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Abstract

We discuss condition monitoring based on mean field independent components anal-
ysis of acoustic emission energy signals. Within this framework, it is possible to
formulate a generative model that explains the sources, their mixing and the noise
statistics of the observed signals. Using a novelty detection approach based on nor-
mal condition examples only, we detect faulty examples with high precision. The
detection is done by evaluating the likelihood that the model, trained with normal
examples, generated the signals, compared to a threshold obtained with normal
examples. Acoustic emission energy signals from a large diesel engine are used to
demonstrate this approach.

The experiment show that mean field independent components analysis detects
the induced fault with higher accuracy than principal components analysis, while
at the same time selecting a more compact model.

Key words: Mean Field Independent Components Analysis, Condition
Monitoring, Unsupervised learning

1 Introduction

In this paper, we apply mean field independent component analysis (MFICA)
to condition monitoring of a large two-stroke diesel engine. The setup is as fol-
lows: from a collection of examples gathered under normal running conditions
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we learn the hidden signals in signal and how they are mixed together. Given
a new collection of observed signals we test if the obtained model explains the
data equally well as it did with the known normal ones; if not the condition
is faulty.

The interesting result is that condition monitoring can be achieved with a sin-
gle feature by a simple threshold comparison, and further where the model and
threshold is derived from normal condition data only. Still we obtain a system
capable of detecting several types of faults; however with such hypothesis all
faults are just labeled faulty, and not directly identified by the system. This
setup is highly relevant as we are facing a problem where specific modeling of
specific faults is not economically feasible.

We will introduce MFICA, apply it to a collection of labeled normal and faulty
examples, and show how the two classes separate by looking at the underlying
hidden signals and the independent components. We compare this to a setup
where only normal examples are available for training. It shows that we can
still separate the two classes with a model build from normal examples only,
while obtaining good detection of faulty examples. With this in mind, we
outline our unsupervised method and its results.

1.1 Data setup

Acoustic emission signals were acquired from the two-stroke test bed engine
at MAN B&W Diesel in Copenhagen. The signals were processed with Root
mean square in time-domain, sampled at 20 kHz, before resampled in the
crank angle domain. Finally, they were partitioned such that a single example
represents the AEE during a single engine cycle. The engine cycle for a two-
stroke engine is one revolution of the crankshaft, so each sample corresponds
to the AEE at a certain angular position of the crankshaft and piston. Figure 1
show the engine with piston and crankshaft (left), an AEE “radar-plot” where
the AEE amplitude is shown as distance from the center (middle), and finally
the AEE signal in the linear crank angle domain (right). Each observation
consist of 2048 AEE samples in the crank angle domain from −180o to 180o,
i.e. one revolution of the crankshaft. The peaks in the AEE signals are the
results of engine related events, e.g., the peak around 0◦ is the combustion
and fuel injection operation.

In the crank angle domain all signals containing an engine cycle, have same
length regardless of running speed [1]. However, many engine designs, includ-
ing the MAN B&W Diesel test bed engine in Copenhagen, optimize perfor-
mance by moving the angular position of certain events as a function of load
and speed settings, e.g., by advancing the fuel injection start to inject more
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Fig. 1. Crank Angle domain sampling of acoustic emission energy signals. The two
arrows point at the data points as a position of the crankshaft wrt. 0◦ aka. Top
Dead Center (TDC) where the combustion takes place.

fuel. In this paper we will focus on a single running condition, and refer to our
ongoing research on event alignment [2] for handling the non-stationary case
under multiple running conditions.

We denote an observation of the AEE signal in an engine cycle by x being
a d × 1 vector of non-negative elements. From a set of from N such vector
cycles we build the training matrix X = [x1,x2, . . . ,xN ] as seen in Figure 2 to
the left. In the blind source separation (BSS) framework, we solve the inverse
problem assuming that the training matrix is generated by a linear mixing of
K underlying non-negative AEE signals plus white Gaussian noise given by

X = AS + Γ, (1)

where A is a d × K mixing matrix containing the hidden AEE signals as
columns, S is K×N source matrix containing the independent components as
rows, and Γ is d×N noise matrix. With this setup the independent components
in the source matrix are not prototype AEE signals, but gain factors holding
the amplitude of the corresponding columns of the mixing matrix that contain
the hidden AEE signals. As shown in Figure 2 an observation is generated by
multiplying the K hidden AEE signals with the corresponding independent
components and adding noise, e.g. x1:d,1 = A1:d,1 · S1,1 + A1:d,2 · S2,1 + Γ1:d,1
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Fig. 2. X = AS+Γ, Matrix setup for blind source separation with two observations
and components. X, A, S and Γ are observation, mixing, source and noise matrix
respectively. Each observation signal x is generated by mixing the columns in the
mixing matrix A weighted by the corresponding set of gain factors (as a column)
in the source matrix S by the corresponding column in the Gaussian noise matrix
Γ.

2 Mean field independent components analysis

In a condition monitoring framework using the MFICA, the columns of the
mixing matrix A may be interpreted as underlying AEE signals, generated
by specific events. For instance, these sources could be the results of specific
engine impacts and scratching. As the AEE signals are inherently nonnegative,
it is appropriate to assume that the various energy sources are additive and
that interference is also non-negative. This implies that both the elements of
the mixing matrix and source matrix are nonnegative.

2.1 Training

Recently, the ICA was extended with a Bayesian framework using an ad-
vanced mean field training [3], making it possible to incorporate constraints
on the source and mixing matrix. The MFICA accomplishes this by defining
an appropriate prior distribution over the sources. Given the noise model in
Equation 1, the likelihood for the parameters and sources of the MFICA may
be written as

p(X|A,Σ,S) = (det(2πΣ))−N/2 exp
(
−1

2
Tr{(X−AS)>Σ−1(X−AS)}

)
(2)
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where noise has zero mean and Σ is the noise covariance matrix. The noise is
inevitable positive after RMS, but since the signal to noise ratio is so high with
AEE signals, the mismatch due to the zero mean assumption is of negligible
size. The aim of MFICA is to estimate the unknown quantities, the sources
S, the mixing matrix A and the noise covariance Σ from the observed data.
For the condition-monitoring problem, we need to characterize the unknown
parameters. The noise is simplified to an isotropic Gaussian distribution where
Σ = σ2I, the sources are assumed to be exponential distributed with the prior
distribution p(S) = η exp(−ηS) where η > 0, and the elements of mixing
matrix is assured nonnegative by combining Lagrange multipliers to the mean
field training. The parameter estimation is done in a Bayesian manner, by
integrating out the hidden variable S, i.e.,

p(X|A,Σ) =
∫

p(X|A,Σ,S)p(S) dS (3)

and using this new likelihood to optimize the parameters. Unfortunately, this
integral is intractable to solve analytically. Instead, equation (3) is approxi-
mated using the so-called adaptive Thouless-Anderson-Palmer mean field ap-
proach [4]. For details on the MFICA we refer to [3] and also to available
Matlab toolbox [5].

While the parameters may be estimated with MFICA, we still need to de-
termine the number of components K. This corresponds to a model selection
problem where we are interested in finding a model that fits the data well in
the face of limited data, i.e., has good generalization capabilities on unseen
data. If the K is selected too small compared to the optimal K, we get a too
simple model that does not capture the underlying function generating data,
i.e., the sources and mixing matrix. On the other hand, selecting a K that is
too large gives a too complex model that fits to the additive noise. Various
methods for model selection have been proposed, e.g., empirically with cross-
validation resampling schemes [6] that we use here and algebraically, e.g. using
Bayesian information criterion [7].

2.2 Using the trained model on a new example

Given a new example x and a model defined by A and Σ we redo the part
of the inverse problem in Equation 1 where S is estimated whilst keeping the
mixing matrix A and noise covariance matrix Σ fixed. Due the constraints
on s the solution is obtained using the same mean field optimizer that was
used for the training. The output of this optimization is the components s
and the corresponding negative log likelihood (NLL) − log p(x|A, s,Σ). We
have previously showed[8] how the log likelihood (NB not negative) dropped
significantly just after a condition change, and further how it regained its usual
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level after a temporary fault in the water brake disappeared. Effectively for
classification purposes the dimensionality is reduced from 2048 (original data
dimension) to one (the NLL) with MFICA.

2.3 Classification with the negative log likelihood

The MFICA does a good job on separating the normal and faulty examples
in the NLL-domain. A simple but effective classification method is to set
an NLL threshold to separate the faulty examples from the normal. This is
related to novelty detection [9]. With another set of known normal examples
the cumulated density of the NLL feature is estimated, i.e., the NLL given A
and Σ is obtained. In this cumulated density model an inherent rejection rate
of say 5% is selected, thus we already know that we will face 5% false alarms.
Even with an inherent rejection rate of 0% we could still face false alarms, since
the threshold is based on a sample set. The false alarms can be lowered using
sliding windows and binomial hypothesis test on the classification outputs in
the window against the selected rejection rate (see further [10]).

3 Comparing two and one class training

In this section, we will compare the results obtained when solving two different
BSS problems. We take 140 known normal and 140 known faulty examples
and split them into 2 sets of 40 and 100 examples for training and testing
respectively. We will call the first problem two class as the observation matrix
is build from the 80 labeled training examples. In the second problem, the
one class, we only use the 40 normal examples for training. We will solve
the two class problem assuming two independent components and compare
this result with the result that we obtain when solving the one class problem
assuming only a single component. It is expected that one of the columns in the
two class mixing matrix should resemble the column in the one class mixing
matrix, and that the two classes separate in component domain. In ?? the left
panel show the 200 labeled test examples that are separated in two classes,
while the right panels show the two columns of the mixing matrix (1st and 2nd
hidden signal). As also indicated in Figure 2 the 1st hidden signal contains
the additional AEE signal encountered under the faulty condition, while the
2nd hidden signal models the normal condition. The two hidden signals from
the two class problem are repeated in Figure 4 to the right, where we see
that the second column resembles the column of the one class mixing matrix
shown above the two. Furthermore the left panels of Figure 4, that display the
estimated density and cumulated density of the 200 labeled test points, show
that the normal and faulty examples also separate in the single component
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Fig. 3. Separation with two class model. The normal and faulty examples sepa-
rate in source domain; where the faulty examples tend to contain more of the 1st
hidden signal. Further we observe that the 2nd hidden signal resembles the single
component obtained from normal conditions only in Figure 4.

domain from the one class problem – although not as good as in the two class
problem.

4 Unsupervised condition monitoring

Due to economic figures, the supervised setup is not an option for our appli-
cation. It is simply too expensive to conduct repeated experiments for a wide
range of faults and engines. We therefore aim for an unsupervised setup where
the system models the normal condition and detects deviations from that.
The setup can later be turned into a semi-supervised setup, with possibility of
identifying specific faults by allowing new models trained on data with those
faults to compete with the normal condition model.

In the one class example we assumed one independent component, but as the
following results shows, more than one component yields better classification
performance, due to the ability to model the modes of variation in the normal
condition. We have recently followed that idea, and trained an unsupervised
model on a collection of examples acquired under multiple normal load set-
tings. However it turned out that the performance was inferior to our event
alignment method[10].
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Fig. 4. Separation with one class model. The observation matrix consist of normal
examples only, this is one class, single component MFICA. The two panels to the
left show the empirical densities and cumulated densities for the sources of normal
and faulty data. The lower panel show that s ≤ 0.36 for 95% of the normal examples
whilst s > 0.36 for virtually all faulty examples. To three panels to the right show the
single hidden signal from the “unsupervised” mixing matrix, that can be compared
to the two hidden signals obtained from the two class setup in Figure 3. Clearly the
second hidden signal resembles the single hidden signal better than the first thereby
being the “normal” hidden signal.

4.1 Experimental setup

The experiment was conducted by acquiring the AEE signals before and after
a fault-condition was induced by cutting off the supply of lubricating oil to the
monitored cylinder. This resulted in increased friction and wear that possibly
could lead to a severe fault called scuffing. In this paper we only used the first
two hours of data, so what we detect is an early warning. Visual inspection
after 6 hours of running without lubricating oil revealed contact marks on the
upper rings inside the cylinder.

• 70 repetitions with resampling of both training and evaluation examples
• 20 examples in training matrix
• Testing for 1-12 components
• Set rejection rate 5%
• NLL threshold learning set with 70 normal examples
• Evaluation set containing 70 examples with known labels, whereas 30-40

are normal
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MFICA performs better Equal performance PCA performs better

47 times 18 times 5 times
Table 1
Performance statistics on the 70 runs

4.2 Results

We will compare the performance of MFICA to a very similar Principal Com-
ponents Analysis method, described in [11], that does not obey the non-
negativity constraints on A and S. For each of the 67 experiments we compare
the best MFICA and PCA model. The model with lowest false alarm rate
and highest detection rate (as a squared distance from the optimal Receiver-
Operator-Characteristics point) is the best model. Of the 70 experiments
MFICA is better than PCA in 47 (∼ 67%), in 18 experiments (∼ 26%) the two
methods have equal performance. PCA is only better than MFICA in 5 of the
experiments (∼ 7%). If we compare the number of components in the “best”
models (for MFICA the 65 experiments and PCA the 23 experiments), we see
in Figure 5 that the PCA best histogram is peaked around 6 components. The
MFICA best histogram is flatter and with a peak at only one component.

In Figure 6 we show the improvement in the ROC domain for the 47 ex-
periments where MFICA is better than PCA. In 38 of those, the improved
false alarm rate is achieved without decreasing the detection rate. The mean
improvement is -0.045 (from 0.0752 to 0.03) on the false alarms and -0.0057
(from 1 to 0.9943) on the detection rate. So although PCA already gives good
classification performance, MFICA is capable of improving on that.

5 Conclusion

We have described how the advanced blind source separation technique, Mean
field independent components analysis, can be applied to a realistic condition-
monitoring problem. The experiments show how this method performs better
than a similar method based using Principal Components Analysis. We have
planed improved experiments where the lubricating oil level is reduced over
time, to induce even more subtle faults.
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