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Abstract

The main purpose of this work is to develop an efficient dynamic program-
ming (DP) algorithm for the revenue optimization problem in the presence
of trade-up behaviour. Trade-up is when a passenger buys a more expensive
ticket than originally intended, if the desired ticket is not available. Effi-
ciency of an algorithm is both measured with respect to revenue and running
time. To achieve this objective the Seat Inventory Control (SIC) problem
without trade-up is described first to give a fundamental understanding of
the basic problem. The basic SIC problem is concerned with the allocation
of discount and full-fare seats on a flight so as to maximize total revenue.

Next, two different cases of the SIC problem with trade-up are investi-
gated, one with general assumptions and one with more specific assumptions
made by British Airways. A dynamic programming model is set up for each
of these problems and different solution methods, both exact and approxi-
mate methods, are introduced for solving the DP model. Finally the methods
are tested by simulating arrival processes and results are obtained by a com-
parison of the methods applied on these arrival processes.

Numerical results suggest that in a market where trade-up occurs, a large
gain in revenue can be obtained by using methods incorporating trade-up in-
stead of methods without trade-up.

Keywords: revenue management, seat inventory control, dynamic program-
ming, trade-up, approximation method.
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List of Symbols

The symbols which are used often in the report are listed in the table below.

Symbol Description

t Decision period, where smaller values of t represent later points in time.
x Number of remaining seats, i.e., remaining capacity.
k Number of different fare classes.
C Capacity of the aircraft.
T Total number of decision periods.
Fi Value of accepting a request for a seat in fare class i.
Dt

i Mean value of expected demand to come from decision period t to de-
parture for fare class i.

S
j
i Number of seats protected for class i from class j.

πi Number of seats protected for class i from classes 1, . . . , i − 1.
βi The probability that a request is for fare class i.
pi The probability that the remaining capacity after selling an additional

seat in class i + 1 will not fail to meet subsequent class i demand.
bt
i Number of seats sold for class i from decision period T to t.

BLi Booking limit for fare class i.
P t

i Probability of a request for class i in decision period t.
P t

0
Probability of no request in decision period t.

qi,j Probability of trade-up from fare class i to fare class j.
Φi(Zi) Probability that demand for fare class i is less than or equal to the seat

allocation Zi.
x̂i(t) Critical booking capacity for decision period t in fare class i.
t̂i(x) Critical decision period for a remaining capacity x in fare class i.
Vt(x) Total expected revenue that can be generated from decision periods t, t−

1, . . . , 1 given a remaining capacity x.
∆Vt(x) Expected marginal value of capacity, when x seats remain in decision

period t, i.e., ∆Vt(x) = Vt(x) − Vt(x − 1).
U i

t (x) Expected revenue which can be genereated with t decision periods and
x seats remaining when a request for class i is rejected.

V̂t(x) Upper bound for the value function Vt(x).
V̌t(x) Lower bound for the value function Vt(x).
EMSR Expected marginal seat revenue.
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Chapter 1

Introduction

In this chapter the basic ideas in Revenue Management will be explained
and the Seat Inventory Control problem, denoted the SIC problem, will be
described. Furthermore a short literature review on the SIC problem is given.
Finally, the contributions of this work are listed and an outline of the report
is presented.

1.1 Problem Description

In the past years many airlines have been forced to develop an efficient and
structured way of pricing and selling the seats on their flights so as to maxi-
mize total revenue. This is due to the entry of many low-cost airlines in the
market, which has resulted in hard competition. Existing airlines needed a
new strategy to be able to compete with the low fares from the new airlines.
This strategy is based on dividing the aircraft into a number of classes with
different fares, where different conditions apply to each class. This way the
airlines are able to offer both discounted and full-fare tickets and therefore
they can compete with low-cost airlines. With as many as 20 fare classes
on a flight, a big task for the airline is to manage how many seats to sell
in each fare class. The task of pricing and allocating capacity to different
fare classes is known as Revenue Management. Seat Inventory Control is the
part of Revenue Management, which is concerned only with the allocation
of discount and full-fare seats on a flight so as to maximize total expected
revenue.

In this report only single-leg flights are considered, i.e., only flights from
one city to another with no stops in-between. For single-leg flights the SIC
problem can be described as follows. Consider an aircraft with capacity C.
Passengers can request one of k fare classes, where class 1 corresponds to
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the most expensive fare and class k to the least expensive. Requests for the
different fare classes arrive throughout the booking period, which is divided
into smaller time periods called decision periods. Based on the number of
seats already booked and the decision period in which a request arrives, the
task is to decide whether to accept or reject the request. The decision is
made such that the total expected revenue is maximized.

The problem just described is the basic SIC problem, which can be ex-
tended in several ways, for instance by including one or more of the items
below

• No-shows : A certain percentage of the passengers will not show up at
departure.

• Cancellation: A certain percentage of the passengers will cancel their
reservation before departure.

• Overbooking : Accepting more passengers than the capacity of the air-
craft in the expectation of no-shows and cancellations.

• Go-shows: A number of passengers shows up at departure without a
ticket wanting to buy one.

• Trade-up: A rejected passenger will request a more expensive ticket on
the same flight.

• Recapture: A rejected passenger will buy a ticket on another flight from
the same airline.

• Network : Modelling transfer traffic instead of single-leg flights.

• Multiple bookings: Modelling multiple bookings instead of bookings of
a single seat, for instance the booking of an entire family instead of
just a single person.

In this report the basic SIC problem is extended to incorporate trade-up. As
mentioned above, trade-up is when a person requesting fare class i chooses
to buy one of the classes i − 1, . . . , 1 with a certain probability, if his or her
request for a class i ticket is rejected. In the basic SIC problem without
trade-up the probabilities for trade-up equal zero, i.e., a rejected request is
lost revenue for the airline. This is not necessarily the case when trade-up is
incorporated.

The problem in Seat Inventory Control is basically to determine how
many seats to sell at discounted fares. If too many seats are sold at low
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fares, the airline may have to reject full-fare passengers. If, on the other
hand, too few seats are offered at discounted fares, the airline may not sell
all the seats on the aircraft. The SIC problem is complicated by the fact that
passengers requesting discounted-fare classes often book before passengers
requesting full-fare classes. A simple solution to the problem is to split the
capacity of the aircraft into blocks of seats to be sold to individual classes
exclusively. This solution method could result in having to reject a request
for a high-fare class even if low-fare classes are still open for sale, though.
Therefore the concept nested availability is introduced. Nested availability
means that classes can be ordered by their fare, such that a class with a
high fare can take seats at the expense of classes with a lower fare. Thus,
unexpected demand for a class can be satisfied as long as lower-fare classes
are still open for sale. If nested availability is used it is necessary to calculate
a booking limit for each class. A booking limit for a certain class indicates
the maximum number of seats the airline is willing to sell in this class and all
lower-fare classes. Closely related to the booking limits are protection levels.
The relationship is that the booking limit is equal to the remaining capacity
minus the protection levels for all classes with a higher fare. The booking
systems which are used by most airlines for accepting or rejecting requests
are based on booking limits.

Another factor which complicates the SIC problem is the uncertainty in
the demand forecasts. Demand is often affected by factors external to the air-
line, which implies that forecasts based on booking data from previous flights
may be very inaccurate. Hence, forecasts usually need to be revised during
the booking period as new information about demand becomes available.
Therefore, the booking limits need to be recalculated when the forecasts
have been updated.

Thus, the calculation of the booking limits has to be computationally
efficient to be usable. An airline like British Airways (BA) operates around
1000 flights a day. As selling starts one year before departure, at any one
time there are around 365000 flights in the system. Booking limits do not
have to be updated every day, for instance, there may not be much booking
activity several months before departure. As a rough estimate 100000 flights
go through an optimization every day. This means that one optimization
must not take longer than 0.85 seconds.

1.2 Purpose of this Work

The main purpose defined by BA is to develop an efficient dynamic program-
ming algorithm for the SIC problem with trade-up. Efficiency is measured
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both with respect to expected revenue and running time.
This objective is achieved by carrying out several tasks. The first task

is an extensive review of the literature about modelling trade-up behaviour
and dynamic programming formulations of the SIC problem. Furthermore,
DP models are formulated, both for the problem without and with trade-up.
For solving these, different algorithms are examined, especially algorithms
using approximations. Finally, far-reaching numerical experiments are ac-
complished to compare the different algorithms.

1.3 Literature Review

In this section a short introduction to the existing literature about the SIC
problem will be given.

The first literature about the problem was published in the early seventies,
when the first airlines began offering discounted fare products as well as
the regular high-fare tickets. The paper [10] by Botimer goes into more
detail about the reasons for using a differentiated fare product structure. As
described in Section 1.1, this development had the potential for major airlines
to compete with discount airlines and thereby increase revenues. However,
it also presented them with the challenge of determining how many seats to
offer in each fare class. Hence, after the introduction of differentiated fare
classes a large amount of literature has been written about the problem and
possible solution methods.

As mentioned above, the history of the revenue management problem for
the airline industry started in the early seventies. This history is introduced
further by McGill and van Ryzin in [21], where an overview of existing litera-
ture about the SIC problem is given. Furthermore, forecasting and different
extensions to the basic problem such as overbooking, cancellations, no-shows
and go-shows are discussed. The paper [22] by Pak and Piersma also gives
an overview of the solution methods for the problem presented throughout
the literature.

Usually the input data for the problem are demand forecasts and fare
values for each class. In [26], Weatherford and Belobaba investigates the
impacts of errors in these input data. This is done for a problem with multiple
fare classes.

Littlewood, [20], was the first to propose that discount-fare requests
should be accepted as long as their revenue value exceeded the expected
revenue from future full-fare bookings. This model is for two fare classes and
was later extended by Belobaba, [3] and [4], to multiple fare classes. Belobaba
called this heuristic EMSR, which is an abbreviation of Expected Marginal
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Seat Revenue. It is now known as the EMSRa method. In [6] Belobaba
proposes a different heuristic, which is similar to the EMSR decision rule to
yield even higher revenues, the EMSRb heuristic.

Throughout the booking period requests are accepted or rejected. Thus
the number of accepted bookings and possibly the demand forecasts change
throughout the period. Hence the problem to be solved is dynamic. In [4]
Belobaba describes how the EMSRa heuristic can be used on a dynamic prob-
lem even though the EMSRa decision rule is a static rule. Another approach
is to set up a dynamic programming model. This is done in [19] by Lee and
Hersh for a single-leg flight without trade-up. This model is used the most
in the literature, and thus many approximation algorithms and extensions
have been made for this model. One of the approximation algorithms is for
the network optimization problem and is suggested in [8] by Bertsimas and
Popescu. Here the value function in the dynamic programming model is ap-
proximated by a deterministic linear program, thus making the model easier
to solve. In [18], Lautenbacher and Stidham consider another approximation
algorithm for solving the SIC Problem. A framework is set up, which com-
bines both the dynamic programming model proposed by Lee and Hersh in
[19] as well as some static models including the EMSR heuristic proposed by
Belobaba.

Subramanian et al., [24], extends the dynamic programming model for a
single-leg flight and multiple fare classes to include no-shows, cancellations
and overbooking. In the article it is shown that the problem is equivalent to
a problem in optimal control of admission to a queuing system.

In [14] by Cooper and Homem de Mello the dynamic programming prob-
lem is described, and it is proposed to solve this problem using a hybrid
method. The idea is to use a heuristic early on in the booking period, where
accuracy is not too important and then later on in the booking period switch
to an accurate decision rule. The problem is solved for a two-leg flight.

Another approximation algorithm is suggested by Chen, Gunther and
Johnson in [11]. Here an entire flight network is considered and again the
dynamic programming model by Lee and Hersh is set up. The algorithm finds
upper and lower bounds for the value function in the model. A stochastic
linear program (LP) is formulated and used as a lower bound and a deter-
ministic LP is used as an upper bound. The acceptance rule is based on
these bounds and instead of having to calculate the values of the bounds for
all combinations of remaining capacity and time, the bounds are calculated
for specific values of remaining capacity and time. Splines are then used to
interpolate between these values of remaining capacity and linear interpola-
tion is used between these values of time. This yields an approximation of
the bounds for all combinations of remaining capacity and time.
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An important extension to the basic SIC Problem is to incorporate trade-
up. One of the first papers in which trade-up is incorporated in a model was
written in 1993 by Andersson, Algers and Kohler, [1]. Here, a deterministic
linear programming model including trade-up is set up for a flight network.
In 1998 Andersson wrote a new article about a model for a network where
trade-up is included, see [2]. In this article trade-up is modelled specifically
as a passenger utility maximization model. Additionally, it is discussed in
which markets it may be profitable to use a model including trade-up and
an allocation model for a single-leg flight including trade-up is set up. This
model is an expansion of the EMSRa model with trade-up. Finally, a de-
terministic model for a network with trade-up is set up and described. This
model is equivalent to the model set up in [1].

Bodily and Weatherford extends the basic SIC Problem to handle situa-
tions with continuous, non-discrete resources and overbooking, see [9]. Fur-
thermore, a decision rule for the problem with trade-up is incorporated for
more than two fare classes.

In [6] Belobaba and Weatherford describes both the EMSRb heuristic
and the decision rule proposed by Bodily and Weatherford in [9] for the SIC
Problem with trade-up. These two approaches are combined to develop a
heuristic, which is better than both EMSRb and the decision rule for the
problem with trade-up.

In [29] a dynamic programming problem with two classes which incorpo-
rates trade-up is considered by Zhao and Zheng. An additional assumption
which is applied is that once a discount class has been closed for sales, this
class cannot be reopened. The latter assumption is important, since airlines
are interested in making the passengers realize, that the earlier they book,
the larger is the probability that they are able to get a discount-fare ticket.

A dynamic programming model for multiple fare classes is set up by You
in [28]. This model extends the model by Lee and Hersh in [19] to incorporate
trade-up. The decision making has two stages. In the first stage, it is decided
whether to accept or reject the request. This decision is analogous to the
decision in [19]. The second decision is, after rejecting a request, which
classes should be offered to the rejected passenger.

In [25] Talluri and van Ryzin also consider the SIC problem for a single-leg
flight including trade-up. In this paper buyers’ choice behaviour is modelled
explicitly and a method for choosing which classes should be open at each
point in time is developed.
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Authors Paper Multiple Network DP- Heuristic Trade-up

Classes Form.

Algers, Andersson [1] X X - X X
and Kohler
Andersson [2] X X - X X
Belobaba [3] X - - X -
Belobaba [4] X - - X -
Belobaba and [6] X - - X X
Weatherford
Bertsimas and [8] X X X X -
Popescu
Bodily and [9] X - - X X
Weatherford
Chen, Gunther [11] X X X X -
and Johnson
Cooper and [14] X X X X -
Homem de Mello
Lautenbacher [18] X - X X -
and Stidham
Lee and Hersh [19] X - X - -
Littlewood [20] - - - X -
Subramanian et al. [24] X - X - -
Talluri and [25] X - X - X
van Ryzin
You [28] X - X - X
Zhao and [29] - - X X X
Zheng

Kjeldsen and This X - X X X
Meyer work

Table 1.1: Literature Overview.

1.4 Contributions of this Work

As seen from the literature overview in Table 1.1 and the extensive biblio-
graphy in this report, many papers describe the basic SIC problem. Contrary
to this only few articles treat the SIC problem with trade-up. Furthermore,
it is especially difficult to find papers, which compare more than two diffe-
rent solution methods or articles which deal with approximation methods for
solving a dynamic programming model for the SIC problem with trade-up.
So this report adds a new angle to the literature about revenue management,
since multiple classes, trade-up, DP formulations and heuristics is handled.

Several solution methods for both the SIC problem without and with
trade-up, especially approximation methods, are investigated. Furthermore,
existing solution methods for the problem without trade-up are adjusted to
fit the problem with trade-up.

An extensive number of numerical experiments are made to determine the
best methods for each of the problems without and with trade-up. Moreover,
a comparison of the methods without and with trade-up is accomplished.
These are compared in a trade-up market to see the differences in the revenues
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obtained by using methods with trade-up instead of methods without trade-
up.

1.5 Structure of the Report

The structure of this report is as follows. In Chapter 2 an introduction to
dynamic programming will be given and it will be explained how dynamic
programming can be applied to the SIC problem. In this report the SIC
problem is treated both with and without trade-up. The reason that the
problem without trade-up is included is to give the reader a fundamental
understanding of the SIC problem before trade-up is incorporated. Hence, in
Chapter 3 different solution methods for the SIC problem without trade-up
will be described. The chapter also includes a description of the implemen-
tation of the solution methods for the problem without trade-up. For the
problem with trade-up the solution methods are set up for two cases, where
different assumptions apply. In Chapter 4 a discussion of when trade-up
should be included in the solution methods is given and furthermore it is
explained which conditions and assumtions apply when a trade-up market is
under consideration. The assumptions for the two different trade-up cases
are explained and solution methods for both cases are set up. Furthermore
the implementation of these methods is described. Finally, in Chapter 5 it is
described how the parameters of various methods are tuned, and numerical
results are presented, both for the SIC problem with and without trade-up.
Also, methods without trade-up are compared to methods with trade-up
when applied to a trade-up world to show the benefit of modelling trade-up
behaviour. The report closes with conclusions in Chapter 6.



Chapter 2

Dynamic Programming

In Section 1.3 a number of different papers describing the SIC problem were
introduced. Several authors suggest solving the problem using dynamic pro-
gramming (DP), since a DP model is the most accurate model for the SIC
problem both with and without trade-up. Therefore, in this chapter an intro-
duction to dynamic programming is given. Furthermore, it will be explained
how DP can be applied to the SIC Problem.

2.1 Basic DP Theory

Like other branches of mathematical programming, dynamic programming is
a general approach to solving certain problems, for instance, problems where
the input to the model varies with time. Hence, some general characteristics
apply for all DP problems, but particular equations must be made to fit
each specific problem. Dynamic programming is a way of decomposing the
problem under consideration into smaller subproblems, which are easier to
solve. DP can for instance be used to solve a problem where decisions must be
made at different points in time, i.e., in different stages, and where the input
to the problem also changes as time progresses. The problem to be solved
can either be a maximization or minimization problem. In the following the
general problem is assumed to be a maximization problem.

Problems which can be solved using dynamic programming may be very
different, but there are a number of characteristics which are common for all
DP problems. These are the following

• The problem can be divided into stages and a decision has to be made
in each stage.

• Each stage has a number of states associated with it.
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• The decision in one stage transforms one state into a state in the next
stage.

• Given the current state, the optimal decision for each of the remaining
states do not depend on the previous states or decisions.

• A recursive relationship exists, which identifies the optimal decision for
stage t, given that stage t + 1 has already been solved.

• The final stage must be solvable by itself.

One of the challenges when defining a DP problem is to determine stages
and states such that all of the above characteristics are satisfied.

An additional property of the problems, which can be solved using DP, is
that a decision made at a given point in time cannot be viewed in isolation,
future decisions must be taken into account as well. Hence, if the objective
function is to be maximized, it may not be sufficient to maximize this in each
stage, since the decision made in the present stage affects which decisions
can be made in future stages. The best decision in the present stage might
imply an inevitably low objective function value in future stages. In DP, this
problem is overcome by making a decision in each stage, which maximizes
the sum of the objective function value gained in the present stage and the
expected objective function value gained in future stages, assuming optimal
decision making in these stages. Due to a random parameter the outcome of
making a decision in a stage is only predictable to some extent. Therefore
it is the expected objective function value gained in future stages which is
maximized. In the following, it is assumed that stages are points in time, i.e.
a discrete time dynamic system is considered.

A model for determining optimal decisions in a dynamic system over a
finite number of stages has two main features

1. There is an underlying discrete time dynamic system.

2. The objective function, R, is additive over time.

The underlying discrete time dynamic system has the form

xt+1 = ft(xt, ut, wt), t = 0, 1, . . . , N − 1,

where

t Indexes discrete time, the stages of the system.

xt State of the system at time t.
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ut Decision or decision variable to be determined at time t.

wt Random parameter at time t, also called disturbance or noise.

N Time horizon or the number of times control is applied.

The objective function, R, is additive over time, thus it can be expressed as

R = gN(xN) +
N−1∑

t=0

gt(xt, ut, wt),

where gt(xt, ut, wt) is the objective function value obtained at time t and the
objective function value gN(xN ) is incurred at the termination of the process.

As mentioned previously, the presence of the random parameter, wt,
makes it impossible to optimize the total objective function value. Instead,
the total expected objective function value is optimized

RE = E

{
gN(xN ) +

N−1∑

t=0

gt(xt, ut, wt)

}
.

The decision variables in the system are u0, u1, . . . , uN−1, i.e., the system is
optimized with respect to these.

Let Xt be the set of possible states in stage t, let Ht be the set of possible
decisions in stage t, and let Wt be the set of possible outcomes of the random
parameter wt at time t, then xt ∈ Xt, ut ∈ Ht and wt ∈ Wt. The decisions ut

must take on values in a nonempty subset, which is dependent on xt, Qt(xt) ⊂
Ht. The value of wt belongs to a probability distribution P (·|xt, ut), which
may depend on xt and ut, but not on previous disturbances, wt−1, . . . , w0.

In each stage, t, a decision law, µt, for mapping the present state into an
appropriate decision is to be determined, i.e., ut = µt(xt). The sequence of
these functions for all time periods is denoted θ:

θ = {µ0, . . . , µN−1}.

The mapping must satisfy that µt(xt) ∈ Qt(xt) for all xt ∈ Xt and it is then
called admissible. Θ is the set of all admissible policies, i.e., θ ∈ Θ.

Given an initial state x0 and an admissible policy, θ, the system equation

xt+1 = ft(xt, µt(xt), wt), t = 0, 1, . . . , N − 1,

makes the state, xt, and the disturbance, wt, random variables with well-
defined distributions. Hence, for given functions, gt, t = 0, 1, . . . , N , the
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expected objective function value given by

Rθ(x0) = E
wt

t=0,1,...,N−1

{
gN(xN) +

N−1∑

t=0

gt(xt, µt(xt), wt)

}

is a well-defined quantity. Thus, for a given initial state, an optimal decision
policy θ is one, that optimizes the total expected objective function value.
The optimal decision problem is then given by

Rθ∗(x0) = max
θ∈Θ

Rθ(x0).

2.1.1 The Dynamic Programming Algorithm

The dynamic programming algorithm is an algorithm for finding optimal
solutions to DP models. It is based on the principle of optimality, which has
the following definition

Principle of Optimality

Let θ∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} be an optimal decision policy for the

DP problem and assume, that when using θ∗, a given state xi oc-
curs at time i with positive probability. Consider the subproblem
which is in state xi at time i. Then the aim is to maximize the
objective function value “to-come” from time i to time N :

Rto−come = E

{
gN(xN ) +

N−1∑

t=i

gt(xt, µt(xt), wt)

}
.

Then the truncated control policy µ∗
i , µ

∗
i+1, . . . , µ

∗
N−1 is optimal

for this subproblem.

The intuitive interpretation of the principle of optimality is that if the
present state is xi, the optimal control policy from time i to time N − 1
is µ∗

i , µ
∗
i+1, . . . , µ

∗
N−1, but this is overall the optimal policy. Thus, given the

current state, an optimal policy for the remaining problem is independent of
the policy decisions made in the first part of the problem, it only depends on
the current state.

The implication of the principle of optimality is that a systematic proce-
dure for solving DP problems can be used. An optimal decision policy for a
dynamic problem can be found by first determining the optimal decisions for
the last stage for all possibilities of states in that stage. Then the subproblem
is extended to be the last two stages and the optimal controls for all pos-
sibilities of states in the second-to-last stage are found using the knowledge
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about the optimal controls for the last stage. The problem is enlarged and
subproblems are solved until the problem is solved in its entirety. Each of
the subproblems is much simpler than the entire problem.

Hence, using the principle of optimality, the dynamic programming algo-
rithm is as follows

The Dynamic Programming Algorithm

For every initial state x0, the optimal objective function value
R∗(x0) of the dynamic programming problem is equal to R0(x0),
where the function R0 is given by the final step of the following
algorithm, which proceeds backward in time from period N−1 to
period 0. If the last state, xN , is known the algorithm proceeds
backward in time with respect to this state, otherwise the algo-
rithm proceeds backwards in time from all possible final states,
xN . For t = N − 1, N − 2, . . . , 0, the dynamic programming
algorithm is

RN (xN) = gN(xN)

Rt(xt) = max
ut∈Qt(xt)

wt

E {gt(xt, ut, wt) + Rt+1 (ft(xt, ut, wt))} , (2.1)

where the expectation, E, is with respect to the probability func-
tion of wt and xt. Furthermore, if u∗

t = µ∗
t (xt) maximizes the

right hand side of (2.1) for each xt and t, then the policy θ∗ =
{µ∗

0, µ
∗
1, . . . , µ

∗
N−1} is optimal.

For a proof of the above proposition see [7].
In some cases, the dynamic programming problem can be simplified such

that the following statements are satisfied

• For each stage t the system has a finite number of states, Xt.

• A reward gt(xt, ut, wt) is obtained after the decision ut has been applied
in state xt.

• The probability that the system will be in state j at stage t is denoted
pj(t). Since the current state can be one of n different states, from
Baye’s Theorem, see [12], it follows that pj+1(t) is linearly dependent
on the current state probabilities and

pj(t + 1) = p1j(u, t)p1(t) + p2j(u, t)p2(t) + · · · + pnj(u, t)pn(t),
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where

p1j(u, t) = P{xt+1 = j|xt = 1, ut = u}

p2j(u, t) = P{xt+1 = j|xt = 2, ut = u}
...

pnj(u, t) = P{xt+1 = j|xt = n, ut = u}.

The probabilities pij(u, t) are the transition probabilities, i.e., the proba-
bilities that the state of the system is j in the next stage, given that
the system is in state i at the present stage.

When a system satisfies the above, it is said to be Markovian, and a
model which characterizes a Markovian system is called a Markov chain.
It is possible to totally characterize the chain’s state for each stage, since
Markov chains are finite. This is one of the advantages of dealing with a
Markovian system. For further elaboration on Markov processes, see [23].

2.2 A DP Model for the SIC Problem

An important question is whether dynamic programming provides a good
model for the SIC problem. Recall that the SIC problem is characterized by
the following. Passengers request tickets at different points in time through-
out the booking period. Each time a passenger places a request, a decision has
to be made of whether to accept or reject the request. This decision, though,
cannot be viewed in isolation, since even if accepting the request yields a
positive revenue it may not be optimal for the entire problem. Expected
future requests must be taken into account as well. Hence, to maximize total
revenue, it is not sufficient to maximize revenue from each request, since the
decision made for the present passenger affects which decisions that can be
made for future requests.

To use DP to solve the SIC problem the conditions described on page 11
need to be satisfied. It has to be possible to divide the problem into stages,
where each stage has a number of states associated with it. The stages in
the SIC problem are the decision periods and the states of the system are
the possible values of the remaining capacity, xt = 0, . . . , C. Furthermore,
for a DP problem, a decision in one stage transforms one state into a state
in the next stage. For the SIC problem, if a request is accepted, then the
remaining capacity in the next stage is one less than the remaining capacity
in the current stage, whereas if the request is rejected the remaining capacity
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is unchanged. Furthermore it is a condition that the final stage is solvable by
itself. This is also satisfied by the SIC problem, since if a request arrives in the
decision period immediately before departure and remaining capacity exists,
then the request should be accepted and otherwise it should be rejected.
Hence, it is obvious to try using dynamic programming to solve the SIC
problem.

In the context of dynamic programming the above implies that the system
of the SIC problem is as follows

• The stage is the decision period t.

• The state is the remaining capacity x.

• The decision is either to accept or reject the request.

• The random parameter is the demand for different fare classes.

Furthermore the system is seen to satisfy the conditions for Markov sys-
tems described on page 15. The first condition is satisfied, since the capacity
of the aircraft is finite, hence the system has a finite number of states. In
each decision period, if a request arrives and is accepted, then the fare of the
requested class is obtained, thus the second condition is satisfied. Otherwise
the reward in this decision period is zero. The third condition is satisfied,
since the remaining capacity in the next decision period depends only on the
remaining number of seats in the current decision period combined with the
decision made in the current decision period. Finally, the transition proba-
bilities for the SIC problem are fairly simple.

Value of j pij(u, t)
ut = acc. ut = rej.

j = i 1 − λ 1
j = i − 1 λ 0
Else 0 0

Table 2.1: Transition Probabilities.

All transition probabilities, pij(u, t) for j 6= i ∧ j 6= i − 1 are zero, since
multiple requests are not considered. The transition probability between the
states i and j are shown in Table 2.1 for j = i− 1 and j = i given a specific
decision ut. If the decision ut is to accept a booking request, then there
are two possible outcomes. If a request is made, with probability λ, then
capacity changes to i − 1, but if no request is made, with probability 1 − λ,
then capacity does not change. If the decision is to reject a booking request,
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then independent of whether a request is made or not, capacity does not
change.

Hence, since all conditions are satisfied, the SIC problem is Markovian,
and therefore it is possible to totally characterize the system’s possible states
in each stage.



Chapter 3

SIC without Trade-Up

In this chapter different solution methods for the SIC problem without trade-
up will be described. In Section 3.1 two static methods, the EMSRa and
EMSRb methods, are explained. Next, in Section 3.2 a dynamic program-
ming model for the problem without trade-up will be introduced. For solving
this model, two different methods, the L&H solution method and the B&P
solution method, are described.

3.1 Static Solution Methods

It is well-known that determining an optimal solution to a DP model can
be very time consuming, if the number of stages and states is large. Hence,
alternatives to the DP model or for solving the DP model to optimality are
necessary. In this section, two heuristics for solving the SIC problem are
introduced.

These methods use the Expected Marginal Seat Revenue (EMSR) method,
which determines nested booking limits. Recall that the nested booking limit
for fare class i is the maximum number of seats, which can be sold to fare
class i and all less expensive fare classes i + 1, . . . , k, where k is the least
expensive fare class.

The EMSR method described in Section 3.1.1 is called EMSRa. In the
past most airlines solved the SIC problem with EMSRa, but nowadays this
method has been replaced by a similar heuristic called EMSRb. Hence, the
EMSRb method will be described in Section 3.1.2.
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3.1.1 EMSRa

In [4] the EMSRa solution method is described by Belobaba. To understand
this method it is helpful to consider the SIC problem with only two fare
classes. The starting point is to allocate all seats to class 2. Now let S2

1

denote the number of seats, which are protected, i.e., reserved, for fare class
1 and therefore cannot be sold in class 2. Then the number of seats made
available to class 2 is C − S2

1 .
Given a protection of S2

1 seats for fare class 1, the probability that all
requests for this fare class is accepted is given by

Φ1(S
2
1) = P [X1 ≤ S2

1 ] =

∫ S2

1

0

ϕ1(X1) dX1

where ϕ1 is the probability density function for the total number of requests
for fare class 1, X1. This implies

P [X1 > S2
1 ] =

∫ ∞

S2

1

ϕ1(X1) dX1

= 1 − Φ1(S
2
1) = Φ1(S

2
1), (3.1)

thus Φ1(S
2
1) is the probability of spill occuring, i.e., the probability of having

to reject customers requesting fare class 1.
The EMSR for fare class 1, EMSR1, is the expected marginal seat revenue,

when the number of seats available to class 1 is increased by one. It is given
by the product of the fare level for class 1, F1, and the probability of being
able to sell more than S2

1 seats in fare class 1, Φ1(S
2
1), i.e.,

EMSR1(S
2
1) = F1 · Φ1(S

2
1)

The EMSRa procedure is to increase the number of seats protected for
fare class 1 from class 2, S2

1 , by one as long as the expected marginal value
of the next seat in fare class 1 is greater than or equal to the marginal value
of selling the seat in fare class 2. Hence, increase S2

1 as long as

F1 · Φ1(S
2
1) ≥ F2.

The SIC problem usually consists of multiple fare classes. Hence, the
solution method handles multiple fare classes as well. In this case the proce-
dure is to consider fare classes in pairs and find the optimal seat allocation
between the two classes considered. This is done in the same way as de-
scribed above. Since the fare classes are considered in pairs, there is a risk
that when the optimal seat allocation for pairs of classes are combined to
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give the total seat allocation for each class, this might not be the optimal
solution for the entire problem.

For the case with multiple fare classes, let Sj
i denote the number of seats

protected for class i from class j. The value of the seat allocation for class i
from class j is determined by increasing Sj

i by one as long as

Fi · Φi(S
j
i ) ≥ Fj , i < j, j = 1, . . . , k, (3.2)

where k is the number of fare classes. Once the seat allocations for each
fare class from all lower-fare classes have been determined, it remains to find
the booking limit for each class. The booking limit for fare class j, BLj , is
the maximum number of seats available for fare classes j, j + 1, . . . , k. The
booking limit for class j is given by

BLj = max

[
0, C −

∑

i<j

Sj
i

]
, j = 1, . . . , k. (3.3)

It is seen that the booking limit is calculated by subtracting the sum of the
protected seats from class j to all more expensive fare classes from the capa-
city, hence the booking limits are nested. Recall that with nested availability,
full-fare classes can take seats at the expense of discounted classes.

The EMSRa model is static, but the problem to be solved is dynamic.
To solve the dynamic problem the static model is applied a number of times
with revised input data. For instance, the second time the model is solved,
the bookings so far are known, thus the seat allocations can be updated in
the following way ∑

i<j

Sj
i =

∑

i<j

Sj
i (t) +

∑

i<j

bt
i

where Sj
i (t) is the seat allocation calculated at time t from the demand

forecast from time t to departure and bt
i is the number of accepted requests

in fare class i at time t. Thus the revised booking limit for fare class j at
time t is given by

BLj(t) = C −
∑

i<j

Sj
i (t) −

∑

i<j

bt
i.

The booking limit for fare class j is constrained to be greater than or equal
to zero and also to be no lower than the number of accepted requests in fare
class j and all lower-fare classes, i.e.,

BLj(t) = max

[
C −

∑

i<j

Sj
i (t) −

∑

i<j

bt
i,

∑

l≥j

bt
l , 0

]
(3.4)
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The approximation of the nested booking limits gets worse the more
classes are considered. The EMSRb heuristic is a better heuristic and will
be described in the following section.

3.1.2 EMSRb

In [5] a heuristic similar to the EMSRa is described by Belobaba. This
heuristic is called EMSRb. In the EMSRa method the expected marginal
seat revenue for one fare class is compared with the fare of a lower-priced
fare class. In the EMSRb solution method this procedure is replaced by a
calculation of joint seat protection levels for all higher-fare classes relative to
a given lower-fare class. These calculations are based on combined demand
and a weighted price level for all classes with a higher fare than the one for
which a booking limit is being calculated.

Denote the joint protection level for class i and all higher-fare classes
i − 1, . . . , 1 by πi. Initially in the method, π1 is determined, then π2 is
determined, etc.

The seat protection level for fare class 1 is determined by finding the
largest value of π1, which satisfies the following

F1,1 · Φ1,1(π1) ≥ F2,

where F1,1 = F1 and Φ1,1(π1) = P [X1 > π1]. Hence, this yields the same
equation as in the EMSRa framework. Now this π1 is used to find the booking
limit for fare class 2 by

BL2 = C − π1.

To find the booking limit for fare class 3, the joint protection level for
fare classes 1 and 2 is calculated by combining the demand and price levels
for the two classes in the following way

X1,2 = X1 + X2,

F1,2 =
F1 · X1 + F2 · X2

X1,2

,

Φ1,2(π2) = P [X1 + X2 ≥ π2] ,

EMSRb1,2(π2) = F1,2 · Φ1,2(π2).

where Xi is the random demand for fare class i and X i is the expected value
of Xi. Now the problem is to find the largest value of π2 which satisfies

EMSRb1,2(π2) ≥ F3.
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By using this joint protection level for classes 1 and 2, the booking limit for
fare class 3 can be determined by

BL3 = C − π2.

The booking limit for fare class i + 1 is determined by finding the joint
protection level for fare class i and all higher-fare classes. This is done by
calculating

X1,i =
i∑

n=1

Xn,

F1,i =

∑i

n=1 Fn · Xn

X1,i

, (3.5)

Φ1,i(πi) = P

[
i∑

n=1

Xn ≥ πi

]
,

EMSRb1,i(πi) = F1,i · Φ1,i(πi).

The largest value of πi which satisfies the following must be found

EMSRb1,i(πi) ≥ Fi+1

The booking limit for fare class i + 1 can then be found by

BLi+1 = C − πi. (3.6)

The EMSRb method can be used on a dynamic problem in the same way
as the EMSRa method, where the booking limits are updated in a similar
way, i.e.,

BLi+1(t) = max

[
C − πi −

∑

j<i+1

bt
j ,

∑

l≥i+1

bt
l , 0

]
, (3.7)

where bt
n is the number of accepted requests for fare class n at time t.

The EMSRb method yields better results than the EMSRa method and
it is currently the method, which most airlines use.

3.2 Dynamic Programming Model

As mentioned previously, the static EMSRa and EMSRb heuristics were
introduced, since it can be very time consuming to solve a dynamic pro-
gramming model. A problem with these heuristics is, that it is difficult to
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incorporate time-dependent variability in the demand, since it is assumed
that demand from the current time to departure can be described by a single
random variable. To include the variability, a DP model for the SIC problem
without trade-up is derived and two different algorithms for solving this are
introduced. In [19] Lee and Hersh set up the DP model and it is solved to
optimality by means of critical values. This solution method will be denoted
the L&H solution method in all of the following, and it is described in Section
3.2.1. In [8] Bertsimas and Popescu use an approximation algorithm to solve
the model. This method is denoted the B&P solution method, and it will be
described in Section 3.2.2.

Contrary to the description of dynamic programming in Section 2.1, in all
of the following decision period t = 0 corresponds to the end of the booking
period, i.e., time of departure, since this is most common in the literature.
The following simplifying assumptions are used in the model:

• Requests for different fare classes are independent, hence the demand
for one class does not affect the demand for another class.

• A rejected request is lost sale, i.e., trade-up and recapture is not mo-
delled.

• Demand is modelled as a stochastic process, i.e., the demand distribu-
tions are assumed to be known.

• Request probabilities vary with time.

• No more than one request arrives during a decision period.

• An accept/deny decision has to be made each time a request arrives.

The model is in the following first described in an intuitive way and
afterwards in a mathematically accurate way. The demand intensity for a
seat in a fare class at a point in time is modelled by a request probability,
which varies with time. The booking period is split into a number of decision
periods in which at most one request can arrive, where decision period T is
at the beginning of the booking period and decision period 1 is closest to
departure. A request for the highest-fare class will always be accepted as
long as the capacity of the aircraft is not exceeded. Hence, the core problem
consists of whether or not to accept or reject requests for seats in fare classes
2, 3, . . . , k, where k is the number of fare classes. I.e., the core problem is to
determine the decisions in the dynamic programming algorithm as described
in Section 2.1.1. To determine these decisions, an acceptance criterion must
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be derived. As mentioned previously, in the following this criterion is derived
intuitively and afterwards it will be derived mathematically.

First an expression for the total expected revenue, Vt(x), generated from
decision period t to departure with a remaining capacity of x, is to be set
up. If a request for fare class i is accepted in decision period t, then the total
expected revenue, Vt(x) is given by the value of accepting the request Fi plus
the optimal total expected revenue obtained in decision periods t − 1, . . . , 0
with a remaining capacity of x − 1, i.e.,

Vt(x) = Fi + Vt−1(x − 1).

Note that this expression is equivalent to the dynamic programming algo-
rithm in (2.1) page 15.

If the request is rejected, then the total expected revenue is given by the
optimal expected revenue from the remaining decision periods t−1, . . . , 0, but
still with a remaining capacity of x, i.e., Vt−1(x). Intuitively, an acceptance
criterion is to accept a request for fare class i if the optimal expected revenue
of accepting the request is higher than the optimal expected revenue when
rejecting the request. This yields

Fi + Vt−1(x − 1) ≥ Vt−1(x). (3.8)

This acceptance criterion is derived mathematically in the following by
setting up a recursive formula for the total expected revenue, Vt(x). This
formula must include the case where the request is accepted, the case where
it is rejected, and the case where no request arrives. The probability of no
request in decision period t is given by P t

0, hence, the expected revenue from
no requests in period t is P t

0Vt−1(x). If a request arrives, the decision of
whether to accept it or not depends on which fare class the request is for.
As mentioned previously, if the request is for the most expensive fare class,
this will always be accepted as long as the capacity of the aircraft is not
exceeded. A request for fare class 1 yields the following expected revenue,
P t

1(F1 + Vt−1(x − 1)), where P t
1 is the probability of a request for fare class

1 in decision period t. If the request is for any of the fare classes 2, 3, . . . , k,
the acceptance rule (3.8) must be incorporated. This is done in the following
expression,

∑k
i=2 P t

i max(Fi + Vt−1(x − 1), Vt−1(x)).
To summarize, the following recursion formula is obtained

Vt(x) =






P t
0Vt−1(x) + P t

1

(
F1 + Vt−1(x − 1)

)

+
∑k

i=2 P t
i max

(
Fi + Vt−1(x − 1), Vt−1(x)

)
, for x > 0, t > 0

0 otherwise

(3.9)
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The expected marginal value of a seat in decision period t, given a re-
maining capacity x, ∆Vt(x), is the increase in expected revenue by selling a
seat in decision period t, i.e., ∆Vt(x) = Vt(x)−Vt(x−1). Rewriting equation
(3.9) to include ∆Vt(x) yields

Vt(x) − Vt−1(x) =

k∑

i=1

P t
i max (Fi − ∆Vt−1(x), 0) . (3.10)

For the derivation of this expression, see Appendix A.
The term Vt(x) − Vt−1(x) is the expected opportunity cost of holding

x seats from decision period t to t − 1. From (3.10) it is seen, that it is
more profitable to sell the requested seat in class i, if the first term in the
maximization is positive. Thus, a request is accepted if the revenue obtained
by accepting the request is larger than or equal to the expected marginal
value of that seat. Hence, the acceptance rule can be expressed as

Fi ≥ ∆Vt−1(x). (3.11)

This was the mathematical derivation of the intuitive acceptance rule pro-
posed in (3.8). I.e., a DP model has been set up.

In the following two sections, two algorithms for solving this model are
described.

3.2.1 The L&H Solution Method

In [19], Lee and Hersh show that the function ∆Vt(x) is non-increasing in x for
a fixed t. Thus, in a specific decision period the more remaining seats for sale,
the lower expected marginal value of a seat. Furthermore, ∆Vt(x) is shown to
be non-decreasing in t for a fixed x, i.e., given a specific remaining capacity,
the expected marginal value of a seat is lower closer to departure. This is
also reasonable, since when almost no time is left the airline is interested in
selling the seat to any class.

The monotonicity of the function ∆Vt(x) in x and t is shown in Figure 3.1.
Using the monotonicity of ∆Vt(x) leads to the fact, that the decision making
throughout the booking process is a matter of determining a set of critical
values. Figure 3.1 shows that for some value x̂i(t) when x < x̂i(t) the value
of ∆Vt−1(x) is greater than Fi and when x ≥ x̂i(t) the value of ∆Vt−1(x)
is smaller than Fi. According to (3.11) this means that for x < x̂i(t) the
request is rejected and for x ≥ x̂i(t) the request is accepted. Similarly a rule
for the decision period t can be derived. This yields the following two sets of
critical values
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Figure 3.1: Monotonicity of ∆Vt(x).

x̂i(t) For decision period t, for each fare class i, a set of critical booking
capacities exists, such that a request for a seat in fare class i is rejected
for x < x̂i(t) and accepted for x ≥ x̂i(t).

t̂i(x) For a remaining capacity x, for each fare class i, a set of critical decision
periods exists, such that a request for a seat in booking class i is rejected
for t > t̂i(x) and accepted for t ≤ t̂i(x).

For proof of the monotonicity of ∆Vt(x) and further explanation, see [19].
For making the accept/deny decision only one of the sets of critical values

is necessary. This set of critical values is revised only at the time the demand
forecasts and thus the request probabilities are revised. As mentioned in
Section 1.1 the airline’s booking system is such that decisions are made using
booking limits for each fare class. Therefore the critical values must be
transformed into booking limits. This is straightforward with the critical
capacities, hence only these and not the critical desision periods are used
in this report. The critical capacity for fare class i in decision period t,
x̂i(t), represents the lowest remaining capacity for a request for class i to be
accepted, see Figure 3.1. Hence, the booking limits for fare class i in decision
period t can be determined by subtracting the critical capacity x̂i(t) from the
remaining capacity and adding 1. This is illustrated by an example. Let the
capacity be C = 10 and the number of accepted requests be c = 3, then the
remaining capacity is x = 7. Furthermore, let the critical booking capacity
for fare class i be x̂i(t) = 7. Assuming an incoming request for fare class i,
then according to the critical capacity this request should be accepted, since
x ≥ x̂i(t). Next time a request arrives, the remaning capacity is x = 6, hence
if the request is for class i it should be rejected. These decisions should be
the same, if booking limits are used instead. Thus, in the same scenario
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when x = 7, the booking limit for class i must be equal to 1, since then the
first request will be accepted and all of the following will be rejected. This
is the case if the booking limit is calculated as described above, i.e.,

BLi(t) = x − x̂i(t) + 1 = 7 − 7 + 1 = 1.

Next time a request arrives the booking limit for fare class i is BLi(t) = 0,
hence if the request is for class i it is rejected.

To use the model proposed in Section 3.2 the request probabilities P t
i must

be determined. A technique for dividing the booking period into decision pe-
riods and evaluating the request probabilities is given in [19]. The booking
period is partitioned into data intervals. A data interval is a time interval in
the booking period in which the airline has collected demand data. Hence,
demand forecasts are given for each data interval by the airline. The data
intervals need not be of equal length, but it is assumed that a data interval
satisfies that requests in that interval follow a Poisson process. The user of
the model is required to decide upon the number of data intervals and these
need not be of equal length. Once the data intervals have been determined,
each data interval j is divided into νj decision periods of equal length. Let µj

i

be the expected number of requests in data interval j for fare class i and let
µj = µj

1 + µj
2 + · · ·+ µj

k be the expected number of requests in data interval
j for all fare classes. Then the requests for each decision period is a Poisson
process with mean µj/νj . A decision period is required to have no more than
one request arrival. This is handled by increasing the number of decision pe-
riods in data interval j, νj , until P (s ≥ 2) ≤ ǫ, where ǫ is a small probability
and s is a random variable denoting the number of requests arriving during
a decision period. Using the probability function for a Poisson process given
by

P (s) =
(µj/νj)s exp(−µj/νj)

s!
, for s = 0, 1, 2, . . . (3.12)

the value of νj can be determined from the following equation

1 − P (0) − P (1) ≤ ǫ, or 1 − exp(−µj/νj) − (µj/νj) exp(−µj/νj) ≤ ǫ.

When the number of decision periods in each data interval have been cal-
culated the request probabilities can be computed. The requests for fare
class i in decision period t in data interval j follow a Poisson process with
mean µj

i/ν
j . Since the request probability is the probability of exactly one

request arriving in decision period t, inserting in (3.12) with s = 1 yields the
following
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P t
i = (µj

i/ν
j) exp(−µj

i/ν
j). (3.13)

Hence, the only data needed is µj
i . The method does not require much data

storage either, since only the critical values need to be stored to make the
accept/deny decision.

Using the L&H method requires calculations of the value function Vt(x)
for all combinations of remaining capacity and decision periods. Hence, com-
putation time may get long for large problems, but the method is expected
to yield good results.

3.2.2 The B&P Solution Method

The L&H solution method solves the model described in Section 3.2 by cal-
culating the value of Vt(x) for all combinations of decision periods t and
remaining capacity x. This can be rather time consuming, even though it
only has to be done each time the demand forecasts are revised. In [8] an
approximation algorithm to the dynamic model in (3.10) page 26 is suggested
by Bertsimas and Popescu. The idea in the algorithm is to approximate the
value function Vt(x) in (3.10) with the optimal value of the objective function
of a linear programming (LP) problem, which is a deterministic analogue of
the stochastic dynamic problem. In the deterministic problem it is assumed
that the expected demand to come from time t to departure is also the actual
demand to come. Let Dt

i denote the expected demand to come from time t
to departure for fare class i. Assuming Dt

i is given, then for all x ≤ C and
t ≤ T , an LP model for the problem is easily obtained. The model is

LP (x, t) = max

k∑

i=1

Fi · yi (3.14)

s.t.
k∑

i=1

yi ≤ x (3.15)

0 ≤ yi ≤ Dt
i, ∀i, t (3.16)

where yi is the number of seats allocated to class i and the times t can be
decision periods, data intervals or other times specified by the user. The ob-
jective in the LP model is to maximize revenue. Hence, the objective function
value (3.14) is the revenue obtained by the allocation of seats. The constraint
(3.15) expresses that the remaining capacity must not be exceeded and (3.16)
ensures the number of allocated seats to be non-negative and less than or
equal to the expected demand for the remaining t time periods. Given integer
data, the optimal solution to this model will be integral. The reason for this
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is explained in the following. The constraint (3.15) can be written as Ay ≤ x
where the coefficient matrix A is a 1 × k matrix of ones. Proposition 3.3 in
[27] by Wolsey says that the linear program has an integral optimal solution
if x is integer and if the coefficient matrix is totally unimodular. According
to Definition 3.2 in [27] a matrix is totally unimodular if every square subma-
trix of the matrix has a determinant of +1, -1 or 0. The square submatrices
in the coefficient matrix, A are 1 × 1 matrices of ones. The determinants of
all these are 1 and hence the coefficient matrix is totally unimodular and the
optimal solution to the LP is integral.

The approximation DP algorithm is as follows:

For all combinations of remaining capacity x and user-specified times t

1. For a class i request at time t with a remaining capacity of x, compute the

LP-based estimate of the expected marginal value given by

∆V LP
t−1 (x) = LP (x, t − 1) − LP (x − 1, t − 1).

2. Accept the request for class i if and only if its fare Fi exceeds the expected

marginal value estimate, i.e.,

Fi ≥ ∆V LP
t−1 (x).

3. Go to step 1 and iterate as long as x < C for each t ≤ T .

Note that the acceptance rule in step 2 is given as in the L&H method,
see equation (3.11). The reason that the value function does not necessarily
need to be approximated in each decision period is that the value of V LP

t (x)
is independent of V LP

t−1 (x), as opposed to the value function in the DP model.
In the above algorithm, at each stage a decision is applied, which is optimal
when the uncertain parameter, the actual demand to come for each class
i is fixed at the expected value Dt

i. According to [7] by Bertsekas, this is
a certainty equivalent control (CEC) policy, which is a suboptimal control
scheme.

A problem with the CEC policy is that it uses a deterministic approach,
thus, it does not take the stochasticity of the problem into account. An exten-
sion to this algorithm is therefore in some way to incorporate the variability
in demand. This can be done by using Monte Carlo demand estimation.
Assume the cumulative demand to come for fare class i from time periods
t − 1 to departure follows a certain distribution. Then r samples from this
distribution can be generated, D̂t−1

i,1 , . . . , D̂t−1
i,r . For each of these the expected
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marginal value ∆V LP
t−1,j(x) is calculated and the marginal value used in step

1 in the algorithm is then an average of these, i.e.,

∆V LP
t−1 (x) = 1

r

r∑

j=1

∆V LP
t−1,j(x)

where ∆V LP
t−1,j(x) = LPj(x, t− 1)−LPj(x− 1, t− 1) and LPj(x, t− 1) is the

optimal value of the LP (3.14) with the jth sample D̂t−1
j as the demand.

The B&P solution method with Monte Carlo demand estimation will not
be used further in this work. This is due to the fact that running times for the
methods are critical and calculating the value function for each sample will
take approximately the number of samples times longer than just calculating
the value function with a deterministic demand. Hence, only the regular
B&P solution method will be used in all of the following. There are other
approximation algorithms, though, these are described for the SIC problem
with trade-up.

The B&P method is an approximation method for solving the model
proposed in Section 3.2. Hence, the revenue obtained when using this method
is expected to be smaller than the revenue obtained when using the L&H
method, but running times are expected to be shorter.

3.3 Implementation

The four different solution methods for the SIC problem without trade-up
described in the previous sections are the EMSRa heuristic, the EMSRb
heuristic, the L&H method and the B&P method. These methods are imple-
mented in Matlab Version 7.0 and the programs for these are enclosed on the
CD in the folder SIC without TU/Main Functions. In Table C.1, Appendix
C, a list of the main functions described in this section is given. Furthermore,
in this table the different inputs and outputs used by the programs are given.
The description of these variables can be seen in Table C.2, Appendix C.

3.3.1 Simulation

Simulation is often used by mathematicians and operations researchers to
analyze problems, which are so complicated, that a purely theoretical treat-
ment is practically impossible. Simulations are numerical experiments, where
models for the system under consideration are programmed and the experi-
ment is to run the program with different sets of input. Usually randomness
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plays an important role in the models under consideration. A stochastic
simulation is when this randomness is included in the simulation.

In the simulation in this report the aim is to simulate an arrival process,
i.e., simulate a booking process for a given flight departure. This is an event-
driven model, which means that arrivals occur at irregular and random time
intervals. It is assumed that a Poisson process can be used to describe the
process of arrivals. Randomness plays an important role since the arrival
times of the requests are unknown and so is the class, which is requested.

In the following a Poisson process is briefly described. Let N(t) be a
random variable denoting the number of events that occur during the con-
tinuous time interval [0, t], and let n = 0, 1, 2, . . . be the number of events.
Then Pn(t) = P{N(t) = n} is the probability that exactly n events occur
in the time interval [0, t]. If this probability can be characterized by the
following three items, then Pn(t) is called a Poisson process and the random
variable N(t) is a Poisson random variable:

1. The number of events that occur during a time interval is indepen-
dent of the number of events that have occured over any other non-
overlapping time interval. Thus, the number of events occuring in the
time interval [t1, t2] is statistically independent of the number of events
that occur in the time interval [t2, t3].

2. The probability that a single event occurs over a short time interval
[t, t + h] is approximately proportional to h. More accurately P1(h) =
λh + ε, where ε is a small number and λ is the number of arrivals in
that time interval.

3. The probability that more than a single event occurs during a short
time interval [t, t + h] is basically zero. That is Pn(h) = ε, n > 1.

The simulation process is implemented in the program Simulation.m

and this is used for the simulation in all instances, where trade-up is not
incorporated. From the expected demand in each data interval, a matrix
of probabilities is calculated such that the (i, j)th element is the probability
that an arrival in data interval i is for fare class j. Next, the end time of each
decision period is calculated, such that these times can be used to determine
in which decision periods the arrivals occur.

The arrival times are generated as a Poisson process, and since these have
exponentially distributed inter-event times, a Poisson process can be simu-
lated by generating a sequence of exponentially distributed random variables,
representing the times at which a passenger places a request. These random
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variables can be found by using the following formula until the desired num-
ber of arrival times has been obtained.

tnew = told − µ · ln(RND), (3.17)

where µ is the mean inter-event time and RND is a uniformly distributed
random number in the interval [0, 1]. Note that the arrivals are simulated
from time T to 0. To use (3.17), the mean inter-event time µ must be
determined. This is done by dividing the length of the data interval in
which the previous arrival occured with the expected number of arrivals in
that data interval. This way of determining the mean inter-event times may
cause problems if some data intervals have a very low expected demand. I.e.,
when calculating the mean inter-event time, this number goes toward infinity
as the total expected demand in that data interval goes toward zero. Since

RND ∈ [0, 1] ⇒ ln(RND) ∈ (−∞, 0],

and µ → ∞ if the expected number of arrivals in the data interval of the
previous arrival is extremely small, then from (3.17) it is seen that the time
between the previous arrival and the incoming arrival gets very large. This
may cause the arrivals to skip one or more data intervals and this can happen
even though the expected demands in the skipped data intervals are high.
To overcome this problem some precautions must be made in the program
Simulation.m. The stopping criterion is made such that the arrival process
only terminates if both the booking time has run out and if the previous
arrival occured in data interval 1. Furthermore, it is examined whether the
following two conditions are satisfied and if both conditions are satisfied the
incoming arrival is not stored. The conditions are

• The time between the previous arrival and the incoming arrival is larger
than the length of the data interval after the previous arrival.

• The previous arrival and the incoming arrival occur in different data
intervals.

In Figure 3.2 two different arrival scenarios are illustrated. Arrival sce-
nario 1 is seen to only satisfy the condition in the first item, whereas arrival
scenario 2 satisfies both conditions. In arrival scenario 1 both arrivals are
to be stored, but in arrival scenario 2 a data interval is skipped and hence
the second arrival is not stored. Instead told in the equation (3.17) is set to
be the beginning of the data interval immediately after the previous arrival,
i.e., data interval 3 in the example.
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Figure 3.2: Two Different Arrival Scenarios.

This way the problem with too large inter-event times is overcome. The
arrival times obtained by the program are stored in a vector and arrivals are
generated until the time of departure, which is at time t = 0.

The times obtained are in continuous time, and the matrix with booking
limits obtained when using L&H and B&P is indexed by the fare class and
the decision periods in which the arrival occurs. Therefore, the continuous
times are transformed into decision periods.

Now it remains to determine which fare class each passenger requests. For
each data interval, the probability of a request for each class must be found.
This is done by, for each data interval, dividing the number of expected
requests for a specific class by the total number of expected requests for all
classes. The probability is denoted di for fare class i. Let v be a vector given
by

v = [d1, d1 + d2, d1 + d2 + d3, . . . , d1 + d2 + · · ·+ dk]

= [d1,1, d1,2, d1,3, . . . , d1,k]

where k is the number of different fare classes and d1,j = d1 + d2 + · · · + dj

is the cumulated probabilities of a request for class 1 to j and since the
probabilities sum to one, d1,k = 1. A request can then be simulated to be for
a specific class by generating a uniformly distributed random number, RND
∈ [0, 1] and then finding the index of the smallest element in v, which is larger
than RND, since this index corresponds to the requested class. The outputs
from the program are four vectors containing the arrival times, the requested
classes, the data intervals in which the arrivals occur and the decision periods
in which the arrivals occur. See Table C.1 in Appendix C for inputs to and
outputs from the program and Table C.2, Appendix C, for explanation of
these variables.
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3.3.2 The Static Methods

The EMSRa heuristic is implemented in the program EMSR.m. Initially in
the implementation the probabilities Φi(S

j
i ), defined in Section 3.1.1, are

calculated for all combinations of fare classes, i, and seat allocations, Sj
i .

This is done by finding the probability that the total demand for fare class i
for the entire booking period is greater than the number of seats protected
for fare class i from class j, Sj

i . The built-in Matlab function poisscdf.m is
used and this function computes the Poisson cumulative distribution function
with parameters 1, . . . , C at the values of the forecasted demand for the entire
booking period. Thus, the values of Φi(S

j
i ) are stored in a C × k matrix,

where k is the number of fare classes and C is the capacity of the aircraft.
Then initial protection levels for each fare class from all lower-fare classes are
calculated. The protection level for class i from fare class j is determined by
finding the largest value of Sj

i , which satisfies Fi · Φi(S
j
i ) ≥ Fj , as given in

(3.2) page 21. From the initial protection level for class i, the initial booking
limit for class i is calculated by the maximum of zero and the capacity minus
the sum of the protection levels for all higher-fare classes, 1, . . . , i − 1, see
(3.3) page 21.

The arrivals from the simulation process are then considered one by one.
Before each arrival it is determined whether an update of the booking limits
should be made. This is done by determining whether the next arrival from
the simulation process arrives after a decision period where an update must
be made according to an input vector containing the decision periods in which
an update should be made. If an update of the booking limits must be made,
this is done first, and the arrival is accepted or rejected according to the new
booking limits. The update of the booking limits is calculated similarly to
the initial booking limits by first calculating protection levels for each class
from all lower-fare classes. Again a matrix with the probabilities Φi(S

j
i ) is

calculated for all combinations of fare classes and seat allocations by using
Matlabs poisscdf.m. This time the function is used with the total demand
for fare class i from the time at which the booking limits are updated and
until departure. The updated booking limit for class i is calculated by using
(3.4) page 21.

Now a passenger requesting fare class i is accepted if the booking limit for
fare class i minus the number of already accepted passengers in fare classes
i, . . . , k is greater than zero and if none of the booking limits for higher fare
classes are exceeded by accepting the request. The last condition is due to
the fact that the booking limits are nested as described in Section 1.1. If
a passenger is accepted in fare class i, then 1 is added to the number of
accepted passengers in fare class i and the fare for that class Fi is added to
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the total revenue.

The procedure is repeated until either all seats in the aircraft have been
sold, no more requests for seats are received or the booking period is termi-
nated.

The EMSRb heuristic is implemented in the program EMSRb.m. The im-
plementation of the EMSRb heuristic is similar to the implementation of
the EMSRa heuristic. Hence, only the differences in the implementation are
described. Initially in the implementation of the EMSRb heuristic, joint de-
mand for all fare classes is calculated. This is due to the fact that in EMSRb
seat protection levels are calculated jointly for all higher-fare classes relative
to a given lower-fare class, as opposed to EMSRa, where seat protection levels
are calculated for all higher fare classes from all lower-fare classes pairwise.

The probabilities Φ1,i are found for all fare classes i by determining the
probabilities

Φ1,i(πi) = P [X1 + X2 + · · · + Xi > πi] , i = 1, . . . , k − 1,

where k is the number of classes, Xj is the demand for fare class j and πi is
the number of seats protected for classes 1 to i from class i + 1. Again the
built-in Matlab function poisscdf.m is used and hence Φ1,i(πi) is a C × k
matrix, where k is the number of fare classes and C is the capacity of the
aircraft.

Then joint fares are calculated by

F1,i =

∑i

n=1 Fn · Xn

X1,i

.

These joint fares are set to zero, whenever the denominator is zero. This
happens when the sum of the expected demand for all fare classes in a data
interval is zero, which is only the case when the demand for each class in
that data interval is zero, since the demand is non-negative. Therefore the
numerator is zero as well, and hence the joint fare is zero. The joint protection
levels are calculated using these joint fares and the updated booking limit for
class i is calculated by (3.7) page 23. The update of the booking limits and
the procedure when a passenger is to be accepted or rejected is exactly the
same as in the implementation of the EMSRa heuristic. The outputs from
both EMSR.m and EMSRb.m are the revenues obtained from the simulation
process.
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3.3.3 The Dynamic Methods

The L&H method is implemented in the Matlab program LHBL.m. Initially,
the request probabilities P t

i for each decision period t and each fare class i
are calculated using (3.13) page 29. By using these request probabilities, the
total expected revenue Vt(x) can be calculated using (3.10) page 26 for each
decision period t and each remaining capacity x.

In Section 3.2.1 it is described how an incoming request is accepted or
rejected by comparing the remaining capacity with a critical booking capa-
city. The critical capacities are calculated by finding the smallest value of
remaining capacity for which ∆Vt(x) is lower than or equal to the fare for the
requested class. This is done for each decision period and each fare class and
thus the critical booking capacities are stored in a k × T matrix, where k is
the number of fare classes and T is the number of decision periods. When the
critical capacities have been calculated these can easily be transformed into
booking limits, and this is done as described in Section 3.2.1. This matrix is
given as output from the program.

The program calcRevenue.m is used to calculate the revenue from the simu-
lation process by using the booking limits obtained by the program LHBL.m.
The inputs to this function can be seen in Table C.1, Appendix C. When
using the function calcRevenue.m to calculate the revenue after using the
solution method from L&H, there are two different input scenarios. If there
are only eight inputs to the function, the booking limits are updated in each
decision period, hence the entire matrix of booking limits from the method
is used. Otherwise the vector specifying the decision periods in which the
booking limits need to be updated is non-empty and then the booking limits
are only updated at prespecified times. Of course this method is less accurate
than updating in each decision period since not all the available information
is used. This is an option when using the function, since then the method is
directly usable in the airline’s booking system as it is now.

Whether to accept or reject a booking request is considered as the requests
occur. A request for fare class i in decision period t is accepted or rejected
by looking at the (i, t)th element in the matrix containing the booking limits
minus the total number of passengers who have already been accepted. If this
number is larger than or equal to zero, the request should be accepted and
rejected otherwise. When a passenger is accepted, 1 is added to the number
of accepted passengers and the fare of the requested class Fi is added to the
revenue obtained by accepting previous passengers for the flight. The output
from the program is the revenue obtained from the simulation.
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The program PopBL.m contains the implementation of the B&P method.
This implementation is made very similarly to the implementation of the
L&H method. Hence, only the differences between the two functions are
described. Instead of calculating the request probabilities, the expected de-
mand to come for each decision period and each fare class is calculated. This
yields a T × k matrix, where T is the number of decision periods and k is
the number of fare classes.

Now, as described in Section 3.2.2, an LP must be solved for each decision
period and each remaining capacity. Since the LP is deterministic, the ex-
pected demand is assumed to be the actual demand to come, hence, the LP
is easily solved by first accomodating the demand most valuable to the air-
line, then fill up with the second most valuable demand, then the third most,
etc. The matrix obtained by this procedure has V LP

t (x) as entries for each
decision period and each remaining capacity, and is an approximation to the
matrix containing the values of Vt(x) described in Section 3.2.1. Thus, what
remains to be done is to calculate the matrix of critical booking capacities.
This is done as in the program LHBL.m.

The program calcRevenue.m is used to calculate the total revenue from
a simulation process when using the B&P method. Again, there are two
input scenarios. As with the L&H method when there are eight inputs, the
booking limits are updated in each decision period. The difference is when
there are nine inputs. Then the matrix containing booking limits is an empty
matrix and a vector specifying the decision periods in which an update must
be made is input to the program. Next a linear program is solved in each of
the decision periods specified in the input vector. This can be done since the
LP’s in the B&P method only depend on one time-period and can hence be
solved independently of each other. Thus, instead of calculating the entire
matrix with booking limits, a much simpler approach is to only solve the
linear programs for the decision periods specified in the input vector. This
procedure is much less time-consuming than calculating the entire matrix of
booking limits.



Chapter 4

SIC with Trade-Up

In Chapter 3, four different solution methods for the basic SIC problem were
described. These methods, however, do not take trade-up into account. In
this chapter different solution methods for the SIC problem with trade-up
will be described.

It is assumed, that after a passenger has been rejected this person has
the following choices

• Deviate, i.e., travel with a competitor or cancel the trip.

• Be recaptured, i.e., travel on a different flight but with the same airline.

• Trade up, i.e., buy a more expensive ticket than initially intended on
the same flight.

Deviation inevitably implies lost sales for the airline and since only single
flights are considered in this report, recapture is not modelled. Trade-up,
however, can be modelled for a single flight, which may imply a higher revenue
for the airline. Since by modelling trade-up, the airline has an opportunity to
use the additional information about passengers’ preferences in their decision
making.

It may not always be preferable to include trade-up in the models, though.
Trade-up is very dependent on the competition in the market. Hence, the
market under consideration must be investigated carefully and data about
customer behaviour must be collected before a solution method for the SIC
problem with trade-up is applied. For instance, in a market where competi-
tors have many flights it is assumed that few potential customers trade up,
since it is easy to book a ticket on a competitor flight. Similarly, in a market
where few competitor flights exist, it is assumed that many passengers trade
up, since it is difficult to book a ticket with another airline.
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In a market where trade-up behaviour occurs, two different kinds of fare
classes exist. The first kind are trade-up classes, i.e., passengers are assumed
to trade up from and to these classes. The second kind are independent
classes as for the problem without trade-up, for instance transfer traffic,
which are fare classes from and to which passengers cannot trade up. Hence,
these classes are treated as independent of the trade-up classes. To simplify
matters, in this report it is chosen to ignore the independent classes when a
trade-up market is considered.

Now there are two types of trade-up markets. The simplest one is where
the fares in the different trade-up classes have the same fare conditions, so
they only differ in price. For example, in BA’s Domestic and European fare
structure, five classes have exactly the same conditions. In such a situation,
everybody tries to book the lowest open class. In a less simple world, the fares
in the trade-up classes differ not only by price, but also by fare conditions.
Thus, a passenger may request a class that is not the lowest open class
because of the more relaxed fare conditions. For example, in addition to a
number of non-flexible fares with the same conditions, BA also offers semi-
flexible and fully flexible fares, and trade-up from a non-flexible fare to one
with more flexibility can be observed.

To make this report usable regardless of the assumptions on the trade-up
market, it is chosen to model both cases. I.e., when trade-up is considered,
two cases apply and these are

1. Buying conditions for different trade-up classes differ and hence, de-
mand can occur for all classes, not only the least expensive class. The
models for the SIC problem with these assumptions will be called the
“general models”.

2. Trade-up classes have the same buying conditions, thus, when a request
arrives this will always be for the least expensive class in the trade-up
market. These models will be denoted the “simplified models”, since
the SIC problem get simpler when these assumptions apply.

In both cases, if a passenger chooses to trade up, this will always be to the
least expensive open class, since fewer buying conditions apply to the ticket,
the more expensive the ticket is. Hence, the buying conditions in fare class 4
will always satisfy the needs of a passenger who requests fare class 5, which
is a less expensive class.

In the different solution methods for the SIC problem with trade-up, two
different varieties of the trade-up rates will be used depending on the method.
The first trade-up rate is denoted TUi,j and this has the following definition
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The proportion of passengers that would buy classes i or all higher-
fare classes that would trade up further to classes 1, . . . , j.

The trade-up rates collected by the airline are TUk,i, i = 1, . . . , k, i.e., the
trade-up rates from the lowest class in the market, class k, to another class
i and all higher classes. The rates TUi,j are then calculated by

TUi,j =
TUk,j

TUk,i

, i > j. (4.1)

The second trade-up rate is denoted qi,j and is defined by

The proportion of passengers that would buy class i or all higher-
fare classes that would trade up further only to class j.

This trade-up rate is calculated by

qi,j = TUi,j − TUi,j−1 =
TUk,j − TUk,j−1

TUk,i

, i > j, (4.2)

where, by definition, TUk,0 = 0.

In the following sections the models for the two cases of the SIC problem
with trade-up will be described. In Section 4.1 the models for the general
SIC problem with trade-up are introduced. Next, in Section 4.2 the simplified
SIC problem with trade-up is described.

4.1 General SIC with Trade-Up

In this section the methods for solving the problem with the general assump-
tions are set up and described. First the EMSRb method with trade-up is
explained. This method is derived by combining a decision rule with trade-up
with the EMSRb method without trade-up. Next a DP model is set up for
the general SIC problem with trade-up. For solving this an exact method,
the You solution method, is described. Furthermore three approximation me-
thods for solving the DP model are suggested. These are the B&P method
with trade-up, the C,G&J method and the C&H method.

4.1.1 EMSRb with Trade-Up

It is obvious to start with the well-known EMSRb model described in Section
3.1.2 when solving the SIC problem with trade-up, since this solution method
is assumed to produce decent results with fairly short running times. The
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original EMSRb method does not take trade-up into account, therefore the
heuristic is combined with a decision rule which incorporates this. In [6]
Belobaba and Weatherford describe a combination of the EMSRb method
and a decision rule with trade-up.

The idea in the decision rule with trade-up is to determine whether the
seat allocation for a specific class should be increased by one seat each time
a request arrives. The passenger should be accepted, i.e., the number of
seats allocated for the requested class should be increased by one seat, if
the expected net revenue from accepting the request is greater than zero.
The expected net revenue is the revenue gained when selling the seat minus
the expected loss in revenue if the remaining capacity fails to meet future
demand for more expensive fare classes.

Figure 4.1: Decision Tree for Class i.

The decision of whether to increase the number of seats or not, is easiest
to survey with a decision tree. In Figure 4.1 the decision tree for determining
if the number of seats for class i should be raised from zi to zi + 1 is seen.
The tree should be contemplated in the following way. An incoming request
is for one of the classes 1, . . . , k. The parameter βi is the probability that the
incoming request is a strict class i request. The value pi−1 is the probability
that the remaining capacity after selling an additional seat in class i will not
fail to meet subsequent class i − 1 demand. Trade-up between non-adjacent
classes is ignored in [6]. Therefore only subsequent demand for class i − 1 is
considered as opposed to subsequent demand for classes 1, . . . , i− 1. This is
also why the revenue gained, i.e., the values to the right in the figure, can
only be Fi − Fi−1 as opposed to for instance Fi − Fi−2. Sales in lower-fare
classes are expected to be closed first followed by sales in higher-fare classes.
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Hence, when considering whether to sell an additional seat in fare class i,
classes i + 1, . . . , k have already been closed for sales. Therefore, if requests
for these classes occur, the revenue gained is zero, see Figure 4.1.

The expected net revenue is obtained by the sum of all possible outcomes
when a passenger arrives, weighted with the probabilities for a specific out-
come, i.e., the decision rule is as follows. Accept a request for fare class i
if

βk · 0 + βk−1 · 0 + · · · + βi · pi−1 · Fi + βi · (1 − pi−1) · (Fi − Fi−1)

+ βi−1 · pi−1 · (Fi − Fi−1) + βi−1 · (1 − pi−1) · (Fi − Fi−1)

+ · · ·+ β1 · pi−1 · (Fi − Fi−1) + β1 · (1 − pi−1) · (Fi − Fi−1) > 0.

This expression can be simplified to the following
(

βi

βi + βi−1 + · · ·+ β1

)
· pi−1 >

Fi−1 − Fi

Fi−1

. (4.3)

Therefore, when a request for fare class i arrives and if (4.3) holds, the
number of seats reserved for class i should be increased by one and otherwise
it should not.

Since
∑k

i=1 βi = 1 the decision rule for class k is given by

βk · pk−1 >
Fk−1 − Fk

Fk−1
.

Recall, that the trade-up rates from class i + 1 to class i and all higher-fare
classes, TUi+1,i is defined by the following

The proportion of passengers that would buy classes i + 1 or all
higher-fare classes that would trade up further to classes 1, . . . , i.

Hence, the trade-up rate from class i+1 to class i and all higgher-fare classes
is given by

TUi+1,i =
βi + ... + β1

βi+1 + ... + β1
= 1 −

βi+1

βi+1 + ... + β1
. (4.4)

As mentioned previously, pi is the probability that the remaining capacity
after selling an additional seat in class i + 1 will not fail to meet subsequent
class i demand. From Section 3.1.2 recall that Φi(πi) is the probability of
having to reject requests for fare classes 1, . . . , i − 1, thus Φi(πi) = 1 − pi.
Furthermore from this section recall the joint fares given by

F1,i =

∑i

n=1 Fn · Xn

X1,i

,
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where X1,i =
∑i

n=1 Xn. By inserting the joint fares F1,i, the probabilities
Φi(πi) = 1−pi and (4.4) in the decision rule (4.3) and replacing the inequality
sign with an equality sign the following is obtained

βi+1

βi+1 + βi + · · ·+ β1
· (1 − Φi(πi)) =

F1,i − Fi+1

F1,i

m

(1 − TUi+1,i) · (Φi(πi) − 1) =
Fi+1 − F1,i

F1,i

m

Φi(πi) · (1 − TUi+1,i) · F1,i + F1,i · TUi+1,i = Fi+1

m

Φi(πi) =
Fi+1 − F1,i · TUi+1,i

F1,i · (1 − TUi+1,i)
. (4.5)

This is a combination of the decision rule (4.3) and EMSRb without trade-
up, thus F1,i is given as in (3.5) page 23 and the task is to find the protection
level πi such that (4.5) is satisfied.

The booking limit for fare class i + 1 can then be found the same way as
in Section 3.1.2 by

BLi+1 = C − πi.

where C is the total capacity of the aircraft.
As the EMSRa and EMSRb solution methods described in Sections 3.1.1

and 3.1.2, this EMSRb method with trade-up is a static solution method,
which can be applied a number of times to a dynamic problem. The method
is a heuristic, thus it is assumed to be reasonably fast, but the results obtained
are expected to be worse than those obtained with exact solution methods
solving models which incorporate trade-up.

4.1.2 The You Solution Method

As for the problem without trade-up, the SIC problem with trade-up can
be formulated as a dynamic programming problem. In [28] You models the
problem as a dynamic Markov Decision Problem with trade-up. This model
corresponds to the model in [19] by Lee and Hersh but now trade-up is
incorporated.

The formulation of the value function, when trade-up is included, is
slightly different than the value function for the problem without trade-up
given in (3.9) page 25. Recall, that the value function Vt(x) denotes the
expected revenue at time t with a remaining capacity of x. A request for fare
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class i is only accepted, if the expected revenue obtained by accepting the
request is greater than or equal to the expected revenue when rejecting the
request, i.e.,

Fi + Vt−1(x − 1) ≥ U i
t (x), (4.6)

where U i
t (x) is the total expected revenue generated with t decision periods

and x seats remaining when a request for fare class i is rejected. The following
value function is obtained

Vt(x) =






P t
0Vt−1(x) + P t

1

(
F1 + Vt−1(x − 1)

)

+
∑k

i=2 P t
i max

(
Vt−1(x − 1) + Fi, U

i
t (x)

)
for x > 0, t > 0

0 otherwise

(4.7)

where P t
0 = 1 −

∑k

i=1 P t
i . If a request for fare class i ≥ 2 is rejected, then

with a certain probability the passenger requests a higher-fare class instead.
Therefore, a set of higher-fare classes from the set {1, 2, . . . , i− 1} is offered,
and thus this set must be determined. Let the set, which is offered, be
denoted A0 and let the set Ai be given by Ai = {1, 2, . . . , i−1}, i.e., A0 ⊆ Ai.
For x > 0 and t > 0, U i

t (x) is then given by

U i
t (x) = max

A0⊆Ai





∑

n∈A0

qi,n

(
Fn + Vt−1(x − 1)

)
+

(
1 −

∑

n∈A0

qi,n

)
Vt−1(x)




 (4.8)

where qi,n is the probability that the rejected customer for class i is willing
to trade up to fare class n and the set A0 is the decision variable.

Recall the assumption that when a request is rejected and the rejected
passenger chooses to trade up, this will always be to the least expensive open
class. Therefore it is only necessary to determine the lowest-fare class which
is offered. This class is denoted j and it is a function of t, i and x, i.e., ji

t(x).
Applying the assumption to (4.8) yields the following expression

U i
t (x) = max

j∈Ai

{
TUi,j

(
Fi + Vt−1(x − 1)

)
+

(
1 − TUi,j

)
Vt−1(x)

}
.

Notice that different trade-up rates have been used in the two expressions
for U t

i (x). The definitions of the are given in (4.2) and (4.1) page 41. The
acceptance/rejection process consists of two steps,

1. Reject or accept a request.

2. If a request is rejected, which fare class should be offered.
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The decision rules for these items will be developed in the following. Recall
that

∆Vt(x) = Vt(x) − Vt(x − 1), for x > 0, t ≥ 0

is the expected marginal value of the xth seat in decision period t. Incorpo-
rating this expression in the formulas for Vt(x) and U i

t (x) yields

Vt(x) =Vt−1(x) + P t
1

(
F1 − ∆Vt−1(x)

)

+

k∑

i=2

P t
i max

{
Fi − ∆Vt−1(x), max

j∈Ai

gi
t(x, j)

}
(4.9)

U i
t (x) =Vt−1(x) + max

j∈Ai

gi
t(x, j), i ≥ 2 (4.10)

where

gi
t(x, j) = TUi,j

(
Fj − ∆Vt−1(x)

)
, i ≥ 2. (4.11)

Consider the value function given in (4.9) and the value function for the
problem without trade-up given in (3.10) page 26. The difference is that the
last term in the maximization in (4.9) is positive, whereas the last term in
the maximization for the problem without trade-up is zero. This happens
because in the problem without trade-up, if a class is closed for sales all
demand for that class is lost. However, for the problem with trade-up, if a
class is closed, the passenger requesting that class may choose to trade up to
another class which is offered, i.e., class j.

As mentioned previously, two decisions need to be made when a request
arrives. The first decision is whether to accept or reject the request. As
seen in (4.6), this decision depends on the difference between U i

t (x) and
Vt−1(x − 1) + Fi. For x > 0, t > 0 and i ≥ 2, let hi

t(x) describe this
difference, i.e.,

hi
t(x) = U i

t (x) − (Vt−1(x − 1) + Fi) (4.12)

= ∆Vt−1(x) + max
j∈Ai

gi
t(x, j) − Fi.

This can be interpreted as follows. A request for fare class i in decision
period t is accepted if hi

t(x) ≤ 0 and otherwise rejected. In [28], You shows
that hi

t(x) is non-increasing in x for a given t and i. Hence, as in Section 3.3.3
the acceptance/rejection decision can be reduced to a set of critical booking
capacities x̂i(t) such that hi

t(x) ≤ 0 for x ≥ x̂i(t) and hi
t(x) > 0 for x < x̂i(t).

This is illustrated in Figure 4.2.
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Figure 4.2: Illustration of Critical Booking Capacity.

If a request is rejected, it must be determined which class should be
offered, i.e., the class j must be found. Recall that U t

i (x) is the total expected
revenue generated with t decision periods and x seats remaining when a
request for fare class i is rejected. Hence, when determining the class j
offered to the rejected request, this is done by maximizing the expression for
U t

i (x) given in (4.10). Thus, the class j is determined by

max
j∈Ai

gi
t(x, j) = max

j∈Ai

{
TUi,j

(
Fj − ∆Vt−1(x)

)}
, i ≥ 2. (4.13)

Now both decision rules for the acceptance/rejection process have been set
up.

Calculations of the value function for all combinations of t and x are
required when using the You method. Thus computation time may get pro-
hibitive even though results are assumed to be good.

4.1.3 The B&P Solution Methods with Trade-Up

Two versions of the B&P method with trade-up are described in this section.
The first method will in all of the following be denoted the adjusted B&P
method with trade-up and the second method will be denoted the B&P LP
method with trade-up. Either method can be used as an approximation
method for the SIC problem with trade-up.



48 SIC with Trade-Up

The Adjusted B&P Method with Trade-Up

The B&P solution method for the SIC problem without trade-up is easy
to implement and is assumed to yield fairly good results fast. Hence, it is
obvious to attempt using this method for the problem with trade-up as well.
The expected demand used for the problem without trade-up can be adjusted
such that trade-up is taken into account. This is done by for each class
adding the expected number of passengers who will trade up from all lower-
fare classes to this class and subtracting the expected number of passengers
who will trade up from this class to all higher-fare classes. This yields the
following adjusted demand for fare class i

Dadjust
i = Di +

k∑

j=i+1

qj,i · Dj −
i−1∑

h=1

qi,h · Di, i = 1, . . . , k, (4.14)

where Di is the expected number of requests for fare class i and qi,j is the
trade-up rate from class i to class j. There is no trade-up to class k and no
trade-up from class 1.

The procedure and LP model when using this method is the same as
described in Section 3.2.2 but the demand used in the method is the adjusted
demand given by (4.14), where trade-up is taken into account. Thus, the
method is used to approximate the value function suggested by Lee and Hersh
described in Section 3.2, where the demand has been revised using (4.14).
The value function Vt(x) is approximated for all combinations of decision
periods t and remaining capacities x with the optimal value of the objective
function of the linear programming model, LP(x, t) given in (3.14) page 29
with adjusted demand. This LP is very easy to solve, an optimal solution
is to fill in as much as possible of the demand for the most expensive class,
then the demand for the second most expensive class, etc. This continues
until the capacity of the aircraft has been reached.

Recall that ∆V LP
t (x) = V LP

t (x) − V LP
t (x − 1) = LP(x, t) − LP(x − 1, t)

and that the decision rule is to accept a request for fare class i if the following
holds

Fi ≥ ∆V LP
t−1 (x), for t > 0, x ≥ 0, ∀i.

As for the problem without trade-up this method is an approximation
algorithm, which is expected to be fast but the results obtained are not
expected to be as good as the results obtained when using the You solution
method.
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The B&P LP Method with Trade-Up

The adjusted B&P method is simple and it is easy to solve the LP, but it may
not be a very good approximation method for the problem with trade-up.
Another approach is to solve the following LP problem proposed by Algers,
Andersson and Kohler in [1]:

LP (x, t) = max

k∑

i=1

Fi · yi (4.15)

s.t.

k∑

i=1

yi ≤ x

yk + rk = Dt
k

yi + ri = Dt
i + ri+1 · TUi+1,i, for i = 1, . . . , k − 1 (4.16)

yi ≥ 0, ri ≥ 0, ∀i.

In this model yi is the seat allocation for fare class i, ri is the number of
rejections of passengers requesting fare class i, Dt

i is the expected total de-
mand for class i from time t to departure and TU t

i+1,i is the probability at
time t that a rejected passenger requesting fare class i + 1 is willing to trade
up to fare class i and all higher-fare classes. The objective is to maximize to-
tal revenue and this is subject to the constraint that the remaining capacity
cannot be exceeded.

The constraints in (4.16) have the sum of the number of allocated seats
for fare class i and the number of rejected requests for fare class i on the left-
hand side. This must be equal to the right-hand side, which is the demand
for fare class i plus the proportion of rejected passengers in class i + 1 that
trades up to class i, i.e., the total demand for fare class i. It is only necessary
to consider neighboring classes, since if it is optimal to close class i, too, then
yi = 0, and the whole right-hand side is rejected. Then a proportion of that
demand, namely TUi,i−1, may trade up to class i − 1 and is added to Di−1,
etc. The decision variables in the model are yi and ri, i = 1, . . . , k.

This method approximates the value function suggested by You described
in Section 4.1.2. Therefore the decision rule (4.12) page 46 is used for the ac-
ceptance/rejection decisions and the offering decisions are made using (4.13)
page 47.

4.1.4 The C,G&J Solution Method

In [11] an approximation algorithm for solving the SIC Problem without
trade-up is proposed by Chen, Gunther and Johnson. The method will be
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denoted the C,G&J solution method and in this section the ideas in this
method are applied to the model for the SIC problem with trade-up. In
the algorithm upper and lower bounds for ∆Vt(x) are calculated. These
bounds are then used to make the decision of whether an incoming request
is accepted or rejected. A main idea is to use methods which calculate the
bounds quickly, since it may be computationally difficult to determine the
optimal value of ∆Vt(x).

In [11] it is suggested to use the optimal value of a deterministic LP to
calculate the upper bound for ∆Vt(x) for the problem without trade-up. The
value function Vt(x) for the problem without trade-up is given in (3.9) page
25. The LP suggested in the paper is as given in (3.14) page 29. Let the
optimal value of this LP be denoted V̂t(x). In [11] it is proven that V̂t(x) forms
an upper bound for the value function (3.9). This fact is used to prove that
∆V̂t(x) is an upper bound for ∆Vt(x). Furthermore, a stochastic LP is proven
to be a lower bound for the value function. Let this lower bound be denoted
V̌t(x), then the paper proves that ∆V̌t(x) is also a lower bound for ∆Vt(x).
From these results the following algorithm for the acceptance/rejection of a
class i request is obtained.

1. If ∆V̌t−1(x) ≥ Fi then reject the request. Otherwise go to step 2.

2. If ∆V̂t−1(x) ≤ Fi then accept the request. Otherwise go to step 3.

3. Draw a random number r from the interval [∆V̌t−1(x),∆V̂t−1(x)].

4. If r < Fi then accept the request. Otherwise reject the request.

The simplest way to apply these ideas to the SIC problem with trade-up,
is to consider the LP given in (3.14) page 29. This LP is the same as the
deterministic LP used in [11], and hence the results from the paper can be
used directly. In the adjusted B&P method with trade-up, this LP is used
with revised demand, such that trade-up is incorporated. If the same revised
demand is used in the value function (3.9) page 25 for the L&H method, then
the adjusted B&P method yields an upper bound for this value function.
Therefore ∆V̂t(x) calculated with the adjusted B&P method with trade-up
is also an upper bound for ∆Vt(x) calculated with the L&H method with
revised demand. A lower bound can be obtained by revising the expected
demand to incorporate trade-up in the stochastic model proposed in [11].
When the upper and lower bounds have been found the above algorithm can
be used to determine whether a request should be accepted or rejected. It
is not expected that the above procedure yields good results for the problem
with trade-up, since trade-up is only incorporated in the demand and not
explicitly in the model.
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Bounds for ∆Vt(x) in the You method

The procedure just described is used for determining bounds for ∆Vt(x)
calculated using the L&H method with revised demand. Another approach
to the C,G&J method is to determine bounds for ∆Vt(x) calculated using the
You method. This method is expected to give better results, since trade-up
is explicitly incorporated in the model. To apply the above ideas to the You
method both a deterministic LP and a stochastic LP for the problem with
trade-up have to be set up.

Consider the deterministic LP given in (4.15) page 49, suggested by Al-
gers, Andersson and Kohler in [1]. This deterministic LP explicitly incorpo-
rates trade-up in the model and is thus assumed to be an upper bound for
the value function by You given in (4.7) page 45. Let the optimal value of
this LP be denoted V̂t(x). In this report the value of V̂t(x) is not proven to
be an upper bound for the value function Vt(x) by You. Furthermore it will
not be proven that ∆V̂t(x) is an upper bound for ∆Vt(x), but in Chapter 5
this will be tested with numerical experiments, before the C,G&J method is
used for any final results.

In [11] it is suggested to use a stochastic LP model for the SIC problem
without trade-up as a lower bound, hence this idea is applied here as well.
A stochastic model for the SIC problem with trade-up is given by

max
k∑

i=1

Fi ·
T∑

t=1

E
[
Dt

i + N t
i+1,i | yt

i

]

s.t.

T∑

t=1

k∑

i=1

yt
i ≤ C (4.17)

yt
i + Rt

i − Zt
i = Dt

i + N t
i+1,i, ∀i, t (4.18)

yt
i ≥ 0, ∀i, t

where Dt
i is a random variable which describes the demand for class i at time

t and Rt
i is a random variable describing the number of rejections in class i at

time t. The variable Zt
i is also random and is introduced to account for the

variability in the demand Dt
i. The variable denotes the spill, i.e., the number

of seats, which are allocated to class i, but which are not requested. The
random variable N t

i+1,i is the number of passengers that trade up from class
i + 1 to class i at time t and it is a function of the random variables Rt

i+1

and the trade-up rates TU t
i+1,i. These trade-up rates are the probabilities at
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time t that a rejected customer for fare class i + 1 is willing to trade up to
fare class i and all higher-fare classes. TUk+1,k is defined to be zero. The

term E

[
Dt

i + N t
i+1,i | yt

i

]
is the total expected number of requests in class

i given seat allocation yt
i . The decision variables in the model are the seat

allocations yt
i .

The right-hand side of (4.18) is a sum of the number of passengers who
requests class i at time t and the number of passengers who trades up to
class i and all higher-fare classes from class i + 1. If the number of allocated
seats for class i at time t is smaller than the total demand for class i at time
t, then the left-hand side is a sum of the number of allocated seats and the
number of rejected passengers, i.e., the variable Zt

i is 0. If, on the other hand,
the number of allocated seats for class i at time t is greater than the total
demand, then the left-hand side is a sum of the number of allocated seats
and the surplus amount of seats, Zt

i . Then the number of rejected passengers
for class i at time t is 0.

The constraint (4.17) ensures that the sum of the allocated capacity at
all times and for all classes does not exceed the total capacity of the aircraft.
Furthermore nonnegativity constraints apply to the decision variables.

Let the optimal value of the objective function for the stochastic LP be
denoted V̌t(x). An intuitive explanation as to why the stochastic LP can
be assumed to yield a lower bound for the value function by You will be
given in the following. The optimal solution to the stochastic LP allocates
each capacity unit to a fare class at a given time. If the capacity unit is not
used at that time, it cannot be used later or for a different class, hence it
remains empty. An optimal solution to the DP with trade-up can change
the allocation as time progresses, hence, it is reasonable to assume, that this
method yields better results than the stochastic LP with trade-up. In this
report it is not proven that the optimal solution to the stochastic LP forms
a lower bound for the value function, neither is it shown that ∆V̌t(x) is a
lower bound for ∆Vt(x).

The stochastic LP is not easy to solve and therefore a different approach
for determining the lower bound for ∆Vt(x) is employed. A possibility is to
use the upper bound calculated with the deterministic LP to form a lower
bound as well. This can be done in a number of different ways. For instance
by subtracting a positive number from the upper bound or by subtracting
a certain percentage of the upper bound from the upper bound. Of course
some research has to be made as to which method yields the best lower bound
and obviously this does not necessarily need to be calculated as a function of
the upper bound. Intuitively this seems to be the simplest solution, though.

When an upper bound and a lower bound have been determined, the
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algorithm given in the four items on page 50 can be used. Notice, though,
that when the bounds are determined for ∆Vt(x) calculated using the You
method, the decision rules in the algorithm must be replaced by the decision
rules used in the You method given in (4.12) page 46.

Calculation of the Bounds

In order to determine whether a request should be accepted or rejected, it
is necessary to calculate ∆V̌t(x) and ∆V̂t(x). Hence, V̌t(x), V̌t(x − 1), V̂t(x)
and V̂t(x−1) must be calculated each time a request arrives. Since decisions
have to be made quickly when requests arrive, it is not feasible to calculate
these four values each time a decision has to be made. Furthermore there is a
large amount of remaining capacities and decision periods, hence calculating
bounds for all combinations of decision periods and remaining capacity will
be very time comsuming, even when this can be done before the beginning of
the booking period. Instead the bounds are only calculated at some prede-
termined values of the remaining capacity and then the bounds for all values
of remaining capacities are estimated using splines between the calculated
values of the bounds. Thus the values of remaining capacity for which the
bounds are calculated are used as knots in cubic splines. There is one spline
for the upper bound and one for the lower bound and this way estimations of
the bounds for all remaining capacities are obtained. To estimate the values
of the bounds in the entire time space, these bounds are calculated in the
beginning of each data interval and then the bounds for all decision periods
between these values are estimated using linear interpolation. Hence, this
way the bounds are estimated for all combinations of decision periods and
remaining capacity.

Recall that data interval 1 is nearest departure. At time j the splines used
for estimating the bounds between times j and j−1 are activated, where time
j is the beginning of a data interval and time j − 1 is the beginning of the
next data interval, see Figure 4.3. Consider a request for fare class i, which
arrives at time τ with a remaining capacity of x. Recall that the decision rule
for a request arriving at time t requires using the value ∆Vt−1(x). Therefore
the data interval containing the time τ − 1 is considered and it is assumed
that τ − 1 ∈ [j, j − 1], see Figure 4.3. If the capacity will not be exceeded
by accepting the request, then the upper and lower bounds for the value
function, V̂τ−1(x), V̂τ−1(x−1), V̌τ−1(x) and V̌τ−1(x−1), must be determined.
These are calculated using linear interpolation between times j and j−1, i.e.,
linear interpolation is used to find the values in t = τ − 1 for the remaining
capacities x and x− 1. When using linear interpolation to find the values of
the bounds in t = τ − 1 it is assumed that demand is equally distributed in
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a given data interval.

Figure 4.3: Illustration of Activation of Bounds.

Once the values of the bounds have been found, the procedure of deter-
mining whether to accept or reject the request is as described in the four
items on page 50.

4.1.5 The C&H Solution Method

In this section the last method for solving the general SIC problem with
trade-up is described. This method is an approximation algorithm and it
is developed by using the requirements suggested by Cooper and Homem-
de-Mello in [14] for the SIC problem without trade-up. The approach is
to use a simple heuristic in the beginning of the booking period and then
switch to an exact method closer to departure. A method like this, which is
a combination of several solution methods is called a hybrid method. The
article refers to [15] by Gallego and van Ryzin and [13] by Cooper, which
show that approximation methods can yield good results, when the remaining
capacity and expected demand are large, i.e., far from departure, and there
is a reference to [24] by Subramanian et al., where it has been suggested that
close to departure it is important to use an exact model.

For this problem it is attempted to use the adjusted B&P method with
trade-up described in Section 4.1.3 as an approximation method in the first
part of the booking period and then switch to the You solution method in
the last part of the booking period closest to departure. Theoretically, the
B&P LP method with trade-up, which is also described in Section 4.1.3, can
be used as the approximation method as well. This method is extremely
slow, though, since in this report the LP is solved using Matlab’s predefined
optimizer linprog.m. Using this method as it is now is not feasible for the
hybrid methods, since a basic idea for these methods is that the approxi-
mation method must be fast. Instead, another approach is to use the You
method with a large ǫ in the beginning of the booking period and then switch
to the You method with a small ǫ closer to departure. This can be done,
since the You method with a large ǫ is faster and less accurate.
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It is simple to just use the two methods separately before and after the
switch. What comlicates the method is that after the switch, when solving
the problem using the exact method, the already accepted passengers from
the first part of the booking period need to be taken into account. In this
report three different ways of making the switch are suggested. Common
for all three methods is that the exact method is used first even though this
is in the last part of the booking period, and then the results obtained are
used when solving the problem for the first part of the booking period with
an approximation method. It makes sense to solve the part of the problem
closest to departure first, since this is a common procedure when using DP
which is used for the last part of the booking period and in some cases for
the first part of the booking period as well.

The three different hybrid methods are described in the following subsec-
tions. In these sections the time of the switch will be denoted w.

“Max”

The first solution method is denoted “Max”. The exact method is applied
in the last part of the booking period in decision periods 1, . . . , w, with the
demand adjusted to be only for these decision periods. This yields the values
V e

t (x) for t = 1, . . . , w and x = 1, . . . , C. Then the approximate method is
used to solve the problem in the first part of the booking period, in decision
periods w + 1, . . . , T with the demand adjusted to be only for these decision
periods. This yields the values V a

t (x) for t = w + 1, . . . , T and all values of
x.

The last decision period in which the exact method is applied is w. Then
V e

w(x) for x = 1, . . . , C is the maximum expected revenue, which can be ob-
tained from decision period w to departure, i.e., in decision periods 1, . . . , w,
for each remaining capacity. Decision period T is the decision period farthest
from departure, and then V a

T (x) for x = 1, . . . , C is the maximum expected
revenue, which can be obtained in decision periods w + 1, . . . , T for each re-
maining capacity. If y seats are sold in the first part of the booking period,
then only C − y seats can be sold in the last part of the booking period.
To determine the number of seats to sell in each part of the booking period
such that total expected revenue is maximized, the following value of y is
determined

max
y

{
V e

w(z) + V a
T (y)

}
, z = 1, . . . , C, y = C − z.

The optimal value of y is used in the first part of the booking period, i.e.,
in the part of the booking period farthest from departure. It is used such
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that after y seats have been sold in decision periods T, . . . , w + 1 only the
classes that are open at time w, when C − y seats have been sold, should
be accepted until decision period w. If y seats are sold in the first part of
the booking period, then there are C − y seats available for sales in the last
part of the booking period, and this way, the expected revenue for the entire
booking period is maximized.

“Add Column”

The second solution method is denoted “Add Column”. Again the exact
method is used in decision periods 1, . . . , w. This yields the values V e

t (x), for
t = 1, . . . , w and x = 1 . . . , C. Then the approximate method is used to solve
the problem in decision periods w+1, . . . , T . This yields the values V a

t (x) for
t = w+1, . . . , T and all x. The value V e

w(x) is the expected revenue, which can
be obtained in decision periods 1, . . . , w with a remaining capacity of x and
the value V a

w+1(x) is the expected revenue, which can be obtained in decision
period w + 1 with a remaining capacity of x. In V a

w+1(x) the revenue which
can be obtained in decision periods 1, . . . , w has not been accounted for.
Hence, to do this, V e

w(x) is added to V a
w+1(x) to yield the expected revenue

with a remaining capacity of x for decision periods 1, . . . , w+1. This is done
for all x. Similarly in the value V a

w+2(x) the decision periods 1, . . . , w have
not been taken into account, thus, V e

w(x) must be added to V a
w+2(x) as well

for all x. Hence, V e
w(x) must be added to all V a

t (x) for t = w + 1, . . . , T and
for all x. Then the value function is available for all values of t and x and
can thus be used to determine which classes should be open in which decision
periods.

“Combi”

The third hybrid solution method is “Combi” and, as in the two first methods,
in this method the exact solution method is used first for decision periods
1, . . . , w. This yields the values V e

t (x) for t = 1, . . . , w and all x. Then the
approximation method is used for the entire booking period and with the
entire demand, yielding the values V a

t (x) for t = 1, . . . , T and all x. Now
the only values of V a

t (x) which are needed are the values for decision periods
t = w+1, . . . , T and all x. Hence, values of Vt(x) for the entire booking period
are V e

t (x) for t = 1, . . . , w and V a
t (x) for t = w + 1, . . . , T . These values are

then used to determine which classes should be open in the decision periods
in the entire booking period. It is feasible to calculate V a

t (x) for t = 1, . . . , T
and all x because the approximation method is assumed to be so fast that the
running time for the hybrid method is still much shorter than the running
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time for the exact method, for instance the You method with a small ǫ for
the entire booking period.

4.2 Simplified SIC with Trade-Up

In this section models and solution methods for the SIC problem with trade-
up and the simplifying assumption will be set up and described. Recall,
the simplifying assumption is that there are no differences in the buying
conditions for different trade-up classes. Thus, all demand is for the least
expensive class in the trade-up market and demand for all other classes is
only realized due to trade-up from this class.

The solution methods in this section will primarily be simplifications of
the methods described in Section 4.1. However, deriving the EMSRb method
with the simplifying assumption makes no sense, since the variable definitions
would have to be changed completely and the decision tree in Figure 4.1
page 42 would only have a single branch. Hence, the EMSRb method for the
simplified problem will not be derived. Instead another DP model will be set
up, which takes multiple requests in each decision period into account.

In Section 4.2.1 the simplified You solution method where there is only one
arrival in each decision period is described and in Section 4.2.2 a DP model is
introduced in which several arrivals in each decision period are allowed. This
solution method is called the HM method. The B&P methods, the C,G&J
methods and the C&H methods are available for the simplified problem as
well, and these are described in the sections which follow.

4.2.1 The Simplified You Solution Method

In this section the dynamic programming model described in Section 4.1.2 is
simplified to fit the assumption of a trade-up market as exists at BA. Recall,
the value function for the general DP model in the You solution method is
as follows

Vt(x) =






(
1 −

∑k

i=1
P t

i

)
Vt−1(x) + P t

1

(
F1 + Vt−1(x − 1)

)

+
∑k

i=2
P t

i max
(
U i

t (x), Fi + Vt−1(x − 1)
)

for x > 0, t > 0

0 otherwise

(4.19)

where

U i
t (x) = max

j∈Ai

{
TUi,j

(
Fi + Vt−1(x − 1)

)
+

(
1 − TUi,j

)
Vt−1(x)

}
,

and j is the class which is offered if a request for class i is rejected.
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Since it is assumed that passengers always request the lowest-fare class in
the market, class k, the expression for U i

t (x) can be simplified to the following

Uk
t (x) = max

j=1,2,...,k−1

{
TUk,j

(
Fj + Vt−1(x − 1)

)
+

(
1 − TUk,j

)
Vt−1(x)

}
,

where TUk,j is the trade-up rate from class k to classes 1, . . . , j. Furthermore,
for x > 0 and t > 0, Vt(x) can be simplified to

Vt(x) =
(
1 − P t

k

)
Vt−1(x) + P t

k max
(
Uk

t (x), Fk + Vt−1(x − 1)
)
. (4.20)

The decision rule is thus to accept a request if the following holds

max
j=1,2,...,k−1

{
TUk,j

(
Fj +Vt−1(x−1)

)
+

(
1−TUk,j

)
Vt−1(x)

}
≤ Fk +Vt−1(x−1)

which, in terms of ∆Vt(x), can be rewritten as

max
j=1,2,...,k−1

{(
Fj − ∆Vt−1(x)

)
TUk,j

}
+ ∆Vt−1(x) ≤ Fk (4.21)

Each time a request arrives, two decisions have to be made. The first
decision is whether or not class k should be open for sales and if not, which
class is the lowest open class j.

The decision of whether or not to accept a class k request depends on
(4.21), i.e., a request is accepted if the inequality is satisfied and otherwise
it is rejected. When determining the value on the left-hand side, the value
of j, which is the optimal class to offer if class k is not open, is obtained as
well.

When using the simplified You solution method calculations of the value
function for all combinations of remaining capacity and decision periods are
required. To calculate the value of Vt(x), the request probabilities P t

k for fare
class k for all decision periods t have to be determined. Furthermore the
trade-up probabilities from fare class k to class i and all higher-fare classes,
TUk,i, need to be known.

The request probabilities P t
k are determined in a similar way as in Section

3.2.1 page 26. The difference is that in this section it is assumed that all
demand is for class k. Hence, the expected demand in data interval d, µd, is
only for class k and therefore the request probability has the following simple
form

P t
k = (µd/νd) exp(−µd/νd),

where νd is the number of decision periods in data interval d. The only data
needed are µd, and these are provided by British Airways. Now Vt(x) and
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thereby ∆Vt(x) can be calculated for all combinations of t and x, thus all the
variables needed to make the acceptance/rejection and the offering decision
are known.

The model and decision rule derived in this section can be derived from
both of the papers [25] by Talluri and van Ryzin and [28] by You.

4.2.2 The HM Solution Method

In the model described in the previous section, it is assumed that only one
request in each decision period occurs. To make sure this is satisfied, the
booking period needs to be divided into a large number of decision periods.
Hence, when calculating the value function for all combinations of decision
periods and remaining capacity, the number of calculations are comprehen-
sive. In this section a model is set up where multiple requests may arrive in
each decision period. Therefore the number of decision periods, which the
booking period needs to be divided into can be reduced considerably com-
pared to the case where there is only one request per decision period. This
model is suggested by [16]. It is assumed that all demand is for class k and
demand for other classes is only realized due to trade-up, i.e.,

Dt
i = TUk,i · D

t
k, (4.22)

where Dt
i is the expected demand for fare class i in decision period t and

TUk,i is the trade-up rate from class k to classes 1, . . . , i. Thus, the demand
is nested such that Dt

i is the demand for class i and all higher-fare classes,
i.e.,

Dt
1 ≤ Dt

2 ≤ · · · ≤ Dt
k−1 ≤ Dt

k.

In the beginning of each decision period it has to be determined which
classes are open. Since it is assumed that when rejected passengers choose
to trade up this will always be to the lowest open class, it is only necessary
to determine this class j.

The value function for this model is as follows

Vt(x) = max
j=1,...,k

[
P (Dt

j = 0) ·
(
0 · Fj + Vt−1(x)

)
(4.23)

+ P (Dt
j = 1) ·

(
1 · Fj + Vt−1(x − 1)

)

+ P (Dt
j = 2) ·

(
2 · Fj + Vt−1(x − 2)

)

+ · · ·

+ P (Dt
j ≥ x) ·

(
x · Fj + Vt−1(0)

)]
, x > 0, t > 0,
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where P (Dt
j = s) is the probability that exactly s requests for class j occur

in decision period t, and j is the lowest open class, i.e., the decision variable.
As can be seen from (4.23), when several arrivals can occur in each de-

cision period, there are multiple different arrival scenarios in each decision
period. If no arrivals occur the gain in revenue is zero and the remaining
capacity is unchanged in the following decision period. If g requests for class
j occur, where g = 1, . . . , x, the gain in revenue is g times the fare for class
j and the remaining capacity in the following decision period is x− g. Since
overbooking is not considered, the airline can sell at most C seats on the air-
craft. Therefore, even if the number of arrivals in a decision period is larger
than the remaining capacity, the gain in revenue is only x times the fare for
class j. Thus, under this scenario the remaining capacity in the following
decision period is zero. By calculating Vt(x) in (4.23) the lowest open class
j is determined for all values of remaining capacities and decision periods.

Now that several bookings in a decision period are allowed, the number
of decision periods in each data interval is much smaller than for the You
model. Thus, even if the value function Vt(x) has to be calculated for all com-
binations of remaining capacity and decision periods, the number of function
evaluations is smaller than for the You method, i.e., the computation time is
assumed to be shorter than that of the You method.

4.2.3 The Simplified B&P Methods with Trade-Up

In this section two approximation methods for the simplified SIC problem
with trade-up are described. These are the simplified adjusted B&P method
with trade-up and the simplified B&P LP method with trade-up.

The Simplified Adjusted B&P Method with Trade-Up

The LP used in the B&P method without trade-up and the adjusted B&P
method for the general problem with trade-up can be used with the assump-
tions made by BA as well. This is done by determining the expected demand
to come for each fare class from the trade-up rates, i.e.,

Dt
i = qk,i · D

t
k, i = 1, . . . , k − 1. (4.24)

where Dt
k is the expected demand for class k in decision period t and qk,i is

the trade-up rate from class k to class i.
As for the adjusted B&P method with trade-up for the general SIC prob-

lem, the procedure and LP when using the simplified adjusted B&P method
is as described in Section 3.2.2. This method is used to approximate the
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value function by Lee and Hersh from Section 3.2 where the simplifying as-
sumption is applied and the demand has been calculated using (4.24). Once
all values of the value function have been approximated, ∆V LP

t (x) can be de-
termined as well. This is used to decide whether a request should be accepted
or rejected by using the decision rule (3.11) page 26.

The Simplified B&P LP Method with Trade-Up

As for the general problem with trade-up, an alternative to solving an LP
where the demand for each class is determined using the trade-up rates, is
to solve an LP problem similar to (4.15) page 49. The following LP is used
for the simplified problem

LP (x, t) = max

k∑

i=1

Fi · yi (4.25)

s.t.

k∑

i=1

yi ≤ x

yk + rk = Dk (4.26)

yi + ri − TUk,i · rk = 0, i = 1, 2, . . . , k − 1 (4.27)

yi ≥ 0, ri ≥ 0, ∀i.

The constraint (4.26) expresses that the sum of the allocated seats for class
k and the number of rejected requests for class k must be equal to the total
demand. Constraint (4.27) ensures that the number of seats allocated for
class i plus the number of rejections in that class is equal to the number of
passengers who are rejected in class k and willing to trade up to class i or
higher-fare classes. The latter corresponds to the demand for class i.

The optimal value of the LP is used to approximate the value function
Vt(x) in the simplified You model. Once the value function has been approxi-
mated, ∆Vt(x) can be found. The decision rule for determining whether an
incoming request should be accepted or rejected is given as for the simplified
You method, see (4.21) page 58.

4.2.4 The Simplified C,G&J Solution Method

In this section the simplification of the C,G&J solution method from Section
4.1.4 will be described. Again upper and lower bounds for ∆Vt(x) need to be
set up. In this case the value function for the simplified SIC problem with
trade-up is given by (4.20) page 58.
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Denote the optimal value of the deterministic LP given in (4.25) by V̂t(x).
As for the general problem, since trade-up is explicitly incorporated in this
LP, V̂t(x) is assumed to be an upper bound for the value function Vt(x) given
in (4.20). Furthermore ∆V̂t(x) is assumed to be an upper bound for ∆Vt(x).
Neither of these statements are proven in this report.

Now the stochastic LP, which is assumed to form a lower bound for ∆Vt(x)
in the simplified problem must be determined as well. A stochastic model
for the simplified problem is as follows

max
T∑

t=1

[
Fk · E

[
Dt

k | yt
k

]
+

k−1∑

i=1

Fi · E
[
N t

k,i | yt
i

] ]

s.t.

T∑

t=1

k∑

i=1

yt
i ≤ C (4.28)

yt
k + Rt

k − Zt
k = Dt

k, ∀t (4.29)

yt
i + Rt

i − Zt
i = N t

k,i, i = 1, . . . , k − 1 ∀t (4.30)

yt
i ≥ 0, ∀i, t

The variables are as explained in Section 4.1.4. The kth term is separated
from terms 1, . . . , k − 1 in the objective function and equations (4.30) and
(4.29) substitute (4.18) page 51, since there is only demand for class k and
demand for all other classes is only due to trade-up from class k. The sim-
plified stochastic LP is a special case of the general stochastic LP in Section
4.1.4. Since the stochastic LP is simplified by the same assumptions as the
DP by You, then if the general stochastic LP is a lower bound for the gene-
ral value function, then the simplified stochastic LP is also assumed to be a
lower bound for the simplified value function. Hence, it is assumed to form
a lower bound for ∆Vt(x) as well. As for the general problem this stochastic
LP is difficult to solve. Hence, in this report the lower bound is determined
as a function of the upper bound for the simplified problem as well.

Again, the LP (3.14) page 29 where the expected demand for each fare
class has been determined using (4.24) page 60 is an upper bound for ∆Vt(x)
calculated with the L&H method where the expected demand is calculated
in the same way. This can also be used as a C,G&J method.

The subsequent procedure when finding a lower bound for the value func-
tion and determining when to accept and reject passenger requests is the
exact same as for the general C,G&J method described in Section 4.1.4.
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4.2.5 The Simplified C&H Solution Method

In this section the ideas from the approximation algorithm suggested by
Cooper and Homem-de-Mello in [14] will be applied to the simplified SIC
problem with trade-up. As for the general problem, a simple heuristic is
used in the beginning of the booking period and then a switch to a more
exact method in the end of the booking period is made.

For the approximation method the B&P method as well as the You
method with a large ǫ is used. Again, if the LP (4.25) page 61 can be
solved quickly, it would also be feasible to use the optimal value of this as
an approximation of the value function in the first part of the booking pe-
riod, but since Matlab’s linprog.m is used, this method is too slow. For the
simplified problem two different solution methods are available as the exact
method. These are the You solution method with a small ǫ and the HM
solution method. Hence, for the simplified problem different combinations of
methods are possible.

Apart from which methods are used as approximate and exact methods,
as for the general problem three different hybrid methods are suggested in
this report. Again these are the “Max” hybrid method, the “AddColumn”
hybrid method and the “Combi” hybrid method. These methods are exactly
as explained for the general problem in Section 4.1.5, hence these will not be
described further in this section.

4.3 Implementation

In this section the implementations of the methods explained in Sections 4.1
and 4.2 are described. In the programs for these methods it is chosen not to
transform the lowest open class or the outputs of the functions into booking
limits as was done for the SIC problem without trade-up. The methods have
different outputs and therefore for the general SIC problem with trade-up a
different program calculates the revenue of the simulation process for each
method. For the SIC problem with trade-up there are many methods. Hence,
the B&P and the You solution methods with update are not implemented,
as was done for the problem without trade-up.

4.3.1 General SIC with Trade-Up

The programs described in this section are enclosed on the CD in the folder
General SIC with TU/Main Functions

In Table C.3, Appendix C, a list of the main functions described in this
section can be seen. Furthermore, in this table the different inputs and
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outputs used by the programs are given. The description of the variables
which are different from those given in Table C.2, Appendix C, can be seen
in Table C.5, Appendix C.

Simulation

The simulation of the booking process for the general SIC problem with
trade-up is implemented in the program SimulationTradeup.m. This pro-
gram is very similar to the program Simulation.m where trade-up is not
incorporated, see Section 3.3.1 for description. The only difference between
these two programs is that SimulationTradeup.m has an additional output
variable representing the simulated arrival’s willingness to trade up. For each
arrival this probability is generated as a random number between zero and
one and these numbers are stored in the vector TUarr.

EMSRb with Trade-Up

The decision rule regarding the booking limits for the fare classes is the
only difference between the EMSRb method with trade-up and the EMSRb
method without trade-up. Thus, the programs for the two methods do not
differ much either. Therefore only the difference in the implementation of
the decision rule and the extensions regarding trade-up will be described in
this section. For a description of the implementation of the basic calculations
in the EMSRb method, see Section 3.1.2.

The EMSRb method with trade-up is implemented in the Matlab program
EMSRbTUdecPerTU.m. To calculate the protection levels with the decision rule
given in (4.5) page 44, it is necessary to have the trade-up rates TUi+1,i for
i = 1, . . . , k−1. The trade-up rates given by the airline are the probabilities,
that a passenger is willing to trade up from the lowest class in the market,
class k, to class i and all more expensive classes 1, 2, . . . , i− 1, i.e., TUk,i for
i = 1, . . . , k − 1. The trade-up rates TUi+1,i are calculated by using (4.1)
page 41.

These trade-up rates TUi+1,i are calculated with the auxiliary function
calcTU.m. An r×k matrix containing these trade-up rates between all neigh-
boring classes for all data intervals is given as input to EMSRbTUdecPerTU.m,
where k is the number of classes and r is the number of data intervals. The
seat protection levels can then be calculated using the decision rule given in
(4.5) page 44.

The procedure if a passenger is accepted is exactly the same as in the im-
plementation of the EMSRb heuristic without trade-up, but the procedure
following the rejection of a request is different. In the EMSRb method with
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trade-up a rejected passenger is not necessarily lost revenue, as it was for the
EMSRb method without trade-up, since the passenger might trade up to an-
other class. This is incorporated by first determining which classes are open,
since the requested class was closed. The open classes are determined by
for each class comparing the sum of accepted requests for that specific class
and all lower-fare classes with the booking limit for that class. For instance
the booking limit for fare class 4 is compared with the sum of the accepted
requests for classes 4, . . . , k. If the booking limit is greater than the sum of
the accepted requests, then a request for class 4 can be accepted otherwise it
is rejected. If no class satifies that the booking limit is greater than the cu-
mulated number of accepted requests and if the remaining capacity is greater
than zero, then class 1 is the only open class.

After the open classes have been found the next step is to determine if the
customer will trade up to the lowest open class. Therefore, the total proba-
bility for trade-up from the requested class is calculated. This is given by the
sum of the trade-up probabilities from the requested class to all open classes.
To calculate this sum, the strict trade-up rates between any two classes i
and h, qi,h, must be calculated using (4.2) page 41. The calculations of these
trade-up rates qi,h are implemented in the auxiliary function calcDtot.m and
a k × k × r matrix containing these trade-up rates between all classes for all
data intervals is obtained. An example of how it is determined whether or
not a rejected passenger will trade up is given in the following. If a rejected
request is for fare class 4 and the open classes are all higher-fare classes, then
the total trade-up probability from class 4 is

TotalQ = q4,1 + q4,2 + q4,3.

This trade-up probability is compared with the element in the input vec-
tor TUarr, which corresponds to the rejected request. Recall, that TUarr
contains random numbers between 0 and 1 generated in the simulation as
mentioned in the previous subsection. The passenger is willing to trade up
to the lowest open class if the random number in TUarr is smaller than the
total trade-up probability, otherwise the customer gets a final rejection and
is hence lost revenue. This process is repeated for all the simulated requests,
such that a total revenue from the simulation is obtained and given as output
from the program.

The You Solution Method

The You solution method for the general SIC problem with trade-up is im-
plemented in the program You.m. In the model described in Section 4.1.2,
it is assumed that the requested class is known before the offering decision
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is made. In real life this is not the case, though, since the classes must be
offered quickly after a request has been rejected. Therefore all calculations
for this method must be made for all decision periods, all remaining capaci-
ties and all possible requested classes, since the offering decision depends on
which class is requested.

In the implementation of the You method, initially the class which is
offered if a request is rejected is determined for all classes, such that no
matter which class is requested it is known what class to offer. The class
offered, ji

t(x), is determined using the equation given in (4.13) page 47 and
stored in a T ×C ×k matrix, where T is the number of decision periods, C is
the total capacity of the aircraft and k is the number of classes. After the set
of classes to offer is determined, this can be used to calculate gi

t(x, j) given
in (4.11) page 46. The trade-up rates TUi,j are calculated using the program
calcTU.m. Then everything needed for calculating the function hi

t(x) has
been determined, hence this is calculated using (4.12) page 46 and stored in
a T × C × k matrix, where T, C and k are given as above. Recall that the
function hi

t(x) is used to determine whether to accept or reject a request. The
outputs from the function are both of these three-dimensional matrices which
are used in the acceptance/rejection and offering decision. Furthermore the
value function Vt(x) is given as output.

The program RevenueYT.m is used to calculate the revenue from the si-
mulation process when using the output from You.m. Whether to accept or
reject a request is considered as the bookings occur. A request for fare class
1 is always accepted if the remaining capacity is greater than zero. A request
for fare class i in decision period t with a remaining capacity x is accepted
or rejected by looking at the (t, x, i)th element in the matrix containing the
values of hi

t(x). If the value of this element is less than zero, then the request
is accepted, due to the acceptance rule described on page 46. If the element
is greater than zero, then the request is rejected and the offering decision is
made in a similar way as with the EMSRb method with trade-up. Thus, first
the lowest open class is determined by looking at the (t, x, i)th element in the
matrix containing the values of ji

t(x), where t, x and i are given as above.
After the class offered has been found it must be determined whether the
rejected passenger is willing to trade up to the lowest open class or not. This
is done in the exact same way as in the program EMSRbTUdecPerTU.m. The
output from RevenueYT.m is the total revenue obtained from the simulation
when using the You solution method.
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The Adjusted B&P Method with Trade-Up

The adjusted B&P method with trade-up is implemented in PopBLTU.m. The
only differences between this program and PopBL.m are the demand which is
used and the output from the program. The adjusted demand incorporating
trade-up is given as input to PopBLTU.m and this demand is calculated with
the auxiliary function calcDtot.m. As described for the EMSRb method
with trade-up, the matrix containing the trade-up probabilities between all
classes i and j, qj,i, is also calculated by this program. Hence, all the vari-
ables in equation (4.14) page 48 are known and the adjusted demand can
be calculated. This is stored in a r × k matrix, where r is the number of
data intervals and k is the number of classes. The calculation of the ap-
proximation of the value function is done in the same way as for the B&P
method without trade-up. This value function is used to calculate the lowest
open classes for all remaining capacities and decision periods. Therefore the
output from the program PopBLTU.m is a C×T matrix containing the lowest
open classes instead of booking limits which was the output from PopBL.m.
Furthermore a C × T matrix containing the approximate values of the value
function Vt(x) is given as output.

The program matrixRevenue.m is used to calculate the revenue from the
simulation process. This function calculates the revenue by using a matrix
containing the lowest open class for each remaining capacity and each decision
period. Hence, when it is decided whether to accept or reject a request
for fare class i in decision period t with a remaining capacity x, then the
(x, t)th element in the matrix is compared with the requested class. If the
class is a higher-fare class than the lowest open class, then the request is
accepted otherwise it is rejected and the procedure regarding whether or not
the passenger will trade up is carried out. This procedure is the same as for
the previous two methods.

The B&P LP Method with Trade-Up

The B&P LP method with trade-up is implemented in the program BPLPTU.m.
Initially, the expected demand to-come for each data interval and each fare
class is calculated and stored in a r × k matrix, where r is the number of
data intervals and k is the number of fare classes. Then all the variables
in the LP model are determined and the LP can be solved using the prede-
fined Matlab function linprog.m. The function linprog.m has seven inputs
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f, A, b, Aeq, beq, LB, UB and it attempts to solve the LP problem

min fT z

s.t Az ≤ b

Aeq · z = beq

LB ≤ z ≤ UB.

Therefore to use this function to solve the LP, the input matrices must be
set up. For instance, for a problem with three classes for each time t the
matrices for the LP model described on page 49 are given by

f =




−F1

−F2

−F3



 , z =





y1

y2

y3

r1

r2

r3




, AT =





1
1
1
0
0
0




beq =





Dt
1

Dt
2

Dt
3

0
0
0





Aeq =





1 0 0 1 −TU t
2,1 0

0 1 0 0 1 −TU t
3,2

0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





and b is the remaining capacity. Hence, b runs through all values 1, 2, . . . , C.
Notice, there is a minus in front of the fares in f , since linprog.m minimizes
and the LP to be solved is a maximization problem.

The LP is solved for each data interval given in an update vector, which
is input to the function. It is chosen only to calculate the approximations
with this method in the beginning of each data interval. This is due to the
slowness of the optimizer linprog.m in Matlab. For each optimization of
the LP for a specific time and all remaining capacities, Matlab takes about
2.30 seconds, which is too slow to be feasible for the airline. This has to be
done for each time in the update vector, hence by only updating the booking
limits calculated with this method in the beginning of each data interval
instead of in each decision period, running time is reduced significantly. To
determine how fast the LP can be solved, if another optimizer is used, the
LP is implemented in GAMS as well. Here the optimization for each time
and all remaining capacities takes approximately 0.27 seconds. Thus, by
using a more efficient optimizer than linprog.m the time can be reduced
significantly, for instance by using GAMS the optimization time is reduced
by a factor 10.
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After the LP’s have been solved for all remaining capacities and times in
the update vector, the approximations of ∆Vt(x) can be calculated. These are
then used to determine the lowest open class for all values of the remaining
capacity and for each time in the update vector. This is done as described
in Section 4.1.2. This class is then stored in a Lup × C × k matrix, where
Lup is the length of the update vector, C is the capacity and k is the number
of fare classes. This matrix is transformed such that a row is generated for
each decision period instead of only for each element in update. Then the
revised T ×C×k matrix is given as output from the program, where T is the
number of decision periods. Once the lowest open class has been determined
for all remaining capacities and all times in the update vector, this is used
to calculate gi

t(x, j) given in (4.11) page 46. Then finally hi
t(x) is calculated

using (4.12) page 46 and stored in a Lup × C × k matrix. This matrix is
revised in the same way as the matrix of lowest open classes and then also
given as output from the program.

The program RevenueYT.m is used to calculate the revenue from the si-
mulation process. For a description of this function see the description of the
implementation for the You solution method.

The C,G&J Solution Method

The C,G&J method is implemented in two different programs depending on
which of the two B&P methods described in the two previous sections that
is used to calculate the upper bound for ∆Vt(x). As described in Section
4.1.4 the upper bound can be calculated by the adjusted B&P method or by
the B&P LP method, where the LPs are solved using Matlab’s linprog.m.
When using the adjusted B&P method the C,G&J method is implemented
in the program BPTUSpline.m and when using the B&P LP method, it is
implemented in the program BPLPSplineNew.m. The programs are modified
versions of PopBLTU.m and BPLPTU.m described in the previous section. The
modification is regarding the number of capacities and times, where the ap-
proximation values are calculated. Hence, the programs BPTUSpline.m and
BPLPSplineNew.m need two vectors as input containing the times and capa-
cities in which the approximation values are to be calculated. Both programs
calculate the approximation to the value function for the times and capacities
given in the input vectors and give a LC×LT matrix containing these values
as output, where LC is the number of capacities and LT is the number of
times in which a value is calculated.

After the bounds for the value function have been calculated for the capa-
cities given in the input vector, splines are used to obtain the upper bounds
for all capacities. This is done in the auxiliary program findBounds.m, which



70 SIC with Trade-Up

calculates both the upper and the lower bounds for all capacities but only
for some specified times. The predefined Matlab function spline.m is used
to calculate the splines. This function has three input arguments X, Y, XX
and one output argument Y Y and it uses cubic spline interpolation to find
Y Y . This is done using the values of the underlying function Y as knots and
then calculating the values of the spline at the points in the vector XX. The
vector X specifies the points at which the data Y is given. Thus, when using
spline.m with the data for the SIC problem with trade-up, X is a vector
containing the capacitites for which the upper bound is calculated using one
of the two methods described above, Y is the value of the upper bound at
these capacities and XX is a vector with the values 1, 2, . . . , C, where C is
the capacity of the aircraft. A spline is calculated for each specified time
and the upper bounds for the value function are saved in a C × LT matrix,
where LT is the number of times in which a value is calculated. When the
upper bounds for the value function have been calculated for all capacities,
the upper bounds for ∆Vt(x) for all capacities are determined from these.
Then for all capacities, the lower bounds for ∆Vt(x) are calculated from the
upper bounds. This can be done in different ways as described in Section
4.1.4.

The program RevenueSpline.m is used to calculate the revenue from
the simulation process for the adjusted B&P C,G&J method. This function
calculates the revenue by using the matrices containing upper and lower
bounds for ∆Vt(x) for all remaining capacities and some prespecified times.
The procedure for accepting/rejecting a request explained in the four items on
page 50 is implemented in this program. Similarly, RevenueSplineBPLP.m
is used to calculate the revenue from the simulation process for the B&P
LP C,G&J method. The only difference from RevenueSpline.m is that the
decision rule from the You method (4.12) page 46 is incorporated in the items
on page 50. For both programs all other procedures are the same.

Initially, ∆V̌τ−1(x) and ∆V̂τ−1(x) must be found, where τ − 1 is the de-
cision period immediately after that of the arrival. To do this it is first
determined in which data interval the decision period immediately after the
arrival time τ is. Then since the bounds are only known in some or all data
intervals, the values of the bounds at time τ − 1 are determined by using
linear interpolation between the start time and the end time of the data
interval containing τ − 1.

The predefined Matlab function interp1.m is used to make the linear
interpolation. This function has three inputs Z, U, ZI and one output ar-
gument UI and it interpolates between the values of U to find UI at the
points in the vector ZI. The vector Z specifies the points at which the data
U is given. Thus, when using interp1.m on the SIC problem with trade-
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up, Z is a vector containing two elements, i.e., the decision period in which
the data interval containing τ − 1 begins and the decision period at which
this data interval ends. The vector U contains the corresponding values of
the lower or upper bound, depending on which bound is interpolated and
ZI is the decision period n, which corresponds to the time τ at which the
request occurs. This interpolation is done for both the upper and the lower
bounds, such that ∆V̌τ−1(x) and ∆V̂τ−1(x) are determined. When this is
done the four items described on page 50, ot the revised items for the B&P
LP C,G&J method, are run through and if the request is rejected the proce-
dure regarding trade-up to the lowest open class described for the previous
methods is used. The total revenue obtained from the simulation process is
then calculated and given as output from the program.

The “Max” C&H Solution Method

The method “Max”, which is a variant of the C&H method, is implemented
in hybridMax.m. This program is made such that the exact method and
the approximation method can use different values of ǫ. The data interval
in which the switch between the exact and approximate methods must be
made is chosen by the user and is therefore given as input to hybridMax.m.
This input variable is denoted switchT ime. The demand matrix can then be
divided into two matrices, one for the exact method and one for the approxi-
mation method, such that the first switchT ime number of data intervals are
for the exact method and the last r − switchT ime data intervals are for the
approximation method, where r is the total number of data intervals. Si-
milarly, the matrix containing the trade-up probabilities between all classes
is also split into two. Next, the You method which is chosen as the exact
method for the general SIC problem with trade-up is run with these reduced
matrices and an optimal solution for the first switchT ime data intervals is
obtained.

Regarding the approximation method, another input to the program
hybridMax.m is an indicator, such that if the indicator has the value 1,
then the approximation method is one of the B&P methods described in
Section 4.1.3 and the open classes are determined by using the decision rule
given in that section. If the indicator is set to another value than 1, then
the You solution method is used as the approximation method. The You
solution method is then used with a rather big ǫ, such that it is less accurate
and faster. No matter which of the methods is used as the approximation
method, this is run with the reduced matrices for the approximation period,
and a solution for the last data intervals is obtained.

The switch is made by, for all combinations of remaining capacity, adding
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the total expected revenue for the data intervals in the exact period and the
total expected revenue for the data intervals in the approximation period.
Note that the sum is made such that if 7 seats remain after the approximation
period, then the total expected revenue from this period is added to the total
expected revenue from the exact period, when only 7 seats are available. This
way the number of seats which are available is taken into account and this is
done for all combinations of remaining capacities. By taking the maximum
of all these combinations it is determined how many seats it is optimal to
sell in both the exact and approximation periods, i.e., which combination
of remaining seats that yields the maximum total expected revenue for the
entire booking period. Then the open classes in the approximation period
are determined for the capacities C = 1, 2, . . . , indexmax, where indexmax is
the optimal remaining capacity after the approximation period determined
in the maximization.

If the approximation method is the B&P method with trade-up, there
are three outputs from hybridMax.m. These are the matrices H and j from
the You solution method which are used in the acceptance/rejection decision
in the exact part of the booking period and the matrix M with lowest open
classes from the B&P method which is used in the approximation period. If
the approximation method is the You solution method then the outputs are
only H and j, which is a combination of the matrices obtained in the exact
and approximation method.

The program RevenueHybrid.m is used to calculate the revenue from the
simulation process. This function calculates the revenue by using the matri-
ces given as outputs from the program hybridMax.m. Depending on the input
given to RevenueHybrid.m the program takes the use of different values of ǫ
into account. If different values of ǫ are used, initially the vector containing
the decision periods in which an arrival occurs is made as a combination of
the decision periods for the approximation period and the exact period.

If the You solution method is used as both the approximation method and
the exact method with different values of ǫ, then the acceptance/rejection
procedure is as described in the section about the You solution method on
page 65. If the adjusted B&P method with trade-up is used as the approx-
imation method, the procedure described in the section about the adjusted
B&P method on page 67 is used for the requests occuring in the approxima-
tion period and the procedure described for the You method is used in the
exact period.
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The “AddCol” C&H Method

Another variant of the C&H method is the method “Add Column”, which is
implemented in hybridAddCol.m.

The difference between the programs hybridAddCol.m and hybridMax.m

is how the switch between the exact and the approximation methods is made.
In the program hybridAddCol.m the switch is handled by first calculating the
expected revenue in the exact period with the You solution method. Then
the expected revenue is calculated for all data intervals in the approximation
period and for all remaining capacities using either the B&P solution method
or the You solution method depending on the value of the indicator. When
the expected revenue has been calculated for the approximation period, this
is only from the beginning of the booking period and until the time of the
switch, but it does not take the revenue which can be obtained in the exact
period into account. Hence, to make the switch the total expected revenue
for the exact period, i.e., the vector for the time of the switch for all values of
remaining capacity, is added to all the vectors in the matrix containing the
expected revenue from the approximation period for each decision period and
for all remaining capacities. This matrix then contains the approximation
of the value function and is hence used to determine the open classes in the
approximation period. The outputs from the program are the same as for
hybridMax.m, see Table C.3, Appendix C.

The program RevenueHybrid.m is used for the calculation of the revenue
obtained from the simulation process. This program is described for the
“Max” method.

The “Combi” C&H Method

The last variant of the C&H method is the method “Combi”, which is im-
plemented in hybridCombi.m.

For this hybrid method the switch is made by using the exact method in
the exact period but then the approximation method is used in the entire
booking period. These matrices are then combined such that the first part of
the matrix is the exact method and the last part of the matrix is the part of
the approximation matrix which is only for the approximation period. The
matrices H , j and M are given as output and used in the acceptance/rejection
decision.

Again, the program RevenueHybrid.m is used for the calculation of the
revenue obtained from the simulation process.



74 SIC with Trade-Up

4.3.2 Simplified SIC with Trade-Up

The programs described in this section are enclosed on the CD in the folder
Simple SIC with TU/Main Functions.

It is chosen not to describe the implementation of all the programs in this
section, since for some of the methods the implementations are very similar to
those for the general methods. This is for instance the case for the simplified
adjusted B&P method with trade-up and the simplified C,G&J method using
the B&P method for calculating the bounds. The only difference in these
functions is that the demand is only for class k and is hence given in a vector,
and the demand matrix is then obtained by multiplying the demand vector
with the trade-up rates as described in (4.24) page 60, since demand for other
classes than the lowest class only occurs through trade-up.

The input variables for the programs in this section have already been
described in Table C.2 and Table C.5, Appendix C. The only difference is
that the demand matrix D in Table C.2 is now a demand vector for class k.

Simulation

The simulation of the booking process for the simplified SIC problem with
trade-up is implemented in the program SimulationTradeupSimple.m. This
program is very similar to the program Simulation.m where trade-up is not
incorporated, see Section 3.3.1 for a description. There is an additional in-
put argument, though, which is a matrix TU containing the trade-up proba-
bilities TUk,i. The (i, j)th element in the matrix is the probability, that a
passenger is willing to trade up from the lowest-fare class in the market, class
k, to class i and all higher-fare classes in data interval r − j + 1, where r
is the total number of data intervals. Hence, the probabilities in the matrix
TU are cumulated, such that for instance the probability for trade-up from
class k to class i includes the probabilities of trade-up from class k to classes
i − 1, . . . , 1.

Recall, the assumption for the simplified SIC problem with trade-up is
that all passengers request the lowest class in the market, class k, since there
is no difference in the buying conditions for different fare classes. Therefore
demand for another class than class k only occurs through trade-up to this
class. Hence, instead of having a demand matrix as input, a demand vector
containing the total demand for class k in each data interval is input.

A final difference between the simulation programs Simulation.m and
SimulationTradeupSimple.m is the simulation of the requested class. Since
requests are always for the lowest class in the market, instead of simulating
the requested class, the highest class a passenger is willing to trade up to is
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simulated. For instance, if a passenger is willing to trade up to class i that
passenger is also willing to buy all lower-fare classes, classes i+1, . . . , k. The
highest class a passenger is willing to trade up to is simulated by using the
matrix TU . As mentioned before, the trade-up probabilities in this matrix
are cumulated in the classes, such that

TUk,1 ≤ TUk,2 ≤ · · · ≤ TUk,k = 1.

Thus, for a specific data interval the highest-fare class which a passenger will
trade up to can be simulated by generating a uniformly distributed random
number, RND ∈ [0, 1] and then comparing this with the vector in TU cor-
responding to that data interval. The index of the smallest element in that
vector which is larger than RND is the highest-fare class which the passenger
is willing to trade up to.

The outputs from the program are four vectors where three of these are
the same as for Simulation.m, these are t, dataint and n. The fourth output
vector is maxclass, which contains the highest class the arrival is willing
to trade up to. For description of the first three outputs, see Table C.2,
Appendix C.

The Simplified You Solution Method

The simplified You solution method is implemented in YouTalluriSimple.m.
This program is much simpler than YouTalluri.m, since the method is sim-
pler. In the simplified version it is only necessary to determine the lowest
open class, since the request is always for class k. The lowest open class is
determined by the maximization given in (4.21) page 58. The output from
the program is a C × T matrix containing the lowest open classes and a
matrix containing the total expected revenue for all decision periods and all
remaining capacities.

The program matrixRevenueSimple.m is used to calculate the revenue
from the simulation process. This function calculates the revenue by using
a matrix containing the lowest open class. Hence, when it is determined
whether to accept or reject a request in decision period t with a remaining
capacity x, the (x, t)th element in the matrix is compared with the most ex-
pensive class the customer is willing to trade up to, which is maxClass from
the simulation process. If the class is a higher-fare class than the lowest open
class, then the request is accepted for the lowest open class and otherwise
it is rejected. For the simplified problem there is no procedure for trade-up
after the rejection, since trade-up is incorporated in the simulation of the
requested class as described in the previous section.
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The HM Method

The HM method is implemented in the program HMSimple.m. The equation
given in (4.23) page 59 is used to calculate the value of Vt(x). Hence, first the
request probabilities P (Dt

j = s) for fare class j for all decision periods and all
possible values of number of arrivals s has to be determined. This is done by
using the predefined Matlab function poisspdf.m. Next the values of Dt

j are
calculated by using (4.22), where the trade-up probabilities from fare class
k to all other fare classes are input to the program. Now the values of Vt(x)
are calculated and the lowest open classes can be determined as described in
Section 4.2.2. These lowest open classes are stored in a C ×T matrix, where
C is the capacity and T is the total number of decision periods. This matrix
and a C×T matrix containing the value function for all remaining capacities
and for all decision periods are given as output.

The program matrixRevenueSimple.m is used to calculate the revenue
from the simulation process, see the previous section for description.

The Simplified C&H Solution Method

The simplified C&H solution method is implemented in three different pro-
grams depending on which of the three methods “Max”, “Add Column”
and “Combi” is used to make the switch between the approximation method
and the exact method. The simplified method “Max” is implemented in
hybridSimpleMax.m, the simplified method “Add Column” is implemented
in hybridSimpleAddCol.m and finally the simplified method “Combi” is im-
plemented in hybridSimpleCombi.m. Only the differences between the sim-
plified and the general programs are described.

One of the differences between hybridMax.m and hybridSimpleMax.m

is the meaning of the input variable indicator which for the general prob-
lem determined which method was used as the approximation method. For
the simplified problem only the You method with a large ǫ is used as the
approximation method, instead the indicator decides how the lowest open
classes are determined in the approximation period. If indicator = 1 then
the decision rule ∆Vt−1(x) ≤ F is used to determine the lowest open classes
in the approximation period and otherwise the decision rule given in (4.21)
page 58 is used to determine the lowest open classes. Another difference
between the two programs is that in the simplified version the outputs from
the exact method and the approximation method are the same, i.e., it is a
matrix containing the lowest open classes. Therefore there is only one output
from hybridSimpleMax.m, which is the combined matrix for both the exact
and approximation methods containing the lowest open classes. The switch
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between the methods is made as described for the general problem.
The difference between hybridAddCol.m and hybridSimpleAddCol.m is

that the simplified version can use the HM and the simplified You methods
as the exact method and only the simplified You method with a rather
large ǫ as the approximation method. Therefore the way the lowest open
class is calculated for the approximation method is as described in Sec-
tion 4.2.1. The switch and combined matrix containing the lowest open
classes is made in a similar way as for the general method. The output from
the hybridSimpleAddCol.m is only one matrix containing the lowest open
classes.

For the hybrid method “Combi” the two programs hybridCombi.m and
hybridSimpleCombi.m differ as described for “Max”. The revenue obtained
from the simulation process is for all three methods calculated by using the
program matrixRevenueSimple.m. A description of this function can be
seen in the section about the simplified You solution method.
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Chapter 5

Numerical Experiments

In this chapter numerical experiments for the different methods with and
without trade-up are presented. For both the SIC problem without and with
trade-up, the data used in the experiments are described.

In Section 5.1 the SIC problem without trade-up is investigated. In this
section it is described how the parameters are tuned and the results from the
numerical experiments are presented.

Next, in Section 5.2 the general SIC problem with trade-up is examined.
In this section the parameter tuning for the general methods and the results
obtained with these are presented.

Finally, in Section 5.3 the tuning of the various parameters in the methods
for the simplified SIC problem with trade-up is described. Furthermore the
results from the numerical experiments are given.

Common for all parameter tunings and results is that these are based
on 1000 runs of the methods on different simulations of arrivals for five test
sets with four different capacities. The test sets and capacities are described
further in the respective sections. Furthermore all results are shown for tests
run on a SUN Fire 3800 with a 1200 Mhz processor and 4 GB RAM.

5.1 SIC without Trade-up

The data needed for solving the SIC problem without trade-up are

• Demand forecasts for each data interval and each class.

• Capacity of the aircraft.

• Fare for each class.
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• Value of ǫ, where a smaller ǫ yields a smaller probability of two or more
arrivals in a decision period.

Furthermore, for the simulation of arrivals it is necessary to know the times
at which each data interval begins.

The first three items are data which are provided by the airline, whereas
the value of ǫ is chosen by the user of the program. Hence, the value of ǫ must
be tuned before the different solution methods can be used. The demand
forecasts can for instance be made by the airline from historic booking data
by taking an average of the number of bookings over a number of similar
flights.

The data obtained from BA contains 16 classes, 15 data intervals and
four capacities of C = 80, C = 100, C = 120 and C = 140.

It is important to have different data sets to obtain general results, since
if a method yields better results than another for one data set, this may not
be the case for a different data set. Therefore five different data sets are
provided by the airline. These are assumed to be representative for real life
data. The total demand and fares in the data sets can be seen in Table 5.1.

Test Total
Set Demand Fares
1 170 [290, 210, 160, 145, 130, 115, 100, 90, 85, 78, 65, 55, 45, 35, 30, 20]
2 127 [290, 210, 160, 145, 130, 115, 100, 90, 85, 78, 65, 55, 45, 35, 30, 20]
3 109 [160, 120, 110, 90, 70, 65, 60, 50, 45, 40, 35, 30, 20, 18, 15, 12]
4 108 [270, 220, 190, 140, 120, 110, 100, 90, 85, 75, 70, 63, 60, 45, 35, 30]
5 116 [350, 300, 290, 210, 180, 160, 145, 130, 110, 100, 95, 90, 80, 75, 50, 30]

Table 5.1: Demand and Fares for Five Test Sets without Trade-Up.

The difference in the total demand for test set 1 and test set 4 is seen
to be large. The distribution of the demand on classes and in data intervals
might be very different as well. In Figure 5.1 the demand patterns for these
two test sets are shown. Notice that data interval 1 is nearest departure and
data interval 15 is the beginning of the booking period.

The demand for test set 1 is seen to be distributed evenly throughout the
booking period. The demand for the discounted classes occur mainly in the
beginning of the booking period, between data intervals 10 and 15. In the
middle of the booking period, in data intervals 5 to 10, the demand is both
for discounted and high-fare classes, whereas close to departure the demand
is for the high-fare classes. For test set 4 the demand pattern is different. In
the beginning of the booking period the demand is both for discounted and
more expensive fare classes. In the middle of the booking period the demand
is fairly low, and close to departure with one exception the demand is only
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(a) Demand for Test Set 1.
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(b) Demand for Test Set 4.

Figure 5.1: Demand Pattern for Test Sets 1 and 4 without Trade-Up.

for classes 1 to 5. For test set 4 the demand for classes 6 to 12 is very low
compared to test set 1.

The demand patterns for test sets 2, 3 and 5 are given in Appendix B.
Here it is seen that the demand patterns for test sets 2 and 5 are similar to
the demand pattern of test set 1. The demand pattern for test set 3 seems
to be a combination of the demand patterns for test sets 1 and 4. Therefore
it can be concluded that the test sets differ in both fares, total demand and
distribution of demand.

In the next section the parameter tuning is described first and after-
wards the results obtained from the numerical experiments are presented.
The methods which are compared are the EMSRa, EMSRb, L&H and B&P
methods, where the two last methods use booking limits for each decision
period. Furthermore two versions of the L&H and B&P methods are intro-
duced, where the booking limits are only updated at the same times as in
the EMSR methods. These are denoted L&Hup and B&Pup, respectively.

When reading the next sections, keep in mind, as described in Section
1.1, that each optimization for the SIC problem must take less than 0.85
seconds to be computationally feasible for BA.

5.1.1 Parameter Tuning

The value of ǫ must be tuned before the methods can be used to solve the
SIC problem without trade-up. Recall that the smaller ǫ is, the smaller is
the probability of two or more arrivals in one decision period. Therefore the
smaller value of ǫ, the more accurate is the model, since for smaller values of
ǫ the assumption that there can be at most one request per decision period
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is more likely to be satisfied. In this report the tuning of ǫ is with respect
to the highest revenue and the shortest running time, since in practice these
are the important aspects.

With decreasing values of ǫ, an increase in revenue is expected, but also
the running times are then expected to get longer. Thus there is a tradeoff
between the revenue gained by using a method and the running time. As
mentioned in Section 1.1, the methods have to be computationally fast to be
usable, since the airline has an extensive number of flights in the system at all
times and the booking limits for each flight are updated frequently. Therefore
the final value of ǫ which is chosen may not yield the highest revenue, since
the running time might be too long when using that particular ǫ.

A Small Example

A test example which is smaller than the test sets mentioned in the pre-
vious section is generated to understand the connection between the reve-
nue obtained by the methods when simulating arrivals, the distribution of
arrivals and the value of ǫ. To see the dependence on the distribution of
arrivals, the simulations are made such that the arrival times are chosen in
advance and not randomly. This way different kind of arrival patterns can
be generated. Note that for a specific arrival pattern only the class which
is requested by each arrival varies. In the first arrival process requests oc-
cur mainly in the beginning of the booking period, in the second process
the arrivals are distributed evenly throughout the booking period and in
the last process the arrivals occur mainly in the end of the booking period,
i.e., close to departure. The small test set is made by scaling the demand,
fares and capacities in test set 1 to a case with only four fare classes, five
data intervals and capacity C = 10. The fares used in the test example
are F = [80.50, 43.50, 28.30, 13.00] and the total demand is D = 17. Using
ǫ = 0.1 the five data intervals are divided into a total of 36 decision periods,
whereas using ǫ = 0.3 the data intervals are divided into 18 decision periods.
In total 20 arrivals are simulated and for ǫ = 0.1 in the second arrival process,
the assumption about one or no arrivals in each decision period is satisfied.
This is not the case for ǫ = 0.3.

The L&H method with ǫ = 0.1 and ǫ = 0.3 is run 1000 times on the test
example for all three arrival processes. First the process with many arrivals
in the beginning of the booking period is used. The results from this is that
286 times out of the 1000 runs, the larger value of ǫ obtains a higher revenue
than the smaller ǫ does. Furthermore in 483 of the runs the revenues were
the same. Thus, in 231 times of the 1000 runs, the revenues with ǫ = 0.1
is better than the revenues with ǫ = 0.3. Hence it seems that when using
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ǫ = 0.3 similar results as when using ǫ = 0.1 are obtained. To understand
this result the arrival patterns with the two values of ǫ are shown in Figure
5.2. In this figure it is also seen, which requests are rejected and which are
accepted. The arrivals mainly occur in the beginning of the booking period,
since decision period 0 corresponds to departure.
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(b) Test with ǫ = 0.3.

Figure 5.2: Arrival Pattern for the First Simulation.

It is seen, that with ǫ = 0.1 the L&H method only accepts one request
in the beginning of the booking period in the expectance of requests later
on. This causes the lower revenue, since the demand later in the booking
period is not as high as expected. With ǫ = 0.3 the L&H method accepts two
requests in the beginning of the booking period and in the case where the
arrivals occur mainly in the start of the booking period, this yields a higher
revenue.

In the second simulation the arrivals are equally distributed throughout
the booking period. Again the L&H method is run 1000 times with ǫ = 0.1
and ǫ = 0.3. The results are that 844 times out of the 1000 runs ǫ = 0.1
is better than ǫ = 0.3, and 9 times ǫ = 0.3 is better than ǫ = 0.1. Hence
the general observation is that now the smaller value of ǫ creates a higher
revenue. The arrival pattern and the accepted and rejected requests are
shown in Figure 5.3. Note that as mentioned earlier for ǫ = 0.1 only one or
no arrival occur in each decision period, hence the assumption for the model
is satisfied. For ǫ = 0.3 there are two arrivals in some decision periods, thus
the assumption is not satisfied. See for instance decision periods 17 and 6 in
Figure 5.3(b).

As with the first simulation with ǫ = 0.1 the L&H method is seen to reject
many arrivals in the beginning of the booking period, where the arrivals
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(b) Test with ǫ = 0.3.

Figure 5.3: Arrival Pattern for the Second Simulation.

are mainly for the discounted classes. With the arrivals equally distributed
throughout the booking period, this yields a higher revenue than with ǫ = 0.3,
since the expected requests come later in the booking period. In figure 5.3
it is seen that the problem, when using ǫ = 0.3 is that too many requests
are accepted in the beginning of the booking period. Hence, later on in the
booking process requests for more expensive classes are rejected due to lack
of capacity. For instance, a class 3 request is rejected with ǫ = 0.3 and
accepted with ǫ = 0.1.

Lastly the L&H method was run 1000 times on the small test example
with the third simulation. In this simulation the arrivals occur mainly in the
end of the booking period. As with the second simulation ǫ = 0.1 performed
better than ǫ = 0.3, since in 740 runs the first was better than the latter and
only 17 times the opposite occured.

In Figure 5.4 it is seen that the reason that L&H perform worse for ǫ = 0.3
than for ǫ = 0.1 is the same as with the second simulation. Requests for a
discounted fare class are accepted in the beginning of the booking period and
hence a request for a more expensive fare has to be rejected later on in the
booking period.

From the above tests with the small example it can be concluded that
if the arrivals occur mainly in the beginning of the booking period, then a
larger value of ǫ should be used in the solution method. The reason for this
is that the two values of ǫ give similar results, but a larger ǫ yields a shorter
running time. Is the arrival process expected to be like the second or third
simulation, then a smaller value of ǫ should be used. In real life, requests
are expected to arrive throughout the booking process with more arrivals
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(b) Test with ǫ = 0.3.

Figure 5.4: Arrival Pattern for the Third Simulation.

closer to departure than in the beginning of the booking period. Hence,
when tuning the value of ǫ for the solution methods on the different test sets
it is expected that smaller values of ǫ perform better than larger values.

Tuning of ǫ

In the following the parameter tuning for the L&H method with and without
updating the booking limits will be presented first. Recall that in the L&H
method booking limits are calculated for each decision period in the booking
period whereas in the L&H method with update, the booking limits are up-
dated at fewer points in time determined by the airline. After the parameter
tuning of the L&H methods the parameter tuning for the B&P method will
be described. The parameter tuning is done for four different values of ǫ,
which are chosen to be ǫ = 0.001, ǫ = 0.1, ǫ = 0.2 and ǫ = 0.3.

In Table D.2, Appendix D.1.1, a comparison of the revenues obtained with
the different values of ǫ is shown. In the table the test set denoted L&H 1 is
when the L&H solution method is used on test set 1 and L&H 2 is with test
set 2, etc. In L&H 1 booking limits for each decision period are known. The
test set denoted L&Hup 1 is, when the booking limits determined with the
L&H method are updated at times specified by the airline and used on test
set 1.

For capacities larger than the total demands in the test sets, almost all
demand can be satisfied and thus not many requests must be rejected. Hence,
the numbers in the comparisons for these capacities and test sets are so small
that nothing can be concluded about the value of ǫ using these comparisons.
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Therefore the comparisons are not shown for all combinations of test sets
and capacities. For instance, for test set 2 the total demand is D = 127 and
the results of the comparisons for C = 140 are that in 40 of the 1000 runs
using ǫ1 yields a higher revenue than using ǫ2 and in 60 of the 1000 runs the
opposite is the case. Hence, when using the two values of ǫ, the same revenue
is obtained 900 times, and therefore the value of ǫ is less important when the
capacity is larger than the total demand. Thus the comparisons for L&H 2
and L&Hup 2 are not shown for C = 140. Similarly L&H 3, L&H 4, L&Hup
3 and L&Hup 4 are not shown for C = 120 and C = 140, since the total
demand for test sets 3 and 4 is D = 109 and D = 108, respectively. Finally
the comparisons for L&H 5 and L&Hup 5 are not shown for C = 120 and
C = 140 since the total demand for test set 5 is D = 116.

When comparing the revenues obtained by using the different values of ǫ,
it is in Table D.2, Appendix D.1.1, shows that ǫ = 0.001 yields the highest
revenue for the L&H method without updates. The number of times that
ǫ = 0.001 is better than ǫ = 0.1 must be compared with the average running
time when using the different values of ǫ, since the running time is a big issue
in the usability of the method as described previously. The average running
times are given in Table D.1, Appendix D.1.1. In this table the running time
with ǫ = 0.001 is seen to be generally 10 times longer than the running time
with ǫ = 0.1. When comparing the results for ǫ = 0.1 with those obtained
with ǫ = 0.2 it is seen that ǫ = 0.1 in the majority of the runs yields a higher
revenue than ǫ = 0.2. Compared with this, the reduction in running time
by using the larger value of ǫ is not too large, therefore ǫ = 0.1 is chosen
for the L&H method without updates. For the L&H method with updates
Table D.2, Appendix D.1.1, shows that ǫ = 0.1 produces the highest revenue
in all cases and the running times for this are similar to those for the L&H
method with ǫ = 0.1, hence this value is also chosen for the L&H method
with updates.

These choices of ǫ are based on the assumptions that if the programs are
implemented in another programming language than Matlab, for example
C++, then the running times can be reduced significantly, such that the
limit of 0.85 seconds is satisfied. Another way of satisfying this time limit is
to choose ǫ = 0.2 but in this case the revenues obtained are lower.

As with the L&H method, the method denoted B&P 1 is, when the B&P
solution method is used on test set 1, etc. In Table D.4, Appendix D.1.2, a
comparison of the revenues obtained with the different values of ǫ is given.
The results for the test sets are shown for the same capacities as with the
L&H method for the same reasons. The values in the table are much smaller
than those for the L&H method in Table D.2. Thus, for the B&P method
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the results obtained using the four values of ǫ are very similar. Hence, this
method is less dependent on the value of ǫ. This might be because the demand
used in the approximation of the value function is the expected demand from
the present decision period until departure. Thus, whether there are five or
ten decision periods in a data interval does not change much in the value
of the expected demand until departure. Therefore the value function Vt(x)
does not change much and hence the decisions of accepting or rejecting a
request are almost the same, yielding a similar revenue.

The results obtained when using the different values of ǫ are similar, but
ǫ = 0.1 yields slightly better results than both ǫ = 0.2 and ǫ = 0.3 and the
running time is not reduced much by using the last two values of ǫ. Therefore,
of these three values ǫ = 0.1 is chosen. When choosing between ǫ = 0.001
or ǫ = 0.1, the last value is chosen from a running time perspective. The
running time with ǫ = 0.1 is generally 10 times shorter than the running time
with ǫ = 0.001, see Table D.3, Appendix D.1.2. Thus, for the B&P method
it is also chosen to use ǫ = 0.1. Note that for this method with the chosen
value of ǫ the time limit of 0.85 seconds is satisfied.

5.1.2 Results

In the previous section the value of ǫ was tuned to ǫ = 0.1 for both the L&H
method with and without update and the B&P method. In this section the
different methods are run with both ǫ = 0.1 and ǫ = 0.01 to show how good
results can be obtained with the L&H method, if a longer running time is
acceptable, i.e., if a smaller value of ǫ is used. In the following ǫ1 = 0.01 and
ǫ2 = 0.1.

The results are shown for test sets 1 and 4, since these test sets differ
the most, as described in Section 5.1. Hence, the results from these two test
sets are assumed to show the general tendency, if one exists. The results for
test sets 2, 3 and 5 are shown in Appendix E. In Tables 5.2, 5.3 and 5.4 the
updating of the booking limits for L&Hup, B&Pup, EMSRa and EMSRb is
done at some prespecified times given by the airline. These times are such
that initially in the booking period the booking limits are updated at the
beginning of each data interval and later in the booking period the updating
is intensified. The specific times for the update of the booking limits can be
seen in the vector DecPer in Appendix E.

The reason for calculating the L&H and B&P methods with updates of
the booking limits at prespecified times, L&Hup and B&Pup, is that the
system, which the airlines use now, can only handle one set of booking limits
at a time and thus cannot handle a set for each decision period. Therefore,
even though data is available for the booking limits in each decision period,
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this cannot be used. In the numerical experiments run in this report, it is
chosen to show results with updates of the booking limits in each decision
period for the L&H and B&P methods anyway, since these can be used as
benchmarking results. Furthermore, if the results show that there is a large
gain in revenue by using all the information available, the airline may consider
changing their system.

C = 80 C = 100 C = 120 C = 140
ǫ1 = 0.01 ǫ2 = 0.1 ǫ1 = 0.01 ǫ2 = 0.1 ǫ1 = 0.01 ǫ2 = 0.1 ǫ1 = 0.01 ǫ2 = 0.1

L&H 1 3.91 s 1.14 s 4.78 s 1.34 s 5.61 s 1.61 s 6.41 s 1.86 s
L&Hup 1 3.93 s 1.16 s 4.80 s 1.36 s 5.64 s 1.63 s 6.43 s 1.88 s
B&P 1 1.53 s 0.45 s 2.00 s 0.57 s 2.49 s 0.71 s 2.98 s 0.85 s
B&Pup 1 0.33 s 0.21 s 0.35 s 0.22 s 0.37 s 0.24 s 0.38 s 0.25 s
EMSRa 1 1.09 s 1.08 s 1.12 s 1.11 s 1.13 s 1.15 s 1.14 s 1.13 s
EMSRb 1 1.13 s 1.12 s 1.16 s 1.15 s 1.17 s 1.16 s 1.19 s 1.17 s

L&H 4 2.45 s 0.72 s 3.03 s 0.87 s 3.54 s 1.08 s 4.31 s 1.20 s
L&Hup 4 2.47 s 0.74 s 3.05 s 0.89 s 3.55 s 1.09 s 4.33 s 1.21 s
B&P 4 1.26 s 0.36 s 1.55 s 0.45 s 1.88 s 0.55 s 2.35 s 0.65 s
B&Pup 4 0.27 s 0.18 s 0.29 s 0.19 s 0.30 s 0.21 s 0.32 s 0.22 s
EMSRa 4 0.94 s 0.93 s 0.96 s 0.95 s 0.99 s 0.98 s 1.02 s 1.01 s
EMSRb 4 0.97 s 0.96 s 0.99 s 0.98 s 1.02 s 1.01 s 1.05 s 1.04 s

Table 5.2: Running Times for the Methods without Trade-Up.

In Table 5.2 the average running times for the different methods are shown
for test sets 1 and 4. These are the total times it takes to calculate the reve-
nue obtained when using the methods on the simulated arrival process. The
running times for the methods with ǫ1 are seen to be approximately three to
four times longer than with ǫ2, except for EMSRa and EMSRb since these
do not depend on the value of ǫ. The small variations in the running times
for these methods are due to the randomness of the number of arrivals in
the simulation of the arrival process. Furthermore, the L&H method where
the booking limits are updated is seen to be the slowest method, whereas
the B&P method with updates is the fastest. L&Hup is the slowest method,
since when using this method the entire matrix of booking limits as for L&H
needs to be calculated and then specific columns of this are used, yielding the
longer running time compared to L&H. For B&Pup the booking limits are
only calculated at the same prespecified times as the EMSRa and EMSRb
methods. Note that the B&P method with ǫ2 is approximately twice as fast
as the EMSRb method. Furthermore, in Table 5.2 the B&P method with
ǫ2 = 0.1 is seen to be the only method which satisfies the time constraint
of 0.85 seconds. Not even the EMSRb method which is currently used by
most airlines satisfies this constraint. This substantiates the previously men-
tioned assumption that implementing the methods in another programming
language reduces running times significantly.
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To determine if one of the methods yields a significantly higher revenue than
the others, it is necessary to use a statistical tool. In this report a paired
t-test is used. A paired t-test is normally used to determine whether two
paired sets differ from each other in a significant way. The data which are
to be compared in this report are naturally paired, since for each of the 1000
runs the revenues are calculated for the same simulated arrivals and test set
but with different methods. For each of the 1000 runs the difference between
the revenues obtained with the methods are calculated for all combinations
of two methods. Let the pair of random variables (Ψi, Ωi) denote the revenue
obtained from two different methods in the ith run, for i = 1, 2, . . . , 1000,
then the statistical analysis proceeds by considering the differences

Γi = Ψi − Ωi for i = 1, 2, . . . , 1000.
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Figure 5.5: B&Pup with ǫ2 fitted with Normal Distribution.

This collection of differences is then treated as a random sample of size
1000 from a normal distributed population having mean Γ. The difference
follows a normal distribution if each of the components in the difference fol-
lows a normal distribution. To determine if this can be assumed, the revenues
from the B&P method with ǫ2 = 0.1 is plotted together with a fitting normal
distribution. In Figure 5.5 the data are seen to fit the distribution, hence the
data is assumed to satisfy the assumption regarding the distribution.

The expression Γ = 0 is interpreted as indicating that the means of the
two sets are the same, i.e., the two methods yield similar revenues and Γ > 0
as indicating that the mean revenue obtained by the first method is higher
than that obtained by the second method. The null hypothesis, which is
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tested in the paired t-test is then

Null hypothesis: Γ = 0 against Alternative hypothesis: Γ > 0.

For more information on t-tests see [17] by Johnson.
A paired t-test with a significance level of α = 5% is made for all 15

combinations of every two methods and this is done for both ǫ1 and ǫ2. In
this way it is statistically determined, whether the revenue obtained by using
one method is significantly different from the revenue obtained with another
method.

L&Hup 1 B&P 1 B&Pup 1 EMSRa 1 EMSRb 1

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 1 2.18 1.84 0.18 0.07 1.98 1.70 4.15 3.91 0.76 0.53
L&Hup 1 - - 1.99 1.68 0.19 0.16 1.99 2.11 1.43 1.33

B&P 1 - - - - 1.81 1.74 3.98 4.02 0.59 0.58
B&Pup 1 - - - - - - 2.19 2.30 1.23 1.17

EMSRa 1 - - - - - - - - 3.39 3.44

C=100

L&H 1 1.86 1.67 0.15 0.15 1.74 1.41 2.18 1.86 0.52 0.22
L&Hup 1 - - 1.74 1.40 0.12 0.27 0.35 0.21 1.35 1.47

B&P 1 - - - - 1.59 1.55 2.03 2.02 0.37 0.35
B&Pup 1 - - - - - - 0.46 0.50 1.23 1.20

EMSRa 1 - - - - - - - - 1.67 1.68

C=120

L&H 1 1.53 1.35 0.13 0.35 1.44 0.95 1.17 0.68 0.39 0.1

L&Hup 1 - - 1.44 0.95 0.09 0.40 0.41 0.69 1.14 1.44

B&P 1 - - - - 1.31 1.29 1.04 1.04 0.27 0.26
B&Pup 1 - - - - - - 0.32 0.30 1.05 1.03

EMSRa 1 - - - - - - - - 0.78 0.79

C=140

L&H 1 1.17 1.17 0.24 0.24 1.33 0.84 0.53 0 0.28 0.21

L&Hup 1 - - 1.33 0.84 0.16 0.33 0.66 1.15 0.89 1.38

B&P 1 - - - - 1.10 1.08 0.30 0.29 0 0
B&Pup 1 - - - - - - 0.82 0.81 1.05 1.04

EMSRa 1 - - - - - - - - 0.25 0.24

Table 5.3: Rel. Diff. in % for Test Set 1 without Trade-Up.

In Tables 5.3 and 5.4 the relative differences in percentage between every
combination of two methods are given. The differences between the methods
are always divided by the revenue from the method which yields the smallest
revenue. I.e., the relative difference is with respect to the method which gives
the smallest revenue.

The values in the tables are to be read as follows

• 0:
The null hypothesis cannot be rejected, i.e., in practice the methods
yield similar revenues.
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• Positive value:
The null hypothesis is rejected, i.e., it cannot be rejected that Γ > 0,
which in practice means that the first method yields a higher revenue
than the second on a 5% significance level. The number represents the
relative difference in revenue between the two methods considered.

• NoD:
In all of the 1000 runs no difference in revenue between the two methods
was recorded, see Table 5.4.

A bold value implies that the method listed in the top row of the table is
significantly better than the method listed in the first column. If the value
is not bold, the method listed in the first column yields a significantly higher
revenue than the method in the top row.

The methods are compared for the same capacities and values of ǫ, for
instance when L&H 1 with C = 80 and ǫ1 = 0.01 is compared with B&P, the
latter is also with C = 80 and ǫ1 = 0.01.

L&Hup 4 B&P 4 B&Pup 4 EMSRa 4 EMSRb 4

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 4 1.09 0.54 0.50 0.51 1.41 0 5.17 3.88 0.39 0.72

L&Hup 4 - - 1.40 0.21 0.33 0.34 4.09 3.40 0.71 1.24

B&P 4 - - - - 0.92 0.71 4.61 4.43 0.11 0.20

B&Pup 4 - - - - - - 3.72 3.76 1.03 0.90

EMSRa 4 - - - - - - - - 4.76 4.68

C=100

L&H 4 0.85 0.31 0.30 0.43 0.89 0 2.72 1.87 0.25 0.56

L&Hup 4 - - 0.89 0 0.05 0.31 1.89 1.60 0.61 0.85

B&P 4 - - - - 0.60 0.43 2.40 2.32 0.06 0.12

B&Pup 4 - - - - - - 1.83 1.93 0.65 0.54

EMSRa 4 - - - - - - - - 2.48 2.47

C=120

L&H 4 0.18 0.09 0 0 0.14 0.10 0.16 0.13 0.05 0
L&Hup 4 - - 0.14 0.10 0.04 0 0 0 0.14 0.07

B&P 4 - - - - 0.13 0.11 0.14 0.14 0.03 0.03
B&Pup 4 - - - - - - 0 0 0.10 0.08

EMSRa 4 - - - - - - - - 0.11 0.11

C=140

L&H 4 0.01 0.01 NoD NoD 0.01 0.01 0 0 0 0
L&Hup 4 - - 0.01 0.01 0.00 0 0.01 0.00 0.01 0.00

B&P 4 - - - - 0.01 0.01 0 0 0 0
B&Pup 4 - - - - - - 0.00 0.00 0.00 0.00

EMSRa 4 - - - - - - - - 0 0

Table 5.4: Rel. Diff. in % for Test Set 4 without Trade-Up.

In Table 5.3 the L&H method with ǫ1 = 0.01 is seen to yield a significantly
higher revenue than the B&P and EMSRb methods, regardless of the size of
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the capacity. In Table 5.4 similar results are seen for C = 80 and C = 100,
but for the other capacities there is no significant difference in the revenue.
This is due to the fact that for test set 4 the expected total demand is
D = 108, hence for C = 120 and C = 140 the capacity of the aircraft is
larger than the total demand. Therefore it is not necessary to reject many
requests and so the difference between the methods gets small. In Table
5.3 it is also seen that when using ǫ2, the B&P method always yields a
higher revenue than the L&H method. As with ǫ1, for test set 4 when the
capacity is larger than the expected total demand, the difference between the
methods gets insignificant. The L&H method with updates, L&Hup, is seen
to perform bad for all test sets. It is significantly better than the EMSRa
method in most cases, though, but all other methods are significantly better
than L&Hup. This was expected, since as mentioned previously the L&H
method is based on using all the information available, which L&Hup does
not do. The B&P method with updates, B&Pup, yields generally higher
revenues than the EMSRa method but smaller revenues than the EMSRb
method.

In Table 5.3 it is seen that the more requests which are to be rejected
due to low capacity, the larger is the relative difference between the methods.
Furthermore it seems as if there is a general tendency that the greater the
difference between the expected demand and the capacity is, the better are
the dynamic methods compared to the static methods. Hence, this was
investigated further by running the methods with different capacities such
that the ratios between the total expected demand and the capacities for
the test sets were the same. If the results for these tests showed the same
tendency, then it could be concluded that this ratio played an important role
for some of the methods in general. The results did not show this, though,
and hence the tendency is not general enough to conclude anything.

To compare the B&P, L&H, EMSRa and EMSRb methods when the
booking limits for the static methods are updated in each decision period,
the tests were run with these new update vectors. The results from these
runs are shown in the Tables E.6, E.7, E.8, E.9 and E.10 in Appendix E for
test sets 1, 2, 3, 4 and 5, respectively. These results do not differ much from
the results shown in this section, hence it can be concluded that the EMSRa
and EMSRb methods do not gain much in revenue by updating the booking
limits more frequently.

Summary of Results

Table 5.5 sums up the main results of this section. The results in this table
are shown for ǫ2 = 0.1. The conclusion is that the EMSRb method yields
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higher revenues than the B&P method, when using ǫ2 = 0.1 for test sets 3
and 4, whereas for test sets 1, 2 and 5 the B&P method generally gives a
higher revenue. Even when taking the fact that the B&P method is faster
than the EMSRb method into account, it is not recommended to change the
booking system to update in each decision period and use the B&P method,
since nothing can be concluded about which method is the best of these
two in general. If time is available, though, it is preferable to use the L&H
method with ǫ1, since this method yields the highest revenues. The time can
be reduced by implementing the methods in another programming language
than Matlab and thus it might be possible to use the L&H method with
ǫ1 = 0.01.

Capacity L&H 1 L&Hup 1 B&Pup 1 EMSRa 1 EMSRb 1

B&P 1 C = 80 0.07 1.68 1.74 4.02 0.58
B&P 1 C = 100 0.15 1.40 1.55 2.02 0.35
B&P 1 C = 120 0.35 0.95 1.29 1.04 0.26
B&P 1 C = 140 0.24 0.84 1.08 0.29 0

Capacity L&H 4 L&Hup 4 B&P 4 B&Pup 4 EMSRa 4

EMSRb 4 C = 80 0.72 1.24 0.20 0.90 4.68
EMSRb 4 C = 100 0.56 0.85 0.12 0.54 2.47
EMSRb 4 C = 120 0 0.07 0.03 0.08 0.11
EMSRb 4 C = 140 0 0.00 0 0.00 0

Table 5.5: Summary of results for the SIC problem without Trade-Up.

5.2 General SIC with Trade-Up

The data needed for solving the SIC problem with trade-up using the gene-
ral methods described in Section 4.1 are similar to the data needed for the
methods used to solve the SIC problem without trade-up. Some additional
data are needed, though.

Recall, for the general problem with trade-up the buying conditions for
different fare classes are assumed to differ. Hence, requests for all fare classes
are expected. The data needed are therefore

• Demand forecasts for each data interval and each class.

• Capacity of the aircraft.

• Fare for each class.

• Trade-up rates from fare class k to another class and all higher-fare
classes.
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These data are all provided by the airline. The demand forecasts for each
data interval and each class used for the general problem with trade-up are
similar to those for the problem without trade-up. There are only 8 different
trade-up classes, though, and therefore the demand used for the problem with
trade-up is only for these 8 trade-up classes, instead of all 16 independent
classes. These demand forecasts can be estimated as explained in Section
5.1, whereas the estimation of the trade-up rates is more complicated. An
example of how to estimate these is that if 10 bookings are observed in fare
class 2 when this class is open and 3 bookings are observed in fare class 1
when fare class 2 is closed, then the trade-up rate from fare class 2 to class 1
is estimated to 30%. Usually the estimations of the trade-up rates are more
complicated, and a more thorough explanation about these can be seen in
[25] by Talluri and Van Ryzin.

Besides the data obtained from the airline, some data which are specific
for the different methods, are needed. These are

• The times and capacities at which bounds for the value function for
the C,G&J method must be calculated.

• The way the lower bound is determined from the upper bound when
using the C,G&J method.

• The value of ǫ for the You method and the adjusted B&P method with
trade-up.

• The switch time, i.e., the time at which the C&H method switches from
the approximation method to the exact method.

These values must all be determined such that they fit the respective
methods as well as possible, i.e., such that an acceptable tradeoff between
revenue and running time is made. Hence, these values must be tuned before
any final results can be obtained.

In the data given for the trade-up market there are 8 fare classes, 15
data intervals and the four capacities C = 25, C = 40, C = 55 and C = 75
are assumed to be the most realistic. These capacities are lower than the
capacities used in the problem without trade-up, since the expected demand
is much lower than in the problem without trade-up. Again different data
sets of demand and fares are given by the airline and the total demand and
the fares for the different classes are given in Table 5.6.

As for the problem without trade-up, the difference in the total demand
for test set 1 and test set 4 is large. In Figure 5.6 the demand patterns for
these two test sets are shown. In test set 1 there is a large demand, and this
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Test Total
Set Demand Fares
1 82 [290, 210, 145, 130, 100, 65, 45, 30]
2 55 [290, 210, 145, 130, 100, 65, 45, 30]
3 50 [160, 110, 90, 70, 50, 35, 20, 15]
4 33 [270, 190, 140, 110, 90, 70, 60, 45]
5 57 [350, 290, 210, 160, 130, 95, 75, 50]

Table 5.6: Demand and Fares for Five Test Sets with Trade-Up.

is evenly distributed throughout the entire booking period such that in the
beginning of the booking period the demand is mainly for low-fare classes
and toward the end of the booking period, the demand is mainly for high-
fare classes. The demand in test set 4 is fairly low and in the middle of the
booking period it is close to zero. The demand patterns for test sets 2, 3 and
5 are given in Appendix B. These figures show that the demand patterns are
very similar to each other and to the demand pattern for test set 1, just with
a lower demand. All test sets differ, though, and hence these are assumed to
be representative for real life data.
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Figure 5.6: Demand Pattern for Test Sets 1 and 4 with Trade-Up.

Recall, as described in Chapter 4, that in a trade-up market both trade-
up classes and independent classes exist. To simplify the problem, in this
report it is chosen to ignore the independent classes when a trade-up market
is considered. Hence, the optimizations are made for only approximately half
the number of classes as the optimizations for the problem without trade-up.
Therefore the time used for each optimization in the trade-up market must
be approximately half of the time allowed for an optimization in the market
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without trade-up. Thus, the optmizations for the problem with trade-up
must take less than approximately 0.45 seconds to be usable for BA.

In the following sections the parameter tuning and the results of the
numerical experiments for the different methods are presented.

5.2.1 Parameter Tuning

As mentioned in the previous section the parameters which need to be tuned
for this problem are the times and capacities at which bounds for ∆Vt(x)
must be calculated and the way the lower bound is determined from the
upper bound for the C,G&J method. For the You method and the adjusted
B&P method with trade-up the values of ǫ need to be tuned, and finally the
switch times for the C&H methods must be determined.

Tuning for the C,G&J method

If all the mentioned parameters have to be tuned thoroughly, the tuning
for this problem is comprehensive. Hence, for the C,G&J method the times
and capacities at which bounds for ∆Vt(x) must be calculated are chosen
reasonably. There is a tradeoff between running time and revenue for the
method, since it is assumed that the more times and capacities the bounds
are calculated in, the higher is the revenue obtained with the method, but
this also requires a longer running time. In this report it is chosen to use
the beginning of each data interval as the times at which the bounds are
calculated and the capacities at which the bounds are calculated are for each
fifth value of the capacity. For instance if the total capacity is 25, then the
bounds are calculated in the values C = {1, 5, 10, 15, 20, 25}.

Recall that when the C,G&J method is used, two different ways of deter-
mining the upper bound for ∆Vt(x) are suggested in Section 4.1.4. The first
way is to use the B&P LP method with trade-up, and when this is used, the
C,G&J method is denoted the B&P LP C,G&J method. The other way of
calculating the upper bound is to use the adjusted B&P method with trade-
up. Once the upper bound is determined this way, the C,G&J method is
denoted the adjusted B&P C,G&J method.

When the upper bound has been calculated, the lower bound can be
determined in a number of different ways. In this report it is chosen to
calculate the lower bound as a function of the upper bound. The tuning of
the lower bound is fairly perfunctory in this report, hence only three different
ways of finding this are tested. These are

1. LB = UB − K − r · UB
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2. LB = UB − r · UB

3. LB = UB − K

where K is a constant, r determines which ratio of the upper bound, that
should be subtracted this, UB is the upper bound for ∆Vt(x) and LB is
the lower bound. By running a program calculating the lower bounds with
different K and r it is found that apparently the best lower bound for both
C,G&J methods is obtained by

LB = UB − 0.3 · UB. (5.1)

The number of different solution methods for the general SIC problem is
extensive. Hence, to reduce this number only one of the two C,G&J methods
is used. Therefore tests are run where the revenue which is obtained when
using the adjusted B&P C,G&J method is compared with the revenue ob-
tained with the B&P LP C,G&J method. The lower bound for both methods
is calculated using (5.1) page 97. The results from these comparisons are not
recorded, but from these it is concluded that higher revenues are obtained
with the B&P LP C,G&J method. Due to the use of Matlabs linprog.m

running times for this method are longer than for the adjusted B&P C,G&J
method. As mentioned previously, though, time can be reduced significantly
by using a more efficient optimizer and by implementing the program in an-
other programming language. Hence, it is assumed that the running time for
this method can be reduced enough to be feasible for BA, and therefore the
B&P LP C,G&J method is used in all of the following.

For the problem with trade-up, it is assumed that the You method yields
better results than the L&H method with revised demand, since trade-up is
directly incorporated in the model by You. Therefore bounds for ∆V Y

t (x),
calculated with the value function in the You method given in (4.7) page
45, are desirable. To empirically determine if the B&P LP C,G&J method
can be used to calculate an upper bound for ∆V Y

t (X), the bound calculated
with the B&P LP C,G&J method and ∆V Y

t (x) are plotted together. In the
two uppermost plots in Figure 5.7 the upper and lower bounds, UB and
LB respectively, are plotted together with ∆V Y

t (x) for capacity C = 40 and
data intervals 5 and 15. The circles in the figure indicate for which values of
remaining capacity there is a knot in the spline. In the figure it is seen that
the upper bound fits nicely for data interval 5, but for data interval 15, the
upper bound actually lies below ∆V Y

t (x) between remaining capacities 20
and 25. This is caused by the interpolation with a spline. The interpolation
is made such that the values of the upper bound in the knots are fitted in
the best possible way, which may not necessarily yield an upper bound for
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∆V Y
t (x). The upper bound calculated with the B&P LP C,G&J method is

investigated for all five test sets and all four values of the total capacity. From
this it is concluded that for all test sets the B&P LP C,G&J method provides
an acceptable upper bound. Only for few values of remaining capacities and
in few data intervals the bound is not actually an upper bound.

The lower bound in the topmost plots in Figure 5.7 are calculated using
(5.1) with which the best results for the B&P LP C,G&J method are ob-
tained. As can be seen in the figures, this lower bound is not really a very
good lower bound. For both data intervals it lies above ∆V Y

t (x) for several
values of the remaining capacity. In the bottom two plots the lower bound
has been calculated by

LB = UB − 100 − 0.3 · UB.

The plots are shown for data intervals 5 and 15 as well, and they show that
when using this lower bound, ∆V Y

t (x) is nicely surrounded by the upper and
lower bounds. The revenues obtained when using this lower bound is lower
than the revenue obtained when using (5.1), though, and since the tuning of
the lower bound is made with respect to the highest revenue, (5.1) is used
in all of the following, regardless that it is not a lower bound in all data
intervals and for all test sets.

Tuning of ǫ

The only parameters, which remain to be tuned are the values of ǫ for the
You method and adjusted B&P method with trade-up and the switch time
for the C&H method. Since both the You method and the adjusted B&P
method with trade-up are used as exact and approximation methods in the
C&H method, the values of ǫ for these methods are tuned before the switch
time is tuned. Recall that a smaller ǫ gives a smaller probability of two or
more arrivals in one decision period, and therefore, the smaller ǫ is, the more
accurate the method is, and presumably this yields a higher revenue, but a
longer running time.

The You method and the adjusted B&P method with trade-up are run for
different values of ǫ, an arrival process is simulated and the revenues obtained
by the two methods are calculated. Four different values of ǫ are used for the
You method. These are ǫY

1 = 0.001, ǫY
2 = 0.01, ǫY

3 = 0.1 and ǫY
4 = 0.2. Five

different values of ǫ are used for the adjusted B&P method with trade-up.
These are ǫBP

1 = 0.1, ǫBP
2 = 0.2, ǫBP

3 = 0.3, ǫBP
4 = 0.4 and ǫBP

5 = 0.5. These
values of ǫ are chosen by looking at the results of the parameter tuning for
the problem without trade-up.
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Figure 5.7: ∆Vt(x) with UB and LB for the General Problem.

First the tuning of ǫ for the You method is described. In Table D.5,
Appendix D.2.1, the average running times when calculating the revenue
using the You method are given. In the table the test set denoted You 1 is
when the You method is used on test set 1, You 2 is with test set 2, etc. In
Table D.6, Appendix D.2.1, the revenues obtained for 1000 test runs for the
different values of ǫ are compared. The values in the table are the number
of times one value of ǫ yields a higher and a smaller revenue than another
ǫ. As for the problem without trade-up, when the capacity of the aircraft is
larger than the expected total demand, very few requests are rejected by the
decision rule. Hence, in this case the difference in revenue when using the
method for different values of ǫ is insignificant. For instance, for a capacity of
55 for test set 4, where the expected total demand is 33, the number of times
the revenue obtained with ǫY

1 = 0.001 is greater than the revenue obtained
with ǫY

4 = 0.2 is 1 and the number of times the revenue obtained with ǫY
4 is

greater than the revenue obtained with ǫY
1 is 0. This is the general tendency

when the capacity is greater than the demand and therefore the results for
the following capacities and test sets are omitted: For C = 40 the results for
test set 4, for C = 55 the results for test set 3 and 4 and for C = 75 the
results for test sets 2, 3, 4 and 5.
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In Table D.5, Appendix D.2.1, as expected, the running times are seen
to be decreasing with increasing values of ǫ. Hence, the optimal value of
ǫ must be determined by investigating the values in Table D.6. Here the
results obtained with ǫY

2 = 0.01 are seen to be better than those obtained
with ǫY

1 = 0.001 in most instances. Thus, from these two values ǫY
2 = 0.01

is chosen. For most test sets and capacities ǫY
2 yields slightly better results

than ǫY
3 , but in some cases ǫY

3 is superior. In either instance the number
of times one of the values yields better results than the other is very close
to the number of times a worse result is obtained. Hence, from a running
time perspective ǫY

3 is chosen. The question is then whether to use ǫY
3 or ǫY

4 .
The parameter ǫY

4 yields faster running times but lower revenues, and thus
ǫY
3 = 0.1 is used for the general You method throughout the report. In Table

D.5 in Appendix D.2.1, the running times for the You method are seen to
be too long to be feasible for BA. It is chosen to use ǫY

3 = 0.1 anyway, and
this choice reflects the assumption that if the You method is implemented
in another programming language, then running times can be reduced, such
that a running time closer to the limit of 0.45 seconds can be obtained.

Next the tuning of ǫ for the adjusted B&P method with trade-up is presented.
In Table D.7, Appendix D.2.1, the average running times when calculating
the revenue using the adjusted B&P method with trade-up are given. For this
method it is seen that a larger ǫ does not necessarily yield shorter running
times. In Table D.8, Appendix D.2.1, the revenues obtained for the different
values of ǫ are compared. Again, when the capacity of the aircraft is much
larger than the expected total demand, the difference in revenue when using
the method for different values of ǫ is insignificant. Therefore the results
for the same capacities and test sets as for the You method are omitted. In
Table D.8 it is seen that in general higher revenues are obtained when using
a smaller ǫ. Then, to determine which value of ǫ is optimal for this problem,
running times are considered. Table D.7 shows that in some cases especially
for test set 1, the running times when using ǫBP

1 = 0.1 are much longer than
those when using a higher ǫ. For ǫBP

2 = 0.2, though, running times are seen
to be as short or only a little longer than for a higher value of ǫ. Therefore
it is chosen to use ǫBP

2 = 0.2 for the adjusted B&P method with trade-up for
the general problem in this report.

Tuning of the Switch Time

Finally, the switch time for the C&H method is tuned. The exact solution
methods are assumed to yield higher revenues than the approximation me-
thods. Therefore it is assumed that the sooner the switch is made from
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the approximation method to the exact method, the higher is the revenue
obtained from a simulated arrival process. At the same time, though, the
sooner the switch is made, the longer is the running time for the method.
Hence, as in the tuning of ǫ there is a tradeoff between a high revenue and a
long running time.

As described in Section 4.1.5 there are three different hybrid methods.
These are the “Max” method, the “Add Column” method and the “Combi”
method. The You method is the only exact method in this report for solving
the general SIC problem with trade-up. For this method in the tuning of
ǫ, it was seen that ǫ = 0.1 gave good results with a reasonable running
time. Two different methods are used as the approximation method which
is applied in the beginning of the booking period. The first method is the
adjusted B&P method with trade-up, which is assumed to yield nice results
fast and this is used with ǫ = 0.2 as determined in the tuning of ǫ. The
second approximation method is the You method but with a larger ǫ, i.e.,
ǫ = 0.5. With this value of ǫ there is a fairly large probability that more than
one request occur in each decision period. Hence, the conditions in the You
model are not very well satisfied, but since it is used as the approximation
method this is acceptable. With one exact method and two approximation
methods there is a total of six different hybrid methods. The possible switch
times in the tuning are in the beginning of data intervals 12, 11, . . . , 3, 2.
These switch times are chosen, since it does not make sense to switch earlier
than after three data intervals, because if this is done, not much time is cut
off the running time.

The average running times from using the hybrid methods on test set 1
with C = 55 and different switch times are given in the upper half of Table
5.7. In the lower half of this table it is shown how well the hybrid methods
perform compared with the You solution method with ǫ = 0.1, which has an
average running time of 4.92s. It is seen, that as expected the running times
for the hybrid methods are shorter than that of the You method. The values
in the lower part of the table are the average revenues obtained when using
the respective hybrid method a 1000 times divided by the average revenue
obtained when using the You method a 1000 times.

The method “Max1” is the “Max” method with the adjusted B&P method
with trade-up as the approximation method and “Max2” is the “Max” method
with the You method as the approximation method. The same applies for
the other methods.

In the table it is seen that, as expected, the later a switch is made from
the exact method to the approximation method, the longer are the running
times for the hybrid methods. It was also expected, though, that an early
switch would give a higher revenue than a late switch, but this is not the
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Switch Time in Data Interval
2 3 4 5 6 7 8 9 10 11 12

Method Average Running Time

Max1 0.97 s 1.68 s 1.75 s 1.80 s 1.95 s 2.00 s 2.27 s 2.39 s 2.96 s 3.05 s 3.08 s
Max2 2.13 s 2.63 s 2.67 s 2.72 s 2.80 s 2.83 s 3.01 s 3.06 s 3.49 s 3.55 s 3.55 s
AddCol1 0.98 s 1.70 s 1.77 s 1.83 s 1.97 s 2.02 s 2.30 s 2.42 s 2.99 s 3.07 s 3.08 s
AddCol2 3.28 s 3.53 s 3.57 s 3.57 s 3.61 s 3.63 s 3.70 s 3.72 s 3.96 s 4.01 s 3.99 s
Combi1 0.93 s 1.65 s 1.75 s 1.80 s 1.94 s 2.00 s 2.28 s 2.40 s 3.01 s 3.11 s 3.12 s
Combi2 2.36 s 3.11 s 3.20 s 3.26 s 3.41 s 3.46 s 3.74 s 3.86 s 4.46 s 4.58 s 4.57 s

Method Relative Revenue with respect to the Exact Method in Percentage

Max1 0.96 0.98 0.97 0.98 0.97 0.98 0.98 1.00 0.99 0.99 0.98
Max2 0.99 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.01 1.00 1.00
AddCol1 0.85 0.77 0.77 0.78 0.79 0.80 0.87 0.88 0.95 0.96 0.95
AddCol2 0.84 0.89 0.91 0.92 0.95 0.95 0.99 1.01 0.98 0.97 0.98
Combi1 0.97 0.99 0.99 1.00 1.00 1.01 1.02 1.02 1.02 1.02 1.02
Combi2 0.84 0.84 0.84 0.83 0.84 0.83 0.84 0.84 0.88 0.88 0.89

Table 5.7: Tuning of the Switch Time for the Hybrid Methods

case for the methods “Max1”, “Max2” and “AddCol1”. The reason for this
may be that when combining two methods, one method may be good in the
beginning of the booking period and worse later on in the booking period
and the other method may have the opposite pattern. Then nothing can
be concluded regarding how the hybrid method will perform when the two
methods are combined. The switch times for the different hybrid methods
need not be the same, thus, a switch time is determined for each of the
methods. The clearest example of how these switch times are obtained is
for “AddCol2”. In Table 5.7 for “AddCol2”,the relative revenue is seen to
increase from 0.84% to 0.89% when increasing the switch time from data
interval 2 to data interval 3. The running time by doing this is increased
from 3.28 seconds to 3.53 seconds. Hence, an increase in switch time from
data interval 2 to data interval 3 is considered to be reasonable. By increasing
the switch time to data interval 6, it is seen that the running time does not
increase much but the relative revenue increases. Therefore the switch time
for “AddCol2” is chosen to be data interval 6. The switch times for the other
methods are determined similarly. This yields the following switch times for
the six hybrid methods

“Max1”: switch time = 2

“Max2”: switch time = 3

“AddCol1”: switch time = 2

“AddCol2”: switch time = 6 (5.2)

“Combi1”: switch time = 2

“Combi2”: switch time = 2.
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These switch times are used for the general SIC problem with trade-up.

Summary of Parameter Tuning

For the C,G&J method the times and capacities are chosen for which the
bounds for ∆Vt(x) are calculated. The times are set to be the beginning of
each data interval and the capacities are chosen to be C = {1, 5, 10, 15, 20, 25},
for instance, when the capacity of the aircraft is 25. The optimal lower
bounds for both C,G&J methods are tuned to

LB = UB − 0.3 · UB.

The two C,G&J methods are compared and the best of these, the B&P LP
C,G&J method, is used for all results.

To sum up the tuning of ǫ, for the You method a value of ǫY = 0.1 is
chosen. This choice reflects the assumption that the running time is reduced
when implementing the method in another programming language, since the
running time for the You method with this ǫ is not less than 0.45 s. For the
adjusted B&P method the value ǫBP = 0.2 is chosen.

Finally, the switch times for the C&H methods are tuned. A switch time
for each of the six hybrid methods is determined and the results of this tuning
are given in the items in (5.2).

5.2.2 Results

There is quite a large number of different solution methods for the general
problem with trade-up. These are the EMSRb method with trade-up, the
You method, the adjusted B&P method with trade-up, the B&P LP method
with trade-up, the B&P LP C,G&J method and six different hybrid methods.
To make the number of comparisons of methods manageable the six hybrid
methods are compared first and then only the best one of these is used for
the results.

In Appendix F.1 the results from comparing the hybrid methods are
shown in five tables, one for each test set. The data in the tables are the
differences between the revenues obtained by the two methods which are
compared, divided by the smallest of these revenues. These data are to be
interpreted as described on page 90.

The results show that there is not one method, which is better than all
others at all times. Which method is best varies both with capacity and
test set. In general, though, the method “Max2” yields good results and
for almost all test sets and capacities this method is in the top two of the
methods. Hence, this method is used in all of the following.



104 Numerical Experiments

After this reduction in the number of methods, six different methods for
the general SIC problem with trade-up are left. These methods are listed
below, where the emphasized name is the notation of the method in the
tables of results.

• EMSRb method with trade-up.

• You method with ǫY = 0.1.

• Adjusted B&P method with trade-up and ǫBP = 0.2.

• B&P LP method with trade-up.

• B&PLP C,G&J method.

• “Max2” from the C&H method.

The You method and the B&P method with trade-up are updated in
each decision period, i.e., decision rules are calculated before the beginning
of the booking period for all decision periods. The booking limits in the
EMSRb method with trade-up are revised at specific times stated by the
airline. These times are given as the DecPer vector in Appendix E. In the
C,G&J method the value function is calculated at predetermined remaining
capacities and times. The times used for this method are the beginning of
each data interval. These times are given as the vector DataintStart in
Appendix E.

Comparison of the Methods

The tables of results for the comparisons of the methods are shown only for
test sets 1 and 4, since these are the test sets which differ the most. The
results for test sets 2, 3 and 5 are given in Appendix F.2.

In Table 5.8 the average running times for the different methods are shown
for test sets 1 and 4. In the table the slowest method is by far seen to be the
B&P LP, which was expected. All methods except for the EMSRb method
with trade-up are faster for smaller capacities and the fastest methods are
the B&P and EMSRb methods with trade-up.

As for the problem without trade-up, to determine if one method yields a
significantly higher revenue than another, a paired t-test with a significance
level of α = 5% is used in the exact same way as described for the problem
without trade-up in Section 5.1.2. The Tables 5.9 and 5.10 show results
for test sets 1 and 4, respectively. The values in the tables are the relative
differences in percentage and the tables are to be read as explained in the
items on page 90.
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C = 25 C = 40 C = 55 C = 75

EMSRb 1 0.35 s 0.40 s 0.43 s 0.39 s
You 1 2.21 s 3.47 s 4.65 s 6.50 s
B&P 1 0.11 s 0.14 s 0.18 s 0.23 s
B&P LP 1 15.36 s 24.12 s 32.87 s 45.41 s
C,G&J 1 3.93 s 5.64 s 7.47 s 9.92 s
C&H 1 1.28 s 1.98 s 2.65 s 3.62 s

EMSRb 4 0.16 s 0.13 s 0.15 s 0.16 s
You 4 0.91 s 1.44 s 1.98 s 2.70 s
B&P 4 0.08 s 0.09 s 0.11 s 0.14 s
B&P LP 4 13.16 s 21.06 s 29.35 s 39.46 s
C,G&J 4 3.37 s 4.94 s 6.56 s 8.58 s
C&H 4 0.68 s 1.02 s 1.37 s 1.83 s

Table 5.8: Running Times for the General Methods.

You B&P B&P LP C,G&J C&H

C=25

EMSRb 34.70 33.55 33.94 34.47 34.56

You - 1.17 0.73 0.21 0.10
B&P - - 0.42 0.97 1.07

B&P LP - - - 0.54 0.63

C,G&J - - - - 0.11

C=40

EMSRb 15.40 10.45 14.10 20.43 14.05

You - 6.69 2.46 3.90 1.20
B&P - - 3.99 10.07 5.54

B&P LP - - - 5.85 0
C,G&J - - - - 5.18

C=55

EMSRb 2.68 8.00 5.31 0.51 0.63
You - 5.51 2.79 3.03 2.01

B&P - - 2.61 8.39 7.38

B&P LP - - - 5.67 4.68

C,G&J - - - - 1.01

C=75

EMSRb 3.59 3.03 1.94 4.48 2.82

You - 6.33 5.19 1.09 0
B&P - - 1.13 7.37 5.83

B&P LP - - - 6.19 4.71

C,G&J - - - - 1.60

Table 5.9: Rel. Diff. in % for Test Set 1 for the General Problem.

To get a general picture of which methods are the best for this problem
it is necessary to consider all five tables of results. When considering Tables
5.9 and 5.10 it is seen that the three methods B&PLP, EMSRb with trade-
up and B&P with trade-up all have poor performance. This is a general
tendency when considering all five tables of results. The B&P LP method is
the best of the three methods, but for all test sets this method is only in the
top three for five different capacities. In general the C&H method performs
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You B&P B&P LP C,G&J C&H

C=25

EMSRb 3.00 6.81 3.05 1.20 2.95
You - 0 0.79 4.17 0.07

B&P - - 3.52 7.53 0
B&P LP - - - 3.86 0.67
C,G&J - - - - 4.06

C=40

EMSRb 5.32 4.79 3.88 5.32 4.94

You - 9.79 8.84 0 0
B&P - - 0.88 9.79 9.53

B&P LP - - - 8.84 8.59

C,G&J - - - - 0

C=55

EMSRb 6.58 3.37 3.36 6.58 5.69

You - 9.74 9.73 NoD 0.82
B&P - - 0 9.74 8.88

B&P LP - - - 9.73 8.88

C,G&J - - - - 0.82

C=75

EMSRb 6.54 2.97 2.97 6.54 5.67

You - 9.35 9.35 NoD 0.79
B&P - - NoD 9.35 8.54

B&P LP - - - 9.35 8.54

C,G&J - - - - 0.79

Table 5.10: Rel. Diff. in % for Test Set 4 for the General Problem.

well for some test sets and capacities, but for instance for test set 2 seen in
Table (F.7), Appendix F.2, its performance is actually worse than that of all
other methods except for the EMSRb method.
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Figure 5.8: Accept/Reject Decision for General Problem.

For almost all test sets and capacities the You and C,G&J methods are
superior to all other methods. These are at all times in the top three of
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the methods. When considering the running times as well as the compa-
rison of revenues, the running times for both methods are seen to be too
long for the methods to be feasible. Hence, if the running times for these
methods can be reduced to be close to the running times for, for instance,
the B&P method, either of these methods is recommended. The question is
then which one of these methods should be used. It is difficult to draw any
final conclusions as to which one of these methods is the best. The running
time for the C,G&J method is longer than that of the You method. As de-
scribed previously, though, by using for instance GAMS instead of Matlabs
linprog.m for solving the LPs in the C,G&J method, this method can get
approximately 10 times faster. For both methods running times can be re-
duced by implementing the methods in a higher-level programming language
than Matlab.

To get an idea of why one method yields better results than another,
Figure 5.8 is included to show the acceptance/rejection decision for an entire
booking period for the You method and the EMSRb method with trade-
up. The capacity of the aircraft is C = 25 and test set 4 is used for the
simulation. These methods, test set and total capacity are chosen, since in
this case the You method yields a revenue which is averagely 30% higher
than that of the EMSRb method. This is the highest difference between
any two methods for the general problem. The figure illustrates in which
decision period each request occurs, which class is requested and whether each
request is accepted or rejected. Furthermore, if a request is rejected, it is seen
whether the rejected passenger chooses to trade up, and if so, which class the
passenger trades up to. Recall that decision period 1 is closest to departure.
A comparison of the decisions made by the You and EMSRb methods show
that in the beginning of the booking period, the EMSRb method keeps class
8 open until decision period 110 whereas the You method keeps class 8 closed.
Between decision periods 90 and 80 the EMSRb method opens class 7 and
hence requests for this class are accepted. The You method closes class 7
and therefore some requests for this class are rejected but one of the rejected
passengers chooses to trade-up. In the end of the booking period, where
requests are mainly for class 1, the load factor (LF) when using the EMSRb
method is 100%, and hence several class 1 requests are rejected. The You
method still has remaining capacity and keeps only class 1 open. Therefore
all class 1 requests are accepted and passengers requesting class 5 even trades
up to class 1. With these acceptance/rejection decisions it makes sense, that
the You method performs considerably better than the EMSRb method with
trade-up.
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Comparison of TU Methods with Non-TU Methods

Now, in a market where trade-up occurs it is interesting to determine whether
it is more profitable for the airline to use the methods which incorporate
trade-up or the methods which do not incorporate trade-up. Obviously it
is expected that the methods which do incorporate trade-up are superior,
since these methods take customer behaviour into account. To see if this
assumption is correct, it is chosen to compare the best two methods from the
problem without trade-up with the best two methods for the problem with
trade-up.

In Section 5.1.2 the results for the SIC problem without trade-up were
described. In this section it was concluded that if sufficient time is available,
it is preferable to use the L&H method with ǫ = 0.01, since this method
yields the highest revenues. The second best methods are the EMSRb and
B&P methods without trade-up, but it could not be determined which of
these methods was the best. It was recommended that the airline should use
the EMSRb method.

Thus the four methods used in the comparison are the L&H and the
EMSRb methods for the problem without trade-up and the You and C,G&J
methods for the general problem with trade-up. The first methods are in the
following denoted L&H and EMSRb respectively, and the latter methods are
denoted You and C,G&J, respectively.

The demand input to the two methods without trade-up is a matrix,
with demand for each of the 8 classes in the trade-up market. This matrix
is similar to the matrix used in the problem without trade-up, but it is only
for the 8 trade-up classes and not for all 16 independent classes. Then the
decision rules are made using these two methods exactly as for the problem
without trade-up. Since trade-up is customer behaviour and this occurs
in the market, the simulation used when calculating the expected revenue,
which can be obtained by the two methods, is the simulation for the trade-
up market. The two trade-up methods are used in the same way as in the
problem with trade-up.

Tables 5.11 and 5.12 show the relative differences in revenue in percentage
for test set 1 and 4, respectively. The remaining tables for test sets 2, 3 and 5
are given in Appendix F.3, and again to get a full picture of the comparisons
of the methods, all tables should be considered. As explained for the results
when comparing the six methods for the problem with trade-up earlier in this
section, the numbers in the tables are the relative differences in percentage
and the values are to be read as explained in the items on page 90. For
these tests the tables have been reduced a little, since it is not necessary to
compare a method with all other methods, i.e., it is not necessary to compare
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L&H EMSRb

C=25

You 8.76 10.43
C,G&J 8.60 10.27

C=40

You 9.49 10.02
C,G&J 23.23 13.80

C=55

You 8.68 8.97
C,G&J 11.70 12.01

C=75

You 7.76 7.49
C,G&J 9.03 8.76

Table 5.11: Rel. Diff. in % when Comparing Non-TU with TU Methods, Test Set 1.

L&H EMSRb

C=25

You 6.11 6.36
C,G&J 9.85 9.88

C=40

You 10.17 10.20
C,G&J 10.18 10.21

C=55

You 9.85 9.85
C,G&J 9.85 9.85

C=75

You 9.57 9.57
C,G&J 9.57 9.57

Table 5.12: Rel. Diff. in % when Comparing Non-TU with TU Methods, Test Set 4.

the L&H method with the EMSRb method for the problem without trade-up
since these have already been compared in a previous section. Furthermore,
the You and C,G&J methods with trade-up for the general problem have
already been compared.

In the tables it is seen that for all test sets and all capacities the trade-up
methods perform better than the non-trade-up methods. Especially for small
capacities the performance of the methods with trade-up is a lot better than
that of the two other methods. The amount the trade-up methods are better
than the methods for the problem without trade-up decreases as the capacity
increases. Hence, it can be concluded that an average increase in revenue of
approximately 7% 8% can be obtained when using the methods, which are
specifically derived for a trade-up market, instead of the best methods for
the problem without trade-up.
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Summary of Results

Initially in this section the number of solution methods for the general SIC
problem is reduced to six methods. Only one out of six C&H methods, the
“Max2” hybrid method, is used in the final results and only one of two C,G&J
methods, the B&PLP C,G&J method, is used.

Capacity EMSRb 2 B&P 2 B&P LP 2 C,G&J 2 C&H 2

You 2 C = 25 13.45 7.17 8.06 2.57 0
You 2 C = 40 5.20 4.18 3.31 1.01 1.53
You 2 C = 55 10.99 2.28 2.25 0 3.75
You 2 C = 75 13.57 1.59 1.58 0.59 5.89

Capacity EMSRb 3 You 3 B&P 3 B&P LP 3 C&H 3

C,G&J 3 C = 25 4.20 0 10.89 9.13 0
C,G&J 3 C = 40 3.82 0.81 8.88 7.24 0.09
C,G&J 3 C = 55 9.40 0.07 7.11 6.70 3.69
C,G&J 3 C = 75 9.73 NoD 6.57 6.57 4.28

Table 5.13: Summary of results for the General SIC Problem.

Table 5.13 sums up the main results from this section. The results are
for the You method with test set 2 and the C,G&J method with test set 3.
These are the test sets, which most clearly show the general tendency for
these two methods and the complete tables of results for these two test sets
can be seen in Appendix F.2. The conclusion is that the You method and the
C,G&J method yield the highest revenues compared with all other methods
used for solving the general problem with trade-up. Hence, one of these two
methods should be used. The running times for both methods are too long
to be feasible for BA as they are right now. It is expected, though, that if an
efficient optimizer is used to solve the LPs in the C,G&J method and if both
methods are implemented in another programming language than Matlab,
running times can be reduced sufficiently.

Finally, the best solution methods for the SIC problem without trade-
up are applied in a trade-up market. The results obtained with these me-
thods are compared with the results obtained with the trade-up methods in
a trade-up market. As expected the trade-up methods perform better than
the methods without trade-up for all test sets and all capacities. Depending
on the test set and capacity an average increase in revenue of approximately
7% to 8% can be obtained when using the trade-up methods instead of the
methods for the problem without trade-up.
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5.3 Simplified SIC with Trade-Up

The test sets for the simplified SIC problem with trade-up are the same as
for the general SIC problem with trade-up. I.e., the capacities which are used
in the experiments are C = 25, C = 40, C = 55 and C = 75.

Recall, that for the simplified SIC problem with trade-up, the buying con-
ditions for different fare classes are assumed not to differ. Hence, a passenger
will always request the lowest class in the market, class k, and requests for
other classes only occur through trade-up from class k. Therefore the data
needed when solving the SIC problem with trade-up using the simplified me-
thods described in Section 4.2 are a little different than the data needed for
the methods used to solve the general SIC problem with trade-up. The dif-
ference occurs in the demand forecasts, since now these only need to be for
class k for each data interval.

5.3.1 Parameter Tuning

For the simplified problem there are also data, which are specific for the
different methods. These are

• The way the lower bound is determined from the upper bound when
using the simplified C,G&J method.

• The value of ǫ for the simplified You method, the simplified B&P
method with trade-up and the HM method.

• The switch time, i.e., the time at which the simplified C&H method
switches from the approximation method to the exact method.

The times and capacities at which bounds for the value function for the
simplified C,G&J method are calculated are the same as for the general
problem for the same reasons as described in Section 5.2.1. The values listed
in the items must be tuned before any final results can be obtained.

Tuning for the Simplified C,G&J Method

The first parameter which is tuned is the calculation of the lower bound
in the simplified C,G&J method. The upper bound can be calculated in
two ways. Either by using the simplified B&P LP method with trade-up,
denoted Simple B&P LP, or by using the simplified adjusted B&P method
with trade-up, denoted Simple B&P. Due to the large number of methods for
the simplified problem, it is chosen to have only one simplified C,G&J method
and one simplified B&P method with trade-up. Therefore the two simplified
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B&P methods are compared to see which one is the best. The results are
not included, but the methods alternately give the highest revenue. Simple
B&P LP often yields the highest revenue, but in defiance of this, the method
seems very unstable. Due to this and the fact that Simple B&P is much
faster than Simple B&P LP, it is chosen to proceed with only Simple B&P.
Therefore only Simple B&P is used to calculate the upper bounds in the
C,G&J method.

Recall that the simplified adjusted B&P method with trade-up is only
known to be a good upper bound to ∆V LH

t (x) from the L&H method with
expected demand for all classes calculated by (4.24) page 60. As for the
general problem, the simplified You method is expected to yield better results
than the L&H method with revised demand. Hence, bounds for ∆V Y

t (x)
calculated with the value function in the simplified You method given in
(4.20) page 58 are desirable. It is empirically determined if the simplified
C,G&J method using the simplified adjusted B&P method with trade-up
can be used to calculate an upper bound for ∆V Y

t (X). This is done by for
all five test sets and four capacities plotting the upper bound obtained with
the simplified C,G&J method together with ∆V Y

t (x). The figures are not
included but in most instances it is actually an upper bound, and hence it
is reasonable to proceed with using the simplified adjusted B&P method for
calculating the bounds in the simplified C,G&J method.

The lower bounds which are considered in the tuning are the same as for
the general SIC problem, i.e.,

1. LB = UB −K − r· UB

2. LB = UB −r· UB

3. LB = UB −K

where K is a constant, r determines which ratio of the upper bound, that
should be subtracted from the upper bound. By testing the different lower
bounds with different values of K and r, it is determined that the lower
bound given in item 2 yields the highest revenue for the simplified C,G&J
method. The value of r which yields the best results is 0.7, hence the lower
bound is given by

LB = UB − 0.7 · UB. (5.3)

Figure 5.9 shows ∆V Y
t (x) when using the simplified You solution method

and the upper and lower bounds obtained with the simplified C,G&J method
on test set 1 with C = 40 for data intervals 5 and 15. In the two topmost
plots the lower bounds are calculated with (5.3) and in the bottom two plots
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Figure 5.9: ∆V Y
t (x) with UB and LB for the Simplified Problem.

the lower bound is calculated by

LB = UB − 40 − 0.6 · UB.

The first way of calculating the lower bound yields the highest revenue, since
this is the optimal tuning of the bound. For data interval 15 the bounds
surround ∆V Y

t (x) nicely, whereas for data interval 5 the lower bound is
not actually a lower bound. In the bottom two figures the second way of
calculating the lower bound is seen to give a nice bound. Both for data
interval 5 and 15 the bounds are seen to surround ∆V Y

t (x). This way of
calculating the bound gives lower revenues, though, and hence the lower
bound calculated with (5.3) is used in the C,G&J method. This is done
regardless that it is not a lower bound for all data intervals and all test sets.

As for the general problem, in Figure 5.9 for data interval 5 it is seen
that using a spline to approximate the upper bound gives certain oscillations
in the bound, resulting in the upper bound going slightly below the value of
∆V Y

t (x).
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Tuning of ǫ

The next parameters to be tuned are the values of ǫ for the simplified You
method, the simplified adjusted B&P method with trade-up and the HM
method.

For the simplified You method the same four values of ǫ are used as for
the general You method, i.e., ǫY

1 = 0.001, ǫY
2 = 0.01, ǫY

3 = 0.1 and ǫY
4 = 0.2.

Similarly, for the simplified adjusted B&P method with trade-up, the same
five values of ǫ are used as for the general B&P method with trade-up, i.e.,
ǫBP
1 = 0.1, ǫBP

2 = 0.2, ǫBP
3 = 0.3, ǫBP

4 = 0.4 and ǫBP
5 = 0.5. Finally for

the HM method four different values of ǫ are used and these are ǫHM
1 = 0.2,

ǫHM
2 = 0.3, ǫHM

3 = 0.4 and ǫHM
4 = 0.5. These values are relatively large, but

this is due to the assumption in the method, that several arrivals can occur
in each decision period.

Table D.9, Appendix D.2.2, shows the average running times when using
the simplified You method. As for the general problem, the test set denoted
You 1 is when the simplified You method is used on test set 1, You 2 is with
test set 2, etc. In Table D.10, Appendix D.2.2, the revenues obtained with
the different values of ǫ are compared. Note that the results are shown for
the same capacities and test sets as for the general problem with trade-up
due to the same reasons. In Table D.9 the running times are seen to be
decreasing with increasing values of ǫ. Hence, the optimal value of ǫ is found
by investigating the comparisons given in Table D.10. In most instances the
value ǫY

1 = 0.001 yields the best results but sometimes the results obtained
with ǫY

2 = 0.01 are just as good or better. The simplified You method using
ǫY
2 is 3 to 4 times faster than when using ǫY

1 . Since the running times when
ǫY
2 = 0.01 is used are reasonable and since when using ǫY

3 or ǫY
4 the revenues

obtained are lower, ǫY
2 is chosen for the simplified You method.

Table D.13, Appendix D.2.2, shows the average running times when using
the simplified adjusted B&P method. As for the general problem it is seen
that a larger ǫ does not necessarily yield shorter running times. In Table
D.14, Appendix D.2.2, the revenues obtained with the different values of ǫ
are compared. Here the same tendency regarding the revenue and values of
ǫ is seen as for the general problem, i.e., higher revenues are obtained using
a smaller value of ǫ. In Table D.13 the running times using ǫsBP

1 = 0.1 are
seen to be fairly short and therefore it is chosen to use ǫsBP

1 = 0.1 for the
simplified adjusted B&P method.

In Table D.11, Appendix D.2.2, the average running times when using
the HM method are given. As for the simplified adjusted B&P method it is
seen that a larger value of ǫ does not necessarily yield shorter running times.
It is seen, though, that using ǫHM

1 = 0.2 yields a longer running time than
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using ǫHM
4 = 0.5. In Table D.12, Appendix D.2.2, the revenues obtained with

different values of ǫ are compared. The values in the table are seen to be
much smaller than for the two other methods. Hence, the value of ǫ does not
have a big influence on the results. This makes sense, since the method takes
the variable number of requests which can arrive in each decision period into
account. From the comparisons it is seen, though, that in most cases the
value ǫHM

4 = 0.5 yields the best results. This is also the value of ǫ which in
general gives the shortest running times and therefore ǫHM

4 = 0.5 is used for
the HM method.

Tuning of the Switch Time

Finally, the switch time for the simplified C&H method is tuned. There
are four different hybrid methods, i.e, “Max1”,“Max2”, “Add Column” and
“Combi”, where “Max1” uses the decision rule ∆Vt−1(x) ≤ F to determine
the lowest open classes in the approximation period and “Max2” uses the
decision rule by You given in (4.21) page 58 to determine the lowest open
classes.

Both the HM method and the simplified You method are used as the
exact method in the simplified C&H method. There are two candidates for
the approximation method, namely the simplified adjusted B&P method with
trade-up and the simplified You method with ǫ = 0.5. Each of these approxi-
mation methods yields eight different hybrid methods and since a comparison
of sixteen methods is comprehensive, it is chosen to use the approximation
method which yields the best results. Therefore the revenues obtained with
the simplified adjusted B&P method with trade-up is compared with those
obtained with the simplified You method with ǫ = 0.5 for all test sets and
capacities. The results are not included, but it was seen that the simplified
You method with ǫ = 0.5 gave the best results and was reasonably fast.
Thus, the only approximation method which is used in the simplified C&H
method is the simplified You method with ǫ = 0.5. In total this gives eight
different hybrid methods. The possible switch times in the tuning are in the
beginning of data intervals 12, 11, . . . , 3, 2.

The average running times from running the hybrid methods on test set
1 with C = 55 and different switch times are shown in the top half of Table
5.14. In the lower half of this table it is seen how well the hybrid methods
perform compared with the simplified You solution method with ǫ = 0.01 or
with the HM method with ǫ = 0.5, depending on which of these two methods
that is used as the exact method. The simplified You method has an average
running time of 1.33s and the HM method has an average running time of
1.27s. The values in the lower part of the table are the average revenue
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obtained when using the respective hybrid method 1000 times divided by
the average revenue obtained when using the exact method 1000 times. The
first four methods listed in the table use the simplified You solution method
as the exact method, whereas the last four methods use the HM method as
the exact method.

Switch Time in Data Interval
2 3 4 5 6 7 8 9 10 11 12

Method Average Running Time

Max1 0.41 s 0.68 s 0.77 s 0.70 s 0.78 s 0.75 s 0.88 s 0.91 s 1.12 s 1.15 s 1.11 s
Max2 0.41 s 0.64 s 0.78 s 0.70 s 0.75 s 0.75 s 0.84 s 0.88 s 1.06 s 1.15 s 1.09 s
AddCol 0.47 s 0.73 s 0.76 s 0.79 s 0.82 s 0.83 s 0.94 s 0.90 s 1.07 s 1.15 s 1.18 s
Combi 0.40 s 0.74 s 0.80 s 0.74 s 0.83 s 0.84 s 0.88 s 0.98 s 1.15 s 1.21 s 1.25 s
Max1HM 0.47 s 0.71 s 0.65 s 0.75 s 0.82 s 0.84 s 0.88 s 0.97 s 1.16 s 1.19 s 1.20 s
Max2HM 0.43 s 0.65 s 0.75 s 0.69 s 0.75 s 0.79 s 0.92 s 1.01 s 1.05 s 1.22 s 1.18 s
AddColHM 0.49 s 0.71 s 0.78 s 0.80 s 0.84 s 0.90 s 0.96 s 0.99 s 1.24 s 1.10 s 1.24 s
CombiHM 0.44 s 0.66 s 0.73 s 0.77 s 0.84 s 0.90 s 0.98 s 0.99 s 1.22 s 1.32 s 1.24 s

Method Relative Revenue with respect to the Exact Method in Percentage

Max1 83.0 86.8 87.9 87.9 93.9 95.0 94.6 95.0 98.8 98.6 99.1
Max2 94.1 89.4 89.8 89.5 91.3 94.0 94.6 95.4 98.3 98.9 99.2
AddCol 96.5 99.1 98.1 98.7 98.9 99.0 99.3 99.5 99.7 99.8 99.7
Combi 93.5 94.2 93.4 95.1 96.6 97.0 98.5 99.3 99.7 99.8 99.7
Max1HM 81.6 85.8 87.0 87.0 93.0 93.8 93.7 94.1 98.4 98.3 98.6
Max2HM 91.8 88.2 88.7 88.3 90.0 92.6 93.7 94.1 97.7 98.3 98.4
AddColHM 96.9 98.9 98.6 98.8 99.4 99.1 99.0 99.5 99.8 99.7 99.6
CombiHM 93.0 93.9 93.3 94.9 96.6 96.6 98.1 99.2 99.7 99.7 99.5

Table 5.14: Tuning of the Switch Time for the Simplified Hybrid Methods.

In the table it is in general seen that the later a switch is performed from
the exact method to the approximation method, the longer is the running
time for the hybrid method. Generally, when combining the running time
and the revenue obtained by the methods, the best results are seen to be
when the switch time is in data intervals 6 or 7. Again, a switch time is
determined for each of the eight methods. This is done in a similar way as
for the general problem, i.e., by looking at the gain in revenue compared with
the extra running time when using the exact method in an additional data
interval. The switch times for the simplified C&H methods are chosen to be



5.3 Simplified SIC with Trade-Up 117

“Max1”: switch time = 7

“Max2”: switch time = 7

“AddCol”: switch time = 7

“Combi”: switch time = 8

“Max1HM”: switch time = 7 (5.4)

“Max2HM”: switch time = 7

“AddColHM”: switch time = 6

“CombiHM”: switch time = 6.

These switch times are used for the hybrid methods for the simplified SIC
problem with trade-up.

Summary of Parameter Tuning

The times for which the bounds for ∆Vt(x) are calculated are chosen to be the
beginning of each data interval, when using the C,G&J method. Furthermore
the capacities are chosen to be every fifth capacity, for instance when the
capacity of the aircraft is 25 then C = {1, 5, 10, 15, 20, 25}. The optimal
lower bound for the C,G&J method is tuned to

LB = UB − 0.7 · UB.

To sum up the tuning of ǫ, for the simplified You method a value of
ǫY = 0.01 is chosen. For the simplified adjusted B&P method the value
ǫBP = 0.1 is chosen. Finally, for the HM method the value of ǫ does not have
big influence on the results obtained using this method, hence, ǫHM = 0.5 is
chosen.

The switch time for the C&H methods are tuned for each of the eight
hybrid methods. The results of this tuning are given in the items in (5.4).

5.3.2 Results

As for the general problem with trade-up there is a large number of different
solution methods for the simplified problem. These are the simplified You
method, the simplified adjusted B&P method with trade-up, the C,G&J
method and eight different hybrid methods. Therefore, for the simplified
problem it is also chosen to compare the eight hybrid methods first, such
that the number of methods to be compared in the final results is reduced.
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In Appendix G.1 the results from comparing the hybrid methods are
shown in five tables, one for each test set. The data in the tables are the
differences between the revenues of the two methods, which are compared,
divided by the smallest of these two revenues. Again the data are to be
interpreted as described on page 90. The results show that two methods
alternately give the highest revenues. In general the method “Max2” yields
better results than all other methods for small capacities and “AddColHM”
gives the best results for larger capacities. Furthermore, the methods “Max2”
and “Max2HM” are seen to give similar results, but in some cases “Max2” is
slightly better. It is chosen to proceed with both of the methods “Max2” and
“AddColHM” for the simplified C&H method, even though “AddColHM” in
most cases gives the best results. This is done, since for the small capacities
“Max2” is much better than “AddColHM”.

After this reduction in the number of methods there are a total of six dif-
ferent methods for the simplified SIC problem with trade-up. These methods
are listed in the following, and again the emphasized word is the notation of
the method in the tables of results.

• Simplified You method with ǫ = 0.01.

• HM method with ǫ = 0.5.

• Simplified adjusted B&P method with trade-up using ǫ = 0.1.

• Simplified C,G&J method.

• “Max2” from the simplified C&H method.

• “AddColHM ” from the simplified C&H method.

Comparison of the Methods

The results when comparing the methods are shown only for test sets 1 and
4. The results for test sets 2, 3 and 5 are given in Appendix F.2.

Table 5.15 shows the average running times for the methods are seen for
test sets 1 and 4. These running times are the total times it takes to calcu-
late the revenue obtained when using the methods on the simulated arrival
process. In the table the slowest methods are seen to be the simplified You
method and the HM method, which have similar running times. The simpli-
fied You method is slightly faster in some cases, though. The HM method
was expected to be fast, since the number of decision periods needed for the
method is much smaller than the number of decision periods needed for the
simplified You method. This is not the case, though, which is probably due
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C = 25 C = 40 C = 55 C = 75

You 1 0.67 s 0.99 s 1.33 s 1.77 s
HM 1 0.71 s 0.98 s 1.27 s 1.71 s
B&P 1 0.13 s 0.18 s 0.24 s 0.32 s
C,G&J 1 0.26 s 0.26 s 0.27 s 0.29 s
Max2 1 0.42 s 0.56 s 0.72 s 0.91 s
AddColHM 1 0.38 s 0.51 s 0.66 s 0.87 s

You 4 0.33 s 0.48 s 0.59 s 0.77 s
HM 4 0.49 s 0.64 s 0.76 s 0.96 s
B&P 4 0.08 s 0.11 s 0.14 s 0.17 s
C,G&J 4 0.20 s 0.22 s 0.20 s 0.19 s
Max2 4 0.30 s 0.39 s 0.45 s 0.57 s
AddColHM 4 0.28 s 0.38 s 0.43 s 0.55 s

Table 5.15: Running Times for the Simplified Methods.

to the number of calculations in the model given in the HM method which are
more demanding. Furthermore the “Max2” method and the “AddColHM”
method have similar running times, which is not surprising, since they are
both based on the same method, i.e., the simplified C&H method. These
are approximately 1.7 times faster than both the simplified You method and
the HM method. All methods except for the simplified C,G&J method are
faster for smaller capacities and the fastest method is by far the simplified
adjusted B&P method with trade-up.

As for the previous problems, to determine if one of the methods yields a
significantly higher revenue than the others, a paired t-test with a significance
level of α = 5% is used, see Section 5.1.2 for a description.

In Tables 5.16 and 5.17 the relative differences between the methods are
shown in percentage.

All five tables of results have to be considered when determining which
of the methods that is the best for the simplified SIC problem with trade-up.
In Table 5.17 some of the relative percentages are seen to be over 100%. This
only happens for test set 4, though, since for this test set the demand is very
low compared to the capacity of the aircraft. In Table 5.17 the simplified
You and HM methods are seen to yield similar results. When considering all
the tables of results, it is seen that a few times the HM method is better than
the simplified You method and when this happens the revenue is averagely
0.15% higher. In general in all tables, the tendency is as for test set 4, i.e.,
the simplified You and HM methods yield the highest revenues, but these
are also the methods with the longest running times.

Of the methods with shorter running times the “AddColHM” Method
generally yields the highest revenues. This method performs poorly, though,
when the capacity is much smaller than the demand. For instance for C = 25
for test set 1, where the total demand is 82, the “AddColHM” method yields
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HM B&P C,G&J Max2 AddColHM

C=25

You 0 33.39 14.18 11.78 19.48
HM - 33.10 14.08 11.91 19.56
B&P - - 17.69 22.68 13.41

C,G&J - - - 4.76 6.67
Max2 - - - - 9.37

C=40

You 0.17 30.19 7.97 6.94 11.54
HM - 30.35 8.19 6.93 11.84
B&P - - 20.91 22.47 18.49

C,G&J - - - 1.80 5.44
Max2 - - - - 5.20

C=55

You 0.31 24.45 3.29 7.24 1.05
HM - 24.67 3.55 7.41 1.35
B&P - - 20.74 17.21 23.49

C,G&J - - - 6.95 2.46

Max2 - - - - 6.38

C=75

You 0 28.97 17.18 5.20 0
HM - 28.97 17.18 5.20 0
B&P - - 10.85 23.49 28.97

C,G&J - - - 12.33 17.18

Max2 - - - - 5.20

Table 5.16: Rel. Diff. in % for Test Set 1 for the Simplified Problem.

a revenue which is 19.50% lower than the revenue obtained with the simplified
You and HM methods. For all instances with C = 25, except for test set
4, “AddColHM” performs much worse than the You and HM methods, but
otherwise the three methods yield similar results. The simplified adjusted
B&P method with trade-up does not show the same nice results as it did for
both the SIC problem without trade-up and the general problem with trade-
up. In fact the simplified adjusted B&P method has a very poor performance,
since it never yields a higher revenue than any of the other methods. Hence,
even though this method has been one of the recommended methods for
the other problems, since the simplified SIC problem with trade-up is the
one BA is interested in, the simplified B&P method should not be used by
the airline to solve the simplified problem. If the demand is expected to be
much larger than the capacity of the aircraft, then it is recommended to use
either the simplified You solution method or the HM method, otherwise the
“AddColHM” method is recommended, since this is about 1.7 times faster
than both of these methods.

Notice, the running times for the methods do not satisfy BA’s time con-
straint of 0.45 seconds, but again the running times are assumed to be re-
duced significantly by using another programming language.
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HM B&P C,G&J Max2 AddColHM

C=25

You 0.08 87.95 64.18 5.53 0.08

HM - 87.84 64.22 5.36 0
B&P - - 15.69 79.23 88.05

C,G&J - - - 56.95 64.29

Max2 - - - - 5.56

C=40

You 0.01 100.05 98.18 2.14 NoD
HM - 100.03 98.16 2.13 0.01

B&P - - 1.18 96.87 100.05

C,G&J - - - 95.08 98.18

Max2 - - - - 2.14

C=55

You NoD 101.79 101.78 2.01 NoD
HM - 101.79 101.78 2.01 NoD
B&P - - 0 98.68 101.79

C,G&J - - - 98.66 101.78

Max2 - - - - 2.01

C=75

You NoD 102.67 102.67 2.23 NoD
HM - 102.67 102.67 2.23 NoD
B&P - - NoD 99.23 102.67

C,G&J - - - 99.23 102.67

Max2 - - - - 2.23

Table 5.17: Rel. Diff. in % for Test Set 4 for the Simplified Problem.

Comparison of TU Methods with Non-TU Methods

The assumptions for the simplified SIC problem with trade-up are much
different than those for the SIC problem without trade-up. Hence, it is
interesting to see how the methods for the SIC problem without trade-up
perform in a trade-up market with the assumptions from BA. Therefore it
is chosen to compare the two best methods from the SIC problem without
trade-up with the two best methods from the simplified SIC problem with
trade-up. Since the simplified You method and the HM method yield very
similar results, only the HM method is chosen for the comparisons. The
“AddColHM” method is chosen as well, since this is one of the faster methods.
The methods from the SIC problem without trade-up are the same as used in
the comparison in the general problem, i.e., the L&H method with ǫ = 0.01
and the EMSRb method. Thus the four methods used in the comparison are
the L&H method and the EMSRb method for the problem without trade-up
and the HM and the “AddColHM” methods for the problem with trade-up.

When using the methods without trade-up in the simplified trade-up mar-
ket, the demand which is used in the methods is the marginal demand. The
marginal demand is calculated from the total demand for class k in the trade-
up market and the trade-up rates qk,i using (4.24) page 60. The open classes
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L&H EMSRb

C=25

HM 60.32 33.94
AddColHM 35.34 13.03

C=40

HM 40.05 31.47
AddColHM 26.12 18.27

C=55

HM 29.29 24.25
AddColHM 28.17 23.23

C=75

HM 29.61 26.38
AddColHM 29.60 26.37

Table 5.18: Rel. Diff. in % when Comp. Non-TU with Simple TU Methods, Test Set 1.

are then determined with the methods without trade-up in the same way
as for the problem without trade-up. These open classes are then used in
the acceptance/rejection process on the simulated arrivals for the simplified
trade-up market.

L&H EMSRb

C=25

HM 138.30 101.09
AddColHM 138.38 101.29

C=40

HM 97.16 94.40
AddColHM 97.17 94.41

C=55

HM 100.46 100.47
AddColHM 100.46 100.47

C=75

HM 99.09 99.09
AddColHM 99.09 99.09

Table 5.19: Rel. Diff. in % when Comp. Non-TU with Simple TU Methods, Test Set 4.

Tables 5.18 and 5.19 show the results for test sets 1 and 4. The remaining
tables for test sets 2, 3 and 5 are given in Appendix G.3. Again all tables of
results must be considered when comparing the methods. The tables contain
the relative differences in percentage and as for the general problem with
trade-up, the tables have been reduced, such that the two methods solving
the same problem are not compared.

In Table 5.18 the methods for the problem with trade-up are on average
seen to be 20% - 30% better than the methods without trade-up. This is
the general tendency for test sets 2, 3 and 5 as well. In Table 5.19 the
relative differences are seen to be close to 100% or higher. Hence, for test
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set 4 the methods with trade-up yield a revenue which is approximately
two times higher than the methods without trade-up. This is an extremely
large difference and therefore this is investigated further. In Figure 5.10 the
acceptance/rejection process for all four methods are shown for C = 25, since
the largest relative differences are seen for this capacity. Notice that there
is a variable number of decision periods in the figures, depending on which
value of ǫ is used for the method. The title of each figure shows the name of
the method, the value of ǫ used, the revenue obtained with the method for
that arrival pattern and the load factor (LF) of the aircraft. The load factor
is the number of accepted requests divided by the capacity of the aircraft
and multiplied by 100%.
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Figure 5.10: Acceptance/Rejection process for the Simplified Problem, Test Set 4.

Recall, that only demand for class 8 occur, since this is the lowest class in
the market, thus requests for all other classes is due to trade-up. If a request
for class 8 is rejected, the figures show the highest-fare classes to which a
passenger is willing to trade up. Hence, many passengers are seen to be
willing to trade up. Furthermore, Figure 5.10 shows that both the HM and
“AddColHM” methods accept requests for fare class 8 in the beginning of
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the booking period and later in the booking period only fare class 1 is open.
Contrary to this both the L&H and the EMSRb methods accept requests for
class 8 throughout the booking period. Furthermore these methods do not
sell any class 1, 2, 3 or 4 tickets. The reason for this pattern of accepted and
rejected requests is found by considering the demand in test set 4. In the last
data interval before departure, data interval 1, the marginal demand given
to the methods without trade-up is

D1
1 = 1.68, D1

2 = 0.09, D1
3 = 0.09, D1

4 = 0.09,

D1
5 = 0.09, D1

6 = 0.09, D1
7 = 0.09, D1

8 = 0.84,

where Dt
i is the demand for class i in data interval t. The total demand

for test set 4 for all data intervals is 33, hence the marginal demand for
class 1 and class 8 are significant. The model in the L&H method does not
assume trade-up, and thus the decision is to open class 8 close to departure,
since it is better to sell a seat to class 8 than not to sell the seat. The
model expects that the demand for class 1 will book class 1 only, i.e., that
there is no danger of trade-down. This is where the model fails, since in
the trade-up market demand for class 1 only occurs through trade-up from
class 8, but if class 8 is open the trade-up will never happen. This explains
why close to departure, when the trade-up rate is high, no trade-up can
be achieved. The HM method only leaves class 1 open and thus it is not
surprising that the revenue difference is large. Notice that the methods with
trade-up obtains the higher revenue with a lower load factor of the aircraft
than the methods without trade-up. I.e., a higher revenue is obtained by
accepting fewer requests.

Therefore in general the HM and “AddColHM” methods are much bet-
ter than both the L&H and EMSRb methods, except for one instance for
the “AddColHM” method. This is for test set 2 with C = 25, where
the “AddColHM” method is 3.49% and 6.42% worse than the L&H and
EMSRb method, respectively. To get an idea of why this happens, the ac-
ceptance/rejection process is shown for the four methods for test set 2 with
C = 25 in Figure 5.11. In this figure it is seen that the L&H and EMSRb
methods do not accept any class 8 requests, i.e., all tickets sold are due to
trade-up. This is not the case for the “AddColHM” method, which accepts
many class 8 requests in the beginning of the booking period. Hence, close
to departure when passengers are willing to trade up to high-fare classes,
these are rejected due to lack of capacity. The load factor of 100% is already
reached in decision period 12.

The results depend very much on the demand used in the non-trade-up
methods. Looking at the results it may not be a good idea to use marginal
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Figure 5.11: Acceptance/Rejection process for the Simplified Problem, Test Set 2.

demands, since using this yields a low revenue. There may be other demand
which give better results. For instance, when it is recognized that a non-
trade-up model leaves class 8 open close to departure, because it does not
expect any risk of trade-down, then this can be counteracted by giving a
higher demand forecast for class 1, such that the model at least closes class
8 for small remaining capacities. This way a higher revenue can be obtained
by adjusting the demand given as input.

The final conclusion is that when using methods with trade-up instead
of methods without trade-up in a trade-up market a gain in revenue can be
obtained. Except for the instance in test set 2, the lowest relative percentage
which appears in all five tables is approximately 10%. Hence, even in the
best case for the L&H and EMSRb methods the difference in the revenue is
large. This difference may get smaller if another demand than a marginal
demand is used for the non-trade-up methods. There is no doubt, though,
that in a market where trade-up occurs, it is important for an airline to use
the methods with trade-up instead of the methods without trade-up.
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Summary of Results

Due to the extensive number of methods, a reduction in the final methods
used in the results is made. This is done by only choosing one simplified B&P
method, one simplified C,G&J method and two of eight hybrid methods. The
simplified adjusted B&P method with trade-up is chosen. This method is
also used in the simplified C,G&J method to calculate the bounds. The two
hybrid methods used in the final results are the “Max2” method and the
“AddColHM” method.

Table 5.20 sums up the main results of this section. In the top half it
shows the results for the HM method for test set 1 and in the lower half it
shows the results for the simplified You method for test set 3. The conclusion
is that the HM and simplified You methods yield the best results. These
methods yield higher revenues than all other methods in most instances,
but the running times are also the longest. Table 5.20 also shows that the
performance of the “AddColHM” method is worse for small capacities. For
larger capacities the method yields revenues which are very similar to those
obtained with the HM and simplified You methods.

Capacity You B&P 1 C,G&J 1 Max2 1 AddColHM 1

HM 1 C = 25 0 33.10 14.08 11.91 19.56
HM 1 C = 40 0.17 30.35 8.19 6.93 11.84
HM 1 C = 55 0.31 24.67 3.55 7.41 1.35
HM 1 C = 75 0 28.97 17.18 5.20 0

Capacity HM B&P 3 C,G&J 3 Max2 3 AddColHM 3

You 3 C = 25 0 26.06 5.37 3.28 7.53
You 3 C = 40 0 20.91 2.75 3.56 0.48
You 3 C = 55 0 20.46 18.25 2.81 0
You 3 C = 75 NoD 20.70 20.70 3.09 NoD

Table 5.20: Summary of results for the Simplified SIC problem with Trade-Up.

In the simplified trade-up market the HM and the “AddColHM” methods
are compared with the two best methods for the problem without trade-
up, i.e., with the EMSRb and L&H methods. From the comparisons, it
is seen that the methods for the problem with trade-up on average yield
revenues which are 20% - 30% higher than the revenue obtained with the
methods without trade-up. The differences in the revenues may get smaller
if a different demand than marginal demand is used for the non-trade-up
methods. The conclusion is, though, that an increase in revenue is expected
by using methods with trade-up in the simplified trade-up market instead of
methods without trade-up.



Chapter 6

Summary and Conclusion

In this chapter a short summary of this report is given. Furthermore the
main conclusions are recapitulated and the contributions of this work are
outlined. Finally, some areas for further work are suggested.

6.1 Summary

The main task given by British Airways for this work was to develop an
efficient DP algorithm for the revenue optimization problem which can be
used in practice in the presence of trade-up behaviour. Due to the extensive
number of flights, which BA has in the system at all times, the meaning of
“can be used in practice” is that each optimization of the problem for the
entire booking period has to take less than 0.85 seconds.

To make the reader familiar with the revenue optimization problem, espe-
cially the Seat Inventory Control problem, different concepts and challenges
regarding the SIC problem were introduced in Section 1.1. Furthermore,
trade-up behaviour was described in this section.

6.1.1 The SIC Problem without Trade-Up

The SIC problem without trade-up was examined before trade-up was incor-
porated such that a fundamental understanding of the problem was obtained.
Initially, two static methods were given for solving the SIC problem with-
out trade-up, the EMSRa and EMSRb methods and furthermore a dynamic
model was set up for this problem. For solving the dynamic model an exact
method and an approximation method was proposed, the L&H method and
the B&P method, respectively. The four methods were compared by conside-
ring both the running time for the methods as well as the revenues obtained
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from a simulated arrival process. The results showed that the L&H method
gave the highest revenue when the assumptions of the DP model were satis-
fied, but since the running times were 4 seconds on average, this method
would have to be developed further to be feasible. The B&P method was
slightly faster than the EMSRb method and both of these were much faster
than the L&H method. Which one of these gave the best results depended
on the request arrivals, and hence no conclusion could be drawn. Thus, the
recommendation was to use the EMSRb method for the SIC problem with-
out trade-up, since the booking system would have to be changed if the B&P
method is to be used.

It is well known that using Matlab as a general programming tool gives
longer running times than using a high-level programming language such as
C++. Hence, it is expected that the running times of the methods can be
significantly reduced. Furthermore, all numerical experiments were run on a
SUN Fire 3800 with a 1200 Mhz processor and 4 GB RAM. When running
the same experiments on a HP x4000 with a 1800 Ghz processor and 1.5 GB
RAM reductions in running time of approximately 10% to 15% are obtained.

6.1.2 The SIC Problem with Trade-Up

For the SIC problem with trade-up two cases were considered, each with
different assumptions. In the first case, the general problem, the assumption
is that the buying conditions for the classes in the trade-up market differ,
and therefore demand occurs for all classes. In the second case, the simplified
problem, the assumption is that there is no difference in the buying conditions
for the fare classes, hence passengers always request the lowest-fare class in
the market. The latter is the assumption made by British Airways. For both
problems it is assumed that if a passenger trades up, then this will always be
to the lowest open class, since the buying conditions get less restrictive the
higher the fare gets.

In a trade-up market two kinds of classes exist, non-trade-up and trade-
up classes. The non-trade-up classes are for instance transfer flights to and
from which it is not possible for the customer to trade up. To simplify the
problem in this report it was chosen to omit the non-trade-up classes, such
that only the trade-up classes in the market were modelled. These trade-up
classes form approximately half of the trade-up market. Hence to satisfy the
overall time limit on the optimizations given by BA, the optimizations for
the problems with trade-up had to be done in less than approximately 0.45
seconds.
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General SIC with Trade-Up

For the general SIC problem with trade-up a static method, the EMSRb
method with trade-up, was described. Furthermore, a DP model was set
up and an exact solution method for solving this, the You method, was
described. To obtain an efficient algorithm for the SIC problem with trade-
up, the methods considered were mainly approximation algorithms to solve
this DP model. As described in the literature review, not many papers deal
with heuristics for a DP model with trade-up incorporated. Therefore some
ideas from papers dealing with the problem without trade-up were applied to
the problem with trade-up to develop some new approximation methods for
solving the DP model with trade-up. These new heuristics were the C,G&J
method and the C&H method. Finally, the B&P method with trade-up was
described in two different versions, B&P and B&P LP.

The revenues obtained with the methods and the running times for these
were compared. The comparisons showed that the highest revenues could
be obtained with the You method and the C,G&J method. Hence, it was
recommended to use one of these methods for solving the general SIC problem
with trade-up. The running times for both methods were a little too long
to be feasible for BA. It is expected, though, that if an efficient optimizer
is used to solve the LPs in the C,G&J method and if both methods are
implemented in another programming language than Matlab, running times
can be reduced sufficiently.

The two best solution methods for the SIC problem without trade-up
were applied in a trade-up market. The results obtained with these methods
were compared with the results obtained with the two best trade-up methods
applied in a trade-up market. As expected revenues obtained with the trade-
up methods were better than the results obtained with the methods for the
problem without trade-up. An average increase in revenue of approximately
7% - 8% were obtained, and hence when dealing with a market in which trade-
up occurs, it was recommended to use solution methods which incorporate
trade-up.

The Simplified SIC problem

For the simplified SIC problem with trade-up almost the same methods as
for the general problem were described with the simplifying assumption. In-
stead of the EMSRb method with trade-up, the HM method was introduced,
in which a different DP model than the DP model in the You method was
set up. When implementing the methods and comparing these, it was seen
that the simplified You method and the HM method gave similar results.
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The highest revenues were obtained with these two methods, but these also
had the longest running times. Of the approximation methods with shorter
running times the “AddColHM” method, which was a version of the C&H
method, generally gave the highest revenues. This method performed poorly,
though, when the capacity of the aircraft was much smaller than the total
demand in the booking period. The revenues obtained with the simplified
B&P method with trade-up were at all times lower than the revenues ob-
tained with any of the other methods. The recommendation was that if the
demand is expected to be much larger than the capacity of the aircraft, then
either the simplified You method or the HM method should be used, other-
wise the “AddColHM” method is preferable, since this is about 1.7 times
faster than both the simplified You and HM methods.

The running times for the methods did not satisfy BA’s time constraint
of 0.45 seconds, but again we believe that by using another programming
language the running times can be reduced and satisfy the time constraint.

Finally, in the simplified trade-up market a comparison of two methods
with trade-up, the HM and “AddColHM” methods, and the two best methods
without trade-up, the EMSRb and the L&H methods, was made. It was seen
that the methods with trade-up on average gave revenues which were 20%
- 30% higher than the revenues obtained with the methods for the problem
without trade-up. It was expected that smaller differences in the revenues
would be obtained if a different demand than marginal demand was used for
the non-trade-up methods. The conclusion was, as for the general problem,
that an increase in revenue is expected by using methods with trade-up in
the simplified trade-up market instead of methods without trade-up.

6.2 Conclusion

For a market where trade-up does not occur, then even though the EMSRb
and the B&P methods performs similarly, the recommendation is to use the
EMSRb method for the SIC problem without trade-up. The reason for this
is that the booking system will have to be changed if the B&P method is to
be used.

To solve the general SIC problem with trade-up, the final conclusion is
that either the You method or the C,G&J method is recommended.

When comparing the best methods for the problem without trade-up with
the best methods for the general problem with trade-up, it is concluded that
an average increase in revenue of approximately 7% - 8% can be obtained.
Hence, in a trade-up market, models which incorporate trade-up must be
used.
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For the simplified SIC problem with trade-up, the recommendation is
that if the demand is expected to be much larger than the capacity of the
aircraft, then either the simplified You method or the HM method should be
used, otherwise the “AddColHM” method is preferable, since this is about
1.7 times faster than both the You and HM methods.

In a trade-up market, it is seen that the methods with trade-up yield
a much higher revenue than those without trade-up. An average increase
in revenues of approximately 20% - 30% can be obtained when using me-
thods, which take trade-up into account instead of methods which do not
incorporate trade-up.

6.3 Contributions of this Work

The main purpose of this work has been to develop an efficient DP algorithm
with trade-up. This goal is reached by initially investigating existing approx-
imation algorithms which solve a dynamic programming model for the SIC
problem with trade-up. Furthermore, two new methods for solving the DP
model with trade-up are developed by applying ideas obtained from papers
dealing with the SIC problem without trade-up. Hence, this work adds new
perspectives to the literature on the SIC problem with trade-up.

Besides adding new methods for solving the problem with trade-up, this
work also gives an extensive investigation and comparison of both exact and
approximation algorithms for solving a DP model with trade-up. In none of
the papers in the bibliography of this work, a comparison of several different
methods for the SIC problem with trade-up occurs.

Finally, it is investigated how methods for a non-trade-up market perform
in a trade-up market compared with methods incorporating trade-up. The
conclusion is that in a trade-up market a large gain in revenue can be obtained
by applying methods which incorporate trade-up instead of methods without
trade-up.

6.4 Further Work

Many areas of the SIC problem with trade-up remain to be investigated, both
in this work and in general. The problem examined in this report is the SIC
problem with trade-up for a single-leg flight and without multiple bookings.
Hence, modelling the problem for a network and including multiple bookings
are just some of the areas which can be added to the problem. Furthermore
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the model can be extended to incorporate cancellations, overbookings or no-
shows.

Regarding the trade-up market, a method which deals with both the non-
trade-up and trade-up classes is to be developed. In this project only the
trade-up classes were included in the methods. The results for the methods
with and without trade-up can be used to determine which methods might
be worth combining to develop a new method handling both types of classes.

The bounds used in the C,G&J method are determined very superficially
in this work and a more thourough investigation of the choice of these should
be made. Furthermore, the stochastic LP should be implemented and used
as a lower bound.

Finally implementing the methods in another programming language than
Matlab is a necessity. This is both due to the slowness of Matlab and the
compatibility of the method with the existing booking systems at the airlines.



Appendix A

Rewriting the Value Function

In the following the value function for the SIC problem without trade-up
(3.9) page 25 is rewritten to include ∆Vt(x).
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Appendix B

Demand Patterns

In Figures B.1 and B.2 the demand patterns for test sets 2, 3 and 5 for the
SIC problem without trade-up can be seen.
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(a) Demand for Test Set 2.
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(b) Demand for Test Set 3.

Figure B.1: Demand Patterns for Two Test Sets without Trade-Up.
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Figure B.2: Demand Pattern for Test Set 5 without Trade-Up.
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In Figures B.3 and B.4 the demand patterns for test sets 2, 3 and 5 for
the SIC problem with trade-up can be seen.
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Figure B.3: Demand Patterns for Two Test Sets with Trade-Up.
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Figure B.4: Demand Pattern for Test Set 5 with Trade-Up.
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Overview of Variables in

Programs

In Table C.1 a list of the main functions for the SIC problem without trade-
up can be seen. Furthermore, in this table the different inputs and outputs
used by the programs are given. The description of these variables can be
seen in Table C.2.

Program Input Output

Simulation.m D,F,C, T imeV ec, nyj t, class, dataint, n

EMSR.m D,C,F,DecPer, class, dataint, n Revenue

EMSRb.m D,C,F,DecPer, class, dataint, n Revenue

LHBL.m D,C,F, nyj BLmatrix

PopBL.m D,C,F, nyj BLmatrix

calcRevenue.m C,D,F, nyj, class, dataint, Revenue

n,BLmatrix,DecPer

Table C.1: Inputs and Outputs for the Programs without Trade-Up.

In Table C.3 a list of the main functions and their inputs and outputs
for the general SIC problem with trade-up can be seen. In Table C.5 the
description of the variables which are different from those used for the SIC
problem without trade-up described in Table C.2 can be seen.

In Table C.4 a list of the main functions and their inputs and outputs for
the simplified SIC problem with trade-up can be seen. The input variables
for the programs for this problem have been described in the Tables C.2 and
C.5. There is only one difference and that is the demand matrix D in Table
C.2, which is now a demand vector for class k.
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Variable Description

D Matrix where the (i, j)th element is the demand forecast for the
data interval in the beginning of the booking period to data inter-
val j for fare class i.

epsilon Tolerance such that the probability of more than one arrival in
each decision period is smaller than epsilon.

C Capacity of the aircraft.
F Vector containing the fare of each class.
T imeV ec Vector containing the start times of each data interval. The first

element is the start time of the last data interval and the last
element is the end time of the first data interval, i.e., departure
time.

DecPer Vector containing the decision periods in which the booking limits
need to be updated.

t Vector where the ith element is the arrival time for the ith arrival
in the simulation process.

class Vector containing the classes, which are requested in the simula-
tion process.

dataint Vector containing the data intervals in which the arrivals occur in
the simulation process.

n Vector containing the decision periods in which the arrivals occur
in the simulation process.

nyj Vector containing the number of equally sized decision periods in
each data interval.

BLmatrix Matrix where the (i, j)th element is the booking limit for fare class
i in decision period j.

Revenue The revenue obtained from the simulation process.

Table C.2: Description of Variables in the Programs without Trade-Up.
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Program Input Output

SimulationTradeup.m D,F,C, T imeV ec, nyj t, dataint

class, n, TUarr

EMSRbTUdecperTU.m D,C,F,DecPer, class, dataint

n, TUarr, TU2dim,Q, nyj Revenue

You.m D,TU3dim,C, F, nyj j,H, V

PopBLTU.m Dtot, C, F, nyj M, V

BPLPTU.m D,C,F, update, TU2dim, TU3dim, nyj H, j

BPTUSpline.m Dtot, F,Cknot, Tknots V

BPLPSplineNew.m D,F,Cknot, Tknots, TU2dim, TU3dim V

hybridMax.m fapprox, fexact,D,C, F, switchT ime

TU, TU3dim, indicator, nyj1, nyj2 j,H,M

hybridAddCol.m fapprox, fexact,D,C, F, switchT ime

TU, TU3dim, indicator, nyj1, nyj2 j,H,M

hybridCombi.m fapprox, fexact,D,C, F, switchT ime

TU, TU3dim, nyj1, nyj2 j,H,M

RevenueYT.m C,F,H, j,Q

class, n, dataint, TUarr Revenue

matrixRevenue.m C,F,M,Q Revenue

class, n, dataint, TUarr

RevenueBPLP.m C,F,BLmatrix,Q, class

n, dataint, TUarr, update Revenue

RevenueSpline.m C,F,LB,UB,Q, class

n, dataint, TUarr, nyj Revenue

RevenueSplineBPLP.m C,F,LB,UB, TU3dim, class

n, dataint, TUarr, nyj Revenue

RevenueHybrid.m C,F,H, j,M,Q, class, dataint

TUarr, nyj1, n1, nyj2, n2, switchT ime Revenue

Table C.3: Inputs and Outputs for the General Programs with Trade-Up.
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Program Input Output

SimulationTradeupSimple.m D,TU,F,C, t, dataint,

T imeV ec,Nyj maxclass, n

YouTalluriSimple.m D,TU,C, F, nyj M, V

HMSimple.m D,TU,C, F, nyj M, V

PopBLTUSimple.m D,TU,C, F, nyj M, V

BPTUSplineSimple.m D,F,Cknots, Tknots, TU V

hybridSimpleMax.m fapprox, fexact,D,C, F, TU

switchT ime, indicator, nyj1, nyj2 M

hybridSimpleAddCol.m fapprox, fexact,D,C, F

switchT ime, TU, nyj1, nyj2 M

hybridSimpleCombi.m fapprox, fexact,D,C, F

switchT ime, TU, nyj1, nyj2 M

matrixRevenueSimple.m C,F,M,maxclass, nyj1,
n1, nyj2, n2, switchT ime Revenue

RevenueSplineSimple.m C,F,LB,UB,maxclass,

n, dataint, nyj Revenue

Table C.4: Inputs and Outputs for the Simplified Programs with Trade-Up.
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Variable Description

Dtot Matrix where the (i, j)th element corresponds to the total ex-
pected number of requests for fare class i in data interval j includ-
ing those who trade-up to class i from lower classes.

TU Matrix where the (i, j)th element is the trade-up rate from fare
class k to class i and all more expensive fare classes in data interval
h − j + 1, where h is the total number of data intervals and data
interval 1 is closest to departure.

Q Three dimensional matrix where the third dimension is data in-
tervals. The (i, j)th element in each of the matrices in the third
dimension is the trade-up rate from class i to class j. The first
matrix in the third dimension corresponds to departure.

TU2dim Matrix where the (i, j)th element is the trade-up rate from fare
class j + 1 to class j and all more expensive fare classes in data
interval i.

TU3dim Three dimensional matrix where the (i, j, h)th element is the trade-
up rate from class i to class j and all higher-fare classes in data
interval h.

H Three-dimensional matrix where the first dimension is decision
periods, the second dimension is remaining capacity and the third
dimension is class. The elements in H are given by (4.12).

j Three dimensional matrix with the same dimensions as H. Con-
tains the lowest class offered if the request is rejected.

V Matrix where the (i, j)th element is the maximum expected reve-
nue obtained when the remaining capacity is i in decision period
j.

M Matrix where the (i, j)th element corresponds to the lowest open
class with a remaining capacity of i in decision period j.

TUarr Vector containing a uniformly distributed random number be-
tween 0 and 1 for each simulated arrival representing the customers
willingness to trade-up.

update Vector containing the data intervals in which the booking limits
need to be updated.

LB Matrix where the (i, j)th element is the value of the lower bound
with a remaning capacity of i in data interval j.

UB Matrix where the (i, j)th element is the value of the upper bound
with a remaning capacity of i in data interval j.

Tknots Vector containing the data intervals in which the LP for the upper
bound in the C,G& J method must be solved.

Cknots Vector of remaining capacities which for each time in Tknot are
knots in a spline. First element must be 1 and last element must
be C.

switchT ime The data interval, in which the hybrid methods changes from an
approximation method to an exact method.

fapprox Function which is used to approximate the maximal expected reve-
nue in the beginning of the booking period until switchT ime in
the C&H method.

fexact Function which is used to calculate the maximal expected revenue
from switchT ime to departure using an exact method.

Table C.5: Description of Variables in the Programs with Trade-Up.
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Appendix D

Parameter Tuning

D.1 SIC without Trade-Up

D.1.1 The L&H Method

In Table D.1 the average running time from 1000 test runs for the L&H
method and the L&H method with updates are seen.

In Table D.2 page 146 the number of times where one value of ǫ yields
a higher revenue than another is seen for different capacities and test sets
for 1000 test runs. The values of ǫ are ǫ1 = 0.001, ǫ1 = 0.1, ǫ1 = 0.2 and
ǫ1 = 0.3.

D.1.2 The B&P Method

In Table D.3 page 147 the average running time from 1000 test runs for the
B&P method are seen.

In Table D.4 page 147 the number of times where one value of ǫ yields
a higher revenue than another is seen for different capacities and test sets
for 1000 test runs with the B&P method. The values of ǫ are ǫ1 = 0.001,
ǫ2 = 0.1, ǫ3 = 0.2 and ǫ4 = 0.3.

D.2 SIC with Trade-Up

D.2.1 The General Methods

The You Method

In Table D.5 page 148 the average running time from 1000 test runs for the
General You solution method are seen.
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Average Running Time

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C = 80 L&H 1 16.02 s 1.42 s 0.94 s 0.73 s

L&H 2 11.39 s 1.07 s 0.69 s 0.55 s
L&H 3 9.70 s 0.92 s 0.61 s 0.48 s
L&H 4 9.72 s 0.90 s 0.60 s 0.49 s
L&H 5 10.38 s 0.97 s 0.66 s 0.52 s
L&Hup 1 16.04 s 1.44 s 0.96 s 0.75 s
L&Hup 2 11.41 s 1.09 s 0.71 s 0.57 s

L&Hup 3 9.71 s 0.93 s 0.63 s 0.50 s
L&Hup 4 9.73 s 0.91 s 0.62 s 0.50 s
L&Hup 5 10.39 s 0.99 s 0.68 s 0.54 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C = 100 L&H 1 19.1 s 1.74 s 1.15 s 0.93 s

L&H 2 14.12 s 1.31 s 0.86 s 0.67 s
L&H 3 12.13 s 1.13 s 0.75 s 0.59 s
L&H 4 11.88 s 1.11 s 0.74 s 0.59 s
L&H 5 12.87 s 1.20 s 0.78 s 0.62 s
L&Hup 1 19.11 s 1.76 s 1.17 s 0.95 s
L&Hup 2 14.14 s 1.32 s 0.88 s 0.69 s
L&Hup 3 12.15 s 1.14 s 0.76 s 0.60 s
L&Hup 4 11.90 s 1.12 s 0.75 s 0.61 s
L&Hup 5 12.88 s 1.21 s 0.79 s 0.64 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C = 120 L&H 1 22.83 s 2.11 s 1.41 s 1.04 s

L&H 2 16.82 s 1.53 s 1.03 s 0.79 s
L&Hup 1 22.85 s 2.14 s 1.43 s 1.06 s
L&Hup 2 16.84 s 1.54 s 1.05 s 0.80 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C=140 L&H 1 25.98 s 2.32 s 1.52 s 1.18 s

L&Hup 1 26.00 s 2.34 s 1.54 s 1.20 s

Table D.1: Running Times of the L&H Method with Different Values of ǫ.

In Table D.6 page 148 the number of times where one value of ǫ yields
a higher revenue than another is seen for different capacities and test sets
for 1000 test runs. The values of ǫ are ǫ1 = 0.001, ǫ2 = 0.01, ǫ3 = 0.1 and
ǫ4 = 0.2.

The B&P Method with Trade-Up

In Table D.7 page 149 the average running time from 1000 test runs for the
B&P Method for the general SIC problem with trade-up are seen.

In Table D.8 page 150 the number of times where one value of ǫ yields
higher revenue than another is seen for different capacities and test sets for
1000 test runs. The values of ǫ are ǫ1 = 0.1, ǫ2 = 0.2, ǫ3 = 0.3, ǫ4 = 0.4 and
ǫ5 = 0.5.
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D.2.2 The Simplified Methods

The You Method

In Table D.9 page 151 the average running time from 1000 test runs for the
simplified You solution method are seen.

In Table D.10 page 151 the number of times where one value of ǫ yields
a higher revenue than another is seen for different capacities and test sets
for 1000 test runs. The values of ǫ are ǫ1 = 0.001, ǫ1 = 0.01, ǫ1 = 0.1 and
ǫ1 = 0.2.

The HM Method

In Table D.11 page 152 the average running time from 1000 test runs for the
HM method are seen.

In Table D.12 page 152 the number of times where one value of ǫ yields a
higher revenue than another is seen for different capacities and test sets for
1000 test runs. The values of ǫ are ǫ1 = 0.2, ǫ1 = 0.3, ǫ1 = 0.4 and ǫ1 = 0.5.

The B&P Method with Trade-Up

In Table D.13 page 153 the average running time from 1000 test runs for the
simplified B&P solution method are seen.

In Table D.14 page 154 the number of times where one value of ǫ yields
higher revenue than another is seen for different capacities and test sets for
1000 test runs. The values of ǫ are ǫ1 = 0.1, ǫ2 = 0.2, ǫ3 = 0.3, ǫ4 = 0.3 and
ǫ5 = 0.5.
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No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ3 > ǫ4

Capacity Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ3 < ǫ4

C=80 L&H 1 607 678 711 720 808 772
388 322 288 256 189 197

L&H 2 555 651 702 708 782 773
439 349 296 260 213 201

L&H 3 532 624 712 689 787 767
462 371 287 288 208 199

L&H 4 637 731 800 816 868 863
359 267 198 174 129 122

L&H 5 631 703 763 721 820 819
353 291 235 232 176 152

L&Hup 1 407 509 549 550 645 607
584 491 451 444 353 368

L&Hup 2 476 565 634 594 692 628
515 433 364 393 298 322

L&Hup 3 433 552 585 582 606 468
558 448 413 380 384 493

L&Hup 4 516 636 732 710 812 823
481 361 267 272 188 171

L&Hup 5 476 590 649 610 680 636
515 405 347 346 310 282

C=100 L&H 1 596 689 760 762 856 849
401 311 240 231 144 142

L&H 2 581 673 753 746 826 815
410 321 244 233 166 150

L&H 3 430 479 516 422 499 421
420 380 346 214 199 163

L&H 4 464 497 525 470 498 411
377 348 323 187 197 129

L&H 5 542 650 703 712 761 672
439 343 290 241 204 147

L&Hup 1 453 573 677 609 741 724
546 423 323 384 258 269

L&Hup 2 464 572 672 660 751 730
530 421 325 309 237 224

L&Hup 3 438 480 495 441 484 372
535 495 483 264 278 307

L&Hup 4 422 490 510 448 485 362
525 461 442 268 240 159

L&Hup 5 444 580 654 674 743 686
541 413 342 317 249 202

C=120 L&H 1 563 677 763 800 872 873
433 323 236 188 124 117

L&H 2 419 461 476 414 437 338
519 482 467 161 169 112

L&Hup 1 455 591 695 656 782 778
543 408 304 335 215 202

L&Hup 2 402 454 477 409 442 331
585 541 518 261 242 147

C=140 L&H 1 534 691 760 782 840 836
458 306 238 208 154 120

L&Hup 1 407 598 725 717 814 825
579 396 274 276 182 147

Table D.2: Tuning of ǫ for the L&H Method with 1000 Test Runs.
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Average Running Time

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C = 80 B&P 1 4.69 s 0.46 s 0.30 s 0.25 s

B&P 2 4.12 s 0.43 s 0.27 s 0.24 s
B&P 3 4.00 s 0.39 s 0.27 s 0.22 s
B&P 4 3.90 s 0.40 s 0.27 s 0.22 s
B&P 5 3.96 s 0.38 s 0.28 s 0.23 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C = 100 B&P 1 6.22 s 0.58 s 0.40 s 0.32 s

B&P 2 5.47 s 0.53 s 0.35 s 0.30 s
B&P 3 5.32 s 0.51 s 0.35 s 0.28 s
B&P 4 5.10 s 0.49 s 0.35 s 0.28 s
B&P 5 5.09 s 0.50 s 0.32 s 0.29 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C = 120 B&P 1 7.87 s 0.72 s 0.48 s 0.38 s

B&P 2 6.86 s 0.63 s 0.43 s 0.34 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.1 ǫ3 = 0.2 ǫ4 = 0.3
C=140 B&P 1 9.55 s 0.87 s 0.57 s 0.46 s

Table D.3: Running Times of the B&P Method with Different values of ǫ.

No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ3 > ǫ4

Capacity Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ3 < ǫ4

C=80 B&P 1 212 284 340 219 223 192
210 260 333 199 236 242

B&P 2 195 269 295 205 215 213
184 237 299 169 193 205

B&P 3 171 268 339 208 257 229
172 243 322 177 222 218

B&P 4 159 221 270 171 197 209
157 193 241 139 150 196

B&P 5 175 263 296 208 236 209
171 225 274 162 185 192

C=100 B&P 1 192 248 285 191 206 193
211 259 312 179 195 196

B&P 2 174 243 266 192 213 204
183 267 270 168 161 176

B&P 3 132 211 239 151 193 159
114 159 231 105 157 174

B&P 4 137 181 225 124 166 157
125 164 209 105 137 142

B&P 5 182 268 305 212 253 212
164 232 294 181 193 185

C=120 B&P 1 130 205 206 157 156 159
180 248 286 155 178 183

B&P 2 144 202 219 138 150 174
130 192 190 135 130 136

C=140 B&P 1 184 269 269 208 204 207
181 268 313 193 195 217

Table D.4: Tuning of ǫ for the B&P Method with 1000 Test Runs.
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Average Running Time

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 25 YT 1 46.88 s 8.44 s 2.19 s 1.46 s

YT 2 23.76 s 5.71 s 1.59 s 0.98 s
YT 3 22.14 s 5.89 s 1.29 s 1.07 s
YT 4 10.29 s 2.90 s 0.89 s 0.61 s
YT 5 24.99 s 5.60 s 1.52 s 1.02 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 40 YT 1 83.53 s 15.01 s 4.22 s 3.10 s

YT 2 44.82 s 9.42 s 2.70 s 1.56 s
YT 3 38.36 s 10.34 s 2.53 s 2.07 s
YT 5 43.51 s 9.00 s 2.35 s 1.60 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 55 YT 1 113.87 s 20.20 s 4.92 s 3.43 s

YT 2 65.40 s 13.52 s 3.70 s 2.42 s
YT 5 63.20 s 13.04 s 3.30 s 2.23 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 75 YT 1 146.41 s 27.46 s 6.47 s 4.14 s

Table D.5: Running Times for the You Method with Different Values of ǫ.

No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ3 > ǫ4

Capacity Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ3 < ǫ4

C=25 YT 1 7 39 89 40 90 76
5 21 31 19 29 20

YT 2 426 509 513 518 543 560
350 487 485 464 454 413

YT 3 347 442 525 435 534 466
370 513 469 490 447 366

YT 4 312 560 664 590 679 688
595 435 335 410 317 265

YT 5 398 527 606 563 620 658
403 460 391 434 379 330

C=40 YT 1 389 586 674 606 697 745
595 413 325 383 302 229

YT 2 347 458 517 482 539 605
291 531 476 501 453 368

YT 3 380 438 447 457 456 426
514 527 533 496 507 361

YT 5 392 497 555 517 583 657
570 500 440 469 412 319

C=55 YT 1 340 528 647 542 667 716
501 470 351 456 329 281

YT 2 387 394 386 362 364 209
412 453 468 349 362 176

YT 5 270 341 363 323 347 267
306 366 350 277 275 158

C=75 YT 1 335 453 480 493 508 309
444 480 455 411 400 126

Table D.6: Tuning of ǫ for the General You Method.
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Average Running Time

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 25 BP 1 0.48 s 0.10 s 0.29 s 0.09 s 0.09 s

BP 2 0.13 s 0.10 s 0.10 s 0.08 s 0.09 s
BP 3 0.12 s 0.09 s 0.08 s 0.08 s 0.08 s
BP 4 0.16 s 0.16 s 0.08 s 0.07 s 0.07 s
BP 5 0.17 s 0.11 s 0.10 s 0.08 s 0.09 s

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 40 BP 1 0.53 s 0.14 s 0.15 s 0.11 s 0.11 s

BP 2 0.17 s 0.12 s 0.11 s 0.10 s 0.11 s
BP 3 0.15 s 0.11 s 0.10 s 0.10 s 0.09 s
BP 5 0.21 s 0.14 s 0.12 s 0.17 s 0.09 s

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 55 BP 1 0.59 s 0.17 s 0.21 s 0.26 s 0.12 s

BP 2 0.22 s 0.16 s 0.13 s 0.12 s 0.12 s
BP 5 0.25 s 0.17 s 0.15 s 0.11 s 0.11 s

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 75 BP 1 0.69 s 0.22 s 0.22 s 0.16 s 0.15 s

Table D.7: Running Times for the B&P Method with TU for Different Values of ǫ.
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No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ1 > ǫ5 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ2 > ǫ5 ǫ3 > ǫ4 ǫ3 > ǫ5 ǫ4 > ǫ5
Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ1 < ǫ5 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ2 < ǫ5 ǫ3 < ǫ4 ǫ3 < ǫ5 ǫ4 < ǫ5

C = 25
BP 1 69 87 110 111 80 103 98 79 90 69

33 34 36 22 43 34 17 48 48 60
BP 2 285 378 412 442 298 339 395 235 321 262

196 170 180 157 178 158 127 175 154 152
BP 3 282 353 369 423 259 280 371 232 347 320

150 143 162 168 184 156 169 183 192 191
BP 4 220 221 258 298 84 165 193 140 197 109

48 36 39 41 84 67 51 49 52 52
BP 5 342 442 502 561 382 432 523 354 501 439

168 146 172 211 204 195 224 246 224 228

C = 40
BP 1 363 442 536 558 362 487 509 434 450 331

153 188 199 166 232 216 167 200 222 262
BP 2 239 275 306 351 227 264 339 222 298 268

171 161 169 192 169 161 165 173 153 168
BP 3 309 344 381 419 303 334 328 266 352 296

184 153 175 180 256 204 172 226 220 214
BP 5 285 364 393 486 316 347 449 305 441 354

143 123 157 192 191 176 210 233 221 228

C = 55
BP 1 331 446 530 534 394 478 511 389 426 326

176 192 213 173 242 224 151 211 218 277
BP 2 184 224 287 335 224 285 320 217 294 257

155 119 135 130 157 158 122 152 148 181
BP 5 283 354 435 424 274 388 388 348 362 295

157 163 190 190 206 164 208 198 214 256

C = 75
BP 1 299 373 434 476 322 415 455 341 395 317

180 179 198 198 182 198 198 196 229 303

Table D.8: Tuning of ǫ for the General B&P Method with TU.
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Average Running Time

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 25 You 1 2.35 s 0.65 s 0.24 s 0.17 s

You 2 1.51 s 0.45 s 0.17 s 0.13 s
You 3 1.28 s 0.39 s 0.19 s 0.12 s
You 4 0.86 s 0.30 s 0.14 s 0.10 s
You 5 1.55 s 0.45 s 0.18 s 0.14 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 40 You 1 3.69 s 1.01 s 0.31 s 0.23 s

You 2 2.26 s 0.64 s 0.23 s 0.20 s
You 3 2.00 s 0.59 s 0.24 s 0.15 s
You 5 2.48 s 0.70 s 0.24 s 0.18 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 55 You 1 4.99 s 1.28 s 0.42 s 0.27 s

You 2 3.01 s 0.88 s 0.29 s 0.21,s
You 5 3.22 s 0.90 s 0.30 s 0.22 s

Capacity Test Set ǫ1 = 0.001 ǫ2 = 0.01 ǫ3 = 0.1 ǫ4 = 0.2
C = 75 You 1 6.57 s 1.71 s 0.51 s 0.35 s

Table D.9: Running Times of the Simplified You Method for Different Values of ǫ.

No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ3 > ǫ4

Capacity Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ3 < ǫ4

C=25 You 1 338 597 729 686 772 798
632 390 263 304 217 198

You 2 500 641 730 658 738 721
314 352 264 338 256 241

You 3 519 551 646 596 637 586
416 383 329 338 282 335

You 4 127 252 290 225 275 132
342 408 368 326 304 80

You 5 482 670 751 693 781 730
458 316 239 289 210 209

C=40 You 1 382 733 821 761 836 781
491 248 169 225 150 159

You 2 364 436 457 385 421 340
271 330 310 309 276 141

You 3 248 255 263 211 219 121
163 231 233 207 204 124

You 5 399 488 501 442 461 331
354 356 345 314 302 199

C=55 You 1 420 371 403 292 341 233
356 414 384 333 292 194

You 2 29 30 33 22 28 15
27 42 40 25 20 4

You 5 20 24 24 14 17 13
16 23 23 21 18 7

C=75 You 1 6 7 8 6 7 5
8 7 6 4 3 3

Table D.10: Tuning of ǫ for the Simplified You Method.
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Average Running Time

Capacity Test Set ǫ1 = 0.2 ǫ2 = 0.3 ǫ3 = 0.4 ǫ4 = 0.5
C = 25 HM 1 0.89 s 0.68 s 0.68 s 0.77 s

HM 2 0.76 s 0.65 s 0.54 s 0.52 s
HM 3 0.72 s 0.74 s 0.55 s 0.53 s
HM 4 0.52 s 0.50 s 0.42 s 0.44 s
HM 5 0.71 s 0.58 s 0.60 s 0.58 s

Capacity Test Set ǫ1 = 0.2 ǫ2 = 0.3 ǫ3 = 0.4 ǫ4 = 0.5
C = 40 HM 1 1.42 s 1.33 s 1.02 s 1.01 s

HM 2 1.02 s 0.85 s 0.88 s 0.72 s
HM 3 0.88 s 0.74 s 0.79 s 0.64 s
HM 5 0.99 s 0.81 s 0.73 s 0.68 s

Capacity Test Set ǫ1 = 0.2 ǫ2 = 0.3 ǫ3 = 0.4 ǫ4 = 0.5
C = 55 HM 1 1.79 s 1.40 s 1.35 s 1.14 s

HM 2 1.27 s 1.17 s 0.90 s 0.85 s
HM 5 1.26 s 1.03 s 0.92 s 0.82 s

Capacity Test Set ǫ1 = 0.2 ǫ2 = 0.3 ǫ3 = 0.4 ǫ4 = 0.5
C = 75 HM 1 2.26 s 1.96 s 1.58 s 1.41 s

Table D.11: Running Times for the HM Method with Different Values of ǫ.

No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ3 > ǫ4

Capacity Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ3 < ǫ4

C=25 HM 1 111 186 145 144 124 141
84 159 233 136 226 251

HM 2 119 218 233 170 203 157
173 262 251 191 204 136

HM 3 170 232 293 211 252 224
263 429 470 370 457 354

HM 4 88 150 153 64 67 5
137 159 161 27 33 8

HM 5 98 76 160 142 177 158
117 188 302 210 301 235

C=40 HM 1 161 230 214 192 172 161
157 239 344 227 333 288

HM 2 152 219 300 206 289 245
221 302 352 271 358 343

HM 3 40 91 94 98 97 10
81 137 165 117 143 44

HM 5 109 91 238 137 205 207
152 240 355 223 337 314

C=55 HM 1 293 358 368 300 302 290
389 395 437 375 440 366

HM 2 9 16 23 18 26 31
17 39 29 30 26 19

HM 5 5 3 7 12 10 7
9 11 23 9 19 19

C=75 HM 1 4 3 4 0 1 1
2 4 5 2 5 4

Table D.12: Tuning of ǫ for the HM Method.
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Average Running Time

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 25 BP 1 0.21 s 0.13 s 0.10 s 0.09 s 0.09 s

BP 2 0.17 s 0.10 s 0.09 s 0.08 s 0.10 s
BP 3 0.20 s 0.09 s 0.09 s 0.08 s 0.08 s
BP 4 0.16 s 0.08 s 0.08 s 0.07 s 0.08 s
BP 5 0.17 s 0.11 s 0.09 s 0.08 s 0.09 s

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 40 BP 1 0.21 s 0.15 s 0.13 s 0.11 s 0.12 s

BP 2 0.16 s 0.13 s 0.11 s 0.10 s 0.11 s
BP 3 0.19 s 0.11 s 0.11 s 0.10 s 0.10 s
BP 5 0.17 s 0.13 s 0.12 s 0.10 s 0.10 s

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 55 BP 1 0.31 s 0.20 s 0.16 s 0.14 s 0.14 s

BP 2 0.21 s 0.15 s 0.13 s 0.12 s 0.12 s
BP 5 0.23 s 0.16 s 0.13 s 0.11 s 0.11 s

Capacity Test Set ǫ1 = 0.1 ǫ2 = 0.2 ǫ3 = 0.3 ǫ4 = 0.4 ǫ5 = 0.5
C = 75 BP 1 0.34 s 0.24 s 0.20 s 0.17 s 0.16 s

Table D.13: Running Times of the Simplified B&P Method with TU for Different Values
of ǫ.
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No. of Times the Inequality is Fulfilled
Test ǫ1 > ǫ2 ǫ1 > ǫ3 ǫ1 > ǫ4 ǫ1 > ǫ5 ǫ2 > ǫ3 ǫ2 > ǫ4 ǫ2 > ǫ5 ǫ3 > ǫ4 ǫ3 > ǫ5 ǫ4 > ǫ5
Set ǫ1 < ǫ2 ǫ1 < ǫ3 ǫ1 < ǫ4 ǫ1 < ǫ5 ǫ2 < ǫ3 ǫ2 < ǫ4 ǫ2 < ǫ5 ǫ3 < ǫ4 ǫ3 < ǫ5 ǫ4 < ǫ5

C = 25
BP 1 498 552 614 638 419 529 625 491 597 509

260 295 244 281 342 282 236 352 281 363
BP 2 339 452 506 494 394 472 455 393 394 317

283 271 251 264 296 262 274 254 335 385
BP 3 422 539 542 545 458 466 466 356 362 291

273 231 250 253 287 257 242 341 339 285
BP 4 545 576 588 581 430 513 550 447 516 431

252 206 246 282 301 302 289 289 285 244
BP 5 513 573 548 589 486 499 581 435 507 500

336 274 333 327 358 346 320 412 352 333

C = 40
BP 1 544 616 632 622 514 550 589 470 535 508

300 325 283 328 377 353 332 439 401 402
BP 2 451 520 519 511 444 487 474 403 410 366

321 287 312 354 320 331 333 336 405 451
BP 3 433 533 523 550 463 462 553 405 455 437

305 245 289 348 280 250 294 320 348 349
BP 5 495 564 557 587 478 554 594 490 539 512

352 270 358 331 364 347 331 393 361 332

C = 55
BP 1 470 516 567 575 443 509 576 463 526 483

289 324 274 302 347 302 292 339 323 362
BP 2 228 286 313 306 247 272 254 244 236 153

143 160 127 142 177 143 141 142 206 241
BP 5 323 382 382 421 325 350 403 268 342 319

219 154 169 196 215 205 219 240 234 224

C = 75
BP 1 458 494 499 500 408 447 504 399 433 415

227 261 272 277 300 269 256 326 308 319

Table D.14: Tuning of ǫ for the Simplified B&P Method with TU.



Appendix E

Results for the SIC Problem

without Trade-Up

For all tables in this chapter, which show the relative difference in percentage
for two methods the following holds. If a number different from zero appears
in the tables, it cannot be rejected that the difference is greater than zero,
i.e., it cannot be rejected that one method is significantly better than another
with α = 5%. A bold number indicates that the method listed in the row
in the top of the table is significantly better than the method listed in the
column. If the number is not bold the method listed in the column yields
a significantly higher revenue than the method in th top row. The symbol
NoD means that no difference between the methods was observed for all 1000
runs.

In Table E.1 page 156 the average running times from 1000 test runs for
six different solution methods for the SIC problem without trade-up with
ǫ1 = 0.01 and ǫ2 = 0.1 are seen for test sets 2, 3 and 5 and all capacities.

The update of the booking limits is in Tables E.1 page 156, E.2 page 157,
E.3 page 158 and E.4 page 159 are done at some prespecified times given by
the airline and not in each decision period. The times of these updates are
given in the vector DecPer and the times at which each data interval begins
are given in the vector DataintStart. These vectors are given by

DataintStart = [150, 100, 70, 49, 42, 35, 28, 21, 14, 10, 7, 5, 3, 2, 1, 0]

DecPer = [150, 143, 136, 129, 122, 115, 108, 101, 96, 91, 86, 81, 76, 71, 68,

65, 62, 59, 56, 53, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 27,

26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9,

8, 7, 6, 5, 4, 3, 2, 1].

In Tables E.2 page 157, E.3 page 158 and E.4 page 159 the relative dif-



156 Results for the SIC Problem without Trade-Up

C = 80 C = 100 C = 120 C = 140
ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

L&H 2 2.91 s 0.85 s 3.54 s 1.03 s 4.24 s 1.25 s 4.80 s 1.40 s
L&Hup 2 2.93 s 0.86 s 3.56 s 1.04 s 4.26 s 1.26 s 4.81 s 1.42 s
B&P 2 1.38 s 0.41 s 1.72 s 0.49 s 2.12 s 0.63 s 2.51 s 0.71 s
B&Pup 2 0.31 s 0.19 s 0.32 s 0.20 s 0.34 s 0.22 s 0.34 s 0.23 s
EMSRa 2 1.00 s 0.99 s 1.02 s 1.01 s 1.04 s 1.03 s 1.05 s 1.04 s
EMSRb 2 1.04 s 1.03 s 1.05 s 1.04 s 1.08 s 1.07 s 1.08 s 1.07 s

L&H 3 4.80 s 1.40 s 3.13 s 0.91 s 3.69 s 1.07 s 4.19 s 1.22 s
L&Hup 3 4.81 s 1.42 s 3.14 s 0.92 s 3.70 s 1.09 s 4.20 s 1.23 s
B&P 3 2.51 s 0.71 s 1.61 s 0.49 s 1.99 s 0.57 s 2.31 s 0.68 s
B&Pup 3 0.34 s 0.23 s 0.30 s 0.21 s 0.32 s 0.22 s 0.33 s 0.24 s
EMSRa 3 1.05 s 1.04 s 0.95 s 0.95 s 0.99 s 0.98 s 1.01 s 1.00 s
EMSRb 3 1.08 s 1.07 s 0.99 s 0.98 s 1.02 s 1.01 s 1.04 s 1.03 s

L&H 5 2.64 s 0.77 s 3.21 s 0.93 s 3.81 s 1.11 s 4.42 s 1.27 s
L&Hup 5 2.66 s 0.78 s 3.23 s 0.95 s 3.82 s 1.12 s 4.43 s 1.28 s
B&P 5 1.29 s 0.36 s 1.57 s 0.46 s 1.92 s 0.57 s 2.30 s 0.66 s
B&Pup 5 0.29 s 0.18 s 0.30 s 0.19 s 0.31 s 0.20 s 0.33 s 0.22 s
EMSRa 5 0.92 s 0.92 s 0.95 s 0.94 s 0.97 s 0.97 s 1.00 s 1.00 s
EMSRb 5 0.96 s 0.96 s 0.98 s 0.98 s 1.01 s 1.00 s 1.04 s 1.03 s

Table E.1: Running Times for the Problem without Trade-Up, Test Sets 2,3 and 5.

ferences in % from running the different methods 1000 times on test sets 2,
3 and 5, respectively, are seen.

In Table E.5 page 159 the running times for the EMSRa and EMSRb
methods when these are updated in each decision period can be seen. The
running times are measured for all test sets and different capacities and with
ǫ1 = 0.01 and ǫ2 = 0.1.

In Tables E.6 page 160, E.7 page 160, E.8 page 161, E.9 page 161 and
E.10 page 162 the results from running the methods 1000 times on each test
set, are seen. The booking limits are updated in each decision period, hence
only results for L&H, B&P, EMSRa and EMSRb are shown since in this case
L&H and B&P are the same as L&Hup and B&Pup, respectively.
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L&Hup 2 B&P 2 B&Pup 2 EMSRa 2 EMSRb 2

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 2 1.62 1.54 0.11 0.20 1.61 1.32 3.66 3.28 0.45 0
L&Hup 2 - - 1.61 1.32 0 0.23 2.03 1.75 1.18 1.43

B&P 2 - - - - 1.50 1.51 3.54 3.51 0.35 0.33
B&Pup 2 - - - - - - 2.04 2.00 1.17 1.20

EMSRa 2 - - - - - - - - 3.20 3.19

C=100

L&H 2 1.16 1.10 0.16 0.32 1.27 0.83 2.07 1.53 0.38 0.10

L&Hup 2 - - 1.27 0.82 0.11 0.28 0.92 0.45 0.79 1.20

B&P 2 - - - - 1.12 1.14 1.90 1.87 0.23 0.24
B&Pup 2 - - - - - - 0.80 0.74 0.90 0.91

EMSRa 2 - - - - - - - - 1.69 1.65

C=120

L&H 2 0.81 0.81 0.20 0.21 1.05 0.65 0.47 0 0.16 0.26

L&Hup 2 - - 1.04 0.65 0.23 0.17 0.37 0.78 0.66 1.08

B&P 2 - - - - 0.85 0.86 0.27 0.27 0.04 0.05

B&Pup 2 - - - - - - 0.60 0.61 0.89 0.90

EMSRa 2 - - - - - - - - 0.31 0.31

C=140

L&H 2 0.22 0.18 0.01 0.01 0.21 0.20 0.04 0.04 0.03 0.03
L&Hup 2 - - 0.21 0.20 0 0.02 0.17 0.14 0.18 0.15

B&P 2 - - - - 0.20 0.20 0.03 0.03 0.02 0
B&Pup 2 - - - - - - 0.17 0.16 0.18 0.18

EMSRa 2 - - - - - - - - 0 0

Table E.2: Rel. Diff. in % for Test Set 2 without Trade-Up.
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L&Hup 3 B&P 3 B&Pup 3 EMSRa 3 EMSRb 3

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 3 1.08 0.92 0.48 0.16 1.01 0.36 4.13 3.41 0.42 0.28

L&Hup 3 - - 1.00 0.35 0 0.57 3.06 2.52 0.67 1.19

B&P 3 - - - - 0.54 0.51 3.61 3.58 0.07 0.12

B&Pup 3 - - - - - - 3.10 3.10 0.60 0.62

EMSRa 3 - - - - - - - - 3.70 3.73

C=100

L&H 3 0.79 0.74 0.40 0.05 0.83 0.36 2.35 1.82 0.27 0.24

L&Hup 3 - - 0.83 0.36 0.04 0.38 1.56 1.10 0.53 0.97

B&P 3 - - - - 0.44 0.41 1.92 1.87 0.14 0.18

B&Pup 3 - - - - - - 1.50 1.48 0.57 0.59

EMSRa 3 - - - - - - - - 2.08 2.08

C=120

L&H 3 0.19 0.14 0.03 0 0.13 0.10 0.17 0.15 0.06 0.04
L&Hup 3 - - 0.13 0.10 0.06 0.04 0 0 0.13 0.10

B&P 3 - - - - 0.10 0.10 0.14 0.14 0.04 0.04
B&Pup 3 - - - - - - 0 0.05 0.06 0.06

EMSRa 3 - - - - - - - - 0.10 0.11

C=140

L&H 3 0.00 0.00 NoD NoD 0.00 0.00 NoD NoD 0 0
L&Hup 3 - - 0.00 0.00 0 0 0.00 0.00 0.00 0.00

B&P 3 - - - - 0.00 0.00 NoD NoD 0 0
B&Pup 3 - - - - - - 0.00 0.00 0 0
EMSRa 3 - - - - - - - - 0 0

Table E.3: Rel. Diff. in % for Test Set 3 without Trade-Up.
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L&Hup 5 B&P 5 B&Pup 5 EMSRa 5 EMSRb 5

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 5 1.78 1.37 0 0.30 1.60 1.21 4.99 4.60 0.50 0
L&Hup 5 - - 1.60 1.19 0.18 0.18 3.20 3.24 1.28 1.21

B&P 5 - - - - 1.55 1.49 4.96 4.96 0.46 0.46
B&Pup 5 - - - - - - 3.39 3.45 1.10 1.04

EMSRa 5 - - - - - - - - 4.48 4.48

C=100

L&H 5 1.19 0.97 0.27 0.28 1.34 0.78 1.30 0.75 0.25 0.31

L&Hup 5 - - 1.34 0.77 0.15 0.20 0 0.27 0.95 1.28

B&P 5 - - - - 1.07 1.05 1.03 1.03 0.03 0.03

B&Pup 5 - - - - - - 0 0 1.10 1.08

EMSRa 5 - - - - - - - - 1.05 1.06

C=120

L&H 5 0.56 0.41 0.06 0.04 0.63 0.49 0.24 0.13 0.09 0
L&Hup 5 - - 0.63 0.49 0.07 0.08 0.33 0.29 0.47 0.44

B&P 5 - - - - 0.57 0.54 0.18 0.17 0 0
B&Pup 5 - - - - - - 0.40 0.37 0.54 0.52

EMSRa 5 - - - - - - - - 0.15 0.15

C=140

L&H 5 0.03 0.03 0 0 0.03 0.03 0.01 0.01 0.01 0.01
L&Hup 5 - - 0.03 0.03 0.00 0.00 0.03 0.02 0.03 0.02

B&P 5 - - - - 0.03 0.03 0 0.01 0.01 0.01
B&Pup 5 - - - - - - 0.02 0.02 0.02 0.02

EMSRa 5 - - - - - - - - 0 0

Table E.4: Rel. Diff. in % for Test Set 5 without Trade-Up.

C = 80 C = 100 C = 120 C = 140
ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

EMSRa 1 3.32 s 2.79 s 3.45 s 2.89 s 3.58 s 3.00 s 3.61 s 3.03 s
EMSRb 1 3.54 s 2.97 s 3.64 s 3.06 s 3.77 s 3.16 s 3.77 s 3.16 s

EMSRa 2 2.46 s 2.07 s 2.59 s 2.18 s 2.70 s 2.27 s 2.80 s 2.35 s
EMSRb 2 2.65 s 2.23 s 2.76 s 2.32 s 2.82 s 2.37 s 2.91 s 2.44 s

EMSRa 3 2.12 s 1.79 s 2.23 s 1.87 s 2.32 s 1.95 s 2.41 s 2.03 s
EMSRb 3 2.26 s 1.91 s 2.34 s 1.97 s 2.41 s 2.03 s 2.49 s 2.10 s

EMSRa 4 2.16 s 1.82 s 2.23 s 1.88 s 2.35 s 1.98 s 2.40 s 2.02 s
EMSRb 4 2.31 s 1.94 s 2.36 s 1.98 s 2.44 s 2.05 s 2.49 s 2.10 s

EMSRa 5 2.21 s 1.87 s 2.44 s 2.06 s 2.68 s 2.27 s 2.73 s 2.31 s
EMSRb 5 2.41 s 2.04 s 2.58 s 2.17 s 2.80 s 2.36 s 2.84 s 2.39 s

Table E.5: Running Times with Update in each Decision Period.
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B&P 1 EMSRa 1 EMSRb 1

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 1 0.19 0.06 3.72 3.45 0.37 0
B&P 1 - - 3.53 3.53 0.18 0.17
EMSRa 1 - - - - 3.35 3.37

C=100

L&H 1 0.16 0.12 2.16 1.89 0.24 0.04

B&P 1 - - 2.00 2.03 0.09 0.09
EMSRa 1 - - - - 1.93 1.95

C=120

L&H 1 0.10 0.34 1.24 0.79 0.19 0.27

B&P 1 - - 1.14 1.14 0.09 0
EMSRa 1 - - - - 1.06 1.07

C=140

L&H 1 0.26 0.25 0.51 0.05 0.21 0.36

B&P 1 - - 0.25 0.22 0.07 0.10

EMSRa 1 - - - - 0.31 0.32

Table E.6: Rel. Diff. in % for Test Set 1 with Update in each Decision Period.

B&P 2 EMSRa 2 EMSRb 2

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 2 0.15 0.09 3.82 3.55 0.27 0
B&P 2 - - 3.66 3.66 0.13 0.11
EMSRa 2 - - - - 3.54 3.56

C=100

L&H 2 0.14 0.39 2.34 1.79 0.15 0.40

B&P 2 - - 2.19 2.20 0 0
EMSRa 2 - - - - 2.19 2.21

C=120

L&H 2 0.21 0.16 0.54 0.15 0.08 0.30

B&P 2 - - 0.33 0.31 0.14 0.14

EMSRa 2 - - - - 0.46 0.44

C=140

L&H 2 0 0 0.08 0.06 0 0
B&P 2 - - 0.07 0.06 0 0
EMSRa 2 - - - - 0.07 0.06

Table E.7: Rel. Diff. in % for Test Set 2 with Update in each Decision Period.
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B&P 3 EMSRa 3 EMSRb 3

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 3 0.42 0.11 3.73 3.12 0.19 0.41

B&P 3 - - 3.27 3.24 0.24 0.30

EMSRa 3 - - - - 3.54 3.57

C=100

L&H 3 0.35 0.05 1.99 1.59 0.12 0.30

B&P 3 - - 1.63 1.64 0.23 0.25

EMSRa 3 - - - - 1.88 1.91

C=120

L&H 3 0.04 0 0.23 0.20 0.02 0
B&P 3 - - 0.18 0.19 0.02 0
EMSRa 3 - - - - 0.21 0.20

C=140

L&H 3 0 NoD 0 0 0 NoD
B&P 3 - - 0 0 0 NoD
EMSRa 3 - - - - 0 0

Table E.8: Rel. Diff. in % for Test Set 3 with Update in each Decision Period.

B&P 4 EMSRa 4 EMSRb 4

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 4 0.63 0.58 4.90 3.50 0.15 1.15

B&P 4 - - 4.19 4.12 0.49 0.56

EMSRa 4 - - - - 4.74 4.74

C=100

L&H 4 0.26 0.35 2.24 1.54 0 0.64

B&P 4 - - 1.96 1.90 0.22 0.29

EMSRa 4 - - - - 2.21 2.22

C=120

L&H 4 0.02 0 0.14 0.12 0.03 0
B&P 4 - - 0.11 0.12 0 0
EMSRa 4 - - - - 0.11 0.11

C=140

L&H 4 NoD NoD NoD NoD NoD NoD
B&P 4 - - NoD NoD NoD NoD
EMSRa 4 - - - - NoD NoD

Table E.9: Rel. Diff. in % for Test Set 4 with Update in each Decision Period.
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Relative Difference in Percentage
B&P 5 EMSRa 5 EMSRb 5

ǫ1 ǫ2 ǫ1 ǫ2 ǫ1 ǫ2

C=80

L&H 5 0.11 0.22 4.62 4.29 0.29 0.03

B&P 5 - - 4.52 4.56 0.18 0.20
EMSRa 5 - - - - 4.33 4.35

C=100

L&H 5 0.27 0.29 1.27 0.67 0.10 0.49

B&P 5 - - 1.00 0.97 0.18 0.20

EMSRa 5 - - - - 1.18 1.16

C=120

L&H 5 0.07 0 0.27 0.19 0.06 0.03

B&P 5 - - 0.20 0.20 0 0.03

EMSRa 5 - - - - 0.21 0.22

C=140

L&H 5 0.01 0 0.02 0.01 0 0
B&P 5 - - 0.01 0.01 0 0
EMSRa 5 - - - - 0.01 0.01

Table E.10: Rel. Diff. in % for Test Set 5 with Update in each Decision Period.



Appendix F

Results for the General SIC

Problem with Trade-Up

For all tables in this chapter, which show the relative difference in percentage
for two methods the following holds. If a number different from zero appears
in the tables, it cannot be rejected that the difference is greater than zero,
i.e., it cannot be rejected that one method is significantly better than another
with α = 5%. A bold number indicates that the method listed in the row
in the top of the table is significantly better than the method listed in the
column. If the number is not bold the method listed in the column yields
a significantly higher revenue than the method in th top row. The symbol
NoD means that no difference between the methods was observed for all 1000
runs.

F.1 Comparison of the Hybrid Methods

In Tables F.1, F.2, F.3, F.4 page 166 and F.5 page 166 the relative differences
in % when comparing the six different hybrid methods for the general SIC
problem with trade-up are seen. There is one table for each test set.

F.2 Results

In Table F.6 page 167 the average running times from 1000 test runs for six
different methods for the general SIC problem with trade-up are shown. The
times are shown for test sets 2, 3 and 5.

In Tables F.7 page 167, F.8 page 168 and F.9 page 168 the relative dif-
ferences in % from running the different methods 1000 times on test sets 2,
3 and 5, respectively, are seen.



164 Results for the General SIC Problem with Trade-Up

Max2 AddCol1 AddCol2 Combi1 Combi2

C=25

Max1 7.10 4.76 7.18 7.02 8.49
Max2 - 11.99 0.08 0 15.58
AddCol1 - - 12.08 11.92 3.60
AddCol2 - - - 0.14 15.67
Combi1 - - - - 15.52

C=40

Max1 5.94 11.96 0 0 18.59
Max2 - 17.95 3.98 6.15 24.34
AddCol1 - - 13.38 11.86 5.53
AddCol2 - - - 2.31 19.39
Combi1 - - - - 18.51

C=55

Max1 5.27 12.63 0 0.18 18.18
Max2 - 18.50 4.55 5.45 24.19
AddCol1 - - 13.25 12.40 4.64
AddCol2 - - - 1.19 18.42
Combi1 - - - - 17.91

C=75

Max1 2.35 6.53 1.28 0.14 2.39

Max2 - 9.17 1.10 2.48 0.39
AddCol1 - - 8.06 6.38 8.66

AddCol2 - - - 1.42 0
Combi1 - - - - 2.52

Table F.1: Rel. Diff. in % for Hybrid Methods for Test Set 1.

F.3 Comparison of Non-Trade-Up with Trade-

Up Methods

In Tables F.10, F.11 and F.12 page 169 the relative differences in % from
comparing the two best solution methods for the SIC problem without trade-
up with the two best solution methods for the general SIC problem with
trade-up 1000 times are seen for test sets 2, 3 and 5, respectively.
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Max2 AddCol1 AddCol2 Combi1 Combi2

C=25

Max1 8.91 3.10 6.94 2.46 0
Max2 - 11.95 2.71 6.32 6.76
AddCol1 - - 9.33 5.64 5.73

AddCol2 - - - 4.46 3.75
Combi1 - - - - 1.40

C=40

Max1 1.34 4.99 2.37 0.09 4.09
Max2 - 6.57 1.43 1.25 5.49
AddCol1 - - 7.50 5.15 1.27

AddCol2 - - - 2.31 6.45
Combi1 - - - - 4.25

C=55

Max1 3.70 1.54 0 0 1.30

Max2 - 2.53 3.00 3.89 4.99

AddCol1 - - 1.06 1.67 2.64

AddCol2 - - - 0 2.08

Combi1 - - - - 1.12

C=75

Max1 2.76 1.46 0.98 1.46 2.57

Max2 - 4.28 1.92 4.28 5.33

AddCol1 - - 2.40 0 1.10

AddCol2 - - - 2.40 3.46

Combi1 - - - - 1.10

Table F.2: Rel. Diff. in % for Hybrid Methods for Test Set 2.

Max2 AddCol1 AddCol2 Combi1 Combi2

C=25

Max1 9.80 7.04 6.18 0.96 0.87
Max2 - 17.35 3.72 8.94 9.99
AddCol1 - - 13.08 8.25 6.99

AddCol2 - - - 5.41 5.92
Combi1 - - - - 2.00

C=40

Max1 4.24 8.61 3.45 0.28 1.02
Max2 - 13.46 0.91 4.53 5.17
AddCol1 - - 12.62 8.30 7.87

AddCol2 - - - 3.72 4.36
Combi1 - - - - 0.73

C=55

Max1 1.20 0.99 1.66 0.03 4.52

Max2 - 2.22 2.32 1.25 3.51

AddCol1 - - 0.11 0.90 5.40

AddCol2 - - - 0 5.82

Combi1 - - - - 4.47

C=75

Max1 0.45 0.80 2.48 0.80 4.31

Max2 - 0 2.37 0 4.09

AddCol1 - - 3.29 0 3.53

AddCol2 - - - 3.29 6.42

Combi1 - - - - 3.53

Table F.3: Rel. Diff. in % for Hybrid Methods for Test Set 3.
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Max2 AddCol1 AddCol2 Combi1 Combi2

C=25

Max1 3.18 19.74 4.82 0 18.37
Max2 - 22.23 2.09 3.16 20.55
AddCol1 - - 25.76 19.75 2.38

AddCol2 - - - 4.80 24.14
Combi1 - - - - 18.38

C=40

Max1 4.21 0.70 4.25 0.11 5.73

Max2 - 4.90 8.39 4.29 1.45

AddCol1 - - 4.10 0.54 6.19

AddCol2 - - - 4.55 10.12

Combi1 - - - - 5.63

C=55

Max1 5.61 0.94 5.19 0.94 6.37

Max2 - 4.75 10.96 4.75 0.71

AddCol1 - - 6.32 NoD 5.46

AddCol2 - - - 6.32 11.78

Combi1 - - - - 5.46

C=75

Max1 5.70 0.95 4.81 0.95 6.50

Max2 - 4.82 10.60 4.82 0.75

AddCol1 - - 5.88 NoD 5.58

AddCol2 - - - 5.88 11.44

Combi1 - - - - 5.58

Table F.4: Rel. Diff. in % for Hybrid Methods for Test Set 4.

Max2 AddCol1 AddCol2 Combi1 Combi2

C=25

Max1 4.86 9.81 4.37 1.66 8.31
Max2 - 14.69 0.53 3.25 12.55
AddCol1 - - 14.21 11.75 2.68

AddCol2 - - - 2.75 12.07
Combi1 - - - - 10.24

C=40

Max1 4.46 8.25 3.49 0 8.58
Max2 - 12.93 1.19 4.74 13.06
AddCol1 - - 11.51 8.15 0
AddCol2 - - - 3.80 11.53
Combi1 - - - - 8.48

C=55

Max1 1.70 2.97 0 0 0
Max2 - 1.77 1.10 1.66 1.94

AddCol1 - - 2.75 2.93 2.95

AddCol2 - - - 0 0
Combi1 - - - - 0

C=75

Max1 2.35 1.42 1.68 1.44 2.18

Max2 - 3.81 0.75 3.83 4.48

AddCol1 - - 3.08 0.02 0.76

AddCol2 - - - 3.10 3.75

Combi1 - - - - 0.74

Table F.5: Rel. Diff. in % for Hybrid Methods for Test Set 5.
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C = 25 C = 40 C = 55 C = 75

EMSRb 2 0.20 s 0.24 s 0.35 s 0.33 s
You 2 1.47 s 2.29 s 3.19 s 4.36 s
B&P 2 0.09 s 0.12 s 0.15 s 0.19 s
B&P LP 2 15.32 s 24.44 s 33.77 s 46.68 s
C,G&J 2 3.89 s 5.67 s 7.62 s 10.20 s
C&H 2 0.90 s 1.35 s 1.80 s 2.47 s

EMSRb 3 0.22 s 0.27 s 0.20 s 0.25 s
You 3 1.30 s 2.05 s 2.79 s 3.80 s
B&P 3 0.09 s 0.11 s 0.13 s 0.17 s
B&P LP 3 14.06 s 22.67 s 31.44 s 42.71 s
C,G&J 3 3.58 s 5.33 s 7.04 s 9.29 s
C&H 3 0.81 s 1.24 s 1.65 s 2.22 s

EMSRb 5 0.24 s 0.30 s 0.30 s 0.30 s
You 5 1.47 s 2.38 s 3.29 s 4.47 s
B&P 5 0.09 s 0.11 s 0.14 s 0.18 s
B&P LP 5 14.65 s 24.24 s 33.70 s 45.91 s
C,G&J 5 3.75 s 5.64 s 7.55 s 9.99 s
C&H 5 0.90 s 1.39 s 1.89 s 2.54 s

Table F.6: Running Times for the General Methods, Test Set 2, 3 and 5.

You B&P B&P LP C,G&J C&H

C=25

EMSRb 13.45 7.62 6.69 12.24 13.62

You - 7.17 8.06 2.57 0
B&P - - 1.00 4.71 7.17

B&P LP - - - 5.54 8.06

C,G&J - - - - 2.59

C=40

EMSRb 5.20 0 0 4.27 3.65

You - 4.18 3.31 1.01 2.53
B&P - - 0.90 3.30 2.92

B&P LP - - - 2.44 2.15

C,G&J - - - - 0

C=55

EMSRb 10.99 8.67 8.71 10.60 7.10

You - 2.28 2.25 0 3.75
B&P - - 0.07 1.94 1.58
B&P LP - - - 1.90 1.66
C,G&J - - - - 3.42

C=75

EMSRb 13.57 11.93 11.95 12.98 7.38

You - 1.59 1.58 0.59 5.89
B&P - - 0.01 1.06 4.33
B&P LP - - - 1.05 4.35
C,G&J - - - - 5.35

Table F.7: Rel. Diff. in % for Test Set 2 for the General Problem.



168 Results for the General SIC Problem with Trade-Up

You B&P B&P LP C,G&J C&H

C=25

EMSRb 4.59 8.34 6.60 4.20 5.17

You - 12.20 10.40 0 0.53

B&P - - 1.76 10.89 12.78

B&P LP - - - 9.13 10.99

C,G&J - - - - 0

C=40

EMSRb 3.33 5.62 4.12 3.82 3.46

You - 8.25 6.62 0.81 0.89

B&P - - 1.56 8.88 8.92

B&P LP - - - 7.24 7.36

C,G&J - - - - 0.09

C=55

EMSRb 9.46 3.17 3.51 9.40 5.50

You - 7.19 6.78 0.07 3.76
B&P - - 0.38 7.11 3.62

B&P LP - - - 6.70 3.23

C,G&J - - - - 3.69

C=75

EMSRb 9.73 3.98 3.98 9.73 5.23

You - 6.57 6.57 NoD 4.28
B&P - - 0 6.57 2.53

B&P LP - - - 6.57 2.53

C,G&J - - - - 4.28

Table F.8: Rel. Diff. in % for Test Set 3 for the General Problem.

You B&P B&P LP C,G&J C&H

C=25

EMSRb 32.49 28.56 28.94 34.59 29.84

You - 4.98 4.16 0.94 1.76
B&P - - 0 5.53 3.59

B&P LP - - - 4.74 2.75

C,G&J - - - - 2.83

C=40

EMSRb 0.19 5.13 3.72 0 1.11

You - 5.21 3.72 0.00 0.99

B&P - - 1.37 4.66 6.00

B&P LP - - - 3.29 4.58

C,G&J - - - - 1.33

C=55

EMSRb 6.01 2.82 3.57 5.99 3.49

You - 3.40 2.61 0.07 2.44
B&P - - 0.80 3.42 1.28

B&P LP - - - 2.64 0.55

C,G&J - - - - 2.44

C=75

EMSRb 8.70 7.18 7.20 8.50 3.74

You - 1.76 1.74 0.20 4.83
B&P - - 0 1.58 3.34
B&P LP - - - 1.56 3.36
C,G&J - - - - 4.64

Table F.9: Rel. Diff. in % for Test Set 5 for the General Problem.
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L&H EMSRb

C=25

You 10.20 11.84
C,G&J 7.84 9.59

C=40

You 5.17 6.22
C,G&J 4.65 5.72

C=55

You 3.16 3.38
C,G&J 2.62 2.84

C=75

You 1.70 1.71
C,G&J 1.06 1.07

Table F.10: Rel. Diff. in % when Comparing Non-TU and TU Methods, Test Set 2.

L&H EMSRb

C=25

You 15.53 16.84
C,G&J 14.86 16.20

C=40

You 9.40 9.89
C,G&J 10.38 10.92

C=55

You 7.24 7.43
C,G&J 7.21 7.39

C=75

You 6.92 6.92
C,G&J 6.92 6.92

Table F.11: Rel. Diff. in % when Comparing Non-TU and TU Methods, Test Set 3.

L&H EMSRb

C=25

You 12.42 14.98
C,G&J 13.48 16.30

C=40

You 6.98 8.03
C,G&J 6.69 7.81

C=55

You 4.41 4.67
C,G&J 4.43 4.69

C=75

You 1.98 1.99
C,G&J 1.80 1.81

Table F.12: Rel. Diff. in % when Comparing Non-TU and TU Methods, Test Set 5.
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Appendix G

Results for the Simplified SIC

Problem with Trade-Up

For all tables in this chapter, which show the relative difference in percentage
for two methods the following holds. If a number different from zero appears
in the tables, it cannot be rejected that the difference is greater than zero,
i.e., it cannot be rejected that one method is significantly better than another
with α = 5%. A bold number indicates that the method listed in the row
in the top of the table is significantly better than the method listed in the
column. If the number is not bold the method listed in the column yields
a significantly higher revenue than the method in th top row. The symbol
NoD means that no difference between the methods was observed for all 1000
runs.

G.1 Comparison of the Hybrid Methods

In Tables G.1 page 172, G.2 page 173, G.3 page 174, G.4 page 175 and G.5
page 176 the relative differences in % when comparing the seven different
hybrid methods for the simplified SIC problem with trade-up are seen.

G.2 Results

In Table G.6 page 177 the average running times from 1000 test runs for six
different methods for the simplified SIC problem with trade-up are shown.
The times are shown for test sets 2, 3 and 5.

In Tables G.7 page 177, G.8 page 178 and G.9 page 178 the relaive dif-
ferences in % from running the different methods 1000 times on test sets 2,
3 and 5, respectively, are seen.
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Max1 Max2 Combi AddColHM Max1HM Max2HM CombiHM

C=25

AddCol 44.26 14.06 28.64 6.19 44.24 14.15 29.55
Max1 - 64.19 12.48 53.14 0 64.36 11.87

Max2 - - 46.32 8.63 64.18 0 47.33
Combi - - - 35.76 12.48 46.52 0.82
AddColHM - - - - 53.13 8.72 36.71
Max1HM - - - - - 64.35 11.87

Max2HM - - - - - - 47.53

C=40

AddCol 2.39 6.66 12.23 2.14 3.27 6.35 18.13
Max1 - 4.92 15.16 0 0.91 4.60 21.26
Max2 - - 20.35 4.63 3.81 0.45 26.60
Combi - - - 14.39 16.31 20.05 6.07
AddColHM - - - - 1.49 4.29 20.50
Max1HM - - - - - 3.47 22.47
Max2HM - - - - - - 26.30

C=55

AddCol 5.30 6.47 0 0.51 6.16 7.87 2.97
Max1 - 1.15 5.25 5.68 0.79 2.45 3.05

Max2 - - 6.42 6.81 0 1.30 4.21

Combi - - - 0.66 6.12 7.82 2.89
AddColHM - - - - 6.54 8.22 3.41
Max1HM - - - - - 1.66 3.92

Max2HM - - - - - - 5.59

C=75

AddCol 5.73 5.71 NoD 0 6.00 6.25 0
Max1 - 0 5.73 5.71 0.25 0.52 5.71

Max2 - - 5.71 5.68 0.54 0.51 5.68

Combi - - - 0 6.00 6.25 0
AddColHM - - - - 5.98 6.23 0
Max1HM - - - - - 0 5.98

Max2HM - - - - - - 6.23

Table G.1: Rel. Diff. in % for Simplified Hybrid Methods for Test Set 1.

G.3 Comparison of Non-Trade-Up with Trade-

Up Methods

In Tables G.10, G.11 and G.12 page 179 the relative differences in % from
comparing the two best solution methods for the SIC problem without trade-
up with the two best solution methods for the SIC problem with trade-up
1000 times are seen for test sets 2, 3 and 5, respectively.
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Max1 Max2 Combi AddColHM Max1HM Max2HM CombiHM

C=25

AddCol 6.77 13.84 6.53 2.35 4.61 15.07 8.27
Max1 - 20.28 0 8.73 2.47 21.71 3.66
Max2 - - 20.79 12.13 17.45 1.10 22.75
Combi - - - 8.23 4.27 22.18 1.98
AddColHM - - - - 6.35 13.25 9.85
Max1HM - - - - - 18.76 6.01
Max2HM - - - - - - 24.18

C=40

AddCol 5.19 3.02 0.69 0.32 5.67 3.81 1.25
Max1 - 2.61 4.58 5.46 0.50 1.89 4.21

Max2 - - 2.49 3.27 3.06 0.77 2.14

Combi - - - 0.98 5.07 3.28 0.57
AddColHM - - - - 5.90 4.05 1.43
Max1HM - - - - - 2.32 4.67

Max2HM - - - - - - 2.93

C=55

AddCol 3.96 2.56 0 0 4.38 3.19 0.05
Max1 - 1.52 3.96 3.94 0.40 0.94 3.92

Max2 - - 2.56 2.53 1.90 0.61 2.51

Combi - - - 0 4.37 3.19 0
AddColHM - - - - 4.35 3.16 0
Max1HM - - - - - 1.32 4.33

Max2HM - - - - - - 3.15

C=75

AddCol 3.01 0.82 NoD NoD 3.01 0.82 NoD
Max1 - 2.24 3.01 3.01 NoD 2.24 3.01

Max2 - - 0.82 0.82 2.24 NoD 0.82

Combi - - - NoD 3.01 0.82 NoD
AddColHM - - - - 3.01 0.82 NoD
Max1HM - - - - - 2.24 3.01

Max2HM - - - - - - 0.82

Table G.2: Rel. Diff. in % for Simplified Hybrid Methods for Test Set 2.
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Max1 Max2 Combi AddColHM Max1HM Max2HM CombiHM

C=25

AddCol 9.80 10.04 5.27 5.10 6.90 9.64 7.69
Max1 - 19.63 0 14.61 2.84 19.30 2.30
Max2 - - 15.28 5.18 15.70 0 18.03
Combi - - - 9.38 2.33 14.82 2.62
AddColHM - - - - 11.35 4.64 11.95
Max1HM - - - - - 15.28 4.85
Max2HM - - - - - - 17.61

C=40

AddCol 2.82 3.39 0 0.41 3.71 4.28 0.89
Max1 - 0 2.69 3.05 0.85 1.49 2.13

Max2 - - 3.24 3.61 0.58 0.84 2.72

Combi - - - 0.47 3.57 4.12 0.79
AddColHM - - - - 3.93 4.50 1.16
Max1HM - - - - - 0.66 3.02

Max2HM - - - - - - 3.61

C=55

AddCol 2.31 2.87 0.00 0 2.31 2.87 0
Max1 - 0.62 2.31 2.31 NoD 0.62 2.30

Max2 - - 2.87 2.86 0.62 NoD 2.86

Combi - - - 0 2.31 2.87 0
AddColHM - - - - 2.31 2.86 0.00
Max1HM - - - - - 0.62 2.30

Max2HM - - - - - - 2.86

C=75

AddCol 2.23 2.75 NoD NoD 2.23 2.75 NoD
Max1 - 0.56 2.23 2.23 NoD 0.56 2.23

Max2 - - 2.75 2.75 0.56 NoD 2.75

Combi - - - NoD 2.23 2.75 NoD
AddColHM - - - - 2.23 2.75 NoD
Max1HM - - - - - 0.56 2.23

Max2HM - - - - - - 2.75

Table G.3: Rel. Diff. in % for Simplified Hybrid Methods for Test Set 3.
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Max1 Max2 Combi AddColHM Max1HM Max2HM CombiHM

C=25

AddCol 9.79 5.76 3.88 0.42 11.63 7.74 3.88
Max1 - 4.07 6.81 10.01 1.56 2.31 6.81

Max2 - - 0 5.95 5.67 1.77 0
Combi - - - 4.50 8.65 0 NoD
AddColHM - - - - 11.83 7.92 4.50
Max1HM - - - - - 3.85 8.65

Max2HM - - - - - - 0

C=40

AddCol 4.67 2.03 NoD 0 5.61 2.91 NoD
Max1 - 2.64 4.67 4.68 0.87 1.82 4.67

Max2 - - 2.03 2.04 3.53 0.83 2.03

Combi - - - 0 5.61 2.91 NoD
AddColHM - - - - 5.61 2.91 0
Max1HM - - - - - 2.69 5.61

Max2HM - - - - - - 2.91

C=55

AddCol 5.29 2.17 NoD NoD 5.29 2.17 NoD
Max1 - 3.16 5.29 5.29 NoD 3.16 5.29

Max2 - - 2.17 2.17 3.16 NoD 2.17

Combi - - - NoD 5.29 2.17 NoD
AddColHM - - - - 5.29 2.17 NoD
Max1HM - - - - - 3.16 5.29

Max2HM - - - - - - 2.17

C=75

AddCol 4.89 2.24 NoD NoD 4.89 2.24 NoD
Max1 - 2.65 4.89 4.89 NoD 2.65 4.89

Max2 - - 2.24 2.24 2.65 NoD 2.24

Combi - - - NoD 4.89 2.24 NoD
AddColHM - - - - 4.89 2.24 NoD
Max1HM - - - - - 2.65 4.89

Max2HM - - - - - - 2.24

Table G.4: Rel. Diff. in % for Simplified Hybrid Methods for Test Set 4.



176 Results for the Simplified SIC Problem with Trade-Up

Max1 Max2 Combi AddColHM Max1HM Max2HM CombiHM

C=25

AddCol 16.04 6.09 12.77 2.07 16.09 5.95 18.11
Max1 - 23.02 0 18.40 0 23.01 5.21
Max2 - - 19.89 4.74 23.11 0 25.52
Combi - - - 14.47 0 19.88 5.35
AddColHM - - - - 18.43 4.59 19.83
Max1HM - - - - - 23.06 5.30
Max2HM - - - - - - 25.58

C=40

AddCol 2.61 4.50 0 0 3.05 5.71 1.60
Max1 - 1.97 2.59 2.79 0 3.14 1.38

Max2 - - 4.47 4.66 1.57 1.14 3.25

Combi - - - 0 3.03 5.67 1.59
AddColHM - - - - 3.17 5.85 1.68
Max1HM - - - - - 2.72 1.79

Max2HM - - - - - - 4.44

C=55

AddCol 1.79 2.95 0 0 2.02 3.66 0
Max1 - 1.21 1.80 1.79 0.22 1.90 1.78

Max2 - - 2.96 2.96 0.99 0.67 2.94

Combi - - - 0 2.02 3.66 0
AddColHM - - - - 2.02 3.66 0
Max1HM - - - - - 1.68 2.01

Max2HM - - - - - - 3.65

C=75

AddCol 1.52 1.71 NoD NoD 1.52 1.71 NoD
Max1 - 0 1.52 1.52 NoD 0 1.52

Max2 - - 1.71 1.71 0 NoD 1.71

Combi - - - NoD 1.52 1.71 NoD
AddColHM - - - - 1.52 1.71 NoD
Max1HM - - - - - 0 1.52

Max2HM - - - - - - 1.71

Table G.5: Rel. Diff. in % for Simplified Hybrid Methods for Test Set 5.
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C = 25 C = 40 C = 55 C = 75

You 2 0.48 s 0.70 s 0.92 s 1.23 s
HM 2 0.62 s 0.80 s 1.00 s 1.33 s
B&P 2 0.11 s 0.15 s 0.18 s 0.24 s
C,G&J 2 0.21 s 0.22 s 0.22 s 0.23 s
Max2 2 0.36 s 0.44 s 0.54 s 0.67 s
AddColHM 2 0.34 s 0.44 s 0.54 s 0.69 s

You 3 0.43 s 0.63 s 0.84 s 1.09 s
HM 3 0.55 s 0.73 s 0.96 s 1.22 s
B&P 3 0.11 s 0.14 s 0.18 s 0.22 s
C,G&J 3 0.22 s 0.21 s 0.22 s 0.22 s
Max2 3 0.31 s 0.40 s 0.50 s 0.62 s
AddColHM 3 0.30 s 0.40 s 0.50 s 0.64 s

You 5 0.48 s 0.71 s 0.95 s 1.28 s
HM 5 0.58 s 0.78 s 1.02 s 1.33 s
B&P 5 0.11 s 0.15 s 0.19 s 0.25 s
C,G&J 5 0.22 s 0.24 s 0.23 s 0.25 s
Max2 5 0.35 s 0.46 s 0.59 s 0.74 s
AddColHM 5 0.32 s 0.43 s 0.56 s 0.73 s

Table G.6: Running Times for the Simplified Methods, Test sets 2, 3 and 5.

HM B&P C,G&J Max2 AddColHM

C=25

You 0 10.54 0 4.20 16.27
HM - 10.33 0 4.15 16.21
B&P - - 11.32 6.75 7.71
C,G&J - - - 5.67 16.89
Max2 - - - - 11.88

C=40

You 0 15.13 6.68 4.32 0
HM - 14.71 7.06 3.92 0
B&P - - 21.13 10.78 14.91

C,G&J - - - 11.05 7.21
Max2 - - - - 4.12

C=55

You 0 16.90 12.33 2.58 0
HM - 16.88 12.31 2.56 0
B&P - - 4.59 14.34 16.86

C,G&J - - - 9.96 12.30

Max2 - - - - 2.55

C=75

You NoD 19.45 19.41 0.94 NoD
HM - 19.45 19.41 0.94 NoD
B&P - - 0.04 18.52 19.45

C,G&J - - - 18.48 19.41

Max2 - - - - 0.94

Table G.7: Rel. Diff. in % for Test Set 2 for the Simplified Problem.
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HM B&P C,G&J Max2 AddColHM

C=25

You 0 26.06 5.37 3.28 7.53
HM - 25.95 5.42 2.87 7.64
B&P - - 20.09 22.99 18.66

C,G&J - - - 2.93 7.40
Max2 - - - - 5.33

C=40

You 0 20.91 2.75 3.56 0.48
HM - 20.87 2.71 3.46 0.43
B&P - - 18.40 17.46 20.41

C,G&J - - - 0 0
Max2 - - - - 3.14

C=55

You 0 20.46 18.25 2.81 0
HM - 20.46 18.26 2.81 0
B&P - - 2.01 17.73 20.45

C,G&J - - - 15.64 18.25

Max2 - - - - 2.80

C=75

You NoD 20.70 20.70 3.09 NoD
HM - 20.70 20.70 3.09 NoD
B&P - - 0 17.74 20.70

C,G&J - - - 17.74 20.70

Max2 - - - - 3.09

Table G.8: Rel. Diff. in % for Test Set 3 for the Simplified Problem.

HM B&P C,G&J Max2 AddColHM

C=25

You 0.11 25.77 2.65 7.15 11.46
HM - 25.73 2.78 7.14 11.73
B&P - - 23.14 18.22 15.55

C,G&J - - - 7.30 11.03
Max2 - - - - 4.89

C=40

You 0.16 17.69 5.62 5.54 1.11
HM - 17.76 5.60 5.57 1.22
B&P - - 21.05 12.06 16.81

C,G&J - - - 11.42 6.69
Max2 - - - - 4.72

C=55

You 0 14.70 8.56 2.95 0
HM - 14.67 8.54 2.92 0
B&P - - 6.26 11.78 14.67

C,G&J - - - 5.92 8.53

Max2 - - - - 2.91

C=75

You NoD 17.36 17.30 1.74 NoD
HM - 17.36 17.30 1.74 NoD
B&P - - 0.06 15.58 17.36

C,G&J - - - 15.52 17.30

Max2 - - - - 1.74

Table G.9: Rel. Diff. in % for Test Set 5 for the Simplified Problem.
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L&H EMSRb

C=25

HM 13.26 9.69
AddColHM 3.49 6.42

C=40

HM 16.20 13.81
AddColHM 16.06 13.65

C=55

HM 15.51 14.22
AddColHM 15.50 14.20

C=75

HM 19.75 19.70
AddColHM 19.75 19.70

Table G.10: Rel. Diff. in % when Comp. Non-TU with Simple TU Methods, Test Set 2.

L&H EMSRb

C=25

HM 34.87 23.39
AddColHM 28.42 17.30

C=40

HM 26.75 23.57
AddColHM 26.57 23.38

C=55

HM 18.80 18.34
AddColHM 18.80 18.34

C=75

HM 20.83 20.83
AddColHM 20.83 20.83

Table G.11: Rel. Diff. in % when Comp. Non-TU with Simple TU Methods, Test Set 3.

L&H EMSRb

C=25

HM 30.56 22.30
AddColHM 20.56 12.68

C=40

HM 20.94 17.50
AddColHM 19.81 16.41

C=55

HM 13.88 11.99
AddColHM 13.86 11.96

C=75

HM 17.73 17.57
AddColHM 17.73 17.57

Table G.12: Rel. Diff. in % when Comp. Non-TU with Simple TU Methods, Test Set 5.
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Appendix H

Programs

All the programs described in this report are enclosed on the CD.



182 Programs



Bibliography

[1] Staffan Algers, Sven-Eric Andersson, and Joakim Kohler. Impact of de-
viation and recapture upon class allocations. Status report, 33rd Agifors
Symposium, pages 237–255, 1993.

[2] S.-E. Andersson. Passenger choice analysis for seat capacity control: A
pilot project in scandinavian airlines. Int. Trans. Opl. Res., 5:471–486,
1998.

[3] Peter P. Belobaba. Airline yield management: An overview of seat
inventory control. Transportation Science, 21:63–73, 1987.

[4] Peter P. Belobaba. Application of a probabilistic decision model to
airline seat inventory control. Operations Research, 37:183–197, 1989.

[5] Peter P. Belobaba. Optimal vs. heuristic methods for nested seat allo-
cation. Proceedings of AGIFORS Reservations and Yield Management
Study Group, pages 28–53, 1992.

[6] Peter P. Belobaba and Lawrence R. Weatherford. Comparing decision
rules that incorporate customer diversion in perishable asset revenue
management situations. Decision Sciences, 27:343–363, 1996.

[7] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume one. Athena Scientific, Belmont, Massachusetts, USA, 1995.

[8] Dimitris Bertsimas and Ioana Popescu. Revenue management in a dy-
namic network environment. Transportation Science, 37:257–277, 2003.

[9] S.E. Bodily and L.R. Weatherford. Perishable-asset revenue manage-
ment: Generic and multiple-price yield management with diversion.
Omega, Int.J. Management Science, 23:173–185, 1994.

[10] T. Botimer. Efficiency considerations in airline pricing and yield man-
agement. Transpn. Res.-A., 30:307–317, 1996.



184 BIBLIOGRAPHY

[11] Victoria C.P. Chen, Dirk Gunther, and Ellis L. Johnson. A markov
decision problem based approach to the airline ym problem. Working
Paper, http://www.isye.gatech.edu/research/files/lec9812.pdf, 1998.

[12] Knut Conradsen. En Introduktion til Statistik. IMM, DTU, Lyngby,
DK, 1999.

[13] William L. Cooper. Asymptotic behavior of a class of an allocation
policy for revenue management. Operations Research, 50:720–727, 2002.

[14] William L. Cooper and Tito Homem de Mello. A class of hy-
brid methods for revenue management. Working Paper No. 03-015,
http://www.iems.nwu.edu/grad/workingpapers/WP 03 015.pdf, 2003.

[15] G. Gallego and G. van Ryzin. Optimal dynamic pricing of invento-
ries with stochastic demand over finite horizons. Management Science,
40:999–1020, 1994.

[16] Hans-Martin Gutmann. British airways. 2004.

[17] Richard A. Johnson. Miller & Freund’s Probability and Statistics for
Engineers. Prentice Hall International, Inc., Upper Saddle River, USA,
2000.

[18] C. Lautenbacher and jr. S. Stidham. The underlying decision process in
the single-leg airline yield management problem. Transportation Science,
33:136–146, 1999.

[19] Tak C. Lee and Marvin Hersh. A model for dynamic airline seat in-
ventory control with multiple seat bookings. Transportation Science,
27:252–265, 1993.

[20] K. Littlewood. Forecasting and control of passenger bookings. AGI-
FORS Symposium Proceedings, 12:95–117, 1972.

[21] J. McGill and G. van Ryzin. Revenue management: Research overview
and prospects. Transportation Science, 33:233–256.

[22] K. Pak and N. Piersma. Overview of or techniques for airline revenue
management. Statistica Neerlandica, 56:479–495, 2002.

[23] Frank L. Severance. System Modeling and Simulation. John Wiley &
Sons Ltd, West Sussex, England, 2001.



BIBLIOGRAPHY 185

[24] Janakiram Subramanian, Shaler Stidham Jr., and Conrad J. Lauten-
bacher. Airline yield management with overbooking, cancellations and
no-shows. Transportation Science, 33:147–167, 1999.

[25] Kalyan Talluri and Garrett van Ryzin. Revenue management under a
general discrete choice model of customer behavior. Accepted by Man-
agement Science, pages 1–33, 2001.

[26] L.R. Weatherford and P.P. Belobaba. Revenue impacts of fare input and
demand forecast accuracy in airline yield management. Journal of the
Operational Research Society, 53:811–821, 2002.

[27] Laurence A. Wolsey. Integer Programming. John Wiley & Sons, Inc.,
New York, USA, 1998.

[28] Peng-Sheng You. Airline seat management with rejction-for-possible-
upgrade decision. Transportation Research Part B, pages 507–524, 2001.

[29] W. Zhao and Y.-S. Zheng. A dynamic model for airline seat allocation
with passenger diversion and no-shows. Transportation Science, 35:80–
98, 2001.


