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Abstract. We present a framework for approximate inference in prob-
abilistic data models which is based on free energies. The free energy is
constructed from two approximating distributions which encode differ-
ent aspects of the intractable model. Consistency between distributions
is required on a chosen set of moments. We find good performance using
sets of moments which either specify factorized nodes or a spanning tree
on the nodes.
The abstract should summarize the contents of the paper using at least
70 and at most 150 words. It will be set in 9-point font size and be inset
1.0 cm from the right and left margins. There will be two blank lines
before and after the Abstract. . . .

1 Introduction

Probabilistic data models explain the dependencies of complex observed data by
a set of hidden variables and the joint probability distribution of all variables.
The development of tractable approximations for the statistical inference with
these models is essential for developing their full potential. Such approximations
are necessary for models with a large number of variables, because the computa-
tion of the marginal distributions of hidden variables and the learning of model
parameters requires high dimensional summations or integrations.

The most popular approximation is the Variational Approximation (VA) [2]
which replaces the true probability distribution by an optimized simpler one,
where multivariate Gaussians or distributions factorizing in certain groups of
variables [1] are possible choices. The neglecting of correlations for factorizing
distributions is of course a drawback. On the other hand, multivariate Gaussians
allow for correlations but are restricted to continuous random variables which
have the entire real space as their natural domain (otherwise, we get an infinite
relative entropy which is used as a measure for comparing exact and approximate
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densities in the VA). In this paper, we will discuss approximations which allow
to circumvent these drawbacks. These will be derived from a Gibbs Free Energy
(GFE), an entropic quantity which (originally developed in Statistical Physics)
allows us to formulate the statistical inference problem as an optimization prob-
lem. While the true GFE is usually not exactly tractable, certain approximations
can give quite accurate results. We will specialise on an expectation consistent
(EC) approach which requires consistency between two complimentary approxi-
mations (say, a factorizing or tree with a Gaussian one) to the same probabilistic
model.

The method is a generalization of the adaptive TAP approach (ADATAP)
[16,15] developed for inference on densely connected graphical models which has
been applied successfully to a variety of relevant problems. These include Gaus-
sian process models [17,14,10,11], probabilistic independent component analysis
[6], the CDMA coding model in telecommunications [4], bootstrap methods for
kernel machines [7,8], a model for wind field retrieval from satellite observations
[3] and a sparse kernel approach [12]. For a different, but related approximation
scheme see [10,9].

2 Approximative Inference

Inference on the hidden variables x = (x1, x2, . . . , xN ) of a probabilistic model
usually requires the computation of expectations, ie of certain sums or integrals
involving a probability distribution with density

p(x) =
1
Z

f(x) . (1)

This density represents the posterior distribution of x conditioned on the ob-
served data, the latter appearing as parameters in p. Z =

∫
dxf(x) is the nor-

malizing partition function.
Although some results can be stated in fairly general form, we will mostly

specialize on densities (with respect to the Lebesgue measure in RN ) of the form

p(x) =
∏

i

Ψi(xi) exp




∑

i<j

xiJijxj



 , (2)

where the Ψi’s are non-Gaussian functions. This also includes the important case
of Ising variables xi = ±1 by setting

Ψ(xi) = (δ(xi + 1) + δ(xi − 1)) eθixi . (3)

The type of density (2) appears as the posterior distribution for all models cited
at the end of the introduction chapter.

p(x) is a product of two functions p(x) = f1(x)f2(x), where both the fac-
torizing part f1 =

∏
i Ψi(xi) and the Gaussian part f2 = exp

(∑
i<j xiJijxj

)
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individually are simple enough to allow for exact computations. Hence, as an
approximation, we might want to keep f1 but replace f2 by a function which
also factorizes in the components xi. As an alternative, one may keep f2 but re-
place f1 by a Gaussian function to make the whole distribution Gaussian. Both
choices are not ideal. The first completely neglects correlations of the variables
but leads to marginal distributions of the xi, which may share non Gaussian fea-
tures (such as multimodality) with the true marginal. The second one neglects
such features but incorporates nontrivial correlations. We will later develop an
approach for combining these two approximations.

3 Gibbs Free Energies

Gibbs free energies (GFE) provide a convenient formalism for dealing with prob-
abilistic approximations. In this framework, the true, intractable distribution
p(x) is implicitly characterized as the solution of an optimization problem de-
fined through the the relative entropy (KL divergence)

KL(q, p) =
∫

dx q(x) ln
q(x)
p(x)

(4)

between p and other trial distributions q. We consider a two stage optimization
process, where in the first step, the trial distributions q are constrained by fixing
a set of values µµµ = 〈g(x)〉q for a set of generalized moments. The Gibbs Free
Energy G(µµµ) is defined as

G(µµµ) = min
q

{KL(q, p) | 〈g(x)〉q = µµµ} − lnZ , (5)

where the term ln Z is subtracted to make the expression independent of the
intractable partition function Z. In a second stage, both the true values µµµ =
〈g(x)〉p and the partition function Z are found by relaxing the constraints ie by
minimizing G(µµµ) with respect to µµµ:

min
µµµ

G(µµµ) = − lnZ and 〈g〉 = argmin
µµµ

G(µµµ) . (6)

A variational upper bound to G is obtained by restricting the minimization in
(5) to a subset of densities q.

It can be easily shown that the optimizing distribution (5) is of the form

q(x) =
f(x)
Z(λ)

exp
(
λT g(x)

)
, (7)

where the set of Lagrange parameters λ = λ(µµµ) is chosen such that the conditions
〈g(x)〉q = µµµ are fulfilled, i.e. λ satisfies

∂ lnZ(λ)
∂λ

= µµµ , (8)

where Z(λ) is a normalizing partition function.
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Inserting the optimizing distribution eq. (7) into eq. (5) yields the dual rep-
resentation of the Gibbs free energy

G(µµµ) = − lnZ(λ(µµµ)) + λT (µµµ)µµµ = max
λ

{
− lnZ(λ) + λTµµµ

}
, (9)

showing that G is the Legendre transform of − lnZ(λ) making G a convex func-
tion of its arguments.

We will later use the following simple result for the derivative of the GFE
with respect to a parameter t contained in the probability density p(x|t) = f(x,t)

Zt
.

This can be calculated using (9) and (8) as

dGt(µµµ)
dt

= −∂ lnZ(λ, t)
∂t

+
(

µµµ − ∂ lnZ(λ, t)
∂λ

)
dλT

dt
= −∂ lnZ(λ, t)

∂t
. (10)

Hence, we can keep λ fixed upon differentiation.

3.1 Simple Models

We give results for Gibbs free energies of three tractable models and choices of
moments 〈g(x)〉. These will be used later as building blocks for the free energies
of more complicated models.

Independent Ising variables. The Gibbs free energy for a set of independent
Ising variables each with a density of the form (3) and fixed first moments
µµµ = 〈x〉 = m = (m1, m2, . . . , mN ) is G(m) =

∑
i Gi(mi) where

Gi(mi) =
(1 + mi)

2
ln

(1 + mi)
2

+
(1 − mi)

2
ln

(1 − mi)
2

− θimi . (11)

It will be useful to introduce a more complicated set of moments for this
simple noninteracting model. We choose a tree graph G out of all possible sets
of edges linking the variables x and fix the second moments Mij = 〈xixj〉 along
theses edges as constraints. In this case, it can be shown that the free energy is
represented in terms of single- and two-node free energies

G(m, {Mij}(ij)∈G) =
∑

(ij)∈G
Gij(mi, mj , Mij) +

∑

i

(1 − ni)Gi(mi) , (12)

where Gij(mi, mj , Mij) is the two-node free energy computed for a single pair
of variables, and ni is the number of links to node i.

Multivariate Gaussians. The Gaussian model is of the form (2) with Ψi(xi) ∝
exp[aixi − bi

2 x2
i ]. Here, we fix µµµ = (m,M) where m is the set of all first moments

and M is an arbitrary subset of second moments 〈xixj〉 = Mij = Mji. We get

G(m,M) = −1
2
mT Jm − mT a +

1
2

∑

i

Miibi (13)

+ max
Λ

{
1
2

ln det(Λ − J) − 1
2

Tr Λ(M − mmT )
}

,

where Λ is a matrix of Lagrangemultipliers conjugate to the values of M.
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3.2 Complex Models: A Perturbative Representation

We will now concentrate on the more complex model (2) together with a suitably
chosen set of moments. We will represent the Gibbs free energy of this model as
the GFE for a tractable “noninteracting” part f1 =

∏
i Ψi(xi) plus a correction

for the “interaction” term f2 = exp
(∑

i<j xiJijxj

)
. We fix as constraints all the

first moments m and a subset of second moments M which is chosen in such a
way that the Gibbs free energy for f1 remains still tractable. Different choices of
second moments will allow later for more accurate approximations. If all second
moments are fixed, our result will be exact, but for most models of the form (2)
this leads again to intractable computations.

We define f2(x, t) to be a smooth interpolation between the trivial case
f2(x, t = 0) = 1 and the “full” intractable case f2(x, t = 1) = f2(x). For the
model (2) we can set

f2(x, t) = exp



t
∑

i<j

xiJijxj



 .

Differentiating the Gibbs free energy with respect to t, using eq. (10), we get

G(µµµ, 1) − G(µµµ, 0) = −
∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉

q(x|t)
. (14)

where q(x|t) = 1
Zq(λ,t)

f1(x)f2(x, t) exp
(
λT g(x)

)
. For the model (2) this can

be written as

G(µ) ≡ G(µµµ, 1) = G(µµµ, 0) −
∫ 1

0
dt

∑

i<j

Jij〈xixj〉q(x|t) . (15)

4 Approximations to the Free Energy

4.1 Mean Field Approximation

If we restrict ourselves to fixed diagonal second moments Mii only, the sim-
plest approximation is obtained by replacing the expectation over q(x|t) by the
factorizing distribution q(x|0) giving

G(µµµ) ≈ G(µµµ, 0) −
∑

i<j

Jijmimj . (16)

This result is equivalent to the variational mean field approximation, obtained
by restricting the minimization in (5) to densities of the form q(x|0). Hence, it
gives an upper bound to the true GFE.



Approximate Inference in Probabilistic Models 499

4.2 Perturbative Expansion

One can improve on the mean field result by turning the exact expression (15)
into a series expansion of the free energy in powers of t, setting t = 1 at the end.
It is easy to see that the term linear in t corresponds to the mean field result. The
second order term of this so-called Plefka expansion can be found in [18], see also
several contributions in [13]. While the second order term seems to be sufficient
for models with random independent couplings Jij in a “thermodynamic limit”,
more advanced approximations are necessary in general [16,15].

4.3 A Lower Bound to the Gibbs Free Energy for Ising Variables

This was recently found by Wainwright & Jordan [20,19] and can be obtained
by specifying all second moments M. Then it is easy to see from the definition
of the free energy that

G(µµµ) +
∑

i<j

JijMij = −H[x] ,

where H[x] equals the (discrete) negative entropy of the random variable x.
Wainwright and Jordan construct a continuous random variable x̃ (a noisy ver-
sion of x) which has the same differential entropy h[x̃] = H[x]. Now they can
apply a Maximum -Entropy argument and upper bound h[x̃] by the differential
entropy hGauss[x̃] of a Gaussian with the same moments:

− H[x] = −h[x̃] ≥ −hGauss[x̃] =
1
2

log det[Cov(x̃)] +
N

2
log(

ne

2
) (17)

=
1
2

log det[
1
4
Cov(x) +

1
3
IN ] +

N

2
log(

ne

2
) .

The approximate free energy comes out a convex function of its arguments.

4.4 Bethe–Kikuchi Type of Approximations

These are usually applied to discrete random variables and become exact if the
graph which is defined by the edges of nonzero couplings Jij �= 0 is a tree or
(for the Kikuchi approximation) a more generalized cluster of nodes. For tree
connected graphs, the joint density of variables can always be expressed through
single and two node marginals (similar to (12)). Using this structure within the
optimization (5), one can calculate the Gibbs free energy exactly and efficiently
when all first moments and the second moments along the edges of the graph
are fixed. The approximation [21,22,5] is obtained when the graph of nonzero
couplings is not a tree, but the simple form of the tree type distribution is
still used in the optimization (5). Although the variation is over a subset of
distributions, the Bethe–Kikuchi approximations do not lead to an upper bound
to the free energy. This is because the constraints are no longer along trees and
are thus not consistent with the distribution assumed.
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5 Expectation Consistent Approximations

Our goal is to come up with another approximation which improves over the
mean field result (16) by making a more clever approximation to q(x|t) in (15).
We will use our assumption that we may approximate the density (2) by alter-
natively discarding the factor f1(x) as intractable, replacing the density q(x|t)
by

r(x|t) =
1

Zr(λ, t)
f2(x, t) exp

(
λT g(x)

)
, (18)

where the parameters λ are chosen to have consistency for the expectations of
g, i.e. 〈g(x)〉r(x|t) = µµµ.

r(x|t) defines another Gibbs free energy with a dual representation eq. (9)

Gr(µµµ, t) = max
λ

{
− lnZr(λ, t) + λTµµµ

}
. (19)

We will use r(x|t) to treat the integral in eq. (14), writing
∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉

q(x|t)
≈

∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉

r(x|t)
. (20)

Using the relations eqs. (10) for the free energy eq. (19) we get
∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉

r(x|t)
= Gr(µµµ, 1) − Gr(µµµ, 0) . (21)

and arrive at the expectation consistent (EC) approximation:

G(µµµ) ≈ G(µµµ, 0) + Gr(µµµ, 1) − Gr(µµµ, 0) ≡ GEC(µµµ) . (22)

6 Results for Ising Variables

We will now apply our EC framework to the model (2) with Ising variables
xi = ±1. We will discuss two types of approximations which differ by the set
of fixed second moments Mij . By fixing more and more second moments, we
reduce the number of interaction terms of the form Jijxixj which are not fixed
and have to be approximated.

Since r(x|t) is a multivariate Gaussian, we have

GEC(m,M) = G(m,M, 0) − 1
2
mT Jm (23)

+ max
Λ

{
1
2

ln det(Λ − J) − 1
2

Tr Λ(M − mmT )
}

− max
Λ

{
1
2

ln detΛ − 1
2

Tr Λ(M − mmT )
}

.
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To obtain estimates for the second moments which are not fixed in the free
energy, we take derivatives of the free energy with respect to coupling parameters
Jij yielding

〈xxT 〉 − 〈x〉〈xT 〉 = (Λ − J)−1
. (24)

This result is also consistent with the fixed values M for the second moments.

6.1 Diagonal Approximation

When we fix only the trivial diagonal second moments Mii ≡ 〈x2
i 〉 = 1 (Ising

constraints), M does not appear as a variable in the free energy. The EC ap-
proximation eq. (23) is then given by

GD(m) = GIs(m) − 1
2
mT Jm (25)

+ max
Λ

{
1
2

ln det(Λ − J) − 1
2

N∑

i=1

Λi(1 − m2
i )

}

+
1
2

N∑

i=1

ln(1 − m2
i ) +

N

2
,

where GIs(m) is given by eq. (11) and Λ is a diagonal matrix of Lagrange pa-
rameters. This result coincides with the older adaptive TAP approximation [16,
15].

6.2 Tree Approximation

A more complex, but still tractable approximation is obtained by selecting an ar-
bitrary tree connected subgraph of pairs of nodes and fixing the second moments
of the Ising variables along the edges of this graph. The free energy is again of
the form eq. (23) but now with G(m,M, 0) given by eq. (12), the Lagrange pa-
rameters Λij are restricted to be non-zero on the tree graph only. If the tree is
chosen in such a way as to include the most important couplings (defined in a
proper way), one can expect that the approximation will improve significantly
over the diagonal case.

7 Simulations

We compare results of the EC approximation with those of the Bethe–Kikuchi
approaches on a toy problem suggested in [5]. We use N = 10 nodes, con-
stant “external fields” θi = θ = 0.1. The Jij ’s are drawn independently at
random, setting Jij = βwij/

√
N , with Gaussian wij ’s of zero mean and unit

variance. We study eight different scaling factors β = [0.10, 0.25, 0.50, 0.75,
1.00, 1.50, 2.00, 10.00]. The results are summarized in figures 1 and 2. Figure 1



502 M. Opper and O. Winther

10
0

10
1

10
−6

10
−4

10
−2

10
0

β

M
A

D
 1

 n
od

e 
m

ar
gi

na
ls

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
A

D
 2

 n
od

e 
m

ar
gi

na
ls

β

Fig. 1. Maximal absolute deviation (MAD) for one- (left) and two-variable (right)
marginals. Blue upper full line: EC factorized, blue lower full line EC tree, green dashed
line: Bethe and red dash-dotted line: Kikuchi.
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Fig. 2. Left plot: free energy for EC factorized and tree (blue full line), Bethe (green
dashed line), Kikuchi (red dash-dotted) and exact (stars). Right: Absolute deviation
(AD) for the three approximations, same line color and type as above. Lower full line
is for the tree EC approximation.

gives the maximum absolute deviation (MAD) of our results from the exact
marginals for different scaling parameters. We consider one-variable marginals
p(xi) = 1+ximi

2 and the two-variable marginals p(xi, xj) = xixjCij

4 + p(xi)p(xj)
with the approximate covariance Cij = 〈xixj〉−〈xi〉〈xj〉 given by eq. (24). Figure
2 gives estimates for the free energy. The results show that the simple diagonal
EC approach gives performance similar to (and in many case better than) the
more structured Bethe and Kikuchi approximations.

For the EC tree approximation, we construct a spanning tree of edges by
choosing as the next edge, the (so far unlinked) pair of nodes with strongest
absolute coupling |Jij | that will not cause a loop in the graph. The EC tree
version is almost always better than the other approximations. A comparison
with the Wainwright–Jordan approximation (corresponding to (17)) and details
of the algorithm will be given elsewhere.
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8 Outlook

We have introduced a scheme for approximate inference with probabilistic mod-
els. It is based on a free energy expansion around an exactly tractable substruc-
ture (like a tree) where the remaining interactions are treated in a Gaussian
approximation thereby retaining nontrivial correlations. In the future, we plan
to combine our method with a perturbative approach which may allow for a sys-
tematic improvement together with an estimate of the error involved. We will
also work on an extension of our framework to more complex types of proba-
bilistic models beyond the pairwise interaction case.
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