)
2

In Figure D.1, the minimum is global and is found at F (0). These conditions often do
not prevail when more complex, high-dimensional data is used to de�ne the function F .
It is known that the �rst derivative of a 1-dimensional continuous di�erentiable function
de�nes the slope of that function, and that when this slope is zero, the function is at a
stationary point, i.e. either a maximum, minimum or a saddle point. When working in
more than one dimensions, the slope of the multivariate function is called the gradient,
∇F, and is de�ned in Eq.(D.2).
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Figure D.1: The minimum w∗ of the quadratic function, F (x) = (w21 − w32 − 2)2 + 50 ·
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(D.2)

It is now possible to establish a condition that must be met for a point to be a local
minimum:

∇F = 0 (D.3)
Using this as a criteria does however not only locate local minimums, but can determine

any stationary point. It is therefore necessary to introduce an additional condition in
order to ensure that the stationary point is, indeed, a minimum. For this objective,
the second order derivatives that de�ne the surface of the cost function F are needed.
These derivatives make up the Hessian matrix, H, and de�ne the gradient of the gradient
function:

H = ∇(∇F) ≡
[

∂2F

∂wkh∂wlk

]
(D.4)

When the Hessian matrix that is evaluated for a stationary point proves to be positive
de�nite, the stationary point is a local minimum. A positive de�nite matrix is de�ned in
Eq.(D.5).

gTHg > 0 ∀g (D.5)
in which case H is a positive de�nite matrix.

Using the above mathematical derivations, it is now possible to brie�y outline the
process of optimization of weight values when using the BFGS algorithm. First, however,
as the formulae for the BFGS updating are used in combination with a soft line search,
the latter is described below:

soft line search -
Apart from the conditions that need to be satis�ed in order to ensure that a local minimum
is found, an optimization algorithm must also determine a search direction, which de�nes
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the direction to follow in order to reach the desired minimum. From Figure D.1 it is clear
that in order to �nd w∗, starting from an arbitrary point, the cost function must decrease
for each iterate. The search direction is denoted as rT . The cost function that is distance
α from the point w in the direction r can be approximated by the �rst order Taylor series
in Eq.(D.6), given that α is not very large and that α > 0.

F (w) + αr = F (w + αrT∇F ) (D.6)
The direction r is a descent direction from w if αr < 0. The soft line search strives to

determine the value αs, which must meet the criteria to be an acceptable argument for
the function ν(α), where:

ν(α) = F (w + αr) (D.7)
This acceptable argument, αs, must satisfy the following criteria:

αs = arg min
α

(F (w + α · r)) (D.8)

Another function, ω(α), is de�ned as a point on the cost function that goes through
the starting point and moves away from it by a fraction of the starting point slope:

ω(α) = ν(0) + % · ν ′(0) · α, 0 < % < 0.5 (D.9)
This can be used in order to determine an upper limit for αs:

ν(αs) ≤ ω(αs) (D.10)
There must also be a limit as to how small the search step is, as a step size that is too

small may cause convergence before the region of the minimizer is reached. The condition
in Eq.(D.11) must thus also be satis�ed.

ν ′(αs) ≥ β · ν ′(0), % < β < 1 (D.11)
In each iteration, the cost function F (w) is approximated by a quadratic function

that yields a parabolic form for the cost function. The search determines an interval
containing acceptable points, and a point α is found within this region. When both
criteria in Eq.(D.10) and Eq.(D.11) are met, convergence is reached and αs = α. In the
case where one or both of the criteria are not met, the interval is re�ned and a new α is
determined.

In Figure D.2, the interval [a, c] contains the minimizer αs of the shown quadratic func-
tion. The interval [a, b] represents the area that is found when the condition in Eq.(D.11)
is not satis�ed, i.e. the step size is too small and thus the local minimum cannot be
determined in the interval [a, b]. The step size that de�nes the interval [a, d] is too large,
and the cost function increases in this case. The interval must be re�ned as the condition
in Eq.(D.10) is not satis�ed.

We return now to the updating of the BFGS parameters. In order to complete the
introduction to the BFGS updating process, the quadratic function Q(w) is shown in
Eq.(D.12). This function approximates the cost function F (w) and it is the minimizer of
Q(w) that must be determined in each iteration.
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Q(w) = a + bTw +
1

2
wTHw (D.12)

As the evaluation of the Hessian matrix can prove to be extremely complex, an ap-
proximation to it is introduced: B ' H. The BFGS algorithm approximates the inverse
of B, D = B−1.

The following update for D is taken from [45].

Dnew = D + arrT − b(rvT + vrT ), (D.13)
where (D.14)

r = wnew −w, (D.15)
y = ∇F (wnew)−∇F (w), (D.16)
v = Dy, (D.17)

b =
1

rTy
, (D.18)

a = b(1 + b(yTv)) (D.19)

The initial D is checked for symmetry and positive de�niteness. It follows that if
the Hessian matrix of Eq.(D.12) is positive de�nite, then there is a single minimizer for
Q(w). ∇F (w) are the cost function derivatives w.r.t. weight values that are provided
by the calling back propagation algorithm. The update for D is only implemented if the
following condition is satis�ed:

rT∇F (w)new > rT∇F (w) (D.20)
as the increased curvature of the cost function shows that the search is approaching the
minimum.

For each iteration, the search direction is initialized at D · (−∇F). The value of α is
estimated by the soft line search, and the value of D is updated if the condition in
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Eq.(D.20) is satis�ed. The algorithm continues until convergence is reached, i.e. the
gradient falls below a certain very small threshold or the stepsize becomes very small,
indicating the proximity of a stationary point and, due to the positive de�niteness of D,
thus a minimum. However, if the convergence is very slow or if the algorithm diverges,
the iterations stop when a certain preset maximum number of iterations is reached, as it
is then assumed that further updates will not aid convergence.

The �ner details of the theory behind the discussed optimization techniques have
been omitted in the above overview, but it remains to be mentioned that the BFGS is a
popular updating algorithm because it can determine the quadratic minimizer faster than
the conjugate gradient methods and is yet computationally less heavy than the Newton
method, in which the actual Hessian matrix must be calculated. The BFGS method
belongs to the Quasi-Newton methods. The general theory of nonlinear optimization
algorithms, as well as a detailed description of the Conjugate Gradient, Newton and
Quasi-Newton methods are given in chapter 7 of [15], as well as in [45], while a complete
description of the program that implements the BFGS algorithm can be found in [46].
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