M.Sc. Thesis
Forensic examination of log files

IMM-THESIS-2005-2

Written by
Jéan Petur Petersen (s022087)

Supervised by
Robin Sharp

IMM

Informatics and Mathematical Modelling
Technical University of Denmark
January 31, 2005

Preface

This master’s thesis is written to fulfill the requirements to obtain a degree in Master
of Science. The project is done in the Informatics and Mathematical Modelling depart-
ment at the Technical University of Denmark (DTU). The project is called “Foren-
sic examination of log files”, and was carried out through a 5 month period, starting
September 1, 2004, and finishing January 31, 2005. The project was requested by the
Danish CERT, carried out by Jéan Petur Petersen, and supervised by Prof. Robin
Sharp.

Acknowledgements

I would like to thank the Danish CERT for the support and data it provided for the
project. I would especially like to thank Mikael Stamm, Preben Andersen, and Morten
Schignning. Finally I would like to thank my supervisor, Robin Sharp, for his guidance
and support, and all the interesting discussions.

DTU, 31 January 2005
Jéan Petur Petersen

Abstract

Forensic examination of logs plays a big role in modern computer security, but it has
become a time consuming and daunting task due to the sheer amount of data involved.
It is therefore necessary to make specialized tools to aid the investigation, so that the
digital evidence can be extracted in a fast and efficient manner.

In this thesis a system is developed that can identify malicious traffic in router logs on
a log entry level. This is done using specialized feature extractors and a classifier based
on a neural network. The system is developed for Netflow logs, and problem associated
with flows are investigated, such as how unidirectional flows should be handled. As
a proof of concept, the system is developed to detect host scans. This is done using
real router log data, and log data derived from the 1999 DARPA Intrusion Detection
Evaluation data set. The system could easily be extended to detect other kinds of
malicious traffic, such as Denial of Service attacks and probes other than the host scan.
New contributions in this thesis are use of artificial neural networks to classify router
logs, classification of each log entry, and development of feature extractors for Netflow
logs.

Keywords: Network Forensics, Log Analysis, NetFlow, Probing, Denial of Service,
Flow Classification, Feature Extraction, Traffic Aggregation.

Contents

Introduction

1.1 Routers e
1.2 Logfiles o
1.3 Postmortem and real-time analysis
1.4 Related work
1.5 Summary e
1.6 Report overview

Malicious Network Activities

2.1 A short TCP/IP summary
2.2 Denial of Serviceo
2.2.1 Examples of DOS attacks,
2.2.2 Flow characteristics of a DOS attack
2.3 Probes e
2.3.1 Openscanning oo
2.3.2 Half-open scanning oo
2.3.3 Stealth scanning oo
2.3.4 Flow characteristicsof ascan
24 Summary . . .o ...

User Specifications and Design

3.1 User Specifications from DKeCERT
3.2 Forensic requirements for the tools 0.
3.3 Design/Solution
3.4 Log file manipulation L Lo o
3.5 Feature extraction
3.6 Classifier. e
3.7 Fulfilled specifications and requirements
3.8 An alternative feature extractor design
3.9 Summary

Data Acquisition

4.1 Labeled traffic
4.2 Ambient traffic
4.3 Attack traffic
4.4 An alternative way to collect labeled traffic
4.5 Summary . . .o oL .o e

N 3 O Ot W N =

Qo

10
11
13
13
14
14
14
15
15

16
16
16
17
18
19
21
21
22
22

5 Feature Extractors

5.1 Feature ranking
5.2 Value reduction
5.3 Intrinsic features
5.4 Value reduction of the intrinsic features
5.4.1 Duration e e
5.4.2 Packet count
5.4.3 Transferred octets
5.4.4 Protocol number
5.4.5 Port number
5.4.6 Flags.o

5.4.7 Summary of intrinsic feature
5.5 Traffic based features for a host scan

5.6 Alternative Featureso
5.7 Summary e

6 Classification

6.1 Classifier types

6.2 The back-propagation classifier

6.3 Summary e

7 Testing

7.1 Performance.
7.2 The intrinsic features alone
7.2.1 The flags feature alone with DARPA
7.2.2 Using the suspiciousflags feature alone with DARPA
7.2.3 DARPA set with suspiciousflags and transferred octets
7.2.4 DARPA set with flags and transferred octets
7.2.5 Intrinsic features alone with real traffic.
7.2.6 Summaryo e e e
7.3 The traffic features alone L.
7.4 Traffic and intrinsic features combined
7.4.1 Using suspiciousflags and thb_rst_count
7.5 Test summaryo

8 Conclusion

81 Future work

A Value reduction figure and distributions

B Netflow version 5 datagram

ii

29
29
31
31
34
34
35
35
36
37
37
38
39
43
44

45
45
46
48

49
49
50
20
51
51
52
53
93
23
54
54
54

55
o6

59

62

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2

5.1

5.2

5.3
5.4
9.5
5.6
5.7

6.1
6.2

Al
A2
A3
A4

A5

An example of how flows are collected.

The structure of a IP version 4 header.
The three-way handshake used to establish TCP connection.
Classification of the Denial of Service attacks. [1]
The three way handshake used for a SYN flood attack.
The reflection attack on a single victim using multiple servers..

The main structure of the forensic tool suite.
This figure illustrates the window often used in IDS systems, and the
window we will use in our forensic examination tool.

Entropy ranking of unmodified intrinsic features using manually selected
background traffic from real log data.
Entropy ranking of unmodified intrinsic features using attack free data
from the DARPA evalution set.
Flows sorted after size and divided equally between the bins.
Entropy ranking of value reduced features using manually selected data.
Entropy ranking of value reduced features using DARPA data.
Entropy ranking of traffic features using real traffic.
Entropy ranking of traffic features using the DARPA attack free traffic.

A set of neurons connected in a feed-forward neural network.
The structure of a single neuron.

Entropy index as a function of the duration cutoff value.
Entropy index as a function of the packet count cutoff value.
Entropy index as a function of the transferred octets cutoff value.

Histogram showing the distribution of the reverse thb_rst_count with real
traffic.o
Histogram showing the distribution of the reverse thb.rst_count with
DARPA traffic.

iii

10
10
12
12

18

20

34

35
36
39
40
42
43

46
47

99
60
60

List of Tables

4.1

4.2

4.3

4.4

5.1
5.2
5.3
5.4

B.1
B.2

Top statistics for a whole day derived from the Lyngby 2 log the 28 /10-04.
The log file consists of 10.466.339 flows, and the total amount of routed
data is 409.957 MB. DKeCERT has given permission to publicize these

Top statistics for manually selected entries from the Lyngby 2 router the
28/10-04, from 6:00 to 9:00. Selected entries consist of 61.529 flows and
460 MB of routed traffic. oo
Top statistics for manually selected entries from the Lyngby 2 router the
30/10-04, from 20:00 to 23:00. Selected entries form 63.707 flows and 561
MB of routed data.o
Some statistics derived from the aggregation of the outside traffic from
the DARPA evaluation set. The data is from a whole day, which is
Monday in the third week. The log file consists of 76.965 flows, and the
total amount of routed data is 272 MBytes.

Intrinsic features extracted directly from the Netflow entries.
A simple feature based on the port number.
Flag combinations for likely attack flows.
Traffic based features extracted from the Netflow log based upon a time
window or a number of flows window. All the features are to the desti-
nation host, except the last one.

Netflow version 5 header.
Netflow version b record. e

26

Chapter 1

Introduction

With the introduction of the personal computer (PC) in the late 70’s, and its widespread
adoption through the 80’s, resulted in a new forensic science, which was called computer
forensics. Computer forensic deals with the collecting of digital evidence from digital
devices, such as laptops, home computers, PDAs, and servers.

Another forensic field called network forensics was introduced with the wide adop-
tion of the Internet in the 90’s. This forensic field examines network traffic for digital
evidence. This could for example be examination and analysis of router logs, firewall
logs, or eavesdropped data from a network.

In this thesis we will be developing a forensic tool suite that can aid an investigator
in examining and analyzing a router log. The tool suite therefore belongs to network
forensics. The forensic tool suite will be able to manipulate log files, and to identify
different types of malicious traffic within the log. Throughout the thesis the system
will be developed gradually, and problem associated with analyzing router logs will be
examined.

Computer and network forensics are not only of interest to law enforcement, but
also companies, the military, and to some degree private users. Computer and network
forensics should be part of a company’s security policy, so that they can analyze incidents
if they should occur.

The tool suit is made for the Danish CERT (Computer Emergency Response Team),
which is called DKeCERT for short. DKeCERT provides security related services to
Danish companies, such as incident response, reporting of new vulnerabilities, and secu-
rity surveys. DKeCERT is a division of Forskningsnettet (Danish Research Network),
which is a joint research network. Forskningsnettet provides services to research in-
stitutes and to companies doing research related activities. Technically Forskningsnet-
tet consists of a backbone which connects the main points of the network in Lyngby,
Odense, Arhus, and Alborg. The capacity of the backbone network is 822 Mbits/s.
Forskningsnettet is connected to other ISPs through DIX (the Danish Internet eX-
change point). The purpose of DIX is to handle the traffic between the networks that
constitute the Danish part of the Internet. Internet access is gained through the other
ISPs. A more detailed description of Forskningsnettet can be found on their web page
[2].

DKeCERT has access to many routers through Forskningsnettet, and could therefore
gain a considerable amount of information with a tool suite that could analyze router
logs. For this project DKeCERT has provided several days of traffic from one of their
routers (the Lyngby 2 router). This data will be used to develop and test the forensic

tools in this thesis.

Most of the routers that DKeCERT uses, are Cisco routers, which use a log sheme
developed by Cisco called NetFlow. The forensic tool suite is only developed for this
log format, but even though, it should be possible to modify it, so it can support other
router log schemes too.

The rest of the chapter is organized as follows: First we will look at what role routers
play in the network, and what their logs might provide. The we examine the NetFlow
router log scheme closer, and look at some of the more technical details. Then we briefly
look at the difference between postmortem and real-time analysis of logs. The chapter
ends with an examination of related work in this area.

1.1 Routers

Now we will look at what the role of the router is on the network, and why it is a good
place to look for digital evidence.

Routers play an important role in most computer networks. Routers are responsible
for getting the packets forwarded to the right destination; which is mostly a collaborative
task between many routers.

Often routers are placed at borders of networks, edge routers, connecting the internal
network to the outside, which could be the Internet. The router is therefore the first
device an attacker encounters when attacking a network. All the attack traffic also goes
through the router, and it is therefore a good centralized place to search for evidence.

Important information could be found by examining router logs. The ISP router
logs can give detailed information on the traffic on the Internet in general, and reveal
attacks against the ISP’s customers. Edge routers also can give information on attacks
to and from networks.

Many routers have the ability to create logs of the traffic that pass through them.
The log files can be used for traffic measurements, billing systems, security, amongst
many other things. There are many security applications of such logs; it is possible to
determine services running on the hosts, probing, denial of service attacks, just to name
a few. Probing is an technique used by attackers to gain information about the hosts
on the system.

It is not practical to log all the information that gets forwarded by the routers,
because the storage space needed would be excessive, even just storing the header of
the packets being forwarded would require several GB of space. Therefore it is normal
to aggregate the traffic, so that only the essential information is stored. Aggregation
groups similar traffic together, and stores information about each group as a whole.
Aggregated data for network traffic could for example be the average packet size, trans-
ferred octets, and duration of the traffic grouped together. The aggregation is a tradeoff
between the logged volume and how fine grained the log is. Finding the right balance is
hard, especially if the same aggregation scheme is used for multiple applications. The
aggregation used varies between router manufacturers, but they mostly have the same
features. In this thesis we will look at the Cisco’s router log scheme, NetFlow, which
does aggregation of the network traffic. We will look at the details of how NetFlow
works in the next section.

1.2 Log files

In this section we will look at router logs, especially the Cisco NetFlow logs. Many
other router log schemes exist, but most of them have much in common with NetFlow.

Routers work on the network layer (OSI layer 3), so they only see the traffic as a
man in the middle. But the routers can store information from the higher layers to the
log, such as the TCP header from the transport layer (OSI layer 4).

Due to the large amount of data that is goes through a high-end router, it is not
very realistic to store all the data, not even the data in the TCP/IP headers. Similar
packets are therefore aggregated into records, so that they take up less space (in most
cases). There are many ways to aggregate traffic, but we will only look at how it is done
in case of NetFlow.

NetFlow is scheme devised by Cisco Networks for generating router logs. It consists
mainly of an aggregation method and a datagram for exporting the logs from the router.
Its main purposes are network traffic accounting, usage-based network accounting, net-
work planning, and security.

Netflow aggregates network traffic by grouping packets into flows. A NetFlow flow is
defined as an unidirectional sequence of packets between two points. Flows are uniquely
identified by source and destination IP addresses, source and destination ports, protocol
type (layer 3), the input interface, and the TOS field.

A flow is uniquely identified on the router by the tuple given in equation 1.1.

flow = (s7Caddr, ST Cport, AStaddr, AStport, iPprot, STCif, 10S) (1.1)

For each flow on the router, there exists a record that contains the accumulated
information about the flow. The aggregated NetFlow data is about 33.3 times smaller
than the full packet trace [3].

There are several NetFlow versions, as it has been modified over time to satisfy the
needs as they occurred. The different versions all work more or less in the same way,
and the only difference is some variation in the information supplied.

Typical information found in NetFlow data records are [4]:

e Export timestamp

Start and end timestamps

e Source and destination IP addresses

e Source and destination TCP/User Datagram Protocol (UDP) ports
e Type of service (ToS)

e Packet and byte counts

e Input and output interface numbers

o TCP flags

e Routing information (next-hop address, source autonomous system (AS) number,
destination AS number, source prefix mask, destination prefix mask)

Each router has a cache where the flow records are stored. The size of the flow cache
depends on the router’s memory and setup. Each time the router encounters a new flow
identified by equation 1.1, a new record will be added to the cache. Any successors with
the same identification will be use to update some of the fields: The number of packets
in the flow, number of octets transferred, and in the case of TCP, the subsequent TCP
flags are OR’ed onto the flag field in the record. Other fields might also be updated in
the various NetFlow versions.

The record of a flow is kept in the router until one of these conditions is met [5]:

e Flow has been idle for a specified time (usually 15 seconds).
e Long lived flow records are removed (normally 30 minutes).

e When the cache becomes full heuristics are used to remove whole groups of flow
records.

e A TCP connection reaches its end (the FIN or RST flag is set).

When a flow is retired, it is collected into a NetFlow export UDP datagram and sent
to a collection server. Flows are exported at least once a second, or when a datagram
is full. The NetFlow export UDP datagrams come in various versions. Version 1 can
hold 25 flow records, version 5 can hold 30, and version 7 can hold 28 flow records.
Figure B.1 and B.2 in appendix B show the datagram for NetFlow version 5. This is
the datagram used by the routers that have collected log data for this thesis.

The paper “NetFlow: Information Loss or Win” by Sommer et al. [3] gives a good
evalution of the NetFlow aggregation scheme, and it also discusses it strengths and
weaknesses.

Figure 1.1 show a simple example of two flows collected from a user connecting to a
web server. Because the flows are unidirectional, a TCP connection will at least consist
of two flows. A single TCP connection could easily be split up into more flows; for
example it could be exported because it has been idle for a certain amount of time.

Client Server

Router

(Client, 12345, Server, 80, TCP)

Flow exports)
(Server, 80, Client, 12345, TCP)
Figure 1.1: An example of flows collected by a router when a client connects to a web
server.

Because of the high speeds of very fast routers, it is not possible to log all the packets
even if they are aggregated. A solution to this problem is to use sampling. This is done
by selecting some random packages from the stream. In Cisco NetFlow an average

sampling interval can be specified. Sampling will of course affect the forensic value of
the logging, because now the communication sequences are lost, and some flows are not
even detected. We will not investigate this problem closer in the thesis, but it might be
an interesting area for further work.

Forensic examination of NetFlow logs

Now we will look at how NetFlow logs can be used in forensic examinations, and how
the NetFlow aggregation affects the results.

The aggregation of the traffic into flows reduces the amount of space used for the
logs considerably, but it also reduces the information. Important information regarding
the forensic investigation can be lost.

The way that the TCP flags are handled is quite unfortunate; when they are OR’ed
together over all the packets in the flow. This way one cannot check if the TCP traffic
is legal. There could for abnormally many SYN’s in a flow, but it cannot be seen from
the NetFlow record. On the other hand we know that there is only one FIN and RST
per flow. NetFlow does not have any field that have information about error reporting
fields in the IP/TCP headers; there is no way to detect checksum errors, fragmentation,
TTL field values, and so on. But this is probably a tradeoff between log size, system
complexity, and security.

Another drawback to NetFlow is it can vary much, depending on the specific router
and its setup. The timeouts can be specified in a wide range and the cache size can also
be set, which result in very different flow characteristics. The used parameters are not
present in the NetFlow logs, so the operator has to provide this information manually
with the logs.

Many fields in a NetFlow record are based on the information in the TCP /IP packets,
and therefore they can easily be spoofed. Spoofing is a technique used by attackers,
where they create network packets with falsified fields. The duration of packets can also
be spoofed to an certain extent, by fragmenting the IP packets.

Even if Netflow has some weaknesses regarding security, it is still useful. It is already
implemented in many routers that are on the market, and it would be to expensive to
change all of them just to introduce a new router logging scheme. Security tools that
support Netflow will therefore be a cheap and efficient way to increase the security as
an initial step. In the future more standardized log schemes have to be developed with
more focus on security. One such scheme, a draft by the IETF for a router log standard,
IPFIX, is based upon NetFlow version 9 [6].

1.3 Postmortem and real-time analysis

Forensic examination of logs today can roughly be split up into two categories: Post-
mortem and real-time analysis. Postmortem analysis of logs is the investigation of
something that already has happened, and which one can not do anything about now.
The purpose of this analysis is therefore to find out what has happened. Real-time
analysis is an ongoing process, which returns results with a low latency, so that the
system or operators can respond to the attacks.

Postmortem analysis can therefore be more exhaustive than real-time analysis. Real-
time analysis needs to find the attacks quickly to be effective. Postmortem analysis can
be used to examine the attack in more detail and give a more thorough result/report.

Another thing that differs between the analysis methods, is that real-time analysis can
only go through the log data once, whereas a postmortem analysis could go through the
file many times, and examine interesting flows it had found in previous runs.

The focus of this report is the postmortem analysis, but the real-time analysis is
also of interest, because there are many ideas that we can borrow.

The program has to be able to process a day’s or more traffic, in a timely manner;
the program has actually to process data faster than a real-time system, but with a
higher latency.

1.4 Related work

There has not been done much prior work that only investigates forensic examination of
router logs. But on the other hand, there have been many papers published in the area
of Intrusion Detection Systems, which can be said to be related to examination of router
logs. As mentioned earlier, the IDS is a real time analysis of the incidents, whereas the
forensic examination is a postmortem. Most of the ideas used in IDS systems can directly
or with little modifications be transferred to off-line forensic examination systems.

One of the well known papers is ” A Framework for Constructing Features and Models
for Intrusion Detection” by Wenke Lee and Salvatore J. Stolfo [7]. Its main contribution
is an automatic feature creation scheme, where feature extractors are created by using
various datamining techniques. It looks at the IDS from the network layer and all the
way up to the application layer. The paper is heavily based upon Wenke Lee’s Ph. D.
thesis [8]; it is is actually a compressed version of the thesis, and therefore it might seem
a little cursory; but even so, it is a popular paper.

An important event for the development of IDS was the 1998 and 1999 DARPA off-
line intrusion detection evaluations [9]. It provided researchers with attack and normal
traffic, and a common set to evaluate their methods on. Before the DARPA evaluation
set was available, most systems were evaluated with a few attacks, and little background
traffic. The traffic used was not publicly available either, so the results obtained were
not reproducible. The DARPA network models a typical Air Force network. The
DARPA test bed was setup with real computer, consisting both of Microsoft and Unix
based machines. Traffic was created using synthetic users, that act like normal users;
surfing the net, checking mail, file transfers, etc. The network was divided up into two
parts: One internal network, and one external (modeling the Internet)[10]. Tcpdump
was used to collect and log the traffic seen from the inside of the network and from
the outside. Other application level logs where also collected. Planned attacks were
performed against selected hosts, and the traffic belonging to the attacks labeled. The
DARPA data is freely available on the Internet.

One paper that looks at the use of NetFlow logs for security is the paper “The OSU
Flow-Tools Package and Cisco NetFlow logs” by Mark Fullmer and Steve Romig [11].
Flow-tools is a collection of programs to gather Netflow logs, manipulate, and filter
them. It supports a wide range of Netflow versions. The file format used by the authors
is one that is created for Flow-tools, so it is not widely supported by other software,
but there exists an exportation tool, so it is possible to get the log files converted to
NetFlow again. Their format supports compression of the log files through use of zlib.

The security tools in Flow-tools are a rules based real-time IDS, activity profiling,
and a set of programs for general log file manipulation for incident response. The
IDS can be configured to report to rules such as: A source IP containing more than

a threshold of destinations within a specified period (port scan). The activity profiler
builds a profile of the services running on each host, and can therefore detect new services
on the hosts. The Flow-tools are developed on a university network, and therefore the
activity profiling feature is of interest to them.

There also exist many non-scientific tools for manipulating and visualize NetFlow
logs. As an example we could mention that the Swiss Education & Research Network
(SWITCH-CERT) have created a forensic examination tool for examination of Netflow
logs. It is called NFSEN, which is an abbrivation for NetFlow Sensor. NFSEN is capable
of filtering the Netflow logs, creating Top-N statistics, profiles, and presenting the logs
in various graphical plots. As of this writing, SWITCH is not freely available.

Some papers only focus on one feature, and evaluate its efficiency to detect some
kind of attack[12][13]. The classifier used in such papers are mostly just based upon
a threshold value. The features can often be used both real-time and postmortem
analysis. Combining such features extractors, and using a more sophisticated classifier,
would potentially yield good results, because these features are quite advanced and yield
good results by themselves.

In the paper Detecting Traffic Anomalies at the Source through aggregate analysis
of packet header data by Seong Soo Kim et al. [12], a technique for traffic anomaly
detection based upon the correlation of outgoing IP addresses of the flows at an egress
router. The technique is developed both for postmortem and real-time analysis. In the
postmortem analysis the method works with all the log data, but in real-time it works
on a window basis (a data set from a short period).

1.5 Summary

We are now ready to pursue the the development of the forensic tool suite. We have
now an good idea of what role routers play on the network. We have also seen how the
NetFlow log scheme works in detail, where one of the main topics was how NetFlow
does aggregation of network traffic.

One might also wonder why there has not been done more research in examining
router logs, and logs in general. Log have been around for a long time, and it would
seem more logical if it was the IDS systems that borrowed ideas from systems developed
to analyze logs.

1.6 Report overview

The report is divided into eight chapters. In the next chapter, chapter two, we will be
introduced to malicious traffic, to get a better understanding of the problem, and in
this way lead into the third chapter, where we specify the user requirements and an
outline for the design of the system. In the fourth chapter we will study how we can
obtain sample traffic for the development and testing of the system. In chapter five we
will look at how the characteristics of the malicious and normal traffic can be extracted
from the log. In the sixth chapter we will briefly study the artificial neural network used
for the classifier and the implications associated with it. Now the system is completed,
and in the seventh chapter it is tested on various data to estimate its efficiency. Finally
in chapter eight the findings in this thesis are summarized and conclusions are drawn
about the system developed.

Chapter 2

Malicious Network Activities

In this chapter the attacks that can be found in router logs will be examined. This

examination is important for many purposes: The interesting flows are identified in the

log file, secondly a better understanding is gained about the attacks as a whole.
Attacks on hosts are often divided into four groups:

e Probes: Used to gain information about the host.

e Denial of Service: Make a service unavailable to other users.

e R2L: Unauthorized access from a remote machine.

e U2R: An unprivileged user gains super user rights through a vulnerability.

Probes and DOS attacks can in many cases be seen from the router logs, but it
is harder or not possible to discover R2L and U2R attacks, as the attacks occur at a
higher OSI layer. It is possible to get indications of that R2L or U2R attacks are going
on. For example if a remote machine is trying to guess a password through SSH, one
would see several short connections on port 22 on the victim’s host. A U2R might be
indicated by the victim having new services, which the attacker has started.

It is of interest to the ISP to detect both probes and DOS attacks. Identifying and
dealing with DoS attacks improve their service. DOS attacks are more easily handle by
the ISP, than by the customers. Probes are also of interest for the ISP, as this gives
information of where threats originate from.

We will now look at how probes and DOS attacks work, and how they will appear in
the NetFlow based logs. The DOS attacks are examined first, and then the probes. We
will not investigate R2L and U2R attacks any further, because they are easilier detected
in other kinds of logs. Before looking at the network based attacks, we will briefly look
at some of the basics of the Internet protocols.

2.1 A short TCP/IP summary

The protocols that are the foundation of the Internet are part of the Internet protocol
suite, and it is often called the TCP /IP protocol suite for short. As some of the protocols
in the TCP/IP protocol suite will play a central role, we will briefly examine the ones
that are of interest to us. This way we will also get some of the terms explainded.
The most common datagram used in the network layer on the Internet is the Internet
Protocol version 4 (IPv4). The Internet Protocol version 6 (IPv6) has been available

for some time, it is not nearly as widely used. An IP datagram consists of a header part
and a text part. Figure 2.1 shows the structure of a IP version 4 datagram header. The
fields that are available as aggregated data in NetFlow version 5 have been written in a
bold face font.

32 hit
\\\\\\\\\\\\\\\\\\\\‘\\\\\\\
Version IHL Type of service Total length

Identification llf::) '\2 Fragment offset
Timetolive Protocol Header checksum
Sour ce address
Destination address
Options

Figure 2.1: The structure of a IP version 4 header[14]. The field written in bold face
are present in some form in the NetFlow records.

The IP datagram is constructed by the hosts themselves, which deliver the datagrams
to the network layer. Because the datagrams are constructed by the hosts themselves,
it is possible for the hosts to put false information into the datagram. Putting false
information in the header is called spoofing. Some common protocols placed in the text
area of the IP datagram, are the UDP, TCP, and RTP protocols.

Protocols are often divided up into connection oriented and connectionless. A con-
nectionless protocol only write an destination in the packet and send it of, there is no
checking if it arrives, or if there are several packets, that they arrive in any particular
order. An analogy to a connectionless protocol could be the process of sending letters
with the postal service. Well known connectionless protocols are IP, UDP, and ICMP.

A connection oriented protocol assures that the packets arrive in the right order,
but before this can be done, a connection has to be set up. An analogy to a connection
oriented protocol could be a telephone call.

The TCP protocol is connection oriented. To create this service, the TCP header
specified by the TCP protocol has some counters and flags, which are used to keep the
state of the connection. The flags are provided as aggregated information the NetFlow
log and play a central role in many attacks. The flags also play an important role in
both network based denial of service attacks and probes.

There are six flags in the TCP header: URG, ACK, PSH, RST, SYN, and FIN. One
of the important roles that flags play in the TCP protocol, is to open and close the
connections. Figure 2.2 shows how a TCP connection is initiated. The process is called
a three-way handshake. The client starts the process by sending a TCP packet to the
server with the “SYN” flag set. When the server receives the connection request packet
from the client, it will allocate some resources for handling the connection. The server
then sends a packet back to the client with the “ACK SYN” flags set, to acknowledge
that it received the clients packet and to open a connection back to the client. If
the server is unable or unwilling to establish a connection to the client, it will send a
packet with the “RST ACK” back to the client, or an “ICMP Port Unreachable” packet.
Finally the client sends a packet back to the server with the ACK set, and the TCP

10

connection is established from the clients point of view. When the server receives the
ACK packet, it will also regards the TCP connection as established.

SYN
Client Server
SYN, ACK

ACK

time

Figure 2.2: The three-way handshake used to establish TCP connection. The arrow
illustrate TCP/IP packets.

When the connection is not needed anymore, it has to be closed. This is done using
a four-way handshake, where both host send two packets containing ACK and FIN. A
normal TCP connection will therefore always contain at least ACK, SYN, and FIN in
both directions. Other flags can occur, such as the URG and PSH, but we will not
examine them closer here.

Connectionless and connection oriented protocols will have different properties in
the logs. With an connection oriented protocol there will always be flows in both
direction between two hosts communicating; this does not have to be the case with a
connectionless protocol.

This summary of the protocols is very brief, but more information can be found
in the Request For Comments (RFCs), which are the technical notes describing the
Internet. RFC 793 might be of special interest, as it describes the TCP protocol.

2.2 Denial of Service

A denial of service (DoS) is an attack where a service is made unavailable to the users.
This can be done by exhaust the resources of the host running the service, or making
it unavailable by exploiting some vulnerability in the system.

The are many types of DoS attacks, which can be organized as shown in the tree in
figure 2.3.

Denial of Service
Software Exploit Flooding

Multi-source Single source

T

Zombies Reflectors

Figure 2.3: Classification of the Denial of Service attacks. [1]

DoS attacks based on software exploits use bugs in the victims software to disable
the service. This exploit cannot been seen from the TCP/IP datagram header unless

11

the bug is in the victims network or transport layer. It is more common that the bugs
are at higher levels than the network layer. It is hard to detect a DoS attack based
on software exploits from the flows, because they do not differ much or not at all from
normal flows.

Flooding is another way of launching a DoS attack. The idea is just to swamp
the victim with traffic, so that service provided by the victim is useless or degraded.
This attack can be used even if there is no known software exploits in the victim’s
system. Such an attack should be detectable in the NetFlow flows, because it should
have different characteristics than normal traffic. For example one could see an sudden
increase in the connections to the service.

The flooding attack can be divided into two classes: Single or multi- sourced. The
single source attack is the more simple of the two, it just consist of the a sending packets
directly to the victim. If the attacker has more resources than the victim, then such an
attack could be a success. The attacker can make a single sourced attack look like it
comes from many sources, by spoofing the source addresses.

Multi-sourced attacks consist of many machines making a coordinated attack on the
victim’s machines. A multi-sourced attack is commonly called Distributed Denial of
Service (DDoS) attack. To launch such an attack, the attacker must have control over
some other machines on the Internet (zombies) or make other machines send packets to
the victim in response to spoofed packets (reflectors).

The attacker can get zombies for example by using software exploits to get access
to the machines (a R2L attack), or by fooling the user of the machine somehow. In this
way an attacker can collect zombies on the net, and use them for coordinated attacks.

Reflectors are machines that respond to IP packets by sending a packet back to the
address written in the source field of the IP packet. If the attacker spoofs the packet
so, that the source IP is the address of the victim’s machine, then all the responses will
be sent to the victim. For example machines that respond to ICMP echo request with
ICMP echo replies can be used as reflectors[1].

The advantages for the attacker with distributed attacks are that they require less
bandwidth and that they are harder to trace back. Disadvantages are that he needs
control over more machines.

A sudden rise in the traffic to a host might occur for many other reasons than a
DoS attack e.g. many people could try to access the same web page at the same time,
a router could fail, or the access patterns could change. If a web page is mentioned in
a well-known media, it might look like a DoS attack. For example the interesting web
pages often get mentioned on forum called slashdot.org, but this forum is so popular,
that after a little while the mentioned web pages are inaccessible.

2.2.1 Examples of DOS attacks

Now we will look at some examples of how DOS attacks can be done. First we look
at attacks using the three-way handshake. Afterwards we will look at a DOS attack
which uses the UDP protocol.

The seemingly innocent process of establishing a TCP connection can be exploited.
The attacker can construct IP packets that look like TCP connection requests. Instead
of using the right source IP address (the attackers address) in the packet, the attacker
uses some other address (maybe randomly selected). When the server receives the

12

spoofed IP packet, it will think that it is a valid request, and will allocate resources to
handle it. This DOS attack is called the SYN flood. If the attacker sends enough packet
fast enough, the resources of the server will eventually run out, because it will allocate
resources for each request[15]. Figure 2.4 illustrates the SYN flood.

The SYN flood is a good example of a DoS attack that does not try to exhaust the
bandwidth of the victim; here it is the implementation of the TCP protocol on some

system that is exhausted.
SYN \

Client SN AGK—_ | Server
SYN

SYN, ACK

SYNy/

Figure 2.4: The three way handshake used for a reflection attack. The arrows illustrate
TCP/IP packets sent on the network.

SYN

time

The three way handshake in the TCP protocol can also be used for a reflection
attack as shown in figure 2.5. Now the server is not the victim, but it is used to reflect
the attack onto the victim. Instead of forging the IP packet with a randomly selected
source address, it could be forget with the victim’s IP address. Sending a large amount
of packets to many different machines on the Internet will result in many “SYN ACK”
or “RST ACK” packets being sent to the victim. If the attack is successful it should
exhaust the victims bandwidth. The idea behind using a reflection attack, is that it is
harder to trace back and protect against.

Server

Client

o |]

Victim

Figure 2.5: The reflection attack on a single victim using multiple servers. The arrows
illustrate TCP /TP packets sent on the network.

One of the problems associated with reflection attacks based upon the TCP proto-

cols, is that a good Internet connection is needed: For every SYN packet the attacker
sends, the victim needs to send a “RST ACK” packet, a ration 1:1. So the attacker

13

needs a Internet connection that has more bandwidth than the victim. To get around
this problem, the attacker needs reflection servers that respond with packet that are
considerable larger than the request packets. The TCP protocol is not a candidate, as
it requires the initial three way handshake, but with the UDP this is not necessary or
left to the higher levels.

Online game servers are one example of servers where the response request ratio is
high [16]. Here it is possible to send an UDP packet with commands such as “getstatus”
and “getinfo” to the server, and it will reply with a full set of information about the
server, map, players, etc. According to [16] the request packets are 56 or 58 bytes, and
the response is on average 500 bytes, which corresponds to an average gain of around 9.

Using games servers also makes it very hard to trace the attack back, because the
game servers do not keep logs of the requests.

There exists many other DoS attacks, and the three that we have mentioned here,
are just a small selection out of a much larger group. But they illustrate the essential
features.

2.2.2 Flow characteristics of a DOS attack

Some of the characteristics of a DOS attack can be seen from the router log. Common
characteristics are:
e Sudden rise in traffic.

e Traffic pattern of a server changes (e.g. server can not respond to all the request
it gets).

e Special flags combination in TCP header

2.3 Probes

The purpose of probes is to discover the available services and vulnerabilities on one or
more machines. In real life probes are often used gather information from hazardous
or difficult to reach places. On a network an attacker might use probes to gather
information about a network before attacking it. The hacker can use the information
obtained from a probe to identify the operating system and application running on
the machines, and exploit their weaknesses. A probe is often one of the first steps in
an attack, which has compromising the machine as a goal. Therefore it is especially
interesting to examine this kind of malicious traffic. Discovering probes therefore give
indication on what the attacker are interested in, and what hosts are likely to be exposed
to further attacks.

On a network a probe is normally called a scan, and they are grouped according the
way they are performed:

e Host scan: One or more ports are examined on a single host.

e Port scan: One or more ports are examined on more than one host.

There are many different definitions in the literature, but we will distinguish how a
scan is performed with these two.

14

If the scanned machine exists, then each examined port can have one of two out-
comes: Either the port is closed, or it is open. The flows between the two host will look
different for each case. So for each scan type we might expect at least two patterns of
traffic. If the scanned machine does not exist, then there will only be the flows from
the probing machine.

There are many types of probes, but the most commonly used are based upon the
TCP protocol, as it is connection oriented. There also exist connectionless probes, for
example using UDP and ICMP. Popular scanning programs are: Nmap, portsweep and
ipsweep. The TCP based scans can roughly be divided up into three main groups:

e Open scanning: Opens and closes a connection to the target port.
e Half-open scanning: Only opens the connection.

e Stealth scanning: Detects open ports without opening a connection.

We will look closer at scans from each group.

2.3.1 Open scanning

Open connection scans are done using a full three-way TCP/IP handshake. There
are severals types of scans which do this, but we will look at the TCP connect scan.

The TCP connect scan simply does a TCP connect to the ports of interest. This
process might result in two or more flows in the Netflow log, depending on the particular
service and the cache size, load, and setup of the router. If the probe detects an open
port, it will at least receive a “ACK SYN” from the victim, and probably also “PSH”
and “FIN”, but this is not for certain. It depends on the service running one the victim’s
port. The probing machine might also send a “RST” to the victim. If the probe on the
other hand detects a closed port, the victim replies with an “ACK RST”.

2.3.2 Half-open scanning

This scan is closely related to the Open scanning methods, as the name might
suggest, this scan does not complete the three-way TCP/IP handshake. We will look
at the SYN scan.

The SYN scan is related to the TCP connect scan. The only difference is that the
client does not send an “ACK” back to the server when it finds and open port. If a port
is closed it still receives “RST SYN” from the server, just like the TCP connect scan.
With the SYN scan only two flows are seen in the Netflow log for each port scanned.

2.3.3 Stealth scanning

Stealth scanning is broad term, but it is mostly associated with scans that avoid
detection in some way or the other. Avoiding detection is dependent on the current state
of technology, so the stealth scans today might not be the stealth scans of tomorrow.

Nmap can do three stealth scans: Stealth FIN, Xmas Tree and Null scan. These
scans all send packets with special flag combinations. Stealth FIN sends a packet with
the “FIN” flag set, Xmas Tree sets the “URG PSH FIN” flags high, and finally the
NULL scan sends a packet with no flags set.

15

The idea behind these scans are that closed ports are required by RFC 793 to reply
to these packets with “ACK RST”. So if a port does not reply, one can assume that it
is open. Machines running the Windows OS do not confirm with the RFC 793 at this
point, and will not reply to these packets.

The stealth scan are called “stealth” in the Nmap documentation. In the paper by
Raj Basu et al. “Detecting Low-Profile Probes and Novel Denial-of-Service Attacks”
[17] they define a stealthy probes as: Probes are considered stealthy if they issue ten
or fewer connections or packets or they wait longer than 59 seconds between successive
network transmissions. This definition of a stealthy probe is probably more realistic in
our case, because they illegal flag combination used by the scans Nmap calls stealthy
are detected easily, because they do not occur in normal traffic. When the Nmap
documentation refers to an probe as stealthy, they mean stealth with regard to the
firewall.

2.3.4 Flow characteristics of a scan

The flows characteristics will depend on the kind of port scan used, but there are
some common characteristics.

Here we summarize the general characteristics for scans:

e Flows differ for open and closed ports.

e Special flag combination.
e The “ACK RST” flag is often in the response if a port is closed.
e Some flows do not get a response (machine does not exist or a MS machine).

e Flows are small.

Special characteristics for a port scan are:

e Many flows from a single host to many hosts.
e Often the same ports are scanned each host.
Special characteristics for a host scan are:

e Many flows one host to another.

e Many different ports access.

2.4 Summary

In this chapter have defined the various attack types, and found out that the attacks
that we can find in a router log are Probes and Denial of service attacks. The detection
of the two other types of attacks, R2L and U2R, from the router logs is much more
uncertain. We have also had a brief look at TCP/IP protocol, so we can understand
what mecanisms the attacks use. Some common characteristics of each attack type has
been identified, so that we know what we should look for in the logs.

16

Chapter 3

User Specifications and Design

In this chapter we will look at the user specifications for the forensic tool suite and its
design. Some of the specifications are set by DKeCERT and some are set to the system
as a forensic tool. The design will try to fulfill the requirements as much as possible.

In this chapter we will first look at the requirements and then at the design. At the
end of the chapter we also briefly discuss an alternative design to the one used in this
thesis.

3.1 User Specifications from DKeCERT

Here we will look at the requirements set by DKeCERT . The requirements set by
DKeCERT are inspired by problems they have been faced in relation to router logs.
DKeCERT ’s requirements to the forensic tool suite are that it should able to:

e Analyze an incident: An incident might be reported and the investigator wants
to extract the traffic related to that incident.

¢ Find compromised machines: Identify machines that have been compromised
by a hacker or malicious software (worms, viruses, etc.).

e Identify malicious traffic: Isolate malicious traffic such as probes, denial of
service attacks, etc.

Another inevitable requirement is that the tool should be able to handle large
amounts of data in a timely manner. The log files can be several gigabytes, and the
investigator has a limited time to complete the investigation. Some other requirements
to the program, but not directly related to forensics, is that they should fit into the
UNIX and Linux environments.

To be able to fulfill these requirements the program must be able to easily manipulate
the log files, such as filtering and sorting the entries. For example one could filter a log,
so that only traffic related to a certain machine is left. The program should also be able
to classify the each entry to normal traffic or to some group of abnormal traffic.

3.2 Forensic requirements for the tools

There are some special requirements, which are set for forensics tools. The results of
a forensic tool suite could be used as digital evidence, or result in actions being taken,

17

which could be costly for a company. It is therefore important that the forensic tool
suite only helps the investigator analyze and interpret the logs in a correct manner.

In the article Defining Digital Forensic Examination and Analysis Tools Using Ab-
straction Layers by Brian Carrier[18] a set of requirements is given for forensics analysis
tools:

Usability: The program should solve the complexity problem, because data at its
lowest level is to difficult to interpret. This should be done by presenting the data in
a layer of abstraction and format that can help the investigator. The data should be
presented in a clear and accurate format, so that the investigator does not misinterpret
it.

Comprehensive: Both inculpatory and exculpatory evidence should be identified.
The investigator must have access to all output data at a given abstraction level.

Accuracy: The tools should ensure that the output data is accurate and the margin of
error should be presented to the investigator, so that it can be interpreted appropriately.

Deterministic: The tool should always produce the same output data, when pre-
sented with the same input data.

Verifiable: To ensure the accuracy of the tool, it should be possible to verify the
results. This could be done manually or by using another tool.

It is also important that the input data is sanity checked before it is analyzed. If there
are something wrong with the input data, then the investigator should be informed of
it. For example presenting the forensic tool suite with an unknown file format should
make it stop and return an error message to the investigator.

One of the goals in this thesis is to make programs that fulfill these requirements to
such an extent as possible.

3.3 Design/Solution

In this section we will look at a design that fulfills the user requirements and the forensic
requirements. The practical issues associated with the chosen design are also studied.

Figure 3.1 shows an overview of the design of the forensic tool suite. The main input
to the system is the log file itself; the log is feed to system on record basis, so that an
entry in the log is feed to the system one at a time.

The first block encountered by the entries is the filter, and it is here that the in-
vestigator can do some of the required log manipulation. The next block is the feature
extraction, which can shortly be explained as a transformation of each log entry into a
set of numbers, which can be used to describe the characteristics of the log entry. The
third block is the classifier, and its purpose is to take a set of numbers from the feature
extractor and classify it as a certain group of traffic. The last block in the system is
the post-processing, here the output from the classifier and the original log entries are
joined to give the final result.

18

Log data

Filter Feature ext. Classifier

TI P addresses

Filter description
Investigator inputs

Report gen.

¢ Records
I P addresses
Outputs for further investigations

Figure 3.1: The main structure of the forensic tool suite.

The filter block can be used to filter the entries in various ways, such as filter it after
start time-stamp, source and destination addresses and ports, and protocol number.
The investigator can also provide a list of IP addresses (in a file) instead of writing
them all manually. But the forensic tool suite has to be able to manipulate the in
others ways too, such as merging and cutting logs. We will look closer at this problem
later in this chapter.

The feature extraction process can explained as a process that takes the log entries
are transformed into a set of numbers that the classifier can use to classify each entry
with. The set of numbers produced by the feature extractor is called the feature values.
A single feature values is based upon some feature or characteristic of the entry in the
log file.

In this thesis an artificial neural network based classifier is used to recognize the
feature value patterns that are associated with the various traffic types. Using a neural
network has the advantage, that it can be trained to recognize new types of traffic,
without having to modify the system itself.

The output of the classification stage is combined with the original log file, so each
entry is assigned to a class. The combined information is post-processed into information
easily interpreted by the investigator. The post-processing stage should also be able to
extract the IP addresses that are part of an attack, so that they can be used in further
investigations. Post-processing could optionally also create an overview report to the
operator, with the attack name, category, start time, duration, and involved hosts.

The feature extractor and classification blocks in figure 3.1 could together be called
for the attack detector. They are responsible for identifying the malicious traffic in the
logs. The attack detector is special for our forensic tool suite, and this thesis will focus
mostly on it.

In the following sections we will look closer at the design of the filter, feature ex-
tractor, and classifier.

3.4 Log file manipulation

One of the more basic operations that the tool suite should be able to do, is to manip-
ulate the log data. For example one could be interested in only looking at the traffic to

19

one specific machine for a given time.
The basic operation the tool suite should be able to do are:

e Select a period out of a larger log file, given by a start and a stop time.
e Filter after fields given in the flows.

e Merge logs together.

These are basic operations, and many more could be added. But these where suffi-
cient to solve the problems encountered in this project.

We will now briefly look at how the filtering function is added to the tool suite. A
filter will be specified as a disjunction of sentences, where a sentence is a conjunction
of conditions, see equation 3.1.

filter =V A Cy; (3.1)

Where Cj; are conditions. Example conditions could be that the destination or
source IP address should have a certain value. So the filter specifies what should be
let through. Because the filter is so simple, it might be very cumbersome to do some
expressions. But it can be helped a little by adding an additional filter, just like the
one given by equation 3.1, but which just removes entries if true.

We could take an example where one or more hosts have been found to be port
scanned. Now it is interesting to see the other traffic that these machines have been
involved. One way to do this would be to give the programs a filter parameter, which
specify that the source or destination address should be a specified value. An example:

logconverter —f ip=80.121.12.12;ip=80.121.12.13 portscanlog.nf

Here the “;” is used for a disjunction, and “,” is used for conjunctions. If there are
more than a few IP addresses involved, this method of writing a filter might become
too time consuming and error prone. Instead is should be possible for the investigator
to extract the addresses to a file, and supply the filename to the program instead.

logconverter —f ip=ipaddressfile.txt,port=80 portscanlog.nf

Here we filter after traffic to and from port 80 in a list of IP addresses supplied by
the file “ipaddressfile.txt”.

3.5 Feature extraction

In this section we will look at how the features extractors will extract a set of feature
values for each entry in the log. We will also look at the data structures used to create
the feature extractors, and the complexity that they introduce to the system.

Assigning a log entry a set of feature values can be done by looking at the fields in
entry, and by looking at the entry’s relation to the other entries in the log.

Related entries in the log file can be assumed to be temporally close, and also
spatially close if the log is ordered after time. It therefore seems a good idea to use a
time based window to select the entries that the features are extracted from.

This principle is also used in IDS (Intrusion Detection System), for example in Lee
et al. [19] they use a 2 second long window. IDS work in real-time, and therefore they

20

IDS feature extraction
IDS window

time——

Forensic ex. window

classified entry ——

FE feature extraction ——

Figure 3.2: This figure illustrates the window often used in IDS systems, and the window
we will use in our forensic examination tool.

use a window that looks at the entries in the past, and make decisions based upon that.
The advantage of doing this is low latency.

In a forensic examination we do not only have to base our classification on the past,
but we can look into the future (by going forward in the log file). For example it would
be hard to classify a probe based on only the first flow related to it; but if we look
further in the log file before classifying it, it will become much easier. Figure 3.2 shows
both the IDS window and the window used for the forensic examination.

When working with Netflow logs the duration of the flow has to be taken into
consideration. The flow should be used for the feature extractions as long as some part
of it is inside the window.

The feature values for each flow are assigned to them when the are in the middle of
the window; but the flows have a duration, so they be in the middle of the window for
a period of time. A logical approach would be to assign the values then the middle of
the flow is in the middle of the window. But this might add unnecessary complexity to
the program, as the flows will be assigned values in a different order than they entered
the window. If the window is large compared to the duration of the flows, it will not
matter that much when the feature values are assigned on the flow. This is probably
the case for probing flow, as they are quite short, and this is the approach that we have
used. The same argument can also be used for removing flow from the window.

The logs needs to be sorted after the start time-stamp, so that a all the relevant log
entries are inside the window when a entry is assigned a set of values. This can be done
by having a sorting front end, in front of the feature extractors, that sorts the data.
The sorting can be done again by having a sliding window. The length of the sorting
window should be the same time it takes a flow to expire ! from the router. The flows
inside the sorting window are sorted by inserting them into a red-black tree which is
ordered after the start time-stamp. Almost the same approach is taken by Fullmer et
al. [11], where they use a sliding window with heap sort.

One of the requirements, was that the forensic tool suite should handle large log files.
Using the sliding window approach will help towards this goal, as the file is analyzed
from the start to the end in one go; this way utilizing the hard-drive and OS cache
optimally.

As we saw in the previous chapter, a NetFlow entry can be uniquely identified on

!The window is actually a little larger than the time it takes a flow to expire to allow for uncertainties
in the system.

21

the router by the tuple in eq. 1.1. But when a flow is exported, the tuple becomes
insufficient to identify the flow, because on router we only look at flows that are active.
When a flows is exported it belongs to a certain period in time. So an additional field
is needed in eq. 1.1 to identify exported flows. There are two choices: The start or end
time stamp of the flow. We will use the start time stamp, as it is more practical for our
application. So in the application a flow is uniquely identified by equation 3.2.

flOU) = (Startstampa S8T'Caddr, ST Cport, dstaddr dStporta Z.p]r)rota STC;f, tOS) (32)

This tuple in impractically large to be used as a unique identifier (key) in most data
structures. So in the application only a subset of the fields will be used, for example the
time stamp, destination address and port. This will reduce the memory consumption
and make lookups faster, but at the expense of precision

The data structure that has been chosen for handling the NetFlow records is a Red-
Black tree. It has been chosen because it has very predictable behavior and running
time. The complexity of the basic operations like deleting and inserting is O(lgn), where
n is the number of elements in the tree, which in our case is the number of entries inside
the sliding window. By using a red-black tree it is very easy to look up flows based their
key, and also to look up the corresponding reverse flow.

Ideally the log analyzer must be able to handle all kinds of log files. It should not
crash or change alarm rates, because an attacker has crafted a special log file, which the
analyzer cannot handle. But we have not investigated how this could be handle further.

3.6 Classifier

Now that we have the framework for the feature extractors, it is time to look at the
classifier, the last step in the attack detector.

There will be a classifier for each type of traffic, and the classifier will give a grade
to each flow, which says how likely it belongs to the traffic it is trained to detect, or
some other traffic. The higher the mark assigned to an entry, the likelier the classifier
finds that the entry belongs to a specific kind of traffic. If the mark is low, then it is
likely that it does not belong to that group.

One of the important features of the system is that it classifies each entry in the
log. This way the investigator can see exactly what entries triggered the alarm. It
is also the discovered log entries themselves that are the digital evidence. Another
possible way of classifying the traffic would be just to give an report that said that
one host had sent some malicious traffic to another. But then forensic tool suite would
not fulfill the forensic requirement that it should be comprehensive, because the step
between assigning a suspicion value to each entry and generating the report would not
be accessible to the investigator. A report cannot be considered evidence, it is just
information to help the investigator.

3.7 Fulfilled specifications and requirements

We will now briefly look at how this design fulfill the specifications set by DKeCERT
and the requirements set to forensic tools.

With this system most of the requirements set in [18] are satisfied to a certain extent.
The usability requirement is satisfied, because the task of identifying the entries in the

22

log files are done by the classifier, and post-processing can be used to give a easily
interpreted output. The comprehensive requirement is not wholly fulfilled, because the
system is not able to find exculpatory evidence, but the at least the investigator has
access to the lower levels of the system, so that a manual investigation can be carried
out. The inculpatory evidence is the records that have been classified as an attack
by the classifier; the report from the post-processing is not evidence in it self, just a
summary of the evidence. It is hard to assure Accuracy in this system, as we do not
know the transfer function within the classifier. Testing can be used to get a qualitative
measure of the performance. The system is deterministic as it always gives the same
result to the same input. And the system is verifiable too, because it is possible to go
through the log files manually and verify the classification of each entry.

3.8 An alternative feature extractor design

We will now briefly look at another alternative design for the attack detector, which
could be another approach to the problem or a complement to the solution already
developed.

The design that we have selected is based upon a sliding time based window, but
there are alternatives. Another approach be to store a constant number of entries for
each pair of hosts, which could be considered as a “constant number of entries” window.
A pair of hosts creating many flows would soon fill the window, and pairs that create a
few flows would not even fill the window. The flow in the middle of the window would
be classified when the window was full, based upon features extracted from the window
and other windows. This design would be good for slow probes, as slow probes would
be collected into a separate window. The disadvantage of this design would be that the
entries in the log file would be classified out of order, and the resulting classification
has to be reordered to match the original log file. Another disadvantage is that the
memory usage is not so predictable, as with the sliding time window. If there are many
addresses in the log, then the memory consumption would be high, because a window
has to be allocated for each pair of hosts. The memory consumption could even be so
high that the log analyzing machine would run of it, and thus failing to analyze the log.
An attacker could easily create many IP addresses in the log file by sending spoofed
packets through the router.

It was originally the plan that we would also implement this design, but differed to
much from the design based on the sliding time window, so it was dropped. But it is
an interesting design, which has other properties than the one used in this thesis.

3.9 Summary

We have now seen the specifications set by DKeCERT , and the requirements set to
forensic tools. The design given in this section should be able to fulfill most of the
requirements. The design has given us the framework for further development of the
forensic tool suite. In this thesis we will especially look at the attack detector, which
consists of the feature extractor and the classifier; both will be studied in detail in
chapter 5 and 6. We have seen a alternative design to the feature extractor, which is an
part of the attack detector. It would be interesting to investigate this design further,
but time did not allow it.

23

Chapter 4

Data Acquisition

Obtaining realistic data is an important part of the development of a attack detector.
It will be used for constructing the feature extractors, training the classifier, and to test
the whole system. Without realistic traffic, the attack detector would not work when
used in a real network environment. The whole system’s performance is dependent on
obtaining good data.

Another problem that we face with router logs, is that the methods used later in
this thesis, require the entries in the log to be labeled, which means that the there has
to be some accompanying information for each entry in the log, saying if it is an attack
or not.

In this chapter we will look at how realistic router data can be obtained, and how
it can be labeled, so that it can be used in the development of the attack detector.

4.1 Labeled traffic

The methods that we will use in this thesis, require the obtained logs to be labeled.
Labeled traffic is traffic that has been assigned to certain groups, for example normal,
Denial of Service or probe traffic; groups that we want the classifier to distinguish.
Labeling the traffic is not an easy task, especially when working with the large amounts
of data present in router logs.

A real logs is not labeled, so it is not known which kind of traffic the flows belongs
to. The log could be labeled by using an already existing attack detector, or by doing
a manual labeling. Both approaches have their drawbacks. It is not such a good idea
to use an already existing attack detector, because these are mostly rule based. The
final attack detector’s performance will also be worse or equal to the one used for the
labeling. The manual labeling is time consuming and error prone, but it is not based up
on simple rules, but on the operator’s understanding of the attacks. On the other hand
the manual labeling will result in an biased result, which could give the attack detector
better performance than it actually has. For example the operator might not want to
include flow with only the FIN flag set, because he thinks that it belongs to the Stealth
FIN scan, but for some reason might occur in ambient traffic. Software and hardware
do not always conform to standards, and therefore normal traffic could include traffic
which does not conform to the standards either.

We will divide the traffic up into two groups: Attack and ambient traffic. Ambient
traffic is all the traffic that is not the actual attack traffic. Ambient traffic could be

25

understood as an analogy to ambient sound, it is a background signal, that mixes with
the signal that we want to detect.

The traffic labeled as attack traffic will be the flows created by the attacker or
attackers. The response traffic from the network will not be labeled as attack traffic.
For example if we have a port scan, then all the port scan traffic should be labeled as
attacks. All other traffic should be labeled as ambient traffic, also the Denial of Service
traffic, because it is not the attack in question.

4.2 Ambient traffic

For this thesis ambient traffic is obtained from two sources: Ambient traffic from a
real routers log, and ambient traffic derived from network traffic provided by DARPA
(Defense Advanced Research Projects Agency). We will now look at why these are used,
and what implication they might introduce.

Realistic data can be obtained from routers in the real world. But there are privacy
concerns with this approach. There are laws governing this area, and the policy of the
ISP could also prohibit this. It is therefore very unlikely to find such traffic publicly
available. Because of the low accessibility to router logs, it is very fortunate that
DKeCERT have provided us with NetFlow based router logs obtained from their routers.
The traffic is collected from a router called Lyngby 2 over several days using the OSU
flow-tools[11]. But after the data collection we discovered, that this router was being
faced out. So the traffic on the router was reduced over the days. Even so we think
that the data collected on the first days is not to much affected by this '. It was not
possible to collect from other routers, because DKeCERT sent these to a special logging
program for storage.

Figure 4.1 shows some statistics derived from the data from the Lyngby 2 router.
There are a few well known ports in the top ranking list, but also some high valued
unknown port. Many different protocols are also present.

The approach to handle the data obtained from DKeCERT in this thesis is to
manually detect the attacks, and remove them, so that the final result is an ambient
only log. The manually selected log entries can be seen in table 4.2 and 4.3.

But there exists some traffic publicly available on the Internet, such as anonymized
traffic provided by NLANR [20], and synthesized traffic from the DARPA set [9]. The
traffic provided by NLANR (National Laboratory for Applied Network Research) is
mainly intended for research, and its main goal is to give a good representation of the
Internet traffic workload. The traffic is collected from high-performance IP networks and
anonymized. The traffic is not labeled, and therefore it will impose the same problems
as the traffic from DKeCERT ’s router.

Another source of network traffic is the DARPA Intrusion Detection Evaluation
set from 1999. We have already looked briefly at the data provided by DARPA in
the introduction in page 6. We can use the attack free traffic from the DARPA set
as ambient traffic for our system. The DARPA set does not contain any router logs,
it does however contain the dumped? traffic from inside and outside of the network.
The outside traffic could be aggregated to Netflow data, and in this way be used for
our purpose. But there are some problems associated with this approach. A router
between the inside and the outside would only log packets that it forwarded between

!The first day log data was collected was 27th October, 2004.
2Tepdump was used to obtain the dumps.

26

| Rank || Src. port Kb trf. || Dst. port Kb trf. || Prot flows |

01 00080 32989950 00119 326091220 || 006 7889324 (75.38%)
02 38843 31373742 00025 6750362 017 2274680 (21.73%)
03 38844 31083491 00000 6165324 001 245497 (2.35%)
04 38845 30987677 01080 4169471 050 19631 (0.19%)
05 38842 30751179 00080 3876497 002 17380 (0.17%)
06 38846 29959382 01500 2990496 103 12813 (0.12%)
07 59341 26963522 00020 1807811 047 5440 (0.05%)
08 59338 26774186 00022 1213458 089 1574 (0.02%)
09 59340 26678702 06916 764751

10 59339 26596015 63625 742443

11 59337 26034787 52748 738501

12 00119 7063945 00443 705390

13 40959 6278846 09875 672608

14 00000 6243637 01127 635006

15 04500 4260051 40260 589928

Table 4.1: Top statistics for a whole day derived from the Lyngby 2 log the 28/10-04.
The log file consists of 10.466.339 flows, and the total amount of routed data is 409.957
MB. DKeCERT has given permission to publicize these data.

| Rank || Src. port Kb trf. || Dst. port Kb trf. || Prot flows |
01 00119 194751 56970 67974 006 37456 (60.67%)
02 00080 148800 56816 63853 017 21321 (34.54%)
03 00110 15328 57132 62309 001 1728 (2.80%)
04 00020 9433 26030 47560 002 1232 (2.00%)
05 65531 9071 00080 24613
06 01392 8429 15239 6393
07 34791 8337 00119 5841
08 32912 7578 23645 3395
09 01025 7572 29804 2644
10 36616 6573 40230 2216

Table 4.2: Top statistics for manually selected entries from the Lyngby 2 router the
28/10-04, from 6:00 to 9:00. Selected entries consist of 61.529 flows and 460 MB of
routed traffic.

the two sides of the network, and we do not know the ingress or egress filter rules on the
router. Depending on the setup, the dumped traffic might also include traffic between
the machines on the outside of the network. Another problem is that Cisco’s NetFlow is
a proprietary format, and the source for the aggregation scheme is not publicly available.
It is therefore not possible to aggregate in precisely the same way a Cisco router would
do. The advantage of using the DARPA set is that attack free data is obtained, which
was not the case for the data from DKeCERT .

To get the aggregated logs from the DARPA data, softflowd [21] and OSU flow-
tools[11] were used. Softflowd is able to take a tcpdump file and aggregate it to NetFlow
data, which is sent to a NetFlow collector. Softflowd was used to aggregate the packet
headers to NetFlow datagrams, which where captured by flow-tools and stored to a
file. Softflowd is licensed under the BSD license, and it freely available on the net.
The timings used in the program were set so, that they should resemble the standard
settings used on a Cisco router. By using this program, the error mentioned earlier
is introduced, which is that it is not possible to check how well this aggregated data

27

| Rank || Src. port Kb trf. || Dst. port Kb trf. || Prot flows |

01 00119 249662 18811 89339 006 42401 (66.56%)
02 00080 118514 18968 80956 017 19665 (30.87%)
03 00443 84169 19129 78447 001 1499 (2.35%)
04 00020 11691 26030 47575 002 142 (0.22%)
05 65531 9071 00080 18367

06 01392 8430 00025 13853

07 34791 8337 00119 8031

08 01025 7587 34700 5162

09 32912 7576 00443 5046

10 36616 6574 39803 2811

Table 4.3: Top statistics for manually selected entries from the Lyngby 2 router the
30/10-04, from 20:00 to 23:00. Selected entries form 63.707 flows and 561 MB of routed
data.

correspond to the aggregated data produced by a real Cisco router. The setup used for
softflowd was a timeout of 15 seconds, a max lifetime of 30 minutes, and a cache size
with 8192 entries. These are common values.

Table 4.4 shows some statistics derived from the aggregated DARPA traffic. The
data is from a whole day, which is Monday from the third week of the DARPA set. It is
interesting to note that the ports that send most data, are well known ports and typical
for Unix based systems. Another interesting observation is that the TCP protocol
(protocol number 6) is totally dominating; it accounts for 99% percent of the flows.
The UDP (protocol 17) and ICMP (protocol 1) represent a marginal part of the flows.

| Rank || Src. port Kb trf. || Dst. port Kb trf. || Prot flows |

01 00080 179459 25126 26030 006 76266 (99.09%)
02 00023 30217 00023 20644 017 549 (0.71%)
03 00020 16464 00080 17388 001 150 (0.19%)
04 00022 2105 00025 6432

05 00025 1662 06549 4797

06 12408 860 00022 2617

07 10929 857 01141 2227

08 21588 856 03652 2216

09 21028 850 21343 2175

10 05560 725 18940 2169

Table 4.4: Some statistics derived from the aggregation of the outside traffic from the
DARPA evaluation set. The data is from a whole day, which is Monday in the third

week. The log file consists of 76.965 flows, and the total amount of routed data is 272
MBytes.

Comparing the statistics from the real router log and the one derived from the
DARPA set, one can see that they look quite different. There are not as many protocols
present in the DARPA set, and the ratio between the number of TCP and UDP flows
is very different between the two. In the real log about 21.73% of the traffic is UDP,
but only 0.71% in the DARPA set. These differences could indicate the DARPA set is
not as versatile as real router traffic.

By having traffic from two sources, DKeCERT and DARPA, the results obtained are
based on a better foundation. This is important, because both sets have their respective

28

strengths and weaknesses, as we have seen. For example ambient traffic the DARPA
set could include flag combination, which the operator would not include, because he
thought the flow were attacks.

4.3 Attack traffic

Obtaining good attack traffic is as important as obtaining good ambient traffic. The
attack detector’s development will be based upon the difference between the character-
istics of those two sets. In this section we will look closer at how we can obtain labeled
attack traffic. Obtaining attack traffic is not necessary as complex as obtaining attack
free traffic, but it is depends on the attack type.

A simple way of obtaining the traffic associated with a probe, is to let a machine
probe another machine, so that the traffic goes through a specific router. The router
logs can then be filtered after traffic between the two hosts. The traffic from the probing
machine to the victim machine is then labeled as a probe. It should be noted that it
is important that there is no other communication going on between the two machines,
other than the probe.

An attack type which is hard to generate is a Distributed Denial of Service attack.
Both because it requires many hosts to participate, and it could potentially disturb the
network. In such an case it is better to simulate the attack using a model, but it can
also have its drawbacks.

The traffic, labeled as a certain attack type, can be merged with an attack free log
to obtain a router log that can be used for developing an attack detector for that certain
type of attack.

The original plan was to obtain the flows associated with some denial of service
attacks, but this was not possible, as it would disrupt too much, and would therefore
require a separate isolated network. Instead some probes were selected. A small network
was located behind a router which was not being logged, and permission was obtained
to probe the network. The probes done where host scanning and port scanning. They
were done using Nmap. The scans were conducted in polite and normal speed. The
scans were conducted twice, to detect any variation, which did not seem to be present.
These ports were scanned: 21, 22, 25, 53, 17, 113, 105, 33, 129, 29, 1, 13, and 93. A total
of 13 ports. The scans used were Nmap’s TCP connect, SYN scan, Stealth FIN, and
Xmas Tree. The scans resulted in total of 104 flows labeled as probes from the scanning
machine to the victim. When scanning the ports politely it took around 5 seconds to
scan all the ports, at normal speed it took about 0.2 seconds. The duration between the
scan types is around 30 to 60 seconds (the duration when no scanning occurs). Only
port 21 turned out to be open.

The scans should ideally be done on a wide range of machines and operating systems,
and also hitting more open port, so that it would be harder to detect. But this was
not possible, as we had to select a network which would be willing to participate, and
which was on Forskningsnettet.

4.4 An alternative way to collect labeled traffic

In this section we will briefly look at an alternative way off collecting labeled traffic. It
requires good control of a large network, and access to the router logs, but it should
have potential.

29

A way to obtain attack free traffic, would be to have a list of “good” hosts. All
traffic between a pair of “good” hosts would be included into the attack free traffic
collection, the idea being that “good” host will not send malicious traffic. In the list
of “good” hosts there should be a good representation of all hosts on the network, e.g.
user machines, web servers, routers, and streaming media. The amount of traffic is not
so important, but it should include most types of traffic. “Good” hosts will have to be
both on the local networks and the Internet, so careful ingress and egress filtering must
be done, so an attacker can not pollute the attack free traffic, by sending packets with
a spoofed source address. Removing outliers for each address pair, should improve the
quality of the data. Outliers are values that are not consistent with most observations.
For example a computer used by students on an university might occasionally be used
for malicious activities, and the traffic created will not be consistent with normal traffic.
It is therefore important to collect mostly normal data, so that the abnormal can be
detected easily and removed.

The attack traffic still have to be generated manually or isolated in some other way.

4.5 Summary

We have looked at the importance of obtaining realistic logs for the development of the
system, and its performance in a real environment. We have also seen that it can be
difficult to label the data. Different methods exist to do the labeling of the data, but
the manual labeling has been selected for this project, as it can be done within the time
frame of the project, and it could yield potentially good results. Logs are obtained from
two source: A real log and from the DARPA evaluation set. It will be interesting to see
the differences between the two set in the development of the attack detector. We have
already seen that they differ considerably in top statistics.

30

Chapter 5

Feature Extractors

The main goal of this chapter is to develop some feature extractors based on the traffic
obtained in the previous chapter. Good feature extractors give values that can be used
to tell the normal and attack traffic apart. The attack traffic obtained in the previous
chapter were some host scans, so the feature extractors are developed to detect this
kind of attack traffic. But the methods used in this chapter are not limited to this type
of attack. The problems solved are general problems, associated with feature extraction
from router logs. So if attack traffic for a Denial of Service attack was obtained, then the
same methods could be used to generate some feature extractors for this attack. The
feature extractors developed in this chapter could be considered as a proof of concept.

Feature ranking will be used to estimate the rank of the features, and to select
the most important features. The values of the features will be modified with value
reduction, so that they can be used efficiently with a classifier.

The chapter is organized as follows: First we look at feature ranking and value
reduction, as they are the basic tools used to develop the feature extractors in the rest
of the chapter. Then the intrinsic features are examined, which are features that can
obtained directly by reading the fields of the entries. Finally some traffic features are
examined, which are features that look at the relation between the flows in the log. The
traffic features are mostly modified versions of the features used in the paper by Lee et
al.[19].

5.1 Feature ranking

Feature ranking is a very important part of the development and evaluation of the fea-
ture extractors. Here the worth of each feature is measured, and it can greatly improve
generalization and the speed of the classification, and also give a better understanding
of the problem at hand.

Feature ranking methods can roughly be divided into two groups: Feature ranking
using wrappers and feature ranking using heuristics.

Wrapper based feature ranking use the classifier itself to evaluate the usefulness of
a feature. The process consist of training the classifier with all possible combination of
feature inputs, and evaluating the output for each combination. No need to say that the
wrapper approach is very time consuming, and it does not scale well with the number
of features, or the size of the training set.

Heuristics try to evaluate the usefulness of each feature without training the classi-
fier, but based on the characteristics of training data.

31

Duch et al. have written a paper [22] on a comparison of heuristic feature ranking
methods. Duch et al. compare a few entropy based methods and a chi-sqaure based
statistical method, and their conclusion is that none of the methods that they have tested
emerges as a winner, but they found out that the classifications results were significantly
influenced by the ranking index. So basically any feature rankinging method from their
paper can be selected.

One of the problems with the heuristic methods presented in Duch et al., is that they
do not take into account the interaction between the features. The heuristic methods
can not discover that using two particular features together yield good result, and the
heuristic methods cannot discover if two features are correlated, and together they do
not provide more information that one of them.

We will use the entropy based ranking algorithm with the normalization given in
equation 5.1, as Duch et al. found it to give good classification accuracy with up to
16 features for a certain experiment based on real data [22, page 3]. If more than 16
features are used there is a classification accuracy drop of about 5 percentage points
from 96 percent, but the accuracy does also depend on the number of samples used.

Un(C.h) = (5.1)

C' is a set of classes, and f is a set of feature values. The output range of Uy (C, f)
is [0;1]. If Uy (C, f) is 1 then the class can be determined wholly by f, if Uy (C, f) is
0 then it does not say anything about the class. Ug(C, f), MI(C, f) and H(f) are
defined according to Shannon [23] as:

K

H(C) == p(Ci)lg, p(C;) (5.2)

i=1

H(f)==>_p(f =2)lgap(f =) (5.3)

K
i=1 x
MI(C, f) =—H(C, f)+ H(C) + H(f) (5.5)

Where K is the number of classes, which in our case is 2; one for ambient traffic
and one for the specific attack.

It is important to understand how the entropy ranking works both for using it and its
implementation. The entropy method looks at how a class in C' depends on a symbol
in f; it does not care about the value of the symbol, only its probability and joint
probability with symbols in C. For example we could have a feature that was an odd
number each time an entry belonged to the ambient class, and even number each time
it belonged to the attack class. It could rank potentially high, but it would depend on
how many symbols are present.

The number of features that this ranking method can be used on is depends on the
number of samples used. If too few samples are used, then the deviation of the ranking
value becomes to high, and the ranking becomes incorrect.

32

5.2 Value reduction

Many learning based algorithms require that the range of the inputs is bounded within
a certain range. This is also the case for the neural network based classifier that we will
be using. We will develop the feature extractors to use a output range [0;100]. This
range can then be scaled into the range used by the classifier.

The feature extractors do not necessarily produce values inside this range, so their
output values have to be transformed, and it is here that value reduction comes in. Value
reduction looks at the values of the features, and modifies them in various ways, so that
the final feature value lies within the given range. Value reduction should be done with
caution, because valuable information can be lost. But if the discarded information is
irrelevant, then there is also something to gained, e.g. faster training and better usage
of the range.

There are two kinds of fields in a NetFlow record: Fields that describe a quantity, and
fields that describe a set of symbols. Fields that describe a quantity are e.q. duration,
transferred octets, and packet count. Fields that describe a set of symbols, which do
not have any value relation to each other, are for example the TCP flags, port number,
and the TOS field. Presenting such a feature as a value to the classifier would introduce
to many discontinuities. These two kind of field cannot be value reduced in the same
way.

The range of the fields that describe a quantity are very large. For example the
transfered octets feature could easily be several MB; but in the case of a host scan, the
more interesting part of the scale is the lower part, because the flows are small. So here
the is a possibility to do some value reduction.

A very simple approach would be to cut of a part of the scale, by using equation
5.6.

. — x 3
Top () = { round (100 (1 mcumff)) ?f T < Teutof f (5.6)
0 if z > Leutof f

In equation 5.6, the x is the original feature value, x,,(z) is the value reduced feature
value, and Z¢ys0 75 is the cutoff value, which has be selected individually for each feature.
Eq. 5.6 cuts of the upper range of the feature output value, and scales the rest of the
range to lie in between 0 and 100. We will most be interested in doing this for the scans,
as the interesting part will be in the lower range of the fields. We also round the value
afterwards the range has be reduced. The reason for doing this, is that this is an easy
way of creating a fixed amount of bins (in this case 101 bins). Having a fixed number
of bins will make the entropy values assigned to each feature more comparable.

5.3 Intrinsic features

In this section the intrinsic features of a flow will be examined, but we will first look at
how flows that have been split can be grouped back together, and at how the reverse
flow of a flow can be found effectively. Then the intrinsic features of the forward and
reverse flows are ranked and value reduced.

The intrinsic features are the easiest to obtain; they are just read directly from the
log’s entries. Figure 5.1 shows the intrinsic features that we have selected for further
investigation.

33

‘ Feature name ‘ Description ‘

duration The duration of the flow.
protocol The protocol specified in the IP header.
port TCP port number.
octets The amount of octets transferred.
packets Number of packets in flow.
flags The TCP flags.
tos Type of Service field from IP header.

Table 5.1: Intrinsic features extracted directly from the Netflow entries.

Fields that have not been selected are the IP addresses, ingress and egress interfaces,
next hop router’s IP, autonomous system numbers, and source and destination address
prefix mask bits. Because these presumably will not be useful to detect scans, or at
least we would have to traffic from more routers, to see a trend.

The flags field is only valid when the protocol type is TCP, but the flags feature has
to be assigned a value in any case. Assigning zero value to the flags, is not good idea,
because it is highly suspicious combination. Instead a very innocent combination will
be used: “ACK PSH SYN FIN”, which will occur in most normal TCP connections.

The intrinsic features should be read directly from the entries, but we have modified
the intrinsic features a little to accommodate for the little subtlety in NetFlow, that flows
can be split into smaller flows, if they expire for some reason. This problem is handled
by having a data structure where flows are identified by (srcagdr, STCport, dStaddr, dStport)-
This data structure is handled as follows:

e When a flow is first seen, which means that it has entered the sliding window and
it does not have an entry in the data structure, then an entry will be made for it.

e If a flow is already in the data structure, the fields associated with the flow are
updated.

e When a flow leaves the the window, and there are no other flows in the window
with the same identification, then the entry for the flow is removed from the data
structure (and the associated fields are freed).

The fields associated with each entry in the data structure are:

e Duration
e Transferred octets
e Packet count

e Accumulative logical OR of flags

The associated fields are updated by accumulating the values seen in the flows
passing the window. This is the way that NetFlow would do it, and now the split flows
are effectively grouped together.

Normally the window size should not affect the intrinsic features, but when we group
the flows inside the window together, the window size will affect the result. A too small

34

window, and the flows will not be grouped together, and a too large window might
result in flows being grouped together, which should not be.

The intrinsic features of the flows in to opposite direction is also of interest, because
these are related to the flows. If we have a forward flow identified by eq. 5.7:

(srcaddr, sreport, dstaddr, dstport) (5.7)

Then the intrinsic features of the reverse flow flow eq. 5.8 are related to the forward
flow:

(dstaddr, dstport, srcaddr, srcport) (5.8)

Finding the reverse flow is just a simple lookup in the data structure that groups
forward flows together; and the grouping of split reverse flows is done for free. If a
reverse flow does not exist, then the features have to be assigned some values anyway.
The transferred octets are set to 20, packet count to zero, duration to zero, the protocol
to zero, and the flags all not set. These values have been selected, because they indicate
that the flow is a probe, which a missing reverse flow also does.

Before investigating the intrinsic features of the obtained log data, let us look at
what one might expect. The transOctets and duration of a flow could be an indicator
for probing attack; both are likely to have small values for flows associated with probing.
One should note that these feature could be also be small with flows not associated with
probing. The protocol is also an important feature for probing attacks, as they normally
keep to one protocol type. The port important as some ports might be more interesting
than others. We will look closer at how some port might be more interesting that others
later. Error indicating combinations in the flags, flag, is also an interesting feature for
probing attacks, as some probing methods generate flag errors.

Figure 5.1 shows the ranking values given to the intrinsic features using the manually
selected traffic from DKeCERT ’s router. There is quite some variation between the
two manually selected sets, especially with the flags.

Figure 5.2 shows the ranking of the intrinsic features when using the host scans and
some attack free traffic from the DARPA evaluation set. The used background traffic
is from the Mondays of week 1 and 3. There is a negligible difference in the ranking
values between the two days. The ranking value given to the flags in both directions is
several times higher than the value given to the other features.

Comparing the feature ranking from the two figures, 5.1 and 5.2, one can see that
the flags are very important in both directions. The protocol feature ranks very badly
with the DARPA set, but did quite well with the real traffic. The reason is the DARPA
set mostly TCP traffic, and therefore the protocol is almost always the same value,
giving the protocol a low entropy value. In the real traffic it does give information,
because we only look for TCP scans in this case, and the non-TCP protocols represent
a considerable amount of flows.

The features duration, transferred octets, and packets will be correlated. But we
cannot see how much. One would expect the transferred octets to tell more about the
scans, because its has value changes even if there is one packet in the flow. If there is
only one packet, then the duration is 0 seconds.

The initial feature ranking is not final ranking of the features, and we will not know
the true rank of a feature until we have done the value reduction.

35

Class—feature entropy

0.015 T T T
— © — Background 1
—%— - Background 2
=——#— Combined
|
I
0.01
=
e
I
o)
0.005 -

Feature number

Figure 5.1: Entropy ranking of unmodified intrinsic features using manually selected
background traffic from real log data. The probe used is the host scan, and the win-
dow size is 120 seconds. The numbers on the x-axis represent l:duration, 2:protocol,
3:port, 4:octets, b:packets, 6:flags, 7:tos, and reverse: 8:duration, 9:protocol, 10:port,
11:octets, 12:packets, 13:flags, 14:tos.

5.4 Value reduction of the intrinsic features

Now we will look at how the intrinsic features can be modified to suit our needs using
value reduction. We will first look at the features that describe a quantity and then
afterwards the features that describe a set of symbols. We therefor start by examining
the duration, packet count, and transferred octets of a flow, which are the features that
describe a quantity. Then we examine the port number, protocol, and flag features,
which are the features that describe a set of symbols. The TOS will not be examined,
as it ranked very low in both the data sets.

5.4.1 Duration

The duration of a flow scored badly in both sets. But it might be improved a little
by collecting the uninteresting data into a smaller part of the range.

Figure A.1 show the entropy value for different cutoffs. We can see that if we should
base our classifier on this feature alone, then we should set the cutoff value as low
as possible. One should remember that the feature ranking only looks at the relation
between the C' and the feature in question. It does not take the other features into
account. With only one feature, we would only have one dimension, but if we include
two feature, the classifier would have a two dimensional space to base its decision on.

36

Class—feature entropy

0.06 T T
1
— -O— - Monday week 1 *
— ¥ - — Monday week 3
0.05r .
=——#— Combined
0.04
=
@] L
= 0.03
=}
0.02
0.01r-
0

Feature number

Figure 5.2: Entropy ranking of unmodified intrinsic features using attack free data from
the DARPA evalution set. The probe used is the host scan. The numbers on the x-axis
represent l:duration, 2:protocol, 3:port, 4:octets, 5:packets, 6:flags, 7:tos, and reverse:
8:duration, 9:protocol, 10:port, 11:octets, 12:packets, 13:flags, 14:tos.

As an initial choice for the cutoff value x ¢ rr = 10ms is selected. This choice is
likely to close to zero, but we will examine the problem of choosing at too small value
in the testing section.

5.4.2 Packet count

The packet count and duration of the flow are probably correlated to a certain
degree.

The packet count has been reduced in the same way as the duration, and resulted
in a cutoff value of 4 packets, and the same for the reverse flow.

Figure A.2 shows the entropy ranking value of the packet number versus the cutoff
value.

5.4.3 Transferred octets

The number of transferred octets can vary much; it can range from 20 octets (only
the IP header), to several thousands of octets.

Intuitively we can say that scans are small flows, so it is the lower part of the range
that is interesting. So we can use equation 5.6 again. Figure A.3 shows the entropy
ranking value of the transferred octets versus the cutoff value.

The large the flow sizes get, the more uninteresting they become to the classifier, and
therefore it could be a good idea to compress the upper region the range. As the flows
sizes get large, the distance between the entries also grows with regard to the size itself.

37

This relation ship can be found by taking a large sample of normal network traffic, and
sort the entries with regard to the flow size; the flows are then divided equally between
a number of bins, so that the smallest flows are put into the first, then the next bin,
and so on. By looking at the border values between the bins, it is possible to see how
distance between the flows grows with the size of the flows. Figure 5.3 a). shows the
border values for a whole day of traffic. The flat area is due the fact that there are
many flows in this sample that have the size of 96 octets.

The growth can not exactly be said to be logarithmic, but it indicates that we
can compress the upper region of the scale. We will do this by taking the logarithmic
function of the transferred octets.

To make the transferred octets make use of the whole range [0; 100] we also subtract
the header size of the IP packet of 20 bytes, and an additional 20 bytes if it is a TCP
packet. The header sizes are subtracted before the logarithm is taken.

a) Flow divided into equally sized bins
10 T T T

0.35

b) Probability distribution for flow size

0.3 —

10

0.2 —

10"

Flow size [octets]
Propability (%)

N 0.1 —
10"

[e] 5 10 15 20 [e] 500 1000 1500
Border number Flow size (octets)

10"

Figure 5.3: a) Flows are sorted after size and divided equally between the bins. The
flow size at the border between the bins are shown on the vertical axis, and the bin
numbers on the horizontal axis. b) The probability distribution of the flow sizes up to
1000 octets. These graphs are generated from a whole days traffic sampled for each
100’th entry.

5.4.4 Protocol number

As we have mentioned earlier, it is not such an good idea to present the protocol
number to a classifier that is based upon a neural network, because the field does not
represent a value, but that the flow belongs to a certain group. For example the TCP
protocol (IP protocol number 6) will probably be used in many scans, but how will
this affect the classifiers perception of TCP neighbor protocols, protocol 5 and 77 To
avoid this problem, we just extract the essential information from the protocol number,
which could the connection orientation for the particular protocol. For example it
connectionless protocols could be given a feature value of 0 and connection oriented
could be given the value 100. The idea behind this being, that it is usual to have flows
in both direction for connection oriented protocol, but this is not always the case for
connectionless protocols.

38

Another possibility could be to introduce a feature for each symbol, which is the
protocol in this case. The feature could be 100 if the flows belongs to the specific
protocol, or 0 if it does not belong to it. There are many protocols, so one has to find
out which to include. A guess could be to include the TCP, UDP, and ICMP protocols,
which should cover most network based probes.

A third possibility would be to just filter all non TCP traffic away, as we are only
looking for TCP based scans. This would not affect the intrinsic features, but informa-
tion could be lost in the traffic features. For example if a hacker is doing a combined
UDP and TCP scan, important information is lost in the traffic relation between the
UDP and TCP flows.

5.4.5 Port number

It is probably not such a good idea to feed the port number directly to the neural
network, because then it will just be trained to those specific ports. Therefore it is
better to use a general feature of the port number. One possibility is to assign the well
known port ranges a number, see table 5.2.

Feature value ‘ TCP Port range ‘

0 Well known ports (0 to 1023)
50 The registered ports (1024 to 49151)
100 The dynamic and private ports (49152 to 65535)

Table 5.2: A simple feature based on the port number.

Another possibility would be to obtain a top ranking list of destination ports used
in scans. And assign a feature value based on the position of the port in the top ranking
list. The problem with this method is that the ranking list would have to be updated,
and that new port scans, for example a new virus, that is not on the list, would not
be assigned a correct feature value. But such a list would on the other hand make the
detector better, but our main purpose is to make a general scan detector, so we will
leave it out for now.

5.4.6 Flags

Feeding the flags directly to the classifier will not give any good result, as it has
26 = 64 discrete values for each direction, with interesting values distributed over the
whole range. So the flags have to be transformed too.

We can transform the flag value, so that it only has a high output when it is likely
that the flow is part of a probe, or one could say that the flag combination is suspicious.
This transformation will result in a much more specific (not general) feature extractor.
With a specific feature extractor the training will faster, and a much smaller neural
network is needed. We will study this closer in the testing chapter.

It is easy to find the suspicious flag combinations for the TCP SYN, Stealth FIN,
Xmas Tree and Null scans, because here the flags are well defined in both directions.
The flags for the TCP connect scan are not so clearly defined, as it stays open until
the server closes the connection. For example if you connect to a ssh server, then it
normally sends a version information and a password prompt. So the only flags that

39

we can be sure about are the SYN from the client and the SYN ACK from the server.
The connection could be closed with FIN or RST.

Based on the flags, it is not possible to make a feature that distinguishes TCP
connect scans from normal traffic, if it scans an open port; if it on the other hand scan
closed port, it will behave like a TCP SYN scan. The feature extractor given in table
5.3 will therefore also work for closed port scanned by TCP connect scan.

So we can have one feature extractor that goes high when it is very likely that the
flow is part of a scan (for the TCP SYN, Stealth FIN, Xmas Tree and Null scans), see
figure 5.3. The flags are given for the forward and the reverse flows. The flags forward
flags are given before the “/” and the flags of the reverse flow afterwards. Flags that
are not stated are ignored.

We will call the feature extractor given by table 5.3 for suspiciousflags.

‘ Probe type ‘ Port status ‘ Flags

TCP SYN scan | Closed -A-P-RS-F/A-PR-S-F

Open -A-PRS-F/A-P-RS-F

Stealth FIN | Closed -A-P-R-SF/A-PR-S-F
Open -U =A -P =R =S F / (no response)

Xmas Tree Closed U-AP-R-SF/A-PR-S-F
Open U —-A =P =R =S F / (no response)

Null scan Closed -U-A-P-R-S-F/A-PR-S-F
Open —U =A =P =R =S =F / (no response)

Table 5.3: Flag combinations for forward and backwards flows, which indicate that it is
likely that the forward flow is a probe. This table does not hold for machines that run
a Windows based OS, because it will not respond to Stealth FIN, Xmas Tree, or Null
Scan. So for a Windows machine we should not expect any response for those.

We call the feature that implements table 5.3 for suspiciousflags. Another possible
feature based upon the flags could be one that was high each time a flag combination
occurred that was not allowed by the RCF 793. But that would require us to go through
all the combinations.

The flags could also be split up into a feature for each flag, so instead of having a
feature, we would have six, one for each flag. We will also look at this option in the
testing section, and compare it to the suspiciousflags feature.

5.4.7 Summary of intrinsic feature

The interesting intrinsic feature have now been examined and values reduced. The
new entropy ranking is shown in figure 5.4 and 5.5. A logarithmic scale has been used,
as the suspiciousflags ranked at least a factor 10 higher than the others.

The combined flags are with no doubt the most important intrinsic feature. But we
should keep in mind that the suspiciousflags is a combination of two intrinsic features
that already ranked high.

The transferred octets is now ranking high in both the manually selected log and
DARPA log. Intuitively the transferred octets should also rank higher than the packet
count and the duration. One reason for the transferred octets ranked badly originally is

40

probably due to the large amount of different values present in the log, which unmodified
would result in many bins.

Two features that did not improve were the protocol and port number, but this was
expected.

We have seen that cutting off most of the higher range of intrinsic features values
gives high entropy values, but this does not necessarily mean it will yield good results
with the classifier. The classifier will look at several features at one, and not just one at
the time. Cutting too close to zero, could mean that the classifier looses information.
The selected cutoff values are 50 octets, 10 ms, 4 packets.

Class—feature entropy

T T T T T
— -O— - Host scan + bg. 1
— % - — Host scan + bg. 2
=———= Combined
107 F 1
S
I
)
107°F .
10°F .
| | 1 | | | 1 | | | 1

Feature number

Figure 5.4: Entropy ranking of value reduced features using manually selected data.
Numbers on x-axis correspond to 1:duration, 2:protocol, 3:port, 4:octets, 5:packets, and
reverse: G:duration, 7:protocol, 8:port, 9:octets, and at 10: suspiciousflags.

5.5 Traffic based features for a host scan

Now we will look at the traffic based features extractors. The traffic features look at a
flow’s relation to the other flows. Because traffic feature look at the relation between
the flows, it should give some additional information to the classifier, which the intrinsic
features cannot supply.

Lee et al. create some feature extractors for network traffic in their IDS system [19]
[8]. These feature cannot be directly used for Netflow logs, as IDS system normally have

41

Class—feature entropy
T

10" F — -O— - Monday week 1 ¥
— % - — Monday week 3

=——#— Combined /

Feature number

Figure 5.5: Entropy ranking of value reduced features using DARPA data. Numbers
on x-axis correspond to 1:duration, 2:protocol, 3:port, 4:octets, 5:packets, and reverse:
6:duration, 7:protocol, 8:port, 9:octets, and at 10: suspiciousflags.

access to all the net traffic, but where Netflow only gives access to aggregated infor-
mation about the traffic. For example the features extracted for each TCP connection
cannot be directly transferred to Netflow, because we cannot see the intermediate steps
in the traffic associated with a connection. We can however assume that the traffic
features of the flows are closely related to the traffic features of a connection. The main
difference between a connection and a flow, is that the flow is unidirectional, and can
be split up into smaller parts. A scan would create traffic, where many new connections
were made to a host inside a short time frame; in the same way many there would be
many new flows to the scanned host inside the same time frame.

Table 5.4 shows the traffic features. As with the intrinsic features, we will look at
flows in both direction when assigning a set of feature values to a flow, this will to a
certain extent make up for the unidirectionality of the flows.

One possibility was to use the methods devised by Lee et al. to create a new set of
features, but it is questionable how much we would gain from it. The features which
Lee et al. methods can create are limited to the algorithm described in their paper.

The implementation of the features in table 5.4 can be done easily again with the
data structure used previously, the red-black tree. For the thb_count, thb_rst_count,
and thb_rst_rate we need a data structure with entries identified only by (dstqq44). For
thb_same_srv_rate and thb_dif f _srv_rate the tuple (dstqgdr,dstport) is needed. And
in the same manner for the port based features, we find that two data structures are
needed, with entries identified by (dstport) and (dstqgar, dstport). Each time a new flow
enters the sliding window, the flow will be added to the data structure. When looking

42

‘ Feature name ‘ Description

The following features are for the same destination addr.:

thb_count Number of flows.
thb_rst_count Count of flows having “RST” flag set.
thb_rst_rate Percentage of flows having “RST” flag set.

thb_same_srv_rate | Percentage of flows using the same destination port.

thb_diff srv_rate | Percentage of flows using a different destination port.
The following features are all for the same destination port:

tpb_count The number of flow using the same destination port.
tpb_rst_rate Percentage of flows to the same destination port having
“RST” flag set.

tpb_same_host_rate | Percentage of flows to the same destination port, but on
different host.

Table 5.4: Traffic based features extracted from the Netflow log based upon a time
window or a number of flows window. All the features are to the destination host,
except the last one.

up the reverse flow up in the data structures, it can be found by changing the dst,qq;
with srcggar, and dstpore With srepor.

One of the differences between the features given in table 5.4 and the ones used by
Lee et al. is that the thb_rst_rate and tpb_rst_rate now only look at if the “RST” flags
set, and not at if the state of the TCP connection enters a state where the connection
is rejected. Another difference is that thb_rst_count is introduced. The reason for this
is the thb_rst_rate has the weakness that it becomes 100% if there is only one flow to
a host which contains a “RST”, which is indistinguishable from a host which receives
several. It is much likelier that the the host receiving many “RST” is part of a scan,
than the host receiving one, but this cannot be seen from the thb_rst_rate, but it can be
seen from the thb_rst_count. As the thb_rst_count and thb_rst_rate are two representation
of the same characteristic, it is evident that they will be correlated.

The size of the sliding window will affect the values of the traffic features, and the
size of the window will also affect a feature’s ability in distinguishing different types of
traffic. For example if we have a large window, say 600 seconds long, then it will not be
as effective at finding probes which only take 1 second to execute, because the rest of
the window will only add noise. On the other hand the window could also be too small,
so that there will not be a sufficient number of probe flows inside the window, to give
them their distinct traffic feature values.

When the window is twice as long as the time it takes to execute a probe, all the
flows will be inside the window when assigning the feature values to each flow. The
last part of probe will just have entered the window when the first part has reached the
middle, where it will be assigned a feature value. It is the same story when the last part
of the probe has reached the middle of the window, because then the first part of the
probe has not left the window yet. This way all the flows in the probe will be assigned
a feature value which is based on the whole probe. So nothing is gained by making the
window larger than twice the time it takes to execute the probe. This however does not
mean that probes longer than the half the window size will not be detected; for a probe
to be detected there should just be a sufficient number of flows inside the window. A
sufficient number is not easily defined, because it will depend on the ambient traffic and

43

the probe type. The important point is that if we know that we only want to detect a
probe up to a certain duration, we do not gain any additional information by making
the window length more than twice the duration of the probe.

Figure A and A show the distribution for the reverse thb_rst_count using manually
selected traffic and DARPA traffic. The feature seem to utilize the range good enough,
so we will not modify it.

x 107 Class—feature entropy
8 T T
— —O— — Background 1 ®
m — % - — Background 2 //\ 7
\
=—t——= Combined 4 \

U CH
SN

Feature number

Figure 5.6: Entropy ranking of unmodified features using attack free data from the
real router log, and merged with a host scan. The numbers on the x-axis repre-
sent 1:thb_count, 2:thb_rst_count, 3:thb_rst_rate, 4:thb_same _srv_rate, 5: tpb_srv_count,
6: tpb_rst_rate, 7: tpb_same_host _rate, and reverse: 8:thb_count, 9:thb_rst_count,
10:thb_rst_rate, 11:thb_same_srv_rate, 12: tpb_srv_count, 13: tpbrstrate, 14:
tpb_same_host_rate

Figure 5.6 shows the feature ranking for the manually selected ambient traffic. The
three highest ranking features are feature number 9, 10, and 13, which are respectively
thb_rst_rate, thb_rst_count, and tpb_rst_rate. It is not surprising that thb_rst_rate and
thb_rst_count both rank high, as they are highly correlated. The thb_rst_rate is probably
also correlated to thb_rst_rate to some degree. The difference in the entropy value is not
as large as we have seen with the value reduced intrinsic features. But there are some
traffic features that do particularly badly: The forward tpb_rst_rate, tpb_same_host_rate,
and the reverse tpb_same_host_rate.

Figure 5.7 shows the result of the ranking of the traffic features using ambient traffic
given by the DARPA set.There are some feature that do considerable better than the
others: 2, 3, 9, 10, and 13. It is actually all the features that look at the “RST” flag
except feature number 6 the tpb_rst_rate.

Comparing the results from figure 5.6 and 5.7 we can see that the entropy ranking

44

Class—feature entropy
0.14 T T *

— -O— - Monday week 1 |
012 * — % - — Monday week 3 I \ 4

I ——#— Combined

01t ’ , I

0.02

Feature number

Figure 5.7: Entropy ranking of unmodified features using attack free data from
the DARPA, and merged with a host scan. The numbers on the x-axis rep-
resent 1: thb_count, 2: thb_rst_.count, 3: thb_rstrate, 4: thb_same_srv_rate, 5:
tpb_count, 6: tpb_rst_rate, 7: tpb_same_host rate, and reverse: 8: thb_count, 9:
thb_rst_count, 10: thb_rst_rate, 11: thb_same_srv_rate, 12: tpb_count, 13: tpb_rst_ rate,
14: tpb_same_host_rate.

values given to the DARPA set are a factor 10 higher than the values given to the
manually selected traffic. This indicates that it is much easier for the traffic features to
distinguish between the ambient traffic and the host scan traffic in the DARPA based
log.

The rankings based on the manually selected log and the DARPA log agree on that
feature 9, 10, and 13 are important, but the ranking using the DARPA log wants to
give a considerable higher rank to feature 2 and 3, than the ranking using the manually
selected log.

5.6 Alternative Features

There are many others features that can be used, some of them will be mentioned here,
but they have not been implemented.

Initial contact: A feature that looks at what machine initialized the connection or
communication. This could be done by looking at the first packet flow between two
endpoints. This feature was not implemented, because some irregularities were found
with the start time stamp of the obtained scan traffic. The victim’s answer arrived
at the router before the probe was sent. The same irregularity was also present when

45

looking at the flows with the OSU flow-tools. The irregularities only existed in the logs
from the router used to collect the scanning traffic.

A hot indicator: A feature that increases if a host has already been involved in
probing before. I is probably more likely that a machine that already has been involved
in probing, that it will do it again (like an analogy to criminals).

Temporal features: A feature that looks at the durations between flows, e.g. a scan
often has a constant duration between scan flows that are sent out.

5.7 Summary

We now have developed and examined several feature extractors that can be used to
detect host scans. It will be interesting to see how the feature extractors will do in the
testing chapter; especially how the intrinsic and traffic features will support or reinforce
each other.

We have seen how the features which are related to the flags, except for a few, have
a tendency to rank highly. This is the same both for the manually selected traffic, and
the traffic derived from the DARPA evaluation set.

For the lower ranking features, there is not that much similarity between the man-
ually selected real traffic and the DARPA set. There are probably several reasons for
this: The DARPA set models normal traffic from an air force network. The DARPA
traffic is not real router traffic, but has been aggregated by software. The lower features
are less correlated with the attack classification, so we need more sample to see the
connection.

But we can conclude from the feature ranking that there is a difference between
the manually selected traffic and the traffic derived from the DARPA set. This also
corresponds well to the top statistics given in chapter 4. The feature ranking values
also indicate that it is easier to distinguish ambient and attack traffic in the DARPA
set.

46

Chapter 6

Classification

Classification of log entries is the process of assigning each entry to one or more
groups/categories of traffic; the classification is done by recognizing patterns in the
set of features values assigned to an entry. This chapter gives a brief description of the
classifier used for the testing in the next chapter. We will also briefly look at why we
have selected the back-propagation neural network for the classifier.

6.1 Classifier types

There a several ways that the classification can be done, e.g. it can be done with Markov
models, neural networks, or genetic algorithms, just to name a few.
A classifier based upon a learning machines normally has two phases:

e The learning phase where the unknown dependencies are found for the system for
a given set of samples.

e The prediction phase where the output values are estimated from given input
values.

Markov models are normally trained with normal data, which in our case is log files
without any attacks. We have seen that it can be a difficult task to obtain such files.
Classifiers based on the Markov model will find the entries that are abnormal (anomaly
detection). So they will not only find attacks, but also report entries that are changes in
trend of the traffic. So if there is a trend change in the traffic, then the Markov model
has to be retrained.

With neural networks, NN, it is possible to train it to detect a specific attack traffic
type - we could have a NN that detects DoS attacks, another that detects port scans,
and so on. If network trends change, it does not necessarily mean that the NN has to
be retrained.

The classic NN is the one based on back-propagation learning. It is quite slow at
learning, but is fast at making decisions. The slow learning does not concern us much,
because this is process that is done offline, when then investigator has isolated an attack.
A properly trained back-propagation NN can give reasonable answers to inputs it has
not seen before, or it is said to be good at generalizing. With this property the NN can
be trained with an representative set of inputs and outputs, which is smaller than the
set needed by classifiers, which are not good a generalizing.

47

The size of a neural network will affect its ability to generalize. If a neural network is
large compared to the problem, it can create more complex functions, and can therefore
overfit a simple problem. If it is too small compared to the problem, it will not have
the power to fit the data. So the size of the back-propagation NN has to be selected
carefully, which can be considered a drawback of using the NN. There exist NN that grow
while training, the FANNC described in [24] has this property. Using such a classifier
would remove the burden of deciding upon the size of the NN from the operator. A
drawback with FANNC is that it does not generalize as well as the back-propagation
NN, which is an argument for not using FANNC.

In this project the back-propagation NN is selected to be used for classification.
This classifier has both drawbacks and advantages. A reason for selecting the back-
propagation NN is that there is source code readily available on the Internet. If one
of the more exotic classifiers was selected, then we would have to implement it; which
would be a time consuming task, and one which is not the core topic of this thesis.

6.2 The back-propagation classifier

This section briefly describes how an back-propagation NN works, so that we can inter-
pret the results in the testing chapter. The internal settings used for the NN are given
in the end of this section.

Figure 6.1 shows the structure of a feed-forward NN. It is called feed-forward because
the input only propagates from the input layer to the output layer.

Input layer Hidden layer Output layer

()

Figure 6.1: A set of neurons connected in a feed-forward neural network.

The first layer from the left is called the input layer, and the last layer is called the
output layer. The layers in between the input and output layers are called the hidden
layers.

The idea is that we should present the inputs with the feature values, and the neural
network should give a result, so that the entry can be classified as ambient traffic or
attack traffic. On figure 6.1 there is only one hidden layer, but there can be more.

The circles in figure 6.1 symbolize neurons. Figure 6.2 shows the structure of a
neuron. The inputs to the neuron are weighted by individual weights for each input.
The weighted inputs are summed together, and used as input to a limiter function. A
limiter function is a non-linear function, which output is between 0 and 1. The output

48

from the limiter, is the output of the neuron, which can be passed to other neurons, or
used as output of the NN.

X + y

Figure 6.2: The structure of a single neuron.

The output of a neuron, y(x), is given by equation 6.1.

N—-1
y(z) =g <Z wm) (6.1)
=0

Where N is number of inputs to the neuron, z; is the input value for input ¢, w;
the weight assigned to the 7’th input. The function g is the activation function, and the
output of the neuron is y, which can be feed to other neurons or used as the output of
the NN.

A commonly used activation function is the sigmoid function given in equation 6.2.

1

= — 2
1+e 2 (6.2)

g(z)

We will use the sigmoid activation function for all the neurons; it gives outputs in
the range [0; 1]. This is especially useful for the output neuron, as we will assign the to
extremes as clear indications of a certain traffic type. Zero will be assigned to ambient
traffic, and 1 to attack traffic.

The prediction running-time of a log entry is O(1), because we do a constant number
of calculation per prediction. The number of calculation depends on the number of
neurons in the NN, and not on the pattern presented. O(1) is good, because it is less
complex than the feature extractors, which have O(lgon) running-time for each entry,
where n is the number of elements in the sliding window.

Now we have the neural network, but the weights have not been assigned any values
yet. Assigning values to the weights is handled by the learning process. The learning
process the consists of presenting the NN with an input, and calculating the output.
The output is then compared with the correct result, and the error is used to correct
the weights. The mean square error is often used as a measurement for the error.

A commonly used learning algorithm is the back-propagation, which is the one we
will use. We will not investigate how it works any further. But we should just mention,
that epochs can roughly be said to be the number of times that the back-propagations
algorithm modifies the weights of the neural network. We will use the term epochs in
the testing section.

Implementing a back-propagation NN would be outside the frame of this thesis, but
there are many freely available on the Internet. We have selected one, FANN [25], which
seems to be quite popular and stable .

49

This brief look at the back-propagation NN has left many parts of the system out,
to keep things simple, but it should give the reader a feeling of how the system work in
general.

6.3 Summary

We have seen that there are many ways the classifier can be implemented. But the
back-propagation NN was selected, because of its ability to generalize, and that it is a
well known system. We have now gained a rough understanding of how the NN classifier
works, which will help us to understand the results in the next chapter. The prediction
running-time for a NN based classifier is faster than the feature extractors, so it does
not impose a problem.

50

Chapter 7

Testing

In this chapter the feature extractors and the classifier will be tested. The purpose of
testing the system, is to see how the effective the ranking of the features has been, and
to see how the back-propagation classifier will work with the features.

The main objectives of the tests are:

e To examine how effective the intrinsic and traffic features are alone.
e Examine the effect of combining the intrinsic and traffic features.

e To see how the manually selected set and DARPA set differ.

To make things easier, we will call the ambient traffic from Monday week 1 from the
DARPA set for DARPA1, and the ambient traffic from Monday week 3 for DARPA2.
The same goes for the manually selected traffic, which we will call for MANUAL1 and
MANUAL2.

For all the following tests we have used the standard setup of the NN classifier, and
a window size of 120 seconds. The training and testing sets are ambient traffic merged
with the host scan used for the feature extractor development.

But before we go on to the tests, we have to define how we measure the performance
of the system.

7.1 Performance

When evaluating the flow entry classifier a performance measurement is needed.
There are four possible outcomes when comparing the correct classification of an
entry and the result from the classifier:

e True positive: Yeor(n) = Yres(n) =1
e True negative: Yeor(n) = Yres(n) =0
e False positive: yeor(n) = 0 A yres(n) =1
e False negative: Yeor(n) =1 A ypes(n) =0

Where n is the entry number, y,.s(n) is the output of the classifier, yeo-(n) is the
correct classification. The value 1 indicates that the entry is part of an attack, and the
value 0 that it is not.

51

The number of correct answers in a log, L, consisting of N entries is therefore:

COT(L) _ Nz_:l{ 1 for ycor(n) = yres(n) } (71)

0 for otherwise
n=0
Which can be used to express the percentage of correct answers, corg:

cor(L)
N

cory (L) = (7.2)

The cory(L) cannot be used by itself as an measurement of performance of the
classifier, one also has to know something about the data used for the test. The ratio
between the number of attack and normal entries has something to say, and the difficulty
of detecting the attack does also have a role. For example it would not be hard get a
good corg (L) value for a large log consisting mostly of normal traffic.

According to [9] the best measure for the performance of the detection system is the
true positive rate and the false alarm rate together. They also state that a false alarm
rate over 100 a day make a IDS unusable, because it will require to much manual labour.
It is questionable if the same goes for our forensic tool suite, as it tries to classify each
entry in the log, and not only to detect the attack, as an IDS would.

The attack traffic used is the host scans we have been using up until now. Eache
host scan contains 104 flows classified as attacks. We will report the performance as the
number of false positives (fp) and false negatives (fn).

7.2 The intrinsic features alone

Now that we have clear definition of the performance of the system, we can continue by
looking at the intrinsic features alone. First we will look at the unmodified flags from
the flows in both direction. Afterward the suspiciousflags feature is examined.

7.2.1 The flags feature alone with DARPA

The flag field ranked very high using the manually selected data set and the DARPA
set. It will be interesting to see how this feature does alone.
Test setup: All the TCP flags in both directions are extracted, and presented to the
classifier as a feature value for each flag. If a flag is set, the feature for that flag has a
value of 100, and if it is not set, then the feature has the value 0. The NN is therefore
presented with 12 inputs. The NN has been set to have 100 neurons in the first hidden
layer, and 20 neurons in the second hidden layer. The training set used was DARPA1,
and the testing set was DARPA2.

Results: After 10.000 epochs, the training set had fp = 0, fn = 76, and cor = 85.112.
The testing set had fp = 0, fn = 77, and cor = 77.096. The bad results are due to
the fact, that the NN has insufficient information to successfully classify the entries.
We will look closer at why, when looking at the suspiciousflags feature in the next test,
because it is easier to explain with only one input.

52

7.2.2 Using the suspiciousflags feature alone with DARPA

In the previous test we saw that it was possible for the classifier to distinguish some of
the attack traffic from the ambient traffic only by looking at the flags in both directions.
Now we will examine how the suspiciousflags will do by itself. It is an overkill to use
a NN classifier in this case, as we only have one input, and a simple threshold would
suffice. But we will use the NN classifier anyway, to see how it works with this simple
problem.

Test setup: Only the suspiciousflags feature is extracted and presented to the clas-
sifier. The DARPAL1 is used for training and DARPA2 is used for testing. A NN with
one hidden layer with one neuron is used.

Results: The classifier does not detect any of the probe flows. After a closer exami-
nation of the classifier output, it can be seen that the scans are assigned a value of 0.06.
This is an interesting phenomenon, because the classifier does not have enough informa-
tion in the one feature. The feature is 100 when a flow belongs in the attack category,
but it is also 100 when it belongs in the ambient category. After a closer examination of
the classifier’s output values, it was found that it were the flows in the traffic that had
a forward “SYN” flow, and backward “RST SYN”, which the feature assigned a value
of 100. In the training phase, the classifier tries to minimize the mean square error, and
therefore its output will be somewhere in between 0 and 1 for attacks, depending on the
ratio between the number of attacks and ambient flows getting assigned 100 from the
feature extractor. When the classifier does not have enough information to learn from,
then the output values for the attack traffic becomes lower (if there is more ambient
traffic than attack traffic). The same thing happened when presenting the flags to the
classifier, the only difference being that there were more inputs. One possible solution
would be to remove the pattern given by equation 7.3 from the feature, so that it only
would detect the stealthy scans.

~A -P-RS-F/A-PR -S-F (7.3)

But there are other better solution, as we will see in the rest of this chapter.

7.2.3 DARPA set with suspiciousflags and transferred octets

We will now use the value reduced transferred octests from the forward flow and
suspiciousflags together. The reason for including the transferred octets in the forward
direction, is that they ranked second highest of the value reduced features using DARPA
traffic, see figure 5.5. If we did not use value reduction, then the packet count would
be the next feature that we included, see figure 5.2. At the end of the test we will try
to replace the forward transferred octets with the forward packet count, and see how it
does. We will also test the transferred octets with two different cutoff values to see if
there is any difference.

Setup: The network has 5 neurons in the first hidden layer. First a cutoff = 50 bytes
used, and then cutoff = 500 bytes.

Results: After 110 epochs there were fp = 0 and fn = 2 for the training set, and
fp=0and fn = 2 for the testing set. After that the results did not improve further.

23

The two scan flows that were not detected, were both a TCP connect scans finding an
open port.

The results from using cutoff = 500 bytes are the same, but it took 230 epochs to
obtain the same result.

The results from these two simple test are interesting. The results are the same
using 50 and 500 as cutoff values, but the only thing that differs is the training time.
So in this case the classifier has not been able to use the additional range, and it has
only made the problem more complex.

Estimating from our initial feature ranking in figure 5.2 we would not think that
there was any information in the other features. After the flags it would be the packet
count that ranked highest, but we have found that the transferred octets have a value
reduced rank that is around three times higher than the packet count, see figure 5.5.

We have done the exactly the same test, but with only the transferred octets features
replaced with the packet count. After 2000 epochs the results were fp = 0 and fn = 104.
The reason was the NN classifier did not have enough information to distinguish the
attacks from the ambient traffic. So we can conclude that the value reduced feature
ranking is correct in this case.

7.2.4 DARPA set with flags and transferred octets

As we are able to find many of the scan flows with the suspicousflags and transferred
octets, it would be interesting to see if this is possible with the flags divided into indi-
vidual feature values, as we have done previously. One could also suspect the “URG”
flags for not being important in detecting a scan, so we will run a test without them to
see what happens. After the test is done with the “URG” removed, we will also change
the cutoff of the octets from 50 to 500 bytes, and run the test again to see if there is a
difference.

Setup: A NN with 50 neurons in the first hidden layer. First with “URG” flags,
then without them. A final test is done with the “URG” removed, and the octet cutoff
increased to 500 bytes.

Results: With the “URG” flags: After 440 epochs the result was fp =0 and fn =2
for the training set, and fp = 0 and fn = 3 for the testing set.After 1910 epochs it was
fp =0 and 0 for the training set, and fp =0 and fn = 1 for the testing set.

Without the “URG” flags: The results after 360 epochs were fp = 0 and fn = 2 for
the training set, and fp = 0 and fn = 3 for the testing set. After 1400 epochs it was
fp =0 and 0 for the training set, and fp =0 and fn = 1 for the testing set.

From this test we can conclude, that one can use the flags without to much modi-
fication, and that the “URG” flag is not important for this case. Without the “URG”
flags, the training needed is about 80% of the epochs that were required with them
present, and the same results were obtained.

The result is better than the one obtained with suspiciousflags in the previous test.
The reason is that by presenting the classifier with the flags, it can distinguish between
the scan types, and therefore also give different weights for each to the transferred octets.
With suspiciousflags the classifier only knows that the flag combination is suspicious,
but not how it is suspicious.

54

The results of moving the octet cutoff up to 500 almost the same. After 1280 epochs
the result is fp = 0 and 0 for the training set, and fp = 0 and fn = 1 for the testing
set.

7.2.5 Intrinsic features alone with real traffic

By comparing the feature ranking values given to the feature for real and DARPA
traffic, we can clearly see that there is much harder to detect a scan based only on the
intrinsic features. But we will give it a try, and use three highest ranking feature for
the real traffic. The suspiciousflags, forward octets, and reverse octets.

Setup: A NN with 10 neurons in the first hidden layer.

Results: After 100 epochs the result was fp = 0 and fn = 28 for both the real sets,
and did not improve any further.

This can be compared to the result fp = 0 and fn = 2 using DARPA traffic, and
only with the suspiciousflags and forward octets features.

7.2.6 Summary

We have seen what happens to the NN based classifier’s results when there is not
enough information to distinguish the traffic types. We have seen how important the
value reduction is to finding the real rank of features, and that it can be used to speed
up the learning process of the NN based classifier. We have also seen that it is easier
to detect attacks in the DARPA set.

7.3 The traffic features alone
In this section we will look at how the traffic features can be used alone to detect scans.

We will try to use the thb_rst_count alone to detect host scans in both manually selected
real traffic and DARPA traffic.

Setup: A NN with 5 neurons in the first hidden layer. Manually selected traffic 1 for
training, and 2 for testing.

Results: After 10.000 nothing was detected, fp = 0 and fn = 104 for both the
training and testing set.

Setup: A NN with 5 neurons in the first hidden layer. DARPA traffic 1 for training,
and 2 for testing.

95

Results: After 10 epochs all scan flows were detected; the result was fp = 0 and
fn =0 for both the training and testing set. This corresponds well with figure A.

Again we can see that it is easy to detect the scans in the DARPA set, but hard in
the real traffic.

7.4 'Traffic and intrinsic features combined

In this section we will look at how the traffic and intrinsic features can be combined to
increase the performance of the system. We have already had good success detecting
the probes in the DARPA set, so we will only focus on the manually selected traffic.

7.4.1 Using suspiciousflags and thb_rst_count

Now the two best features from the intrinsic and traffic features, suspiciousflags and
thb_rst_count, will be tested together.

Setup: A NN with 10 neurons in the first hidden layer. Manually selected traffic 1 for
training, and 2 for testing. The training set and the testing set are swapped afterwards,
for a second test.

Results: After 2500 the result was fp = 1 and fn = 2 for the training set, and fp =0
and fn = 25 for the testing set. The results did not improve further.

When swapping the training and testing set, the results were quite different. Only
after 20 epochs the results were fp = 0 and fn = 2 for the training set, and fp = 3 and
fn = 14 for the testing set. Afterwards it does not improve any further.

The reason for gettig good results with the training set, and bad results with the
testing set, is because both sets contain traffic that is not present in the other. Including
more feature does not solve the problem, and the only solution is to get two larger sets,
which contain more versatile representation of ambient traffic.

7.5 Test summary

We have seen that it can speed up the classifiers learning speed, by making specialized
features, such as the suspicousflags feature. In this case the training epochs required
were about % of the require using the flags themselves as features. But there were some
drawbacks discovered when using the more specific features, such as the classifier not
knowing what kind of suspicious flags they were. But the suspicousflags have not been
useless in the development of the features extractors, without them we would not know
the value of the ranking of using the flags in both directions.

56

Chapter 8

Conclusion

In this thesis we have developed a forensic tool suite for analyzing Netflow based router
logs. Specialized feature extractors were developed for detecting host scans, but it is
clear that the process used to create the feature extractors could be used to create feature
extractors for other attacks. The back-propagation neural network based classifier was
used successfully to distinguish the ambient traffic and the attacks based on the feature
extracted.

Many problems associated with Netflow based logs have been solved. A simple
method was developed for grouping associated flows together, and to find their corre-
sponding reverse flows. We have also seen that the flag field in the Netflow record is
very valuable for detecting scans, even if it is handled quite crudely by the Netflow
aggregation scheme.

Using a red-black tree as a data structure has been largely successful - it provided fast
lookup of both forward and backward flows. Using various fields from the identification
of a flow as the key in the tree, meant that we could developed many different features.

One of the main problems with this project is that there is no way of producing
a large set of labeled traffic. We have only used three hours of selected traffic from
a real log of one router, which cannot be representative enough to describe all the
ambient traffic on routers. This means that it is doubtful if the attack detector will
work as expected when used on router traffic obtained from other sources. It is therefore
necessary to develop a method to gather much more labeled router log data. One method
could be the one described in chapter 4.4 on page 27.

So even if we have had access to a real router log, we have not been able to utilize it
fully in the development of the system, because there was no efficient way to label the
traffic. This does however not mean that we did not gain anything from having access to
a real router log. We discovered that there is a huge difference between the traffic on the
router and the outside network in the DARPA evaluation set. The DARPA evaluation
set does not model real router traffic very well; the statistical differences are quite large,
and the scans are much easier to detect in the DARPA traffic. It was possible to detect
all the scans in the DARPA traffic just by using the intrinsic features, which is not a
realistic scenario. So we have found out that it is not possible to use the DARPA set
for developing a good set of feature extractor or use it for training a classifier, which
should be used on a real router. The DARPA set is still the only publicly available test
bench for IDS, and it can still be used for comparing the performance of IDS. But the
performance measured, does not translate into performance in real traffic.

o7

8.1 Future work

From this thesis one might get the impression that there is much more work that can
be done to improve the attack detector, which is true.

In this thesis we have been looking at feature extractors for host scans, but for
other types of attack traffic, there will be other features which are better. Finding
them can be a difficult task, and we have seen that Lee et al. [19] have tried to solve
the problem by developing an automatic way of creating feature extractors. Another
alternative to automatic feature creation, would be to have an large amount of features,
and then select some of the best ones using ranking. A way to create a large number of
features, would be to have an publicly open database, were people could submit features
that they have created. For such an system to work, a simple language for describing
feature extractors based on network traffic would be needed. Developing a language for
describing features based on network traffic could be some of the future work in this
area.

The feature ranking method used in this thesis is quite common, and it has some
disadvantages. It could be improved by developing a hybrid between the entropy based
ranking method and the wrapper approach, so that features that are very correlated
would not both be included in the final feature set.

Other important future work consists of developing a robust method to create ambi-
ent traffic, as we have mentioned earlier, so that large amounts of representative traffic
could be created for developing and testing of the attack detector. This would not
only benefit our project, but would also benefit most other attack detectors based upon
network traffic.

If all these problems were solved, then the attack detector would become an effective
tool for analyzing traffic.

58

Bibliography

1]

[10]

[11]

[12]

A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for classifying
denial of service attacks,” in Proceedings of ACM SIGCOMM, 2003.

Forskningsnettet, “Forskningsnettet offical web page, last modified: 10 dec 2004.”
http://www.forskningsnettet.dk/.

R. Sommer and A. Feldmann, “Netflow: Information loss or win?,” in Proceedings
of ACM SIGCOMM Internet Measurement Workshop (IMW) 2002, ACM Press,
2002.

Cisco, “Cisco ios netflow technology data sheet.” http://www.cisco.com/warp/
public/cc/pd/iosw/prodlit/iosnf_ds.htm.

Cisco, “White paper: Netflow services and applications, last modified: Jul 15
2002.” http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/
napps_wp.h/tn.

IETF, “Ip flow information export (ipfix), last modified: 13 sep 2004.” http:
//www.ietf.org/html.charters/ipfix-charter.html.

W. Lee and S. J. Stolfo, “A framework for constructing features and models for
intrusion detection,” ACM Transactions on Information and Computer Security,
Vol. 8. No. 4, November 2000, Pages 227-261, 2000.

W. Lee, A Data Mining Framework for Constructing Features and Models for In-
trusion Detection Systems. PhD thesis, Columbia University, 1999.

J. W. Haines, R. P. Lippmann, D. J. Fried, E. Tran, S. Boswell, and M. A. Zissman,
“1999 darpa intrusion detection system evaluation: Design and procedures,” tech.
rep., MIT Lincoln Laboratory Technical Report, 2001.

J. W. Haines, L. M. Rossey, R. P. Lippmann, and R. K. Cunninham, “Extending
the darpa off-line intrusion detection evaluations,” in DISCEX 2001, June 11-12,
2001.

M. Fullmer and S. Romig, “The osu flow-tools package and cisco netflow logs,”
in Proceedings of the Fourteenth Systems Administration Conference (LISA-00),
pp- 291-304, The USENIX Association, 2000.

S. S. Kim, A. L. N. Reddy, and M. Vannucci, “Detecting traffic anomalies through
aggregate analysis of packet header data,” in Proceedings of Networking 2004,
LNCS 3042, pp. 1047-1059, May 2004.

29

[13]

[14]

[15]

[16]

[17]

[21]

[22]

[23]

[24]

[25]

S. S. Kim and A. L. N. Reddy, “A study of analyzing network traffic as images in
real-time,” in Proceedings of IEEE INFOCOM 2005, (Miami, Florida, USA), Mar.
2005.

A. S. Tanenbaum, “Computer networks.” Third Edition, 1996, ISBN: 0-13-394248-
1.

S. Gibson, “Gibson research corporation: Distributed reflection denial of service,
last modified: 22 sep 2002.” http://grc.com/dos/drdos.htm.

T. Vogt, “Application-level reflection attacks, modified: 5 jul 2002.” http://www.
lemuria.org/security/application-drdos.html.

R. Basu, R. K. Cunningham, S. Member, S. E. Webster, and R. P. Lippmann,
“Detecting low-profile probes and novel denial-of-service attacks,” in Proceedings
of the 2001 IEEE: Workshop on Information Assurance and Security, United States
Military Academy, 2001, 5-6 June.

B. Carrier, “Defining digital forensic examination and analysis tools using abstrac-
tion layers,” International Journal of Digital Evidence, vol. 1, no. 4, 2003.

W. Lee and S. J. Stolfo, “A framework for constructing features and models for
instrusion detection systems,” ACM Transactions on Information and System Se-
curity (TISSEC), vol. 3, no. 4, pp. 227-261, 2000.

NLANR, “Nlanr network traffic packet header traces, last modfied: 30 dec 2004.”
http://pma.nlanr.net/traces/.

D. Miller, “Softflowd, last modified: 30 sep 2004.” http://www.mindrot.org/
softflowd.html.

W. Duch, “A framework for constructing features and models for instrusion detec-
tion systems,” ACM Transactions on Information and System Security (TISSEC),
vol. 3, no. 4, pp. 227-261, 2000.

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. Uni-
versity of Illinois Press, th ed., 1949.

Z. Zhou, S. Chen, and Z. Chen, “Fannc: a fast adaptive neural network classifier,”
Knowl. Inf. Syst., vol. 2, no. 1, pp. 115-129, 2000.

S. Nissen, “Fast artificial neural network library (fann), last modified: 2 nov 2004.”
http://fann.sourceforge.net/.

60

Appendix A

Value reduction figure and

distributions

10°

107

Manually selected

107

. 'DARPA

10° 10"

X

10 10°

cutoff

10*

Figure A.1: Entropy index as a function of the duration cutoff value.

61

10 T T

-2

U(C.D

107

Manually selected

107 L
10 10 10

Xcutoff

Figure A.2: Entropy index as a function of the packet count cutoff value.

T T

10 .
S}
I
)

102F .

Manually selected 1

107k .

10° 10°
Xcutoff

Figure A.3: Entropy index as a function of the transferred octets cutoff value.

62

90 T T T T T T T T T

T T
I Host scan

M [JReal traffic
80 b

701 b

Percent

40t .

30 B

0 l) .)
0 10 20 30 40 50 60 70 80 90 100

thb_rst_count

Figure A.4: Histogram showing the distribution of the reverse thb_rst_count with real
traffic.

100 T T T T T T T T T

T
I Host scan

%ok [1Real traffic

60 - b

50 B

Percent

40 .

10 B

0 I I I I I I

0 10 20 30 40 50 60 70 80 90 100
thb_rst_count

Figure A.5: Histogram showing the distribution of the reverse thb_rst_count with

DARPA traffic.

63

Appendix B

Netflow version 5 datagram

There are several Netflow datagrams, but the one used for this project was version 5.
Figure B.1 shows the header of the datagram, and figure B.2 show a record from the
datagram.

| Bytes | Content | Description |
0-1 version NetFlow export format version number
2-3 count Number of flows exported in this packet (1-30)
4-7 SysUptime Current time in milliseconds since the export device booted
8-11 unix_secs Current count of seconds since 0000 UTC 1970
12-15 | unix_nsecs Residual nanoseconds since 0000 UTC 1970
16-19 | flow_sequence | Sequence counter of total flows seen
20 engine_type Type of flow-switching engine
21 engine_id Slot number of the flow-switching engine
22-23 | reserved Unused (zero) bytes

Table B.1: Netflow version 5 header.

Bytes | Content | Description

0-3 srcaddr Source [P address

4-7 dstaddr Destination IP address

8-11 nexthop IP address of next hop router

12-13 | input SNMP index of input interface

14-15 | output SNMP index of output interface

16-19 | dPkts Packets in the flow

20-23 | dOctets Total number of Layer 3 bytes in the packets of the flow

24-27 | First SysUptime at start of flow

28-31 | Last SysUptime at the time the last packet of the flow was received

32-33 | srcport TCP/UDP source port number or equivalent
34-35 | dstport TCP/UDP destination port number or equivalent

36 padl Unused (zero) bytes

37 tcpflags | Cumulative OR of TCP flags

38 prot IP protocol type (for example, TCP = 6; UDP = 17)

39 tos IP type of service (ToS)

40-41 | src.as Autonomous system number of the source, either origin or peer
42-43 | dst.as Autonomous system number of the destination, either origin or peer
44 src_mask | Source address prefix mask bits

45 dst_mask | Destination address prefix mask bits

46-47 | pad2 Unused (zero) bytes

Table B.2: Netflow version 5 record.

65

