
Real-Time Simulation of Global IlluminationUsing Dire
t Radian
e Mapping
Thesis byJeppe Revall FrisvadRasmus Revall Frisvad

Supervisors:Niels Jørgen ChristensenPeter FalsterInformati
s and Mathemati
al ModelingIMM, Te
hni
al University of Denmark,Kgs. Lyngby, Denmark2nd November 2004

ii

Abstra
tThis report presents our master's thesis on global illumination and real-time
omputer graphi
s written at the Te
hni
al University of Denmark. Thethesis has two obje
tives. First obje
tive is to identify and study di�erenttraditional methods for the two
omputer graphi
s �elds
alled photorealisti
rendering and real-time graphi
s. Following this study in known methodswe introdu
e some of our own ideas for improvements on, or
onstru
tionof, global illumination e�e
ts in real-time. One idea was
hosen for a moredetailed investigation. We have named the method
ontained within thisparti
ular idea �Dire
t Radian
e Mapping� (DRM) and it is mainly a methodfor real-time simulation of di�usely re�e
ted indire
t illumination. DRM isimplemented and
ompared to other methods, whi
h are able to simulate thesame visual e�e
ts. Capabilities, drawba
ks, advantages, and disadvantagesof the method are dis
ussed on this ba
kground.The se
ond obje
tive is to investigate the work �ow that is ne
essaryif we want to
reate a s
ene using a modeling tool and move that s
eneto an appli
ation that
an render global illumination e�e
ts in real-time.The idea is to put together the fundamental tools needed if the results ofthis report were to be useful for
reation of a
ommer
ial dynami
 real-time appli
ation su
h as an ar
hite
tural previewer or a
omputer game.To meet this obje
tive we have studied the modeling appli
ation Blenderand provided the report with an introdu
tion to its usage. Through exportand import s
ripts we are able to
reate s
enes in Blender and use them fordemonstration purposes in a separate Windows appli
ation.
Keywords: Computer graphi
s, radiometry, light transport, lo
al illumina-tion, global illumination, ray tra
ing, photon mapping, real-time rendering,modeling, Blender, dire
t radian
e mapping.

iv

ResuméDenne rapport præsenterer vores eksamensprokekt ved Danmarks TekniskeUniversitet, som omhandler global illumination og realtids
omputer gra�k.Projektet har to formål. Det første er at identi�
ere og studere forskellige tra-ditionelle metoder inden for fotorealistisk rendering og realtids gra�k. Efterdette studie i kendte metoder, vil vi introdu
ere nogle af vores egne idéer tilkonstruktion af globale illuminations e�ekter i realtid. Én idé er udvalgt tilen mere detaljeret gennemgang. Vi har valgt at kalde denne metode �Dire
tRadian
e Mapping� (DRM, kortlægning af direkte radians). Metoden brugesprimært til simulation af di�ust re�ekteret indirekte illumination. DRM erimplementeret og sammenlignet med andre metoder, der også kan simulerelignende visuelle e�ekter. Egenskaber, manglende egenskaber, fordele ogulemper vil blive diskuteret på baggrund af denne sammenligning.Det andet formål er at undersøge det arbejdsforløb, der er nødvendigt forat skabe en s
ene vha. et modelleringsværktøj. Modellen skal kunne overførestil et program, som er i stand til at rendere globale illuminations e�ekter irealtid. Idéen er at sammenføre de værktøjer der skal bruges for at skabe enkommer
iel dynamisk realtids applikation, som f.eks. et
omputer spil. Forat imødegå dette formål har vi studeret modelleringsapplikationen Blenderog indsat en tutorial i rapporten. Gennem export/import s
ripts er vi i standtil at modellere s
ener i Blender og bruge dem til demonstrationsformål i enseperat Windows applikation.

vi

Prefa
eThis thesis is written by Jeppe Revall Frisvad and Rasmus Revall Frisvadin partial ful�llment of the M.S
. degree at the te
hni
al university of Den-mark (DTU). The work was
ondu
ted from February to September 2004.Supervisors of the proje
t were Niels Jørgen Christensen, Asso
iate Professorat institute of Informati
s and Mathemati
al Modeling, and Peter Falster,Asso
iate Professor also at the institute of Informati
s and Mathemati
alModeling (IMM), DTU.The subje
t of this thesis is simulation of photorealisti
 rendering inreal-time. Some modeling of three dimensional s
enes will be addressed aswell. The reader should understand the most basi

on
epts of rendering in
omputer graphi
s.An a

ompanying CD-ROM
ontaining developed software, sour
e
ode,models, and other material related to this thesis has been atta
hed in ap-pendix A. All programming and modeling tools used for this thesis are freeof
harge and most of them are also open sour
e proje
ts.

s991020 Jeppe Revall Frisvad ____________________s973867 Rasmus Revall Frisvad ____________________

viii

A
knowledgementsIn alphabeti
al order, thanks to: Philippe Bekaert for answering questionsof mathemati
al nature. Andreas Bærentzen for
larifying dis
ussions. NielsJørgen Christensen for being supervisor of this proje
t, and for pointing outimportant issues in many di�erent
ontexts. Peter Falster for supervision,en
ouragement, and good dis
ussions on
ore issues as well as peripheri
aldetails. Mikkel Gjøl for hints,
ritique and
onversations along the way.Bjarke Ja
obsen for good hints. Henrik Wann Jensen for
on�rmation of ourbelieves with respe
t to a few un
ertainties. Christian Lange, in parti
ular,for
onstru
tive reviews of our early drafts. Bent Dalgaard Larsen for goodhints and
onstru
tive
ritique along the way. Kasper Høj Nielsen for en-
ouraging
omments now and then. Per Slotsbo for helpful remarks duringthe beginning of the proje
t. Also thanks to the Computer Graphi
s andImage Analysis Lun
h Club for good
ompany at lun
h time. Thanks to ourparents for always being there and last but not least thanks to Moni
a andIben for good support and for
oping with our absen
e at late hours.

x

Contents
1 Introdu
tion 11.1 Ba
kground . 51.2 Report stru
ture . 5I Real-Time Rendering versus Realisti
 Image Synthesis 92 The Building Blo
ks of Computer Graphi
s 132.1 An Array-Based Math Engine 152.2 Polygonal Geometry . 212.3 The Virtual S
ene . 232.4 Hidden Surfa
e Removal . 292.5 S
ene Graphs and Spatial Data Stru
tures 323 The Mathemati
al Model of Illumination 353.1 Opti
al Radiation . 373.2 Radiometry . 433.3 Photometry . 523.4 Light S
attering . 543.5 The Rendering Equation . 663.6 Light Transport . 713.7 Lo
al vs. Global Illumination 763.8 Solving Re
ursive Integrals 774 Traditional Approa
hes to Realisti
 Image Synthesis 794.1 Radiosity . 814.2 Ray Tra
ing . 894.3 Monte Carlo Ray Tra
ing . 1014.4 Photon Mapping . 1045 Traditional Approa
hes to Real-Time Rendering 1135.1 The Graphi
s Rendering Pipeline 1145.2 Lighting and Shading . 1205.3 Texture Mapping . 123

xii CONTENTS6 Approximating the Rendering Equation in Real-Time 1276.1 Sten
iled Shadow Volumes . 1286.2 Planar Re�e
tions Using the Sten
il Bu�er 1326.3 Cube Environment Mapping 1356.4 Real-Time Causti
s . 1386.5 Complex BRDFs . 1396.6 Light Mapping . 1406.7 Real-Time Photon Mapping Simulation 1416.8 Pre-
omputed Radian
e Transfer 1436.9 Environment Map Rendering 144II Modeling Contents 1477 Modeling 3D S
enes 1518 Visual Appearan
e 1598.1 Colors and Human Per
eption 1608.2 Material Parameters . 1648.3 Textures . 1679 Making Things Come Alive 1699.1 Transformation . 1709.2 Animation and Motion Control 1739.3 Intera
tive Control . 17510 Modeling in Blender r
 17910.1 Blender Navigation . 18010.2 Modeling in Blender . 18510.3 Material Settings in Blender 19310.4 Blender Animation . 19810.5 Export S
ripts and Import Libraries 20710.6 Additional Blender Features 209III Ideas, Results, and Experiments 21111 Ideas 21511.1 Angular Visibility Between AABBs 21711.2 Topologi
al Network . 22011.3 Displa
ement Mapping . 22111.4 Multi-Agent Global Illumination 22411.5 Obje
t Atmosphere . 22511.6 Line-of-Sight Algorithm . 22511.7 First Interse
tion in Hardware 227

CONTENTS xiii11.8 Single Pixel Images . 22912 Dire
t Radian
e Mapping 23112.1 The Con
ept . 23212.2 The Resulting Method . 23612.3 Abilities and Limitations . 25012.4 Comparison . 25513 Other Implemented Rendering Methods 26113.1 Photorealisti
 Rendering Methods 26213.2 Other Real-Time Rendering Methods 26414 Graphi
al User Interfa
e 26914.1 Test S
enes . 27014.2 JR Viewer . 27215 Implementation 28315.1 Program Stru
ture . 28415.2 Status Options . 28615.3 Render Options . 28715.4 S
ene Options . 28915.5 The Render Engine . 291IV Con
lusions 29516 Dis
ussion 29716.1 Future experiments . 29816.2 Appli
ability . 30117 Con
lusion 303A Contents of Atta
hed CD-ROM 307B Histori
al Remarks 309C Stru
ture of Sour
e Files and Libraries 315

xiv CONTENTS

Chapter 1Introdu
tion

Any su�
iently advan
ed te
hnology is indistinguishable from magi
.Arthur C. Clarke (1962): Pro�les of the Future: An Inquiryinto the Limits of the PossibleClarke's Third Law

2 Introdu
tionThrough some de
ades now people have tried to generate
omputer graphi
sthat
ould repli
ate s
eneries from real life. Today they have almost rea
hedtheir goal. We see movies with
omputer animated s
enes that are trulydi�
ult to distinguish from real life. Soon even experts will �nd it hard, ifnot impossible, to tell whether or not a s
ene is taken with a real
amera or
reated by an animator in a studio. This thesis
on
erns the fundamentaltheory and methods behind the making of syntheti
 images.The
reation of realisti

omputer graphi
s images is a heavy
omputa-tional pro
ess, and it
an take a long time to
reate small movie s
enes evenusing the most powerful
omputers. The art of
reating syntheti
 imagesrepli
ating the real world very mu
h depends on the ability to simulate howlight intera
ts with its surroundings. This intera
tion is referred to as illu-mination. Throughout this proje
t we will dis
uss two kinds of illumination;lo
al and global. Lo
al illumination means that the shade of ea
h point in as
ene is based solely on the dire
tions towards the light sour
es and the di-re
tion towards the eye point (or
amera position). Global illumination alsotakes into a

ount the geometry surrounding ea
h point in whi
h the shadeis to be determined. This has the e�e
t that global illumination in
ludessu
h e�e
ts as shadows, re�e
tions, refra
tions,
austi
s,
olor bleeding, andtranslu
en
y. The pri
e is, however, high. Global illumination is a
omputa-tionally expensive model and therefore the methods proposed to simulate itare usually not
onsidered in the
ontext of real-time graphi
s. Contrariwisemany di�erent approa
hes have been employed in order to
reate visual ef-fe
ts similar to global illumination e�e
ts in an otherwise lo
al illuminationmodel.To a
hieve perfe
t realism it is
lear that global illumination must beintrodu
ed or at least a simulation of the e�e
ts resulting from global illumi-nation. Sometimes we have plenty of time to generate our image but thereare situations where we are very short on time. Situations like this are foundin dynami

omputer appli
ations as for example
omputer games. In su
happli
ations it is impossible to foresee every user intera
tion, hen
e, imagesmust be generated on the �y. The
al
ulations must be
arried out so fastthat the user does not register ea
h new pi
ture. The pro
ess of generat-ing images fast enough for the human eye not to register is referred to asreal-time illumination. In real-time
omputer graphi
s we often use lo
alillumination methods as these traditionally are the only ones that
an be
al
ulated at su�
ient speed.The making of syntheti
 (2-dimensional) images from a three-dimensionalrepresentation (or model) by
ombination of lighting, texturing, and geome-try is in
omputer graphi
s referred to as rendering. The following is a gooddes
ription of what it takes for a rendering method to be
alled `real-time'[2, p. 1℄:The rate at whi
h images are displayed is measured in frames per

3se
ond (fps) or Hertz (Hz). At one frame per se
ond, there is littlesense of intera
tivity; the user is painfully aware of the arrival ofea
h new image. At around 6 fps, a sense of intera
tivity startsto grow. An appli
ation displaying 15 fps is
ertainly real-time;the user fo
uses on a
tion and rea
tion. There is a useful limit,however. From about 72 fps and up, di�eren
es in the displayrate are e�e
tively indete
table.It is our intension and the �rst obje
tive of this thesis to explore how
lose we
an bring realisti
 image synthesis to real-time exe
ution rates.As real-time
omputer graphi
s and realisti
 image synthesis are twodi�erent bran
hes of
omputer graphi
s we have
hosen to start at ea
hend and move them slowly in the dire
tion of ea
h other in the �rm beliefthat we
an make them meet somewhere mid-way. We know, however, that
ompromises must be taken both with respe
t to real-time (72 fps) andrealism, otherwise this obje
tive will not be met.Sin
e we start at both ends of a long rope stret
hing the distan
e betweenthe global illumination and real-time rendering we must start out having abasi
 implementation in both
amps. First we must have a basi
 real-timerenderer as seen in most video games today. This is a
hieved using thestandard tools available in a 3D graphi
s library su
h as OpenGL. Se
ondwe must have a de
ent renderer simulating global illumination. We have
hosen to let this global illumination method be based on the rendering
on
epts known as ray tra
ing and photon mapping.After the emergen
e and rapid development of GPUs (Graphi
al Pro-
essing Units) the prevailing way to implement real-time graphi
s is throughhardware. The foundation of 3D
omputer graphi
s is points and ve
torsand the rendering of 3D models
onsisting of thousands of triangles results inmillions of
al
ulations in
luding su
h mathemati
al entities, it is, therefore,evident that an e�
ient implementation of ve
tor math is
ru
ial if imagesynthesis is to be brought
loser to real-time graphi
s. Fortunately the GPUsare developed, in essen
e, to pro
ess su
h
al
ulations
on
urrently and ef-�
iently. The GPU pro
essing is, however, not rea
hed easily. GPUs are
onstru
ted to render triangles in parti
ular and the rendering pipeline thata GPU implements is not ne
essarily well suited for the di�erent approa
hesthat has been found for global illumination.We have studied di�erent aspe
ts of global illumination theory to
re-ate the foundation whi
h we think is ne
essary in order to
ome up withnew approa
hes to global illumination e�e
ts in real-time. Several ideas formethods will be dis
ussed in the report and the most promising one, whi
hwe have
hosen to
all �Dire
t Radian
e Mapping�, will be thoroughly exam-ined. Dire
t radian
e mapping is a method mainly for
al
ulation of di�uselyre�e
ted indire
t illumination. Di�use re�e
tion o

urs when light is equallylikely to be s
attered in any dire
tion [19℄, this happens when the s
attering

4 Introdu
tionmaterial looks rather dull. Oppositely spe
ular surfa
es (su
h as mirrorsand glass) re�e
t (and refra
t) light
losely around a parti
ular dire
tion.Surfa
es that have material properties in-between di�use and spe
ular are
alled glossy. When light has s
attered around in a s
ene multiple times onarbitrary surfa
es (be they di�use, glossy, or spe
ular), it is
alled indire
tillumination. If the indire
t illumination has s
attered on di�use surfa
esat least twi
e before rea
hing the eye, it is
alled di�usely re�e
ted indire
tillumination. As other approa
hes for
reating di�usely re�e
ted indire
tillumination in real-time already exists, we will
ompare our method withthese. Some methods only treat perfe
tly di�use surfa
es (a hypotheti
almaterial that s
atters light uniformly in all dire
tions), su
h surfa
es areoften referred to as Lambertian surfa
es.Coming up with new ideas for real-time global illumination is not easilya

omplished and to
ome even
lose to something useful, most of the existingtheory must be studied thoroughly. With this in mind we have implementedseveral existing global illumination methods both to get familiar with themand to have them later for
omparison with real-time results.In s
ienti�
 arti
les, papers or reports we often see simple test s
enesdemonstrating the treated algorithm or method. This is of
ourse suitablefor proof of
on
ept purposes, but for the method to be appli
able in
ommer-
ial appli
ations it must demonstrate e�
ien
y in more
ompli
ated setups.As the se
ond obje
tive of this thesis we want to make a platform for develop-ment of real-time appli
ations. We examine not only the rendering methodbut also the entire pro
ess from s
ene
reation to rendering and use of it.This implies that we must be able to model s
enes and therefore elementaryuse of a modeling tool is des
ribed in this report. We must also des
ribeintegration between the modeling tool and our rendering method. In thisthesis we establish a
onne
tion from s
ene
reation to rendering of it by ourown methods using free of
harge tools only. Finally we have
reated a smalldemonstration appli
ation, serving the purpose of arranging and presentingall the implemented methods, but also to demonstrate that a s
ene
an bebuild from s
rat
h, exported, and then imported in another appli
ation.We have
hosen to restri
t this proje
t in a
ouple of ways. First we have
hosen not to emphasize on the pro
ess of software development, rather onthe appli
ation of mathemati
al tools to solve a
omplex problem. Imple-mentation is regarded as a tool for experiments and veri�
ation of the ideasthat we put forth. With respe
t to
omputer graphi
s, we have
hosen notto dis
uss matters of anti-aliasing in detail at any point. We also
onsiderreal-time soft shadow methods to be outside the s
ope of this report. Noparti
ular emphasis will be pla
ed on spatial data stru
tures for optimiza-tion in this report. We also do not go into parametri

urves and surfa
esat any point. All these subje
ts are left out to save time for other parts ofthe proje
t.

1.1 Ba
kground 51.1 Ba
kgroundPrior to this proje
t our knowledge in the �eld of
omputer graphi
s waslimited to introdu
tory
ourses. This is re�e
ted in the report by someissues being des
ribed more
omprehensively than perhaps ne
essary. Thisshould be regarded as a do
umentation of the learning pro
ess that we havegone through during this thesis.Other
ourses that we have followed may have had an impa
t on the out-
ome of the proje
t as well. We have a ba
kground in autonomous agentsand
omputational intelligen
e, whi
h has inspired several of the ideas pre-sented in this report. A prior knowledge of array theory has also been agreat sour
e of inspiration.1.2 Report stru
tureThe report is divided into four parts. Part I
on
erns the theoreti
al sub-je
ts whi
h are the foundation of the proje
t. In this part we
onsider ba-si
 knowledge in the �eld of global illumination and
onstru
tion of virtuals
enes. Many subje
ts are introdu
ed sin
e they make us able to appre
iatethe ideas and
on
eptions of later parts better. Part II
on
entrates on s
ene
reation, that is,
reation of
ontents for the rendering methods. In here weintrodu
e methods for building a dynami

omputer s
ene, sin
e this is whatwe seek to render in real-time. While part I is theoreti
ally minded part IIis more pra
ti
ally minded. Part III presents the ideas that we have
omeup with for bringing global illumination
loser to real-time rendering, and itgives a thorough des
ription of the method we saw as the most promisingof our ideas; dire
t radian
e mapping. Part III will also present the demon-stration appli
ation as well as the test s
enes that we have
reated using thetools des
ribed in part II. Part IV
ontains dis
ussion and
on
lusion ofthe thesis.Part IChapter 2
on
erns some of the most basi
 subje
ts in
omputer graphi
s,subje
ts that are
ommon to all appli
ations and rendering methods in 3Dgraphi
s. We des
ribe how the basi
 elements in a
omputer s
ene are setup and we introdu
e our math engine, whi
h does all
al
ulations that arenot
arried out on the GPU. The math engine builds on array theory, whi
his therefore also introdu
ed here.Chapter 3 is about the theory behind an illumination model. The
hapter des
ribes the physi
al model of light and how it is transformed into
omputer graphi
s. In this
hapter we des
ribe the mathemati
al modelwhi
h all
omputer graphi
 methods and algorithms seek to simulate or solve.

6 Introdu
tionIn other words this is the theory that is the foundation of all illuminationmodels that are used in
omputer graphi
s.Chapter 4 des
ribes traditional approa
hes to realisti
 image synthesis.Here we des
ribe some of the most
ommonly used global illumination meth-ods: Traditional radiosity, traditional ray tra
ing, Monte Carlo ray tra
ing,and photon mapping.In
hapter 5 we look at rendering from a slightly di�erent angle astraditional methods for real-time rendering are treated here. For that reasonthis
hapter will mainly
on
ern lo
al illumination. We will dis
uss therasterization pipeline whi
h is most
ommonly used for real-time renderingand we will take a brief look at textures.In
hapter 6 di�erent methods for simulation of global illuminatione�e
ts in real-time are presented. Some of the methods presented here willlater be used in
ombination with dire
t radian
e mapping while some of themethods will be used for
omparison with dire
t radian
e mapping.Part IIChapter 7 takes a pra
ti
al angle on
reation of a
omputer s
ene usingthe theory given in
hapter 2. Di�erent more or less a
knowledged methodsfor
reating 3D obje
ts will be introdu
ed. The des
ription of the methodsuses the free of
harge modeling tool
alled Blender for examples. This isthe modeling tool that we have
hosen for this proje
t as a part of the work�ow from s
ene
reation to rendering that we wish to des
ribe.Chapter 8 dis
usses the visual appearan
e of materials a

ording totheir
olor and material parameters. In this
hapter we seek to take a morepra
ti
al approa
h as
ompared to that of part I, sin
e the main purpose isto des
ribe how materials
an be set in a modeling appli
ation. Nevertheless,we also need to relate the di�erent
on
eptions to the theory presented inpart I.In
hapter 9 we introdu
e methods for
reating dynami
 obje
ts in as
ene. This is an interesting subje
t whi
h arises when
omputer graphi
sare available in real-time. Two di�erent ways of
reating dynami
 obje
tsare presented. First, we des
ribe how to make animation sequen
es for usein our real-time appli
ation. Se
ondly, we des
ribe how user intera
tion
ande�ne dynami
 movement of obje
ts and
amera in a real-time environment.Chapter 10 spe
i�es how s
ene
reation, material settings, and anima-tion of dynami
 obje
ts are
arried out in Blender. In this way we providethe basi
s needed to build a s
ene from s
rat
h, whi
h is a part of the de-velopment platform that we strive at. The
hapter also re�e
ts the learningpro
ess that we have gone through, sin
e none of us new Blender beforehand,some of the experien
es that we have had may be useful to others.

1.2 Report stru
ture 7Part IIIChapter 11 presents di�erent ideas that we have
ome up with during theproje
t. Those are the ideas that we did not have time to examine in detailduring this thesis. The
hapter serves the purpose of inspiration and re�e
tsthe pro
ess that we went through before rea
hing the idea of dire
t radian
emapping.Dire
t radian
e mapping is the subje
t of
hapter 12. Here we des
ribethe method in details. The
hapter will dis
uss abilities, advantages, anddrawba
ks of the method. Dire
t radian
e mapping will also be
omparedto the real-time methods providing the same e�e
ts whi
h were des
ribed in
hapter 6.In
hapter 13 we address other illumination methods that have been im-plemented during the proje
t. These are mostly global illumination methodsor real-time methods supplementing dire
t radian
e mapping.Chapter 14 des
ribes our demonstration appli
ation. We will give ades
ription of the di�erent options that the graphi
al user interfa
e of theappli
ation o�ers. The options all
orrespond to methods or visual e�e
tsdes
ribed elsewhere in the report. Contents and purposes of the di�erenttest s
enes will also be des
ribed.Chapter 15 presents a number of design diagrams to des
ribe the im-plementation behind the demonstration appli
ation. We will not des
ribeevery fun
tion in every �le of the appli
ation in detail, but
on
entrate onthe overall data �ow.Part IVChapter 16 dis
usses the out
ome of this thesis and the
ourse of theproje
t. Some additional experiments and future appli
abilities will be dis-
ussed here as well. Chapter 17
on
ludes the report.

8 Introdu
tion

Part IReal-Time Rendering versusRealisti
 Image Synthesis

11In the following
hapters we will introdu
e the fundamental theory and ter-minology that is ne
essary in order to des
ribe the relationship betweenphotorealisti
 rendering and real-time
omputer graphi
s. The �rst
hap-ters dis
uss some of the theoreti
al and mathemati
al subje
ts that are thebuilding blo
ks of
omputer graphi
s and realisti
 image synthesis. The last
hapters will dis
uss di�erent traditional approa
hes to photorealisti
 as wellas real-time rendering, and some of the latest
ombinations of these.The purpose of part I is to provide the basi
 knowledge of
omputergraphi
s that is ne
essary in order to appre
iate the methods and ideas(su
h as dire
t radian
e mapping) presented in part III. Some
hapters maybe a bit more
omprehensive than needed if they only served the purpose ofmaking the
ontents of part III understandable. However, we feel that theinformation provided in the following
hapters (espe
ially
hapter 3) givesvaluable knowledge some of whi
h is rarely in
luded in modern
omputergraphi
s text books. Therefore we
onsider our analysis of the theoreti
alfoundation to be an important part of the learning pro
ess that led us to mostof the ideas des
ribed in part III. The
omprehensiveness of the following
hapters also re�e
ts a desire to build or implement elements from the bot-tom up, and thereby to get a full understanding of
on
epts in as many areasas possible. An example is the array-based math engine. For several reasonswe
hose to rebuild a previous implementation of a math engine: First of allwe felt that there was a good
han
e of some minor improvements
on
ern-ing pro
essing speed. Se
ondly, it gave us a
omplete overview of fun
tionsavailable and the
apabilities of the engine. If new fun
tionality was neededwe
ould easily extend the math engine. Furthermore the array-based im-plementation of the math engine bases most operations on a few generalgeometri
al operators su
h that improvements of those few operators willimprove the performan
e of the entire math engine signi�
antly.The math engine along with other fundamental mathemati
al tools thatare often used in
omputer graphi
s are presented in
hapter 2. The intentionof this
hapter is to sum up some of the key tools used in the rest of thereport. The
hapter starts with a des
ription of the math engine basedon array theory; hen
e the
on
epts of array theory will also be addressedhere. The rest of the
hapter sums up basi
 geometri
al and
omputationalissues often used throughout the report. All in all it should provide a goodba
kground for the rest of the report.Chapter 3
on
erns the rendering equation, whi
h in some version or an-other is the equation that global illumination methods seek to solve. The
hapter treats opti
s, opti
al radiation, and radiometry whi
h are the fun-damentals of the rendering equation. Other areas of resear
h that
an berelated to
omputer graphi
s are dis
ussed in short (eg. photometry). Forreasons mentioned above
hapter 3 digs a bit deeper than perhaps ne
essary.After a thorough examination of the basi
 theories and physi
s of light wemove on to the a
tual algorithms used in
omputer graphi
s. Photorealisti

12rendering seek to solve the global illumination model and sin
e we would liketo simulate photorealisti
 rendering in real-time we start out with
hapter4, where we des
ribe traditional methods for global illumination su
h as raytra
ing and radiosity. Hybrid methods su
h as photon mapping are des
ribedand some expansions are addressed shortly.Not only do we want to
reate photorealisti
 e�e
ts, we also want themin a real-time s
enario. Traditional approa
hes to real-time rendering aredes
ribed in
hapter 5. Most real-time graphi
s are based on a lo
al illu-mination model rather than a global. The reason is that the
al
ulationsneeded for lo
al illumination are mu
h simpler and, hen
e, so are the
om-putation times. This is ne
essary if the illumination of a s
ene needs torun in real-time. We will try to des
ribe brie�y how real-time graphi
s aredone traditionally using rasterization and a lo
al illumination model. Eventhough we seek to generate global illumination e�e
ts we �nd that mu
h ofour �nal implementation has to be based on rasterization in order to run inreal-time. Therefore it is ne
essary to des
ribe the basi
s of rasterization aswell as global illumination te
hniques.The last
hapter of part I,
hapter 6, seeks to
ombine global illuminationand real-time rendering by treatment of di�erent visual e�e
ts that existin global illumination, but not in lo
al illumination, individually. Some ofthe visual e�e
ts that have been approa
hed using real-time te
hniques are:Shadows, re�e
tions, refra
tions, translu
en
y,
austi
s, and
olour bleeding.The te
hniques for real-time simulation of global illumination e�e
ts areplenty: Shadow volumes, environment mapping, light mapping, et
. Someof these te
hniques are des
ribed in
hapter 6. Normally methods for real-time global illumination fo
us on one of the visual e�e
ts, therefore therewill be examples of di�erent approa
hes to address di�erent visual e�e
ts.In short
hapter 6 seeks to give a brief presentation of what others havedone to approa
h global illumination in real-time. This is important to us,sin
e our own methods do not present a solution for all global illuminatione�e
ts and neither does it rule out a
ombination with methods presentedby others.

Chapter 2The Building Blo
ks ofComputer Graphi
s

What are you able to build with your blo
ks?Castles and pala
es, temples and do
ks.Rain may keep raining, and others go roam,But I
an be happy and building at home.Robert Louis Stevenson (1850�1894): Blo
k Cityfrom �A Child's Garden of Verses and Underwoods�

14 The Building Blo
ks of Computer Graphi
sIn this
hapter we will des
ribe some of the basi

on
epts and mathemat-i
al tools that are (or
ould have been) used in this proje
t. There are noparti
ular graphi
al methods in this
hapter rather the mathemati
al foun-dation to build these methods from. Most of the
hapter
on
entrates onbasi
 ve
tor math in a three dimensional world.In se
tion 2.1 we will present an array-based math engine that imple-ments the geometri
al
al
ulations and ve
tor math that has been used forthe implementation of algorithms that are des
ribed in
hapters to
ome,with the ex
eption of
al
ulations that take pla
e on the GPU (Graphi
alPro
essing Unit). We have
hosen to rebuild a ve
tor library
alled CGLAthat has been implemented by Andreas Bærentzen, and was distributed dur-ing the DTU �Computer Graphi
s�
ourse (02561). Though we
ould haveused CGLA or other implementations of more or less the same fun
tions, we
hose to make our own implementation inspired by CGLA. As mentionedbefore the reason for starting over is that we get a mu
h better understand-ing of what is needed in graphi
al
al
ulations and if some things need tobe
hanged or modi�ed we are able to do so faster and easier. Moreover theidea of a math engine based on a few array theoreti
 operators is appealing.The geometry displayed in 3D
omputer graphi
s, and espe
ially real-time
omputer graphi
s, often build on polygons. Se
tion 2.2 will dis
ussways of representing obje
ts in a virtual environment su
h as a
omputers
ene. In this proje
t we use polygons for obje
t representation; hen
e, these
tion will introdu
e how a
lever representation of polygons
an be puttogether.A 3D virtual s
ene is made visible to us on a 2D s
reen. In the virtualenvironment this is en
losed by a view plane. The position of the view planeis determined by the position of the viewer or eye point, normally representedby a
amera. Se
tion 2.3 brie�y presents the di�erent elements in a typi
alvirtual s
ene.Another important issue in
omputer graphi
s is visibility and
ulling,whi
h we address in se
tion 2.4. A lot of
omputations
an be saved if theinvisible parts of a s
ene are ruled out when rendering. A good idea is tolook
loser at how we leave out ba
ksides of obje
ts not visible to the eye ina s
ene. This is normally referred to as
ulling.To do graphi
s fast it is ne
essary to handle the data representing theobje
ts of a s
ene in a
lever way. Se
tion 2.5 addresses spatial data stru
-tures and s
ene graphs, whi
h are used to handle the huge amounts of datarepresenting a s
ene in a smart way that
an speed up pro
essing time. Thesubje
t of se
tion 2.5 will only be treated brie�y, sin
e we did not have timeto implement these improvements in our �nal appli
ation. However, the se
-tion has not been left out entirely sin
e spatial data stru
tures and s
enegraphs ought to be implemented in future versions of our appli
ation.

2.1 An Array-Based Math Engine 152.1 An Array-Based Math EngineThe amount of ve
tor math needed for
omputer graphi
s is limited. First adata stru
ture must be
reated to represent a ve
tor v in the n dimensionalEu
lidian spa
e denoted Rn . An n-tuple is an ordered list of real numbers,whi
h is used for this purpose [2℄:v 2 Rn () v = 0BBB� v0v1...vn�1 1CCCA with vi 2 R; i = 0; : : : ; n� 1 (2.1)Basi
 math operations on ve
tors must be implemented e�
iently. Ve
toraddition is done
omponentwise:u+ v = 0BBB� u0u1...un�1 1CCCA+0BBB� v0v1...vn�1 1CCCA =0BBB� u0 + v0u1 + v1...un�1 + vn�1 1CCCA 2 Rn (2.2)Likewise multipli
ation of a ve
tor and a s
alar is done
omponentwise:au = 0BBB� au0au1...aun�1 1CCCA 2 Rn (2.3)Applying an operation
omponentwise, that is, to ea
h element of anarray (or tuple), is in fa
t a general geometri
 operation. To avoid indi
es,whi
h are inherent in the standard matrix notation, we employ a more fun
-tional notation given in array theory, founded by Tren
hard More in 1973[84, 85, 86℄.Array theory introdu
es the
on
ept of higher order fun
tions. Whatis generally known as a mathemati
al fun
tion is more likely a �rst orderfun
tion. The values whi
h the fun
tion takes as arguments are seen asa fun
tion of order zero or data so to speak. To get a grasp of se
ondorder fun
tions we need only think of the integral operator, the di�erentialoperator or the
omposite operator, whi
h are the most
ommonly knownse
ond order fun
tions. The fun
tions of se
ond order take fun
tions of �rstorder as arguments. Clearly the integral operator is an unary se
ond orderfun
tion, while the
omposite operator is binary. Table 2.1 gives a s
hemati
view of fun
tion orders.A generalization of the
on
ept reveals that there is nothing to prevent usfrom
onstru
ting third order fun
tions or even nth order fun
tions. However,

16 The Building Blo
ks of Computer Graphi
sLogi
 Mathemati
s Array Theory Examples0th order fun
tion Value, element Data (box) 1; �; 231st order fun
tion Operation Fun
tion (gin) +; �; sin2nd order fun
tion Operator Transformer (rig) R ;0 ; ÆTable 2.1: A s
hemati
 view of fun
tion orders in
luding a few examples.sin
e even the fun
tions of se
ond order are quite abstra
t and at manyo

asions di�
ult to grasp, it is even more di�
ult to imagine the spe
i�
use of third order fun
tions taking transformers (or se
ond order fun
tions)as arguments. On the other hand transformers have shown their worth andthe few well known transformers given as examples in table 2.1 are only thetop of the i
eberg, so we may yet also �nd a third order fun
tion whi
h ispra
ti
ally useful.When applying a fun
tion f to a value x the usual notation is f(x)returning a value y being a fun
tion of the same order as x. To treat fun
tionsof arbitrary order it is important that we
an separate the fun
tion from itsargument, so that y = f(x) = f (x) = (f x) = f xthis has a meaning when a se
ond order fun
tion T is introdu
ed. Supposewe would like to transform f into a di�erent fun
tion a

ording to a generalgeometri
 operation T then g = Tf de�nes a new fun
tion g, whi
h is thetransformation of f a

ording to T , meaning thatg(x) = (T f)(x) = (T f)x = T f xThe equation above indi
ates that an array theoreti
 expression is leftasso
iative.De�nition 1 (Left Asso
iativity) Expressions having leftasso
iativity are analyzed from left to right. Let T be a trans-former, f a fun
tion and x a value then the expression T f x�rst evaluates T f and then
ombines with x.Left asso
iativity rises some questions of interpretation given an arbi-trary expression. The meaning of xf is for example not immediately
lear.Consider the expression a + b, here + is a binary fun
tion taking two ar-guments: +(a; b). This indi
ates that we
an interpret a+ as a new unaryfun
tion adding the value a to its argument, that is, xf binds x to the �rstargument of the fun
tion f :

2.1 An Array-Based Math Engine 17Arrays Fun
tions TransformersA and B f and g T and UA StrandABArray CurryingAfFun
tion CurryingA TTransformerf Appli
ationf AArray Compositionf gFun
tion Alloyingf TTransformerT AnnexingT ATransformer Appli
ationT fFun
tion CompositionT UTransformerTable 2.2: Pairs of obje
ts that may be en
ountered in an array theoreti
 expression.In ea
h
ell the terminology is stated �rst then the spe
i�
 pair and �nally the result ofsu
h a pair. The table
losely resembles the one presented in [101℄.
x f y = ((x f) y) = f(x; y) = f (x y) = f x yBinding arguments with a fun
tion is in array theory and fun
tional pro-gramming
alled
urrying, whi
h is a terminology named after of HaskellBrooks Curry, the founder of
ombinatory logi
 [23℄. The latter equalityf (x y) = f x y of the equation above shows an ex
eption to the rule of leftasso
iativity, the ex
eption arises sin
e x and y are both arrays of data1. Inthat
ase they are
onsidered to be a strand, that is, a su

essive juxtapo-sition of two or more arrays, whi
h might as well be interpreted as a singlenested array A with its �rst element being x and its se
ond element being y.Table 2.2 des
ribes the interpretation of di�erent pairs that we may en-
ounter in an array theoreti
 expression. The general notion of
ompositefun
tions give rise to the following asso
iative laws:(f g) � = f (g �) (2.4)(T U) � = T (U �) (2.5)1A single value is merely an array
onsisting of a single item only.

18 The Building Blo
ks of Computer Graphi
swhere � is a fun
tion of arbitrary order. Annexing, (2.6), and alloying, (2.7),are also bound by asso
iative laws:(T A) = T (A) (2.6)(f T) � = f (T �) (2.7)where is an nth order fun
tion and n > 0. Finally
urrying is also asso
ia-tive when the
urrying fun
tion is of an order greater than one:(A �) � = A (� �) (2.8)where � is an mth order fun
tion and m > 1. We will not
onsider theimpa
t on the asso
iative syntax if a third order fun
tion was introdu
ed.Instead, now that the most basi
 syntax is in pla
e, we
an de�ne some ofthe transformers that will
ome in handy. First a very basi
 array theoreti
transformer
alled EACH2 is introdu
ed.De�nition 2 (EACH) Let A be an array of data and let fbe an unary �rst order fun
tion, thenEACH f A (2.9)is de�ned as the fun
tion f applied to ea
h element of thearray A.Sin
e an n-tuple is a spe
ial
ase of an array we
an rede�ne multipli
a-tion of a ve
tor and a s
alar, (2.3), asau = EACH (a ?)u (2.10)where ? is used for multipli
ation to make sure that it is
onfused neitherwith the dot produ
t nor the
ross produ
t.To deal with
omponentwise addition we introdu
e another transformerfrom array theory
alled EACHBOTH.2In array theory transformers are traditionally written in
apital letters.

2.1 An Array-Based Math Engine 19De�nition 3 (EACHBOTH) Let A and B be two equallyshaped arrays of data and let f be a binary �rst order fun
-tion, thenA EACHBOTH f B = EACHBOTH f A B (2.11)is de�ned as the fun
tion f applied to pairs of elements foundat
orresponding positions in the arrays A and B.In light of the EACHBOTH transformer
omponentwise addition, (2.2),is simply given as v + u = vEACHBOTH+ u (2.12)and we
an easily de�ne
omponentwise multipli
ation3 :v ? u = vEACHBOTH ? u (2.13)Componentwise subtra
tion and division, as well as division by a s
alarfollows from (2.12), (2.13) and (2.10) respe
tively by use of negated or re-
ipro
al values.Similarly the
omparison fun
tions <;>;�;� are de�ned to work in a
omponentwise manner returning an array of Boolean values holding theresult of ea
h
omparison. An example is:0BB� 0123 1CCA < 0BB� 1212 1CCA = 0BB� truetruefalsefalse 1CCAEquality, however, is expe
ted to work in a slightly di�erent manner.When testing the equality of two arrays or ve
tors we expe
t a single Booleanvalue as the result, that is, we expe
t the fun
tion to
ompare for equality
omponentwise and afterwards a logi
al & operation is applied to the result-ing array de
iding whether the two arrays were equal in all
ases. In otherwords equality is given by an inner produ
t using the equality and logi
al& operations instead of the more
ommon multipli
ation and addition. Aninner produ
t is, in fa
t, a geometri
al operation, whi
h
an be de�ned as abinary transformer taking two fun
tions as arguments.3Some texts (eg. [2℄) use
 for
omponentwise multipli
ation.

20 The Building Blo
ks of Computer Graphi
sDe�nition 4 (INNER) Let A and B be two arrays of dataand let f and g be binary �rst order fun
tion, thenA INNER [f; g℄ B = INNER [f; g℄ A B (2.14)is de�ned as the inner produ
t of A and B with respe
t tof and g, where f is the �redu
tive� operation and g is thedistributive operation.(Meaning that INNER [+; ?℄ is matrix multipli
ation.) [102℄Hen
e equality of two ve
tors is given as:v = u , v INNER [&;=℄ u (2.15)The INNER transformer is obviously also
onvenient in de�ning the dotprodu
t4: v � u = v INNER [+; ?℄ u (2.16)and as stated in De�nition 4 matrix multipli
ation is given similarly:AB = A INNER [+; ?℄ B (2.17)where A 2 Rm�n and B 2 Rn�p .Why go through all this theory in order to des
ribe a relatively simpleve
tor math library? Be
ause it redu
es the amount of work we have to do toimplement it, and even more important; there is a good
han
e that we
ando the implementation more e�
iently, sin
e the few transformers that havebeen used ea
h
an be implemented e�
iently with the result that the entirelibrary gets more e�
ient. In fa
t the transformers des
ribed in De�nitions2, 3, and 4 already have an e�
ient implementation in the C++ standardlibrary.The terminology in C++ is quite di�erent, see [125℄. Here transformersare referred to as adapters and sin
e the fun
tional syntax des
ribed abovedoes not �t into the syntax of the pro
edural C++ programming languagethey use a spe
ial
ase of adapters, namely binders, to des
ribe
urrying.Hen
e bind1st and bind2nd of the C++ standard library
orresponds tox f and y CONVERSE f respe
tively, where x and y are �rst and se
ondargument to the binary fun
tion f and CONVERSE is a transformer thatswaps the arguments of a binary fun
tion.(2.9) and (2.11) are available in C++ as an overloaded fun
tion transformthat treats either an unary fun
tion and input and output arrays or a binary4Whi
h may be short for the �inner plus dot produ
t�.

2.2 Polygonal Geometry 21fun
tion and two input and one output array. Likewise (2.14) is implementedas the fun
tion inner_produ
t. The exa
t des
ription of these C++ fun
-tions are given in [125℄.Moreover the theory that has been des
ribed in this se
tion gives the fun-damentals needed in order to des
ribe fun
tional algorithms mathemati
ally,hen
e we will draw upon it in se
tions to
ome when we see �t.In the following se
tion we will des
ribe the basi
s of polygons and how 3-dimensional virtual worlds are
omposed of polygonal geometry. The subje
tof se
tion 2.2 may at �rst seem relatively distant from the math engine, buta mathemati
al representation and treatment of polygons goes hand in handwith ve
tor math.2.2 Polygonal GeometryDe�nition 5 (Polygon) A
losed �gure in the plane givenby points p0; p1; : : : ; pn and bounded by line segmentsp0p1; p1p2; : : : ; pn�1pn; pnp0 [98℄.As stated in de�nition 5, a polygon is de�ned as a
losed planar �gurebounded by line segments
onne
ting verti
es su
h that they en
lose oneand only one region. The following list des
ribes the properties of a polygon[112, p. 245℄:1. The number of verti
es in a polygon equals the number of its sides.2. The number of vertex angles of a polygon equals the number of itssides.3. Ea
h side of a polygon is a side of two vertex angles.4. A vertex angle is not a straight angle (6= 180Æ).All polygons
an easily be divided into polygons of the lowest order;triangles. Triangles have
ertain appealing properties, an example is thattriangulation of all polygons largely will eliminate view-dependent interpo-lation e�e
ts [19℄, whi
h result from linear interpolation of shade or
olorsa
ross a polygon. This is exploited by graphi
s hardware spe
ializing in fasttriangle pro
essing. The result is that almost all real-time appli
ation basetheir graphi
s on triangle meshes, sin
e this gives the highest possible reso-lution at a very low rendering time. The level of detail of an obje
t dependson the number of triangles used in the mesh and so does the pro
essing timefor rendering the obje
t.

22 The Building Blo
ks of Computer Graphi
sFigure 2.1 shows an example of a
ylinder represented by polygons. The�gure also shows that polygons
an be generated from the
onne
tion pointsor the edges between them. Polygonal obje
ts are often represented by hi-erar
hi
al data stru
tures. Ea
h obje
t is de�ned by pointers into a list ofsurfa
es and ea
h surfa
e by pointers into a list of verti
es. Normally thedata stru
tures are optimized, so that ea
h point or edge only needs to bestored on
e [135℄.

Object Surfaces Polygons Vertices Figure 2.1: An obje
t is represented by surfa
es, whi
h are represented by polygons,whi
h are represented by verti
es or edges. This �gure is a
ombination of �gure 1.1 in[135, p. 5℄ and �gure 2.4 in [134, p. 38℄.In
omputer graphi
s a vertex is a geometri
 entity
onsisting of a pointin spa
e, an asso
iated normal, and possibly parametri
 (u; v)-
oordinatesspe
ifying the position of the vertex on the surfa
e of the obje
t whi
h it isa part of. The vertex position is represented by three
oordinates. Whenmanipulation of these positions is needed, it is evident that the math enginedes
ribed in the previous se
tion
ome in handy.The vertex normal is used for shading. Shading is des
ribed in subsequent
hapters of this part. Ea
h polygon need to have a fa
e normal de�ned aswell (the fa
e of a polygon is short for its surfa
e). The fa
e normal is thetrue geometri
 normal to the plane
ontaining the polygon. Fa
e normals areused for example in
ulling algorithms (se
tion 2.4 relates to this subje
t).Sometimes it
an be appropriate to store the edges between polygons as wellas verti
es, sin
e they
an be useful in shadow
al
ulations where in prin
ipleonly the silhouette of the obje
t
asting a shadow is interesting. A group ofpolygons forming an obje
t is
alled a polygon mesh.The biggest drawba
k of the polygonal representation is that the detaillevel of obje
ts very mu
h depends on the number of polygons used for its
reation. Sin
e all polygons are plane obje
ts,
urves in an obje
t
an onlybe
ome more pre
ise if more polygons are added. Moreover ea
h manipu-lation of an obje
t must be
arried out on ea
h polygon present. A highpolygon
ount
an therefore
reate a
omputational bottlene
k on the CPU

2.3 The Virtual S
ene 23(Central Pro
essing Unit). An attempt to solve the problem is the rapidly de-veloping GPU (Graphi
al Pro
essing Unit) whi
h is the
ore part of moderngraphi
s
ards. The GPU is
on
erned mainly with operations on polygons(in parti
ular triangles).The number of polygons is not the only issue. GPUs today are so fastthat the problem is a
tually not rendering the required amount of triangles,the limitation lies in the amount of data that it is possible to transfer betweenthe CPU and the GPU [134℄.One way to speed up pro
essing time is, therefore, to redu
e, as mu
has possible, the data that need to be transferred. To do this we
an eitherredu
e the amount of data stored for ea
h vertex, or seek to redu
e thenumber of verti
es. The latter option is typi
ally done by exploiting thatmany polygons may share the same verti
es or by simpli�
ations of the obje
tdetails a

ording to the needs of a parti
ular view (this
on
ept is oftenreferred to as level of detail, or LOD).Having introdu
ed the basi
 drawing unit that will be used with few ex-
eptions throughout this proje
t, namely polygons and espe
ially triangles,and having presented a way to implement a basi
 math engine to pro
essmathemati
al operations on points and ve
tors in three dimensions (as de-s
ribed in se
tion 2.1), it is now time to des
ribe the
ontents of a traditionalthree-dimensional virtual s
ene, whi
h is the subje
t of the next se
tion.2.3 The Virtual S
eneWhen wat
hing
omputer graphi
s, either on a TV or on the
omputers
reen, we are presented with a window into a virtual world. In the photore-alisti

ase this world often repli
ates our own world. This means that whatwe see is a three dimensional virtual environment.To simulate this in a fairly realisti
 way we must represent all elementsor obje
ts in a s
ene in three dimensions. We must also de�ne where wewant to pla
e the viewer in the s
ene and in whi
h dire
tion she should belooking. In movies we have a predetermined route for the viewer to follow,whi
h means that we know exa
tly what will be visible to her at any giventime throughout a sequen
e of pi
tures. This enables us to pre-
al
ulate allthe ne
essary pi
tures, meaning that we in prin
iple are able to spend asmu
h time as we like for ea
h single image, or frame, in a movie sequen
e.In a dynami
 appli
ation su
h as a
omputer game this is, however, not the
ase. There is no way to determine the exa
t movement of the viewer, thatis, we need to
reate ea
h image, or frame, on the �y a

ording to the
urrentlo
ation and dire
tion of the viewer.To produ
e a pi
ture we need to keep tra
k of all elements in the s
eneand most importantly the position of the viewer and the dire
tion in whi
hshe is looking. Figure 2.2 represents a simple virtual s
ene in two dimensions.

24 The Building Blo
ks of Computer Graphi
s
B

C

Viewer

View plane A

Field of View

Figure 2.2: The visible part of the s
ene depends on the lo
ation of the viewer, the �eldof view (whi
h is an angle spe
ifying the size of the view plane), and the dire
tion, whi
hthe viewer is fa
ing. In this
ase obje
ts A and B will be partly visible to the viewer,while obje
t C is not visible at all. (Note that obje
t B is also only partly visible, sin
ethe viewer
an not see the ba
kside of the sphere, or
ir
le in the 2D
ase.)The view plane is the virtual representation of the s
reen and the volumesubtended by the �eld of view en
loses the parts of the s
ene that be
omesvisible when proje
ted onto the s
reen. This means that the �eld of view isan angle de�ning the visible area.In �gure 2.2 the front of obje
t B is fully displayed while the front ofobje
t A is only partly visible. Some of the obje
t lies behind obje
t B anda part of the top
orner will be missing sin
e it is outside the visible area.To in
lude the top
orner of obje
t A we
an either move the eye point upor ba
kwards or we
ould make the view plane larger by a broadening of the�eld of view. Obje
t C is present in the s
ene but not inside the visible area,hen
e, we
an usually leave out C in the
al
ulations until it be
omes visible.By knowing what is visible and what is not, we
an save many
omputations.This is the subje
t of se
tion 2.4.The eye point and view plane are normally represented by a
amera. Thefun
tionality of a
amera is
omparable to the fun
tionality of eye and viewplane; you frame out the part of the world that you want to preserve whenyou
hose a motif for your pi
ture. What happens outside the pi
ture is
uto� and forgotten. The simplest model of a
amera is the pinhole
amera,whi
h is shown in �gure 2.3.As in �gure 2.2 the front of obje
ts C, D and partly B will be visible on thes
reen. Obje
ts A and E are both invisible due to the near and far
lippingplanes. The
lipping planes are in prin
iple not a part of the pinhole
ameramodel, but are pra
ti
al espe
ially in large s
enes. The
lipping planes simply

2.3 The Virtual S
ene 25

View plane

Pinhole camera

Scene

A

B

C

D

E

Near
clipping
plane

Far
clipping
plane

Figure 2.3: In
omputer graphi
s the eye point and view plane are represented by a
amera. This �gure shows the simplest
amera model; the pinhole
amera and how it
aptures a s
ene.rule out obje
ts that are too
lose or too far away. When using near andfar
lipping planes, the volume subtended by the �eld of view is
ut by twoparallel planes and is, hen
e,
alled a view frustum. Rasterization, whi
h isthe rendering method used for real-time rendering most often,
an e�e
tively
ut away all obje
ts that are not partly or fully
ontained within the viewfrustum. This is not always possible in photorealisti
 rendering, sin
e lightmay be re�e
ted o� obje
ts residing outside the view frustum.Normal
ameras adjust the size of the view plane by use of di�erent lensespla
ed in the hole. Lenses are also used for adjustment of the visible area.The simple pinhole
amera has no lens, therefore if the visible area, or the�eld of view, is to be
hanged, we need to
hange the size of the
ameraby
hanging hight, breadth, or length and thereby in
rease the size of theview plane at the bottom of the
amera. This is similar to moving the eyepoint or opening the eye more in �gure 2.2. In this
ase a lens is mu
h more
onvenient. Moreover a lens also lets in more light, whi
h makes it preferablein most
ases.There is another di�eren
e between a pinhole
amera and a lens
am-era. In the ideal pinhole
amera everything is in fo
us. This has the e�e
tthat
omputer graphi
s often produ
e syntheti
 images that tend to have an�unnatural� sharpness about them. Lens
ameras (and the eye as well) hasa
ertain adjustable distan
e at whi
h the pi
tured obje
ts will be sharp,meaning that we
an only keep fo
us on obje
ts in a given depth interval,while the pinhole
amera has an in�nite depth of �eld [3℄. In real life thelens
amera is preferred, sin
e it is pra
ti
al to keep the
amera in the samesize and we would like a lot of light to pass through the
amera. In
om-puter graphi
s our
amera is arbitrary and we
an
hange the size and lightwithout any problems. Therefore we prefer to use the mu
h simpler pinhole

26 The Building Blo
ks of Computer Graphi
s

d

Z h

Y

(0, 0) Object
size on
screen

a

(yp, d)

(-yp, -d)

d

Object

(y, z)

Figure 2.4: The pinhole
amera is used as a model for the virtual
amera in our s
ene.A more detailed des
ription
an help us de�ne some parameters for determining our view.The �gure is a
ombination of �gures 1.15, 1.16 and 1.18 in [3℄.model.Looking
loser at the pinhole
amera model a few parameters
an de�neour view. Figure 2.4 shows the pinhole
amera again, this time in
ludingparameters. The angle a is the �eld of view. Considering �gure 2.4 it is seenthat the lines of length d and h=2 de�nes a triangle of whi
h:tan a2 = h2dgiving us the following way to
al
ulate the �eld of view:a = 2 tan�1 h2d (2.18)where h is the height of the view plane and d is the distan
e to it from thepinhole (In three dimensions h is sometimes spe
i�ed as the diagonal of theview plane, see eg. [14℄). In pra
ti
e we see that the
loser our eye point getsto the view plane the bigger angle we get and the larger an area of the s
enebe
omes visible. Normally d is the parameter that is
hanged, sin
e the sizeof the s
reen then remains the same. Setting d is equivalent to
hoosing theright lens for a
amera.The obje
t in front of the
amera in �gure 2.4 is proje
ted to the viewplane through the hole. Sin
e there is no lens in the
amera it is possibleto draw a straight line between a point in the s
ene and the same point inthe view plane. The line passes through the origin (the hole) and the anglebetween the z-axis and the line will be the same on ea
h side of the y-axis.The size of the obje
t depends on d, this follows the simple rules of proje
tionwhere (0; 0) is the
enter of proje
tion. The point on the view plane will be:(yp; zp) = (yp;�d)

2.3 The Virtual S
ene 27where yp = � yz=d (2.19)and a similar
al
ulation
an be made for xp:xp = � xz=d (2.20)The resulting image on the view plane, whi
h is in
ident with the ba
k-side of the pinhole
amera in �gure 2.4, will as indi
ated be turned upsidedown, this is
alled ba
k proje
tion. In order to a
hieve front proje
tion byproje
tion of the image ba
k through the origin to a view plane in front ofthe
amera (at position z = d), we need merely
hange the sign in equations(2.19) and (2.20) [14℄.This se
tion has fo
used on a virtual s
ene with a
oordinate system withorigin in the eye point and z-axis along the line of sight. A virtual s
ene has,however, several
oordinate systems to keep tra
k of. The spa
e with a
o-ordinate system as the one used in this se
tion is
alled eye (or view) spa
e.Besides eye spa
e we have a world spa
e, whi
h has a predetermined
oor-dinate system that globally stays the same throughout a rendering session.Obje
ts, lights, and the viewer are pla
ed in world spa
e. Sometimes ea
hobje
t has its own lo
al
oordinate system around whi
h it was modeled, thisis
alled obje
t (or model) spa
e. When rasterization is used for rendering,the view frustum (in
luding its
ontents) is transformed into the unit
ube,this spa
e is
alled
lip spa
e. Last we have the two-dimensional window
o-ordinate system whi
h is the
oordinate system of the s
reen or view plane.These spa
es ea
h have their purpose, and they are des
ribed in more detailin
hapter 5. In the following we shall shortly des
ribe how transformationsare represented mathemati
ally in
omputer graphi
s.Homogenous CoordinatesConsider a point in spa
e p = (px; py; pz) and a ve
tor in spa
e v = (vx; vy; vz).The point des
ribes a lo
ation, while the ve
tor des
ribes a dire
tion and hasno lo
ation. Both are represented by the same three-tuple, whi
h makes itdi�
ult to distinguish between them with respe
t to transformations.We
an perform linear transformations, su
h as rotations, s
alings, andshears, on a three-tuple using 3�3 matri
es (this will be des
ribed in
hapter9). This su�
es for transformation of ve
tors, sin
e they do not have a lo
a-tion. If we, however, want to translate a point it is not possible using a 3�3matrix. Be
ause of this obvious limitation to the three-tuple representationof points and ve
tors
omputer graphi
s employs a mathemati
al tool
alledhomogenous
oordinates.Suppose we represent ve
tors and points using a four-tuple (x; y; z; w).Then, when w 6= 0, homogenous
oordinates are given as:

28 The Building Blo
ks of Computer Graphi
s� xw; yw ; zw ; 1�In other words we let points and ve
tors be de�ned in three-dimensionalproje
tive spa
e (or proje
tive three spa
e). Now, transformations
an berepresented by 4� 4 matri
es:0BB� m00 m01 m02 txm10 m11 m12 tym20 m21 m22 tz0 0 0 1 1CCAwhere: 0� m00 m01 m02m10 m11 m12m20 m21 m22 1Ais the same transformation matrix as the 3 � 3 matrix that, as mentioned,
an be used for rotation, s
aling, and shearing. (tx; ty; tz) is the translationof a point to whi
h this transformation is applied.It now be
omes
lear that points are given in homogenous
oordinatesas p = (px; py; pz; 1) and ve
tors are given as v = (vx; vy; vz; 0). In thisway ve
tors will be una�e
ted by the translation, while points indeed willbe translated.Even though we have
hanged to proje
tive three spa
e, matrix-matrixmultipli
ations and matrix-ve
tor multipli
ations are still the same. There-fore the homogenous
oordinates are very useful.Previously equations were given for proje
tion of a three-dimensionalvirtual s
ene into the view plane representing the s
reen output. In fa
t we
ould say that the s
ene (in eye spa
e) is represented in two-dimensionalproje
tive spa
e with respe
t to the view plane.Having the above des
ription of homogenous
oordinates in mind, we
ande�ne a (4� 4) proje
tion matrix Pp �nding the perspe
tive proje
tion of apoint p a

ording to (2.19) and (2.20):q = Ppp = 0BB� 1 0 0 00 1 0 00 0 1 00 0 �1=d 0 1CCA0BB� pxpypz1 1CCA = 0BB� pxpypz�pz=d 1CCA (2.21)where q is the resulting point on the view plane given in proje
tive threespa
e.With a basi
 knowledge of the virtual s
ene, the representation of obje
ts,and a simple
amera model, we
an move on to a few e�
ien
y s
hemes that

2.4 Hidden Surfa
e Removal 29are often useful in
omputer graphi
s. Se
tion 2.4 des
ribes how visibility
an be exploited and se
tion 2.5 shows how spatial data stru
tures often
anbe an advantage.2.4 Hidden Surfa
e RemovalWhen a s
ene is rendered there is usually (at least in the
ase of lo
al illumi-nation) no need to spend unne
essary time
al
ulating lighting and shading
onditions for obje
t parts that are partly o

luded or not visible at all. Theprevious se
tion showed how only a part of the s
ene is visible to the virtual
amera. This se
tion will dis
uss how to rule out invisible obje
ts or partsof obje
ts before doing expensive lighting
al
ulations.There are three steps to go through when removing hidden surfa
es. Firstof all we must remove all obje
ts outside the visible area, the visible area
orresponds to the view frustum, see se
tion 2.3. In �gure 2.5 the visiblepart of the s
ene is bound by six planes and in a moment we will show howto �nd them. Furthermore we
an remove all ba
k fa
ing surfa
es, that is,surfa
es with normals pointing away from the viewer and last we
an removeall parts of obje
ts that lie behind other obje
ts in the s
ene.

Eye
point

Line of sight a

b

Y

Z

X

(-xn, yn, d)

(-xn, -yn, d)

(xn, yn, d)

(xn, -yn, d)

(-xf, yf, e)

(xf, yf, e)

(-xf, -yf, e)

(xf, -yf, e)

d e Figure 2.5: Illustration of the view frustum
onstrained by six planes. The view planeis in
ident with the near
lipping plane. 2a is the height and 2b is the width of the viewplane. d is the distan
e from the eye point (residing in the origin sin
e we are working ineye spa
e) to the near
lipping plane, while e is the distan
e to the far
lipping plane. Then subs
ript denotes near, while the f subs
ript denotes f ar. The �gure resembles �gure1.9 of [135℄.The six planes bounding the view frustum are referred to as the top,bottom, left, right, near, and far planes. In pra
ti
e it is normal to pla
ethe near
lipping plane just in front of the
amera so that you
an not see

30 The Building Blo
ks of Computer Graphi
sthrough obje
ts. Another pra
ti
al issue is what to do when the visiblearea ex
eeds the far
lipping plane, whi
h often is the
ase when simulatingoutdoor environments. Simply
utting when the far
lipping plane is rea
hed
an give unwanted e�e
ts, for example obje
ts suddenly disappearing oremerging in the horizon (this is
alled popping). Fog is a simple atmospheri
e�e
t that
an gradually hide distant obje
ts giving a smoother transition[2℄. To de�ne the view frustum we identify ea
h plane individually. A plane
an be des
ribed by a normal n = (�; �;
) and a point in spa
e x =(x0; y0; z0): �x+ �y +
z + Æ = 0 (2.22)where Æ = �(n � x). The normal
an be determined as the
ross produ
t oftwo linearly independent ve
tors, whi
h are referred to as the basis of theplane.The left, right, top and bottom planes of the view frustum all have theeye point in
ommon. From ea
h
orner of the view plane a
ommon basisve
tor for two of those four planes
an be found by subtra
tion of the eyepoint.The view plane is perpendi
ular to the line of sight and follows the z-axisin the eye spa
e
oordinate system. Therefore the line of sight is a normalfor both the near and the far
lipping planes, and a point on the plane isgiven by the distan
es d and e as shown in �gure 2.5. Using the line of sightand the basis ve
tors de�ned by the
orners of the view plane we
an de�nean equation for ea
h of the six planes bounding our view frustum.Consider a point in eye spa
e (xe; ye; ze), for the four points in the near
lipping plane ze = d and for the far
lipping plane ze = e. Sin
e the eyepoint resides in the origin the four basis ve
tors given by the
orners of theview plane (whi
h in this
ase is in
ident with the near
lipping plane) aregiven as: b0 = 0� �xn�ynd 1A =0� �b�ad 1Ab1 = 0� �xnynd 1A =0� �bad 1Ab2 = 0� xnynd 1A =0� bad 1A

2.4 Hidden Surfa
e Removal 31b3 = 0� xn�ynd 1A = 0� b�ad 1AThe
ross produ
t of ea
h pair of adja
ent basis ve
tors de�nes the normalof a side plane, and sin
e all the side planes have the eye point in
ommonÆ = 0 in eqn. 2.22. This results in the equation for ea
h of the six planesshown in table 2.3.Plane EquationNear
lipping plane ze = dFar
lipping plane ze = eRight plane (b0�b1) �(xe; ye; ze) = 0 , dxe+bze = 0Top plane (b1�b2) �(xe; ye; ze) = 0 , dye�aze = 0Left plane (b2�b3) �(xe; ye; ze) = 0 , dxe�bze = 0Bottom plane (b3�b0) �(xe; ye; ze) = 0 , dye+aze = 0Table 2.3: Equations de�ning the bounding planes of a view frustum in eye spa
e. Notethat left and right are left and right as seen from the eye point in �gure 2.5, and that the
oordinate system of �gure 2.5 is right-handedHaving de�ned the view frustum whi
h
ontains the visible part of as
ene, the task is now to limit, a

ording to the frustum, the number ofobje
ts that we must pro
ess. Suppose we en
lose ea
h obje
t in the s
eneby a bounding volume of mu
h simpler geometri
al shape than the obje
titself. Then the point is that it should be mu
h easier to test the boundingvolume for
ontainment within the view frustum than to test the obje
titself. Examples of bounding volumes are spheres and axis aligned boundingboxes (AABBs). The bounding sphere is indi�erent to rotation, whi
h isoften an advantage, but unfortunately they grow unne
essarily large and donot always �t well the obje
t that it bounds, for example if the obje
t is longand thin. The axis aligned bounding box (AABB) is easy to handle be
auseits fa
es are axis aligned, and it resizes in three dire
tions not uniformly inall dire
tions as the sphere. Therefore AABBs often �t the bounded obje
tbetter. A disadvantage is that its size must be adjusted after rotation. Wepropose an idea in se
tion 11.3 whi
h use bounding spheres and we useAABBs for ray tra
ing, see se
tion 4.2.Using a bounding volume for ea
h obje
t in the s
ene we
an test whetheran obje
t is (a)
ompletely inside, (b) partly inside, or (
)
ompletely out-side the view frustum. In the se
ond
ase (b) the obje
t should be
lippedagainst the view frustum. There is a standard algorithm for
lipping whi
his des
ribed in many
omputer graphi
s textbooks (eg. [134, 38, 135, 3℄).
lipping is a part of the rendering pipeline that will be des
ribed in
hapter5, and is often implemented in hardware. While a good understanding of theview frustum is useful when operations are
arried out in di�erent
oordinate

32 The Building Blo
ks of Computer Graphi
ssystems (world spa
e, eye spa
e,
lip spa
e, et
.), we feel that
lipping is apro
edure so standardized that there is no reason to repli
ate it here.Usually the polygons left by the
lipping algorithm for further pro
essingare still plenty. To further bring down the number of triangles we
an removeall ba
k fa
ing surfa
es. This pro
ess is referred to as ba
k fa
e
ulling.Ba
k fa
e
ulling
onsists of a simple geometri
al test. If we des
ribethe line of sight by the dire
tional ve
tor ! = (!x; !y; !z) and the fa
enormal of a polygon as n = (nx; ny; nz), then the dot produ
t between thetwo determines whether the polygon is fa
ing towards the eye point or awayfrom it. Line of sight is sometimes des
ribed as the dire
tion from the pointon the surfa
e towards the eye point, in that
ase visibility is determined as! � n > 0. In eye spa
e the test simpli�es to nz > 0.When drawing triangles the fa
e normal is often determined as the
rossprodu
t of the dire
tional ve
tors given by the �rst two edges drawn. Theresult is that, by
onvention, polygons drawn in a
ounter
lo
kwise manner(from the point of view of the eye point) will have a normal pointing towardsthe eye point and will, hen
e, be front fa
ing.The last and most tri
ky part is to remove all obje
ts or parts of obje
ts
overed by other obje
ts. This is referred to as o

lusion
ulling. E�
ientalgorithms for o

lusion
ulling are
omplex. The problem is that it is dif-�
ult to determine whi
h obje
ts that are likely to be o

luders [134℄. Thesubje
t of o

lusion
ulling will not be addressed in detail in this proje
t, afew referen
es on the subje
t are [2, 134, 50℄.Another way to speed up the pro
ess of
hoosing visible obje
ts for ren-dering is s
ene graphs. S
ene graphs are often useful in
omputer graphi
sand they are usually
onstru
ted using some kind of spatial data stru
ture tosplit up the s
ene in a sensible way. S
ene graphs and spatial data stru
tureswill be des
ribed brie�y in the following se
tion.2.5 S
ene Graphs and Spatial Data Stru
turesBoth realisti
 image synthesis and real-time te
hniques run into the problemof �unrealisti

omputation times� ([135℄) if they
hoose a naïve brute for
erendering te
hnique. The problem is usually the huge amount of trianglesthat must be pro
essed in order to display images in the desired quality. Oneway to rule out large parts of a s
ene qui
kly is by spatial subdivision of thes
ene.Spatial data stru
tures en
ompass data stru
tures su
h as o
trees (andquadtrees), kd-trees, BSP (Binary Spa
e Partitioning) trees, bounding vol-ume hierar
hies, Voronoi diagrams, et
. whi
h are useful for spatial subdi-vision of a two- or three-dimensional s
ene.The kd-tree is an important part of the rendering te
hnique
alled photonmapping, see [60, Chap. 6℄. Re
ent arti
les have, however, tested other

2.5 S
ene Graphs and Spatial Data Stru
tures 33spatial data stru
tures with photon mapping. Günther et al. have hadsu

ess with a uniform grid of voxels [44℄.A kd-tree is, in fa
t, short for a k-dimensional tree. The spe
ial
aseof 3d-trees, whi
h are most
ommonly used in
omputer graphi
s, split (orsubdivide) the s
ene using planes perpendi
ular to the axes of the world
oordinate system. Ea
h split results in two subsets of photons. The
on
eptis illustrated in �gure 2.6.
 Figure 2.6: A simple example of a kd-tree. p1, p2, and p3 represent photons stored in aphoton map. `1 and `2 represent splitting planes.An algorithm for the
onstru
tion of a 3d-tree
ould be as follows, whered denotes the re
ursion depth and the d = 0 at the root node:1. If d mod 3 = 0 split with a plane perpendi
ular to the x-axis, ifd mod 3 = 1 split with a plane perpendi
ular to the y-axis, or ifd mod 3 = 2 split with a plane perpendi
ular to the z-plane.2. Store the splitting plane in the node.3. Let the left
hild re
eive the subset of points behind or on the splittingplane.4. Let the right
hild re
eive the subset of points in front of the splittingplane.5. For ea
h
hild; return to step 1 unless the maximum re
ursion depthhas been rea
hed.Proper pla
ement of the splitting planes is important. In the originalalgorithm the splitting planes should be pla
ed at the median of ea
h pointset. The kd-tree for photon mapping (as des
ribed in [60℄) also �nd medians.If the kd-tree is properly balan
ed, the resulting data stru
ture lo
atesa leaf node at
omplexity O(logN), where N is the number of leaf nodes inthe tree. For spe
i�
 details on the use of kd-trees for photon mapping we

34 The Building Blo
ks of Computer Graphi
srefer to [60℄, and for further details on the geometri
al aspe
ts of kd-treesand many other useful spatial data stru
tures [25℄ is a good referen
e.In addition to the use of kd-trees for photon mapping, spatial data stru
-tures have
ountless appli
abilities in
omputer graphi
s. A few examplesare: A quad-tree storing obje
ts
omputed on the �y and used as a fast s
enegraph for real-time environments [35℄, o
trees, BSP trees, and bounding vol-ume hierar
hies for redu
tion of ray-triangle interse
tions in ray tra
ing [135℄(ray-triangle interse
tions are des
ribed in se
tion 4.2), and a quad-tree forshaft o

lusion
ulling and shadow ray a

eleration [117℄. In general spatialdata stru
tures are used to a
hieve speed-ups whenever the obje
ts in a s
enehave to be sear
hed in one way or another.A s
ene graph, as presented in [35℄, is a higher level tree stru
ture storingmore than just geometry. Light sour
es
an be stored in a s
ene graph,textures, and transformation matri
es as well. When rendering, the treeis traversed in a depth-�rst order and textures, tranformations, and lightsour
es
an be asso
iated with an internal node so that it is only applied tothe subtree of that parti
ular node [2℄. When a dynami
 environment growsin size s
ene graphs are indispensable, both to keep tra
k of obje
ts in thes
ene and to speed up rendering. S
ene graphs and spatial data stru
turesare some of the subje
ts that we have
hosen not to treat thoroughly in thisproje
t. Nevertheless they are quite useful, and they should be studied inthe future if our test s
enes grow larger.The drawba
k of spatial data stru
tures for real-time rendering is thatthey are often quite
ostly to
onstru
t and re-
onstru
t when things
hangedynami
ally. This has the result that they must be either very simple havinga reasonable size or they must be pre-
omputed.For a truly dynami
 s
ene it is di�
ult to pre-
ompute all possible ver-sions of spatial data stru
ture, not to say impossible if we want, for example,a BSP tree with a single triangle in ea
h leaf node. Tiles are therefore oftenused in s
enes for real-time rendering and a graph is established and pre-
omputed between those, or simple data stru
tures (su
h as the quad-treementioned before) are
omputed on the �y.Unfortunately we have not been able to spare time during this proje
tfor a thorough investigation of spatial data stru
tures. Most of the s
enesthat we have tested have not been su�
iently
omplex to draw advantageof BSP trees or the like. However, we have developed a simple spatial datastru
ture based on solid angles, and used a few other optimization s
hemesfor ray tra
ing, those will be des
ribed in part III.

Chapter 3The Mathemati
al Model ofIllumination

So
rates: Though vision may be in the eyes and its possessor maytry to use it, and though
olor be present, yet without thepresen
e of a third thing spe
i�
ally adapted to this purpose,you are aware that vision will see nothing and the
olors willremain invisible.Glau
on: What is this [third℄ thing of whi
h you speak? he said.So
rates: The thing, I said, that you
all light.Glau
on: You say truly, he replied.Plato (427-347 BC.): The Republi
 507e

36 The Mathemati
al Model of IlluminationOne purpose of this proje
t is to visualize a three-dimensional digital modelas photorealisti
 images on a
omputer s
reen, and to make those imagesappear on the s
reen at a frequen
y that allows intera
tive animation of thepi
tured elements.These apparently harmless obje
tives are, in fa
t, quite
ontradi
tive. Atleast they are
ontradi
tive on
urrent
omputer hardware using the
urrentvisualization te
hniques. Why so? Sin
e a perfe
t syntheti
 representationof the real world would
onsist of in�nite
omplexities. Lu
kily we need not
ompute an exa
t
opy of the real world, we
an merely fo
us on the humanvisual interpretation of the world.What we need is a model that
an simulate vision (or photography) as ittakes pla
e in real life. What we see is light, hen
e, what the mathemati
almodel must
apture is the intera
tion of light with matter, or the illuminationof a s
ene. Su
h a mathemati
al model will be referred to as an illuminationmodel.Simple as it may seem, it is not at all simple to model or even give anexa
t explanation of light. Through times many attempts have been made onthe nature of light (see appendix B). Today quantum me
hani
s explain lighton the parti
le level while light in general is
onsidered to be ele
tromagneti
radiation in the infrared, visible, and ultraviolet spe
trum. The spe
trum ofele
tromagneti
 waves is illustrated in �gure 3.1.In order to
onstru
t an illumination model we must give a mathemati
aldes
ription of light. First the propagation of light through di�erent mediamust be modeled. The s
ienti�
 �eld of opti
s in
ludes a mathemati
almodel for the des
ription of light propagation. Se
tion 3.1 presents somefundamental postulates
on
erning light propagation on whi
h we
an buildour illumination model.Next we must introdu
e a terminology in our model by whi
h we
anspe
ify how light is measured by the eyes and other opti
al dete
tors. Ra-diometry o�ers mathemati
al de�nitions of the ne
essary physi
al terms andis des
ribed in se
tion 3.2.The stri
t physi
al measures of light do not ne
essarily �t the visualresponse of the human eye exposed to light. Photometry is
losely relatedto radiometry ex
ept for the fa
t that it in
ludes the visual response of astandard observer in the quanti�
ation of light measurements. Photometryis shortly introdu
ed in se
tion 3.3.Sin
e illumination in
ludes the intera
tion of light with matter we mustin
lude in our model how light is re�e
ted o�, refra
ted through, and ab-sorbed by di�erent materials. These pro
esses, and the relation betweenthem, are referred to as light s
attering and are modeled in the �eld of heattransfer. Light s
attering will be the topi
 of se
tion 3.4.Conse
utively the mathemati
al des
ription of light and how it s
atterswill be gathered in an integral equation that we
an use for rendering. Therendering equation is des
ribed in se
tion 3.5.

3.1 Opti
al Radiation 37To explore the model a little deeper se
tion 3.6 will go into the re
ursivenature of the rendering equation. It is shown how the illumination of a s
ene
an be des
ribed as re
ursive steps of light propagation and light s
attering.Se
tion 3.7 des
ribes some of the di�erent illumination models that
anbe derived from the rendering equation, and, �nally, se
tion 3.8 will presentsome of the tools that
an be used when we need to solve re
ursive integralequations su
h as the rendering equation.All in all the purpose of this
hapter is to put forth a mathemati
al modeldes
ribing how light illuminates its surroundings.3.1 Opti
al RadiationIn order to des
ribe how light propagates, we must introdu
e a number ofphysi
al terms from the broad literature of opti
s, radiometry, and thermalradiation.Radiation is energy propagated in the form of ele
tromagneti
 waves orparti
les (photons). The range of radiation whi
h
an be re�e
ted, imaged,or dispersed by opti
al
omponents, su
h as mirrors, lenses, or prisms, is re-ferred to as opti
al radiation1. Hen
e, light is
omposed of opti
al radiation.

Figure 3.1: Spe
trum of ele
tromagneti
 waves. Identi
al to �g. 1.1 of [89℄. (Courtesyof F. E. Ni
odemus et al.)Opti
s is a theory or model for the des
ription of physi
al phenomenainvolving the generation, propagation, and dete
tion of light. Like most otherphysi
al models opti
s is an abstra
tion or idealization that approximates`real life'. The histori
al development (see app. B) of opti
al models hasresulted in di�erent levels of sophisti
ation, �ea
h with its own region ofuseful validity� [89℄.As seen in �gure 3.1 the visible light region of the ele
tromagneti
 spe
-trum extends from wavelengths of approximately 380 to 780 nanometers.21The de�nition of opti
al radiation is adopted from [89℄.2Note that only approximate boundaries exist between the wavelength regions of theele
tromagneti
 spe
trum.

38 The Mathemati
al Model of IlluminationWhen light waves propagate through and around obje
ts whose dimensionsare mu
h greater than the wavelength (this is, for example, a reasonable as-sumption in virtual realities and 3D environments for games and animation),the wave nature of light is not readily dis
erned and for that reason light
an adequately be des
ribed by rays obeying a set of geometri
al rules [116℄.This model of light is referred to as ray opti
s or geometri
al opti
s. Approx-imating light waves with rays is the simplest approa
h to opti
s. However, ita

ounts very well for the way in whi
h opti
al radiation is propagated fromthe most
ommon light sour
es [89℄.The short
omings of ray opti
s are revealed by opti
al phenomena su
has di�ra
tion and interferen
e found in fo
al regions where rays sharply
on-verge. To treat su
h phenomena light must be des
ribed in terms of waveopti
s or ele
tromagneti
 opti
s. Moreover if we want to treat the intera
tionof light with matter in mi
ros
opi
 detail it is ne
essary to re
ognize thatopti
al radiation is being propagated in dis
rete �pa
kets� or photons, whoselarge numbers produ
e average energy distributions in time and spa
e
or-responding to ele
tromagneti
 waves [89℄. Su
h a model relies on quantumtheory and is, hen
e, referred to as quantum opti
s. Figure 3.2 des
ribes thein
reasing levels of sophisti
ation in opti
al models. In
omputer graphi
sthe simplifying assumption of ray opti
s is reasonable and therefore this the-sis will ex
lusively make use of ray opti
s in order to solve problems of lightwave propagation in virtual worlds.

Figure 3.2: The theory of quantum opti
s provides an explanation of virtually all knownopti
al phenomena. Ele
tromagneti
 opti
s provides the most
omplete treatment of lightwithin the
on�nes of rigorous ele
tromagneti
 theory. Wave opti
s is a s
alar approxima-tion of ele
tromagneti
 opti
s. Ray opti
s is the limit of wave opti
s when the wavelengthis in�nitesimally small. The �gure is adopted from [116℄.Ray opti
s are based on four postulates that are provided here withoutproof (though they follow naturally from the more sophisti
ated models).From those we
an �determine the rules governing the propagation of lightrays, their re�e
tion and refra
tion at the boundary of di�erent media, andtheir transmission through various opti
al
omponents� [116℄.

3.1 Opti
al Radiation 39The four postulates are given in [116℄ and are repli
ated below in short:1. Light travels in the form of rays. The rays are emitted from lightsour
es and
an be observed when they rea
h an opti
al dete
tor.2. An opti
al medium is
hara
terized by a refra
tive index � =
0
 � 1,where
 is the speed of light in a medium and
0 is the speed of lightin va
uum.3. In an inhomogeneous medium the refra
tive index �(r) is a fun
tion ofthe position r = (x; y; z).4. Fermat's Prin
iple. Opti
al rays traveling between two points fol-low a path su
h that the time of travel is an extremum relative tothe neighboring paths. The extremum is most often a minimum inwhi
h
ase the ray follows the path of �least time� as Fermat originallyexpressed it.To illustrate shortly the
onsequen
es of the postulates we may
onsiderthe propagation of light in a homogenous medium. The refra
tive indexis
onstant throughout a homogenous medium, and it follows then fromthe se
ond postulate that so is the speed of light. The path of least time,whi
h is required by Fermat's prin
iple, is then also the path of minimumdistan
e. This property of light was �rst dis
overed by Hero of Alexandria(see appendix B) and is referred to as Hero's prin
iple. A
onsequen
e ofHero's prin
iple, whi
h follows from the postulates, is therefore that light raystravel in straight lines in a homogenous medium. Throughout this report,unless stated otherwise, it will be assumed that all media are homogenous.Furthermore we
an derive from the postulates how light re�e
ts o� andrefra
ts through a perfe
tly spe
ular surfa
e marking the boundary betweentwo homogenous media.Re�e
tionConsider two lo
ations, A and C, in a homogenous medium, see �gure 3.3.If a ray of light is to travel from A to C by re�e
tion o� a perfe
tly spe
ularmirror surfa
e S, it will a

ording to Hero's prin
iple follow the path ofminimum distan
e. That is, we must
hoose a point B on the mirror surfa
esu
h that the distan
e AB + BC is minimized. First to follow the shortestpath the light must travel in the plane of in
iden
e, whi
h is spanned by thetwo ve
tors C �A and B �A. Figure 3.3 pi
tures the plane of in
iden
e.Let C 0 be a mirror image of C in the tangent plane Tp to the spe
ularmirror surfa
e S, then BC = BC 0. Now AB+BC 0 must be minimum, whi
his indeed the
ase when a
onne
tion of the points A, B, and C 0 is a straightline. If ABC 0 is a straight line, we have that \(AB; Tp) = \(Tp; BC 0), andbe
ause C 0 is a mirror image of C it is evident that \(Tp; BC 0) = \(BC; Tp):

40 The Mathemati
al Model of Illumination
 Figure 3.3: Light traveling in a homogenous medium from a point A re�e
ting o� aperfe
tly spe
ular mirror surfa
e S at the point B ending in the point C. Tp is thetangent plane to S, and C0 is the mirror image of C in Tp.\(AB; Tp) = \(Tp; BC 0) = \(BC; Tp) = �Sin
e \(AB; Tp) = \(BC; Tp), and sin
e the normal n at the surfa
epoint B by de�nition is perpendi
ular to Tp, it follows that:\(AB;n) = \(n; BC) = � (3.1)whi
h states that the angle of re�e
tion equals the angle of in
iden
e (
f. �g.3.3).Let !0 = A�BjjA�Bjj denote the dire
tion from whi
h the in
ident radian
eis arriving at the mirror surfa
e S, then, a

ording to (3.1), the dire
tion ofthe re�e
ted ray !s
an be found as:!s = 2
os �n� !0 = 2(!0 � n)n� !0 (3.2)where � is the angle of in
iden
e and n is the unit normal at the point ofin
iden
e. (3.2) is one of many ways to express the law of re�e
tion. Anotherenun
iation is as given in [116, p. 5℄:The re�e
ted ray lies in the plane of in
iden
e;the angle of re�e
tion equals the angle of in
iden
e. �Refra
tionAgain the fourth postulate (Fermat's prin
iple) gives means by whi
h we
anestablish how light refra
ts when it passes from one homogenous medium toanother. The di�eren
e between the two media is stated as two di�erentindi
es of refra
tion, �1 and �2 (one for ea
h media). In order to �nd thepath that light takes from a point A in the medium of refra
tion index �1

3.1 Opti
al Radiation 41

Figure 3.4: The path of light when it travels from one homogenous medium to another.to a point B in the medium of refra
tion index �2, we must �nd the path ofleast time. Again we need only
onsider the plane of in
iden
e as pi
turedin �gure 3.4.Let B be the point of in
iden
e at the surfa
e S, whi
h marks the bound-ary between the two di�erent media, and let �1 be the angle of in
iden
e su
hthat:
os �1 = !0 � nwhere !0 = A�BjjA�Bjj is the dire
tion of in
ident light, and n is the unit normalat the point of in
iden
e. Now, we denote the angle of the refra
ted light �2su
h that:
os �2 = !r � nwhere !r = C�BjjC�Bjj is the dire
tion of the refra
ted light.The time it takes for light to travel a distan
e d equals d=
 = �d=
0. Thetravel time is thus proportional to the opti
al path length, whi
h is de�ned as�d. To �nd the path of least time we
an, therefore, minimize the opti
al pathlength instead of the travel time. Meaning that what we seek to minimize is�1AB + �2BC.Suppose we let the normal n de�ne a v-axis in the plane of in
iden
e,then B = (u; 0) in (u; v)-
oordinates. Furthermore let A = (u1; v1) andC = (u2; v2), then AB =p(u� u1)2 + v21 and BC =p(u2 � u)2 + v22 . Thederivative of the opti
al path length is then given as:d(�d)dx = �1 u� u1p(u� u1)2 + v21 + �2 �u2 + up(u2 � u)2 + v22Setting the derivative equal to zero we will dis
over an extremum (whi
hwill most probably be a minimum) as is required by Fermat's prin
iple. Thisyields the following:

42 The Mathemati
al Model of Illumination
�1 u� u1p(u� u1)2 + v21 = �2 u2 � up(u2 � u)2 + v22or put di�erently: �1 d1AB = �2 d2BCwhere d1 and d2 are the proje
tions on the tangent plane of AB and BCrespe
tively. Now, Snell's law follows by the trigonometry of a right triangle:�1 sin �1 = �2 sin �2 (3.3)Snell's law gives means by whi
h we
an �nd a formula for the
al
ulationof the dire
tion of refra
tion !r. Suppose t is a unit tangent ve
tor to theperfe
tly spe
ular surfa
e S at the point B in the plane of in
iden
e, andthat n is the unit normal pointing into the medium of refra
tion index �1,then the dire
tion of the refra
ted light is:!r = �n
os �2 + t sin �2 (3.4)Suppose the normal n and the dire
tion towards the in
ident light !0are given. Then the
omponent of !0 that is perpendi
ular to the normal, isgiven as: !0? = (!0 � n)n� !0while the length of !0? simply is sin �1. An expression for the unit tangentve
tor t then follows: t = !0?jj!0?jj = (!0 � n)n� !0sin �1To �nd
os �2 of (3.4) we use the property that the angle of in
iden
ealways lies in the interval [0; �2 ℄, and get that:
os �2 =p1� sin2 �2(3.4) then has the following form:!r = �np1� sin2 �2 + sin �2sin �1 ((!0 � n)n� !0)and by Snell's law and a few rearrangements, we retrieve the law of refra
tionas it is expressed in many text books (eg. [38, 60, 30℄):

3.2 Radiometry 43
!r = sin �2sin �1 ((!0 � n)n� !0)�np1� sin2 �2= �1�2 ((!0 � n)n� !0)� ns1���1�2�2 sin2 �1= �1�2 ((!0 � n)n� !0)� ns1���1�2�2 (1� (!0 � n)2) (3.5)The more textual enun
iation of the law of refra
tion is given in [116, p.6℄ as: The refra
ted ray lies in the plane of in
iden
e; the angle ofrefra
tion �2 is related to the angle of in
iden
e �1 by Snell's law,�1 sin �1 = �2 sin �2 �Based on the four postulates of ray opti
s, it has now been established howlight propagates in homogenous media. The three simple rules are:� Propagation in straight lines� The law of re�e
tion� The law of refra
tionThe laws of re�e
tion and refra
tion
on
erns only perfe
tly spe
ularmaterial, nevertheless, they are important sin
e the re�e
tion and refra
tionof glossy materials (whi
h are materials with properties that lie in-betweenperfe
tly spe
ular and perfe
tly di�use) in general are
entered around theperfe
t dire
tions.Having established the basi
 properties of light propagation on whi
h tobuild our illumination model, we
an pro
eed to the radiative properties oflight, whi
h will allow us a des
ription of the light that
an be measured atopti
al dete
tors su
h as the eye.3.2 RadiometryWhile opti
s
on
ern the generation, propagation, and dete
tion of light,radiometry is the s
ien
e of ele
tromagneti
 radiation measurement.The basi
 quantity of radiometry is radian
e, L, whi
h most
losely rep-resents the
olors that we see [60℄. Therefore radian
e is a very important

44 The Mathemati
al Model of Illuminationquantity in
omputer graphi
s, and radian
e is what we must
al
ulate anddisplay to an observer in order to visualize a 3D model.Te
hni
ally speaking radian
e is the amount of radiant energy arrivingat or departing from an in�nitesimal area per unit time with respe
t to agiven dire
tion. Meaning that radian
e
an be used to des
ribe the intensityof light at a given point in spa
e.Radian
e is a third derivative of radiant energy, Q. To give a betterunderstanding of radian
e the di�erent derivatives of radiant energy will bedes
ribed in the following.Radiant FluxFirst we would like to
onsider the �ow of energy rather than isolatedamounts. This is obvious sin
e the eyes per
ept light waves
ontinuouslyrather than on timely intervals. Radiant energy per unit time is
alled radi-ant �ux, �: � = dQdt (3.6)When looking at an obje
t the eye registers the radiant �ux departing theobje
t in the dire
tion of the eye. To des
ribe a dire
tional volume throughwhi
h the energy
an �ow, we need to introdu
e the
on
ept of a solid angle.Solid AngleIn 2-dimensional spa
e the more familiar plane angle, �, is formed at thepoint O� where two straight lines meet, see �gure 3.5a. It is de�ned as thelo
us of all dire
tions that may be o

upied by either line as it is rotatedabout the vertex to bring it into dire
tional
oin
iden
e with the other line.Drawing a unit
ir
le
entered atO� the length of the
ir
ular ar
 inter
eptedby � is a measure of the plane angle.The solid angle is formed at a point O! in 3-dimensional spa
e. Con-sider a simply-
onne
ted
urve (not passing through O!) perhaps formingthe
ontour edge of a
onvex obje
t, see �gure 3.5b. The
oni
al surfa
e,
ontaining all possible straight lines that extend from O! to a point on the
urve, forms the delimiter or bounding
one of the solid angle exa
tly asthe straight lines in �gure 3.5a forms the delimiter of the plane angle. Thesolid angle ! is then de�ned as the lo
us of all dire
tions lying within thebounding
one. Drawing a unit sphere
entered at O! the spheri
al-surfa
earea As inter
epted by ! is a measure of the solid angle.The magnitude of plane angles is radians [rad℄ or degrees [Æ℄. The rela-tionship between these two entities is:1Æ = 180� [rad℄

3.2 Radiometry 45

Figure 3.5: (a) A plane angle � formed at the point O�. The length of the red
ir
ularar
, whi
h is a part of the unit
ir
le, is a measure of �. (b) A solid angle ! formed at thepoint O!. The area of the blue pat
h on the unit sphere is a measure of !.The magnitude of a solid angle ! is steradians [sr℄, whi
h is the ratio ofthe inter
epted spheri
al-surfa
e area As to the square radius of the spherer2. As previously noted this magnitude is identi
al to the inter
epted areaon the unit sphere (where r = 1):! = Asr2 [sr℄ (3.7)Meaning that the entire unit sphere
ontains 4� [sr℄.Sin
e
omputer graphi
s use ray opti
s, and therefore rays, to des
ribethe propagation of light, the solid angle is mostly des
ribed by the dire
tionaround whi
h it is de�ned. The dire
tional element of radian
e is de�nedby a di�erential solid angle subtended by a di�erential surfa
e area, andtherefore the bounding
one of the solid angle will approa
h a ray as thesurfa
e area gets in�nitesimally small, and the ray approximation is thusreasonable. In this
ontext it should be noted that a ve
tor des
ribing thedire
tion of a is ray denoted by a bold omega (!), while the solid angle itselfis denoted ! and likewise the di�erential solid angle is denoted d!.It is often
onvenient to express a solid angle in spheri
al
oordinates.It eases the des
ription of a di�erential (or elemental) solid angle d!, see�gure 3.6, and the spheri
al
oordinates
onverts to a unit dire
tion ve
toras follows: 0� xyz 1A = 0� sin �
os�sin � sin�
os � 1A (3.8)Drawing a sphere of radius r
entered at the pointO where the solid angleis formed, the di�erential spheri
al-surfa
e area dAs is de�ned by the twoangles � and � in
reased by the in�nitesimal elements d� and d� respe
tively(as shown in �g. 3.6). The angular rotation given by � moves on a great

46 The Mathemati
al Model of Illumination
ir
le and therefore the length of the
ir
ular (latitude) ar
 d� is rd�. Theangular rotation around the z-axis spe
i�ed by � does, however, not move ona great
ir
le. Rather � follows the ar
 of radius r sin � and the length of the
ir
ular (longitude) ar
 d� is therefore r sin � d�. The di�erential spheri
al-surfa
e area is then given as dAs = r2d� sin � d� resulting in the followingde�nition of the di�erential solid angle:d! = dAsr2 = sin � d� d� (3.9)

Figure 3.6: A di�erential (or elemental) solid angle. d! = dAs=r2 = sin � d� d�If we, for example, need to �nd the total radian
e rather than dire
tionalradian
e in
ident on a di�erential surfa
e area, the general expression forany solid angle given in spheri
al
oordinates is found as an integral over(3.9): ! = Z� Z� sin � d� d� (3.10)Radiant IntensityThe di�erential solid angle d! gives means by whi
h we
an des
ribe anin�nitesimal dire
tional volume. An element of radiant �ux per element ofsolid angle then des
ribes a dire
tional �ow of radiation (or light). This is ase
ond derivative of radiant energy whi
h is
alled radiant intensity, I:

3.2 Radiometry 47d2Qdt d! = d�d! = I(!) (3.11)Radiant intensity is useful if we, for example, need to �nd the total �uxin
ident on a surfa
e from a
ertain dire
tion. This is, however, rarely the
ase. Rather we would like to
onsider how the �ux
hanges from point topoint on a surfa
e.Radiant Flux Area DensityTo
onsider the element of �ux through an element of surfa
e area, d�=dA,we need another se
ond derivative of radiant energy whi
h is referred toas radiant �ux area density. To distinguish between in
ident and exitant3radiation, radiant �ux area density is separated into radiant exitan
e, M(also
alled radiosity, B), whi
h is �ux departing from the surfa
e area, andirradian
e, E, whi
h is �ux arriving at the surfa
e area:d2Qdt dA = d�dA = E(x) (3.12)where x is a surfa
e lo
ation.Radiant �ux area density, though useful in many
ases, only
onsidersthe
hanges in �ux from point to point. In order to des
ribe the �ux both interms of dire
tion and lo
ation, we must
onsider how a surfa
e area is visiblefrom a
ertain dire
tion so before we
an give the de�nition of radian
e, wemust look into the proje
tion of a surfa
e area on a given dire
tion.Proje
ted Surfa
e AreaConsider a di�erential surfa
e area dA as depi
ted in �gure 3.7 and re
all thatradian
e des
ribes the radiant �ux arriving at or leaving a surfa
e lo
ationin a
ertain dire
tion.The dire
tional element is des
ribed by a di�erential solid angle d!
en-tered around a dire
tion given in spheri
al
oordinates (�; �), and it de�nesa spheri
al-surfa
e area dAs on the unit sphere as noted previously. Theamount of energy per unit time that arrives at or leaves dA depends on thesolid angle that dA o

upies when viewed from dAs. This quantity is theproje
ted surfa
e area, dAp =
os � dA, whi
h is the proje
ted area of dAnormal to the (�; �) dire
tion, see also �gure 3.8.Radian
eBeing both dire
tional and dependant on the surfa
e lo
ation x, radian
e,L, has the following mathemati
al de�nition:3�Exitent� was
oined as an antonym of �in
ident� by J. C. Ri
hmond in 1972, todaythe spelling has slid to �exitant�.

48 The Mathemati
al Model of Illumination

Figure 3.7: Pi
torial des
ription of dire
tional radiation properties. dA is a di�erentialsurfa
e area, dAp is the proje
ted area of dA normal to the dire
tion of the di�erentialsolid angle d!.
Figure 3.8: Two-dimensional view of a di�erential proje
ted surfa
e area, dAp =
os�dA =
os(�2 � (�2 � �))dA =
os � dA.d3Qdt d! dAp = 1
os � d2�d! dA = L(x;!) (3.13)Previously it has been mentioned a few times that radian
e de�nes theamount of energy per unit time that arrives at dA from a
ertain dire
tion, orleaves dA in a
ertain dire
tion. Meaning that in a pi
torial des
ription we
an turn the dire
tion, around whi
h the solid angle is de�ned, away from thesurfa
e (as seen in �g. 3.7) indi
ating that the radian
e is exitant, or we
ouldturn it towards the surfa
e indi
ating that the radian
e is in
ident. Exitant(or outgoing) radian
e is denoted Lo while in
ident radian
e is denoted Li.Radiant �ux
an only arrive to or leave the surfa
e area dA from a dire
-tion (�; �) within the hemisphere above dA, therefore if we need to
onsiderthe total in
ident or exitant radian
e at a
ertain surfa
e lo
ation, we letR
 d! denote integration over the hemispheri
al solid angle being spe
ial
ase of (3.10). Hen
e, for any fun
tion f(�;�):

3.2 Radiometry 49Z 2��=0 Z �=2�=0 f(�; �) sin � d� d� = Z
 f(�; �)d!whi
h, for example, indi
ates that we
an �nd the irradian
e at a spe
i�
surfa
e lo
ation as:E(x) = Z
 Li(x;!)d! = Z 2��=0 Z �=2�=0 Li(x;!) sin � d� d� (3.14)Irradian
e is important sin
e most often a ratio of the irradian
e at asurfa
e lo
ation will be re�e
ted ba
k into the s
ene resulting in indire
tillumination if it rea
hes yet another surfa
e. Indire
t illumination is visuallymore important than we would think at �rst. The re�e
tion and refra
tionof light resulting in indire
t illumination is referred to as light s
attering,whi
h is the topi
 of se
tion 3.4.Before the light
an s
atter around in a s
ene it must be emitted from alight sour
e, and before going into emission of light we must re
all that light,in fa
t,
onsists of ele
tromagneti
 waves. The
olor of light, whi
h radian
equanti�es, is dependant on the wavelength of the radiant energy, Q, whi
hwe started out with.Spe
tral RadiationAll the radiometri
 terms given above treat the total amount of in
ident orexitant radiation. Ea
h term, in fa
t, has a spe
tral
ounterpart, su
h thatfor example: Q = Z 10 Q�d� (3.15)where � is the wavelength (re
all �gure 3.1).In mi
ros
opi
 detail the spe
tral radiant energy, Q�,
an be determinedfrom the wavelength dependant number of photons and their energy:Q� = n�e� = n�h
� (3.16)where h � 6:6261 � 10�34 Js is Plan
k's
onstant, and
 is the speed of light(in va
uum
 =
0 � 2:9979 � 108m=s).To a

ount for the spe
tral dependen
y of the radiometri
 terms, thevalues stored to represent eg. radian
e or irradian
e is a ve
tor of three
olorbands. The three
olor
omponents are red, green, and blue, and the model isknown as the RGB
olor model. The RGB
olor model enables only a subsetof the
olors that exist in real life, but �the RGB model is de�ned by the

50 The Mathemati
al Model of Illumination
hromati
ities of a CRT's phosphors� [38, p. 586℄, and therefore it modelswell the
olors we
an possibly show on a
omputer monitor. The subje
t ofmeasuring and representing
olor is a s
ienti�
 �eld known as
olorimetry,see se
tion 8.1 for further information.Keeping in mind that ea
h radiometri
 term
an by treated at a sin-gle wavelength, and that the spe
tral
ounterpart of a radiometri
 term isdenoted by a � subs
ript, we
an pro
eed to a des
ription of light emission.Light EmissionThroughout this se
tion we have dis
ussed how to measure radian
e, whi
his a quantity representing the light that we see. Before radian
e is in
identon a surfa
e it must be emitted from a light sour
e. An important part of theillumination model that we wish to
onstru
t is, therefore, light emission.To start with the simple
ase, we will
onsider a bla
kbody, whi
h is ahypotheti
al obje
t de�ned as a perfe
t absorber and emitter in ea
h di-re
tion and at every wavelength. This means that a bla
kbody absorbs allin
ident radian
e and radiates the same amount of energy as it absorbs. Forexample energy
an be transferred to a metal by ele
tri
ity in whi
h
ase theemitted radiation will
orrespond to the ele
tri
al energy that is absorbed bythe metal. This implies a relationship between radian
e and temperature.Plan
k's law expresses the relationship between temperature and spe
tralradiant exitan
e of a bla
kbody in va
uum:Mb;� = 2�C1�50(eC2=(�0T) � 1) (3.17)where T is the temperature of the obje
t, C1 = h
20 � 3:7418�10�16Wm2, andC2 = h
0=k � 1:4388 �10�2mK, where k � 1:3807 �10�16J=K is Boltzmann's
onstant. Index of refra
tion � =
0=
 should be in
luded if the light sour
eradiates into a medium where the speed of light
 is not
lose to
0, this isdone by substitution of
0 with
 =
0=�, and of �0 with � = �0=�. Thetotal radiant exitan
e of a bla
kbody, Mb, is related to temperature by theStefan-Boltzmann law, whi
h in a homogenous medium (
onstant refra
tionindex) is given as follows: Mb = �2�T 4 (3.18)where � � 5:6704 � 10�8W=(m2K4) is the Stefan-Boltzmann
onstant.The Stefan-Boltzman law is useful if we know the temperature of a lightsour
e. In that
ase we
an approximate the radiant exitan
e (under theassumption that the light sour
e is a bla
kbody) at a surfa
e lo
ation of thelight sour
e using (3.18).The emissivity of an obje
t spe
i�es how well a real body radiates en-ergy as
ompared to a bla
kbody. The bla
kbody is, however, a reasonable

3.2 Radiometry 51approximation to light sour
es su
h as the sun. Further treatment of thesubje
t is given in [121℄.Sour
es su
h as light bulbs are more often des
ribed by the ele
tri
alpower they absorb rather than the temperature they rea
h. Consider forexample a light sour
e with surfa
e area A and power �s that emits lightuniformly from all surfa
e areas and in all dire
tions, the
onstant emittedradian
e, Le, is given as:�s = ZA Z
 Le
os� d! dAand sin
e Le is
onstant and from the hemispheri
al version of (3.10) itfollows that: �s = Z 2��=0 Z �=2�=0
os � sin �d� d�ZA dALe= 2� ��
os2 �2 ��=20 ALe= �ALe) Le = �s�Aagain it is assumed that the light bulb will emit all the energy that it absorbs.Still this simple equation is useful if we need to establish the radian
e emittedby an indoor light sour
e.What has been outlined so far is a mathemati
al model that
an des
ribehow light in the form of ele
tromagneti
 waves radiate o� obje
ts and therebyilluminate a s
ene. The model gives a des
ription of radian
e, whi
h is theradiometri
 quantity that most
losely resembles the
olor that is per
eivedby the eye when looking at a surfa
e area in 3D spa
e.Radiometry is the obje
tive, quantitative way to measure ele
tromagneti
radiation su
h as light. Sin
e human sight to a large extend is subje
tive,the obje
tive physi
al measures are not always su�
ient to simulate humanvision in a digital s
ene. Another s
ienti�
 �eld
alled photometry is theanswer to this short
oming of radiometry. Photometry de�nes the samequantities as radiometry, but the units of measurement subje
tively takesinto a

ount a standard human observer. While
omputer graphi
s mostoften work with radiometry some results from photometry
an be added tothe �nal result of an algorithm
al
ulating radian
e. We
ould des
ribe itas a post pro
essing adding extra visual realism to the �nal image. A shortdes
ription of photometry will be given in the following se
tion.

52 The Mathemati
al Model of Illumination3.3 PhotometryWhile radiometry is the physi
al treatment of light, photometry deals withthe quanti�
ation of the per
eption of light energy [30℄, that is, it in
ludesthe visual response of a standard observer, whi
h radiometry does not.In prin
iple radiometry fully
overs the area of photometry. While ra-diometry
on
entrates on ele
tromagneti
 waves in the opti
al radiation areasee �gure 3.1, photometry is measurements of visible light only. Photometry
an be seen as a spe
i�
ation of this parti
ular interval of wavelengths in thespe
trum of ele
tromagneti
 radiation. The visible spe
trum is, of
ourse,parti
ularly interesting to us sin
e it is the area of waves that the eye isresponsive to and that our brain therefore per
eive.A very simpli�ed way to look at the eye would be as the human
amera.Basi
ally it is there to generate pi
tures or to
olle
t light inputs for thebrain to interpret into pi
tures. In the same way that a
amera
olle
ts lightwhi
h is later put on paper or into a digital medium.Sin
e the eye is a
ompli
ated re
eiver more sensitive to some wave-lengths than others, it is not possible to use the same units as in radiometry.Instead the units of photometry are based on measurements of the humanvisual system. In 1924 the international
ommission on illumination CIE4
reated the photometri

urve, see �gure 3.9. This
urve is based on testresults and shows the photopi
 luminous e�
ien
y of humans as a fun
tionof wavelength. The photopi
 luminous e�
ien
y fun
tion show how well theeye adapts light from di�erent wavelengths. Observers were asked to visuallymat
h the brightness of mono
hromati
 light to wavelengths. The logarithmof the fun
tion is known as the relative visual brightness.

Figure 3.9: The CIE photometri

urve (also
alled the photometri
 luminous e�
ien
yfun
tion). The �gure is identi
al to �g. 6 of [6℄.The luminous e�
ien
y fun
tion gives means by whi
h we
an make
on-versions between radiometri
 and photometri
 quantities. The following is a4The abbreviation CIE originates in the Fren
h name: Commission Internationaled'E
lairage.

3.3 Photometry 53brief des
ription of the di�erent photometri
 quantities and their
onne
tionto the radiometri
 quantities, whi
h were des
ribed in se
tion 3.2.Luminous EnergyLuminous energy is similar to radiant energy. Luminous energy is a
tuallyjust radiant energy weighed photometri
ally. The weighing is related to theway in whi
h the eye observes the radiated energy. For this purpose weuse the photometri

urve as mentioned before. The translation betweenradiant energy and photometri
 energy is done between luminous intensityand radiant intensity, see (3.19). To get the luminous energy we need to �ndthe derivative of the luminous �ux.The meaning of luminous energy
orresponding to the meaning of radiantenergy only it is
onne
ted to observations of the eye instead of parti
les ona surfa
e. Radiant energy is measured in joule whi
h is the normal unit forenergy. Luminous energy is measured in talbot.All symbols used for photometry are the same as the
orresponding ra-diometri
 symbol only a v subs
ript is added (for visible). Hen
e, luminousenergy is Qv.Luminous FluxThe luminous �ux or luminous power
orrelates to radiant �ux. It is photo-metri
ally weighed radiant energy per unit time:�v = dQvdtLuminous �ux is a subje
tive quantity des
ribing the �ow of light throughspa
e. We
an
onne
t luminous �ux to spe
tral radiant �ux by the followingformula: �v = Z���V (�)d�where V (�) is the CIE photometri

urve (�g. 3.9) representing the visualresponse of a standard observer, and � is the range of wavelengths thatrepresents visible light.Luminous IntensityLuminous intensity is de�ned as:Iv = d�vd!where d!, as for radiant intensity, is a di�erential solid angle.

54 The Mathemati
al Model of IlluminationThe relation between luminous intensity Iv and radiant intensity I, whi
hindire
tly also spe
i�es the relation between the units watt (W) and lumen(lm), are again given by the CIE photometri

urve (also
alled the photo-metri
 luminous e�
ien
y fun
tion) as:Iv(!) = 683 srW V (�)I (3.19)where V (�) is the photometri
 luminous e�
ien
y
orresponding to the wave-length of the light, meaning that V (�) is a look up in �gure 3.9.Luminous Flux Area DensityIlluminan
e, obviously,
orresponds to irradian
e and is de�ned as:Ev(x) = d�vdALikewise, luminous exitan
e Mv
orresponds to radiant exitan
e M .Luminan
eLuminan
e is the photometri
al representation of light and
orresponds, notsurprisingly, to radian
e: Lv(x;!) = d2�v
os� d! dARadiometry and photometry has many similarities and the units andquantities of the two �elds
orrelate to ea
h other. Table 3.1 shows this
orrelation. The table is put together from di�erent sour
es. The des
riptionof physi
al quantities is from [97℄, and the table has been expanded withterms from [6℄.Through the past few se
tions we have established a fair understanding ofthe di�erent quantities that are used for representation and measurement oflight. These measurements are what we wish to obtain from our digital s
eneand therefore the propagation of light from sour
es to re�e
ting obje
ts mustbe present in our illumination model. How light s
atters in an environmentand illuminates obje
ts that re�e
t light o� (or refra
t it through) theirsurfa
es is the topi
 of the next se
tion.3.4 Light S
atteringIn se
tion 3.2 the term radian
e,
losely resembling what the eyes per
eiveas
olor, was given a mathemati
al interpretation and was des
ribed as lightintensity at a point in spa
e. Emission of light dependant on the temperatureor power (also
alled wattage) of a light sour
e was treated.

3.4 Light S
attering 55Quantity Radiometry PhotometryEnergy Radiant energy Q[J ℄ Luminous energyQv [talbot℄Power Radiant �ux (Radi-ant power) � [W =J=s℄ Luminous �ux (lu-minous power) �v[lm℄Power per unit solidangle Radiant intensity I[W=sr℄ Luminous intensityIv [
d = lm=sr℄Power per unit area Radiant �ux areadensity (radiant ex-itan
e M or irradi-an
e E) [W=m2℄ Luminous �ux areadensity (luminousexitan
e Mv orilluminan
e Ev)[lux = lm=m2℄Power per unit areaper unit solid angle Radian
e L[W=(m2sr)℄ Luminan
e Lv[
d=m2℄Ratio of re�e
ted toin
ident light Re�e
tan
e �r Luminous re�e
tan-
eRatio of refra
tedto in
ident light Transmittan
e �t Luminous transmit-tan
eTable 3.1: The relation between physi
al, radiometri
, and photometri
 quantities. Sym-bols and units are stated for the radiometri
 and photometri
 quantities.What was not des
ribed is how light, when emitted from a light sour
einto a s
ene, s
atters between and through the surfa
es. The exitant lightfrom a surfa
e area is highly dependant on the in
ident light. Light s
atteringis the subje
t of this se
tion.Light in
ident on a surfa
e has two possible ways of s
attering; re�e
tingo� the surfa
e and/or refra
ting through the surfa
e. Re�e
tion is the pro-
ess by whi
h radiant �ux (�), in
ident on a stationary surfa
e, leaves thatsurfa
e from the in
ident side without
hange in frequen
y; re�e
tan
e is thefra
tion of the in
ident �ux that is re�e
ted [88℄. Refra
tion is the pro
essby whi
h radiant �ux, in
ident on a surfa
e, transmits into the medium un-derneath the surfa
e; transmittan
e is the fra
tion of the in
ident �ux thatis refra
ted.Unlike emitted �ux (as des
ribed in se
. 3.2), re�e
ted �ux depends notonly on the angle at whi
h the in
ident �ux impinges on the surfa
e, butalso on the dire
tion being
onsidered for the re�e
ted �ux [121℄. Re�e
tionat a surfa
e area is therefore bidire
tional, see �gure 3.10a, and to gather allthe re�e
ted radian
e in a given dire
tion it is ne
essary to integrate over allin
ident dire
tions of the hemisphere above dA, see �gure 3.10b.Ni
odemus et al. [88℄ des
ribed a widely a

epted theoreti
al frameworkand nomen
lature for re�e
tan
e. Parts of this framework is presented in

56 The Mathemati
al Model of Illumination

Figure 3.10: (a) Bidire
tional re�e
tion. (b) Hemispheri
al-dire
tional re�e
tion.the following.BSSRDFLet d�i denote the portion of a radiant �ux d�i arriving from within adi�erential solid angle d!0 at a di�erential surfa
e area dAi
entered aroundthe surfa
e lo
ation x0. Then the most general des
ription of bidire
tionalre�e
tan
e within the domain of ray opti
s originates from the fa
t that theportion of re�e
ted radian
e dLr, at the point x within the di�erential solidangle d!
oming from d�i, is dire
tly proportional to d�i:S = dLrd�i (3.20)If we assume about the me
hanism involved that there is some formof intera
tion between radiation and matter and that the �ux in
ident atsome lo
ation x0 is s
attered to some other lo
ation x as a result of thisintera
tion, then the fa
tor of proportionality S will, in general, have thefollowing dependen
ies: S = S(x;!;x0;!0)The fun
tion S is
alled the Bidire
tional S
attering Surfa
e Re�e
tan
eDistribution Fun
tion (BSSRDF). The BSSRDF is
ompletely general, theonly simplifying assumptions are those of ray opti
s des
ribed in se
tion3.1 and besides we ignore dependen
ies of the BSSRDF that are not of ageometri
al nature.It may be surprising that the surfa
e lo
ation of re�e
tion x not ne
es-sarily is identi
al to the lo
ation of in
ident �ux x0. The reason is that lightin
ident on an obje
t normally enters the material at one lo
ation, s
attersaround, and leaves at a di�erent lo
ation, see �gure 3.11. This visual e�e
t

3.4 Light S
attering 57

Figure 3.11: The surfa
e lo
ation of re�e
tion is not ne
essarily identi
al to the lo
ationof in
ident �ux. This �gure is a re
onstru
tion of �g. 2.2 in [60℄.is
alled subsurfa
e s
attering and it �is parti
ularly noti
eable for translu-
ent materials su
h as marble and skin, but happens to some degree for allnon-metalli
 materials� [60℄.The surfa
e lo
ations are (in (u; v)-
oordinates) ea
h two parametersand the solid angles are ea
h de�ned around a dire
tion, whi
h in spheri
al
oordinates also amounts to two parameters per angle. All in all the BSSRDFis an eight-dimensional fun
tion, whi
h is quite intra
table to handle. Wewill return to the
omposition of approximate BSSRDFs when des
ribingsubsurfa
e s
attering towards the end of this se
tion.BRDF

Figure 3.12: Light s
attering under the assumption that in
ident �ux is re�e
ted in thesame point. This �gure is a re
onstru
tion of �g. 2.3 in [60℄.Though subsurfa
e s
attering is an important visual e�e
t espe
ially withrespe
t to translu
ent materials, it is for most other materials a reasonable

58 The Mathemati
al Model of Illuminationassumption that in
ident �ux is re�e
ted in the same point, see �gure 3.12.If we assume that x = x0 the surfa
e is no longer s
attering light internallyand we
all the fa
tor of proportionality a Bidire
tional Re�e
tan
e Distri-bution Fun
tion (BRDF). The BRDF is six dimensional and it is denotedfr(x;!;!0). To remove the argument x0 representing the
enter of the di�er-ential area on whi
h the in
ident �ux impinges, we must in general integrateover the entire area of in
ident �ux Ai:fr(x;!;!0) = ZAi S(x;!;x0;!0)dAi (3.21)The in
ident �ux d�i of (3.20) is dependant on both the in
ident dif-ferential area dAi and the in
ident di�erent solid angle d!0 to whi
h it is
on�ned. Therefore it is not entirely
omparable to d� of (3.12), rather thein
ident �ux is dependant on the di�erential irradian
e in
ident on dAi fromd!0, meaning that d�i = d2� = dEi dAi (3.22)It then follows from (3.20) and (3.22) (still in general) that:S(x;!;x0;!0) = dLr(x;!;x0;!0)d�i = d2Lr(x;!;x0;!0)dEi dAi (3.23), fr(x;!;!0) = RAi S(x;!;x0;!0)dAi = dLr(x;!;!0)dEi (3.24)whi
h shows that setting x = x0 is a simplifying assumption that avoids theintegral over Ai, and under that assumption (3.24) states that the portionof re�e
ted radian
e dLr at the point x within the di�erential solid angle d!is dire
tly proportional to the in
ident irradian
e dEi
on�ned within thedi�erential solid angle d!0 from the dire
tion (�0; �0).To �nd a formula for dEi it follows by substitution of (3.22) in (3.13)that: 1
os �0 dEi dAid!0 dAi = Li(x;!0)) dEid!0 = Li(x;!0)
os �0 (3.25)whi
h a

ording to (3.24) indi
ates that:fr(x;!;!0) = dLr(x;!;!0)Li(x;!0)
os �0 d!0 (3.26)Suppose the unit normal n at the surfa
e lo
ation x is known and thatthe dire
tion of the in
ident solid angle is given as a normalized three-dimensional ve
tor !0, then the hemispheri
al-dire
tional re�e
ted radian
e

3.4 Light S
attering 59(�g. 3.10b)
an be
omputed using the following re
ursive formula derivedfrom (3.26) by integration over the entire hemisphere:Lr(x;!) = Z
 fr(x;!;!0)Li(x;!0)
os �0 d!0= Z
 fr(x;!;!0)Li(x;!0)(!0 � n) d!0 (3.27)Intuitively the BRDF (fr) spe
i�es the portion of radian
e in
ident at asurfa
e lo
ation that is re�e
ted in another dire
tion. The BRDF at a singlepoint on a surfa
e is a four-dimensional fun
tion, whi
h
an be measured fromreal surfa
es using, for example, a goniore�e
tometer [126℄. Many BRDFmodels exist; both empiri
al BRDFs based on sample data, physi
ally basedBRDFs, and even intuitive BRDFs based on simpli
ity and the quality ofresulting images. Surfa
e re�e
tan
e is important in the spe
i�
ation ofdi�erent BRDFs.Re�e
tan
eRe�e
tan
e is de�ned as the ratio of re�e
ted to in
ident �ux:�(x) = d�rd�i (3.28)By integration over the hemisphere above x in (3.13), we
an a
hieve thefollowing: d�i(x)dA = Z
 Li(x;!0)(!0 � n) d!0 (3.29)Considering (3.27) and (3.13) we
an also �nd the following equation forthe di�erential re�e
ted �ux:d�r(x)dA = Z
 Z
 fr(x;!;!0)Li(x;!0)(!0 � n) d!0 (! � n) d! (3.30)Holding (3.30) and (3.29) up against ea
h other reveals the followingformula for
al
ulation of re�e
tan
e:�(x) = d�rd�i = R
 R
 fr(x;!;!0)Li(x;!0)(!0 � n)(! � n) d!0 d!R
 Li(x;!0)(!0 � n) d!0 (3.31)To give a brief example of the usefulness of re�e
tan
e we
an �nd theBRDF of di�use surfa
es, fr;d(x), whi
h by de�nition of a di�use materialis indi�erent to the dire
tions of in
ident and exitant light. A

ording to(3.31) we �nd:

60 The Mathemati
al Model of Illumination
�d(x) = fr;d(x) R
 R
 Li(x;!0)(!0 � n)(! � n) d!0 d!R
 Li(x;!0)(!0 � n) d!0= fr;d(x)Z
(! � n) d! R
 Li(x;!0)(!0 � n) d!0R
 Li(x;!0)(!0 � n) d!0= fr;d(x)�) fr;d(x) = �d(x)� (3.32)Most often it is assumed that the re�e
tan
e is
onstant over the entiresurfa
e of the di�use obje
t in whi
h
ase the BRDF is merely a
onstantgiven as fr;d = �d=�. Other more
omplex BRDFs will be des
ribed in later
hapters of this part.BTDFWhile the BRDF, fr, spe
i�es the amount of radian
e that is re�e
ted, we
ould
onsider a similar fun
tion, ft, spe
ifying the amount of radian
e thatis refra
ted. ft is
alled a Bidire
tional Transmittan
e Distribution Fun
tionBTDF and it
ould be derived in a similar way only
onsidering dLt insteadof dLr in (3.20).Measuring the BTDF from real surfa
es is, however, harder than measur-ing the BRDF [126℄ (sin
e the measurement must be done on the oppositeside of the surfa
e, that is, inside the medium). In
omputer graphi
s per-fe
tly spe
ular refra
tion (see se
tion 3.1) is usually the only
ase that is
onsidered, if a more
omplex distribution fun
tion is needed the BTDF ismost often approximated by an empiri
al model tuned by a few handpi
kedparameters.Re�e
tan
e is a ratio that
an be used in order to establish the amountof re�e
ted radian
e, �. If a surfa
e is perfe
tly spe
ular no radian
e will beabsorbed and the amount of refra
ted radian
e, that is, the transmittan
e,will be 1� �.The re�e
tan
e of a perfe
tly spe
ular surfa
e is a spe
ial
ase of (3.31).To �nd this spe
ular re�e
tan
e without solving (3.31), we need to borrowsome theory from wave opti
s. The Fresnel equations, dis
overed in 1821 (seeapp. B), are based on the wave theory of light and they take polarization intoa

ount. Polarization
an be explained as a superposition of two transversewaves, whi
h os
illate in dire
tions perpendi
ular to ea
h other and to thedire
tion of propagation [30℄. The Fresnel equations �nd the amount ofre�e
ted light in a medium with index of refra
tion �1 in
ident on a materialwith index of refra
tion �2 at the angle �1 with the surfa
e normal turningoutwards, refra
ting light at the angle �2 with the surfa
e normal turninginwards. The two
omponents of polarized light are given as [60℄:

3.4 Light S
attering 61
�k = �2
os �1 � �1
os �2�2
os �1 + �1
os �2 (3.33)�? = �1
os �1 � �2
os �2�1
os �1 + �2
os �2 (3.34)Light usually be
omes polarized due to s
attering [30℄. Light emittedfrom light sour
es is mostly unpolarized, or so
alled natural light. Forunpolarized light the Fresnel re�e
tion
oe�
ient, Fr, whi
h is identi
al tothe spe
ular re�e
tan
e, be
omes [60℄:Fr(�) = 12(�2k + �2?) = d�rd�i (3.35)Some
omputationally less expensive approximations to (3.35) have beenproposed. One of them was derived by S
hli
k and has the following empiri
alform [118℄: Fr(�) � F0 + (1� F0)(1 �
os �)5 (3.36)where F0 is the value of (3.35) at normal in
iden
e:F0 = ��1 � �2�1 + �2�2 (3.37)BSDFUsing the Fresnel equation, the BTDF is usually in
orporated in the BRDFto a

ount for perfe
tly spe
ular refra
tion. A more general model must,however, spe
ify both a BRDF and a BTDF over the entire unit spheresurrounding ea
h surfa
e lo
ation. Sin
e BRDFs and BTDFs in most
asesonly are de�ned on hemispheres, the more general model amounts to fourdi�erent fun
tions5, whi
h more
onveniently
an be gathered into a singlefun
tion, fs,
alled a Bidire
tional S
attering Distribution Fun
tion BSDF.Parti
ipating MediaIt is
ommonly assumed that all media in a s
ene are homogenous, and asstated previously, a

ording to Hero's prin
iple, light travels in straight linesin homogenous media. The result of these simplifying assumptions is thata rendering method usually
an be
ontent with evaluation of a distributionfun
tion, su
h as those des
ribed above, at the visible surfa
e areas of as
ene.Suppose that we wish to render a
loud of smoke or dust, a glass of milk,a marble statue, or human skin. In all those
ases (and many others) the5Two BRDFs and two BTDFs - one of ea
h for ea
h side of the surfa
e.

62 The Mathemati
al Model of Illuminationmaterial to be rendered is inhomogenous and translu
ent, meaning that thelight will refra
t into the medium and s
atter around before it is refra
tedba
k into the medium from where it
ame at another surfa
e lo
ation. Inother words we need a di�erent rendering method for inhomogenous media.Rendering of a translu
ent material will often be
ombined with otherrendering te
hniques that only take surfa
e s
attering into
onsideration, thisis obvious sin
e a s
ene often will
ontain both kinds of obje
t materials. Theinhomogenous media are therefore traditionally referred to as parti
ipatingmedia. The material of parti
ipating media is often quite translu
ent, andsin
e light does not move in straight lines inside it, we must take the entirevolume of a parti
ipating medium into a

ount (or at least a slab
lose tothe border area) when an obje
t of su
h material is to be rendered.Radian
e is still the quantity that we want to
al
ulate. We must, how-ever, take into
onsideration that the radiation is frequently weakened ands
attered by intera
tion with matter when traversing through an inhomoge-nous medium. Let �t(x) = �(x)� des
ribe the extin
tion
oe�
ient, whi
his
omposed of �, the mass absorption
oe�
ient, and �, the density of thematerial. The extin
tion
oe�
ient �t(x) de�nes the rate of radiation thatis absorbed at lo
ation x in the medium. Now, after traversing a thi
knessds in the dire
tion of the light's propagation, the radian
e will be absorbedby the medium a

ording to the extin
tion
oe�
ient [15℄:dL(s)ds = ��(s)�L(s) = ��t(s)L(s) (3.38)All the radiation that is absorbed is not ne
essarily transformed to otherkinds of energy, some or all of it may as well be s
attered ba
k into themedium. In order to spe
ify the out-s
attered radian
e we must spe
ify theangular distribution of the s
attered radiation, this is done by means of aphase fun
tion p(x;!;!0) = p(x;! �!0) whi
h in the general
ase must agreewith the following [15℄: Z
4� p(! � !0)d!04� = $0 � 1where $0 represents the fra
tion of out-s
attered radian
e, while 1 �$0 isthe fra
tion that has been turned into other forms of energy (or radiationoutside the visible spe
trum). $0 is
alled the albedo for single s
attering.In
omputer graphi
s it is most
ommonly assumed that the phase fun
tionis normalized to unity, that is, $0 = 1, whi
h is the
onservative
ase ofperfe
t s
attering.The s
attering
oe�
ient �s(x) is the rate of radiation that is s
atteredba
k into the medium at lo
ation x. In the
ase of perfe
t s
attering �s = �t.Otherwise the s
attering
oe�
ient is given as �s = $0�t. In terms ofthi
kness we
an write the out-s
attered radian
e as:

3.4 Light S
attering 63dL(s)ds = �t(s)Z
4� p(s;!0)L(s;!0)d!0 (3.39)Note how (3.39) to a
ertain extend resembles (3.27). For
onsisten
ywith other texts, and sin
e it may
ome in handy, we
an also de�ne anabsorbtion
oe�
ient as �a = �t � �s = (1�$0)�t.If the medium is not a light sour
e itself it is
alled a s
attering medium.In that
ase the out-s
attered radian
e is the total emission from a givenpoint in the medium.Suppose the radian
e transfer is pla
ed in a Cartesian
oordinate system(whi
h is generally the
ase), then the thi
kness s(x;!) is dependant onboth the
urrent lo
ation in the medium x and the in
ident dire
tion !.The total
hange in radian
e per unit distan
e for a s
attering media is thengiven as:(! � r)L(x;!) = ��t(x)�L(x;!) � Z
4� p(x;!;!0)L(x;!0)d!0� (3.40)Treatment of volumetri
 light sour
es su
h as �re or plasma is beyondthe s
ope of this proje
t, for the proper expansion of (3.40) see eg. [100℄,here we will restri
t ourselves to s
attering media only, and therefore (3.40)is su�
ient for our purposes.In order to derive a formal solution for (3.40) it is more
onvenient tokeep the notion of thi
kness for a moment. The simpler form of (3.40) is thesimple addition of (3.38) and (3.39):dL(s)ds = ��t(s)�L(s)� Z
4� p(s;!0)L(s;!0)d!0� (3.41)The formal solution is presented in [15℄ (though in a more general form)as:L(s) = L(0)e��(s;0) + Z s0 e��(s;s0)�t(s0)Z
4� p(s0;!0)L(s0;!0)d!0ds0 (3.42)where �(s; s0) is the opti
al thi
kness of the material between the points sand s0, whi
h is given as: �(s; s0) = Z ss0 �t(t)dtLet the s
attering parti
ipating medium be des
ribed geometri
ally by a�nite volume V � R3 , and let �V denote the boundary of V. Then rewriting(3.42) in terms of a Cartesian
oordinate system results in the followingformulation of the radian
e at a lo
ation x in a dire
tion !:

64 The Mathemati
al Model of Illumination
L(x;!) = Z xx�V e��(x;x0)�t(x0)Z
4� p(x;!;!0)L(x0;!0)d!0dx0+e��(x;x�V)L(x;!) (3.43)where x�V 2 �V is the
losest surfa
e point from x in dire
tion �! ([100℄)(re
all that ! is the dire
tion in whi
h the radian
e is traveling).In
omputer graphi
s (3.43) is referred to as the volume rendering equa-tion, sin
e �it is the equation that must be solved in order to render parti
-ipating media� [60℄. In our
ase it is not
ompletely general sin
e we have
hosen to work with s
attering media only, meaning that we left out theemission term. The simpler
ase introdu
ed at the beginning of this se
tion,where we
onsider the intera
tion between radiation and media at the surfa
eonly, of
ourse, has a similar equation. This is simply
alled the renderingequation and it is the subje
t of se
tion 3.5.The volume rendering equation is rather
omplex and has only re
entlybeen approa
hed in real-time. Some of the most re
ent real-time approxi-mations are presented in [52℄. One way to �nd a rough approximation is to
onstru
t a depth map of the s
ene and to use this for a simple thi
kness
al
ulation.Another approa
h is to simplify the equation by pi
king out a subsetof materials that have some
hara
teristi
s in
ommon. Based on those
hara
teristi
s some simplifying assumptions
an often be made. A largepart of the materials that we wish to simulate are quite dense. Materialssu
h as marble, milk, leaves, and skin all have a well de�ned boundary (�V).Rendering of those relatively dense materials
an be approximated usingthe original assumption that we need only
onsider the surfa
e area. Thisapproa
h, in fa
t, indi
ates that we
an use (3.43) to �nd an approximationof the BSSRDF (S in (3.20)).As mentioned before the visual e�e
t that we wish to simulate whenusing the BSSRDF is
alled subsurfa
e s
attering. This parti
ular e�e
t isespe
ially visible in translu
ent materials with a well-de�ned boundary, andit is treated as the
on
luding part of this se
tion on light s
attering.Subsurfa
e S
atteringWhy do we need to simulate subsurfa
e s
attering? (a) Though the e�e
t isoften subtle, it gives a powerful visual
ue, and (b) translu
ent obje
ts aremore pleasing, interesting, and realisti
 [52℄. Di�use materials, su
h as
lothand skin, often tend to be
ome rough and �unfriendly� in
omputer graphi
swhen subsurfa
e s
attering is not taken into a

ount.After [45℄ in whi
h (3.43) is approximated using a Monte Carlo methodin
ombination with a standard ray tra
er, the idea mentioned, namely that

3.4 Light S
attering 65the volume rendering equation
an be used to de�ne an approximate BSS-RDF, has bread a series of arti
les [29, 64, 105, 65, 61℄ whi
h resulted in anapproximative BSSRDF model that has been used for intera
tive subsurfa
es
attering in re
ent arti
les su
h as [75, 46, 81, 80, 13℄.It would
arry us too far to go through the theory presented in those ar-ti
les. However, we
an in short present some of the simplifying assumptionsthat are introdu
ed and some of the results that they a
hieve.First it is assumed that the phase fun
tion is independent of the singles
attering albedo $0, meaning that the fra
tion of out-s
attered radian
e
annot
hange a

ording to the phase fun
tion. Instead the single s
atteringalbedo is repla
ed by: � = �s�tand it is assumed that the phase fun
tion is normalized to unity $0 = 1.Under these assumptions �s = �t � �a 6= $0�t. Furthermore it is assumedthat the phase fun
tion is a fun
tion only of the phase angle, p(!;!0) = p(! �!0), meaning that the phase fun
tion is the same throughout a translu
entobje
t. These assumptions are done to ease
al
ulations involving the phasefun
tion.De�nition 6 (Isotropy) A medium is said to be isotropi
at a point, if the radian
e is independent of dire
tion at thatpoint. And if the radian
e is the same at all points andin all dire
tions, the medium is said to be homogenous andisotropi
. [15℄Next they look
loser at the pro
ess of subsurfa
e s
attering. It is ob-served that �the light distribution in highly s
attering media tends to be
omeisotropi
. This is true even if the initial light sour
e distribution and phasefun
tion are highly anisotropi
� [65℄. Whi
h means that multiple s
atteringbeneath the surfa
e of a translu
ent obje
t
an be represented by a di�usionapproximation Sd, whi
h in [65℄ is given as:Sd(x;!;x0;!0) = 1�Ft(�;!)Rd(kx� x0k)Ft(�;!0) (3.44)where Ft = 1� Fr is the unpolarized Fresnel transmittan
e (
f. (3.35)) andRd is the di�use re�e
tan
e, whi
h is approximated by a dipole light sour
e
onsisting of two point sour
es; one above the surfa
e and one beneath. [75℄provides a good overview of how Rd is
al
ulated, while
onstants measuredfor di�erent kinds of materials are provided in [65℄ whi
h originally intro-du
ed the dipole light sour
e.

66 The Mathemati
al Model of IlluminationBesides the di�usion approximation the BSSRDF given in this methodalso
onsists of a single s
attering term S(1)(x;!;x0;!0). The single s
at-tering term de�nes how the radian
e Li(x0;!0) in
ident on the translu
entobje
t at the surfa
e lo
ation x0 from the dire
tion !0
ontributes to the out-going radian
e Lo(x;!) at the surfa
e lo
ation x in the dire
tion ! by meansof refra
tion through the translu
ent obje
t a

ording to Fresnel terms, ab-sorption and the phase fun
tion.The
omplete BSSRDF model (as presented in the above mentioned seriesof arti
les) is the sum of the di�usion approximation and the single s
atteringterm: S(x;!;x0;!0) = Sd(x;!;x0;!0) + S(1)(x;!;x0;!0) (3.45)Most intera
tive approa
hes limit themselves to isotropi
 materials6. Inthat
ase S � Sd. Lens
h et al. [75℄ show how the di�use subsurfa
e s
at-tering re�e
tan
e Rd
an be in
orporated in a radiosity solution. Carr etal. [13℄ move this solution to the GPU. Hao et al. [46℄ in
orporate Sd ina lo
al illumination model, and �nally Mertens et al. [81, 80℄ use a
leverhierar
hi
al boundary element method similar to hierar
hi
al radiosity withSd and report robust results. They all obtain intera
tive frame rates.The intensions of this se
tion (3.4) have been (a) to provide a good un-derstanding of light s
attering in general, and (b) to give a brief perspe
tiveon the
urrent approa
hes to subsurfa
e s
attering. We have not given allthe details, but we have provided the ne
essary referen
es if spe
i�
 detailsare needed. In part III we present our own simpli�ed approa
h to subsurfa
es
attering based on the theory of parti
ipating media.This
on
ludes the se
tion on light s
attering. In the next se
tion weuse the theory on light s
attering to derive the rendering equation from itsoriginal enun
iation.3.5 The Rendering EquationMost of the main
omputer graphi
s resear
h areas were founded in the earlyeighties. Major global illumination te
hniques su
h as ray tra
ing, �rst pre-sented for
omputer graphi
s by Turner Whitted in [137℄, and radiosity, fromGoral et al. in [40℄, were more or less based on theoreti
al results from heattransfer, opti
s, and radiometry. A straightforward relationship between thedi�erent te
hniques was, however, not
lear until Kajiya's enun
iation of therendering equation in [66℄, where he shows that ray tra
ing and radiositybasi
ally seek to solve the same integral equation.The rendering equation is based on thermal radiation heat transfer (see[121℄) and fundamentally it derives from the same formula as has been de-6An isotropi
 medium
orresponds to a di�use surfa
e.

3.5 The Rendering Equation 67s
ribed in se
tions 3.2 and 3.4. In its original form the rendering equationwas given as below, [66℄:L(x;x0) = g(x;x0) ��(x;x0) + ZS �(x;x0;x00)L(x0;x00)dx00� (3.46)where x, x0, and x00 are surfa
e lo
ations (possibly at di�erent surfa
es inthe s
ene, x may be an eye point and x00 a position on a light sour
e). S isthe union of all surfa
es, meaning that the integral is taken over all pointsin the geometry of a s
ene. g(x;x0) is a visibility term spe
ifying whether ornot the point x0 is visible from x. �(x;x0) = Le(x;x0) is radian
e emittedfrom the surfa
e lo
ation x0 rea
hing the surfa
e lo
ation x. As des
ribedin se
tion 3.2 emission
an result from, for example, a supply of ele
tri
alpower, and it should be added to the radian
e re�e
ted at the point x0.In order to understand the transport of light from one surfa
e lo
ation toanother, we must �rst prove that radian
e is invariant along straight paths.Invarian
e of Radian
e Along Straight PathsA

ording to Hero's prin
iple light travels in straight lines in a homogenousmedium (
f. se
tion 3.1). Therefore it is evident that light traveling througha homogenous medium from one surfa
e lo
ation x in a s
ene towards anothery will rea
h the other point provided that no o

luding obje
t is situatedbetween the two points.Sin
e light is traveling in a straight line between two surfa
e lo
ations,a di�erential solid angle d!xy for radian
e Lo(x;y) through a di�erentialsurfa
e area dAx
entered at x
an be subtended by a di�erential surfa
e areadAy
entered at y. The subs
ript o denotes that the radian
e is outgoing,and the radian
e leaving x and arriving at y
an thus be des
ribed as:Lo(x;y) = d2�o
os �x d!xy dAx (3.47)Letting the subs
ript i denote the radian
e in
ident on a surfa
e, we
an,
onversely, de�ne the radian
e arriving at y from x as:Li(y;x) = d2�i
os �yd!yx dAy (3.48)Re
all from se
tion 3.2 that knowledge of the area subtending a solidangle gives us a possibility to determine the solid angle by proje
tion of thearea on a sphere
entered at the point where the solid angle is formed.Consider the solid angle ! formed at x subtended by a surfa
e area Ay
entered around y, �gure 3.13 pi
tures the di�erential
ase. Let r be thedistan
e between x and y, then a

ording to (3.7) ! = As=r2, where As isthe area of Ay proje
ted to the sphere s of radius r
entered at x. If Ay is

68 The Mathemati
al Model of Illumination

Figure 3.13: A solid angle formed at x subtended by an arbitrarily oriented di�erentialsurfa
e area dAy
entered at y.small, a reasonable approximation to As is the proje
tion of Ay on the planetangent to s and normal to the dire
tion ! = y�xky�xk around whi
h the solidangle is de�ned. Meaning that:! = Asr2 � Ay;pr2If we let Ay approa
h the in�nitesimal surfa
e area dAy, the di�erentialsolid angle (as spe
i�ed in (3.9)) will, at the limit, approa
h:d! = dAsr2 = dAy;pr2As shown in �gure 3.8 we
an further spe
ify the di�erential proje
tedarea: d! = dAy;pr2 =
os �y dAyr2 = (�! � ny) dAyr2 (3.49)where �y is the angle between the di�erential surfa
e area dAy and the planetangent to s and normal to !, whi
h is equivalent to the angle between �!and the unit normal ny to Ay at y.Returning to the transport of light between two surfa
e lo
ations, we
ansubstitute (3.49) in (3.47) and (3.48) re
eiving the following:Lo(x;y) = r2 d2�o
os �x
os �y dAy dAx

3.5 The Rendering Equation 69Li(y;x) = r2 d2�i
os �y
os �x dAx dAyA

ording to the �rst law of thermodynami
s (whi
h is also known as thelaw of
onservation of energy, see eg. [11℄) the total energy of a system andits surroundings is
onstant. Meaning that all the energy outgoing at x thatwill rea
h y (whi
h by Hero's prin
iple will be all light that is not o

luded)without being absorbed by parti
ipating media, will also be in
ident at y.If light is o

luded Lo(x;y) = Li(y;x) = 0. Therefore it is indeed the
asethat in a va
uum: Lo(x;y) = Li(y;x) (3.50)�Returning to the original problem; we seek to simulate human visionin a digital s
ene and show the result on a monitor. Basi
ally this meansthat we want to �nd the total radian
e in
ident at the di�erential surfa
earea representing the eye. The total radian
e in
ident at the eye
enteredaround x is either radian
e Li(x;x0) transported from all surfa
e lo
ationsin the s
ene to the eye, or the radian
e Li(x;!) in
ident at the eye from alldire
tions given by the hemisphere over the eye.The rendering equation des
ribes the problem in terms of surfa
e lo
a-tions only, while the original de�nition of radian
e des
ribes the problem interms of one surfa
e lo
ation and dire
tional solid angles on the hemisphereabove it.To show
onsisten
y between the rendering equation and the theory ofradian
e and light s
attering that has been presented previously in this
hap-ter, we will in the remainder of this se
tion show why the rendering equationis an alternative formulation of the hemispheri
al problem that was presentedwith respe
t to re�e
tion in se
tion 3.4.The invarian
e of radian
e along straight lines gives a
ue about why itis sometimes
onvenient to
onsider the radian
e in terms of surfa
e lo
a-tions and an integral over all surfa
e areas rather than an integral over thehemisphere as presented in (3.27).L(x;x0) is referred to as transport radian
e and mathemati
ally we
ande�ne it as: d3Qdt dx dx0 = d2�dx dx0 = L(x;x0) (3.51)Combining (3.51) with (3.13) we will a

ording to (3.49) retrieve thefollowing
onne
tion between transport radian
e and dire
tional radian
e:L(x;!) = 1
os � d2�d! dx = r2
os �
os �0 d2�dx dx0 = r2
os �
os �0L(x;x0) (3.52)

70 The Mathemati
al Model of IlluminationSuppose we are
onsidering the outgoing radian
e from the di�erentialsurfa
e area
entered around x0. Inserting the results from (3.49) and (3.52)in (3.46) we retrieve the following version of the rendering equation:Li(x;�!)
os �
os �0r2 = g(x;x0)�Le(x0;!)
os �
os �0r2+Z
 �(x;x0;x00)Li(x0;!0)
os �0
os �00r2 r2
os �00d!0�) Li(x;�!) = g(x;x0)�Le(x0;!) + Z
 fr(x0;!;!0)Li(x0;!0)
os �0 d!0�where fr(x;!;!0)
os �
os �0=r2 = �(x;x0;x00).Now, if we wish to �nd the exitant (or outgoing) radian
e at lo
ation x0rather than the radian
e in
ident at lo
ation x, all radian
e will be
al
ulatedin the same point and in that
ase we need not worry about the visibilityterm (g(x;x) = 1). Then it follows that:Lo(x0;!) = Le(x0;!) + Z
 fr(x0;!;!0)Li(x0;!0)(n � !0) d!0= Le(x0;!) + Lr(x0;!) (3.53)where it should be noted that Lr is exa
tly the same as the re�e
ted radian
edes
ribed in (3.27).Comparing transport radian
e and dire
tional radian
e, we know fromradiometry that dire
tional radian
e most
losely resembles what the eyeper
eive as
olor, the hemispheri
al formulation of the rendering equation(3.53) is therefore better to use than Kajiya's original formulation (3.46).Still it might be useful to
al
ulate the re�e
ted radian
e by integration oversurfa
e areas rather than the hemisphere. Therefore the rendering equa-tion has an area formulation as well. The area formulation is derived bysubstitution of (3.49) in the integral representing the re�e
ted radian
e:Lo(x;!) = Le(x;!)+ZA fr(x;!;!0)Li(x;!0)g(x;y)(nx � !0)(ny � �!0)r2xy dAyFor
onsisten
y with other texts (eg. [30℄) we will rename the visibilityfun
tion to V (x;y) = g(x;y) and de�ne a geometry term G(x;y):G(x;y) = (nx � !0)(ny � �!0)r2xyThe resulting area formulation of the rendering equation is then:

3.6 Light Transport 71
Lo(x;!) = Le(x;!) + ZA fr(x;!;!0)Li(x;!0)V (x;y)G(x;y) dAy (3.54)Having des
ribed the rendering equation all there is left to do is to solve it.Consider, however, the re
ursive nature of the re�e
ted radian
e term, thismakes the rendering equation impossible to solve analyti
ally. The followingse
tion on light transport theory will investigate the re
ursive re�e
tion termand introdu
e a few integral operators for ease of notation.3.6 Light TransportDuring this
hapter we have des
ribed a mathemati
al model through whi
hthe illumination of an environment
an be simulated. Radian
e is the quan-tity that we are interested in and the rendering equation states how radian
eis
al
ulated at an arbitrary lo
ation in an arbitrary dire
tion.Evaluation of the rendering equation is, however, not straight forward.In the remainder of this se
tion we shall take a
loser look. Suppose weare looking at a surfa
e lo
ation x. A

ording to the invarian
e of radian
ealong straight paths (3.50) the radian
e rea
hing the eye, that is, the
olorwe see, is equivalent to the exitant radian
e at x in the dire
tion towards theeye. This quantity is exa
tly what the rendering equation (3.53) �nds. Theemission term Le is only non-zero if the obje
t is a light sour
e. Cal
ulationof Le is des
ribed in se
tion 3.2. The re�e
ted radian
e term Lr �nds thehemispheri
al-dire
tional
ontribution (see �gure 3.10b), whi
h is the sum ofall radian
e in
ident over the hemisphere. Now, a

ording to the invarian
eof radian
e along straight paths, ea
h radian
e in
ident from the dire
tion!0 on the hemisphere is equivalent to the exitant radian
e at the �rst pointinterse
ted if we tra
e a ray ba
kwards in the dire
tion !0. This exitantradian
e is again found by evaluation of the rendering equation and so on andso forth. The re
ursion be
omes apparent, sin
e Li(x;!0) in the renderingequation is substituted by Lo(y;�!0), whi
h is again substituted by therendering equation evaluated at y in the dire
tion �!0.To handle the rendering equation more
on
isely, we
an introdu
e a fewlinear integral operators7. Operator notation is a
onvenient way to des
ribelight transport. We
an de�ne a s
attering operator S ([17℄), whi
h representsthe integral in (3.27) �nding re�e
ted radian
e from in
ident radian
e. Stransforms a
ertain (in
ident) radian
e distribution, Li, over all points anddire
tions to another distribution, Lr, that gives the re�e
ted radian
e valuesafter one re�e
tion [30℄. This means that S depends on all the di�erentBRDFs de�ned for di�erent materials in a s
ene.7Integral operators are a spe
ial
ase of the transformers introdu
ed in array theory(
f. se
. 2.1).

72 The Mathemati
al Model of IlluminationHaving the s
attering operator S at our disposal we
an rewrite the hemi-spheri
al version of the rendering equation using the fun
tional approa
hdes
ribed in se
tion 2.1, whi
h results in the following
on
ise form:Lo = Le + SLi (3.55)The result of S applied to a radian
e distribution Li over all pointsand dire
tions (A �
) is e�e
tively a hemispheri
al-dire
tional re�e
tan
edistribution fun
tion (HDRDF) applied to all points and dire
tions.Be
ause of (3.50) another operator
alled the propagation operator P,transforming an exitant radian
e distribution to an in
ident radian
e distri-bution,
an be de�ned. In light of the propagation operator the renderingequation
an be written as: Lo = Le + SPLo (3.56)where it shows immediately that the rendering equation is re
ursive.For
onvenien
e we de�ne a new operator representing the
ompositionof s
attering and propagation To = SP
alled the exitant transport operator.We
an now expand the rendering equation as a Neumann series:Lo = Le + ToLo= Le + To(Le + ToLo)= Le + To(Le + To(Le + ToLo))= Le + ToLe + T 2o Le + T 3o Lo= 1Xn=0T no Le (3.57)where the supers
ript n denotes that the outgoing radian
e has been s
at-tered n times. The path of light through a s
ene expressed by the propaga-tion, s
attering, and transport operators is illustrated in �gure 3.14.The physi
al interpretation of (3.57) is that we
an split the renderingequation up into
omponents of radian
e that has s
attered on
e, twi
e,thri
e, et
. [66℄ (ea
h s
attering is often referred to as a light boun
e). Thisobservation is the most important point in this se
tion. It indi
ates that we
an des
ribe the illumination of a s
ene by means of the light's path throughthe s
ene from the light sour
e to the eye point.Light Transport NotationWhen light intera
ts with matter the resulting s
attering is highly dependanton the material properties. Sin
e we know that the rendering equation is thesum of
ontributions from di�erent light paths (
f. (3.57)),
lassi�
ation of

3.6 Light Transport 73

Figure 3.14: A simple illustration of light transport. From top left to bottom right:Le, P Le, SPLe or ToLe, PT oLe, ToToLe or T 2o Le, and PT 2oLe. The sequen
e
ould be
ontinued inde�nitely.light paths a

ording to the materials they have intera
ted with along theway would indeed be useful. Paul S. He
kbert [48℄ introdu
ed a notation,now
alled the light transport notation, where:� L is a light sour
e� E is the eye (or the virtual
amera)� S is a spe
ular surfa
e� D is a di�use surfa
eJuxtaposition of these symbols de�nes a light path, for example, LDEdenotes radian
e from a light sour
e re�e
ted di�usely on
e before rea
hingthe eye, and LDSE is a di�use surfa
e lit by a light sour
e and seen by re�e
tionon a spe
ular surfa
e (su
h as a mirror).A
lass of light paths is de�ned using the following symbols in
ombina-tion with the letters given above [60, p. 31℄:� (k)+ one or more k events� (k)* zero or more k events� (k)? zero or one k event� (kjk') a k or a k' eventmeaning that L(SjD)*E is a
lass in whi
h all light paths �t.The advantage of light transport notation is that some visual e�e
ts areoften due to a
ertain
lass of light paths. If a method for the simulation ofone spe
i�
 visual e�e
t is found, we
an split L(SjD)*E into sub
lasses for

74 The Mathemati
al Model of Illuminationdi�erent visual e�e
ts and use di�erent methods for their solutions. Onlywe must make sure never to add the same light path into the integral morethan on
e. An example is a method for mirror e�e
ts. Mirrors are simulatedby the light paths given as L(SjD)*SE. If a spe
i�
 method is used for mirrore�e
ts other rendering methods used for the same s
ene are only allowedto add light paths of the
lass L(SjD)*DE to the integral of the renderingequation.Light transport notation also gives a
on
ise way to des
ribe whi
h partof the rendering equation that a spe
i�
 rendering method
an solve. Classi
ray tra
ing, for example, only solves the paths given as LD?S*E, while
lassi
radiosity solves the paths LD*E only. Ray tra
ing and radiosity are des
ribedin
hapter 4.Re
ipro
ity of the BRDFA

ording to Ni
odemus et al. [88, p. 40℄ (and many later sour
es) itis a fundamental property of the BRDF that, �by Helmholtz re
ipro
ity,whi
h holds in the absen
e of polarization and magneti
 �elds�, the BRDFis independent of the dire
tion in whi
h light �ows. That is, we may swapthe in
ident and exitant dire
tions and the BRDF remains un
hanged:fr(x;!;!0) = fr(x;!0;!) (3.58)This property of the BRDF is quite important sin
e it allows us to solvethe rendering equation by tra
ing the radian
e ba
kwards through the s
ene.The propagation and s
attering is, a

ording to the invarian
e along straightpaths and the re
ipro
ity respe
tively, the same as that of �gure 3.14 only,when tra
ing the radian
e ba
kwards, we start at the eye point instead of thelight sour
e. This gives rise to a dual understanding of the light transportproblem whi
h is brie�y introdu
ed in the remainder of this se
tion.Importan
eIf we tra
e radian
e ba
kwards through the s
ene, we
annot know the exa
tvalue of the radian
e in the same way as we
an
al
ulate the initial emissionterm before tra
ing radian
e from the light sour
e. Instead we know thatthe radian
e rea
hing the eye is 100% of interest to us. In [99℄ Pattanaikand Mudur introdu
ed the term importan
e W , whi
h has been given severalde�nitions in the literature, it is, however,
ommonly de�ned as �the fra
tionof radian
e that
ontributes (dire
tly or indire
tly) to the region of interest�[17, p. 4℄, and we shall use it as su
h. Meaning that the radian
e rea
hingthe eye has the importan
e We(xeye;!) = 1.Importan
e has the exa
t same properties as radian
e, only it propagatesin the opposite dire
tion and solves the dire
tional dual problem. Importan
ealso has an exitant (Wo) and an in
ident (Wi) representation, and a

ording

3.6 Light Transport 75to the invarian
e of radian
e along straight paths it is given, if x and y aremutually visible, that: Wi(x;!) =Wo(y;�!) (3.59)Suppose we de�ne a set S � A�
, where A denotes all the surfa
e pointsin a s
ene and
 denotes the hemisphere, su
h that ea
h element (x;!eye) 2S is a point x seen dire
tly from the eye. !eye is the dire
tion towards theeye at the point x. Then a

ording to (3.59) Lo(S) fully
ontributes to theregion of interest, and we
an write:We(x;!) = � 1 if (x;!) 2 S0 if (x;!) =2 S (3.60)Then, in light of (3.58), (3.59), and (3.60), we
an de�ne an equationfor
al
ulation of in
ident importan
e, whi
h is quite similar to the render-ing equation. This equation is
alled the response fun
tion (or potentialfun
tion):Wi(x;!) =We(x;!) + Z
x fr(x;!;!0)Wo(x;!0)
os �0d!0 (3.61)where n is the surfa
e normal at x, and
x denotes all the dire
tions overthe hemisphere from where radian
e was in
ident at the point x.In exa
tly the same way as we did previously with the rendering equation,we
an introdu
e an in
ident transport operator Ti = PS and write (3.61) inthe following way: Wi =We + TiWi (3.62)Though we will not go into the theory of adjoint operators, we will brie�ymention that if we let O� denote the adjoint of O, then Ti = PS = P�S� =(SP)� = T �o , whi
h shows that the in
ident transport operator is the adjointof the exitant transport operator. For more information on adjoint operatorsin rendering we refer to [17℄ and [30℄.Importan
e is interesting sin
e it gives us the opportunity to start arendering algorithm both at the light sour
e and at the eye point, and to letimportan
e and radian
e meet midway. We shall exploit this notion in therendering method that we develop in part III.This
on
ludes the theory that we wish to present on light transport. Inthe following se
tion we shall brie�y des
ribe the lo
al and global illumina-tion models in terms of the theory that has been presented in this
hapter.

76 The Mathemati
al Model of Illumination3.7 Lo
al vs. Global IlluminationAs des
ribed introdu
torily in
hapter 1 a lo
al illumination model treatsea
h point in a s
ene as an isolated
ase where exitant radian
e is dependanton the lo
ations of light sour
es and on the lo
ation of the eye only. In termsof the rendering equation:Llo
al(x;!eye) = Le(x;!eye) + n�1Xi=0 fr(x;!eye;!0i)Le(yi; !0i)(n � !0i)where n is the number of light sour
es, yi is the position of the i'th lightsour
e, !0i is the dire
tion towards the i'th light sour
e, and n is as alwaysthe surfa
e normal at the lo
ation x.The assumption that ea
h point is independent of the surrounding ge-ometry results in some serious short-
omings of lo
al illumination.In terms of light transport lo
al illumination handles the light pathsL(SjD)?E only. Also note that lo
al illumination approximate light sour
esas single points in spa
e. To get a more
orre
t result the light sour
esought to be modeled as surfa
e areas, and then the area formulation of therendering equation should have been used instead. The result is that thevisibility term has been left out in lo
al illumination, whi
h has the e�e
tthat s
enes lit with a lo
al illumination model do not feature shadows.Lo
al illumination models are useful for simple shading only. Their ad-vantage is that they are
omputationally very inexpensive. Until re
entlylo
al illumination supplemented by an approximative shadow algorithm wasthe de fa
to standard in most appli
ations featuring real-time rendering.Global illumination is the term used for models that approximate therendering equation more
losely than lo
al illumination does. The renderingmethods for full global illumination simulates all
lasses of light paths exa
tlyon
e: L(SjD)*E. Most global illumination methods, however, only simulatea subset of those light paths.As mentioned before
lassi
 ray tra
ing simulates the paths LD?S*E, while
lassi
 radiosity simulates LD*E. Later approa
hes expand these te
hniquesor
ombines them, in the latter
ase they are
alled hybrid methods.A hybrid method for simulation of full global illumination was exa
tlywhat led He
kbert to his very useful light transport notation, see [48℄. He
k-bert's method has a light pass shooting photons into the s
ene and depositingthe photon's power in a radiosity texture, this models the paths LS*D. Be-sides he has an eye pass tra
ing importan
e in order to model the paths DS*E.Now, progressive re�nement of the radiosity textures, that is, progressive re-emission of photons from the brightest surfa
e, will repeat the paths (S*D)an arbitrary number of times. Combination of the progressively re�ned lightpass and the eye pass will thereby a

ount for all light paths: L(S*D)*S*E= L(SjD)*E [48℄.

3.8 Solving Re
ursive Integrals 77Methods su
h as He
kbert's �adaptive radiosity textures� are also referredto as multi-pass methods. In fa
t, He
kbert's method
losely resembles thewidely used multi-pass method
alled photon mapping, whi
h was developedby Henrik Wann Jensen in [53, 63, 54, 62, 57, 55, 56, 58, 59, 60℄. There areimportant di�eren
es, however, and photon mapping will be des
ribed inmore detail in
hapter 4.The next se
tion will take a super�
ial look at some of the numeri
almethods that
an be employed in order to solve the problem of in�nitere
ursions, whi
h is inherent in global illumination.3.8 Solving Re
ursive IntegralsA Fredholm integral equation of the se
ond kind is of the following form [98℄:y(x) = f(x) + �Z ba K(x; t)y(t)dtIf we
ompare this form with (3.53) or (3.54), it is obvious that therendering equation is indeed a Fredholm equation of the se
ond kind, andas su
h it
annot be solved analyti
ally, ex
ept for trivial
ases. The optionwe have left is to use numeri
al algorithms for the solution of the renderingequation. There are two basi
 approa
hes: �nite element and point sampling(or Monte Carlo) te
hniques, all others are derived from them [124℄.The basi
 idea of �nite element te
hniques is to establish a system oflinear equations, whi
h has a solution approximating the original integral.More te
hni
ally the exa
t solution of the Fredholm equation lives in anin�nite-dimensional spa
e. If we proje
t the fun
tion (y in the formula-tion above, Lo in the rendering equation) into a �nite-dimensional subspa
espanned by some orthogonal basis fun
tions, then an approximative solutionfor the equation
an be derived, see [124℄ for further details.Radiosity [40, 18, 94℄ is based on the �nite element approa
h. The ra-diosity method (named after the radiometri
 quantity radiosity, B, whi
his equivalent to the exitant radian
e, M) takes advantage of the fa
t thatre�e
ted radian
e and radiosity are usually pie
ewise smooth fun
tions overa surfa
e. If this is the
ase, they
an be approximated by smooth �nite-dimensional fun
tions. The problem is that only di�use materials have theseproperties and therefore the fundamental assumption in radiosity is that allmaterials in a s
ene are perfe
tly di�use. This indu
es serious limitationsto the radiosity approa
h. The advantage, on the other hand, is that theresulting illumination looks smooth and pleasing.Monte Carlo methods basi
ally approximate the integrand by taking alarge number of point samples distributed a

ording to a probability den-sity fun
tion (PDF). The phenomenon average8 is the average of the sample8A long-term average of data from an underlying random phenomenon, see [104℄

78 The Mathemati
al Model of Illuminationpoints found a

ording to the PDF. Due to the Law of Large Numbers theprobability that the phenomenon average is equal to the exa
t value of theintegral
onverges to unity as the number of samples in
reases towards in-�nity, see [30℄ or [124℄ for further details.Distribution ray tra
ing9 [20, 133℄ is based on Monte Carlo te
hniques.The simple form of distribution ray tra
ing uses a
osine lobe for samplingover the hemisphere, and reje
tion sampling if re�e
tion is
on�ned to a
ertain solid angle by the BRDF at the
urrent surfa
e point. Though Cooket al. [20℄ in 1984 only had a verbal presentation of the rendering equation10,their algorithm in
ludes how the following should be done at ea
h positionseen from the eye point:� Sampling of the light sour
es for shadow
al
ulations.� Sampling around the mirror dire
tion for re�e
tions.� Sampling around the dire
tion of transmitted light for refra
tions.The algorithm stops at a single level of distributed re�e
tions and re-fra
tions to avoid the
ombinatorial explosion, meaning that it models thelight paths L(SjD)?(SjD)?E. Ward et al. [133℄ presents an idea
alled irradi-an
e
ashing, whi
h introdu
es the assumption of smooth indire
t illumina-tion in order to make multiple di�use interre�e
tions more
omputationallytra
table in distribution ray tra
ing.Monte Carlo methods are
on
eptually simpler than �nite element meth-ods, but the large amount of samples needed often results in very slow
on-vergen
e. Most often the sample points will be too few and varian
e will bevisible as high-frequen
y noise in the image. Unfortunately the eye is moreeasily distra
ted by high-frequen
y noise [60℄ as
ompared to the smoothedimages rendered using �nite element methods. On the other hand, the sys-temati
 errors that
an o

ur in �nite element methods (be
ause of the re-du
tion of dimensions in the integral), will not o

ur in images renderedusing Monte Carlo te
hniques.In this se
tion we have given a short introdu
tion to the two basi
 nu-meri
al algorithms that
an be employed in order to solve re
ursive integralequations. Besides we have given two examples to illustrate how these al-gorithms are appli
able to the problem of solving the rendering equation.Knowledge of the two basi
 numeri
al te
hniques, supported by the rest ofthe theory des
ribed in this
hapter, should, hopefully, make it easier to
las-sify and understand the di�erent rendering te
hniques that we will presentthroughout the remainder of this part.9Distribution ray tra
ing was �rst
alled distributed ray tra
ing. In [48℄ He
kbertargued that the term distributed ray tra
ing was
onfusing be
ause of the parallel hardware
onnotations of ray tra
ing. Therefore the term was
hanged.10Re
all that the rendering equation was not known in the area of
omputer graphi
suntil Kajiya introdu
ed it in 1986 in [66℄.

Chapter 4Traditional Approa
hes toRealisti
 Image Synthesis

All art is but imitation of nature.Lu
ius Annaeus Sene
a (4 BC. - 65 AD.)

80 Traditional Approa
hes to Realisti
 Image SynthesisIn this
hapter we will dis
uss rendering methods that strive for visual re-alism. In order to render images of a virtual s
ene in photorealisti
 qualitythe rendering method will have to employ a global illumination model (seese
tion 3.7).As written in se
tion 3.8 there are, in prin
iple, only two fundamentallydi�erent methods for rendering of photorealisti
 images: Ray tra
ing andradiosity. Both methods have advantages and disadvantages. Neither
lassi
ray tra
ing nor
lassi
 radiosity fully solves the global illumination problem(
f. se
. 3.6), therefore three paths of development have emerged sin
e the raytra
ing and radiosity were originally developed. The options are to expandone of the
lassi
al approa
hes or to make a hybrid.The development of ray tra
ing expansions has primarily worked in thedire
tion of path tra
ing introdu
ed by Kajiya in [66℄. Subsequently multi-pass te
hniques su
h as photon mapping have emerged with great su

ess.Expansions of radiosity have worked in the dire
tion towards sto
hasti
 ra-diosity [87℄. In sto
hasti
 radiosity sampling is used to solve the systemof linear equations approximating the rendering equation more e�
iently.This makes sto
hasti
 radiosity a hybrid of the two basi
 numeri
al methodsfor solving the rendering equation (
f. se
. 3.8), still it is initially based ona �nite element method. Good examples of hybrid methods are He
kbert'sadaptive radiosity textures (
f. se
. 3.8) and a method
alled instant radiositypresented by Keller in [69℄.Des
ribing all the methods presented sin
e Whitted and Goral et al. in-trodu
ed ray tra
ing and radiosity respe
tively is far too extensive for thisreport. A few methods, however, have been implemented for this proje
t andstrongly inspired the rendering ideas that we present in part III. Some ofour ideas and experiments are even based dire
tly on these methods. In this
hapter we, therefore, give a brief introdu
tion to the following renderingmethods for realisti
 image synthesis:� Classi
 radiosity is des
ribed in se
tion 4.1. Sin
e radiosity has onlyhad a peripheral in�uen
e on our �nal method, we will not go intodetails on this subje
t. However, we do have a simple implementationof radiosity in order to
reate referen
e images for our own method.The ba
kground ne
essary for this implementation will be des
ribed.� Ray tra
ing was the original method of
hoi
e for this proje
t. Mu
htime has been invested in a
omplete understanding of
lassi
 ray tra
-ing. Some of the ideas that we �rst
ame about, strived to optimizeray tra
ing in various ways (
f.
hap. 11). Re
all that one of the origi-nal obje
tives of this proje
t was to move methods for realisti
 imagesynthesis
loser to real-time rendering and vise versa. Ray tra
ing isgiven a thorough des
ription in se
tion 4.2.� Monte Carlo ray tra
ing is ne
essary if we want to expand
lassi
 ray

4.1 Radiosity 81tra
ing so that it
an simulate full global illumination. Monte Carloray tra
ing is also an important step towards a good understandingof photon mapping. Se
tion 4.3 presents Monte Carlo ray tra
ing inshort. The Monte Carlo te
hniques des
ribed in this se
tion are alsoimportant for some of our own ideas des
ribed in part III.� Photon mapping is a great te
hnique for speeding up Monte Carloray tra
ing. Re
ent arti
les have even shown that photon mapping
an be simulated in real-time, see espe
ially [74℄. Se
tion 4.4 des
ribesphoton mapping, whi
h also inspired the method we
all dire
t radian
emapping (see
hap. 12).4.1 RadiosityWhen light enters a s
ene it will boun
e around between the obje
ts present.Faster than the eyes
an per
ept it the light will rea
h a steady state wheremost of the s
ene is illuminated. Some obje
ts in the s
ene will be visiblebe
ause the light rea
hes them dire
tly from the sour
e while other obje
tswill be illuminated by indire
t lighting, meaning that light has been re�e
tedfrom other obje
ts. In the real world the indire
t light has a surprisingly largein�uen
e on the illumination of an environment. A good example is given in[2, p. 277℄:At night, go into a room and
lose the blinds and drapes andturn a light on. The reason you
an see anything not in line ofsight of the light sour
e is be
ause the light boun
es o� obje
tsin the room.When light rea
hes its steady state, the obje
ts in a s
ene
an all bemodeled as light sour
es sending out radian
e
orresponding to the lightthat is re�e
ted from them. For a perfe
tly spe
ular material the light willbe re�e
ted in a
ertain dire
tion a

ording to the law of re�e
tion (see se
.3.1), but for a perfe
tly di�use material the re�e
ted light will be distributeduniformly over the hemisphere above the in
ident surfa
e lo
ation.As brie�y mentioned in se
tion 3.8 the fundamental assumption in radios-ity is that all surfa
es in the s
ene are di�use. The reason for this assumptionis that light re�e
ted di�usely is quite smooth and usually does not
hangesuddenly over a surfa
e area. When this is the
ase, the rendering equation
an be given a quite exa
t approximation by a �nite element method (
f.se
. 3.8).The nature of radiosity leads to both advantages and disadvantages. Ra-diosity is perfe
t for the simulation of
olor bleeding. The easiest way toexplain
olor bleeding is through an example: If a red wall is
lose to, forexample, a white wall you will faintly be able to see red on the white wall,

82 Traditional Approa
hes to Realisti
 Image Synthesis

Figure 4.1: The Cornell box is a ben
hmark s
ene that physi
ally exists at the CornellUniversity Program of Computer Graphi
s. The Cornell box is useful for testing whetherdi�erent rendering te
hniques
an model di�use interre�e
tions. The visual e�e
ts thatshould be noti
ed in this s
ene are soft shadows,
olor bleeding (visible as a red or greenshade on otherwise white surfa
es, espe
ially at the sides of the boxes turning towards thethe red and green walls respe
tively), and the smoothness of the illumination in general.This parti
ular rendering of the Cornell box is a referen
e image posted at the web pageof Cornell University [95℄.sin
e the light re�e
ted from the red wall is red. An example of
olor bleeding
an be seen in �gure 4.1.An advantage of radiosity is that it is independent of the
amera (or eye)position. This means that as long as all obje
ts and light sour
es in a s
eneremain stati
 no re
al
ulation is ne
essary. Hen
e, you
an move aroundfreely in the environment. Radiosity s
enes are therefore sometimes referredto as walkthroughs [90℄.Unfortunately it takes quite some time to
al
ulate the radiosity solu-tion. This means that radiosity, like ray tra
ing, is ill-suited for real-timeappli
ations. Furthermore the basi
 assumption of traditional radiosity ex-
ludes rendering of spe
ular obje
ts. To improve on this short
oming a
on-
ept known as extended form fa
tors, introdu
ed by Rushmeier in [114, 115℄,

4.1 Radiosity 83showed that the system of linear equations
an be altered in order to allowray tra
ing for the spe
ular elements in a s
ene and radiosity for the di�useelements. This enables hybrid methods that
an seek to
ombine the bestfrom both methods.The Radiosity EquationAs already mentioned all re�e
ting surfa
es in the s
ene are assumed to bedi�use. This implies that all surfa
es emit a
onstant energy, simulating a
onstant re�e
tan
e of light from a given surfa
e. In other words one surfa
ere�e
ts the same light with the same intensity in all dire
tions. The task isnow to
al
ulate the intera
tions between the re�e
tions.First step is to divide all obje
ts in the s
ene into smaller (often re
tan-gular) areas, or pat
hes, where the energy is assumed
onstant within ea
hpat
h. The number of pat
hes de
ides how detailed the light settings will be.In areas where the light intensity is
hanging fast it is good to have manypat
hes where in
onstant or slow
hanging areas many pat
hes are more orless a waste of
al
ulations. One optimization s
heme for radiosity is there-fore to subdivide pat
hes in areas where the illumination
hanges suddenly(this would normally be in
orners or around spot lights). The starting pointwould then, of
ourse, be a rough mesh, meaning large pat
hes.For ea
h pat
h we then need to �nd the energy present. The radiosityB (whi
h is equivalent to radiant exitan
e M) of a pat
h is the total rateof energy leaving the surfa
e area that it
overs. The total energy leavinga pat
h will be the sum of emitted and re�e
ted light. To determine B weneed to use a geometri
al unit
alled a form fa
tor. The
al
ulation of theform fa
tor is the
ore of the radiosity algorithm. We will go into furtherdetail about the form fa
tor later.Re
all from se
tion 3.2 that the de�nition of radiosity is:B(x) = d�dAThe assumption that all surfa
es are perfe
tly di�use makes radian
e in-dependent of dire
tion. This means that we
an simplify the area formulationof the rendering equation (3.54) by repla
ement of radian
e with radiosity,resulting in the following equation:B(x) = Be(x) + ZS fr;d(x)B(x0)G(x;y)V (x;y)dAy= Be(x) + �d(x)� ZS B(x0)G(x;y)V (x;y)dAy (4.1)where Be is emitted radiosity and fr;d(x) = �d(x)=� is the BRDF of aperfe
tly di�use material (see (3.32)). �d is the di�use re�e
tan
e indi
atinghow mu
h energy that is re�e
ted ba
k into the s
ene.

84 Traditional Approa
hes to Realisti
 Image SynthesisIn order to solve (4.1) using a �nite element method it is assumed thatradiosity is
onstant over ea
h pat
h. In that
ase the radiosity of one pat
h
an be used as a basis element for a system of linear equations. The trueradiosity is, in fa
t, only rarely pie
ewise
onstant, but due to linear inter-polation a
ross ea
h pat
h the di�eren
e between the approximation B0 andthe true version B is, in pra
tise, rarely visible.The inter
hange of energy between two pat
hes Pi and Pj is a fun
tionof the geometri
al relationships between them. This in
ludes for examplethe distan
e between them and their relative orientation. The more paralleland the
loser to ea
h other the two pat
hes are, the higher will the energyex
hange between them be.We
an �nd the radiosity of a pat
h Pi due to all other pat
hes in thes
ene, Pj ; j = 1; : : : ; n, where n is the number of pat
hes in the s
ene, as[30℄: B0i = Be;i + �i nXj=1 FijB0j (4.2)where B0k (due to the assumption of
onstant radiosity over ea
h pat
h) isthe average radiosity of pat
h k, �i is the di�use re�e
tan
e of pat
h i, Be;i isemitted radiosity of the pat
h i, and Fij are the pat
h-to-pat
h form fa
tors,given as [60℄: Fij = 1Ai ZSi ZSj G(x;y)V (x;y)� dAjdAi (4.3)The form fa
tors represent the fra
tion of energy leaving pat
h j andarriving at pat
h i. Si is the set of points in pat
h i and Sj is the set ofpoints in pat
h j. The following three properties of form fa
tors are derivedin [30, p. 150℄:1. The form fa
tors are zero or positive in a s
ene
onsisting of
losedopaque obje
ts.2. If the s
ene is
losed: nXj=1 Fij = 1If the s
ene is not
losed: nXj=1 Fij < 13. The form fa
tors satisfy the following re
ipro
ity relation:AiFij = AjFji

4.1 Radiosity 85Being the most
omplex element in the radiosity equation (4.1), the
al-
ulation of form fa
tors usually determines the rendering time when usingradiosity. If we exploit the re
ipro
ity relation given above (property 3) thereis an opportunity to halve the number of form fa
tors that we must
ompute.The simplest way to
al
ulate an approximated form fa
tor is to assumethat the energy transfer between two pat
hes is
onstant no matter whi
hpoint x we
hoose on the pat
h i, and whi
h point y we
hoose on the pat
hj. In that
ase
al
ulation of the pat
h-to-pat
h form fa
tor simpli�es to:Fij � 1Ai G(x;y)V (x;y)� AjAi = G(x;y)V (x;y)� Aj (4.4)where the
enter of pat
h i is
hosen as x and the
enter of pat
h j is
hosenas y.This is one of the approa
hes that is in
luded in our simple radiosity im-plementation. Another approa
h
al
ulates form fa
tors using the hemi
ubemethod, whi
h is des
ribed in the following.The Hemi
ube methodThe hemi
ube method is presented in [18℄ and shortly reprodu
ed here. Inorder to
al
ulate the form fa
tor Fij between two pat
hes Pi and Pj animaginary
ube is
onstru
ted around the
enter of the re
eiving pat
h (Pi).The upper half of the surfa
e of the
ube is
alled the hemi
ube. The fa
esof the hemi
ube are divided into square pixels at a given resolution. Theidea is then to proje
t the pat
h Pj onto the �ve planar surfa
es, see �gure4.2.Re
all, however, that the energy re
eived at the pat
h Pi is dependent onthe lo
ation and orientation of the pat
h Pj . Therefore the
ontribution ofea
h square pixel to the form fa
tor is also dependent on the pixel lo
ationand orientation. For ea
h pixel pq we
an therefore de�ne a delta form fa
tor�Fq, and the sum of all the delta form fa
tors will result in the pat
h-to-pat
h form fa
tor: Fij = RXq=1�Fq (4.5)where R is the number of hemi
ube pixels
overed by the proje
tion of Pjonto the hemi
ube.Visibility between the pat
hes Pi and Pj must be taken into a

ount.This is done by determining in advan
e the pat
h visible through ea
h pixelpq. For example a pi
ture
an be taken for ea
h fa
e of the hemi
ube drawingthe pat
hes in individual id
olors.After visibility has been determined, the geometry termG =
os �i
os �j=r2(see se
. 3.5) is the only thing left in order to
al
ulate the form fa
tor (
f.

86 Traditional Approa
hes to Realisti
 Image Synthesis

Figure 4.2: The hemi
ube. This �gure is identi
al to �gure 6 in [18℄. (Courtesy of M.F. Cohen and D. P. Greenberg.)(4.3)). The geometry term is
al
ulated quite easily on the hemi
ube, wemust, however, distinguish between the top of the hemi
ube and the sides ofthe hemi
ube. On the top: r = px2 + y2 + 1
os �i =
os �j =
os �
os � = 1px2 + y2 + 1meaning that �Ftop =
os �i
os �j�r2 �A = 1�(x2 + y2 + 1)2�A (4.6)where �A is the area of a square pixel on the hemi
ube. On the side of thehemi
ube: r = py2 + z2 + 1

4.1 Radiosity 87
os �i = zpy2 + z2 + 1
os �j = 1py2 + z2 + 1meaning that �Fside =
os �i
os �j�r2 �A = z�(y2 + z2 + 1)2�A (4.7)The hemi
ube method enables an implementation of radiosity where pi
-tures are taken for ea
h fa
e of a hemi
ube in order to determine form fa
torsbetween the re
eiving pat
h and all other pat
hes in the s
ene. Taking pi
-tures makes it possible to exploit the GPU for radiosity
omputations, whi
his a great advantage with respe
t to pro
essing time. The hemi
ube methodis the se
ond and last form fa
tors
al
ulation method that is in
luded inthis proje
t.Progressive Re�nementAfter a method for the
al
ulation of form fa
tors has been
hosen, a pro-gressive re�nement method is employed in order to solve the system of linearequations given in (4.2). The solution for this system is the radiosity ap-proximation of the illumination that we wish to �nd.Progressive re�nement is an iterative pro
ess where ea
h iteration repre-sents the propagation of light from the pat
h that is
urrently the brightest.This
orresponds to appli
ation of the integral operator Ti (
f. se
. 3.6). Forea
h iteration Ti is applied to the radiosity of the brightest pat
h in the s
ene,that is, the brightest pat
h distributes its energy to every other pat
h in thes
ene a

ording to the form fa
tors between them. An iteration therebysimulates di�use re�e
tion o� the brightest pat
h.After ea
h iteration the radiosity distributed in the s
ene is a little
loserto the steady state. We
an stop the iteration when we see �t, and sin
eall obje
t materials are perfe
tly di�use, the radiosity of a pat
h is also theradian
e rea
hing the eye from that pat
h (if the pat
h is not o

luded).This is also why radiosity solutions are independent of the viewer's positionin the s
ene.Having a set of arrays: Final radiosities B, `unshot' radiosities deltaB,emitted radiosities B_e, areas A, and re�e
tan
es R, holding values for ea
hpat
h, and moreover a two-dimensional array of form fa
tors F holding valuesfor ea
h
ombination of two pat
hes, the C-like pseudo
ode for progressivere�nement
ould be given as below:for all i{ B[i℄ = B_e[i℄;

88 Traditional Approa
hes to Realisti
 Image SynthesisdeltaB[i℄ = B_e[i℄;}while not
onvergen
e{ pi
k i, su
h that deltaB[i℄ * A[i℄ is largest (the brightest pat
h);if pat
h i has not been visited before{ position hemi
ube over pat
h i;
al
ulate form fa
tors F[i℄[j℄, j = 1,...,n;}for every pat
h j{ temp_deltaB = deltaB[i℄ * R[j℄ * F[i℄[j℄;deltaB[j℄ += temp_deltaB;B[j℄ += temp_deltaB;}deltaB[i℄ = 0;}using a few array theoreti
 fun
tions and the transformer EACH (see de�ni-tion 2) we
an rewrite the pseudo
ode in a slightly more
ompa
t form:B := B_e;deltaB := B_e;while not
onvergen
e{ maxPat
h := first sublist [EACH (max (B*A) =), grid℄ (B*A);if maxPat
h has not been visited before{ position hemi
ube over maxPat
h;
al
ulate the form fa
tors of the array (maxPat
h pi
k rows F);}[B, deltaB℄ := [B, deltaB℄+ [pass, pass℄ ((maxPat
h pi
k deltaB) * R * (maxPat
h pi
k rows F));pla
e [0 maxPat
h, deltaB℄;}where X := Y denotes that ea
h element of the array X is assigned the valuefound at the
orresponding position in the array Y. A des
ription of thearray theoreti
 fun
tions: first, sublist, max, grid, pass, pi
k, rows,and pla
e
an be found in [102℄, the meaning should, however, emerge by
omparison to the �rst pseudo
ode. The point in having an array theoreti
formulation is that the for-loops disappear, whi
h reveals the parallel natureof the algorithm. This
on
ludes our des
ription of radiosity. The nextsubje
t is
lassi
 ray tra
ing.

4.2 Ray Tra
ing 894.2 Ray Tra
ingThe obje
tive of this se
tion is to provide a general understanding of themost basi

on
epts
onstituting the global illumination algorithm
alledray tra
ing.The Basi
 Con
eptThe earliest surviving work on geometri
al opti
s, written by Eu
lid in an-
ient times [32℄, initially gives the following des
ription of ray tra
ing [33℄:Let it be hypothesized that straight lines drawn out from the eyetravel a distan
e of large magnitudes,and that the �gure en
losed by the sight-lines is a
one havingits vertex at the eye and its base at the limits of the things seen,See also �gure 4.3.The �rst re
ursive ray tra
ing algorithm for
omputer graphi
s was (asmentioned before) introdu
ed by Turner Whitted in 1980 [137℄. Subsequentlymany others have tried to improve and develop this approa
h further, stillusing the same basi
 prin
iples.Consider a point light sour
e spreading light in all dire
tions from a singlepoint in spa
e. If the light is divided into rays expe
ted to follow straightlines in spa
e until they interse
t an obje
t (as Eu
lid hypothesized), ea
h ray
an be represented by a point of origin, a dire
tion ve
tor, and a parameterdes
ribing how far the light has traversed along the line. Looking at ea
hray individually (tra
ing ea
h ray), gives a method to
al
ulate how the lightsour
e will illuminate a s
ene.Ea
h time a ray interse
ts an obje
t some light will be absorbed, somere�e
ted and some might be refra
ted. This means
al
ulation of new raysboun
ing o� the obje
t or passing through it. All rays ought to be fol-lowed until they interse
t a Lambertian surfa
e (perfe
tly di�use surfa
e)1,disappear into the ba
kground or rea
h the eye point.It is easy to imagine that the illumination of a s
ene with several obje
tsresult in a tremendous amount of rays. On top of that most of the rays arenot even useful to the viewer sin
e they never rea
h the eye point. In fa
tan in�nite number of rays would be needed to illuminate the s
ene perfe
tly.This is one of the reasons why the pro
ess is reversed. Instead of tra
ing raysthat depart from the light sour
e, rays are tra
ed with departure from theeye point (whi
h the Greeks in an
ient times thought was reality), meaningthat it is only ne
essary to tra
e rays that a
tually have an in�uen
e onthe visible area. In that way we
an remove the useless rays that do notrea
h the eye point anyway. This approa
h -
al
ulating the rays from the1This is the
ase in
lassi
 ray tra
ing, sin
e di�use interre�e
tions are not modeled.

90 Traditional Approa
hes to Realisti
 Image Synthesis

Figure 4.3: Eu
lid's �The Opti
s� is the earliest surviving work on geometri
al opti
s.There were a number of medieval Latin translations, whi
h be
ame of new importan
ein the �fteenth
entury for the theory of linear perspe
tive. This te
hnique is beautifullyillustrated in the miniature of a street s
ene in this elegant manus
ript from the libraryof the Duke of Urbino. Text: [32℄. Image: [128℄.eye point instead of the light sour
e - is
alled forward ray tra
ing. Otherapproa
hes use rays
al
ulated from the light sour
e or from both, these are
alled ba
kward ray tra
ing and bi-dire
tional ray tra
ing respe
tively. Bothapproa
hes are more advan
ed than forward ray tra
ing, therefore those willnot be
onsidered at this point. Forward ray tra
ing is pi
tured in �gure 4.4.Sin
e an eye point, like the point light sour
e, is also just a point in spa
ean in�nite number of rays
ould be tra
ed from it in any given dire
tion. To�nd the rays that are needed in order to �ll the pi
ture of the s
ene, a viewplane (
f. se
. 2.3) is generated. The ray tra
er will
ast one or more rays fromthe eye point through ea
h pixel of the view plane. When a ray interse
ts

4.2 Ray Tra
ing 91

Diffuse object

Specular
(reflective)
object

View plane

Eye point

Transmisstive
(refractive) and
specular object

(Returning
background) Figure 4.4: Rays are sent from the eye point through a view plane into the s
ene. Somerays will never interse
t anything, others will interse
t obje
ts. Perfe
tly di�use obje
tswill stop the ray while spe
ular and transmissive obje
ts will generate new rays that
ontinue traveling through the s
ene. In the end all
ontributions will be added togethergenerating the image sent to the s
reen.an obje
t, new rays might be generated to
al
ulate the
ontribution oflight in the interse
ted point from the dire
tions of re�e
tion and refra
tiondepending on the material properties of the obje
t. These rays might againinterse
t new obje
ts that will repeat the same pro
edure.The re
ursion stops when a ray is absorbed by a Lambertian surfa
e, ortra
ed into the ba
kground or the light sour
e. The re
ursion adds togetherall light
ontributions until the �nal
olor of the pixel in the viewing planeis found. In theory it is possible for rays to keep interse
ting with di�er-ent obje
ts and spawning new rays into in�nity. To avoid that possibilitya maximum number of interse
tions is
hosen and
alled the maximum re-
ursion depth. Every time a ray interse
ts an obje
t one is added to there
ursion depth. When a ray rea
hes the max re
ursion depth no more raysare spawned from this ray and bla
k is returned, meaning that no furtherlight is added to the �nal pixel shade.Sin
e ray tra
ing generates a tree stru
ture where ea
h new interse
tiongives a re�e
tion and a transmission leaf, it is ideal for re
ursive programming[135℄. The radian
e Lpixel in
ident on a pixel in the view plane is found usingthe following equation:Lpixel = Zviewplane L(p;!eye)h(p)dp (4.8)with p being a point on the image plane and h(p) a weighting or �lteringfun
tion [30℄. L(p;!eye) is the radian
e at the point p in
ident from the�rst point interse
ted if a ray is tra
ed from the eye point through p, thisradian
e is normally found re
ursively:

92 Traditional Approa
hes to Realisti
 Image SynthesisL(x;!) = Llo
al(x;!) + kre
e
L(x;!r) + ktransL(x;!t) (4.9)where !r and !t are the dire
tions of re�e
tion and refra
tion respe
tively.kre
e
 and ktrans are material spe
i�
 parameters that des
ribe the quantityof re�e
ted and transmitted light from the obje
t respe
tively, hen
e kre
e
+ktrans � 1. If the index of refra
tion �1 for the material in whi
h the ray istraveling and the index of refra
tion �2 for the material that is interse
tedare known, the quantity of re�e
ted and transmitted light
an be found usingthe Fresnel re�e
tan
e des
ribed in se
tion 3.4: kre
e
 = Fr(
os �; �1; �2) andktrans = 1�Fr(
os �; �1; �2), where
os � = (n �!), and n is the unit surfa
enormal at x.

Diffuse object

Specular
(reflective)
object

View
plane

Eye point

Transmisstive
(refractive)
and specular
object

Point light
source

Figure 4.5: Shadow rays are
ast from ea
h interse
tion point in a straight line towardsall light sour
es in the s
ene (one ray for ea
h light sour
e). If an obje
t is interse
ted onthe way to the light sour
e a shadow will be generated. In this
ase the spe
ular obje
twill
ast a shadow on a part of the transmissive obje
t. Shadows are generated by leavingout dire
t illumination in the
al
ulation.Tra
ing shadow rays from ea
h point of interse
tion, the ray tra
er
aneasily
al
ulate simple shadows, see �gure 4.5. A ray is
ast from ea
hinterse
tion point dire
tly towards ea
h light sour
e, if there is an obsta
lebetween a light sour
e and the point of interse
tion the lo
al (or dire
t)illumination term Llo
al is left out for that parti
ular light sour
e. Shadowrays generate hard shadows (shadows with a sharp edge). Hard shadows arenot as
onvin
ing as soft shadows, whi
h are generated eg. by radiosity (see�g. 4.1).Parts of ray tra
ingRay tra
ing
omprises several steps. This se
tion will identify ea
h step andin the following se
tions a more in depth des
ription will be given.

4.2 Ray Tra
ing 93The C-style pseudo
ode for a simple ray tra
er is given below. It isbuild on the ray tra
er implemented in this proje
t. Note that the
lassi
ray tra
er supports point light sour
es only.Pseudo
ode for a simple ray tra
er:void tra
e_rays() {3Dve
tor shade; // RGB
olor3Dve
tor viewPlaneNormal, viewPlaneU, viewPlaneV, eyePoint;float fo
alDistan
e;int windowWidth, windowHeight,
urrentPosX,
urrentPosY;for
urrentPosX from 0 to windowWidthfor
urrentPosY from 0 to windowHeight{ // Generate ray2Dve
tor
oords = (
urrentPosX / windowWidth - 0.5,
urrentPosY / windowHeight - 0.5);3Dve
tor rayDire
tion = viewPlaneNormal * fo
alDistan
e +viewPlaneU *
oords[0℄ +viewPlaneV *
oords[1℄;r = Ray(eyePoint, normalize(rayDire
tion));shade = tra
e(r)Send shaded
olor to s
reen;}}3Dve
tor tra
e(Ray r) {3Dve
tor ba
kgroundColor; //RGB
olorif r.interse
tionCount > MAX_RECURSION_DEPTHshade = BLACK;else{ for i from 0 to numberOfObje
tstest for interse
tion of i'th obje
t with r;3Dve
tor interse
tedPos = interse
tion
losest to ray origin;if r interse
ts an obje
t{ 3Dve
tor result = 0;Ray shadowray = spawn ray in dire
tion towards the light sour
e;tra
e(shadowray);if shadowray.did_hit()result += lo
al illumination eg. by Phong using the normal,

94 Traditional Approa
hes to Realisti
 Image Synthesisray dire
tion, and dire
tion to ea
h light sour
e;// Re
ursive refle
tionif obje
t diffuseness < 1 and obje
t refle
tivity > 0{ Ray refle
t = spawn ray in refle
ted dire
tion;result += obje
t refle
titvity * tra
e(refle
t);}// Re
ursive transmissionif obje
t transmissivity > 0{ Ray transmit = spawn ray in transmitted dire
tion;result += obje
t transmissivity * tra
e(transmit);}return (
olor of material on interse
ted obje
t * result);}else return ba
kgroundColor;}} Looking at the pseudo
ode the di�erent steps of ray tra
ing are revealed.First of all the ray tra
er must be able to generate rays. When a ray isgenerated there must be dete
tion of interse
tions, then new rays must bespawn
onsidering re�e
tion, refra
tion and shadows. In the end shading ofthe di�erent interse
tion points must be
al
ulated. This leaves the followinglist of steps that ea
h ray must go through:� Ray
asting� Interse
tion� Re�e
tion� Refra
tion� ShadingRay CastingThe �rst step in ray tra
ing is to generate rays
oming from the eye pointthrough a point in the view plane. The view plane represents the pi
ture thatwill be
ome visible to the user on the s
reen. Depending on the demands forimage quality one or more rays
an be sent through ea
h pixel, as indi
atedby the integral in (4.8). Sin
e speed of the pro
ess very mu
h depends onthe number of rays
ast less than one ray per pixel
an be
onsidered ifinterpolation between them is used afterwards.To
reate a ray we need a point, a dire
tion ve
tor, and a distan
e param-eter. Initially the point will be the eye point later it will be the interse
tion

4.2 Ray Tra
ing 95point. The dire
tion ve
tors of the �rst rays generated are found by drawinga line between the eye point and the point representing a pixel in the view-ing plane (simply by subtra
ting one point from the other). All dire
tionve
tors should be normalized. For a ray spawned at a point of interse
tionthe dire
tion depends on whether the ray is the result of a re�e
tion or arefra
tion, see �gure 4.6.

Incoming ray

Reflected ray

Tangent plane

Object

Transmitted
ray

θ

θ

α

Figure 4.6: New rays are generated from the interse
tion point (unless the obje
t is
ompletely di�use). For the re�e
tive ray the in
oming angle � mat
hes the outgoingangle. The angle of the transmitted ray � depends on material properties of the obje
t.The following equation generates a ray from the eye point. Rays spawnedby re�e
tion or transmission are
al
ulated otherwise (
f. se
. 3.1).Let the eye point be given as e = (e0; e1; e2) and a dire
tion as:d = [n u v℄24 fuv 35where n, u, and v is an orthonormal frame for the view plane and [f u v℄T isthe fo
al distan
e and (u; v)-
oordinates spe
ifying a relative position on theview plane. The ray is then given as the parametri
 equation of a straightline: r(t) = e+ tdwhere t is the distan
e (or time) parameter des
ribing how far the light hastraversed along the line. Tra
ing a ray, that is, �nding the interse
ted pointon the
losest visible surfa
e along a ray originating at point x and pointingin the dire
tion !,
an then be des
ribed as follows [30℄:

96 Traditional Approa
hes to Realisti
 Image Synthesisr(x;!) = fy : y = x+ tinterse
tion!gtinterse
tion = minft : t > 0 ^ x+ t! 2 Agwhere all the surfa
es in the s
ene are represented by the set A. This is
alled the ray
asting operation.Interse
tionInterse
tion between rays and obje
ts is the heaviest part of the ray tra
ingalgorithm. When a ray is tra
ed into the s
ene there are several things thatmust be
onsidered. First step is to �nd out whi
h obje
ts, if any, the givenray interse
ts. In the brute for
e manner every ray is
he
ked for
ollisionwith every obje
t in the s
ene, meaning that interse
tion between ea
h linerepresenting a ray and every obje
t is
al
ulated. If a ray interse
ts morethan one obje
t it is ne
essary to determine whi
h obje
t is
losest, this isdone using the distan
e parameter t (the obje
t within the shortest distan
eis, of
ourse, the
losest and the one interse
ted).It is obvious that brute for
e testing is quite
omputationally expensive,espe
ially if the obje
ts have a
omplex stru
ture. To help this, obje
tsare usually de�ned as
ombinations of primitives for whi
h we
an moreeasily
ompute interse
tions. Besides ea
h obje
t
an be surrounded by abounding box, whi
h is a box �tted to surround the obje
t tightly. Whenrays are tra
ed through the s
ene they �rst
he
k for interse
tions with thebounding boxes, whi
h is less
omplex than
al
ulation of interse
tion withea
h triangle in the s
ene. In this way all the obje
ts residing in a box thatis not hit by a ray
an be left out of the interse
tion
al
ulations, see �gure4.7.Sin
e obje
ts are
onstru
ted from primitives, we only have to implement
ollision dete
tion with the primitives represented in our s
ene. In prin
iplethe only primitives we need are a triangle and the shape of the primitiveused as bounding volume (in most
ases a box). Other primitives that arefrequently used in
omputer graphi
s are spheres,
ones, planes and toruses(see �g. 7.1). The equations that provide interse
tion between a line and asphere, a triangle, a box, or a plane are provided later in this se
tion.When the ray interse
ts, the next step is to generate a re�e
ted rayand a transmitted ray, depending on material properties. If the obje
t isperfe
tly di�use there will be no re�e
ted ray or transmitted ray, otherwisethe
ontribution of light from the re�e
ted and transmitted rays depend onthe re�e
tivity, kre
e
, and transmissivity, ktrans, parameters of the obje
tmaterial, or more
orre
tly it depends on the Fresnel re�e
tan
e given bythe refra
tion indi
es of the di�erent media through whi
h the ray travels.

4.2 Ray Tra
ing 97

View plane

Eye point

Object A

Object B

1
2

3

Figure 4.7: Bounding boxes are used to redu
e sear
h time for ray interse
tions. Firststep is to �nd interse
tions between rays and bounding boxes. When an interse
tionbetween a ray and a bounding box is identi�ed interse
tions between the ray and thetriangles inside the bounding box
an be tested. In this way ray 1 only have to test forinterse
tions with the triangles of obje
t A and ray 3 only for interse
tions with obje
tB. Ray 2 will have to test for interse
tions with A as well even though it will not hit anytriangles, but only a minimum of rays will be as unfortunate as ray 2. The rest of therays
an be left out, sin
e they do not interse
t any bounding boxes, hen
e, they merelyreturn ba
kground
olor values.

98 Traditional Approa
hes to Realisti
 Image SynthesisIf a ray hits a Lambertian surfa
e or is tra
ed into the ba
kground, there
ursion stops. This is the end point of the re
ursive pattern. When anend point is rea
hed an RGB
olor value is returned a

ording to the
olorof the Lambertian surfa
e or the ba
kground
olor. Moreover the end pointwill return no
olor (bla
k) if the maximum re
ursion depth is rea
hed. All
ontributions are added together all the way up to the view plane represent-ing the pixels that are sent to the output window on the s
reen. Ea
h timea
ontribution from a re�e
ted or transmitted ray is added to the total
on-tributions the values are multiplied by a per
entage fa
tor, representing there�e
tion or transmission fa
tor of the obje
t. The result is that the higherthe re
ursion depth the less the
ontribution to the �nal pixel shade.Ray/Sphere Interse
tionConsider a ray represented by a straight line r(t):r(t) = o+ tdwhere t is a parameter indi
ating the distan
e traversed from the origin oalong the line in dire
tion d. r(t) is then a position in spa
e that
oin
ideswith the line. A sphere with the
enter positioned at
 = (
x;
y;
z) andwith a radius r is represented by the following equation:(x�
x)2 + (y �
y)2 + (z �
z)2 = r2or jj(x; y; z) � (
x;
y;
z)jj � r = 0) jjr(t)�
jj � r = 0This simpli�es to [2, p. 569℄.t2 + 2tb+
 = 0where b = d � (o�
) and
 = (o�
) � (o�
)� r2.Solving the quadrati
 equation above gives the following points of in-terse
tion between the ray and the sphere, if b2 �
, else no interse
tionsexist: t = �b�pb2 �
The ray tra
er is only
on
erned with the �rst point interse
ted along theline (the smallest t value of interse
tion greater than zero). Therefore, if theray origin is outside the sphere, we
hoose the interse
tion t = �b�pb2 �
,otherwise t = �b+pb2 �
 is the
orre
t point of interse
tion. In
ase the rayis tangent to the sphere there will be only one point of interse
tion t = �b.

4.2 Ray Tra
ing 99Ray/Triangle Interse
tionCon
erning polygons we have
hosen, in the standard ray tra
er, to imple-ment ray/triangle interse
tion only. Most s
enes in
lude only polygons ofthree and four verti
es (triangles and quadrilaterals), and a polygon of fourverti
es easily simpli�es to two triangles.A point, t(u; v) on a triangle, spanned by the verti
es v0, v1 and v2, isgiven by the following equation:t(u; v) = (1� u� v)v0 + uv1 + vv2where u � 0, v � 0, and u + v � 1. u, v, and w = 1 � u � v are
alledbary
entri

oordinates for the triangle (see eg. [42℄).Solving the equation r(t) = t(u; v) gives the point of interse
tion, if any.Denoting e1 = v1 � v0, e2 = v2 � v0, and s = o� v0 the solution �nding t,u, and v is [2, p. 580℄:0� tuv 1A = 1(d� e2) � e1 0� (s� e1) � e2(d� e2) � s(s� e1) � d 1ARay/AABB OverlapAABB is short for Axis Aligned Bounding Box. When testing rays againstbounding volumes it is only ne
essary to determine whether there is an in-terse
tion or not, the exa
t interse
tion point is not required, sin
e the raywill be tested against the primitives
ontained within the bounding volumesubsequently. This simpli�es the
al
ulation
onsiderably.Sin
e light only travels in one dire
tion along the line representing theray, we are looking at the interval [0;1[or,
hoosing a large �oating pointvalue to represent in�nity, t 2 [0; 106℄ = [tmin; tmax℄.Consider an AABB des
ribed by a two points pmin and pmax and a linesegment representing the ray that we wish to test for overlap also des
ribedby two points rmin(tmin) and rmax(tmax). Let h = (hx; hy; hz) = (pmax �pmin)=2 denote the half ve
tor of the bounding box, let
 = (
x;
y;
z) =(rmax(tmax) + rmin(tmin))=2 denote
enter of the line segment, and let w =(wx; wy; wz) = rmax(tmax) �
 denote the half ve
tor of the line segment,then the following test will de
ide whether the ray overlaps the axis alignedbounding box or not [2℄: j
xj > vx + hx^ j
yj > vy + hy^ j
z j > vz + hz^ j
ywz �
zwyj > hyvz + hzvy

100 Traditional Approa
hes to Realisti
 Image Synthesis^ j
xwz �
zwxj > hxvz + hzvx^ j
xwy �
ywxj > hxvy + hyvxwhere (vx; vy; vz) = (jwxj; jwy j; jwz j). If this holds true the ray overlaps thebounding box, otherwise the ray and the AABB are disjoint.Ray/Plane Interse
tionThough planes are usually not present in real-time
omputer graphi
s, sin
erendering obje
ts of in�nite size is ine�
ient, we will in
lude them in ourray tra
er as the rays are tra
ed into in�nity anyway.The interse
tion point between a line r(t) representing a ray and a plane,des
ribed by a normal n and a point p in the plane, is found solving thefollowing equation:n � (r(t)� p) = 0) t = �n � p+n � on � d ; n � d 6= 0If n � d = 0 the ray and the plane are parallel.Re�e
tionThe re�e
ted ray is a new ray generated at a point of interse
tion. Theray has the exa
t same properties as any other ray. As mentioned before aray has a ve
tor des
ribing its dire
tion and a parameter t telling how farthe light has traversed along the line. The dire
tion of a re�e
ted ray isdetermined by the law of re�e
tion (see se
. 3.1). You
ould say that there�e
ted ray is a mirrored image of the in
oming ray through the normal nof the interse
ted surfa
e in the plane of in
iden
e, see �gures 4.6 and 3.3.(3.2)
an be used to �nd the dire
tion of the re�e
ted ray dr. For
onve-nien
e we repeat the equation below:dr = 2(d0 � n)n� d0where d0 = �d is the dire
tion from the point of interse
tion towards theray origin.Refra
tion (or Transmission)The transmitted ray is the ray refra
ted through a transparent material. Thedire
tion of the transmitted ray depends on obje
t material properties andthe angle between the normal n and the dire
tion d of the in
ident ray. Thetransmissivity of the material states the per
entage of the in
oming light thatis transmitted. Furthermore the ratio �1=�2 between the index of refra
tion�1 for the material in whi
h the in
ident ray was travelling and the index of

4.3 Monte Carlo Ray Tra
ing 101refra
tion �2 for the material whi
h the ray is refra
ted into, has an in�uen
eon the dire
tion of the refra
ted ray.The dire
tion dt of a transmitted ray
an be found using equation (3.5),whi
h is repeated below:dt = �1�2 ((d0 � n)n� d0)� ns1���1�2�2 (1� (d0 � n)2)where again d0 = �d is the dire
tion from the point of interse
tion towardsthe ray origin.ShadingThe �nal shade of ea
h pixel is found when the re
ursive algorithm unravels,meaning that ea
h pixel shade is found adding up the
ontribution from allthe rays that was spawned at ea
h point of interse
tion when that parti
ularray was tra
ed into the s
ene from the eye point through a pixel in the view-plane. Lo
al illumination is
al
ulated at ea
h point of interse
tion usingsome kind of BRDF (eg. Phong).Sending the �nal pixel
olor to the s
reen is
arried out using a graphi
slibrary su
h as OpenGL or Dire
t3D.The next se
tion is a short presentation of Monte Carlo ray tra
ing.Monte Carlo ray tra
ing is a ne
essary step in the dire
tion towards photonmapping. Monte Carlo te
hniques are also very useful in their own right,they are unfortunately often also quite
omputationally expensive.4.3 Monte Carlo Ray Tra
ingAs shortly des
ribed in se
tion 3.8, point sampling is one of the two basi
te
hniques that
an be used in order to solve a re
ursive integral su
h as therendering equation. Mathemati
al te
hniques that use statisti
al samplingto simulate phenomenon or evaluate values of fun
tions are
alled MonteCarlo te
hniques [30℄.Suppose we want to evaluate the following integral using a Monte Carlomethod: I = Z
x f(x)dxwhere x is a possibly multi-dimensional variable with domain
x. Then aMonte Carlo estimator hIi will approximate I by taking a lot of randomsamples, g(xi) ; x 2
x ; i = 1; : : : ; N , and averaging their
ontributions[126℄: hIi = 1N NXi=1 g(xi) = 1N NXi=1 f(xi)p(xi)

102 Traditional Approa
hes to Realisti
 Image Synthesiswhere p(xi) is a probability density fun
tion (PDF) a

ording to whi
h we
an draw samples. If all N random variables have the same PDF they are
alled independent identi
ally distributed (IID) variables. In [30, p. 57℄ it isshown that if all N variables are IID variables, the expe
ted value (or themean) of the estimator E[hIi℄ equals the desired integral I. The varian
e ofthis estimator is given as:�2 = 1N Z �f(x)p(x) � I�2 p(x)dxmeaning that the varian
e de
reases linearly as N in
reases. The standarddeviation � is the square root of the varian
e, whi
h means that in orderto halve the error in the estimator E[hIi℄ we must quadruple the number ofsamples. This is the reason for slow
onvergen
e of Monte Carlo ray tra
ing.General properties of the PDF are:8x : p(x) � 0Z 1�1 p(x)dx = 1The remaining problem, before we are able to use the Monte Carlo te
h-nique for approximation of the rendering equation, is that we must be ableto sample a

ording to the PDF that we see �t. In [30, p. 64℄ it is explainedhow this is done: �A sample
an be generated a

ording to a given distri-bution p(x) by applying the inverse
umulative distribution fun
tion of p(x)to a uniformly generated random variable� � over the interval2 [0; 1[. The
umulative distribution fun
tion (CDF) is de�ned as [30℄:P (y) = Pr(x � y) = Z y�1 p(x)dxLooking at the integral
al
ulating re�e
ted radian
e in (3.53) it wouldbe
onvenient to be able to sample a

ording to a
osine PDF:p(�; �) =
os��where � and � are spheri
al
oordinates.The
umulative distribution fun
tion P (�; �) is derived in [30, p. 66℄:P (�; �) = �2� (1�
os2 �)2We use the notation [a; b[, instead of [a; b) to denote that b is not in
luded in theinterval.

4.3 Monte Carlo Ray Tra
ing 103whi
h is separable with respe
t to � and �, resulting in the following formulafor
omputing the spheri
al
oordinates of a dire
tion sampled a

ording tothe
osine PDF: (�; �) = �
os�1(p�0); 2��1� (4.10)where �i 2 [0; 1[; i = 0; 1. (With respe
t to the derivation of (4.10) fromthe CDF it should be noted in the
ase of � that �1 repla
es 1� �, whi
h ispossible sin
e � 2 [0; 1[.)A few other distributions useful for rendering are given in [124, p. 33℄.Being able to sample a

ording to the
osine lobe by
al
ulation of newdire
tions using (4.10), we
an for example expand the ray tra
ing des
ribedin the previous se
tion by adding a radian
e term Lindire
t to (4.9). Lindire
tsimulates multiple di�use re�e
tions:L(x;!) = Llo
al(x;!) + kre
e
L(x;!r) + ktransL(x;!t)+(1� kre
e
 � ktrans)Lindire
t(x;!) (4.11)In order to
al
ulate the indire
t illumination term N sample rays aretra
ed with dire
tions !i ; i = 1; : : : ; N found using (4.10). Lindire
t is esti-mated using the following Monte Carlo estimator:hLindire
ti = �dN XL(x;!i) (4.12)where �d is the di�use re�e
tan
e. This estimator follows sin
e p(x) =
os �=� = (! � n)=�, and sin
e:fr(x;!;!0) = fr = �d�when the material is perfe
tly di�use, with a
onstant di�use re�e
tan
e.The above expansion of
lassi
 ray tra
ing e�e
tively makes ray tra
ingable to model di�use interre�e
tions. The
onvergen
e is, however, slow.Many sample rays must be distributed and tra
ed re
ursively in order to ob-tain a de
ent evaluation of the indire
t illumination term. Photon mapping,whi
h is the subje
t of the next se
tion, presents a method that signi�
antly
an speed up the
al
ulation of the indire
t illumination term in Monte Carloray tra
ing.Another appli
ation of of the Monte Carlo te
hnique is that it enables
omplex light sour
es (that is, light sour
es with an areal extension) in raytra
ing. In the
ase of
omplex light sour
es the dire
t illumination term(Llo
al in (4.11)) should be evaluated using a Monte Carlo estimator samplingseveral rays towards random positions on ea
h light sour
e.In order to have a renderer that
an simulate full global illumination we
hoose to implement photon mapping, whi
h is the subje
t of the followingse
tion.

104 Traditional Approa
hes to Realisti
 Image Synthesis4.4 Photon MappingRe
all He
kbert's idea of adaptive radiosity textures (se
tion 3.7). He
kbertdes
ribes a two-pass method in whi
h photons are emitted from light sour
es,stored in �radiosity textures�, and re-emitted from the brightest surfa
e in aprogressive re�nement manner to a

ount for the light paths: L(S*D)*, andrays are emitted from the eye point to a

ount for the paths DS*E.Photon mapping is a similar kind of two-pass method. The most impor-tant di�eren
e is that when a photon interse
ts a di�use surfa
e it is stored ina map whi
h is independent of the s
ene geometry. Instead of the progressivere�nement approa
h for modeling multiple di�use re�e
tions, ea
h photon istra
ed through the s
ene using Russian roulette (see the following se
tion onphoton tra
ing). Sin
e the resulting photon map is independent of geometrywe
an not use textures for radian
e estimates when ray tra
ing the s
enefrom the eye point. Instead the rendering equation must be approximatedby a radian
e estimate, whi
h is based on the density of photons over a givensurfa
e area. All in all photon mapping
omprises the following steps:� Photon tra
ing1. Photon emission.2. Photon s
attering.3. Photon storing� Forward ray tra
ing� The radian
e estimateEa
h of these steps will be addressed in the following. Our presentationbasi
ally follows [60℄. Photon mapping in its purest form
raves an immensenumber of photons in order to give a good radian
e estimate. After thepresentation of the steps given above, we will therefore brie�y des
ribe howphoton mapping
an be
ombined with other te
hniques (eg. distribution raytra
ing) in order to lower the number of photons needed for an a

eptableresult. In
ombination with other methods photon mapping is speeded upsigni�
antly. The low pro
essing time
ombined with the independen
e ofgeometry and the
ompatibility with rendering of parti
ipating media
ur-rently makes photon mapping one of the most powerful te
hniques simulatingfull global illumination.Photon Tra
ingPhotons are tra
ed as ordinary rays. They are tra
ed from the light sour
eas in ba
kward ray tra
ing. The di�eren
e lies in how they are s
atted andstored in the photon map when interse
ting a material. Photon mapping usesa sto
hasti
 method rather than the re
ursive method used in ray tra
ing.

4.4 Photon Mapping 105Photon EmissionPhoton mapping
an simulate any type of light sour
e. The reason is thesto
hasti
 method that photon mapping employs. Ea
h photon is emit-ted from a random lo
ation on a light sour
e in a random dire
tion. Onemethod to use for �nding random dire
tions is reje
tion sampling, whi
h usesrepeated evaluation of random numbers until a
ertain property is present.An example is an isotropi
 point light sour
e emitting light uniformly in alldire
tions. The reje
tion sampling pi
k random samples in the unit
ubeand if the sample is also inside the unit sphere it is normalized and used asa dire
tion for an emitted photon.Having three random variables �i 2 [0; 1℄ ; i = 0; 1; 2 the following C-likepseudo
ode implements photon emission:int n_e = 0; // number of photons emittedwhile(not enough photons){ do{ x = 2*xi_0 - 1;y = 2*xi_1 - 1;z = 2*xi_2 - 1;}while(x*x + y*y + z*z > 1);3Dve
tor d = normalize(3Dve
tor(x, y, z));3Dve
tor p = random lo
ation on light sour
e;tra
e photon from p in dire
tion d;n_e++;}s
ale power of photons with 1/n_e;As noted, the power of the photons should be s
aled a

ording to thenumber of photons that have been emitted, whi
h is most probably not thesame as the number of photons stored in the photon map.Photon S
atteringThe basi
 idea of photon s
attering is to importan
e sample a single dire
tionof re�e
tion a

ording to the BRDF (or BTDF in
ase of transmission), asopposed to distribution ray tra
ing where numerous rays are spawned at ea
hinterse
tion. The photon may also be absorbed. In that
ase the re
ursionstops.When a photon interse
ts an obje
t, the type of intera
tion is de
idedby the material properties. One way to de
ide the type of interse
tion is asfollows. Consider a material having di�use re�e
tan
e (�d;r; �d;g; �d;b) andspe
ular re�e
tan
e (�s;r; �s;g; �s;b), where r, g, and b denotes the three
olor

106 Traditional Approa
hes to Realisti
 Image Synthesisbands: red, green, and blue. The type of intera
tion is
hosen using Russianroulette (�rst introdu
ed to
omputer graphi
s by Arvo and Kirk [5℄). Firstthe average di�use re�e
tan
e �d;avg and the average spe
ular re�e
tan
e�s;avg is determined: �d;avg = �d;r + �d;g + �d;b3�s;avg = �s;r + �s;g + �s;b3Then having a uniformly distributed random variable � 2 [0; 1℄, the Rus-sian roulette works as follows:� 2 [0; �d;avg℄ �! di�use re�e
tion� 2℄�d;avg; �s;avg + �d;avg℄ �! spe
ular re�e
tion� 2℄�s;avg + �d;avg; 1℄ �! absorption(here we use the notation ℄a; b℄, instead of (a; b℄, to denote that a is notin
luded in the interval.)If the photon is re�e
ted, the power of the re�e
ted photon is s
aleda

ording to the spe
tral re�e
tan
e value:�r = �i;r�r=�avg�g = �i;g�g=�avg�b = �i;b�b=�avgwhere the i subs
ript denotes the spe
tral power of the in
ident photon.� and �avg are either di�use or spe
ular re�e
tan
e values, whi
h kind to
hoose depends on the result of the Russian roulette.The re�e
ted photon will be tra
ed in a dire
tion sampled a

ording tothe BRDF. If the re�e
tion is spe
ular another Russian roulette
an be usedto
hoose whether the photon is re�e
ted or transmitted:� 2 [0; Fr℄ �! spe
ular re�e
tion� 2℄Fr; 1℄ �! spe
ular refra
tionwhere Fr is the Fresnel re�e
tan
e (see (3.35), (3.36), and (3.37)).In
ase of spe
ular refra
tion the dire
tion is sampled a

ording to aBTDF rather than a BRDF.If the material is perfe
tly spe
ular, the photon will be tra
ed in thedire
tion given by (3.2) or (3.5) depending on the result of the Russianroulette.

4.4 Photon Mapping 107If di�use re�e
tion is the result of the Russian roulette, and if the materialis perfe
tly di�use, the re�e
ted dire
tion �is found by pi
king a randomdire
tion on the hemisphere above the interse
tion point with a probabilityproportional to the
osine of the angle with the normal� [60, p. 61℄. Havingtwo uniformly distributed random variables �i 2 [0; 1[; i = 0; 1, the dire
tionis found in spheri
al
oordinates a

ording to (4.10):(�; �) = �
os�1(p�0); 2��1�The reason why the
osine lobe is used instead of eg. reje
tion samplingis that the re�e
ted samples will be weighted by the
osine term that alsoappears in the rendering equation.Photon StoringWhenever a photon interse
ts a di�use surfa
e (not ne
essarily perfe
tlydi�use) it is stored in the photon map. The radian
e estimate that
an beobtained from a photon map is mu
h too in
orre
t for the single re�e
teddire
tion of perfe
tly spe
ular materials, therefore
lassi
 forward ray tra
ingis used for spe
ular re�e
tions (re
all the se
ond pass from the eye a

ountingfor the paths DS*E).When a photon is stored it represents �ux in
ident on a surfa
e. Allthe photons are stored in a kd-tree, see se
tion 2.5. For a more thoroughdes
ription of the kd-tree for photon mapping we refer to [60,
hap. 6℄ and to[44℄ in whi
h they show improved results with respe
t to the kd-tree. Otherspatial data stru
tures
ould be used as well, as mentioned in se
tion 2.5Günther et al [44℄ also report good results with a uniform grid of voxels forthe photon map data stru
tureForward Ray Tra
ingThe pass from the eye happens exa
tly as des
ribed in se
tion 4.2. Theonly thing that should be noted is that Llo
al in (4.9) should be repla
edby Lglobal, sin
e the radian
e estimate des
ribed in the following makes itpossible to simulate full global illumination.The Radian
e EstimateIn order to
al
ulate an estimate of Lglobal using the photon map, the render-ing equation must be rewritten in terms of �ux in
ident on a surfa
e. (3.24),from whi
h the rendering equation was derived, states the following, if weintegrate on both sides of the equation:Lr(x;!) = Z
 fr(x;!;!0)dEi

108 Traditional Approa
hes to Realisti
 Image SynthesisSubstitution of dEi a

ording to (3.22) results in the following:Lr(x;!) = Z
 fr(x;!;!0)d�i(x;!0)dAi (4.13)whi
h is exa
tly a way to
al
ulate the re
ursive part of the rendering equa-tion using the in
ident �ux.A simple way to approximate the integral in (4.13) is to expand a spherearound x until it
ontains n photons. Ea
h photon p has the power��p(x;!p),where it is assumed that the photon interse
ts the surfa
e at x, and they arein
ident on the surfa
e area �A given as the sphere proje
ted to the surfa
e
ontaining x. This results in the following:Lr(x;!) � n�1Xp=0 fr(x;!;!p)��p(x;!p)�A (4.14)Assuming that the surfa
e
ontaining x is lo
ally planar around x, theproje
tion of the sphere to the surfa
e will be a
ir
le of area: �A = �r2,where r is the radius of the sphere expanded around x. It is shown in [60℄that this approximation
onverges to L(x;!) when n goes to in�nity.A
quiring the n nearest photons from the photon map is not ne
essarily
omputationally
heap. The more photons the better the radian
e estimate,and the more expensive is the photon map query. In [73℄ it is shown thatseveral small photon maps are more e�
ient than one or two large maps,both with respe
t to
onstru
tion and query. It is proposed to make a smallindividual photon map for ea
h surfa
e in a s
ene. This, however, resultsin dependen
y on s
ene geometry, whi
h is otherwise one of the advertisedadvantages of photon mapping.To see how the nearest photons in the photon map are found when thedata stru
ture is a balan
ed kd-tree, we refer to �gure 6.3 in [60, p. 73℄ or�gure 10 in [59℄.Splitting Up the Rendering EquationUsing the radian
e estimate dire
tly for visualization of the illumination ina s
ene, will produ
e quite a lot of low-frequen
y noise, unless a su�
ientamount of photons has been tra
ed. A su�
ient amount of photons usuallymeans hundreds of thousands, and sometimes millions. Tra
ing millions ofphotons is obviously time
onsuming, therefore photon mapping is often, andshould be,
ombined with other illumination methods.In order to justify the
ombination of di�erent illumination methods, wemust split up the rendering equation and make sure that no light paths arein
luded in the integral more than on
e.The optimal approa
h is, of
ourse, to use the method best suited forea
h visual e�e
t that we wish to in
lude in our illumination model. Dire
t

4.4 Photon Mapping 109illumination and spe
ular and glossy re�e
tions are e�
iently modeled bystandard Monte Carlo ray tra
ing, there is no need to simulate these us-ing photon mapping. Sin
e photons emitted from light sour
es are qui
kly
on
entrated in regions with
austi
s, photon mapping is well suited for sim-ulating
austi
s. Even when the photon map is visualized dire
tly usingthe radian
e estimate. The best simulation of multiple di�use re�e
tions(in the
ontext of ray tra
ing) is a
ombination of Monte Carlo ray tra
ingand radian
e estimates in a photon map. This method for multiple di�usere�e
tions is
alled �nal gathering, sin
e it gathers radian
e from the photonmap indire
tly.If we expand the light transport notation with a G denoting glossy sur-fa
es, light paths for ea
h of the four parts that the rendering equation shouldbe split into are given as:� Dire
t illumination: L(SjGjD)?E� Spe
ular and glossy re�e
tions: LS*(GjD)(SjG)+E and LS+SE� Causti
s: LS+(GjD)E� Multiple di�use re�e
tions: L(SjGjD)*(GjD)S*D(SjG)*ENote that these light paths sum to all possible light paths L(SjGjD)*E,and that they in
lude all paths only on
e. Another approa
h is to
lassifya glossy material as either spe
ular or di�use in advan
e. In that
ase thepaths given above simpli�es to:� Dire
t illumination: L(SjD)?E� Spe
ular and glossy re�e
tions: LS*(SjD)S+E� Causti
s: LS+DE� Multiple di�use re�e
tions: L(SjD)*DS*DS*Ewhere S not ne
essarily denotes a perfe
tly spe
ular material an D not ne
es-sarily denotes a perfe
tly di�use material. In order to split up the renderingequation (3.53) a

ordingly, we split the BRDF as follows:fr(x;!;!0) = fr;S(x;!;!0) + fr;D(x;!;!0)and the in
ident radian
e in the integral of the re�e
ted radian
e term asfollows: Li(x;!) = Li;l(x;!) + Li;
(x;!) + Li;d(x;!)where� Li;l(x;!) is dire
t illumination.� Li;
(x;!) is
austi
s.� Li;d(x;!) is indire
t illumination re�e
ted di�usely at least on
e.

110 Traditional Approa
hes to Realisti
 Image SynthesisIn
ombination these two
lassi�
ations result in the following version ofthe re�e
ted radian
e term:Lr(x;!) = Z
 fr(x;!;!0)Li(x;!)(!0 � n)d!0= Z
 fr(x;!;!0)Li;l(x;!)(!0 � n)d!0+Z
 fr;S(x;!;!0)(Li;
(x;!) + Li;d(x;!))(!0 � n)d!0+Z
 fr;D(x;!;!0)Li;
(x;!)(!0 � n)d!0+Z
 fr;D(x;!;!0)Li;d(x;!)(!0 � n)d!0The rest of this se
tion will des
ribe a few possible ways to evaluate ea
hof these integrals.Dire
t IlluminationThe dire
t illumination (light paths L(SjD)?E) is the simplest term to
al-
ulate sin
e it simulates a single re�e
tion only; the dire
t illumination isin
ident on a surfa
e lo
ation dire
tly from the light sour
es. If the lightsour
es are isotropi
 point sour
es the dire
t illumination term
an be mod-eled using
lassi
 ray tra
ing. In
ase of more
omplex light sour
es MonteCarlo ray tra
ing
an be used to sample the light sour
es at ea
h surfa
elo
ation. Rasterization methods (see
hap. 5) are a fast option for
al
u-lation of dire
t illumination. Simulating
omplex light sour
es is, however,more di�
ult using rasterization methods. The visual e�e
t resulting from
omplex light sour
es is soft shadows. The point light sour
e is a hypo-theti
al obje
t that does not appear in real life, therefore soft shadows isa mu
h more realisti
 e�e
t than hard shadows resulting from point lightsour
es. This indi
ates that it is often worthwhile to put a little extra e�ortin dire
t illumination
al
ulations, instead of just using some simple shadingalgorithm (su
h as Phong [106℄).Spe
ular and Glossy Re�e
tionsPerfe
tly spe
ular re�e
tions and glossy re�e
tions
lassi�ed as spe
ularare handled by the term
alled spe
ular and glossy re�e
tions (light pathsLS*(SjD)S+E). Currently the best known te
hnique handling su
h re�e
tionsis Monte Carlo ray tra
ing, where the distribution of rays
ould be optimizedby importan
e sampling of fr;S. Approximative methods based on rasteri-zation is another option (see
hap. 6). One popular method is environmentmapping, whi
h is also used for real-time rendering in this proje
t.

4.4 Photon Mapping 111Causti
sAs mentioned before
austi
s
an be simulated by a dire
t visualization ofthe photon map. In fa
t this approa
h is
on
urrently the most su

essfulapproa
h to simulation of
austi
s. In order to evaluate the
austi
s term(light paths LS+DE) individually, only photons that have taken the paths LS+Dare stored in a separate
austi
s photon map. Radian
e estimates using thismap is an a

eptable evaluation of the
austi
s term. Only few rasterizationmethods exist for
austi
s, one is presented in [130℄.Multiple Di�use Re�e
tionsThe multiple di�use re�e
tions term (light paths L(SjD)*DS*DS*E) simulatesthe e�e
ts that we also see in radiosity (an example is �g. 4.1) and thensome. No doubt this term is the part of the rendering equation that is most
ostly to evaluate. Monte Carlo ray tra
ing
ould be used to evaluate thisterm, this would, however, be unne
essarily time
onsuming. A separatephoton map
ontaining only photons that have taken the paths L(SjD)*DS*D
ould be used for the evaluation of the term, this, however, often resultsin low-frequen
y noise. The
ombination of the two methods is an e�
ientalternative, whi
h is
alled �nal gathering.Final gathering evaluates the multiple di�use re�e
tions term using aglobal photon map
ontaining all stored photons (light paths L(SjD)*D). Theglobal photon map is not dire
tly visualized, instead the light paths DS*DS*Eare simulated by Monte Carlo ray tra
ing. This means that a ray tra
edfrom the eye rea
hing a di�use surfa
e will evaluate the multiple di�use re-�e
tions term by sample rays distributed over the hemisphere a

ording tofr;D. When a sample ray rea
h another di�use surfa
e a radian
e estimatefrom the global photon will be used to simulate the remaining part of thelight path. Compared to the approa
h that dire
tly visualizes a photon map
ontaining only photons re�e
ted di�usely at least on
e, this approa
h dra-mati
ally de
reases the amount of photons needed for the radian
e estimatein order to get a de
ent result. The sampling, however, in
reases the timeneeded for the
omputation.In part III we des
ribe a rasterization approa
h that partly simulatesthe multiple di�use re�e
tions term. Our method simulate the light pathsLS*DDS*E using a map storing dire
t illumination from the light sour
e (andpossibly some spe
ular re�e
tions, that is, light paths LS*D), therefore it is
alled dire
t radian
e mapping.The des
ription of the di�erent terms have ea
h referred to rasterizationmethods that
an give an approximate evaluation of the integrals. In orderto appre
iate su
h approa
hes the traditional approa
h to real-time render-ing, whi
h is based on rasterization, will be presented in the next
hapter.The extensions (su
h as those referred to in this se
tion) that brings the ras-

112 Traditional Approa
hes to Realisti
 Image Synthesisterization approa
h
loser to a better evaluation of the rendering equationwill be des
ribed in
hapter 6.

Chapter 5Traditional Approa
hes toReal-Time Rendering

The art of life is a
onstant readjustment to our surroundings.Kakuzo Okakura

114 Traditional Approa
hes to Real-Time RenderingWhile photorealisti
 rendering has its main fo
us on
orre
tness of the s
eneand for the rendering to be
ome as
lose to the real world as possible, theabsolute main issue in real-time rendering is the pro
essing time needed forea
h rendering. Methods for real-time rendering are very mu
h limited dueto this issue. Pro
essing time is also the main reason why real-time ren-dering traditionally is based on lo
al illumination and rasterization ratherthan global illumination methods su
h as ray tra
ing or radiosity. Photore-alisti
 e�e
ts in real-time are often based on a very simpli�ed version of themathemati
s and physi
al laws behind the lighting
al
ulations. Sometimesreal-time methods even do not
onsider the physi
s behind a visual e�e
t, in-stead they simply fake the e�e
t using whatever model that makes the resultlook right. This approa
h is not ne
essarily bad, but in this proje
t we haveemphasis on physi
al realism. In this
hapter we will therefore seek to de-s
ribe how traditional methods for real-time rendering works and what theirlimitations are with respe
t to visual realism. In
hapter 6 we will des
ribehow di�erent expansions of the real-time rendering
on
ept approa
hes abetter evaluation of the rendering equation.The �rst se
tion of this
hapter (5.1) will in short des
ribe the pipelineof real-time rendering.Having the pipeline at hand, it is des
ribed in se
tion 5.2 how obje
ts areusually lighted and shaded in real-time and at whi
h stage in the pipelinethis usually takes pla
e.In se
tion 5.3 it is des
ribed how textures are used to indulge visualrealism into a rasterized image. When an obje
t is textured it means thatan image is `glued' onto the obje
t.This
on
ludes a relatively short
hapter on traditional real-time render-ing. The reason why we do not go into spe
i�
 details on algorithms andte
hniques for a
omplete implementation of the rendering pipeline is thatmost of the te
hniques ne
essary for traditional real-time rendering are im-plemented in hardware today. This means that everything needed in orderto implement traditional real-time rendering is a graphi
s library su
h asOpenGL or Dire
t3D. The graphi
s libraries exploit a GPU if its availableand otherwise they simulate the standard te
hniques in software.5.1 The Graphi
s Rendering PipelineInitially we
an divide the rendering pipeline into three
on
eptual stages:An appli
ation stage, a geometry stage, and a rasterizer stage [2℄, see �gure5.1. Ea
h of these stages may itself
onstitute a pipeline. In the followingwe will des
ribe ea
h of the
on
eptual stages.

5.1 The Graphi
s Rendering Pipeline 115

Application Geometry Rasterizer

Figure 5.1: The
on
eptual rendering pipeline. This �gure is a reprodu
tion of �gure2.2 in [2℄.The Appli
ation StageThe appli
ation stage denotes the part of the rendering pipeline that is notbuild upon hardware implementation. At this stage obje
ts are de�ned andthe s
ene is
omposed. The
amera and light sour
es are pla
ed in the s
ene.The appli
ation stage is where user input (from keyboard, mouse, et
.) ishandled. Animations are usually also
arried out at this stage and obje
t
ollision may be dete
ted and handled. Extra a

eleration algorithms, su
has o

lusion
ulling, are also implemented here.When
omposing the s
ene the obje
ts are most often left as they are intheir lo
al
oordinate system (unless they are morphed or animated). Insteadof
hanging the obje
t data ea
h frame, a transformation matrix is usuallyasso
iated with ea
h obje
t and send along with it down the pipeline.At the end of the appli
ation stage the s
ene geometry and the asso
iatedtransformations should be ready for rendering. This and other renderingprimitives (eg. normals,
olors, et
.) are fed to the next stage of the pipeline.It should be noted that operations on verti
es whi
h are dependent on therest of the geometry in the s
ene should be
arried out in the appli
ationstage. When the geometry passes on to the next stage it is generally assumedthat ea
h vertex in the s
ene
an be pro
essed independently. This propertymakes it mu
h easier for graphi
s hardware to pro
ess the data in parallel.The Geometry StageWhile the virtual s
ene travels down the pipeline its geometri
al
ontents willbe transformed to reside in di�erent
oordinate spa
es (they were mentionedbrie�y in se
. 2.3). When working with real-time rendering it is sometimesimportant to have a good understanding of the di�erent
oordinate spa
es.If we need to
hange things at some point in the pipeline, it is
ru
ial that weknow whi
h spa
e we are
urrently working in. Figure 5.2 shows the di�erenttransforms and
oordinate spa
es that the geometry will pass through.Usually those transforms are all that happens at the geometry stage.With the emergen
e of programmable GPU hardware it may, however, wellbe the
ase that other operations are
arried out before or in-between the

116 Traditional Approa
hes to Real-Time Rendering

Object
Space

Modeling
Transform

World
Space

Viewport and
Depth Range
Transform

Perspective
Divide

Projection
Transform

View
Transform

Clip
Space

Normalized Device
Space

Eye
Space

Window
Space Figure 5.2: The di�erent transforms that will be applied to the geometry and thedi�erent
oordinate spa
es that it will reside in while passing through the geometry stageof the rendering pipeline. This �gure is a reprodu
tion of �gure 4-1 in [36℄transforms. The part of the geometry pipeline that has been made pro-grammable is the transition from obje
t spa
e to
lip spa
e in �gure 5.2. Ifwe
hoose to re-program the vertex pro
essor (whi
h this part of the pipelineis
alled in GPU terminology), we must keep in mind that modeling, view,and proje
tion transformations are repla
ed by the vertex program we
re-ate. Therefore, if we want the pipeline to behave as usual after adding ourmodi�
ations to the vertex pro
essor, we must remember to
arry out thesetransformations in our vertex program. The di�erent transformations aredes
ribed in the following.Modeling TransformEa
h vertex is given in homogenous
oordinates (
f. se
. 2.3). The modelingtransform is any kind of transformation that the appli
ation stage has founduseful. An obje
t might have been modeled around the origin of its lo
al
oordinate system and the modeling transform
an spe
ify whi
h positionand orientation the obje
t should have in world spa
e. In this way themodeling transform
an also spe
ify movement of obje
ts a

ording to userinput (see
hap. 9).View TransformThe view transform is given by the lo
ation and orientation of the virtual
amera. Having an orthonormal frame U ;V ;N around the eye point Espe
ifying the position and orientation of the view plane, we
an des
ribethe rotation matrix R:

5.1 The Graphi
s Rendering Pipeline 117
R = 0BB� Ux Uy Uz 0Vx Vy Vz 0Nx Ny Nz 00 0 0 1 1CCAand the translation matrix:T = 0BB� 1 0 0 �Ex0 1 0 �Ey0 0 1 �Ez0 0 0 1 1CCAthe
on
atenation of whi
h will des
ribe the view transform:Tview = RTOften the
amera parameters provided are an eye point E, a `look-at'point L, and a
amera up ve
tor vup. If this is the
ase the orthonormalframe
an be found as follows:N = E �LkE �LkV = vupkvupkU = N � Vwhere N points away from the `look-at' point. The result is a right-handed
oordinate system in whi
h the viewer is looking along the negative z-axis,the y-axis points up, and the x-axis to the right.Proje
tion TransformThe purpose of the proje
tion transform is to transform the view frustum(in
luding its
ontents) into a unit
ube in proje
tive three spa
e. Supposethe view frustum is given by the following six-tuple (l; r; b; t; n; f), where(l; b;�n) is the minimum
orner of the view plane, (r; t;�n) is the maximum
orner of the view plane, and f is the distan
e from the eye point to the farplane. Then the proje
tion to the unit
ube is given as [2℄:Pp = 0BBB� 2nr�l 0 r+lr�l 00 2nt�b t+bt�b 00 0 �f+nf�n � 2fnf�n0 0 �1 0 1CCCA

118 Traditional Approa
hes to Real-Time RenderingThe reason why n and f are distan
es from the eye point rather thanz-values in the eye
oordinate system, is to make them more intuitive. If n0and f 0 spe
i�ed z-values in the eye
oordinate system it would be the
asethat n0 > f 0. Instead it is here, more intuitively, the
ase that 0 < n < f .The proje
tion transform presented here is similar to the one used inOpenGL. It should be noted, however, that some graphi
s APIs (eg. Di-re
t3D) use a di�erent orientation of their eye
oordinate system and if thatis the
ase, the perspe
tive transformations should be
hanged a

ordingly.Perspe
tive DivideThe
lip
oordinates resulting from the proje
tion transform are still givenin homogenous
oordinates (x; y; z; w). In order to obtain the a
tual point orve
tor, x, y, and z are simply divided by w as des
ribed in se
tion 2.3. Afterthis �nal proje
tion the resulting
oordinates are
alled normalized devi
e
oordinates [36℄. In normalized devi
e
oordinates all visible geometry willbe lo
ated within the unit
ube.Viewport and Depth Range TransformFinally x and y of the normalized devi
e
oordinates are transformed intoa
oordinate system measured in pixels. This is
alled window spa
e andthe transformation is
alled the viewport transform. The z
oordinate of thenormalized devi
e
oordinates is s
aled into the range of the depth bu�er (orZ-bu�er) for use in depth bu�ering. This is
alled the depth range transform[36℄. When the virtual s
ene is given in window spa
e, with an asso
iateddepth value for ea
h pixel in
ase of depth bu�ering, everything needed forthe rasterizer stage is available.The Rasterizer StageAfter the geometry stage the rasterizer re
eives all the polygons, lines, andpoints, and their asso
iated proje
ted verti
es,
olors, and texture
oordi-nates. Rasterization is then the pro
ess of determining the set of pixels
overed by ea
h of the geometri
al primitives [36℄. A resulting pixel lo
ationand its asso
iated depth value and interpolated parameters, su
h as
olor,and texture
oordinates, are referred to as a fragment.In other words the rasterization breaks ea
h geometri
 primitive intopixel-sized fragments for ea
h pixel that the primitive
overs [36℄. When aprimitive is rasterized the fragment parameters, su
h as texture
oordinates,are interpolated between the verti
es (usually linearly).The rasterizer is also responsible for resolving visibility. The depth bu�eris used for this purpose. A depth test ensures that the foremost obje
t isdisplayed when two obje
ts overlap the same pixel. Suppose z1 denotes thedepth value of the obje
t that was �rst drawn in the pixel and z2 denotes

5.1 The Graphi
s Rendering Pipeline 119another obje
t overlapping the same pixel, then the default depth test is,of
ourse, z2 < z1. Graphi
s APIs, however, makes it possible to
hoose adi�erent depth test, whi
h is sometimes very useful. The depth test is
alleda raster operation.Another
ommonly used raster operation is the sten
il bu�er, whi
h is abu�er usually storing an integer value for ea
h fragment. This integer value
an be used to mask out parts of the �nal image. The exa
t appli
abilityof the sten
il bu�er and other raster operations will be des
ribed in
ontextwhen we �nd use for them. Though ea
h of the operations will not bedes
ribed, the pipeline of raster operations is given in �gure 5.3 as a teaserfor the options that are available on modern GPUs.
 Fragment &

Associated
Data

Pixel
Ownership

Test

Logic Op

Dithering

Blending

Depth
Test

Stencil
Test

Alpha
Test

Scissor
Test

Color
Buffer

Stencil
Buffer

Depth
Buffer

Figure 5.3: Standard OpenGL and Dire
t3D raster operations. This �gure is a repro-du
tion of �gure 1-5 in [36℄.On fourth generation GPUs (and newer) the fragment pro
essor is alsoprogrammable. A fragment program is what we use to re-program the frag-ment pro
essor. The only part of the fragment pro
essing that is repla
edby the fragment program is texturing. Otherwise the fragment program onlyexpands the
al
ulations that are
arried out in the pipeline. All we must doat the end of a fragment program is to send the
olor that we found for the
urrent fragment further down the pipeline through the raster operations.It has been mentioned that a
olor is asso
iated with ea
h vertex andea
h fragment. This
olor is originally provided by the appli
ation alongwith the vertex position, normal, et
. The
olor may pass unaltered fromthe vertex pro
essor to the fragment pro
essor. This is
alled �at shading.From there on the
olor is usually just applied to ea
h fragment that aprimitive is
overing. The result of a �at shading model is not too ex
iting,sin
e the entire fa
e of ea
h polygon will have exa
tly the same
olor. If theappli
ation has provided di�erent verti
es for the same primitive obje
t with

120 Traditional Approa
hes to Real-Time Renderingdi�erent
olors, the �at shading model will merely
hoose the
olor of the�rst vertex en
ountered for the entire primitive. There are fortunately othershading options, some of those will be des
ribed in the following se
tion.5.2 Lighting and ShadingThe
olor at ea
h position of ea
h primitive obje
t is exa
tly what all thetheory given in
hapter 3 seek to �nd. Traditionally it has, however, notbeen possible to
al
ulate illumination in real-time using the more
orre
tphysi
al model.Some important models for shaded display were developed long beforethe rendering equation was presented in [66℄. An obvious alternative to the�at shading model is linear interpolation between the vertex
olors of ea
htriangle. This method is
alled Gouraud shading named after Henri Gouraudwho presented this te
hnique in [41℄.Having a better shading model we still need to �nd the
olor of ea
hvertex between whi
h we want to interpolate. The simplest shading we
anuse is the polyhedral model, whi
h �nds the shade of an obje
t a

ording tothe simplest possible form of the rendering equation. Though the polyhedralmodel is mu
h older than the rendering equation, we
an still derive it fromthe rendering equation and thereby learn about the simplifying assumptionsthat it in
ludes.Suppose we only treat di�use (or Lambertian) surfa
es, meaning thatthe BRDF in ea
h point is given as a
onstant re�e
tion
oe�
ient fr;d(x) =�d(x)=� = kd(x). Furthermore we only
onsider a single point light sour
e,whi
h has no areal extension, meaning that Le = 0 on all surfa
es. Thelight emitted from the point sour
e is given as Le;0 = 1, and only lo
alillumination is
onsidered. A

ording to all these simpli�
ations we
anrewrite the rendering equation as follows:Lo(x;!) = Le(x;!) + Z
 fr(x;!;!0)Li(x;!0)
os � d!0= Z
 fr;d(x)Li(x;!0)
os � d!0= kd(x)Le;0
os �= kd(x)
os � = kd(x)(n � !0)where � is the angle between the surfa
e normal, n, and the dire
tion towardsthe light, !0. This is exa
tly the formulation of the polyhedral model, andthough it is extremely simple, it
an
reate a sensation of depth in an image.Figure 5.4
ompares the �at shading model des
ribed previously with thepolyhedral shading model and the polyhedral model
ombined with Gouraudshading.

5.2 Lighting and Shading 121

Figure 5.4: S
reen shots of the Cornell box using di�erent real-time shading models. Thetwo boxes have been repla
ed by two spheres to make the shading more readily dis
ernable.From top left to bottom right: (a) Flat shading model. (b) Polyhedral shading model. (
)Polyhedral model and Gouraud shading. (d) Phong highlighting.In order to expand the polyhedral model to in
lude spe
ular surfa
esas well as Lambertian surfa
es, Phong published a very famous model in1975, see [106℄, whi
h (sometimes in a slightly modi�ed form) is still usedfor real-time graphi
s. Quite appropriately it has subsequently been
alledthe Phong model. The best way to des
ribe the Phong model with respe
tto the rendering equation is to des
ribe the BRDF that he proposed1:fr(x;!;!0) = ks (
os �)m
os � + kdwhere ks is a
onstant spe
ular re�e
tan
e
oe�
ient, m is
alled the shini-ness and
os� = ! � !s, where ! is dire
tion from the surfa
e lo
ationx towards the viewer and !s is the dire
tion of perfe
t spe
ular re�e
tion(found using (3.2)).1The original arti
le ([106℄) did not propose a BRDF, but merely des
ribed the model.The fundamental theory for BRDFs were not introdu
ed to
omputer graphi
s until yearslater, even though both theory and nomen
lature were available in 1977, see [88℄.

122 Traditional Approa
hes to Real-Time RenderingWhen the Phong model is
ombined with Gouraud shading, the result isreferred to as Phong highlighting. Two white spheres in a Cornell box, halfspe
ular (ks = 0:5), half di�use (kd = 0:5), results in the image presented in�gure 5.4d.Be
ause Gouraud shading interpolates the shade linearly between theverti
es, the highlight often be
omes
oarse. Moreover details in the shadinga
ross a surfa
e are sometimes missed if the triangles are large su
h as thewalls in the Cornell box. In order to solve su
h problems the shading mustbe evaluated for ea
h fragment rather than for ea
h vertex, whi
h meansthat all the polygons must be so small that that their shading of ea
h vertex
orresponds to shading for ea
h fragment or we must alter the fragmentpro
essing in the graphi
s pipeline. The latter option is often referred to asfragment shading, and as noted in the previous se
tion a fourth generationGPU is ne
essary if we need to program the fragment pro
essor. Evaluatingthe Phong model for ea
h fragment is referred to as Phong shading. Thedi�eren
e between Phong highlighting and Phong shading is presented in�gure 5.5.

Figure 5.5: The two spheres in the Cornell box are perfe
tly spe
ular (ks = 1 andkd = 0). From left to right: (a) Phong highlighting. (b) Phong shading.Unfortunately the Phong model is not energy
onserving and neither doesit ful�l the re
ipro
ity property of a BRDF, whi
h is a serious disadvantagewith respe
t to light transport (des
ribed in 3.6), and it means that thePhong model does not
apture the behavior of most real obje
ts [30℄.Mainly for e�
ien
y reasons Blinn proposed a popular variation of thePhong model in [9℄. In the Blinn-Phong BRDF
os� = n � h, whereh = ! +!0k! +!0k

5.3 Texture Mapping 123is the half-ve
tor between the dire
tion to the viewer ! and the dire
tion tothe light sour
e !0.A modi�ed version of the Blinn-Phong model, in fa
t, preserves the ne
-essary properties of a BRDF. The modi�ed Blinn-Phong BRDF is given as:fr(x;!;!0) = ks(n � h)m + kdThe relationship between the Phong model and its Blinn-Phong variantwas found in [37℄ as (n � !s)m � (n � h)4m.Sin
e all the models des
ribed in this se
tion only deal with lo
al illu-mination, they only simulate the light paths LDE, in
ase of the polyhedralmodel, or L(SjD)E, in
ase of Phong or Blinn-Phong. To
ompensate forthe missing indire
t light an ambient term, La, whi
h is merely a material
onstant, is often added to the shade of an obje
t.All these lighting and shading models were kept primitive and simpleto make sure that they would be useful for real-time rendering, and todaythey still are. The Blinn-Phong model
ombined with the Gouraud shading(also referred to as Phong highlighting) is the de fa
to standard in real-timegraphi
s libraries su
h as OpenGL. Many expansions seeking to obtain amore physi
ally
orre
t lighting and shading in real-time have been proposedsin
e the Phong model, this is the subje
t of
hapter 6.In the following se
tion we will take a brief look at texturing, sin
e it isan important part of real-time rendering and be
ause textures are useful formany other things than `gluing' pi
tures on 3D obje
ts.5.3 Texture MappingTextures are used frequently in almost any kind of professional real-time ap-pli
ation. They are a
heap way to enhan
e a Phong highlighted or Phongshaded s
ene so that it be
ome more visually interesting. Textures often givea s
ene the �nal tou
h of realism, they are able to add details that wouldotherwise take an immense amount of triangles to render. In
ontrast toglobal illumination te
hniques (su
h as those des
ribed in
hapter 4), tex-ture mapping
an be �grafted onto a standard [real-time℄ rendering methodwithout adding too mu
h to the pro
essing
ost� [134, p. 215℄.Previously we have mentioned that texture mapping as a way to `glue'images on 3D obje
ts, and that is indeed the most
ommon fun
tionalityof textures. The image is usually two-dimensional and we must make it�t the surfa
e of a 3D obje
t. Points on the surfa
e of an obje
t
an bedes
ribed in two dimensions if they are given in parameter spa
e
oordinates,more
ommonly
alled (u; v)-
oordinates. The texture image is pla
ed in theparameter subspa
e [0; 1[�[0; 1[. The (u; v)-
oordinates are usually providedat the appli
ation stage of the rendering pipeline. Graphi
s librariries (eg.OpenGL) usually also provide automati
 texture
oordinate generation. The

124 Traditional Approa
hes to Real-Time Renderingpro
ess of �nding parameter spa
e values from lo
ations in spa
e is
alledmapping, hen
e the name texture mapping.For a texture to be applied to an obje
t, (u; v)-
oordinates should beatta
hed to ea
h vertex of the obje
t spe
ifying the part of the texture thatought to be drawn at surfa
e lo
ation on the obje
t. Unfortunately it isquite di�
ult to
over an arbitrary surfa
e
leanly with a two-dimensionalimage. The texture will most likely be stret
hed or
ompressed in pla
esto �t the surfa
e [2℄. A number of options are therefore given before a tex-ture is applied. First we must
hoose how to handle the
ase where the(u; v)-
oordinates rea
h outside the texture image de�ned in [0; 1[�[0; 1[.The following options are usually available: Repeat, mirror,
lamp to edge,and
lamp to border. The di�eren
e between
lamp to edge and
lamp toborder is that in the �rst
ase the edge of the texture is repeated when(u; v)-
oordinates rea
h outside [0; 1[�[0; 1[, while in the se
ond
ase a sepa-rate border
olor
an be de�ned, whi
h is used for (u; v)-
oordinates outside[0; 1[�[0; 1[.The next thing to worry about is whether the texture �t the numberof pixels that the obje
t
overs on the s
reen. The number of pixels thatan obje
t
overs
an
hange signi�
antly during the
ourse of a real-timeappli
ation. If the obje
t is su�
iently
lose to the
amera it may �ll out allthe pixels on the s
reen, while it may also be so far away that it
overs a singlepixel only. The �rst
ase is
alled magni�
ation, the se
ond is mini�
ation.Two �ltering methods are usually available in the
ase of magni�
ation.Those are nearest neighbor (or a box �lter) and bilinear interpolation. Other�lters
ould be used as well. Corresponding �lters are available for mini-�
ation. Anyhow mini�
ation seems to
ause more aliasing problems thanmagni�
ation, and it is, therefore, often useful to have a mipmap for mini�-
ation.Mipmaps were �rst introdu
ed by Lan
e Williams in [140℄. Mip is ana
ronym from the latin phrase �Multum In Parvo� meaning �many things ina small pla
e�. A mipmap is a pyramidal data stru
ture where the originaltexture image is the base of the pyramid (level 0). Averaging ea
h 2�2 areaof the image into a new texel2 value
reates the next level up. This pro
ess
ontinues until the top of the pyramid
ontains only one texel (it is assumedthat the dimensions of the base image are ea
h a power of two). Now anappropriate level of the mipmap
an be
hosen to represent the texture inthe
ase of mini�
ation.The presentation of texture mapping provided in this se
tion has beenvery super�
ial. The reason is that many things done with textures mostly
on
ern anti-aliasing after the image has been stu
k on an obje
t, and atthe beginning of this proje
t we
hose not to work on anti-aliasing in detail.2Texel is short for texture element. A texel in a texture
orresponds to a pixel on as
reen.

5.3 Texture Mapping 125Moreover the ideas that we present in part III do not rely on textures to bestu
k on obje
ts, rather they use textures as
ontainers for data that we �nduseful in a fragment program.The purpose of this
hapter was to provide a very basi
 introdu
tion tothe traditional real-time rendering approa
h. The rendering method is
alledrasterization and it is, in fa
t, older than both ray tra
ing and radiosity. Wehave presented it here in its modern form, and des
ribed the di�erent stagesof the rendering pipeline. The parts of the otherwise hardware implementedpipeline that have been made programmable, have been pointed out. Thenext
hapter des
ribes some of the methods that are used to expand therasterization approa
h in order to push real-time rendering
loser to realisti
image synthesis. These methods often depend on texture mapping, rasteroperations and the programmable parts of the pipeline (vertex and fragmentprograms).

126 Traditional Approa
hes to Real-Time Rendering

Chapter 6Approximating the RenderingEquation in Real-Time

The
loser you get to your goal, the harder it will be to rea
h it -in fa
t, you may NEVER rea
h it.Paige Waehner: Exer
ise for Beginners - Setting Goals

128 Approximating the Rendering Equation in Real-TimeOne obje
tive in this proje
t is to approximate, in real-time, as many aspossible of the visual e�e
ts that result from a global illumination model.This is not a new obje
tive, many resear
hers have worked on it before.Many
unning methods and
lever algorithms have been developed over theyears. Still, not all visual e�e
ts are available in real-time, at least notsimultaneously and
ertainly not with the same a

ura
y as if one of themethods for realisti
 image synthesis had been used.To solve the re
ursive integral of global illumination in real-time (havingat most 65 millise
onds to spend for ea
h image) we must either simplifythe
al
ulations signi�
antly, or otherwise
ome up with a simple alternativethat visually gives the same result (we may legitimately
all this approa
h`
heating'). Some of the methods presented in the literature for real-timeapproximation of global illumination are des
ribed in this
hapter. We willemphasize on the methods that in some way relate to our idea of dire
t ra-dian
e mapping (see
hap. 12), and on methods that
an easily be
ombinedwith dire
t radian
e mapping in order to
ompensate for the parts of therendering equation that it does not solve.Most arti
les addressing the subje
t of this
hapter fo
us on one or asmaller group of visual e�e
ts rather than full global illumination. The reasonis that one e�e
t alone often is so expensive that it puts heavy restri
tionson the resour
es left for other methods.The se
tions of this
hapter are divided into di�erent methods. Se
tions6.1, 6.2, and 6.3 des
ribe those methods that we
ombine with dire
t radi-an
e mapping in the real-time renderer of this proje
t, they are des
ribedsu�
iently for implementation.A few methods that
ould advantageously be
ombined with our methodare presented in se
tions 6.4 and 6.5. There has not been time for theirimplementation in this proje
t, and, hen
e, they are not des
ribed in detail.We merely bring the readers attention to the appli
abilities of these methods.The remaining se
tions (6.6, 6.7, 6.8, and 6.9) are methods des
ribedfor
omparison with dire
t radian
e mapping. Those methods
an not bedire
tly
ombined with our method, rather they
ould ea
h repla
e it orsome of their
on
eptual ideas
ould be used in
ombination with dire
tradian
e mapping. We
an think of them as
ompetitors to the dire
t ra-dian
e mapping method. Therefore we will rather fo
us on advantages anddisadvantages of these methods than on their theoreti
al foundation.A des
ription of di�erent methods for subsurfa
e s
attering was given inse
tion 3.4. This subje
t is not addressed any further in this
hapter.6.1 Sten
iled Shadow VolumesConsider the
orre
tness of the images in �gures 5.4 and 5.5. One thing wequi
kly noti
e to be wrong, is that there are no shadows below the spheres.

6.1 Sten
iled Shadow Volumes 129The reason is that the shade of ea
h vertex (and fragment) is
al
ulatedlo
ally, meaning that other geometry su
h as o

luding obje
ts are not
on-sidered when the shade is found.Looking at the derivation of the polyhedral shading model, the simplify-ing assumption that loose the shadows is that of lo
al illumination. We
ansplit this assumption in two: Dire
t illumination only and mutual visibility.The assumption of only dire
t illumination has the following result on there�e
ted radian
e.Lr(x;!) = Z
 fr(x;!;!0)Li(x;!0)
os � d!0= Z
e fr(x;!;!0)Li(x;!0)
os � d!0where
e denotes the dire
tions over the hemisphere in whi
h a light sour
eis visible. If we
onsider area light sour
es, and use the area formulation ofthe rendering equation instead of the hemispheri
al formulation the re�e
tedradian
e term is given as follows:Lr(x;!) = ZAe fr(x;!;!0)Li(x;!0)V (x;y)G(x;y) dAy= ZA fr(x;!;!0)Le(y;�!0)V (x;y)G(x;y) dAyhere Ae is the surfa
e area of all light sour
es in the s
ene and A is the unionof all surfa
e areas in the s
ene.The last part of the lo
al illumination assumption is mutual visibilitybetween all surfa
es, whi
h means that V (x;y) = 1 for all x and y. Real-time shadow algorithms seek to avoid this simplifying assumption of mutualvisibility. This se
tion presents a fairly general shadow algorithm
alledsten
iled shadow volumes.The original shadow volume method, presented by Franklin Crow in [22℄,assumes a single light sour
e being either a point light or a dire
tional light.Dire
tional light is a light sour
e removed in�nitely far away, whi
h results inlight
oming from one dire
tion only throughout the s
ene. In the
ase of apoint light pla
ed at y, the rendering equation is only slightly more
omplexthan the polyhedral model:Lo(x;!) = fr(x;!;!y)V (x;y)Le;0 (n � !y)where n is the surfa
e normal at x and !y is the dire
tion from x towardsthe light sour
e pla
ed at y.In
ase of a dire
tional light the rendering equation is given as follows:

130 Approximating the Rendering Equation in Real-Time
Lo(x;!) = fr(x;!;!0)V (x;!0)Le;0 (n � !y)where !0 = �!light, if !light is the dire
tion of the dire
tional light.The idea proposed by Crow is to let the polygons fa
ing the light sour
eand their
ontour edges extruded away from the light sour
e de�ne theshadow volume of an obje
t. Surfa
es
ontained within the volume will be inshadow, while those outside are not. The shadow volume is itself invisible,however, if we draw the shadow volume ea
h front fa
ing shadow polygonwill tell that everything behind is in shadow, while a ba
k fa
ing polygonwill
an
el the e�e
t of a front fa
ing one.Crow's des
ription of shadow volumes (1977) did not �nd a real-timeimplementation until 14 years later in [49℄. The reason being the di�
ultiesin drawing an invisible shadow volume, whi
h still would be able to spe
ifywhether a pixel was in shadow or not. The problem was solved with theemergen
e of a sten
il bu�er.As des
ribed in se
tion 5.1 the sten
il bu�er stores an integer for ea
hpixel in the window. It is possible to use di�erent kinds of masks and sten
ilfun
tions in order to spe
ify the values to be stored in the bu�er.Suppose we have a shadow volume for ea
h obje
t, then the sten
iledshadow volumes algorithm is given as follows:1. Clear the
olor, depth, and sten
il bu�ers.2. Enable writes to the
olor and depth bu�ers. Set the depth test toenable drawing when the depth value is less than the previous value.3. Draw the s
ene with ambient lighting only.4. Disable writes to the
olor and depth bu�ers. Enable writes to thesten
il bu�er.5. Draw the front fa
ing shadow polygons. In
rement when the depthtest passes.6. Draw the ba
k fa
ing shadow polygons. De
rement when the depthtest passes.7. Disable writes to the sten
il bu�er. Enable writes to the
olor bu�er.8. Set the sten
il test to enable drawing when the sten
il value equalszero. Set the depth test to enable drawing when the depth value isequal to the previous value.9. Draw the s
ene in full illumination.

6.1 Sten
iled Shadow Volumes 131Note how the sten
il bu�er �rst
ounts how many times a shadow volumeis entered (5.) and afterwards
ounts how many times a volume is left behind(6.). If the result of the
ount is greater than zero, the surfa
e area we arelooking at must still be in shadow, while if the sten
il value is zero after the
ount has �nished the surfa
e area must be free of shadow.The algorithm
an easily be expanded to a

ount for several light sour
es:1. Clear the
olor and depth bu�ers.2. Enable writes to the
olor and depth bu�ers. Set the depth test toenable drawing when the depth value is less than the previous value.3. Draw the s
ene with ambient lighting only.4. For ea
h light l:(a) Enable writes to the sten
il bu�er. Clear the sten
il bu�er.(b) Disable writes to the
olor and depth bu�ers. Set the depth testto enable drawing when the depth value is less than the previousvalue.(
) Draw the front fa
ing shadow polygons. In
rement when thedepth test passes.(d) Draw the ba
k fa
ing shadow polygons. De
rement when thedepth test passes.(e) Disable writes to the sten
il bu�er. Enable writes to the
olorbu�er.(f) Set the sten
il test to enable drawing when the sten
il value equalszero. Set the depth test to enable drawing when the depth valueis equal to the previous value. Enable additive blending.(g) Draw the s
ene illuminated by light sour
e l only.In the above we assume that shadow volumes are available. Though itis quite simple to extrude silhouette edges away from the light sour
e toobtain shadow volumes, it is also quite expensive. One relatively e�
ientway, presented in [2, 12℄, is to draw ea
h edge as a quadrilateral (or quad) ofno width. Two polygons meet where ea
h edge quad is drawn, two verti
esof the quad should have normals from one polygon and two verti
es shouldhave normals from the other polygon. When drawing the shadow polygonsto the sten
il bu�er, a vertex program
an move verti
es away from the lightsour
e if their normal points away from the dire
tion towards the light. Thisapproa
h will extrude silhouette edges for shadow volumes.Compared to other shadow algorithms sten
iled shadow volumes are,as mentioned, fairly general. Some shadow algorithms, su
h as proje
tionshadows,
an only
ast shadows on planar surfa
es. For some algorithms,

132 Approximating the Rendering Equation in Real-Timeeg. shadow textures, it is ne
essary to spe
ify whi
h obje
ts that are o

lud-ers and whi
h obje
ts that are re
eivers. An alternative to shadow volumesis shadow maps introdu
ed by Lan
e Williams in [139℄. In short the shadowmap is a pi
ture from the light sour
e and everything that is not seen in thismap is in shadow. The shadow map
an, as shadow volumes,
ast shadowsfrom arbitrary geometry onto arbitrary geometry. There are di�erent prob-lems asso
iated with ea
h method. The shadow map mostly su�ers fromaliasing problems, while shadow volumes su�er from problems of a more ge-ometri
al nature. Most of the problems in shadow volumes are addressed in[78, 34℄ and we will not go further into them at this point.The limitations of shadow volumes are still the simplifying assumptionsof only dire
t illumination and only point or dire
tional light sour
es. The�rst assumption is fundamental to all shadow algorithms. In order to removethis assumption we must
al
ulate the mutual visibility between all surfa
elo
ations in a s
ene, whi
h is quite infeasible for a shadow algorithm that inits simple form
annot simulate light sour
es with an areal extension. Thelatter assumption has been addressed lately by several arti
les. The pointand dire
tional light sour
es result in hard shadow edges, sin
e they haveno areal extension that
an make a sour
e partly visible. The visual e�e
tresulting from area light sour
es is known as soft shadows.The extension that makes the sten
iled shadow volumes algorithm able tosimulate soft shadows, is not straight forward. One method, des
ribed in [51℄,uses an extended shadow map
alled a D-bu�er to store umbra and penumbravolumes1. Another approa
h, presented in [7, 8, 1℄,
al
ulates penumbrawedges and use them for approximation of soft shadows. Unfortunately wehave not had time for an implementation of real-time soft shadows during thisproje
t. A good presentation of shadow volumes and the penumbra wedgesextension is given in [35℄. A general overview of the di�erent algorithms
anbe found in [2℄.This se
tion
on
erned the dire
t illumination approximation of the ren-dering equation. Dire
t illumination in
lude shadows and it is, therefore,better than the lo
al illumination models presented in se
tion 5.2. The nextstep towards visual realism is spe
ular re�e
tions, whi
h is the subje
t of thetwo following se
tions.6.2 Planar Re�e
tions Using the Sten
il Bu�erRe
all from se
tion 4.4 how the rendering equation
an be split up into fourdi�erent terms: Dire
t illumination, spe
ular and glossy re�e
tions,
austi
s,and multiple di�use re�e
tions. Having dire
t illumination, the next steptowards global illumination is to simulate spe
ular re�e
tions. To start out1Umbra denotes an area in full shadow. Penumbra denotes an area partly in shadow.

6.2 Planar Re�e
tions Using the Sten
il Bu�er 133simple, we �rst
onsider single spe
ular re�e
tions for planar surfa
es (lightpaths LD?SpE, where Sp denotes spe
ular re�e
tions o� planar surfa
es only).In global illumination spe
ular re�e
tion is an e�e
t available throughray tra
ing. This se
tion will introdu
e a rasterization approa
h to spe
ularre�e
tion, making it available in real time.As des
ribed se
tion 3.1 the angle of re�e
tion equals the angle of in
i-den
e. In
ase of a planar re�e
tor, the re�e
tion of a s
ene is in other wordsan inversion of the s
ene in the plane representing the re�e
tion surfa
e.Figure 6.1 illustrates how the re�e
tion
an be represented as a rendering ofthe s
ene from an inverted virtual viewpoint.

Reflecting plane

Eye point e

Reflected eye
point er

Scene

Reflected
Scene

d

i

r

n

Figure 6.1: A s
ene re�e
ted in a plane (planar re�e
tion). The re�e
tion
an be seenas a re�e
tion of the s
ene geometry in the re�e
ting plane or as a rendering of the s
enefrom a re�e
ted eye point. This �gure is a reprodu
tion of �gure 6.1 in [90℄.The position and viewing dire
tion of the re�e
ted eye point er and there�e
ted viewing dire
tion r
an be found from the position of the originaleye point e and the original viewing dire
tion i, using the following twoformulas: er = e+ 2d(�n)r = i� 2(n � i)nwhere n must be a unit surfa
e normal of the planar re�e
tor. Here r isfound using (3.2). Note, however, that signs have been
hanged sin
e ipoints towards the surfa
e not away from it.One way to implement planar re�e
tions is simply to render the s
enefrom the re�e
ted eye point in the re�e
ted viewing dire
tion. Afterwards

134 Approximating the Rendering Equation in Real-Timethe result is shown in the re�e
ting surfa
e.Another method, whi
h is used more frequently, makes use of the sten
ilbu�er. This is also the method implemented for this proje
t. The generalidea is to let the sten
il bu�er
lip out the part of a s
ene that should bere�e
tive and then render the re�e
ted s
ene in this area of the s
reen. Byuse of the sten
il bu�er we will only need to render the visible part of there�e
ted s
ene instead of the entire re�e
ted s
ene. An example of how this
an be done is to render the s
ene in one pass and sten
il mark the pixels ofthe re�e
ting obje
t. Then render the re�e
ted s
ene into the marked areain the se
ond pass [90℄.The step by step algorithm of planar re�e
tion using the sten
il bu�erappears in [70℄ as follows:1. Clear the
olor, depth, and sten
il bu�ers.2. Enable writes to the
olor and depth bu�ers. Disable writes to thesten
il bu�er.3. Render the s
ene ex
luding re�e
ting surfa
es.4. For ea
h re�e
ting surfa
e:(a) Disable writes to the
olor bu�er. Set up sten
iling to write thevalue 1 into the sten
il bu�er when the depth test passes.(b) Draw the polygons of the re�e
ting surfa
e. Thereby all planarre�e
tors that are not o

luded will be `tagged' in the sten
ilbu�er.(
) While the
olor bu�er is still disabled, set the depth range towrite the farthest value possible for all updated pixels and set thedepth test to always pass. Also, set the sten
il test to only updatepixels tagged with the sten
il value 1.(d) Draw the polygons of the planar re�e
tor on
e again. This will
lear the depth bu�er for all visible pixels of the planar re�e
tor.(e) Reset the depth test and the depth range. Re-enable the
olorbu�er.(f) Establish a
lip plane to render obje
ts on the re�e
tive side ofthe mirror plane only.(g) While still only updating pixels marked in the sten
il bu�er, ren-der the s
ene mirrored in the plane of the re�e
ting surfa
e.The sten
il bu�er marks the area in whi
h re�e
tions o

ur in the s
ene,in this way only the re�e
tive part needs to be
onsidered when
al
ulatingthe re�e
ting image. This prevents unne
essary
al
ulations. The sten
iled

6.3 Cube Environment Mapping 135planar re�e
tions have been implemented for our demonstration appli
ationdes
ribed in part III.Planar re�e
tions
an also be simulated using texture mapping. Thispro
edure is straight forward and uses two passes. First pass renders there�e
ted s
ene into a texture and se
ond pass maps it to the re�e
ting obje
t[79℄.An advantage of using the sten
il bu�er pro
edure is that we will onlyneed to update the pixels of the re�e
ting obje
t. When using texture map-ping, we
an have problems with magni�
ation and mini�
ation artifa
ts ifthe eye point is too
lose or too far away [90℄. These artifa
ts will not appearin the sten
il bu�er method, sin
e the s
ene is a
tually rendered.If two re�e
tive surfa
es are fa
ing ea
h other re�e
tions inside the re-�e
tions should be generated. In prin
iple this re�e
tion should go on forever. A re�e
tion loop like this is referred to as re
ursive re�e
tions, whi
h
an be rendered using real time approa
hes as well. The planar re�e
tionalgorithm is re
ursively repeated a number of times. This number dependson the max re
ursion depth that is a parameter for how many re�e
tions in-side re�e
tions there should appear. The pro
edure is des
ribed in [90, 91℄.Meaning that we
an simulate the light paths LD?Sp*E using this approa
hand dire
t illumination, whi
h brings us even
loser to a full implementationof the spe
ular term in real-time. The following se
tion further explores thisopportunity by des
ribing a method for simulation of spe
ular re�e
tions on
urved surfa
es.6.3 Cube Environment MappingIn order to have a better approximation of the rendering equation, we mustbe able to a

ount for spe
ular re�e
tions on
urved surfa
es as well as onplanar surfa
es. Unfortunately the te
hnique for
urved surfa
es is not wellsuited for planar surfa
es and vi
e versa, therefore we need both approa
hes.The light paths we wish to simulate in this se
tion are LD?S
E, and we
aneven expand this approa
h to in
lude multiple spe
ular re�e
tion (light pathsLD?S
+E).Environment mapping was introdu
ed in 1976 by Blinn and Newell in[10℄. It is a way to make
urved obje
ts appear to re�e
t the surroundingsbased on images saved in textures. The
on
ept is to
reate an environmentmap des
ribing the surroundings of the re�e
tive obje
t. The re�e
tion isthen simulated through lookups in the map. Environment mapping hasbe
ome one of the most popular methods for generating perfe
tly spe
ularre�e
tions in real time.Environment mapping has
ertain limitations. The map is
reated from asingle point in spa
e (usually the
enter point of the re�e
tive obje
t), mean-ing that the geometry of the re�e
tion is only a

urate if the surfa
e point

136 Approximating the Rendering Equation in Real-Timeis at the obje
t
enter or if the re�e
ted environment is in�nitely distant.This means that all the surroundings, in fa
t, are re�e
ted at the
enter ofthe re�e
ting obje
t. In pra
ti
e it means that obje
ts lo
ated
lose to there�e
ting surfa
e will be re�e
ted in
orre
tly, if the obje
t
lose by is large,the e�e
t will not be parti
ularly noti
eable. Shadows re�e
ted on surfa
es
lose to the re�e
tor seem to
ause the biggest problems. Another limitationto environment mapping is that the re�e
ting obje
t not will be re�e
ted initself.Di�erent environment mapping methods exists. Sphere mapping,
ubemapping, and dual paraboloid mapping are all supported dire
tly by graphi
APIs and graphi
s a

elerators. Good des
riptions of these
an be foundin [90℄. In this proje
t we have used
ube environment mapping, whi
htherefore will be the only one that we des
ribe. The main prin
iples of
ubeenvironment mapping will now be presented.Creating an environment map is like drawing the surroundings of a re-�e
ting obje
t to a texture. The approa
h for environment
ube mapping isto �nd a map for ea
h of the six sides of a
ube surrounding the re�e
ting ob-je
t. The resulting texture maps pi
ture the parts of the surroundings thatare visible from the
enter of the re�e
tive obje
t in all dire
tions. Figure6.2 shows the
on
ept of the environment
ube map.The
ube environment map is view independent; if the eye point
hangesposition only re
al
ulation of the re�e
tion ve
tors is needed to provide the
orre
t re�e
tion. The texture must be re-
al
ulated though if the surround-ings or the position of the re�e
tor
hange.In order to re�e
t a s
ene dynami
ally we must generate the textures forthe environment ea
h frame. The following steps are ne
essary in order torender the environment dynami
ally [142℄:1. Set up a
amera with a 90Æ �eld of view at the
enter of the re�e
tingobje
t's lo
ation.2. Point the
amera along +x and render the (approximate) s
ene aroundyour obje
t into the �rst fa
e of the
ube map.3. Repeat the pro
ess, rendering along �x, �y and �z into ea
h fa
e ofthe
ube map.When rendering the
ube map the re�e
ted dire
tion (r) of ea
h fragmentis used as texture
oordinates for the look-up in the environment map. We
an also
reate a single level of refra
tion if we use the refra
ted dire
tion astexture
oordinates.In
luding multiple spe
ular re�e
tions in this approa
h is surprisinglysimple and inexpensive with respe
t to pro
essing time. We merely in
ludethe environment maps found in the previous frame, when rendering otherspe
ular obje
ts in the images for the di�erent fa
es of the environment

6.3 Cube Environment Mapping 137

-x +x

-y

+y

+z

-z

Folded

Front Left Right

Top

Bottom

Back

Unfolded

+z

+y

+x

-z

+x

+y

+x

+z

-z

+y

-x

+y

Figure 6.2: The
on
ept of environment mapping. Ea
h side of the
ube is renderedand stored in a texture. The
ube sides are referred to as
ube fa
es.map. This e�e
tively provides an extra spe
ular re
ursion for ea
h framethat we render without mu
h extra e�ort.Adding the light paths that we
an simulate using environment mappingto the light paths we
an simulate using sten
iled planar re�e
tions (see theprevious se
tion), it is all in all possible to approximate a spe
ular termusing real-time rendering methods. The limitation is that we �nd re�e
tionso� perfe
tly spe
ular materials only. This
an be
ompensated for by use ofblending, sin
e the glossy e�e
ts that should be simulated by the spe
ularre�e
tions term of the rendering equation only in
lude those glossy surfa
eswe have
lassi�ed as
loser to spe
ular obje
ts than di�use obje
ts.

138 Approximating the Rendering Equation in Real-TimeThe spe
ular term found simulate the light paths LD?S+E. If we let dire
tillumination simulate LD?E, the resulting rendering method will simulate thepaths LD?S*E. The spe
ular term found here is not entirely
omparable to thespe
ular and glossy re�e
tions term des
ribed in photon mapping (
f. se
.4.4), whi
h simulate the paths LS*(S|D)S+E. The missing part is re�e
tionof
austi
s, whi
h we
annot a

omplish unless we employ a method that
ansimulate
austi
s in the �rst pla
e. In the following se
tion we will dis
uss afew methods that
ould be used to simulate
austi
s in real-time.6.4 Real-Time Causti
sThough there has not been time for a real-time implementation of
austi
sduring this proje
t, we would like to point out some of the methods thathave been presented in literature, sin
e they
an be used in
ombinationwith the methods mentioned previously in this
hapter and with our ownmethod
alled dire
t radian
e mapping as well.The only rasterization approa
h to real-time
austi
s that we are awareof is presented in [130℄. The idea is to �dis
retize the surfa
e of a spe
ularre�e
tor into small regions and treat ea
h as a pinhole
amera that proje
tsthe in
oming light onto the surrounding obje
ts�. Unfortunately the ap-proa
h is prone to aliasing artifa
ts and the results are not too
onvin
ing.Nevertheless it is one possible way to render
austi
s in real-time.All other approa
hes to real-time
austi
s that we have
ome a
ross seekto simulate photon mapping in real-time. Even if some approa
hes simulatethe entire photon mapping algorithm, the
austi
s
an (as shown previously)be separated from the rest of the photon mapping method and used individ-ually in
ombination with other methods.Pur
ell et al. [108℄ des
ribe how photon mapping
an be implementedin graphi
s hardware. They use a �ltered dire
t evaluation of a global pho-ton map whi
h result in visible low frequen
y noise with respe
t to indire
tillumination. Their pro
essing times are unfortunately measured in se
ondsper frame (not fps). Donner and Jensen [28℄ have subsequently des
ribedhow the pro
essing time of the GPU
omputations
an be improved usingadaptive re�nement. Using the method for
austi
s alone and
ombining itwith other methods for the remaining
omputations, would probably resultin better frame rates.Real-time
austi
s
an be a
hieved using distributed photon mapping.Günther et al. [44℄ show how
austi
s
an be rendered using a
luster of9 to 36 CPUs. This is, however, less interesting with respe
t to real-timerendering on a single CPU, whi
h is the obje
tive of this proje
t. On theother hand they also present some interesting optimizations for photon map-ping on a single ma
hine. For example they use a variant of sele
tive photonemission, whi
h was originally introdu
ed in [27℄, and they use alternative

6.5 Complex BRDFs 139data stru
tures for storage of the photon map, see se
tion 2.5.Finally an interesting method for simulation of photon mapping in real-time is presented by Larsen and Christensen in [74℄. The method is alsodes
ribed in se
tion 6.7, but pi
k out the
austi
s method for now. The
austi
s
al
ulations use a pbu�er2 to
ount the number of
austi
 photonsending up in ea
h fragment. Using this pbu�er as a texture for a fragmentprogram, makes the fragment program able to determine the
ontribution ofthe
austi
s term in ea
h fragment. A simple �lter is applied whi
h takesthe
austi
s term of nearby pixels into a

ount. The results are promisingand the implementation is quite straight forward, even though an e�
ientray tra
er is needed for photon tra
ing.In the following se
tion, we will des
ribe a few
omplex BRDFs that
anenhan
e the shading methods normally used for real-time appli
ations.6.5 Complex BRDFsEven the modi�ed Blinn-Phong BRDF (see se
. 5.2) is not very
lose to aphysi
ally
orre
t BRDF. The emergen
e of programmable graphi
s hard-ware has given a good opportunity for implementation of more
omplexBRDFs in real-time shading. In this se
tion we shortly present a physi
allybased BRDF and an empiri
al BRDF.The Cook-Torran
e ModelThe Cook-Torran
e BRDF is a physi
ally based model, and it is a signi�-
ant improvement
ompared to the modi�ed Blinn-Phong model. It is quiteexpensive though. The math is given as follows [21℄:fr(x;!;!0) = F (�)� D(�h)G(n � !)(n � !0) + kd (6.1)where
os � = h � ! = h � !0 and
os �h = n � h. h is the half-ve
tor.D simulates mi
ro-fa
ets for the material and is given as:D(�h) = 1�2
os4 �h e�(tan �h=�)2where � is a material parameter (it might be referred to as a measure ofroughness).G
aptures masking and self-shadowing by the mi
ro-fa
ets:G = min�1; 2(n � h)(n � !0)!0 � h ; 2(n � h)(n � !)!0 � h �2pbu�er is short for pixel bu�er and it is an o� s
reen bu�er for storing rendered imageswhi
h need not appear on the s
reen.

140 Approximating the Rendering Equation in Real-TimeThe Ward ModelThe Ward model is an empiri
al model, meaning that it primarily intends to�t experimental data. It is less expensive than Cook-Torran
e and it in
ludesan intuitive set of material parameters: �d, the di�use re�e
tan
e, �s, thespe
ular re�e
tan
e, and �, the surfa
e roughness. The BRDF is given asfollows [132℄: fr(x;!;!0) = �d� + �s e�(tan �h=�)24��2p(n � !)(n � !0) (6.2)as before
os �h = n � h and h is the half-ve
tor.This
on
ludes the se
tions
on
erning methods that
an be
ombinedwith dire
t radian
e mapping. In the following we will des
ribe
ompetingmethods, whi
h all seek to evaluate the multiple di�use re�e
tions term.First we will look at a traditional te
hnique for real-time `pseudo-global'illumination
alled light mapping.6.6 Light MappingOne obvious advantage of radiosity
ompared to other global illuminationte
hniques is that it
omputes lighting throughout the s
ene, and that thislighting is stati
 as long as the obje
ts do not move. The reason is theassumptions of di�use surfa
es only. Di�use surfa
es re�e
t light equally inall dire
tions over the hemisphere, and the resulting view-independen
e hasthe e�e
t that the
ontribution of light to a surfa
e
an be
aptured in atexture and atta
hed to the surfa
e.The
on
ept of lighting information atta
hed to a surfa
e using a textureis referred to as light mapping. After the light maps have been
reatedthey
an be used for real-time rendering nearly without expenses. In di�useenvironments it will even be di�
ult to noti
e that the lighting does not
hange a

ordingly when obje
ts are moved around. The illusion, however,qui
kly breaks if we start moving the light sour
e around, or if we pla
e ablue ball in front of the light sour
e and noti
e that the
olor bleeding doesnot
hange.Still, light mapping is an inexpensive and widely used te
hnique whi
h
an simulate multiple di�use re�e
tions in real-time. In [109℄ it is des
ribedhow radiosity was
al
ulated on graphi
s hardware and stored in light mapsfor real-time use in a large s
ale game from Atari
alled �Shadow Ops�.In order to use radiosity stored in light maps in
ombination with themethods des
ribed previously in this
hapter, we must
hoose either to in-
lude the dire
t illumination term in the radiosity
al
ulation, whi
h willresult in obvious �aws when obje
ts are moved, sin
e the shadows will notmove a

ordingly. Alternatively we
an adjust the radiosity algorithm to

6.7 Real-Time Photon Mapping Simulation 141make sure that the light maps only in
lude light re�e
ted di�usely at leaston
e. In this way the light map
an be
ombined with the dire
t illuminationterm using blending.Other global illumination te
hniques
ould be used with light mappingas well as radiosity
an. We must always make sure, though, that only themultiple di�use re�e
tions term is
omputed, if we plan to
ombine the lightmapping with other methods. The reason why it is
lever to use light mapsonly for the multiple di�use re�e
tions term is that the indire
t illumination
hanges quite slowly over the surfa
es and therefore it will be less noti
eablethat su
h lighting is stati
.To summarize light mapping
an
reate sophisti
ated lighting at mini-mum
ost for stati
 s
enes illuminated with stati
 light sour
es. An opti-mization of the
on
ept is to store only light re�e
ted di�usely at least on
ein the light map, and then
ombine the light mapping te
hnique with othermethods for di�erent parts of the rendering equation. Still, if we need ourappli
ation to simulate dynami
 indire
t lighting, or if we do not have timefor a global illumination prepro
essing stage, we have to look for di�erent ap-proa
hes to an evaluation of the multiple di�use re�e
tions term. A brilliantreferen
e for further information on light mapping te
hniques is [16℄.The next se
tion des
ribes real-time simulation of photon mapping, whi
hwe also had a brief look at with respe
t to real-time
austi
s in se
tion 6.4.6.7 Real-Time Photon Mapping SimulationA
unning real-time implementation of photon mapping is presented in[72, 74℄. The part of this implementation that simulates the multiple di�usere�e
tions term is, of
ourse, a
ompetitor to our own method for
omputa-tion of the same term. The real-time photon mapping approa
h
ould equallywell be
ombined with the methods des
ribed in se
tions 6.1 through 6.5.The real-time simulation of photon mapping �rst seek out the di�erentsurfa
es in a s
ene. A

ording to the method des
ribed in [73℄, a global pho-ton map is
reated for ea
h surfa
e (this speed up photon map
onstru
tionand radian
e estimates).A variant of the sele
tive photon emission des
ribed in [27℄, is used toemit only intelligently sele
ted photons ea
h frame. Using sele
tive photonemission, the photons are emitted in groups. The method presented in [74℄emits one photon for ea
h frame from ea
h group. The path of the previousphoton emitted in ea
h group is stored. If the path taken by a photon in agroup is not the same as the previous path, the entire group of photons ismarked for redistribution.For ea
h surfa
e a texture is generated holding radian
e estimates fromthe photon map related to that parti
ular surfa
e. These textures are re-ferred to as approximated illumination maps.

142 Approximating the Rendering Equation in Real-TimeA hardware optimized �nal gathering method is presented, where a num-ber of lo
ations on the surfa
es of the s
ene are
hosen (eg. by the modeler).The approximated illumination maps are applied to ea
h surfa
e and then api
ture is taken from ea
h
hosen lo
ation to simulate �nal gathering rays.The resulting pi
tures are averaged using hardware optimized mipmapping(the topmost image in the mipmap is the average). The result is a number ofpre-determined lo
ations distributed over the surfa
es throughout the s
enewhere the multiple di�use re�e
tions term is known - we
ould
all it anindire
t illumination �eld.One way to visualize this indire
t illumination �eld is simply to store theindire
t illumination in
oarse textures, whi
h
an then be applied to thesurfa
es where the indire
t illumination was
al
ulated. This approa
h isfeasible sin
e di�usely re�e
ted indire
t illumination usually
hanges slowlyover a surfa
e.Compared to light mapping this method handles dynami
 s
enes illu-minated by dynami
 light sour
es. Furthermore it potentially simulates allkinds of light paths in the multiple di�use re�e
tions term (L(SjD)*DS*DS*E).The approximate �nal gathering unfortunately smooth out the result3, butthis is relative sin
e it depends on the number of lo
ations we
hoose onthe di�erent surfa
es. The resulting illumination in a Cornell box using thismethod is almost indistinguishable from the global illumination referen
e(see [72℄).An additional work load that must be added to an implementation ofthis method is an e�
ient ray tra
er, whi
h must be available for the pho-ton tra
ing. E�
ient ray tra
ing involves spatial data stru
tures (eg. BSPtrees) whi
h put some restri
tions on the s
ene geometry. If obje
ts are an-imated or if they morph during rendering, the spatial data stru
tures mustbe re
onstru
ted, this pro
ess may be quite expensive with respe
t to pro-
essing time. Also dynami
 obje
ts should be pointed out in advan
e andea
h of them should have an individual data stru
ture, sin
e re
onstru
tionof a global spatial data stru
ture ea
h frame is too expensive.Another disadvantage is the �nal gathering method where many low res-olution pi
tures are taken at pre-determined lo
ations in the s
ene geometry.This approa
h is not easily s
aled to large and
omplex s
enes, the numberof approximated illumination maps that must be pro
essed will es
alate.We have now des
ribed light maps, whi
h pre-
ompute a stati

ase ofglobal illumination and store the result in a texture for ea
h surfa
e. Besideswe have des
ribed a method for dynami
 simulation of global illuminationin the form of photon mapping. The next se
tion will des
ribe an approa
hthat seeks to take the best of both worlds and
ombine pre-
omputation with3This is unfortunate sin
e smoothing the indire
t illumination has the result that only
lose to perfe
tly di�use surfa
es
an be handled at this last boun
e of di�usely re�e
tedindire
t illumination.

6.8 Pre-
omputed Radian
e Transfer 143dynami
 lighting.6.8 Pre-
omputed Radian
e TransferIn radiosity form fa
tors represent energy transfer between surfa
es. It isassumed that all surfa
es re�e
t light di�usely and that radiosity is
onstanta
ross the surfa
e of a pat
h, hen
e, we need not
onsider the dependen
e ondire
tion and lo
ation. This is why form fa
tors represent energy transfer.If we remove the assumption of di�use surfa
es only, the
on
ept of formfa
tors
an be generalized to represent irradian
e transfer (instead of energytransfer) between surfa
es. In pra
ti
e this means that an arbitrary BRDFmust be in
luded in the radiosity form fa
tor.In [122℄ it is shown how a
olle
tion of spheri
al harmoni
s basis fun
tions
an represent su
h generalized form fa
tors, or irradian
e transfer fun
tions.The reason for using spheri
al harmoni
s is that �a �nite number of terms
anbe used to approximate relatively smooth fun
tions de�ned on the sphere�[122, p. 192℄.The
on
ept of pre-
omputed radian
e transfer, des
ribed in [123℄, is tolet a dense set of ve
tors or matri
es over a surfa
e represent its radian
etransfer fun
tion. The radian
e transfer fun
tion is a further generalizationof the spheri
al harmoni
s based approa
h des
ribed in [122℄. The radian
etransfer fun
tions are su�
iently general to be used for the evaluation of therendering equation dire
tly.Though arbitrarily
omplex BRDFs
an be simulated using radian
etransfer fun
tions. The pre-
omputed radian
e transfer methods often limitthemselves to low-frequen
y lighting only. The reason is that di�use sur-fa
es, and glossy surfa
es with di�use
hara
teristi
s, typi
ally require fewerspheri
al harmoni
s basis fun
tions in the radian
e estimate than spe
ularsurfa
es do. Fewer basis fun
tions means fewer
omputations and, hen
e, themethod be
omes less expensive and less prone to aliasing artifa
ts resultingfrom an insu�
ient order of the spheri
al harmoni
s basis.The approa
h is then to pre-
ompute for a given surfa
e the radian
etransfer fun
tions, whi
h are independent of the in
ident radian
e term. Asummation over inner produ
ts between the transfer fun
tions and in
identradian
e samples on a surfa
e then gives an inexpensive, dynami
, approxi-mate evaluation of the rendering equation.Be
ause of extensive pre-
omputations the method is restri
ted to use ofrigid obje
ts only. The `simple' version of pre-
omputed radian
e transferonly works for radian
e transfer from a
onvex, rigid obje
t onto itself. Thisis
alled self-transfer. In [123℄ a method is also des
ribed for neighborhood-transfer, where radian
e transfer fun
tions are also
omputed from a rigidbody to its neighbor spa
e. This expansion allows soft shadows, glossy re-�e
tions, and
austi
s on dynami
 re
eivers.

144 Approximating the Rendering Equation in Real-TimeThe neighborhood-transfer is important if the method is to be useful in a
omplex s
ene
omposed of many moving obje
ts. However, neighborhood-transfer has problems when multiple obje
ts re�e
t light or
ast shadows onthe same re
eiver. Moreover the lighting must be fairly
onstant a
ross theentire neighborhood of an obje
t to provide a

urate results. This indi
atesthat pre-
omputed radian
e transfer is a brilliant method if only a single(or a few) obje
ts are present in a s
ene at the same time (a s
enario
ouldbe a dynami
 virtual
hara
ter �lling out the entire s
ene while talking tothe user of a 3D appli
ation). In more dynami
 environments the methodunfortunately falls apart. And lastly the developer using the method mustbe prepared for long pre-
omputation times.A very di�erent method �nding mu
h inspiration in the same ba
kgroundas pre-
omputed radian
e transfer, is the subje
t of the next se
tion.6.9 Environment Map RenderingAfter it was shown in [122℄ how a spheri
al harmoni
s representation
ould bederived for arbitrary BRDFs, the
on
ept has subsequently been
ombinedwith environment mapping in [110, 111℄. The approa
h used here was spheremapping (where the sphere map is a two-dimensional image of a sphere). Thesphere environment map represents the irradian
e transfer fun
tions used forspheri
al harmoni
s approximation of an arbitrary BRDF.In a di�erent
ontext Greger et al. [43℄ had shown that irradian
e volumesspa
ed in a regular grid a
ross a s
ene
ould be used for storage and inter-polation of global illumination in a s
ene. Irradian
e volumes is des
ribedas an extended version of irradian
e, whi
h is de�ned in all points and di-re
tions in spa
e. This means that irradian
e volumes are de
oupled froms
ene geometry. (In our opinion a better des
ription of an irradian
e volumeis that it
aptures radian
e transfer in all dire
tions at a
ertain point in thes
ene.) Irradian
e volumes were originally presented for pre-
omputationwith traditional global illumination te
hniques.A brilliant idea, presented in [77, 93, 92℄, is to
ombine the environmentmapping representation of transfer fun
tions with the irradian
e volumesapproa
h to global illumination. Instead of sphere maps,
ube environmentmaps are used for storage of radian
e transfer fun
tions. Those
ube mapsare spa
ed in a regular grid of 4� 4� 4 a
ross the s
ene. Ea
h environmentmap is updated ea
h frame using the same te
hnique for environment mapsas des
ribed in se
tion 6.3.Sin
e the transfer fun
tions are de
oupled from geometry and regularlyspa
ed in the s
ene, a radian
e estimate at an arbitrary lo
ation s in thes
ene is found by tri-linear interpolation to s from the �irradian
e volumes�pla
ed at the
orners of the grid
ells.When mapping this method to the GPU, di�erent spheri
al harmoni
s

6.9 Environment Map Rendering 145
oe�
ients are
al
ulated using the environment maps and stored in 3D tex-tures whi
h are uploaded to the GPU in order to
ompute radian
e estimatesin a fragment program.Though frame rates are below 10 per se
ond, the results of this methodlook promising. Even for rather
omplex s
enes. A

ording to Nijasure et al.there are only few limitations to their te
hnique, and they propose solutionsfor all the problems they des
ribe. One problem is that the 4 � 4 � 4 griddimension is not su�
ient for large s
enes. The solution they propose is tospa
e the grid non-regularly in the view frustum. This may, however, resultin a new problem, sin
e the tri-linear interpolation may be in
orre
t if thegrid is non-uniform.They also note that their
urrent implementation do not support arbi-trary BRDFs, though the method does not ex
lude them. We must keep inmind though that spe
ular surfa
es will be prone to aliasing artifa
ts be
auseof the general limitations of the spheri
al harmoni
s approximation, whileglossy surfa
es with di�use
hara
teristi
s
an be simulated if some extrapro
essing time is set o� for the radian
e estimate.A third problem about the method is
olor or shadow leakage. Someleakage is
aused by the tri-linear interpolation s
heme. A method that
an handle this problem is presented in [92℄, though it
an not (yet) beimplemented in hardware.Problems not mentioned, are problems asso
iated with the spheri
al har-moni
s representation of the radian
e transfer. A

ording to [122℄ and [123℄some aliasing artifa
ts
an o

ur if too few spheri
al harmoni
s
oe�
ientsare
omputed. Another issue is that spheri
al harmoni
s are de�ned over theentire sphere and therefore it is di�
ult to
ompletely remove the radian
ein one dire
tion from an �irradian
e volume� if it is positioned
lose to ano

luding obje
t. This problem
an result in light leaking through walls.All that said, the reported results are still quite impressive. This methodwill be hard to
ompete against. Let that
on
lude our des
ription of existingmethods for real-time simulation of global illumination.

146 Approximating the Rendering Equation in Real-Time

Part IIModeling Contents

149All of part I is based on the geometri
al representation of a s
ene and the
al
ulation of illumination in it. This part will
on
entrate on the
reation ofa s
ene and how to alter the s
ene in order to
reate a dynami
 appli
ation.S
enes are normally
reated in a modeling program; in this proje
t we haveused the modeling program
alled Blender, whi
h is freeware. In the model-ing program there are settings for light sour
es, materials, and
amera, andalso animation features for moving things around in the s
ene. The termsused for modeling
an sometimes be di�erent from those used in the theory,espe
ially when it
omes to materials and light. During this part we will tryto introdu
e some of the typi
al terms for light and material settings andrelate them to the theory. Blender will also be shortly introdu
ed in thispart.The �rst
hapter of this part -
hapter 7 - will des
ribe how to model 3Ds
enes that are
omposed of polygons, as these most often are the primitivesused in real-time graphi
s. Though obje
ts in a s
ene are normally
reatedfrom polygons, there are several handy methods for
reating the `right' poly-gons. Sometimes obje
ts are
reated from
urves or primitives and thentransformed into polygons by the appli
ation, we have, however, restri
tedourselves in this proje
t to a des
ription of polygonal modeling only.Just after the obje
ts of a s
ene have been
reated they appear dull,this is until material or textures are applied to them. There are a bun
h ofparameters that
an be adjusted to make the obje
ts look exa
tly right, aswell as di�erent spe
ial e�e
ts that
an be used to
reate realisti
 obje
ts.Chapter 8
on
erns material settings and textures.To make a s
ene even more interesting, from a users point of view, wemust make it
ome alive, meaning that some obje
ts in the s
ene shouldmove about. This is the subje
t of
hapter 9. Obje
ts following a seriesof movements over a predetermined number of frames are referred to asanimated obje
ts. There are di�eren
es between animation for movies andintera
tive appli
ations su
h as games; those will also be dis
ussed in
hapter9. After going through di�erent aspe
ts of modeling we turn to the modelingappli
ation. Chapter 10 will introdu
e how s
enes are
reated using Blender.The
hapter will introdu
e those features that we have used for
reation ofour test s
enes, and show how those features des
ribed in
hapters 7, 8, and9 are used in pra
ti
e. Sin
e we want to test our own renderer with thes
enes that we
reate in Blender, we need to export our s
ene. How this isdone will also be explained in
hapter 10.

150

Chapter 7Modeling 3D S
enes

We do not grow absolutely,
hronologi
ally. We grow sometimesin one dimension, and not in another; unevenly. We grow par-tially. We are relative. Anaïs Nin

152 Modeling 3D S
enesIn this
hapter we will give a brief introdu
tion to some of the
on
eptsbehind 3D modeling. As neither of us has any professional angle to modeling,this
hapter will not address any advan
ed methods, it will rather presentthe knowledge we have a
hieved while modeling during this proje
t. Wewill
onsider polygonal modeling only. Subje
ts des
ribed in this
hapterare presented from a Blender point of view, where Blender is the modelingappli
ation used to
reate our test s
enes.Obje
ts in most real time appli
ations are built from polygons
onne
tedin so
alled polygon meshes. A polygon mesh
an be
reated automati
allyby the modeling appli
ation, from primitive obje
ts, extrusions, or polygonsweeps
arried out by the user, or they
an be
reated one polygon at thetime.One simple way to
reate polygon meshes is by use of primitive obje
ts.The primitive obje
ts available in Blender are presented in �gure 7.1. Forexample we
an
reate a primitive person from a
ube, a sphere and four
ylinders, see �gure 7.2.

 Figure 7.1: The primitives available in Blender. Top left to bottom right: A plane, atube, and a box. A sphere, a
ylinder, and a
one.The shape of the primitives, whi
h the person is
omposed of, have
hanged a little
ompared to those in �gure 7.1. The
ube is now �attenedand the
ylinders are stret
hed and slimmed to �t the shape of body, arms,

153

 Figure 7.2: Primitive person
reated from a
ube, a sphere and four
ylinders.and legs. All primitives
an be stret
hed, rotated, translated, and s
aledinto arbitrary forms and positions. These transformations are
arried out bytransformation of ea
h vertex in the polygon mesh using the transformationmatri
es presented in
hapter 9.To make our person look more realisti
 we
ould add more primitives, orwe
ould start manipulating smaller groups of verti
es or even single verti
esif we desire. Fa
es
an also be
reated between polygons to assemble the�gure where holes appear, like above the shoulders. Figure 7.3 is a fastattempt to show how this
on
ept is
arried out on the left shoulder. Of
ourse, more details are needed for this to look
onvin
ing.Another approa
h for
reation of polygon meshes is through extrusionsand subdivisions. Starting from one primitive obje
t we
an extrude fa
es
reating new verti
es and in this way build up our mesh. This is perhaps amore abstra
t pro
edure, but it gives more freedom to the artist. Figure 7.4gives an example.The series of pi
tures in �gure 7.4 should give an impression of thismodeling
on
ept. The �gure shows an example of how it is possible to startthe
reation of the left side of a human torso. It is normally a good idea to
reate symmetri
 obje
ts in halves, then later
opy and mirror the mesh to
reate a fully symmetri
 line through the obje
t. In this way you
an be surethat, for example in the
ase of a human, both arms and legs are of equalsize. The two halves
an be assembled in the same manner as the shoulderwas assembled with the torso and head in �gure 7.3, or another option is tolet Blender merge points lying at almost identi
al positions in spa
e.

154 Modeling 3D S
enes

 Figure 7.3: Assembling primitives. Here the assembly has been
arried out for the leftarm.Sometimes it is more appropriate not to begin with a primitive obje
t.For more
omplex obje
ts or symmetri
 obje
ts it
an be
onvenient to beginwith a
urve that is either extruded or rotated around an axis (whi
h is
alled a sweep). This approa
h
an also be used when modeling after atwo-dimensional sket
h. In Blender it is possible to set a pi
ture as theba
kground of the modeling area. From this it is possible to draw the
ontourof an obje
t or detailed parts of it and then extrude or rotate this
ontour linein a proper way to
reate the third dimension of the obje
t. An approa
hthat has been used for the
reation of most obje
ts in the test s
enes isto draw the
ontour of obje
ts by line segments, following a sket
h in twodimensions, and then extrude the resulting
urve in the third dimension.The resulting three dimensional obje
t must be assembled with fa
es. Thepro
edure is presented step by step in �gure 7.5 (and is also des
ribed in
hapter 10).Another more advan
ed way of modeling is to use parametri

urves andsurfa
es. This results in smooth obje
ts, whi
h often more
losely resemblethe shapes that we see in real life. Methods even exist for rendering of
urves and surfa
es dire
tly, this is outside the s
ope of this report. If su
ha renderer is not available, obje
ts
reated using
urves and surfa
es will,eventually, be represented as polygons before they are rendered. Modelingusing parametri

urves and surfa
es will not be addressed any further, sin
ewe have not used them in the s
enes
reated for this proje
t. A good referen
e

155

 Figure 7.4: Obje
t
reation by extrusion and subdivision. From top left to bottom: (a)Beginning with a
ube, (b) extrusion, (
) subdivision, (d) extrusion, and (e) a di�erentangle.

156 Modeling 3D S
enes

 Figure 7.5: The line extrusion method. Contour of an obje
t is drawn and then usedtogether with extrusions or rotations to
omplete the 3D mesh.

157on usage of
urves and surfa
es for real-time rendering is [134℄.Above we have presented some di�erent basi
 approa
hes to modelingpolygonal obje
ts. None of these approa
hes are more
orre
t to use thanothers (at least not to our knowledge), in the end a
ombination of these and
reativity is probably the best solution.The methods we des
ribe may not be
ustomary pro
edure presentedin text books as parti
ular ways of handling modeling issues, rather theyare
omposed of the experien
e with Blender obtained in this proje
t andthrough di�erent tutorials found on the internet and in [113℄.When an obje
t has been modeled the next step is to apply materialsand sometimes also textures. This is the subje
t of the next
hapter.

158 Modeling 3D S
enes

Chapter 8Visual Appearan
e

I often think that the night is more alive and more ri
hly
oloredthan the day. Vin
ent Van Gogh (1853-1890)

160 Visual Appearan
eAn important part of s
ene
reation is to de�ne material parameters forthe obje
ts. Without material settings obje
ts will never be
ome realisti
.As a general des
ription you
ould say that the material parameters simplyde
ide how the light is re�e
ted from the obje
t. Still there are many issues insetting up the right material parameters. Often there are di�eren
es betweenthe terms used in modeling appli
ations and the terms used in theoreti
altexts. This
hapter will treat the basi
 material terms and relate them tothe theory presented in part I. Apart from material settings
olor texturesalso play an important role. This is espe
ially true for real-time appli
ationswhere textures are often used to a
hieve visual e�e
ts that are otherwise tootime
onsuming to simulate physi
ally. Textures will be addressed shortlyat the end of this
hapter.Se
tion 8.1 will address
olor settings in the RGB and HSV
olor spa
es.Besides the obje
tive of the se
tion is to des
ribe what the meaning of amaterial
olor is with respe
t to light transport and s
attering.The obje
t
olor is one thing, but it is far from the only fa
tor in de�nitionof the material appearan
e. What is also important, is how we per
eivethe obje
t material. Does the obje
t appear soft, hard, shiny, et
.? Theappearan
e of an obje
t in this sense very mu
h depends on how the light isre�e
ted from it. Se
tion 8.2 will dis
uss all material settings that are relatedto re�e
tan
e rather than
olor. The se
tion will introdu
e some of the most
ommonly used terms for material settings in modeling environments andrelate them to the di�erent material parameters that we have en
ounteredwhile des
ribing BRDFs in part I.Many global illumination e�e
ts are simulated in real-time using textures.Textures are great tools for giving obje
ts the �nal tou
h of realism. Atexture
an in a way be seen as a detailed painting of the obje
t. Sometextures are more detailed than others. A texture
an simply be a mix oftwo
olors in a
ertain pattern, for example to simulate wood grains or it
an be detailed for example for the fa
e of a
hara
ter. Se
tion 8.3 shortlyintrodu
es textures and their appli
abilities.8.1 Colors and Human Per
eptionWhen a light sour
e illuminates an obje
t the
olor of the obje
t is, in fa
t, afun
tion C(�) given by the produ
t between the surfa
e re�e
tan
e and thelight in
ident on the obje
t at di�erent wavelengths in the visible spe
trum.Su
h a
olor fun
tion is also
alled the spe
trum of the obje
t. A briefdes
ription of human per
eption of
olor is needed in order to explain whythree values are su�
ient to model the
ontinuous spe
trum of an obje
tFigure 8.1 shows a model of the human eye. The eye is very
omplex andthere are many other things to it than what is shown here. The �gure onlyseeks to
apture the most basi
 fun
tionalities. In this report we
an think

8.1 Colors and Human Per
eption 161of the eye merely is a
olle
tor of light. The brain interprets the light thatthe eyes per
eive and the results are the images that we see.

Lens

Iris

Cornea

Retina
(Rods and Cones)

Optical nerve Figure 8.1: The eye alias the human visual system. (The �gure is inspired by �gure1.11 in [3℄.)The eye
an be
ompared to the pinhole
amera presented in se
tion2.3, it is more advan
ed though. The
ornea is a transparent prote
tion ofthe eye. The iris adjusts the amount of light that is allowed to enter theeye, this is important sin
e the retina is very sensitive to light. The iris isthe
olored ring around the pupil and it is possible to observe its rea
tionto light. If there is mu
h light a smaller amount is allowed to enter. Thisis the reason why pupils get smaller in bright day light and larger in darksurroundings. The lens is
omparable to the
amera lens, it gathers lightfrom the surroundings and forms a 2 dimensional image on the ba
kside ofthe eye
alled the retina. The retina is
overed with small rods and
onesthat are able to translate the light into small impulses. These impulses aresent to the brain through the opti
al nerve. The fun
tionality of the eye istherefore only to gather information and pass it on to the brain. From hereit is the brain that must interpret what we see.The rods and
ones are the light sensors of the eye. The rods
olle
tlight at low levels of density, hen
e, they are responsible for night vision.The rods are good at
olle
ting small densities of light, but are not goodat determining the
olor and shape of an obje
t. Cones are responsible forday vision and
an handle
olors and shapes well, but they will only work ifsu�
ient light is present.The
ones are responsible for
olle
tion of
olors. Exa
tly how this hap-pens is still not fully understood, however, the eye has three di�erent
onere
eptors and it is
ommonly a

epted that the
ones mainly absorbs threedi�erent
olors: Red, green and blue [39℄. These are referred to as the pri-mary
olors [38℄. In other words the brain re
eive three signals from the eyeand must interpret a
olor given by an otherwise
ontinuous spe
trum usingthese three signals only. �This is why three numbers
an be used to represent

162 Visual Appearan
eany spe
trum seen� [2, p. 188℄.The RGB
olor spa
e represent
olors by one value for ea
h primary
olor. Moreover the RGB
olor model is de�ned a

ording to the propertiesof a CRT (Cathode Ray Tube) monitor (as brie�y mentioned in
hapter 3),whi
h makes it the obvious
olor model of
hoi
e in
omputer graphi
s.

 Figure 8.2: The r(�), g(�), and b(�)
olor mat
hing
urves. This �gure is identi
al to�gure 2.3 in [119℄. (Courtesy of Mark Q. Shaw.)Ea
h primitive
olor r(�), g(�), and b(�) is itself a spe
trum, see �gure8.2. When we spe
ify R, G, and B material parameters of an obje
t, wea
tually set the following values:R = Z 780nm380nm C(�)r(�) d�G = Z 780nm380nm C(�)g(�) d�B = Z 780nm380nm C(�)b(�) d�where C(�) is the
olor fun
tion of the material, and the integration is overthe visible spe
trum of ele
tromagneti
 waves.The pra
ti
al result of using the RGB
olor spa
e is that we need not
onsider the spe
tral dependen
ies of radiometri
 values su
h as radian
e,radiosity, irradian
e, et
. Instead we represent ea
h radiometri
 value asan (R;G;B)-ve
tor, whi
h e�e
tively
aptures the integration sin
e our eyeshave only three di�erent
one re
eptors.Though the integration
an be
aptured in this way, the approa
h is sim-plifying with respe
t to light transport and s
attering. Sin
e the integrationis done �in advan
e� by use of RGB material
olor values, we
an not followindividual light waves moving at
ertain wavelengths, and therefore we
an

8.1 Colors and Human Per
eption 163not model visual e�e
ts that appear in wave opti
s (su
h as �uoros
en
e,phosphores
en
e, interferen
e, and di�ra
tion).Though
onvenient with respe
t to a
omputer monitor, a modeler shouldbe aware that the RGB
olor spa
e
an not model all visible
olors. In 1931CIE (Commission Internationale d'E
lairage) de�ned three standard primaryfun
tions
alled x(�), y(�), and z(�) from whi
h all visible
olors
an bemat
hed using only positive weights. They are meant to repla
e r(�), g(�),and b(�), to avoid their short
omings. This has not happened in
omputergraphi
s, sin
e the RGB model �ts the monitors better.There are many di�erent
olor spa
es or models representing
olors indi�erent ways. We
an mention a few like CMYK, normally used in theprinting industry and in ink standards, and YIQ used in
onne
tion withtelevision. Some
olor models are based on per
eptual terms su
h as hueand saturation. We will brie�y des
ribe the two
olor spa
es RGB and HSV(hue, saturation, value), sin
e they are both available in Blender.The RGB
olor spa
e
an be visualized by the
ube shown in �gure 8.3.Colors in the RGB room are simply generated by adding the di�erent valuesof red, green, and blue, whi
h are de�ned as the primary
olors.

Blue (0, 0, 1) Cyan (0, 1, 1)

Green (0, 1, 0) Black (0, 0, 0)

Red (1, 0, 0)
Yellow (1, 1, 0)

Magenta (1, 0, 1) White (1, 1, 1)

Gray levels

Figure 8.3: The RGB
olor spa
e.The HSV model represents
olors by hue, saturation, and a value. Herewe have a hexagonally shaped
olor spa
e,
orresponding to a
one subtendedby an isometri
 view of the RGB
olor spa
e, whi
h means looking at the
ube in �gure 8.3 from the top downwards with the gray s
ale line as theline of sight. The HSV
olor spa
e is shown in �gure 8.4.Setting the value parameter in the HSV room is like setting the value(V) between bla
k and white,
orresponding to movement along the grays
ale line in RGB
olor spa
e. Hue (H) is an angle sele
ting the pure
olor,and saturation (S) has the per
eptual meaning that we would expe
t. Thismeans that S = 1 spe
i�es pure
olor a

ording to H, while S = 0 is
olorless

164 Visual Appearan
e

Yellow

Red 0˚

Green 120˚

Blue 240˚

Cyan

Magenta

White (V = 1)

Black

V

H

S

S = 1

Gray level

Figure 8.4: The HSV
olor spa
e. This �gure is similar to �gure 13.30 in [38℄.gray.In this se
tion it was des
ribed why the three
omponent
olor theoryis most often employed in
omputer graphi
s, and the impa
t of this theoryon light transport and s
attering was brie�y mentioned. Figures 8.3 and8.4 provide a helpful overview of the
olor spa
es available in Blender. Thenext step is to des
ribe other material settings whi
h tell the BRDF how there�e
ted light is distributed over the hemisphere. This is the subje
t of thefollowing se
tion.8.2 Material ParametersAn obje
t
an appear to be red and round, but this is not enough to des
ribeit, for all that we know a red and round obje
t
ould be anything from a redapple to a red metal ball. The missing parameter is what some might referto as shininess. Is the obje
t dull and disperse or is it shiny and re�e
tive?Besides setting the
olor of a material a

ording to its re�e
tan
e atdi�erent wavelengths, there are also other parameters whi
h are important.These parameters de
ide whi
h dire
tions light in
ident on a material froma
ertain dire
tion are s
attered ba
k into the environment. In other wordsthey de
ide how di�use or how spe
ular the re�e
tan
e of a material shouldbe. Su
h parameters are, of
ourse, related to the BRDF model used forshading.Looking at the di�erent BRDF models des
ribed in
hapter 5, it showsthat Phong shading and its variants are determined by three material pa-rameters:

8.2 Material Parameters 165kd The di�use re�e
tan
e.ks The spe
ular re�e
tan
e.m The shininess.In pra
ti
e this means that the kd
orresponds to the general dull RGB
olor of an obje
t. If the obje
t is shiny and re�e
tive it will have a highlightaround the dire
tion where a perfe
tly spe
ular obje
t would have re�e
tedlight dire
tly towards the viewer. ks de�nes the
olor of the light re�e
tedspe
ularly in the highlight. m sets the size of the highlight. A very shinyobje
t (with large m) has a small
on
entrated highlight. To avoid overex-posed light (meaning that the exitant radian
e is larger than in
ident at thematerial) it should generally be the
ase that kd + ks � 1. In �gure 8.5 thee�e
t of
hange in the di�erent parameters is shown.

Figure 8.5: Changing material parameters asso
iated with Phong variants. The kdde
reases and the ks in
reases
orrespondingly in the verti
al dire
tion, going from topto bottom. In the horizontal dire
tion we
hange the value of the shininess parameter,starting to the left with a small value and ending to the right with a high value.Complex BRDF models su
h as the Cook-Torran
e and the Ward models,des
ribed in se
tion 6.5, mostly use a roughness parameter � rather thanshininess. We will not go into detail on these material parameters, sin
e wehave mostly used Phong variants or the BRDF for perfe
tly di�use materialswhere fr;d = kd = �d=�.

166 Visual Appearan
eMaterials used for transmissive or translu
ent solid obje
ts need a fewextra parameters to be des
ribed adequately. A perfe
tly spe
ular transmis-sive obje
t, su
h as glass, will merely need to have an index of refra
tionspe
i�ed. Re
all from
hapter 3 that translu
ent obje
ts also need to havean absorption
oe�
ient �a, an extin
tion
oe�
ient �t, and a s
attering
oe�
ient �s spe
i�ed. Besides we need to spe
ify a phase fun
tion ratherthan a BRDF for translu
ent material. For simpli
ity we have
hosen to workwith perfe
tly di�use translu
ent materials only in this proje
t, whi
h meansthat no material parameters, ex
ept for the di�use obje
t
olor, is needed forthe phase fun
tion. The relationship between the three
oe�
ients is that�t = �a+�s, whi
h means that we need only spe
ify two of them. Su
h twoparameters
an be measured, and they are given for di�erent materials inliterature (eg. in [65℄).When setting material properties in Blender two three
omponent
olorsshould be spe
i�ed. They are spe
i�ed either in the RGB or the HSV
olorspa
e (see the previous se
tion, and see also
hap. 10). Col is the di�use
olor of an obje
t and Spe is the spe
ular
olor of an obje
t. Then Blenderhas a spe
ular parameter spe
 2 [0; 2℄, a shininess or roughness parameterhard 2 [1; 500℄, and a di�use re�e
tan
e parameter ref 2 [0; 1℄. Blenderallows overexposure of light. The following formulas translate the Blendermaterial parameters to kd, ks, and m. Blender also allows
omplex BRDFsin whi
h
ase m simply repla
es �:kd = Col � refks = EACH (1 min) (Spe � spe
)m = hardBlender has a translu
en
y parameter whi
h is explained in Blender as�the amount of di�use shading of the ba
kside�. Supposedly it is used forsimulation of subsurfa
e s
attering. Dire
t translation of this parameterto the absorption, s
attering, and extin
tion
oe�
ients is not immediatelypossible. More likely Blender translu
en
y spe
i�es a
onstant
orrespondingto e�� , where � is the opti
al depth of the obje
t to whi
h the material isapplied (see se
. 3.4).The index of refra
tion is
alled IOR 2 [1; 3℄ in Blender, and otherparameters su
h as transparen
y A are also available. Transparen
y spe
i�esthe rate to whi
h the obje
t should be blended with the ba
kground. Blenderalso allows the user to spe
ify an ambient term Amb 2 [0; 1℄ and an emissionterm Emit 2 [0; 1℄. The ambient
olor Col � Amb simulates multiple di�usere�e
tions by a
onstant and the emission term
orresponds to a
onstantLe emitted from the obje
t to whi
h the material is applied.Real materials are not perfe
tly smooth and regularly
olored over theentire surfa
e. For example you will not be able to �nd any fully re�e
tive

8.3 Textures 167surfa
es in the real world. Therefore it often adds extra realism to a surfa
eif the material
olor
hanges a
ross it. This is often added by the use oftextures, whi
h is the subje
t of the next se
tion.8.3 TexturesThe visual result of adding
olor textures to a s
ene is best des
ribed byexample. To have more
omplex show
ases than a Cornell box, we have
reated a
ave s
ene in Blender for this proje
t. A s
reen shot from the
aves
ene with no textures is given in �gure 8.6 and a s
reen shot of the sameview in
luding textures is given for
omparison in �gure 8.7. Note that thetextures added in this s
ene are very simple and that it is possible to use farmore
ompli
ated textures, this is, however, outside the s
ope of this report.

 Figure 8.6: S
reen shot from the
ave s
ene with no textures (Blender render).Unfortunately we have not found time for adding textures to all ourBlender obje
ts, and neither have we found the time to make a proper export

168 Visual Appearan
e

 Figure 8.7: S
reen shot from the
ave s
ene in
luding textures (Blender render).of textures in order to use them in our own rendering. Though
olor textures
an provide great visual e�e
ts, they are of less importan
e with respe
t toillumination. A
olor texture simply simulates that the RGB
olor of anobje
t varies a
ross the surfa
e.Textures are applied at a late stage in the rendering pipeline, see se
tion5.1, and they have many di�erent appli
abilities apart from
olor texturing,some of those are des
ribed in se
tion 5.3. Often textures are used for storageof information, whi
h is useful to have in a fragment program. This is theprimary usage of textures in our rendering method, see part III. Anotherinteresting appli
ation of textures is light maps, whi
h is des
ribed in se
tion6.6.We have now brie�y introdu
ed the most important material settingsavailable in Blender and related them to theory in
hapters 3 and 5. Thenext
hapter will des
ribe how obje
ts are moved around in a s
ene. Thisis important sin
e the ability to make things move around and
ome alive isthe main reason why we want real-time rendering.

Chapter 9Making Things Come Alive

24. And God said, Let the earth bring forth the living
reatureafter his kind,
attle, and
reeping thing, and beast of theearth after his kind: and it was so.25. And God made the beast of the earth after his kind, and
attle after their kind, and everything that
reepeth upon theearth after his kind: and God saw that it was good.The Bible (King James Version): Gen.1 Verses 24 to 25

170 Making Things Come AliveFor obje
ts to seem alive they need some sort of transformation. A s
ene
on-taining one or more transforming obje
ts is referred to as a dynami
 s
ene.Not all obje
ts in a dynami
 s
ene need to transform, in fa
t many obje
tsare often stationary and merely a part of the ba
kground s
enery. Trans-formations
an mean di�erent things. A transforming obje
t
an simply bemoving about in the s
ene, or it
an
hange form. In some s
enes all obje
tsare moveable, in these
ases there will often be a physi
al engine
reatingan arti�
ial gravitational �eld to
ontrol the fall and
ollision of obje
ts. Inthis
hapter we will dis
uss di�erent issues related to dynami
 s
enes.The �rst se
tion, 9.1, will des
ribe the fundamental
al
ulations behindtransformation of obje
ts. There are four basi
 transformations that an ob-je
t, or part of an obje
t,
an go through: Translation, rotation, s
aling, andshear, whi
h are all a�ne transformations. From these basi
 transformationsmost movements of obje
ts
an be simulated.After the �rst se
tion where obje
t transformation is des
ribed. Se
-tion 9.2 will explain how obje
t transformations are
ontrolled in a typi
almodeling appli
ation. Blender is our referen
e. We will also
omment onthe di�eren
e between animation for movies and animation for intera
tiveappli
ations su
h as games.The last se
tion (9.3) will des
ribe how to navigate
amera and obje
ts ina s
ene intera
tively using a simple tra
k ball. This se
tion espe
ially showsthe appli
abilities of the theory des
ribed in se
tion 9.1.9.1 TransformationIn se
tion 2.3 it was des
ribed why homogenous
oordinates are pra
ti
alwhen we want to perform transformations in three dimensions. In this se
tionwe will introdu
e how rotation, s
aling, shearing, and translation matri
esare
onstru
ted and we will introdu
e the appli
abilities of quaternions withrespe
t to rotation.The basi
 transformations: Translation, rotation, s
aling, and shearingare all so
alled a�ne transformations, meaning that parallel lines in thetransforming obje
t are preserved. In rotation and translation the shapeof the obje
t does not
hange, su
h transformations are
alled rigid bodytransformations where both length and angles between points in the obje
tare preserved. The following text basi
ally follows
hapter 3 in [2℄.The transformation of a point is simply the inner produ
t of the matrixand the point. The transformation matrix looks as follows:X = 0BB� a00 a01 a02 txa10 a11 a12 tya20 a21 a22 tz0 0 0 1 1CCA

9.1 Transformation 171Rotation, s
aling, and shearing are done by altering di�erent values inthe 3� 3 matrix: A = 0� a00 a01 a02a10 a11 a12a20 a21 a22 1AS
aling works by altering values in the diagonal of A, where a00 s
ales inthe x dire
tion, a11 in the y dire
tion, and a22 in the z dire
tion. Translationis done by
hanging tx, ty and tz. Ea
h of the following matri
es rotate anentity of � radians about one of the three axes:Rx(�) = 0BB� 1 0 0 00
os� � sin� 00 sin�
os� 00 0 0 1 1CCARy(�) =0BB�
os� 0 sin� 00 1 0 0� sin� 0
os� 00 0 0 1 1CCARz(�) = 0BB�
os� � sin� 0 0sin�
os� 0 00 0 1 00 0 0 1 1CCAFigure 9.1 shows how a shearing a�e
ts an obje
t by skewing it to oneside.

Figure 9.1: Shearing a box.The shearing matrix is an identity matrix where one of the values thatare not in the diagonal of A is non-zero. When one of these values is altered

172 Making Things Come Aliveit
orresponds to shearing in one parti
ular dire
tion (positive or negative)on one parti
ular axis.Several transformations
an be gathered in a single transformation ma-trix. If an obje
t should be rotated a bit a

ording to a transformationmatrix R and then translated a bit a

ording to a matrix T , the �nal trans-formation matrix X is found by matrix multipli
ation of the translationmatrix and the rotation matrix: X = TRIn this way more
omplex transformations
an be
reated still using onlyone transformation matrix. Noti
e that R is applied �rst, but is writtenlast. The order in whi
h the matri
es are multiplied has in�uen
e on the�nal out
ome. This should be taken into
onsideration when
reating the�nal transformation matrix.The inverse transformation matrix is often useful, for example whenswit
hing between
oordinate systems. The general way for
omputing theinverse of a matrix is given as explained in [2, p. 728℄ or any standard textbook on linear algebra (eg. [31℄). Another very useful way of
omputinginverses is in the
ase where A is an orthogonal matrix, whi
h is always the
ase if the transformation is a
on
atenation of translations and rotationsonly. The inverse of an orthogonal matrix is given as M�1 = MT , hen
ethe inverse of X if A is orthogonal is given as:X�1ortho = 0BB� a00 a10 a20 �(t � (a00; a10; a20))a01 a11 a21 �(t � (a01; a11; a21))a02 a12 a22 �(t � (a02; a12; a22))0 0 0 1 1CCA (9.1)QuaternionsA
ompa
t and useful way to represent rotations is by use of a mathemati
al
on
eption
alled quaternions, introdu
ed to
omputer graphi
s in [120℄. Wewill not des
ribe the mathemati
al ba
kground of quaternions here, somereferen
es are [2, 24, 42℄. Rather we will shortly introdu
e their usage.A quaternion is represented by a four-tuple q̂ = (qv ; qw) = (qx; qy; qz; qw),it should, however, not be
onfused with homogenous
oordinates. Opera-tions on quaternions are given as follows [2, p. 45℄:Multipli
ation q̂r̂ = (qv � rv + rwqv + qwrv; qwrw � qv � rv)Addition q̂ + r̂ = (qv + rv; qw + rw)Conjugate q̂� = (�qv; qw)Norm n(q̂) = q2x + q2y + q2z + q2wIdentity î = (0; 1)

9.2 Animation and Motion Control 173Suppose we have a point or a ve
tor given in homogenous
oordinatesp = (px; py; pz; pw). Let the quaternion p̂ be given as ea
h
omponent of pinserted in p̂. Now, given a unit quaternion q̂ = (sin�uq;
os�), where uqis a ve
tor representing an arbitrary axis, then:p̂ 7! q̂p̂q̂�1 = q̂p̂q̂�n(q̂) = q̂p̂q̂� (9.2)rotates p̂ (whi
h
orresponds to p) around the axis uq by an angle 2� [2℄.Note that for a unit quaternion it is the
ase that q̂�1 = q̂�. It
an be shownthat any rotation
an be obtained in this manner, see eg. [42℄. This indi
atesthat quaternions are a
ompa
t and e�
ient way of representing rotation inthree-dimensional spa
e.The rotation given above, (9.2), is also
alled an adjoint map of p̂. It
an also be shown (eg. [42℄) that this adjoint map has a
orresponding 3� 3rotation matrix, whi
h is orthogonal. Sin
e we have only made use of unitquaternions in this proje
t, we present the
onversion from a unit quaternionq̂ to a 3� 3 rotation matrix M q below. For the general formula we refer to[42, 2, 120℄.Aq = 0� 1� 2(q2y + q2z) 2(qxqy � qwqz) 2(qxqz + qwqy)2(qxqy + qwqz) 1� 2(q2x + q2z) 2(qyqz � qwqx)2(qxqz � qwqy) 2(qyqz + qwqx) 1� 2(q2x + q2y) 1A (9.3)Another interesting feature of a quaternion is the ease by whi
h therotation from one ve
tor to another
an be spe
i�ed. Let s and t be twounit ve
tors denoting a dire
tion in spa
e. A unit rotation axis is then givenas u = (s � t)=ks � tk. If 2� denotes the angle between s and t, thens � t =
os(2�) and ks � tk = sin(2�). �The quaternion that represents therotation from s to t is then q̂ = (sin�u;
os �)� [2, p. 51℄.A few trigonometri

al
ulations show that the formula �nding a unitquaternion spe
ifying the rotation between two ve
tors s and t is given as[2℄: q̂ = (qv; qw) = 1p2(1 + s � t)(s� t);p2(1 + s � t)2 ! (9.4)This ends our presentation of transformations. In the following se
tionswe will give some examples of their use.9.2 Animation and Motion ControlBuilding on the transformation matri
es introdu
ed in the previous se
tion,we
an
reate a series of frames where di�erent transformation matri
es are

174 Making Things Come Aliveused in order to give an obje
t the appearan
e of
ontinuous movement.Su
h a movement is referred to as animation. Animation
an be a simplemovement, like a ball boun
ing up and down, or it
an be more
omplex, likea person walking or a fa
ial expressions. All movements over time qualify.Animation is normally done in a modeling appli
ation by use of keyframes. Sin
e the obje
t is moving over time they need to be redrawn ina slightly di�erent position for ea
h frame. Redrawing ea
h moving obje
tfor ea
h frame would be an overwhelming task. With key frames only keytransforms of the obje
ts moving are set, after that the appli
ation
omputesthe transformations of the frames in-between.A simple
al
ulation of obje
t positions in-between key frames is by linearinterpolation. However to
reate realisti
 transformations it is sometimesne
essary that the movement is not linear. An example
ould be a balljumping up and down. If the ball is to follow the laws of physi
s, it willmove slower around its highest point and faster at set o� and just beforehitting the ground. To
reate su
h e�e
ts we
an use interpolation
urves,whi
h
an be found using quaternion
urves, see [120, 24℄. Movements likethis
ould also be simulated by a physi
s engine supporting gravity, whi
h iswhy a good physi
s engine
an save a lot of animation time.In Blender key frames are
ontrolled in the a
tion viewer, where all keyframes are pla
ed. By this view key positions of obje
ts
an easily be movedor
opied to di�erent frames. Blender also supports interpolation
urves inthe Ipo view.As we have seen in
hapter 7,
hara
ters are often
reated from one mesh.If
hara
ters are supposed to move body parts only (for example an arm ora leg), just some of the mesh
an be moved instead of the entire obje
t.For simulating walking, for instan
e, parts of the
hara
ter mesh must bemoved in di�erent dire
tions at the same time. For purposes like this we
an
reate a skeleton-like mesh de�ning bones that
an be atta
hed to partsof the mesh. Su
h a skeleton is
alled an armature. Whenever a bone inthe armature moves verti
es atta
hed to it will follow. In this way we
anmodify only parts of the mesh in�uen
ed by the bones. An example of anarmature
an be seen in �gure 9.2.There is di�eren
e between animations for a movie and animations for areal-time appli
ation su
h as a game. Ex
ept for the fa
t that movie anima-tions are mu
h more detailed and spe
ta
ular, they are also predetermined.This means that the artist
an
on
entrate on parti
ular movements only.In a game, for example, movement of obje
ts most often depends on how theuser intera
ts with the s
ene. The fa
t that the exa
t movement of obje
tsin a real-time appli
ation is unknown, means that animations must be splitup into smaller pie
es, ea
h
ontaining movement we know will be useful inmany situations. Moreover animations like these must be able to follow ea
hother in a �uent manner.Small animation snippets, like those des
ribed above, are
alled
y
les.

9.3 Intera
tive Control 175

 Figure 9.2: Armature of the male
hara
ter in the
ave s
ene. Noti
e how the meshfollows the bones.In a game with a
hara
ter
ontrolled by a user,
y
les su
h as a walk
y
leor a hit
y
le
ould be useful. In the example of a walk
y
le the animationsnippet must be able to `re-
y
le', meaning that if several walk
y
les followone another, they will appear as if the
hara
ter just kept walking.To have a moving light sour
e in our
ave s
ene the
hara
ter shown in�gure 9.2 is supposed to walk about with a lantern, a walk
y
le was
reatedfor this purpose and an idle
y
le. Unfortunately there has not been timeto export these animations to our own appli
ation. In order to show thata s
ene is truly dynami
, we must also be able to alter it dynami
ally. Inreal-time appli
ations this usually happens by moving things around in thes
ene using some sort of input devi
e (mouse, keyboard, et
.). Intera
tive
ontrol is the subje
t of the next se
tion.9.3 Intera
tive ControlIn many real-time 3D appli
ations a simple virtual tra
k ball is
onne
tedto a mouse input devi
e and used for
amera navigation. This is also the

176 Making Things Come Alive
ase for the appli
ation implemented during this proje
t. The tra
k ball weuse was originally distributed during the DTU �Computer Graphi
s�
ourse(02561). During this proje
t we have modi�ed the tra
k ball from time totime and we have parti
ularly adapted it to work for navigation of a
hosenobje
t (a

ording to the
urrent
amera view) as well as it works for
ameranavigation. In the following we will �rst des
ribe how the tra
k ball worksfor intera
tive
amera
ontrol, and se
ond we will des
ribe our expansion ofit to in
lude intera
tive obje
t
ontrol.The tra
k ball is initialized by a
enter L around whi
h the
amera shouldrotate, and a distan
e zeye whi
h spe
i�es how far away along the z-axis theeye point, or
amera, should be pla
ed. Most often the
enter is de�ned asthe
enter of the s
ene in whi
h the tra
k ball is pla
ed or the
enter of aparti
ular obje
t in the s
ene.Internally the tra
k ball has a translation ve
tor t = (tx; ty; tz) whi
h isapplied in view spa
e, meaning that altering (tx; ty) results in a pan motionof the
amera, while altering tz results in a zoom motion. Pan motion isdes
ribed by mouse motion when the right mouse button is down. Zoomis des
ribed by the mouse moving forwards or ba
kwards when the middlemouse button is down.The basis of the view spa
e
oordinate system is given by the
urrentrotation of the
amera. This rotation is spe
i�ed by a quaternion q̂rot. Mov-ing the mouse while the left button is down will ea
h frame provide a newmouse position to the tra
k ball. This mouse position is proje
ted to thesphere representing the virtual tra
k ball. The sphere (or ball) is lo
ated atthe
enter of the s
ene in view spa
e, that is, the position the
amera willalways be pointing at. The new position found on the sphere will spe
ify anew viewing dire
tion v2. Suppose the previous viewing dire
tion was storedas v1, then the quaternion q̂in
 spe
ifying the rotation from v1 to v2 is givenby (9.4).As des
ribed in se
tion 5.1, eye point E, `look-at' point L, and up ve
torvup are su�
ient to des
ribe the
amera orientation. If we
hoose the defaultorthonormal basis for the
amera orientation (ex;ey;ez), the
amera eyepoint, `look-at' point, and up ve
tor are given as:v̂up = q̂rotêyq̂�rotL̂ = tyv̂up + txq̂rotêxq̂�rotÊ = q̂rot((zeye + tz)êz)q̂�rot + L̂where ea
h resulting quaternion
orresponds to a ve
tor or a point in ho-mogenous
oordinates.Now, all we need to do in order to rotate the
amera in
rementally a
-
ording to the mouse motion, is to
al
ulate q̂rot := q̂rotq̂in
 for ea
h frame.We
an even let the
amera spin a

ording to a previous motion after the

9.3 Intera
tive Control 177left mouse button has been released by storing the in
remental quaternionq̂in
. The spin stops when q̂in
 is reset to quaternion identity.The extension for this tra
k ball is to freeze the
amera when the userpi
ks an obje
t (eg. by pressing `p' when the mouse is lo
ated over an obje
t),and then let the mouse
ontrol the sele
ted obje
t instead of the
amera.What we want to spe
ify with the mouse is the modeling transform (see �g.5.1) of the sele
ted obje
t.In order to move an obje
t intuitively with the mouse, the motion shouldbe
ontrolled in view spa
e, sin
e this is the spa
e where the user works. Thetask is now to �nd the modeling transform in view spa
e.When the tra
k ball is frozen we store the old view transformation matrixspe
i�ed by E, L, and vup (how to �nd the matrix from these three isdes
ribed in se
tion 5.1). If we let Mview denote the view transform, then atransformation X
arried out in view spa
e is given in world spa
e as:Xworld =M�1viewXviewMview (9.5)Lu
kily the view spa
e transformation
onsist of translation and rotationof the
amera only, therefore we
an �nd M�1view using (9.1).Setting the
enter of the tra
k ball to the
enter of the obje
t in worldspa
e Cworld, we
an spe
ify the translation of the obje
t in view spa
e Tviewa

ording to pan and zoom of the tra
k ball:Tview = 0BB� 1 0 0 tx0 1 0 ty0 0 1 tz0 0 0 1 1CCAwhere pan be
omes moving the obje
t parallel to the view plane and zoombe
omes moving the obje
t along the dire
tion from the
urrent
ameraposition to the obje
t
enter. This results in a quite intuitive translationof the obje
t a

ording to mouse movement. The next step is to rotate theobje
t.In order to rotate the obje
t intuitively in view spa
e we must �rst moveit to the origin of the view spa
e
oordinate system. Having the
enter ofthe obje
t in world spa
e
oordinates Cworld, we
an transform it to viewspa
e
oordinates as follows:Cview =MviewCworldThe translation is then simple be
ause the origin of the view spa
e
oor-dinate system is now in (0; 0; 0) relative to Cview. Translation of the obje
tto the origin of view spa
e is:Tview;�C = 0BB� 1 0 0 �Cview;x0 1 0 �Cview;y0 0 1 �Cview;z0 0 0 1 1CCA

178 Making Things Come Aliveand translation ba
k to the previous obje
t position is:Tview;C = 0BB� 1 0 0 Cview;x0 1 0 Cview;y0 0 1 Cview;z0 0 0 1 1CCASin
e we are looking at the obje
t along the z-axis in view spa
e, the lo
al
oordinate system around whi
h we want to rotate the obje
t will have a z-axis pointing in the opposite dire
tion. If the obje
t was positioned exa
tlyin the `look-at' point, the basis of the obje
t
oordinate system would beexa
tly opposite the basis of the view spa
e
oordinate system. Therefore,when we rotate the tra
k ball, a reasonable approximation to a rotationof the sele
ted obje
t instead of the
amera is given in view spa
e as the
onversion of q̂�1rot = q̂�rot to a rotation matrix M q�rot a

ording to (9.3).The rotation should as mentioned be performed at the origin of viewspa
e. The �nal transformation of the obje
t in view spa
e is, therefore,given as: Xview = TviewTview;CM q�rotTview;�C (9.6)Inserting (9.6) in (9.5) results in the transform of the obje
t in worldspa
e. If the obje
t had no modeling transform to begin with. We
an letXworld spe
ify the new modeling transform of the obje
t. For this proje
t wewill always assume that the obje
t has no other modeling transform whenthis tra
k ball motion
ontrol is applied.This
hapter has introdu
torily shown the impa
t of intera
tion and an-imation on real-time graphi
s. In the following
hapter we will give a brieftutorial on Blender modeling, sin
e one part of this proje
t has been to showthe work �ow from modeling to rendering.

Chapter 10Modeling in Blender r

�Well� said Owl, �the
ustomary pro
edure in su
h
ases is asfollows.��What does Crustimoney Proseed
ake mean?� said Pooh. �For Iam a Bear of Very Little Brain, and long words bother me.��It means the Thing to Do.��As long at it means that, I don't mind,� said Pooh humbly.A. A. Milne (1926): Winnie-the-Pooh

180 Modeling in Blender r
After introdu
ing some of the di�erent aspe
ts in modeling we turn to themodeling appli
ation. As mentioned before we have used a modeling appli-
ation
alled Blender to
reate most of our test s
enes. One of the obje
tivesof this proje
t is also to
reate a platform for game
reators with little orno �nan
ial means. Being free of
harge Blender plays an important rolein this obje
tive. In this
hapter we will give an introdu
tion to the basi
fun
tionalities in Blender. It is des
ribed how a
tions related to the above
hapters su
h as obje
t modeling, material and texture settings, and anima-tion are
arried out. Blender has many fun
tionalities in addition to thosedes
ribed here, for knowledge about these and more advan
ed features werefer to www.blender.org, whi
h holds many ex
ellent tutorials. A few ofthe additional fun
tionalities will be mentioned at the end of the
hapterwithout any details.During the proje
t a newer version of Blender was released. This
hapterbuilds on Blender 2.33a whi
h is
urrently the newest version available, butmany of the s
enes were originally
reated using Blender 2.24. We havefound no problems in using the newer version of Blender for the last partof the proje
t though we might have missed some of the improvements that
ould have eased our work.First step is to give an overview of the menus and windows in Blender.Se
tion 10.1 will introdu
e all the most important menus and views of theBlender workspa
e. This se
tion will also des
ribe how to
hange the viewin order to navigate in the s
ene, and how to set up the
amera.Se
tion 10.2 will des
ribe how models are
reated from primitives, orpolygon by polygon, and transformed.After
reating obje
ts the next step is to give them material properties inorder to make them look more realisti
. Se
tion 10.3 will des
ribe the basi
material and texture fun
tionalities in Blender.Following the order of
hapters in this part, the next se
tion (10.4) willaddress animation in Blender.When a s
ene has been
reated in Blender, we want to export it toour own render appli
ation. This is the subje
t of se
tion 10.5, whi
h willdes
ribe how to use the export s
ript that we have found for export fromBlender to the .x3d �le format. The import of .x3d �les to our own appli
a-tion will also brie�y be mentioned.The last se
tion (10.6) of this
hapter will mention some of the additionalfeatures available in Blender. No details will be provided.10.1 Blender NavigationOpening Blender for the �rst time
an be quite
onfusing. The user interfa
e(see �gure 10.1) has a vast amount of buttons and panels.For this se
tion the most important window will be the one in the middle

10.1 Blender Navigation 181

 Figure 10.1: The opening view of Blender 2.33a.showing the s
ene. A new Blender s
ene always
ontain three obje
ts; a
ube,the pink quad in the middle (the
olor tells us that the obje
t is sele
ted),a
amera, represented by the pyramidal obje
t with the arrow representingthe up-ve
tor and a light sour
e, whi
h is the yellow ring with a dot in themiddle. To see the s
ene press the RENDER button below.One important thing to mention is that the a
tive window of Blender isthe one where the
ursor is
urrently over. This might be a new experien
e forMS Windows users, where windows will most
ommonly have to be sele
ted.For LINUX and UNIX users nothing is new.The Blender interfa
e very mu
h makes use of short
ut keys. Whenreading Blender instru
tions (in tutorials and the like), short
ut keys arereferred to as the key name followed by KEY. So for example AKEY meanspressing A. For navigation purposes the numeri
 keypad is used, keys hereare addressed with PAD in front of the name of the key to press instead ofKEY behind it. Pressing 5 on the numeri
 keypad would, hen
e, be referredto as PAD5. As with the keyboard short
uts, there are short names for themouse as well: LMB means left mouse button, RMB is right mouse button andMMB is middle mouse button. Lots of mi
e only have two buttons, in su
h
ases the MMB equals LMB while holding down ALT (ALT+LMB).There are two ways of navigating your blender s
ene. You
an either usethe mouse or the numeri
al keypad. Table 10.1 des
ribes the options Blender

182 Modeling in Blender r
gives for s
ene navigation.Key Fun
tionalityPAD/ Show lo
al view of sele
ted obje
ts (hide the rest of thes
ene)PAD* Copy the rotation of the sele
ted obje
t to the
urrent 3DwindowPAD- Zoom outPAD+ Zoom inPAD. Center and zoom in on sele
ted obje
tPAD5 Swit
h between perspe
tive and orthogonal viewPAD9 For
e
omplete re
al
ulation and redrawing of s
ene andanimationsPAD0 Show
amera view of the
urrent a
tive
ameraCTRL-PAD0 Set
urrent
amera. Note that any obje
t
an be set as
ameraALT-PAD0 Return to previous
amera (only works with
amera ob-je
ts)PAD7 Top viewSHIFT-PAD7 Down view (opposite top view)PAD1 Front viewSHIFT-PAD1 Ba
k viewPAD3 Right viewSHIFT-PAD3 Left viewPAD2 Rotate downwardsPAD8 Rotate upwardsPAD4 Rotate leftPAD6 Rotate rightSHIFT-PAD2 Translate downSHIFT-PAD8 Translate upSHIFT-PAD4 Translate leftSHIFT-PAD6 Translate rightMMB Rotation (tra
k ball or axis aligned)1SHIFT-MMB TranslationCTRL-MMB Zoom2Table 10.1: Short
uts for navigation in Blender.Blender has fourteen di�erent views that ea
h
an be
hosen through1Whether it should be tra
k ball or axis aligned rotation is set in the user menu. Theuser menu is found when dragging down the top menu under �Views & Controls�. Otherinteresting settings are found in here as well.2If you have a s
roll mouse the s
roll button will usually be atta
hed to the zoomfun
tionality as well.

10.1 Blender Navigation 183

 Figure 10.2: The fourteen di�erent views available in blender.the leftmost i
on in the statusbar of a window. Note that there are threewindows available when opening Blender, ea
h with their own statusbar (thelast window is hidden above the menubar in the top, to make it visible simplydrag down the menubar). In ea
h of these windows it is possible to
hangethe view to something else if desired. The fourteen views available are shownin �gure 10.2. Not all views are relevant to this proje
t, those that are willbe mentioned eventually.Sometimes it is useful to have more views at the same time. This is easilya
hieved by right
li
king at the edge of a window. A split s
reen popup willappear (�gure 10.3a). Pressing �Split Area� will divide the view in two. Thispro
edure
an be followed several times if more views are desired. When themultiple views are no longer useful, we
an join areas again by right
li
kingon the border between them and sele
ting �Join Areas� in the popup menu(�gure 10.3b). The view that has last been in use, will �ll out the entire area.A fast way to expand the working �eld shortly, without joining views, is byuse of the full s
reen mode rea
hed through CTRL+UPARROW, when pressedthe a
tive window will take up the entire s
reen, when pressed again theappli
ation will return to its previous state.

184 Modeling in Blender r

 Figure 10.3: From left to right: (a) Splitting areas. (b) Joining areas.

 Figure 10.4: Camera settings. Remember to have the
amera sele
ted and to sele
t theedit panel.The s
ene is made visible through the
amera and is illuminated by thelight sour
e. The
amera
an be moved about and rotated like any otherobje
t in the s
ene, how this is done is des
ribed in the next se
tion. Whena
amera is sele
ted (obje
ts are sele
ted with RMB) the
amera parameters
an be set. To set up the
amera go to the edit panel by pressing F9 orsele
ting the i
on with a quad and four dots marking its
orners (see �gure10.4).The
amera settings are available in the
amera panel (marked on �gure10.4). Here you are able to set the lens angle (�Lens�), whi
h determs the �eldof view. Near and far
lipping planes (�ClipSta� and �ClipEnd� respe
tively)
an also be set. �DrawSize� is simply the size of the
amera obje
t on thes
reen. �Ortho� enables orthographi
 rendering, while �Show Limits� and�Show Mist� makes the boundaries of the visible area show in the modelingview.

10.2 Modeling in Blender 185Normally one
amera is su�
ient, but it is possible to have several
am-eras pla
ed in di�erent lo
ations with the right settings ready. Renderingthen happens through the
amera
urrently a
tive. To set another
ameraa
tive, simply sele
t the
amera and press CTRL+PAD0. Then the
urrent
amera is the sele
ted one. A
tually all obje
ts
an be
hosen as a
ameralike this, even though they are not a
amera obje
t. Be aware, though, that
amera settings only are available if the obje
t set as
urrent
amera is a
amera obje
t.Other small features and short
ut keys that are ni
e to know are pre-sented in tables 10.2 and 10.3.This se
tion has des
ribed the
rux of the tools needed for Blender nav-igation. Many fun
tionalities, buttons, panels, and views have not been de-s
ribed here. To des
ribe all the di�erent fun
tionalities would be going toofar. More ex
ellent tutorials and information
an be found at www.blender.org.This is where the modeling appli
ation also
an be a
quired. The followingse
tion will give a short tutorial on modeling in Blender related to the
re-ation of models for this proje
t.10.2 Modeling in BlenderThe te
hniques used for modeling in this proje
t have already been des
ribedin
hapter 7. The purpose of this
hapter is to des
ribe how these te
hniquesare
arried out in Blender.The initial Blender s
ene already
ontains a
amera, a light sour
e, anda
ube. The
ube is sele
ted, whi
h is indi
ated by its purple
olor. Theability to sele
t obje
ts is, of
ourse,
ru
ial. Table 10.4 will explain thedi�erent possibilities of obje
t sele
tion.The �rst modeling method in
hapter 7 suggests use of primitives. Theeasiest way to add new primitives is to press SPACE in the modeling view.By this a
tion you get the add menu, sele
t the �Add!Mesh� submenu andpi
k the primitive you would like to add (see �gure 10.5). The new primitivewill be pla
ed where the
enter is
urrently pla
ed.Obje
ts
an be moved around in the s
ene arbitrarily, or rotated, ors
aled. The di�erent possible obje
t transformations
an be seen in table10.5. All transformations will be
arried out on the sele
ted obje
ts.After the short
ut key has been pressed the obje
t will follow the mouseuntil LMB is pressed. If RMB is pressed the transformation will be
an
eled. To
ontrol transformations better hold down the CTRL key before the mouse ismoved. Now the obje
t will only transform in a unit grid. Appropriate units3Paint sele
tion provides the user with a brush like area to sele
t obje
ts. The area
an be resized using the zoom fun
tions or a s
roll button. This sele
tion feature is onlyavailable in edit mode (dis
ussed later). To end paint sele
tion mode press RMB.

186 Modeling in Blender r

Feature Des
riptionDeleting a sele
ted obje
t (in obje
tmode). XKEYTo start all over. CTRL+XKEYThe most used menus are availablethrough one short
ut key. SPACEThe
oordinate system ve
tors are al-ways shown in the lower left
orner ofthe modeling view.

 The name of the
urrently sele
ted ob-je
t is shown in the lower left
orner ofthe modeling view.
 An obje
t
an be named in the editmenu (see �gure 10.4). Double
li
kin the box.

 Most numbers
an be set spe
i�
allyby SHIFT+LMB. Press ENTER or LMB to
on�rm
hanges. The example to theright shows how the
urrent frame isaltered. There are four di�erent
enters (this
an be the sour
e of many mysteriouserrors. For example when rotating ob-je
ts). Center
an be
hosen from thelower tool bar. How the s
ene is presented in the mod-eling view
an be
hosen in the lowermenu bar.
 Table 10.2: Additional Blender features and short
ut keys. Continued in table 10.3 onthe following page.

10.2 Modeling in Blender 187
Modes
an be sele
ted throughthe mode sele
tion bar.

 To view the s
ene output we
an use Blender's render en-gine. The rendering settingsappear by pressing F10. Torender an image from the
ur-rent
amera press the RENDERbutton in the middle menu. Undo is not really available,instead auto save is enabled.Auto save settings are foundby dragging down the topmenu bar and sele
t auto save.
 If there is doubt about whata button does, a small helppopup will appear in many
ases if the mouse is heldover the button for a shorttime (the example to the rightshows the help text for subdi-vision). Table 10.3: Additional Blender features and short
ut keys. Continued from table 10.2on the previous page.Sele
tion Type Short
ut KeySele
t obje
t RMBSele
t additional obje
t SHIFT+RMBDesele
t obje
t SHIFT+RMB (on sele
ted obje
t)Desele
t all obje
ts AKEYSele
t all obje
ts AKEY (when none sele
ted)Area drag sele
tion BKEY then LMB (hold in and drag)Area drag de-sele
tion BKEY then RMB (hold in and drag)Paint sele
tion3 BKEY twi
e - LMB sele
tsPaint de-sele
tion3 BKEY twi
e - SHIFT+RMB de-sele
tsTable 10.4: Sele
ting obje
ts in Blender.

188 Modeling in Blender r

 Figure 10.5: The easiest way to add a new primitive. The menu pops up when SPACEis pressed.
Obje
t Transformation Short
ut keyTranslation GKEYRotation RKEYS
aling SKEYMirror MKEYTable 10.5: Blender transformations

10.2 Modeling in Blender 189
 Figure 10.6: Units of transformation. This example is from s
aling.

 Figure 10.7: Settings for what should be visible in edit mode (NSize is the length of thenormals).are shown in the lower left
orner (see �gure 10.6). Rotations will always bein the same plane as the view is in.It is also possible to restri
t transformations like translation and s
alingto follow an axis. After pressing the wanted transformation press the XKEY,YKEY, or ZKEY to sele
t whi
h axis to follow.To manipulate single (or more) verti
es you will have to enter edit mode.To enter edit mode press TAB. Now all verti
es are visible. Verti
es
anbe transformed and sele
t in the same way as obje
ts. When verti
es aremanipulated triangles between them will automati
ally follow.In edit mode it is possible to view fa
es and normals. Settings for what tobe visible
an be found under the edit menu (the same button as for settingup the
amera, see �gure 10.4 in se
tion 10.1), these settings
an be seen in�gure 10.7.A small remark about the
enter of the obje
t marked by a small dot(pink when the obje
t is sele
ted and yellow when desele
ted): When verti
esare transformed in edit mode, the
enter stays where it is, while outside editmode it follows the transformations. Therefore it is advisable not to translatethe entire obje
t in edit mode unless you want to move the
enter. Anotherimportant thing is that the
enter will stay, representing the obje
t even if allverti
es are removed. In other words an obje
t
annot be deleted
ompletely

190 Modeling in Blender r

 Figure 10.8: Features available in edit mode.in edit mode, always do this in obje
t mode if the obje
t should be entirelyremoved.Apart from the transformations available for obje
ts, there are some extrapossibilities in edit mode for manipulating verti
es also found under the editmenu. Some worth noti
ing are: The �Set Smooth� option whi
h smoothesthe obje
t (�Set Solid� reverses this), �Subdivide� whi
h subdivide sele
tedverti
es, �Extrude� generating an extrusion from sele
ted surfa
es (short
utkey is the EKEY) and �Rem Double� adding together sele
ted verti
es lying
lose to ea
h other. Another good feature is the �Hide�/�Reveal� fun
tional-ity. Using these buttons sele
ted verti
es
an be temporarily hidden, whi
hmakes it easier to manipulate verti
es in more
omplex meshes. Note alsothe �Double Sided� button, whi
h is sele
ted by default. Double sided meansthat fa
es are visible from both sides. This
an be a problem, sin
e, for ex-ample, shadow volume
al
ulations only works for one-sided fa
es, whi
h
an
reate troubles when using obje
ts outside Blender. Besides it is
ru
ial thatall fa
es have the
orre
t orientation if we want do ba
k fa
e
ulling, whi
hwe always want to do if possible. A good advi
e is therefore to desele
t thisfeature. All features mentioned in this paragraph are outlined in �gure 10.8.Another method, whi
h was des
ribed in
hapter 7, is to model after atwo-dimensional sket
h. Loading a pi
ture into the ba
kground of Blenderis done as follows: Sele
t �Ba
kground Image. . . � in the view menu in thelower sele
tion bar (�gure 10.9). The dialog shown in �gure 10.10 will appear.�Use Ba
kground Image� reveals the other buttons and enables the use ofa ba
kground image. To sele
t an image press the folder i
on to the rightof �Image:�. �Blend� determines transparen
y of the image (0 equals notransparen
y and 1 makes the image invisible). �Size� sets the size of theimage �X O�set� and �Y O�set� pla
es the image in the s
ene.The image remains at the same position from all angles, meaning that nomatter whi
h angle you
hoose to see the s
ene the image will not transform.It is like a wall paper in the ba
kground. The image will only be visible whenthe view is perpendi
ular to one of the axes (PAD7, PAD1, PAD3, CTRL+PAD7,CTRL+PAD1, or CTRL+PAD3).In the following we will des
ribe an example of modeling a

ording to aba
kground image. This is the method we have used for most of the obje
ts
reated for our test s
ene. We will follow the example pi
tured in �gure 7.5.

10.2 Modeling in Blender 191

 Figure 10.9: Sele
t �Ba
kground Image. . . � to load an image into the Blender ba
k-ground.

 Figure 10.10: The �Ba
kground Image� dialog.

192 Modeling in Blender r

 Figure 10.11: A line following a line in the ba
kground image.The ba
kground image (whi
h is the logo for our demonstration appli
ation)is loaded as des
ribed above. To start modeling add a plane from the SPACEpop up menu (see se
tion 10.1).Now, enter edit mode (TAB), sele
t all verti
es in the plane (AKEY), andmove the plane to a favored position from where you want to start modeling(press GKEY to translate). When one of the lines of the plane is alignedwith one of the lines of the ba
kground image erase the two verti
es not
onne
ted to that line (desele
t all verti
es by pressing GKEY and sele
t theverti
es with SHIFT+RMB and press XKEY). We now have a line following aline in the ba
kground image that we want to model after, see �gure 10.11.Then we
an draw the
ontour of the obje
t presented in the ba
kgroundimage by extruding or translating verti
es one at a time (GKEY or EKEY,sele
tion by RMB). When we want to
onne
t the last to verti
es and
losethe
urve, we sele
t both and press the FKEY. The same te
hnique
ould beused for assembly of fa
es of the primitive man in �gure 7.3. After drawing
ontours for ea
h part of the image the result is as seen in the top rights
reen shot of �gure 7.5.In this example we have no more use of the ba
kground image so weremove it and turn to the right view (PAD3). Now, all that we
an see isone straight line with verti
es randomly s
attered sin
e our obje
t is all �at.To give it the third dimension sele
t all verti
es (press AKEY). Press EKEY toextrude all verti
es at on
e and hold down CTRL while dragging the mouse.We now have a three dimensional model of the JR logo. Turn the s
ene alittle and see for your self (PAD4 or PAD6), or see the result in �gure 7.5.When pressing the ZKEY we
an see the fa
es of the obje
t. Blender hasonly
reated fa
es in the extruded dire
tion. To make the obje
t solid wemust add the appropriate fa
es by sele
ting the verti
es between whi
h wewant to
reate a fa
e and press FKEY.

10.3 Material Settings in Blender 193
 Figure 10.12: This button pi
ks the material menu, short
ut key F5.Fa
es
an only be drawn between three or four verti
es at a time so thiseasily be
omes the most time
onsuming pro
ess when modeling. Anotherimportant thing to keep in mind is the double sided feature that Blender hastoggled on as default. Obje
ts being double sided (shaded on both sides)inside Blender are �ne but when they are exported they usually only haveone side, meaning that some of them might turn the wrong way. This resultsin transparent fa
es making the obje
t full of holes. The best way to avoidthis is to toggle the double sided feature o� right away in the edit modeunder the edit buttons menu, see �gure 10.8.We
onstantly must keep tra
k of the normals otherwise they might pointin the wrong dire
tion. To keep tra
k of the normals sele
t �Draw Normals�in the rightmost menu (again see 10.8). Whenever the normal points inwardswe should �ip it. Do this by sele
ting the verti
es that represent the
ornersof the fa
e whi
h has a normal turning inwards and
li
k the �Flip Normals�button.This ends our presentation of obje
t
reation and manipulation in Blender.Other possibilities are also available su
h as line sweeping and
urves. Theseare not des
ribed in this report, for more information we refer, again, towww.blender.org.When an obje
t has been
reated, it should have material applied to it.Setting materials in Blender is des
ribed in the next se
tion.10.3 Material Settings in BlenderAfter
reating the obje
ts for a s
ene, we would like to give the s
ene some lifeby making the obje
ts look real and
olorful. This is done through materials.Translation between Blender material parameters and usual Phong materialparameters is des
ribed in se
tion 8.2. The translation is, however, not
ompletely
onsistent, therefore we
an not guarantee that materials willlook exa
tly the same in our render engine as they do in Blender.Materials for an obje
t are
reated through the shading menu, whi
h issele
ted through the small sphere in the lower menu bar (see �gure 10.12).The menu is also available by the short
ut key F5.For ea
h new obje
t a new material must be added. This is done simply

194 Modeling in Blender r

 Figure 10.13: Adding a new material.

 Figure 10.14: Main Blender material settings.by pressing add new in the material menu, see �gure 10.13.When a new material is added a whole bun
h of new options appear. Inthe following we will des
ribe some of them.Like obje
ts, materials
an be named under the material settings in theMA �eld, where most other fun
tionalities
on
erning
olor and appearan
eare found. Here the di�use
olor �Col� and the spe
ular
olor �Spe� of anobje
t are set. Note that it is possible to set
olors using either the RGB orthe HSV
olor spa
e as des
ribed in 8.1. The �DYN� button a
tivates physi-
al settings related to the material and the �Wire� button enables renderingin wire frame mode. �A� is transparen
y settings. See �gure 10.14.In the �Shaders� menu all settings regarding ray tra
ing are found. Herethere is also a slider for re�e
tan
e whi
h is further outlined under the mirrortransparen
y menu. Last we have the texture settings. Most
hanges in thematerial settings are made visible in the preview menus in the left side part of

10.3 Material Settings in Blender 195
 Figure 10.15: The texture menu. The right set of menu sele
tion i
ons appear only whenthe �rst material i
on in the permanent set of menu sele
tion i
ons have been
hosen.

 Figure 10.16: Textures are set up in the �Texture� menu. Ea
h texture refers by nameto textures added under the material menus. From left to right: (a) The texture menu ofthe material view. (b) The texture i
on menu.the s
reen. Sin
e we are using our own renderer these are not too importantto us.The rightmost menu is for textures, that is, for asso
iating textures witha material. This is done by pressing the �Add New� button. When thisbutton is pressed more menus will appear. They hold settings for how thetexture is mapped to an obje
t to whi
h the material is applied. How thetexture should look, is set up in yet another set of menus, whi
h are foundin the menu bar above the extra set of menu i
ons that appear when thematerial setting have been
hosen. Instead of the red sphere
hoose theleopard skin. See �gure 10.15.Textures are arranged a

ording to their name. In the texture menu ofthe material view (�g. 10.16a), we have a list of textures that are atta
hed tothe material. The same list is found in the texture i
on menu (�g. 10.16b).Textures
an be pre-generated pi
tures giving a higher level of detail to

196 Modeling in Blender r

 Figure 10.17: Texture patterns are sele
ted in the �Texture Type� sele
tion bar. The
olor of the non-transparent part of a texture pattern is the di�use
olor of the material.
 Figure 10.18: The light setup menu (only available when a light sour
e is sele
ted).an obje
t. They
an also be
omputer generated patterns to simulate somekind of material, for example marble or wood. Here the texture
onsists ofa partly transparent pattern, where the
olor of the non-transparent part isthe di�use
olor set in the
olors menu. The �Texture Type� sele
tion bar,shown in �gure 10.17, makes di�erent texture types available. Through thiswe
an, for example,
hoose an image for the texture. When a texture typehas been sele
ted new menus will appear for individual settings.Textures are not exported/imported to our render engine, so we will notgo into any details.A few more settings should be mentioned. First of all light settings areimportant for the appearan
e of the s
ene. Light settings are found throughthe light bulb in the i
on sele
tion bar, but are only available when a lightsour
e is sele
ted (see �gure 10.18). In the initial s
ene we have a light sour
e(the
ir
le with a dot in the middle) more light sour
es
an be added likeprimitives through the popup menu a
tivated by pressing SPACE (see �gure10.5 in se
tion 10.2).When a light sour
e is sele
ted and we have
hosen the light setup menuwe
an modify the light sour
e. Under light settings we
an sele
t the typeof light sour
e that we want (point light, area light, spot light, sun (ie.dire
tional light), et
.), we
an set distan
e,
olor, energy (intensity), andeven textures
an be atta
hed. All light sour
es are exported/imported toour render engine. The export and import only distinguish between spot

10.3 Material Settings in Blender 197
 Figure 10.19: Ba
kground is set in the world settings menu.
 Figure 10.20: Render menu i
on.lights and point lights, the rest will be exported as the one of these that best�t. The ba
kground of our rendered image
an be set in the world settings
hosen by the i
on whi
h is a globe (�gure 10.19). World settings are sim-ply settings for the ba
kground, whi
h
an be set to anything from a skysimulation to a single
olor or an image. The ba
kground settings are notexported.The last button in the i
on menu bar is radiosity settings, whi
h are notused in this proje
t.To see the results from our modeling e�orts we turn to the renderingmenus. These are found in the stationary i
on sele
tion bar (the one that isalways visible). The render menus are sele
ted through the small lands
apei
on (�gure 10.20).When pressing the big render button in the middle of the render menuwindow (also seen in �g. 10.1), Blender will generate a pi
ture from the
urrent
amera view. Di�erent settings
an be toggled on and o�, su
h asshadows, ray tra
ing, radiosity, et
. The output pi
ture is shown immedi-ately after
al
ulation has been
arried out in a popup menu. The size andformat of the output pi
ture is set in the rightmost menu
alled format. Therendering image
an be saved by pressing F3. The rendering fun
tionalityis good for previews of the s
ene. As it is now, it is hard to use the ren-der output for
omparisons with the results of our render engine, sin
e theexport/import s
ripts
hange too many things with regards to material andlight settings.After setting materials, we
an start animating the s
ene. Blender ani-mation is the subje
t of the next se
tion.

198 Modeling in Blender r

 Figure 10.21: The frame
ounter.10.4 Blender AnimationTo
reate a dynami
 s
ene we
an animate our obje
ts. The basi
 animation
on
epts are des
ribed in
hapter 9, this se
tion will follow
hapter 9 anddes
ribe how animation is
arried out in Blender.Obje
ts
an be animated in Blender using key frames. The frame
ounteris found in the lower menu bar, see �gure 10.21.Before
reating any key frames it is a good idea to bring up the keyviewer. For this purpose we split the modeling view in two (as des
ribed inse
tion 10.1, right-
li
k on the edge of the window and sele
t split). We wantto make one of our windows a key viewer, to do this; go to the window typesele
tion i
on in the lower left
orner of the window and sele
t the �NLAEditor� (see �gure 10.22).To make the �rst key frame go to the modeling view and sele
t the obje
tthat should be animated. When the obje
t is pla
ed in its �rst position, westart applying transformations and rotations by pressing CTRL+AKEY followedby �Ok�. Now we are ready to
reate our �rst key frame. This is doneby pressing the IKEY and sele
ting �Lo
RotSize� to save position size androtation of the obje
t. A small yellow box will now appear on a line for thesele
ted obje
t in frame one. This indi
ates that a key frame has been saved,See �gure 10.23.Now, move the frame
ounter to the frame where the next key frameshould be. In this frame
hange the obje
t to the next position, press IKEYand save another key frame. Moving through the di�erent frames it is seenthat the obje
t will
hange transformation between the two key frames. Tomake the animation longer or more detailed save more key frames in-betweenthe other frames. Key frames
an be moved about, deleted, and sele
ted inthe NLA editor exa
tly as in the modeling view. Zoom fun
tionalities
analso help
reating a better overview of the key frames, these works in thesame way as in modeling (see se
tion 10.1). To stret
h the view in onedire
tion hold down CTRL+MMB and drag the mouse, either horizontally (xdire
tion) or verti
ally (y dire
tion).The
ourse of the transformation between the two key frames
an be
hanged in the �Ipo Curve Editor� found in the window type sele
tion menujust like the �NLA Editor� (see �gure 10.22). The Ipo
urve editor shows

10.4 Blender Animation 199

 Figure 10.22: Sele
t the �NLA Editor� to get an overview of the generated key frames.

 Figure 10.23: Saving a key frame by pressing the IKEY. Here a key frame is saved for a
ylinder.

200 Modeling in Blender r
a
urve for ea
h transformation of the sele
ted obje
t. As we have savedkeys for lo
ation, rotation, and s
aling we have a
urve for ea
h of thesetransformation types on ea
h axis (a total of nine
urves). Figure 10.24shows how the Ipo
urve editor looks like in our
ase.The
urve overview may be a bit
onfusing sin
e many
urves sometimes
ross ea
h other. To
on
entrate at one transformation at the time, we
an
li
k di�erent
urves on and o� to the right using the Blender sele
tion anddesele
tion fun
tionalities. To sele
t a
urve press the text and not on the
olored square in front of the text. Pressing the
olored square sele
ts the
urve instead. When a
urve is sele
ted we
an transform it as we transformobje
ts in the modeling view. To
hange the form of the
urve press TAB. Itis now possible to alter single points on the
urve and the
urve slope.As presented in
hapter 9 we
an
reate an armature for more
omplexmeshes. To
reate an armature press SPACE, then sele
t �Add� and thensele
t �Armature� (see �gure 10.25).When you drag the mouse a bone will appear drawn from the �rst pointindi
ating the beginning of this bone
hain. Ea
h time LMB is pressed onebone ends and a new bone begins. The bones are linked together in a
hain.Around ea
h link point we
an move the armature freely; otherwise it hasonly sti� lines of
onne
tion. The links of the armature
an be translated asother verti
es in the modeling view. A bone is sele
ted by sele
tion of thetwo links that it is
onne
ting. Bones
an be rotated and s
aled. A typi
alarmature for a human is shown in �gure 10.26.Sometimes it is appropriate to
onne
t links without a
tually having abone between them (these are the dotted lines in �gure 10.26), this is doneby parenting. To make one bone parent of another, we must be in edit mode(Blender automati
ally
hanges to edit mode when we
hoose to add anarmature). In the edit menu sele
ted through the quad in the i
on menu bar(see �gure 10.4 in se
tion 10.1) we
an set the parent of all sele
ted bones.When a bone is made
hild of another bone it will automati
ally follow
hanges of that bone. Figure 10.27 shows the parenting of the armature in�gure 10.26. Noti
e that the pelvis is not a
hild of any other bone, thismeans that when we move the pelvis the rest of the armature will followwithout transforming.The names of the bones are quite important in the parenting pro
ess.The name of a bone is set in the BO �eld by LMB
li
king, exa
tly as whennaming obje
ts, materials, and textures. To name the bones it is a goodidea to sele
t them one by one, only sele
ted bones appear in the armaturebones menu.When the armature is done it should be �tted to the obje
t that youwant to use it for. Think of the armature as the skeleton of the obje
t. Alsotry to keep the
enter of the armature in the same pla
e as the
enter of themesh, the
enter is best pla
ed between the feet
lose to the ground (this isthe
enter of rotation of the entire mesh a.k.a. the pelvis).

10.4 Blender Animation 201

 Figure 10.24: The �Ipo Curve Editor�. Here we have saved key points for lo
ation,rotation, and s
aling of a
ylinder in frame 1 and frame 20 (the view has been
hangedusing zoom and stret
h fun
tionalities). The verti
al green line indi
ates the
urrent frameshown in the modeling view.

202 Modeling in Blender r

 Figure 10.25: Creating an armature (NB. armatures
an not be added in edit mode).It is now time to atta
h the armature to the obje
t mesh. To do thisright you must spe
ify whi
h verti
es to be a�e
ted by whi
h bones. This isdone by grouping the verti
es. Here it is absolutely ne
essary that you areable to remember the names for the di�erent bones in the armature. Sele
tthe obje
t that you want to use the armature for and enter edit mode (TAB).In the edit menus under links and materials
reate a new vertex group (see�gure 10.28). It is important that the vertex group is given the same name asthat of the bone it should be atta
hed to. Now, sele
t the verti
es you wantto be in�uen
ed by that bone and press �Assign�. If you are not happy withyour sele
tion later on you remove verti
es from the group again by sele
tingthem and pressing �Remove�. To see whi
h verti
es that are
urrently in thegroup desele
t all verti
es in the modeling view (AKEY) and press the �Sele
t�button. Now only the verti
es in the
urrent group are sele
ted.Try to have ea
h vertex represented in one group only, although it isallowed to have them in�uen
ed by more than one. In any
ase it is mostimportant that all verti
es belong to some group; otherwise they will stay intheir original position when the armature starts to transform the mesh.When all verti
es are assigned to a group we
an assign the mesh tothe armature. Make sure that you are not in edit mode, then sele
t botharmature and obje
t mesh and press CTRL+P and sele
t �Use Armature�. Nowthe armature and the mesh have been
onne
ted.To test the armature we must be in pose mode. We
an enter pose modewhen the armature is sele
ted by pressing CTRL+TAB. Then the bones in thearmature appear blue. Use the standard transformation keys to alter thebones of the armature, the mesh asso
iated with it should follow the bones.

10.4 Blender Animation 203

 Figure 10.26: Armature example. This armature is used for the human
hara
ter inthe
ave s
ene.

204 Modeling in Blender r

 Figure 10.27: The �Armature Bones� menu shows the parenting hierar
hy of the arma-ture in �gure 10.26. The pelvis bone is not a
hild of any other bones, hen
e, it is the topof the hierar
hy.

10.4 Blender Animation 205

 Figure 10.28: Creating a vertex group. The name of the group must be the same asthe bone that should in�uen
e it. In this menu verti
es are assigned, removed, sele
ted,and desele
ted from the
urrent vertex group as well.Some
ommon errors are: Verti
es not
hanging position with the armaturebe
ause they do not belong to any group, and verti
es from strange pla
es inthe mesh that respond to transformations of the wrong bones be
ause theyare assigned to a wrong group. Su
h errors only reveal them selves by testingthe armature in pose mode.At all times, in pose mode, it is possible to
lear transformations and re-turn the mesh and armature to the their starting positions by pressing ALT+R,ALT+S, and ALT+G to
lear rotation, s
aling, and translation respe
tively.As with animation des
ribed earlier in this se
tion, we
an save keyframes for the armature. The only di�eren
e is that we are now saving a
-tions, so instead of the �NLA Editor� we use the �A
tion Editor�, see �gure10.29.In the a
tion editor we see the same yellow boxes representing key frames,there is a key frame for ea
h bone in the armature though (the armature mustbe sele
ted to show any key frames in the a
tion editor).In games we often make use of animation
y
les that
an be used insequen
es. Cy
les are done most easily by
opying the key frames fromframe one to the last frame in the
y
le and then �ll the spa
e in-betweenwith other key frames. In this way we are sure to
reate a
y
le. It is possibleto have many di�erent
y
les in blender. To begin a new
y
le sele
t �AddNew� in the lower menu bar of the a
tion editor view (see �gure 10.30).To view animations turn to the render menus (the small lands
ape i
onin the i
on sele
tion bar, see �gure 10.20 in se
tion 10.3). Instead of the�Render� menu use the �Anim� menu. Set the number of frames to the samenumber of frames used in the
y
le and press �ANIM�. Blender now rendersall the frames needed to play the animation. When all frames have beenrendered press �PLAY� to view the animation. The animation will appearin a popup window and replay until the window is
losed. Figure 10.31

206 Modeling in Blender r

 Figure 10.29: Sele
ting the �A
tion Editor� to view key a
tions instead of key transfor-mations.

 Figure 10.30: Multiple
y
les
an be
reated. To begin a new
y
le sele
t �Add New�in the lower menu bar of the a
tion editor view.

10.5 Export S
ripts and Import Libraries 207

 Figure 10.31: The �Anim� menu.demonstrates the �Anim� menu.The next se
tion des
ribes the options we have when we want to exportour blender models and import them to our own renderer.10.5 Export S
ripts and Import LibrariesAll data in Blender
an be a

essed via a Blender Python interfa
e. Python1is an interpreted obje
t-oriented programming language suitable for s
riptingamong other things. As any other tool used for this proje
t (ex
ept for MSWindows) Python is freeware.To render the s
enes
reated in Blender with our own render engine, wemust export them to a �le format that
an subsequently be imported in ourown appli
ation. The simplest way is to export all data to a �le de�ninga C++ fun
tion, whi
h initializes all the data dire
tly to our renderer at
ompile time. The export s
ript we wrote for this purpose is simply
alledexport.py, sour
e
ode is available on the atta
hed CD-ROM, see appendixA. In order to run su
h an export s
ript in Blender �rst split the modelingview (see �gure 10.3, se
tion 10.1). Press SHIFT+F11 over one of the newwindows to swit
h to text editor mode (or
hoose �Text Editor� in the windowtype menu, see eg. �gure 10.29), then press ALT+SHIFT+FKEY while the mouseis over the text editor and
hoose �Open...� in the popup menu (see �gure10.32). Browse to �nd export.py and open it in the text editor.The �rst line of the export s
ript is FILENAME = "path", where path isthe full path of some .
pp �le name. Set the path and �le name as you see�t. The
hosen �le will be the resulting export. Now, simple press ALT+PKEY1URL: http://www.python.org/

208 Modeling in Blender r

 Figure 10.32: Opening a s
ript �le.while the mouse is over the text editor. Some info will be printed to the
onsole window Blender always keeps open beside the main window. The.
pp �le given as path will then
ontain a .
pp �le initializing a world forour rendering appli
ation.The
ode export works well for small s
enes and it's a good way to getstarted. However, when the s
enes in
rease in size, the
ompile time of theexported
ode es
alates intolerably. It is there ne
essary to use an inter-mediary �le format. Blender supports export to di�erent formats (under�le!export), but we have
hosen to use an XML (eXtensible Markup Lan-guage) based �le format for 3D models
alled X3D [143, 144℄. This easedthe work we had to do with respe
t to import, sin
e there exist open sour
etools for parsing of XML, and besides an X3D importer written by BentDalgaard Larsen was distributed in the DTU
ourse �Computer Graphi
s�(02501). This importer is
alled BMesh and it makes use of the open sour
eC library for XML parsing
alled Expat, written by James Clark2.A s
ript for exports from Blender to X3D also exists, it is written byAdrian Cheater and the s
ript �le is
alled x3d_export.py3. The s
ript is,however, at the development stage (June 12, 2004 - version 0.16). Never-theless it presented a ni
e framework, whi
h we have modi�ed and mademore robust for this proje
t. To export a Blender s
ene or part of a s
enewith x3d_export.py follow the same steps as above until the s
ript has beenopened. No path need to be set in this export s
ript. Instead when ALT+PKEYis pressed the popup menu shown in �gure 10.33 will appear.After
hoosing whether to export the entire s
ene or only sele
ted obje
ts,the Python s
ript will query the �le name of the export. Beware that thisexport s
ript only works properly if you are using Blender 2.32 or newer,and if you have Python 2.3 or newer installed. It should also be noted thatbe
ause of the early development stage of the s
ript errors may easily o

urand limitations to the export exist.The import
alled BMesh is also a frame work at an early developmentstage. Therefore the import has many de�
ien
ies. On the other hand the
ode is `friendly' and allows expansions without
ausing too many troubles.For this reason we have been able to
onne
t the BMesh import to our render2URL: http://www.libexpat.org/3URL: http://www.bitbu
ket.
a/�a
heater/blender/

10.6 Additional Blender Features 209

 Figure 10.33: Exporting Blender models to X3D.engine. Still there is room for many optimizations in the export/import partof this proje
t.One example of an export/import short
oming is that the import supporttextures, while the export does not provide the ne
essary texture images.Another example is that normals are exported, but not imported by theBMesh. Instead they are re-
al
ulated in some way that does not alwaysgenerate better results.Though we
ould have made many other
hoi
es with respe
t to exportand import, we
hose those options that gave us as mu
h freedom as possiblewith respe
t to
hanges in the implementation. In return we had to
opewith some of the limitations that naturally follows with programs at an earlydevelopment stage.Here ends out dis
ussion on export s
ripts and import libraries. The nextse
tion
on
ludes this
hapter by mentioning some of the Blender featuresthat have otherwise not been des
ribed in this
hapter.10.6 Additional Blender FeaturesThe fun
tionalities that have been des
ribed in this
hapter
onstitute only asubset of Blender's
apabilities. We have mainly des
ribed the fun
tionalitiesthat have been used to
reate test s
enes for this proje
t, and s
enes that wehad hoped to use as test s
enes.Blender is
ontinuously developing, and as far as we are
on
erned onlyfor the better. This
hapter builds on version 2.33, when we started theproje
t the newest version was 2.32 and already version 2.34 is available atblender.org. Fortunately fun
tionalities are fairly
ompatible between theversions and mu
h is done to des
ribe the new features that newer versionspresent. Manuals and tutorials for older versions are also still available for

210 Modeling in Blender r
download, and sin
e Blender is free of
harge many amateurs write tutorialswhi
h they make available on the net.The most extensive extra feature for Blender not mentioned until nowis the build in game engine. It is a
tually possible to
reate your own 3Dgame using Blender only. The game engine provides a physi
al engine and anumber of fun
tion
alls to
reate a game from a s
ene. A good des
riptionof how to
reate games in Blender is found in [113℄. Of
ourse informationabout this
an be found on the internet too.Sin
e all data are available through the Python interfa
e to Blender,fairly
omplex games
an be
reated through the
ombination of Blenderand Python s
ripting. The Python interfa
e also gives the game engine anextra dimension with respe
t to export of features to other appli
ations.Python has a

ess to the main loop of the game engine and
an, therefore,a

ess game parameters su
h as transformations and physi
al for
es on the�y. These
an be re
orded as a kind of physi
s dependant key frames, in thisway the Blender game engine
an be used to
reate intera
tive animationsequen
es very qui
kly. Afterwards they
an be exported and tested on anexternal renderer su
h as the one written for this proje
t.All in all we think that the
ombination of Blender and Python is apowerful tool, whi
h is quite useful for modeling and animation of test s
enesfor external renderers. Blender is another step towards a game developmentplatform whi
h is free of
harge. That ends the part of this proje
t that
on
erns modeling of
ontents for 3D rendering.

Part IIIIdeas, Results, andExperiments

213The pre
eding
hapters have presented little new ex
ept for the idea of anarray based math engine (se
. 2.1), and few experiments apart from theexpanded tra
k ball (se
. 9.3) and the model-to-
ode export s
ript (se
. 10.5).Yet we �nd that the theory given in part I is indispensable when we want todes
ribe our own ideas, how they
ame to us, and why we dis
arded them orheld on to them. The more pra
ti
ally oriented part II is a ne
essity for us inorder to show the possibilities of a free of
harge game development platform,and part II is important in order to supply our report with anything moreinteresting than a stati
 standard s
ene (su
h as a still image of a Cornellbox).In other words the two previous parts provide the foundation from whereideas emerge and experiments
ome into mind. Building on this, we willnow fo
us on the ideas that have appeared during the proje
t. The mainidea has be
ome the Dire
t Radian
e Mapping (DRM) method whi
h wehave referred to from time to time throughout the report and whi
h will bedes
ribe in detail. Other ideas will also be presented and dis
ussed, somehave been implemented too. Dire
t Radian
e Mapping was, however, theidea that we
hose for further development towards the end of the proje
t.Chapter 11 will present the ideas that we have
ome up with during theproje
t. We will dis
uss possibilities and drawba
ks for ea
h of them. Thiswill often lead to the reason why we
hose not to bring the idea any further inthis proje
t. A few ideas have been implemented on an experimental stage,in these
ases the results will be dis
ussed as well.Going through the proje
t idea by idea eventually leads to the
on
eptthat we have
hosen to sti
k by: A method we have named Dire
t Radian
eMapping (DRM). The method builds upon basal radian
e
al
ulations and
ontains few restri
tions and pre
onditions. DRM is based on the newestGPU te
hnology, and the method will draw advantage when GPUs growfaster and more e�
ient. This means that the method may stand evenstronger in the future. First of all we use DRM to
al
ulate indire
t illu-mination, but there are other appli
abilities that will be tried out as well,an example is subsurfa
e s
attering. Chapter 12 will des
ribe the method indetail.DRM is mainly a method for simulation of indire
t illumination, and assu
h it
an easily be
ombined with other methods addressing di�erent partsof the rendering equation (see
hap. 6). Chapter 13 will mention all the ad-ditional methods that we have implemented for
ombination with DRM. Wewill also mention implemented methods that are not for real-time rendering.Those have mainly been implemented for
omparison. The radiosity im-plementation was originally implemented as an exer
ise in the DTU
ourse�Computer Graphi
s� (02561), therefore it does not use the same renderengine as the rest of the rendering methods in our appli
ation. Still a radios-ity implementation is very useful for
omparison, and it has therefore beenbrought along and given a menu of its own in our viewer.

214Apart from DRM we have put an e�ort in
onstru
tion of a graphi
al userinterfa
e (GUI)
alled JR Viewer, whi
h shows how the global illuminatione�e
ts that we are
reating works in real-time
ompared to standard globalillumination rendering (based on
hap. 4). We have implemented a ray tra
eras well as a radiosity renderer
apable of rendering some prede�ned s
enes(Cornell box
ontaining a few obje
ts). These s
enes
an also be renderedusing our di�erent real-time global illumination e�e
ts. If our method wasto be used in a more extensive real-time 3D environment, we would need tobe able to render more
omplex s
enes than a Cornell box. As a part of theproje
t we have taught ourselves how to model in Blender (see
hap. 10) andwe have
reated a �
ave s
ene� for testing our method. This s
ene is alsoavailable in the GUI. Chapter 14 will des
ribe the
apabilities of the GUIand what we wish to show with our di�erent test s
enes. Note that the GUIis a MS Windows appli
ation and, hen
e, does not run under other operatingsystems (Linux, Ma
, et
.). This was a
hoi
e we made in order to havesome extra windows features at our disposal (su
h as drop down menus).Even though we have
hosen not to emphasize on the pro
ess of softwaredevelopment, rather on the appli
ation of mathemati
al tools to solve a
omplex problem, implementation is inevitably a major part of the workthat must be done if we want to experiment or if we want to verify the ideasthat we put forth.Chapter 15 will present all the di�erent program parts and dis
uss theirstru
ture. All parts are bound together in our graphi
al user interfa
e, whi
htherefore
an be seen as the main part. From this part bran
hes like raytra
ing, radiosity and rasterization emerges. These are, on the other hand,all just di�erent ways of rendering the same s
ene, therefore we will see thatmost of the rendering methods make use of the same render engine, whi
his the
ore of the appli
ation.

Chapter 11Ideas

The best way to have a good idea is to have lots of ideas.Randall Jarrell: Pi
tures from an institution (pt. 1,
h. 4)

216 IdeasThe starting point of this proje
t was to
reate a de
ent global illuminationrenderer and a simple real-time renderer. The implementation of those isdes
ribed in
hapter 15. Then the plan was to move them towards ea
hother little by little and see if we
ould make them meet midway.Our
hoi
e of global illumination algorithm was ray tra
ing expanded byphoton mapping. This seemed to be the most general global illuminationmethod having a

eptable performan
e with respe
t to pro
essing time, the
hoi
e was, of
ourse, also inspired by those who had previously been ableto simulate photon mapping in real-time or at intera
tive rates, see se
tion6.7.The �rst step was then to �nd optimization strategies for photon map-ping whi
h
ould lead it in a dire
tion towards rasterization methods. Itsprings to mind when dealing with photon mapping that most of the timespend in the photon mapping algorithm is spend for ray tra
ing. Ray tra
ingis well explored with respe
t to e�
ien
y and optimization s
hemes, never-theless we had a few ideas for ray tra
ing optimizations some of whi
h werebased on graphi
s hardware. Some of the ideas for ray tra
ing optimizationsdeveloped into possible solutions for the entire global illumination problem.Others (those based on graphi
s hardware) brought ray tra
ing
loser torasterization. The di�erent ideas are introdu
ed in the following order:1. Angular visibility between axis aligned bounding boxes (AABBs) forfewer interse
tion tests in ray tra
ing.2. A topologi
al network for radian
e transfer between obje
ts.3. Displa
ement mapping for fast ray/obje
t interse
tion.4. A multi-agent approa
h to global illumination, where ea
h obje
t is anautonomous agent
ontrolling its own shade.5. An `atmosphere' to limit the in�uen
e of ea
h obje
t in global illumi-nation.6. A line-of-sight algorithm for fewer interse
tion tests in ray tra
ing.7. Gouraud interpolation of the �rst interse
tion point. A rasterizationapproa
h to the �rst level of the ray tra
ing algorithm.8. Single pixel images ea
h representing a ray. An attempt to let rasteri-zation do full re
ursive ray tra
ing.Keep in mind that these se
tions merely introdu
e the ideas. Some ofthem have not been implemented, but are presented here to give an insightin the pro
ess it was to �nd the �nal idea, and they give a feel of the
hoi
eswe had to make before starting to pursue a spe
i�
 idea. Our �nal idea ofdire
t radian
e mapping emerged when we started at the other end of the

11.1 Angular Visibility Between AABBs 217rope, that is, when we tried to move rasterization
loser to realisti
 imagesynthesis. Dire
t radian
e mapping is des
ribed in the next
hapter, but itis founded in the ideas presented in this
hapter.11.1 Angular Visibility Between AABBsThe �rst idea for ray tra
ing optimization is to set up an axis aligned bound-ing box (AABB) for ea
h obje
t in the s
ene. When light is re�e
ted from anobje
t we
an use the angular visibility between the AABB of the interse
tedobje
t and the AABB of ea
h of the remaining obje
ts in the s
ene. It
anbe tested whether the dire
tion of the re�e
ted ray lies within the angularvisibility between two obje
ts before the ray is tested for interse
tion withthe re
eiving obje
t.Re
all from se
tion 4.2 that when a ray is tra
ed from a position P in thedire
tion ! we must in traditional brute for
e ray tra
ing test ea
h primitiveobje
t in the s
ene for interse
tions and pi
k the interse
tion
losest to P .In s
enes
ontaining many primitives spatial data stru
tures are oftenne
essary in order to o

lude as large parts of the s
ene as possible before
hoosing whi
h obje
ts to test for interse
tions.In the following we des
ribe a very simple way to limit the number ofinterse
tions tests. Let Cref be the
enter of the re�e
ting obje
t from wherea ray
ould be tra
ed. Let Cre
 be the
enter of a re
eiving obje
t whi
h a ray
ould be tested for interse
tion with. Then
osine of the angle (�) betweenthe dire
tion of the ray ! and the dire
tion pointing from the
enter of there�e
ting obje
t to the
enter of the re
eiving obje
t is given as:
os � = ! � Cre
 �CrefkCre
 �CrefkHere
os � 2 [�1; 1℄ will give a measure stating how
lose the dire
tionof the ray is to the ve
tor dire
tion `
onne
ting' the two obje
ts. Supposea threshold stating
os �max has been pre
al
ulated, then
os � >
os �maxreturns whether it is worth testing for interse
tions or not. The total numberof operations needed for this test is a dot produ
t and a
omparison test (>).LetBref;i ; i = 0; : : : ; 7 be the eight
orners of the AABB for the re�e
tingobje
t, see �gure 11.1, and let
orrespondingly Bre
;i ; i = 0; : : : ; 7 denotethe AABB of the re
eiving obje
t, then
os �max is found as the minimum ofthe
osines of the angles between CrefCre
 and Bref;iBre
;i. The
on
ept isillustrated in �gure 11.2.Suppose we pre
al
ulate the dire
tion of the
onne
ting line !C = (Cre
�Cref)=kCre
�Crefk and the threshold value between ea
h
ombination of twoobje
ts. Now, whenever a ray is re�e
ted o� an obje
t in a dire
tion !, thesimple test: ! � !C >
os �max

218 Ideas

Bmin = B4

Bmax = B0

B5

B1

B3 B6

B2
B7

•

•

•

• •

•

•

•

•
C

Figure 11.1: Center position and axis aligned bounding box (AABB) of an obje
t.

•

•

•

• •

•

•

•

•
Cref

•

•

•

• •

•

•

•

•
Crec

Figure 11.2: Pre
al
ulation of threshold values is done using the
orners of ea
h obje
tsbounding box. Here the bold line represents CrefCre
 and the �rst set of lines Bref;0Bre
;ifor threshold value determination are drawn. A similar set of lines for ea
h of the remainingpoints in the AABB of the re�e
ting obje
t should also be tested as threshold value.
an qui
kly reje
t an obje
t before testing for interse
tion. We
all
os �maxthe angular visibility between two obje
ts. Be
ause of the simpli
ity the ideais quite e�
ient for a limited amount of obje
ts. A spatial data stru
turesu
h as the BSP tree will probably be more e�
ient when the number ofobje
ts in
rease signi�
antly. The reason is that the BSP tree optimallyonly will have to test the ray against logN planes, where N is the number ofobje
ts in the s
ene, while the angular visibility is tested for ea
h obje
t. Onthe other hand the BSP tree is di�
ult to
hange when �rst set, while theangular visibility between two obje
ts easily
an be modi�ed in real-time.Fortunately nothing prevents us from
ombining angular visibility withother spatial data stru
tures. An interesting approa
h in a real-time envi-ronment
onsisting of
omplex rigid obje
ts,
ould be to have an angularvisibility `network' between the obje
ts and a BSP tree for the primitives inea
h obje
t. This would have the e�e
t that only some weights in the an-gular visibility network would need re
al
ulation when obje
ts are moving,while the BSP tree would only need to be moved not entirely re
al
ulated,

11.1 Angular Visibility Between AABBs 219sin
e the obje
ts were assumed to be rigid.This was the �rst idea. The angular visibility network has been imple-mented, unfortunately we have not had the time to
ombine it with a BSPtree. The results of an angular visibility network are good in the simple Cor-nell box s
ene whi
h is otherwise often too simple to bene�t from spatial datastru
tures. Improvements due to angular visibility tests alone are roughly26% when ray tra
ing a Cornell box with a
hrome (or mirror) sphere and aglass sphere (12 triangles and 2 spheres) in
luding spe
ular re
ursions, hardshadows, and phong shading. The resulting image is shown in �gure 11.3.

Figure 11.3: A Cornell box with a
hrome (or mirror) sphere and a glass sphere (12triangles and 2 spheres). The s
ene was used as a test of the e�
ien
y of the angularvisibility network. The spe
i�
 render in
ludes spe
ular re
ursions, hard shadows, andphong shadingThere is room for further improvements on the method. If an AABB
ontains a triangle only, it would, in fa
t, be mu
h more e�
ient to �nd theangular visibility using the
orners of the triangle instead of the
orners ofthe bounding box.The idea of an angular visibility network is interesting sin
e the angularvisibility
ould be a measure of the amount of energy whi
h should be trans-ferred between two obje
ts. This idea is explored a little further in the nextse
tion.

220 Ideas

1

2

3

0

V01

V13

V03

V12

V23

V02

Figure 11.4: An example of a simple network. Ea
h obje
t (in
luding the light sour
e) isa node in the network. The weights of the edges between the obje
ts are given as visibility.Note that Vij = Vji.11.2 Topologi
al NetworkThe se
ond idea follows in the footsteps of the �rst one, sin
e it might bepossible to determine the radian
e transfer or the �ux area density transferbetween two obje
ts by use of angular visibility (among other things). Theidea is to des
ribe radian
e as �ux in a fully
onne
ted topologi
al networkwith ea
h obje
t as a node.Instead of tra
ing rays through the s
ene the idea is to distribute energy.Energy
ould be distributed for example a

ording to angular visibility. An-other option is the hemi
ube form fa
tor �Fij method (see se
. 4.1), whi
h
an determine the fra
tion of energy leaving pat
h i that will rea
h pat
h j.The form fa
tor is on the other hand quite expensive to
al
ulate.Ea
h edge in the network will represent energy ex
hange between twoobje
ts. The light sour
es are part of the network. Light is emitted fromthe light sour
es by propagation through the network. Suppose we de
idea
ertain amount of photons to be emitted from ea
h light sour
e, then thevisibility between the obje
ts should determine how to distribute the photonsto the di�erent obje
ts in the network. We
ould refer to the visibility Vijbetween two obje
ts as the weight of the edge between the obje
ts in thenetwork, see �gure 11.4.When an obje
t re
eives a signal (a number of photons) from another

11.3 Displa
ement Mapping 221obje
t the photons are distributed over the area of the re
eiving obje
t whi
his visible from the re�e
ting (or emitting) obje
t. Environment maps (seese
. 6.3)
ould be used to determine these areas.After emission and propagation in the network the temporary energy ofthe obje
t de
reases, while the temporary energy of the obje
ts that havere
eived photons in
reases. Now, suppose we set some threshold for ea
hobje
t. When the temporary energy passes above the threshold, the obje
tis marked for re�e
tion of energy. In the next step of the algorithm all obje
tsmarked for re�e
tion will propagate energy ba
k into the network, while stillstoring the photons they re
eived. Now, the re
ursion
an
ontinue until anequilibrium state is rea
hed. At this point the �nal image has been rea
hed.Inspiration for this method was found in the idea of wave expansionneural networks [67, 68, 71℄, for those familiar with the resear
h area ofneural networks the analogy qui
kly be
omes apparent.Though the method seems
lose to progressive re�nement as des
ribedin radiosity, the di�eren
e is that photons are distributed a
ross the surfa
eof an obje
t. This means that we
an let re�e
ted energy originate in spe-
i�
 photons in
ident on an obje
t and thereby photons propagated in thenetwork
an have a spe
i�
 dire
tion and origin. This means that we
anmodel arbitrary BRDFs if ne
essary.The three main di�
ulties in this method are visibility
al
ulations, re-�e
tion (or refra
tion) of light from an obje
t to itself, and re
on�gurationof the network when things
hange dynami
ally.To further expand the networking
on
ept ea
h obje
t
ould itself
ontaina network where sample lo
ations a
ross the surfa
e would be nodes. In thisway the obje
t would be able to intera
t with itself. As suggested in [61℄ ina di�erent
ontext, Turk's repulsion algorithm [127℄
ould be used to samplepoints a
ross the obje
t surfa
e.Most of the
on
epts des
ribed in this se
tion are merely suggestions,nevertheless, the network analogy was also the origin of our dire
t radian
emapping idea (see
hap. 12). If we do not
hoose to have an internal networkfor ea
h obje
t, we
ould instead distribute the in
ident photons over thevisible part of the bounding box. The following se
tion presents an ideafor pre
al
ulation of the interse
tion test that must be
al
ulated when thephotons are tra
ed from the bounding box to the exa
t interse
tion with there
eiving obje
t.11.3 Displa
ement MappingComplex obje
ts are often di�
ult to ray tra
e be
ause they
onsist of an im-mense number of triangles. Many methods exist to handle this problem, mostof them are based on spatial data stru
tures. Spatial data stru
tures spendtime �nding the right triangle for the interse
tion
al
ulation. As an alter-

222 Ideas

Ray

Light source

Bounding sphere
intersection

Table lookup

Length found by
table lookup

Figure 11.5: The displa
ement mapping
on
ept.native to spatial data stru
tures we reinvented the
on
ept of displa
ementmapping. Instead of
al
ulating interse
tion with the
omplex obje
t itselfour idea was to
al
ulate interse
tion with a bounding volume and then usea many dimensional texture to return the exa
t point of interse
tion. Thiswould also be a good idea in
ontinuation of the topologi
al network idea,sin
e rays (or photons)
an be propagated in the network and distributeda
ross the part of the bounding volume visible between the re�e
ting obje
tand the in
ident obje
t, and then tra
ed to the
orre
t interse
tion using thedispla
ement map.Looking into the ray tra
ing pro
ess it is noteworthy that any ray inter-se
ting the bounding sphere surrounding a triangle mesh at a
ertain pointin a
ertain dire
tion, will interse
t the exa
t same point on the same tri-angle inside the mesh, as long as the triangles do not deform, that is, if theobje
t is rigid. This fa
t gives strong indi
ations that pre-
al
ulations arean option.To pre-
al
ulate the information stating the point in a mesh that a raywill interse
t when it interse
ts the bounding sphere, we must span a
on-�guration spa
e a
ross the entire bounding sphere the surfa
e of whi
h istwo-dimensional in (u; v)-
oordinates. Then two extra dimensions must beadded to a

ount for an in
ident dire
tion (�; �) on the hemisphere giving atotal of four dimensions. We
ould des
ribe su
h a
on�guration spa
e as afour-dimensional texture. The texture would hold the length along the raythat we must travel from the bounding sphere before the obje
t is interse
ted,see �gure 11.5. In the following we will des
ribe how su
h a four-dimensionaltexture
ould be
onstru
ted using an array-based terminology.Let d = (�; �) 2 [0; �℄ � [0; 2�℄ denote the dire
tion of the in
ident ray,and let P = (u; v) 2 S, where S is the (u; v)-spa
e of the sphere surfa
e,denote the point on the sphere that was interse
ted. Then points should besampled uniformly on the sphere and over the in
oming dire
tions in order

11.3 Displa
ement Mapping 223to dis
retize the axes. The stru
tural operation behind a Cartesian produ
t,that is, the array theoreti
 transformer
alled OUTER (see de�nition 7), willthen span the entire
on�guration spa
e of the axes.De�nition 7 (OUTER) Let A1 and A2 be arrays of dataand let f be a binary �rst order fun
tion, thenA1 OUTER f A2 (11.1)is de�ned as the fun
tion f applied to all pairs de�ned by theCartesian produ
t of the arrays A1 and A2.The dis
retization of ea
h �oating point axis will divide it into intervals.If we sample at midpoint of ea
h interval, the
on�guration spa
e will holdthe midpoint of ea
h
ell in the four-dimensional texture. For ea
h
ellmidpoint we �nd the distan
e to the point of interse
tion by ray tra
ing andassign to the texture value of that
on�guration.We
an now use a four-dimensional array (or texture) as a map M fromdire
tion d of the in
ident ray and position P of interse
tion on the bound-ing sphere to distan
e t that must be traversed along the ray before theinterse
tion is found: M : [0; �℄� [0; 2�℄ � S ! Rwhere M 7! OUTER interse
twhi
h means that a sampling of the
ontinuous spa
e [0; �℄� [0; 2�℄� Sto dis
rete axes and use of the stru
tural operation behind an outer produ
twith an interse
tion algorithm, will span a
on�guration spa
e that leavest =M(d;P)being a simple table look-up. Having (of
ourse)
omplexity O(1).After re-inventing the
on
ept we found that it was already well exploredand known as view-dependent displa
ement mapping, see [131℄. The abso-lute largest drawba
k is the size of the array. On top of this the displa
ementmap of a parti
ular obje
t would basi
ally need re
al
ulation ea
h time trans-formations other than translations or rotations are
arried out. Translation
an be done without re
al
ulation sin
e the array
on
erns the bounding boxand the obje
t, not the surroundings as su
h. This is also true for rotationif the bounding volume is a sphere. (Uniform s
aling may also be possiblesin
e the lengths in the map
an s
ale a

ordingly.)

224 IdeasThe idea of a table look-up for ray tra
ing
arries on to some of oursubsequent ideas. In the following se
tion we turn to a more general
on
ept,whi
h
ould be applied in
ombination with many other ideas.
11.4 Multi-Agent Global IlluminationWith a ba
kground in the area of arti�
ial intelligen
e, we qui
kly
ame upwith the idea of a multi-agent approa
h to global illumination. The idea isto regard ea
h obje
t, be that in a topologi
al network or not, as an agentwhi
h must itself take
are of its
urrent shade at all positions a
ross itssurfa
e. This distributed approa
h is interesting be
ause of the parallelismthat is inherent in global illumination.Ea
h obje
t, whi
h in this
ontext is an autonomous agent, should runin its own program thread. Sensing is a well known
on
eption in multi-agent systems, a good referen
e on multi-agent systems in general is [136℄.Whenever the obje
t sense the surrounding it will update visibility of otherobje
ts, for example by use of an environment map. The obje
t will at anytime be able to re
eive new pa
kets of photons. They will, however, notbe pro
essed until the agent thread is idle. The agent will also try to passon energy to those obje
ts visible in its environment map. Ea
h pa
ket ofphotons will then be a message
ontaining the information ne
essary for there
eiving agent to distribute the photons a
ross its surfa
e and again passon photons to visible obje
ts.The advantages of a distributed approa
h is that ea
h obje
t, in prin
iple,
an use di�erent rendering algorithms adapted spe
i�
ally for their nature.A very
omplex obje
t may get away with a simpler shading method andthereby not de
rease the frame rate. An important aspe
t of multi-agentsystems for dynami
 environments are anytime algorithms, meaning thatthe obje
t must always have the best answer available at any time. In thisway the rendering
an be made more robust. A single obje
t may take along time to render but this will not stop the entire rendering pro
ess, thatparti
ular obje
t will just update its shading a little too late (maybe every�fth frame).From our point of view the idea is indeed interesting, it seems to bringup many possibilities that have otherwise been unthought of. The problemis whether there is an overhead in the administration of a pseudo parallelthread for ea
h obje
t and the handling of the messages send between theagents. The idea of individually
ontrolled obje
ts is, however, appealingto us. The next se
tion presents a simple idea whi
h
ould be useful, forexample in the
ontext of a multi-agent system.

11.5 Obje
t Atmosphere 225

Object A

Bounding
sphere

Atmosphere

Influencing object B

Not influencing object C

Figure 11.6: Obje
t A is in�uen
ed by light re�e
ted from obje
t B, sin
e this obje
tinterferes with its atmosphere. Light from obje
t C has no in�uen
e, sin
e this is outsidethe atmosphere of obje
t A.11.5 Obje
t AtmosphereNormally
hanges in indire
t illumination
aused by other obje
ts be
omesinsigni�
ant if the obje
ts rea
h a
ertain distan
e. A very simple idea, whi
hlimits the amount of work that must be done, is to have a sphere of in�uen
e,or an `atmosphere', around ea
h obje
t in order to limit the in�uential areaof obje
ts in
al
ulations of indire
t illumination, see �gure 11.6. The same
on
ept is known from light sour
es, whi
h often are supplied with a sphereof in�uen
e. An obje
t atmosphere
ould be useful eg. for the multi-agentapproa
h.This idea has not had mu
h in�uen
e on our
urrent implementation.Another idea is to use a line of sight algorithm for ray tra
ing optimization,this is the subje
t of the following se
tion.11.6 Line-of-Sight AlgorithmSuppose your s
ene is divided into a regular grid (often only two-dimensional).Then the purpose of a line-of-sight algorithm is to �nd the exa
t list of grid
ells that a ray following the line of sight will pass through, see �gure 11.7. Ifwe use the line-of-sight algorithm for ray/obje
t interse
tion all empty grid
ells will be thrown away. When a grid is rea
hed
ontaining obje
ts thealgorithm will
he
k (if the algorithm uses a two-dimensional grid) whether

226 Ideas

A B C

Ray

Figure 11.7: The
on
ept of a line-of-sight algorithm (a). This is the top view. The listof grid
ells is marked in gray. The ray has possible interse
tion with both A, B, and Cin this
ase. The algorithm will
onsider one not empty grid
ell at the time.

Ground

A
C

B

Ray

Figure 11.8: The
on
ept of a line-of-sight algorithm (b). When looking
loser at theside view (or at the height interval) the algorithm will �nd that obje
t B is interse
ted bythe ray �rst.the obje
t lies in the
orre
t height interval or not, see �gure 11.8.The idea had its origin in an e�
ient line-of-sight algorithm for 3D land-s
apes des
ribed in [129℄. This paper only des
ribes how to �nd the list ofgrid
ells. After trying out an implementation of a quad tree for regulargrids, we
hose to dis
ard the idea sin
e it was too expensive to alter thegrid on the �y. With a better and more e�
ient implementation of a regulargrid the idea might still be interesting.While the idea des
ribed in this se
tion still try to optimize the raytra
ing pro
edure itself, we shall in the following se
tions try to move raytra
ing
loser to rasterization in di�erent ways. This more
losely follows upon the ideas stated previously in this
hapter.

11.7 First Interse
tion in Hardware 22711.7 First Interse
tion in HardwareThe �rst idea for moving ray tra
ing
loser to rasterization is to do the �rstlevel of ray tra
ing in hardware. The idea is quite obvious be
ause raster-ization
an obtain images similar to ray tra
ed images as long as spe
ularre
ursions are not in
luded. In other words we may as well let the rasterizersolve the part of the rendering equation whi
h simulates dire
t illumination,while ray tra
ing takes
are of spe
ular re
ursions.The most important part of this idea is that we
annot just render thedire
t illumination as usual with the rasterizer. This would give us no im-provements with respe
t to ray tra
ing, sin
e we would still need to startthe ray tra
ing from the eye. What we need is to �nd the �rst interse
tionpoints using the rasterizer. The pro
edure is to make a simple vertex shaderthat s
ales the position of ea
h vertex (in world
oordinates) to the interval[0; 1℄. This
an be a

omplished using an AABB of the s
ene to be rendered.First give all primitive obje
ts a spe
i�

olor id and draw the s
ene (see�gure 11.9a), then draw the position of ea
h fragment using Gouraud shadingand the simple vertex shader mentioned above (see �gure 11.9b). Those twoimages result in the �rst level of ray tra
ing (interse
tion point and id of theinterse
ted triangle). From there on the ray tra
ing
an
arry on as usual.For further optimization the depth bu�er
ould be used to spe
ify the t valueof the interse
tion point for ea
h ray (r = o+ td) that would eliminate thepass to make image b.

Figure 11.9: From left to right: (a) Color ids for ea
h primitive in the s
ene. (b) Positionof �rst interse
tion s
aled to the interval [0; 1℄.Another improvement is that shadow volumes
an repla
e shadow rays.The pro
edure is for ea
h light sour
e to render the shadow volumes to thesten
il bu�er as usual and then use the result to de
ide whether light from aparti
ular light sour
e should
ontribute to the shade of ea
h ray representinga pixel.Using these improvements and the simple angular visibility idea des
ribed

228 Ideasin se
tion 11.1, traditional ray tra
ing is improved as follows: Rendering�gure 11.10b takes 41% of the time we spend for the rendering of �gure11.10a. The slightly more
omplex s
ene of �gure 11.11 takes approximately26% of the referen
e time. The rendering times are given in table 11.1.

Figure 11.10: Renderings of the Cornell box with two spheres. From left to right: (a)Referen
e image using standard (one ray per pixel) ray tra
ing. (b) The same imagerendered where the �rst interse
tion was found in hardware.MethodnS
ene Two spheres Orb on pedestalTraditional ray tra
ing 10.297 s 137.547 sFirst interse
tion in HW 4.218 s 36.125 sTable 11.1: Rendering times for the �rst interse
tion in hardware improvement
omparedto standard ray tra
ing. Rendering was performed on a 1GHz Pentium 3 ma
hine with aGeFor
e4 MX440 SE.As seen in �gure 11.10, the ina

ura
y of the
olor bu�er (8 bits per
olor band) leads to some aliasing artifa
ts
lose to the lines and highlightsof re�e
tions and refra
tions. Using a fragment shader for the position imageor a pbu�er with higher pre
ision may eliminate su
h aliasing artifa
ts.Opportunities for further improvements along the same line of thoughtare, for example, to do the BRDF
al
ulations in a fragment shader, or to�nd the the �rst re�e
tion and refra
tion ve
tors for the re
ursion to leveltwo in hardware using a simple vertex shader. We did not spend time forthese minor improvements sin
e we hoped to �nd a more general approa
h,whi
h would be able to run in real-time.All the ideas des
ribed in this se
tion are useful for the �rst level ofray tra
ing only. This means that highly spe
ular s
enes will not draw asigni�
ant advantage from the method. The improvement is also relativeto how optimized the ray tra
ing pro
essing is with respe
t to spatial datastru
tures. A truly optimized ray tra
er would bene�t less from doing the�rst step in hardware. Even if the improvements are not signi�
ant the idea

11.8 Single Pixel Images 229

Figure 11.11: Rendering of the Cornell box with orb. A slightly more
omplex s
ene.Ambient light is in
luded in this render, otherwise the pedestal under the orb wouldbe entirely bla
k (traditional ray tra
ing does not a

ount for di�usely re�e
ted indire
tillumination).of a �rst step of ray tra
ing fast enough for real-time is interesting and it willbe shown in
hapter 12 how this
an be exploited. Before the idea of dire
tradian
e mapping, our plan was to see if we
ould do the entire ray tra
ingpro
ess using rasterization methods. Our brief approa
h towards this end isdes
ribed in the next se
tion.11.8 Single Pixel ImagesAn experiment we did was to tra
e the rays after the �rst level by movementof the
amera and rendering of a size 1�1 image for ea
h ray. The bottlene
kis, of
ourse, that ea
h ray must travel all the way down the graphi
s pipeline,whi
h takes approximately half a millise
ond on a GeFor
e4 MX440 SE witha simple s
ene su
h as a Cornell box. This is hardly more e�
ient thana highly optimized spatial data stru
ture, but on the other hand no datastru
ture need re
onstru
tion when obje
ts start moving dynami
ally.

230 IdeasThe idea would move the entire pro
ess of ray tra
ing to the GPU. How-ever, it is not very elegant. In fa
t it utilizes the hardware in a
ruel manner,sin
e the entire s
ene must be
lipped for ea
h ray that we want to tra
e.If this approa
h was to be a su

ess, the GPUs would have to start empha-sizing on an ability to render a large amount low resolution images ratherthan an ability to pro
ess an in
reasing amount of fragments (high imageresolutions) and an in
reasing amount of verti
es (more triangles). Resultsfor single image pixels are not signi�
antly better on a GeFor
e 5950 and formore
omplex s
enes the render time for ea
h single pixel image in
reasessigni�
antly. This indi
ates that GPUs not likely will improve performan
efor many low resolution images. We therefore qui
kly realized that the ideahad little future.Many ideas have been mentioned in this
hapter. Some more
ompre-hensive than others. All of them originated in the movement from realisti
image synthesis towards real-time rendering. None of them
ame
lose toreal-time performan
e, at least none of those we had time to implement. Inthe following
hapter we will in parti
ular draw on the ideas of networking(se
. 11.2) and �rst interse
tion in hardware (se
. 11.7) when we start witha real-time renderer and move towards global illumination.

Chapter 12Dire
t Radian
e Mapping

Assess the advantages in taking advi
e, then stru
ture your for
esa

ordingly, to supplement extraordinary ta
ti
s. For
es are to bestru
tured strategi
ally, based on what is advantageous.Sun Tzu (�500 BC.): The Art of War

232 Dire
t Radian
e MappingAfter a presentation of several ideas whi
h were either half pursued or halfdis
arded, we will present the method that we
hose to work with in parti
-ular during the last part of our proje
t. We have
hosen to
all the methodDire
t Radian
e Mapping (DRM) and to our knowledge no-one else havetried it out before. Therefore we regard DRM to be an important part ofour proje
t.Re
all the expansions of the rasterization approa
h des
ribed in
hap-ter 6. As shown in that
hapter one of the most signi�
ant visual e�e
ts,whi
h is present in global illumination, but di�
ult to model in real-time, islight re�e
ted di�usely more than on
e. Dire
t radian
e mapping is anothermethod for simulating multiple di�use re�e
tions. Common for most meth-ods trying to solve this problem is that some limitations are in�i
ted on thes
ene dynami
s. The general idea in our approa
h is to apply as few limi-tations to the s
ene dynami
s as possible, and then always solve the simple
ase before taking the next step towards full indire
t illumination. This willespe
ially be apparent in se
tion 12.2.In se
tion 12.1 we outline the basi
 ideas and sour
es of inspiration behinddire
t radian
e mapping. Next, in se
tion 12.2, the method is des
ribed froma more pra
ti
al point of view and the progress of the method to its
urrentstate is dis
ussed. Abilities and limitations of dire
t radian
e mapping willbe dis
ussed in se
tion 12.3. In the �nal se
tion of this
hapter we will
ompare dire
t radian
e mapping to the
ompeting methods des
ribed in
hapter 6.12.1 The Con
eptIn this se
tion we will
on
entrate on the
on
eptual idea of dire
t radi-an
e mapping (DRM). What we des
ribe here is an abstra
t formulationwhi
h shows the origin of DRM and its relation to the ideas mentioned inthe previous
hapter. Our implementation does not ne
essarily follow thisabstra
t formulation, the next se
tion will fo
us on the resulting method forimplementation.The basi
 idea is to take a pi
ture of the s
ene from the point of view ofthe light sour
e (as done in shadow mapping proposed by Lan
e Williamsin [139℄), let this pi
ture represent dire
t illumination, then take a pi
tureof the s
ene from the eye point, representing visible points in the s
ene. Bygoing through ea
h point visible in the eye point pi
ture and
al
ulating thelight
ontribution from ea
h point in the dire
t illumination pi
ture we getthe �rst boun
e of indire
t light. Figure 12.1 seeks to illustrate the pro
ess.A more elaborate version of the
on
ept, whi
h tells more about where it
ame from and how it
an open up further possibilities than a single boun
eof indire
t illumination, is explained in the following.Considering the rendering equation as a problem of wave propagation

12.1 The Con
ept 233

Eye point Light source

Scene

Current point of
interest

Figure 12.1: The basi
 idea of dire
t radian
e mapping. For ea
h point of interest wemust
al
ulate the light
ontribution from ea
h dire
tly illuminated point in the s
ene.(in a similar way as propagation in the topologi
al network was des
ribedin se
tion 11.2) we
an split it into propagation of radian
e from the lightsour
es and propagation of importan
e from the eye or the
amera (re
allthe
on
ept of importan
e from se
tion 3.6).The �rst step is then propagation of radian
e from the light sour
es. We
ould denote this as follows: Li = PLe. In
ident radian
e is determinedby the point of interse
tion, the in
ident dire
tion, and the in
ident power.These information and, hen
e, the entire �eld of dire
t in
ident radian
e
an be measured using images from ea
h light sour
e. The �rst point ofinterse
tion
an be found as des
ribed in se
tion 11.7. In
ident dire
tionsfollow from the position of the light sour
e where an image is taken from.The dire
t in
ident power is given by the geometry term (G) between thelight sour
e and the point of in
iden
e (visibility need not be
onsidered,sin
e everything seen from the light sour
e will also be illuminated).The purpose of storing these information representing the in
ident radi-an
e �eld is not to estimate dire
t illumination. Better methods exist forthat. Instead another image is taken this time from the eye point pi
turingthe �rst step of importan
e propagation. As with the radian
e propagationimage the �rst points of interse
tion are also stored for importan
e propaga-tion. The in
ident dire
tions are given by the eye point and the importan
eof the lo
ations seen dire
tly from the eye is always one (see (3.60)).The positions of dire
t in
ident radian
e are now stored in a texture whi
hwe might refer to as a dire
t radian
e map. It is quite similar to a photonmap sin
e ea
h texel
ould be regarded as a photon. On the other hand itdoes not have a tree stru
ture, and nor is it used for radian
e estimates in the

234 Dire
t Radian
e Mappingsame way as a photon map is. The positions of dire
t in
ident importan
eare stored in what we might refer to as a dire
t importan
e map. The texels
ould in this
ase be thought of as importons1. All in all we now have twomaps; one of dire
t radian
e and one of dire
t importan
e.To propagate the light waves further we need only
onsider the lightthat by one way or another propagates to points of importan
e. One wayto propagate waves is by means of random signals in a
onne
ted digraph(dire
ted graph). If we let the edges of a graph,
onne
ting `importons' of thedire
t importan
e map with `photons' of the dire
t radian
e map, be given byan outer produ
t, the result is a dire
ted graph where ea
h importon node isfully
onne
ted to all photon nodes (and oppositely ea
h photon node will befully
onne
ted to all importon nodes). Random signals in su
h a
onne
teddigraph would simulate the propagation of light if all importon nodes werefully visible to all photon nodes.To start out with the simple
ase, we assume that all surfa
e materialsare Lambertian. In that
ase propagation of the signals
an be performed
ompletely at random, and we need merely gather radian
e propagated fromrandom photon nodes towards random importon nodes and weigh the signalsby the normals. We even do not need to take the in
ident dire
tion into
onsideration when signals are propagated in the network.The simple
ase is too redu
tive with respe
t to photorealisti
 images.As always expansions
ome at large expenses. First we ought to introdu
e aBRDF at ea
h photon node either sending signals towards
ertain dire
tionsor weighing signals a

ording to in
ident dire
tion and material properties.This is a feasible task whi
h enables the possibility of materials that are notperfe
tly di�use (Lambertian).To model the indire
t illumination properly, we should take the geometryin-between two nodes into a

ount. This expansion from the simple
aseis the most expensive and di�
ult part of the global illumination problem.Visibility between two points
ould be
he
ked in order to a

ount for indire
tshadows.Spe
ular re�e
tion and refra
tion are also a part of the indire
t illumina-tion, but te
hniques su
h as environment mapping
an deal with these
asesreasonably well, see se
tion 6.3.The light propagation network is
onstru
ted in order to
ompute theindire
t illumination re�e
ted di�usely between surfa
es. To summarize onthe expansions; a BRDF and storage of extra material properties in the dire
tradian
e map is ne
essary to model non-Lambertian surfa
es, visibility
he
kfor ea
h edge is ne
essary to in
lude indire
t shadows.The pro
ess of light propagation
an
ontinue over several frames, whi
hmeans that the longer a s
ene keeps stati
 the better the indire
t illumination1The term �importon� was
oined by Peter and Pietrik in [103℄ to denote photonsemitted from the observer.

12.1 The Con
ept 235will be
ome.To simulate subsurfa
e s
attering ea
h importon node in the dire
t im-portan
e map
an be
opied, jittered (at random in a dire
tion pointing intothe translu
ent material) and stored beneath the surfa
e as another layer.The more translu
ent the material the more layers we need. The subsurfa
elayer is
onne
ted to the dire
t importan
e map as the dire
t importan
e mapis
onne
ted to the dire
t radian
e map, in that way we need only propa-gate the radian
e into the next layer (a

ording to a BSSRDF) in order tosimulate subsurfa
e s
attering.A problemati
 theme in the method presented is the la
k of light re�e
teddi�usely more than twi
e, but we must keep in mind that ea
h di�use re�e
-tion will weaken the
ontribution of the signal
onsiderably. Using environ-ment mapping for re�e
tion and refra
tion we
an only a

ount (under thesimplifying assumptions of environment mapping) for the light paths given,in light transport notation, as LS*DDS*E. Cal
ulations of dire
t illuminationand spe
ular re�e
tions a

ount for the paths LD?S*E. The sum of these pathsex
lude visual e�e
ts su
h as
austi
s resulting from the paths LS+DE. Somedi�erent methods introdu
ed in
hapter 6 propose ways to render
austi
s inreal-time, and sin
e none of the light paths for
austi
s are in
luded in ourmethod, su
h methods
ould be adopted for
austi
s and
ombined with themethod we present to expand the subset of indire
t illumination that we
ansimulate.If additional indire
t illumination is ne
essary, one approa
h is to dis-tribute some regularly spa
ed points to di�erent surfa
es throughout thes
ene, these points should be relatively few so that they
an be intermedi-ary nodes fully
onne
ted to both the photon nodes and importon nodes.When light is propagated from the photon map it may rea
h the intermedi-ary nodes and boun
e around before it rea
hes the importon nodes. Su
h anetwork would
apture additional indire
t illumination, but surely at largeexpenses. An alternative to inter
onne
tion between the two maps and theintermediary nodes is to take a low resolution pi
ture at ea
h intermediarypoint and to
onne
t the nodes only to the importon nodes. The signal topropagate from the intermediary nodes is then a mean of the illuminationmeasured at the point through the pi
ture taken.Another approa
h to multiple boun
es is to extend the idea of environ-ment maps to in
lude di�use surfa
es. This idea is more easily explainedwhen the a
tual implementation of dire
t radian
e mapping has been dis-
ussed.Con
lusively we may note that the method presented does not fully solvethe global illumination problem, rather it solves a subset of the problem. Themethod
an be
ombined with many existing methods for real-time renderingthat do not simulate indire
t illumination in order to a
hieve additionalvisual e�e
ts. The method
an in an e�
ien
y/
orre
tness trade o� a
hievee�e
ts su
h as subsurfa
e s
attering and an (almost) arbitrary subset of

236 Dire
t Radian
e Mappingindire
t illumination in a physi
ally plausible way.In the following se
tion we will des
ribe how the dire
t radian
e mappingmethod is founded in the theory des
ribed in part I and moved towards areal-time simulation of global illumination step by step.12.2 The Resulting MethodThe abstra
t formulation of dire
t radian
e mapping, or the
on
eptual idea,was given in the previous se
tion. The idea of a network between dire
tphotons and dire
t importons is, we think, good for development of theidea. From a pra
ti
al point of view the abstra
t thoughts will have to takea di�erent form. This se
tion will des
ribe the method on a form that ispra
ti
al for implementation.Lo
al Illumination from an Isotropi
 Point Light Sour
eThe general proposal in this method is to solve the simple
ase �rst and thenin
rease
omplexity gradually. Therefore we �rst des
ribe dire
t illumina-tion before moving on to the dire
t radian
e mapping idea. The simplest
ase assumes perfe
tly di�use (or Lambertian) surfa
es and only dire
t lo
alillumination from an isotropi
 (see de�nition 6) point light sour
e. Meaningthat we partly solve the �rst pie
e of the rendering equation:Lo;0 = Le;0 + Lr;0 (12.1)where Le;0 is radian
e emitted uniformly in all dire
tions and Lr;0 is radi-an
e re�e
ted o� perfe
tly di�use surfa
es. Hen
e, the equation �nds a verysimpli�ed version of the outgoing radian
e.We
an even
al
ulate Lr;0 analyti
ally. As derived in se
tion 3.2, the ra-dian
e in
ident at a point x from a light sour
e of area A uniformly emittingthe power �s, is: Li;1 = Le;1 = �s�A (12.2)where the subs
ript 1 indi
ates an area light sour
e. If we assume a pointlight sour
e, we
an not use the same formula. Rather we should
onsider theemitted light intensity at the point light sour
e, sin
e light intensity dependssolely on the di�erential solid angle d! des
ribing a dire
tional volume (see(3.11)): I = d�d!An isotropi
 light sour
e emits a
onstant light intensity, Ie;0, in all dire
-tions whi
h gives us the following result by integration over the entire unitsphere around the point light:

12.2 The Resulting Method 237
�s = Z
4� Ie;0 d! = Ie;0 Z 2�0 Z �0 sin � d� d� = Ie;0 4�) Ie;0 = �s4� (12.3)Re
all the relation between a di�erential surfa
e area dA and the di�er-ential solid angle d! subtended by dA (see (3.49)):d! =
os �dAr2where � is the angle between the normal n at dA and the dire
tion towardsthe in
ident light, and r is the distan
e between the point at whi
h d!is formed and the
enter of dA. The irradian
e at a di�erential surfa
earea dA
entered around a surfa
e lo
ation x
aused by the �ux through adi�erential solid angle d! formed at the point y
an then be
al
ulated usingthe intensity emitted at y:Ei = d�dA = d�dA d!d! = I d!dA = I
os �dAr2dA = I
os �r2whi
h under the assumption of lo
al illumination, meaning that we do not
onsider o

luding obje
ts, and an isotropi
 point light sour
e results in thefollowing: Ei;0 = Ie;0
os �r2 = �s4�
os �r2Again re
alling the theory of pre
eding
hapters (see (3.24)), the radian
ere�e
ted at a point is proportional to the irradian
e in
ident at the very samepoint: fr = dLrdEiwhi
h means that we, under the assumption of Lambertian surfa
es, get thefollowing result by integration over the in
ident irradian
e:Lr;0 = Z fr dEi = �d� Ei;0 = �d�s
os �(2�r)2 (12.4)Like a bla
kbody, a point light sour
e has no true physi
al existen
e,but is merely a hypotheti
al obje
t. Therefore a visual representation of thelight sour
e itself is senseless. This means that we
an not, and should not,
al
ulate the radian
e emitted dire
tly from a di�erential surfa
e area on thelight sour
e Le;0, sin
e a point has no area. In other words:Lo;0 = Lr;0

238 Dire
t Radian
e Mappingwhi
h means that we have an analyti
al solution of the simplest
ase. Thissolution
an be typed into a fragment program giving us a renderer that
aneasily run in real-time, though it
an only render perfe
tly di�use materialslit by isotropi
 point light sour
es.If we want to draw area light sour
es and still use this simple model,we
an approximate the light sour
es by a point light sour
e at their
enterand draw their area using Lo;1 � Le;1 + Lr;0. However, if we let a pointlight sour
e approximate a square area light sour
e, we should integrate overone hemisphere only, whi
h results in the following radian
e re�e
ted fromsurfa
es beneath the light sour
e:Lr;0 = �d�s
os �2(�r)2 = �d�s(n � !0)2(�r)2 (12.5)Though it is a
oarse approximation, the square light sour
e is drawnusing some
onstant value for emitted radian
e while the a
tual light emission
omes from a point light sour
e at the
enter of the fake square light sour
e.Dire
t illumination from an Isotropi
 Area Light Sour
eExpanding the simplest approa
h a little, we
an �nd the dire
t illuminationresulting from isotropi
 area light sour
es, if we assume that it is very distantfrom the s
ene: Lo;1 = Le;1 + Lr;1The re�e
ted radian
e Lr;1
an be found using the area formulation ofthe rendering equation (see (3.54)):Lr;1 = ZS fr Li;1GV dAwhere the arguments have been left out for simpli
ity. S denotes the unionof all the area light sour
es, fr is the BRDF, Li;1 is the radian
e in
identfrom isotropi
 area light sour
es, G is the geometry term, V is the visibilityterm, and dA is a di�erential area on the isotropi
 area light sour
e. Sin
ewe assume isotropi
 light sour
es and that the they are lo
ated far away fromthe s
ene geometry, the integral
an be simpli�ed as follows:Lr;1 = fr Li;1GV AInserting the result given in (12.2), the geometry term, and the BRDFfor Lambertian surfa
es, we have:Lr;1 = fr�s� GV = �d�s
os �
os �0(�r)2 V (12.6)

12.2 The Resulting Method 239whi
h is not very far from the point light sour
e approximation in (12.4).The visibility term is still in
luded. An assumption of lo
al illuminationwould eliminate it by setting it to one. The
orre
t value of it would beV = Avisible=A, where Avisible is the visible light sour
e area as seen from thelo
ation where the radian
e is re�e
ted. The most
ommon approximation toV is, however, a hard shadow method su
h as shadow volumes (see se
. 6.1),whi
h approximates the light sour
es by point lights and thereby render theobje
ts as fully in shadow or fully o

luded with respe
t to ea
h light sour
e.Figure 12.2a shows the result of Lo;1 � Le;1 + Lr;0, that is, lo
al illu-mination using a point light approximation of the area light sour
e in theCornell box. Figure 12.2b shows Lo;1 = Le;1 + Lr;1 under the assumption oflo
al illumination for
omparison, and �gure 12.2
 shows the same in
ludinga shadow volume algorithm. The renderer uses a fragment shader.

Figure 12.2: The Cornell box rendered using analyti
al lo
al illumination solutionsimplemented in a fragment shader. From top left to bottom: (a) The square light isapproximated by a point light at the
enter of the square. No visibility, only lo
al illumi-nation. (b) Area light sour
e
al
ulation, but still only lo
al illumination. (
) Visibilityterm approximated by a point light at the
enter of the square.

240 Dire
t Radian
e MappingHaving a de
ent approximation of the dire
t illumination, it is time toexpand our model a little. Thinking about radiosity we know that multipledi�use re�e
tions result in a soft lighting of the Cornell box and that weshould be able to dis
over the visual phenomenon known as
olor bleeding.In light transport notation radiosity models the light paths LD*E. The dire
tillumination model merely
al
ulates the
ontribution from the light pathsLDE, even with a
rude approximation of the visibility term only. Instead ofsolving the expensive radiosity equation in order to �nd all
ontributions ofdi�usely re�e
ted light, we start out modestly and look at the
ontributionfrom the light paths LDDE. In the following we des
ribe a version of the ideapresented in se
tion 12.1, whi
h is pra
ti
al for implementation.Light Re�e
ted Di�usely Twi
eAssuming that all surfa
es are perfe
tly di�use they re�e
t the same amountof radian
e in all dire
tions. Therefore the radian
e that we
an pi
turefrom the light sour
e, using a lo
al illumination model, is also the light thatis re�e
ted in all other dire
tions over the hemisphere at ea
h surfa
e lo
ationseen from the light sour
e. In other words the dire
t radian
e re�e
ted o�the surfa
e lo
ations seen from the light sour
e gives us means by whi
h we
an
al
ulate the
ontribution of the light re�e
ted di�usely twi
e.Suppose we take a pi
ture from the light sour
e
apturing the dire
tradian
e. Then we
an let ea
h fragment of the image represent the radi-an
e re�e
ted at a spe
i�
 surfa
e lo
ation. The
ontribution of all thesefragments to another surfa
e lo
ation is given as:Lr(x;!) = Z
 fr(x;!;!0)Li(x;!0)
os � d!0where Li(x;!0) = Lr;0 if we do not take visibility between surfa
e lo
ationsinto a

ount, or Li(x;!0) = Lr;1. Knowing approximate values of Lr;0 or Lr;1at ea
h fragment of the image seen from the light sour
e, we
an approximatethe integral by a

umulation of the
ontribution from ea
h fragment:Lr(x;!) �XM �d� Lr;0(n � !0)�!0where M denotes the set of all fragments in the pi
ture taken from the lightsour
e, and �!0 is the spheri
al-surfa
e area, on the unit sphere
enteredat x, whi
h is inter
epted by the solid angle subtended by the surfa
e areapi
tured in a single fragment.In pra
ti
e we store the image in a texture representing dire
t radian
e asseen from the light sour
e, hen
e the name of the method: Dire
t radian
emapping. A texture simply storing dire
t radian
e as seen from the lightsour
e does, however, not store su�
ient information. We need to
al
ulatethe dire
tion towards the in
ident light !0 for ea
h fragment. The solution is

12.2 The Resulting Method 241to store another texture
ontaining the
orresponding interse
tion point forea
h fragment (exa
tly as done in se
. 11.7). We regard both these texturesto be a part of the dire
t radian
e map.Though the images taken from the light sour
es need not be in very highresolution, it is still too expensive to
al
ulate a summation over all texelsfor ea
h fragment in the �nal pi
ture from the eye point, and �!0 is notfound easily either. One possible solution is to sample the texture in orderto keep up a reasonable frame rate.Monte Carlo integration (see se
tions 3.8 and 4.3) is a possibility in orderto solve the integral by sampling. Using the probability density fun
tion(PDF) p(!0) = 1=As, where As = 2� is the area of the unit hemisphere,gives the following integral estimator:hLr(x;!)i = 1N NXi=0 �r;i� Lr;0;i(n � !0i)p(!0) = 2N NXi=0 �r;iLr;0;i(n � !0i) (12.7)where N is the number of samples. The sampling is unfortunately notstraightforward, sin
e no build-in random fun
tions exist on the graphi
s
ard, meaning that we
an not easily pi
k new samples from one fragment toanother. Moreover the samples will have to be few, sin
e
on
urrent fragmentprograms are quite sus
eptible to looping; all loops will be unrolled resultingin a slow fragment program (sin
e long fragment programs are slow). Thesimple solution is to
hoose the same regularly spa
ed samples for all frag-ments, whi
h results in a relatively good approximation in some points anda bad approximation in others. The almost una

eptable approximation inthis approa
h is that we
annot know whether the sampling is done a

ord-ing to the PDF, whi
h assumes a uniform sampling a
ross the hemisphereover the fragment.If, for example, an obje
t is lo
ated
lose to the light sour
e �lling outthe entire dire
t radian
e map, then almost for sure the samples will notbe spa
ed uniformly over the hemisphere. Rather the solid angle whi
h thesample points subtend on the hemisphere will be very small. One unwantede�e
t resulting from this is that the indire
t light will be heavily overexposedwhen an obje
t
omes
lose to the light sour
e unless we �nd a PDF that
an
ountera
t against this problem.Despite the problems, we
onstru
ted a fragment program using the samesamples for ea
h fragment. For the sake of simpli
ity we
hose nine samplepoints spa
ed regularly throughout the dire
t radian
e map. The result isshown in �gure 12.3.Instead of p(!0) = 1=2� we
ould use a PDF denoting uniform samplingin the solid angle !V;i formed at the position of fragment i and subtendedby the
ontour edge of a bounding volume V
ontaining the nine regularlyspa
ed sample points, see �gure 12.4. At the appli
ation stage of the pipeline

242 Dire
t Radian
e Mapping

Figure 12.3: The Cornell box in
luding a nine points sampling of a dire
t radian
e mapfor indire
t illumination re�e
ted di�usely exa
tly twi
e. For this image the hemispheri
alformulation of the rendering equation was used with the approximative regular sampling.

ωV,i

V

Figure 12.4: The solid angle !V;i formed at the position of fragment i and subtendedby the
ontour edge of a bounding sphere V
ontaining the nine regularly spa
ed samplepoints. The �gure sket
hes the situation in �gure 12.12, where
olor bleeding is overex-posed. .

12.2 The Resulting Method 243

V

ωV,i

rV �
cV − pi

�

α

pi

cV

Figure 12.5: If the bounding volume V is a bounding sphere, the solid angle !V;isubtended by the sphere
an be found using spheri
al
oordinates.(see se
. 5.1) we
ould �nd this bounding volume V and either approximatethe solid angle (whi
h may be di�erent for ea
h fragment) by the solid angle!V;
 formed at the
enter of the s
ene
 and subtended by V, or we
ould sendthe bounding volume down the pipeline and
ompute !V;i for ea
h fragment.In any
ase a better PDF for (12.7) is given as:pi(!0) = 1!V;i � 1!V;
Suppose we let V be a bounding sphere given by a
enter
V and aradius rV . Then the solid angle formed at the position pi of fragment i andsubtended by V
ould be found in spheri
al
oordinates as shown in �gure12.5. Re
alling (3.10) from the des
ription of solid angles in se
tion 3.2, we
an �nd the solid angle as follows:! = Z 2�0 Z �0 sin � d� d� = 2�(1�
os�)where � is the angle shown in �gure 12.5, whi
h means that:!V;i = 2�(1 � qk
V � pik2 � r2Vk
V � pik)If we let V be an AABB, we
ould approximate
os� by the angularvisibility between the point pi and V (angular visibility was des
ribed inse
tion 11.1).

244 Dire
t Radian
e MappingAnother way to get an integral estimator of the re�e
ted radian
e isto use the area formulation of the rendering equation. If we let the PDFdenote uniform sampling a
ross the surfa
es in the dire
t radian
e map,p(x) = 1=AM , where AM is the area of the surfa
es in the map, the resultingestimator will be:hLr(x;!)i = 1N NXi=0 �r;i� Lr;0;i(nx � !0i)(ny � �!0i)r2xyp(x)= AMN NXi=0 �r;i� Lr;0;i(nx � !0i)(ny � �!0i)r2xy (12.8)It should be noti
ed that the normal is now needed in the dire
t radian
emap as well as it is in ea
h fragment that we render. This means thatthe map must
ontain a third texture holding the normal asso
iated withthe interse
ted surfa
e lo
ation. Also re
all from se
tion 5.1 that a polygon
lose to the
amera may �ll out the entire image and a polygon very far awaymay �ll out a single pixel only. This indi
ates that
al
ulation of the areaof the surfa
es seen in the dire
t radian
e map AM not ne
essarily is doneeasily.If we approximate AM by a
onstant and pla
e an obje
t
lose to the lightsour
e, the indire
t light will again be heavily overexposed, sin
e the a
tualarea seen from the light sour
e is not very large. Besides this problem (12.8)also results in a more expensive fragment program than the one needed toevaluate (12.7). In any
ase �gure 12.6 shows an image found using (12.8)and a
onstant approximation of AM for
omparison with �gure 12.3.An idea for a rough approximation of AM is to take the value v0 of thetexel at position (0; 0) and the value v1 of the texel at position (1; 1) (the�rst and last) in the texture holding �rst interse
tion points, and �nd thesquared distan
e between the two points that they return:AM � (v1 � v0) � (v1 � v0)This
ould be done at the appli
ation stage (see se
. 5.1) and supplied to thefragment program as a uniform parameter ea
h frame.In both
ases, the low number of samples makes the estimate quite frag-ile. The few sampling points
learly show themselves when we use the areaformulation as seen in �gure 12.6. The remaining indire
t illumination is,however, more
orre
t than in �gure 12.3. When using the hemispheri-
al formulation of the rendering equation, the sampling problems will showthemselves in the overall indire
t illumination (instead of at spe
i�
 points).Putting an obje
t exa
tly where a sample is taken will result in a signi�
ant
hange in the indire
t illumination. This
an
ause �i
kering while obje
tsare moving.

12.2 The Resulting Method 245

Figure 12.6: The Cornell box in
luding a nine points sampling of a dire
t radian
e mapfor indire
t illumination re�e
ted di�usely exa
tly twi
e. Here the area formulation of therendering equation was used with the sampling.The sampling is root to many problems, therefore we have thought ofmany ways to work around it. One idea was to use mipmapping (see se
. 5.3).Unfortunately we
annot use mipmapping in the same way as it is exploitedin the method des
ribed in se
tion 6.7. The reason is that the real-timephoton mapping method has many small textures that
an be mipmappedin a standard, hardware optimized mipmapping pro
edure, we have a fewtextures whi
h we want to mipmap di�erently for ea
h fragment. This is notimmediately possible, and probably will not be unless mipmapping be
omesa build in fun
tion available in a fragment program. Di�erent possibilitiesof improvement will be dis
ussed in
hapter 16.If we
an not �nd a way to avoid sampling, we
an at least have
on�den
ethat future fragment programs will be able to render more samples ea
hframe. This will improve the method gradually as the graphi
s hardwareimproves.Even when the graphi
s hardware has improved to enable more samples,or summation over the entire map, the
al
ulation of either �!0, AM , or!V must be done adequately. Unfortunately we have not had the time toexplore the ideas for
al
ulation of AM and !V whi
h we proposed above.So far we will, therefore, settle for the sample images in �gures 12.3 and 12.6with respe
t to indire
t illumination re�e
ted twi
e, and move on to furtherexpansions of the
on
ept.

246 Dire
t Radian
e Mapping

Figure 12.7: The Cornell box rendered using dire
t radian
e mapping
ombined withre
ursive environment mapping. The two boxes have been repla
ed by spheres having thefollowing materials. From left to right: (a) Two
hrome (or mirror) spheres. (b) A
hromeand a glass sphere.Arbitrary BRDFsSuppose we let the normals asso
iated with the interse
tion points be a partof the dire
t radian
e map, as is the
ase if we use the area formulation ofthe rendering equation for sampling as des
ribed above. Then storing thepure material
olor instead of the re�e
ted radian
e in our dire
t radian
etexture, would make it possible (if enough pro
essing power is available forea
h sample in ea
h fragment) to model an arbitrary BRDF. Even moretextures might be needed for the dire
t radian
e map, su
h as one holdingthe dire
tion of in
iden
e if more than one light sour
e exist, and one holdingthree material parameters for BRDF
al
ulation at the �rst interse
tion pointfrom the light sour
e. This expansion is very expensive, at
urrent hardwareit qui
kly results in fragment programs ex
eeding the allowed number ofinstru
tions, nevertheless, it indi
ates that arbitrary BRDFs
an be modeledusing dire
t radian
e mapping.Perfe
tly Spe
ular Re�e
tionsAs des
ribed in se
tion 6.3 spe
ular re
ursions
an be handled in real-timeusing environment mapping. Combining this approa
h with the dire
t illu-mination, and the di�use illumination re�e
ted twi
e, we do, as previouslymentioned, end up with a method able to model the light paths: LS*DDS*Eand LD?S*E. Some results are shown in �gure 12.7, where the boxes arerepla
ed by two spheres.

12.2 The Resulting Method 247

Figure 12.8: A glossy e�e
t is obtained by adding indire
t illumination to otherwiseperfe
tly spe
ular obje
ts. From left to right: (a) The planar mirror in the
ave s
eneex
luding the glossy e�e
t. (b) The planar mirror in the
ave s
ene in
luding the glossye�e
t.An Inexpensive Glossy E�e
tAn inexpensive way to make perfe
tly spe
ular surfa
es (su
h as the spheresin �gure 12.7) look glossy, is to simulate that the obje
t is di�use withrespe
t to indire
t illumination. The dire
t illumination is repla
ed by the
olor found in the re�e
ted dire
tion, but the di�usely re�e
ted indire
tillumination is added to the obje
t. Sin
e no perfe
tly spe
ular obje
ts existin real life, this method gives mirrors a natural feeling, see �gure 12.8.Multiple Boun
esAn expansion of the method following the multi-agent line of thought (seese
. 11.4) would, as mentioned in se
tion 12.1, be to let ea
h obje
t havean environment map of the radian
e in its surroundings. The idea is thento add a few samples of indire
t illumination from the environment map(sampled a

ording to the BRDF) to the �nal shade of ea
h fragment thatwe render. In
luding fragments rendered when the environment maps areupdated. In this way the indire
t illumination will in
lude more boun
esfor ea
h frame rendered, in a way analogous to the re
ursive environmentmapping for perfe
tly spe
ular surfa
es. Unfortunately we had this ideatoo late to have time for an implementation. The method seems appealingex
ept for the fa
t that the frame rate will de
rease as the number of obje
tsin the s
ene in
reases, be
ause ea
h new obje
t will need another six imagesfor update of an environment map ea
h frame.Another idea is to sample in the previous image taken from the eye pointwhen drawing the texture of radian
e from the light sour
e, There are several

248 Dire
t Radian
e Mapping

Original
objects

Center

Subsurface
scaling

Center
Problem

Object A Object B Figure 12.9: The s
aling for real-time subsurfa
e s
attering. Sin
e s
aling is around the
enter problems
an easily o

ur as illustrated through obje
t B.limitations to this approa
h though. First, only obje
ts seen from the eyepoint or from a light sour
e
an have an in�uen
e on the illumination in as
ene. Se
ond, only re�e
tions o� perfe
tly di�use surfa
es would be possible.The reason is that if we use an arbitrary BRDF as des
ribed above we needa texture with pure material
olor instead of radian
e, whi
h is in
ompatiblewith the
on
ept.Subsurfa
e S
atteringThe original idea for an expansion of DRM to in
lude subsurfa
e s
attering(see se
tion 12.1) was to expand the network by randomly jittered nodesstored inside a translu
ent obje
t. Sin
e the network has no a
tual existen
e(only an abstra
t existen
e) in our implementation of the method we had toalter the
on
ept a bit.A

ording to [60℄ the re
ipro
al of the extin
tion
oe�
ient (des
ribedin se
tion 3.4)
orresponds to the average distan
e that a photon will movethrough a medium before intera
tion:d = 1�tUsing this average distan
e it is our idea to s
ale a translu
ent obje
tuniformly around its
enter to the size 1� d and draw it inside the originalobje
t, see �gure 12.9. Unfortunately there is a problem in this simples
aling, sin
e the s
aled obje
t may end up outside the original obje
t asseen in the �gure. To solve this approximately, the sten
il bu�er is used tomark the original obje
t and only the part of the s
aled obje
t whi
h endsup inside the original obje
t will be stored.To
ontinue the
on
ept of dire
t radian
e mapping, the radian
e in
identon the diminished version of the original obje
t, whi
h represents subsurfa
es
attered light, is also found as an image from the light sour
e and stored asa texture in the dire
t radian
e map.

12.2 The Resulting Method 249For simpli
ity we only model the �rst interse
tion below the surfa
e ofthe obje
t and we assume that this interse
tion takes pla
e at the averagedistan
e. These approximations result in an opti
al depth whi
h equalsunity: �(s; s0) = Z ss0 �t(t)dt � �t�s � �td = 1If we do not take in-s
attered light into a

ount, but only dire
t radian
esubsurfa
e s
attered on
e, the attenuated radian
e rea
hing the diminishedobje
t will be given as follows:Lsubsurf = (1� Fr)e�1Li;1where Fr denotes the Fresnel re�e
tan
e.The point is, now, that we
an render a subsurfa
e s
attered illuminationterm for all translu
ent obje
ts and add it to the dire
t and indire
t illumi-nation terms found previously. This is done by
onsidering the radian
etransported to the diminished obje
t representing light s
attered beneaththe surfa
e on
e. When looking at the surfa
e of a translu
ent obje
t the in-tegral �nding in-s
attered light at the surfa
e lo
ation
an be approximatedby a sampling of the subsurfa
e s
attered light.The simplest way to �nd a
ontribution from the subsurfa
e s
atteredlight is to use a single sample. We let the
enter of a translu
ent obje
t beproje
ted in the dire
tion towards the light sour
e into a position in the dire
tradian
e map. This position in the dire
t radian
e map will usually alsospe
ify a position in the subsurfa
e s
attered illumination. Letting this singlesample
ompute the
ontribution from the subsurfa
e s
attered illuminationresults in the following: Li = e��t�s �s p(�)Lsubsurfwhere �t is the extin
tion
oe�
ient, �s is the s
attering
oe�
ient, andp(�) = 1=(4�) is the fa
e fun
tion (we have
hosen to work with isotropi
s
attering only). �s is found as the distan
e between the subsurfa
e s
at-tered position and the surfa
e position.This extremely simple version of subsurfa
e s
attering has some reason-able results. Of
ourse the illumination is mostly in
orre
t, but the visual
ue
ertainly exists, see �gure 12.10 for a
omparison between a s
ene wherethe subsurfa
e s
attering is in
luded and a s
ene where it is not.It should be noted that the subsurfa
e s
attering requires two extra tex-tures in the dire
t radian
e map: One for subsurfa
e radian
e and one forsubsurfa
e positions.At the expense of pro
essing time, the sampling
ould be in
reased tohave a better estimate of the subsurfa
e s
attered illumination.

250 Dire
t Radian
e Mapping

Figure 12.10: The Cornell box
ontaining a translu
ent box and a glass sphere. Fromleft to right: (a) S
ene rendered with no subsurfa
e s
attered illumination. (b) S
enerendered in
luding subsurfa
e s
attered illumination.Subsurfa
e s
attering is the �nal expansion of dire
t radian
e mappingthat we have worked with. In the next se
tion we will summarize the di�er-ent abilities of the method and take a
loser look at the limitations of themethod.12.3 Abilities and LimitationsIn the previous se
tion we found an analyti
al solution for the dire
t illumi-nation term resulting from isotropi
 light sour
es. Following this we wantedto �nd the �rst boun
e of indire
t light using a dire
t radian
e map
omposedof pi
tures taken from the light sour
es. To
al
ulate indire
t illuminationwe then needed for ea
h fragment in the resulting image, taken from the eyepoint, to �nd the
ontribution of light from ea
h fragment in the pi
turestaken from the light sour
es. Unfortunately this is beyond the
apabilitiesof
urrent GPUs both with respe
t to limited number of fragment programinstru
tions and with respe
t to real-time frame rates. Therefore we sim-pli�ed the dire
t radian
e map signi�
antly by using low resolution images(
urrently we use 32x32 pixels) for the textures in the dire
t radian
e map.From these
rude textures we are
urrently able to
al
ulate the
ontribu-tion of indire
t light from only nine sample points spa
ed regularly a
rossthe dire
t radian
e map. More samples result in una

eptable (that is, notreal-time) frame rates on a NVIDIA GeFor
e FX 5950 graphi
s
ard.That we use low resolution textures is, in our opinion, not ne
essarily adisadvantage. When the textures are used for simulation of multiple di�usere�e
tions the low resolution may have a smoothing e�e
t whi
h is oftendesirable when simulating di�use re�e
tions. The limited number of samplepoints is a major sour
e of �i
kering and aliasing artifa
ts. In order to

12.3 Abilities and Limitations 251in
rease the number of sample points we
ould distribute the
al
ulationover multiple frames, so that only part of the light was
al
ulated in ea
hframe. This would give a low sampling rate approximation when things movedynami
ally and a
ontinuously improving image while
amera and obje
tsstay stati
. The �i
kering will still be apparent sin
e it is mostly visible whenthings move around dynami
ally.Our limited implementation of the method approximates !V and AM by
onstants. This results in a heavy overexposure of indire
t illumination whenobje
ts move
lose to the light sour
e. We proposed approximate solutionsfor this problem in the previous se
tion, but have not had the time to testthese solutions. Therefore the overexposure will show itself when using thedemonstration appli
ation (see �gure 12.12). We see this not as a limitationto the method, but rather as a te
hni
ality whi
h we
an �nd a solution for.In the following we will �rst list the abilities and afterwards problemsand limitations of dire
t radian
e mapping. Both have been indi
ated in theprevious se
tions, therefore we will only sum them up shortly. The abilitiesare:� Dire
t radian
e mapping is a method for
reating indire
t illuminationin real-time. In real-time we are able to
al
ulate an approximationof the �rst boun
e of di�usely re�e
ted indire
t illumination in ea
hframe. This enables visual e�e
ts su
h as
olor bleeding.� The method is independent of number of verti
es in the s
ene, meaningthat it is bounded by the number of fragments rather than the numberof verti
es when rendering.� Sin
e we re
al
ulate all illumination terms for ea
h frame, obje
ts andlight sour
es
an move about freely in the s
ene.� The method is independent of the geometry in the s
ene, that is, wedo not have to
onsider the shape or
omplexity of an obje
t.� Our method is based on the GPU, meaning that CPU pro
essing poweris left for other purposes and that the method will improve as graphi
s
ards improve.� Many extensions have been proposed giving ri
h opportunity for betterversions of the rendering method.Although the above
apa
ities sound appealing there is also a ba
k side ofthe medal. We will now dis
uss the problems and limitations to our
urrentimplementation method. Along the way we will suggest possible solutionsto the problems or des
ribe what it would take to solve them. The problemsand limitations are:

252 Dire
t Radian
e Mapping� Only �rst boun
e is
al
ulated� We assume that all obje
ts are di�use while
al
ulating the indire
tillumination.� Indire
t light is
al
ulated in a lo
al illumination manner, in otherwords we do not take indire
t shadows into a

ount.� The method is fragment bound.� (The dire
t radian
e map is low resolution.)� Only a low sampling rate is a�ordable in the
al
ulation of indire
tillumination using the dire
t radian
e map. And the same samplepoints are used in all fragments.� !V or AM is approximated by a
onstant.The limitations result in a number of artifa
ts in the s
ene. Some appearalways others are not visible until the s
ene be
omes dynami
. We will nowgo through these one by one and dis
uss them.As long as only the �rst boun
e is
al
ulated some indire
t illuminationwill, of
ourse, be missing. The result is an image, whi
h is a little darkerthan would have been the
ase if we had in
luded multiple light boun
es.Proposals for multiple boun
es were given in the previous se
tion.The assumption that all obje
ts are di�use is not a fundamental ne
essityfor the method. It is merely assumed in the implementation for e�
ien
yreasons. Expansion to arbitrary BRDFs is also des
ribed in the previousse
tion.The fa
t that we do not
onsider visibility in the estimate of the di�uselyre�e
ted illumination term results in a number of artifa
ts. One problemis visualized in �gure 12.11 showing a s
reen shot of the
ave s
ene. Herethe room behind the door is illuminated by indire
t lighting, whi
h is not
orre
t, sin
e the door should keep the room
ompletely o

luded. The erroro

urs be
ause indire
t light is
al
ulated in a lo
al illumination mannerwhere obje
ts blo
king the path of the indire
t illumination are not takeninto
onsideration. To avoid this problem we must take indire
t shadowsinto
onsideration in the
al
ulations. A solution is not straightforward. Theproposal of an environment map for ea
h obje
t, whi
h
an model multiplelight boun
es, will also in
lude indire
t shadows. This approa
h is maybethe best solution.The method does not so mu
h depend on the number of triangles orverti
es in the s
ene, whi
h allow us to
reate
ompli
ated s
enes withoutloosing too mu
h frame rate. In
ontrast the method is bound by the numberof pixels that needs to be rendered, or in other words the method is frag-ment bound. This means that the higher s
reen resolution we use the lower

12.3 Abilities and Limitations 253

Figure 12.11: The
ave s
ene. Noti
e that the
orridor behind the door is illuminatedby indire
t light whi
h is not
orre
t.frame rate we get. It should, however, be noted that GPU developers en-
ourage fragment bound programs sin
e the e�
ien
y of fragment pro
essors
urrently is developing at an in
redible speed.The dire
t radian
e map is low resolution (for example 32x32 or 64x64),meaning that the di�usely re�e
ted indire
t illumination will be less detailedand, hen
e, less
orre
t. On the other hand the sampling rate we
an a�ordis so low that a very detailed texture will result in more problems than itsolves. The few samples mean that smaller obje
ts have a good
han
e ofbeing missed in the indire
tion illumination
al
ulations.The nine regularly spa
ed point samples are too few, the problem
learlyshows in �gure 12.6 in the
ase where we use the area formulation of therendering equation. It is more di�
ult to show the �i
kering that it
auseswhen we use the hemispheri
al formulation. To see this we refer to thedemonstration appli
ation on the atta
hed CD-ROM, see appendix A.A more
orre
t sampling would
hoose di�erent sample points instead ofthe same nine always. This would probably
ause other problems though,sin
e it would be harder to
ontrol the total amount of illumination in thes
ene and as long as we only use nine sample points we
ould risk
onstant�i
ker even when no obje
ts are moving.Figure 12.12 shows the problems resulting from the overexposure of in-dire
t illuminations and in �gure 12.12a the problem of missing indire
tshadows is also apparent. As des
ribed in the previous se
tion, the over-exposure appears when obje
ts are pla
ed
lose to the light sour
e. Theproblem is that we approximate !V and AM as
onstants. Better ways to
al
ulate these were proposed in the previous se
tion, we hope that they will

254 Dire
t Radian
e Mapping

Figure 12.12: The problems resulting from approximation of !V and AM by a
onstant.When obje
ts are pla
ed
lose to the light sour
e, indire
t illumination gets overexposed.From left to right: (a) The green wall of the Cornell box moved
lose to the light sour
e.The indire
t illumination is approximated by the hemispheri
al formulation of the render-ing equation. Here the missing indire
t shadows are also apparent. (b) The same as (a)only using the area formulation of the rendering equation.solve the problem in a reasonable way.As the �nal part of this se
tion we will brie�y dis
uss our simpli�edapproa
h to subsurfa
e s
attering.Using the
on
epts of dire
t radian
e mapping we have
reated a veryminimal simulation of subsurfa
e s
attering. The out
ome of this method isnot quite pre
ise enough for a detailed
omparison with other methods (su
has those des
ribed in se
tion 3.4)
reating subsurfa
e s
attering in real-time(or at intera
tive rates).Very few experiments have been
arried out with the method as we havemainly
on
entrated our e�orts on indire
t illumination. This leaves us withseveral
orre
tions and improvements whi
h
ould be
ontributed to the sub-surfa
e s
attering implementation. A few will brie�y be mentioned in thefollowing while we des
ribe some of the problems and limitations to themethod for subsurfa
e s
attering whi
h we presented in the previous se
tion.First of all we
an only a�ord to use one sample point to
al
ulate thesubsurfa
e s
attering of an obje
t. This is the main reasons why the subsur-fa
e s
attered light often looks somewhat odd. More sample points wouldbe bene�
ial but as it is now they are too expensive with regards to theframe rate, at least if we want to
ombine the subsurfa
e s
attering with theindire
t illumination.Another problem is the simpli�ed way in whi
h we
reate the inner obje
t.Sin
e we s
ale the obje
t towards its
enter we risk that parts of it is
ut awaybe
ause it falls outside of the original obje
t (
f. �g. 12.9). This means thatfrom unfortunate angles the subsurfa
e s
attering e�e
t disappears entirely,if the sample point is set where there is no inner obje
t available. A better

12.4 Comparison 255way to s
ale the obje
t would be to translate ea
h vertex in a negativedire
tion from its normal. In this way the inner obje
t would never
omeoutside the boundaries of the original obje
t (unless it is translated all theway through the obje
t and out through the surfa
e on the opposite side).Sin
e the inner obje
t is an exa
t repli
ate of the original obje
t (onlysmaller) the distan
e to the surfa
e will always be the same. It might give amore realisti
 e�e
t if the distan
e
ould vary a little. An idea for generatinga more s
attered distan
e is to put several s
aled obje
ts inside ea
h otherand then pi
k a random one. In this way we
ould have an arbitrary numberof layers with di�erent distan
es to the surfa
e to pi
k from randomly. To
reate e�e
ts even
loser to the original physi
s we
ould establish boun
esbetween the layers as well. However this would probably be an expensivepro
edure.After a dis
ussion of the most important drawba
ks let us return towhat we have a

omplished. We are able to �nd the �rst boun
e of indire
tlight in an arbitrary s
ene no matter how
omplex the obje
ts are. Thelight is re
al
ulated at a frame rate of 10-30 fps (see the lower left
ornerof the di�erent s
reen shots, or try out the appli
ation). Moreover we haveproposed a simple version of subsurfa
e s
attering, whi
h gives reasonableresults and many options for improvements taking the many simplifyingassumptions into a

ount. The next se
tion will
ompare the method toother implementations that we have
ome a
ross in the literature study ofthis proje
t.12.4 ComparisonDire
t radian
e mapping is mainly a method for real-time simulation of thepart of the rendering equation, whi
h in se
tion 4.4 is des
ribed as the multi-ple di�use re�e
tions term. Other methods are able to do the same; some ofthese are des
ribed in
hapter 6. This se
tion will
ompare dire
t radian
emapping to ea
h of the methods des
ribed in se
tions 6.6, 6.7, 6.8, and 6.9with respe
t to the ability to simulate the multiple di�use re�e
tions term.The methods will be
ompared to dire
t radian
e mapping one by one.Light Maps vs. Dire
t Radian
e MappingThe light map method uses pre-
al
ulated global illumination (most oftenradiosity) to apply indire
t illumination in a s
ene. The illumination is stati
but in di�use environments it provides a good visual e�e
t even if it does not
hange a

ording to the surroundings. The method is used in several newergames; an example is given in [109℄. A basi
 assumption of light maps is that,as long as the light sour
es are stati
 and not parti
ularly remarkable, thefa
t that di�usely re�e
ted indire
t illumination is stati
 is not noti
eable.This is often true in a game s
enario where swift movement is frequently

256 Dire
t Radian
e Mappingrequired and the user's attention is set on opponents. In su
h
ases indire
tlighting
an be treated as an atmosphere in the ba
kground where stati
e�e
ts seem su�
ient.A disadvantage of light maps is the pre-
al
ulation, whi
h makes theindire
t light un
hangeable. This means that even if elements with signi�
antin�uen
e on the s
ene are altered the light will stay the same. Also, if thelight sour
e is moved, we might be able to
hange the dire
t illumination butthe indire
t illumination stays the same. Indire
t lighting has an in�uentiale�e
t on a s
ene, this
an be seen in the JR Viewer by toggling it on and o� inthe di�erent rendering algorithms and observing the di�eren
e. Defe
ts likethis
an be minimized using additional light maps for di�erent situations, butall
ases
annot be
overed. To fully provide
orre
t indire
t illumination inall
ases, we must be able to update at any time. Dire
t radian
e mapping isable to
al
ulate dire
t illumination in every frame regardless of the numberof moving obje
ts and light sour
es.The drawba
k in dire
t radian
e mapping (besides �i
kering in somesituations) is the missing indire
t shadows and the fa
t that only the �rstboun
e of indire
t illumination is available. If these problems
ould be solvedand the frame rate
ould be raised we would have a mu
h more
orre
tmethod for dynami
al indire
t illumination. The fa
t that dire
t radian
emapping would be able to update the indire
t illumination in real-time
anadd new e�e
ts to the s
ene. For example
hanges in
olor bleeding
ausedby movement of obje
ts.Real-Time Photon Mapping Simulation vs. Dire
t Radian
eMappingThe method des
ribed in se
tion 6.7 implements photon mapping in real-time - almost. This gives an ex
ellent result regarding global illuminationbut unfortunately there are a number of other restri
tions to the method.We need to predetermine points in the s
ene to simulate �nal gathering,this gives limitations in s
ene size and
omplexity. Dynami
 obje
ts mustbe prede�ned as they need spe
i�

al
ulations and in order to enable raytra
ing
apabilities in real-time we must do some preparations for spatialdata stru
tures su
h as BSP trees.Compared to dire
t radian
e mapping, whi
h uses a very approximativeversion of di�use re�e
tions, we will �nd that the real-time photon mappingsimulation method is mu
h more a

urate. In fa
t, it probably provides themost
orre
t indire
t illumination of all methods dis
ussed here, whi
h do notuse extensive pre-
omputing. When it
omes to a

urate light
al
ulationreal-time photon mapping is better, but when it
omes to s
ene dynami
s it isnot that �exible. Here the dire
t radian
e method has huge advantages sin
eit is independent of s
ene
omplexity and the number of moving obje
ts.

12.4 Comparison 257Pre-
omputed Radian
e Transfer vs. Dire
t Radian
e Map-pingIn pre-
omputed radian
e transfer a large part of the
al
ulations are
arriedout in advan
e. The result of the pre-
omputation is a method
apable ofsimulating almost any type of visual e�e
t on a single obje
t, even in a framerate useful for
ommer
ial appli
ations su
h as
omputer games. However,the method still has some limitations; it must assume that obje
ts are rigid,otherwise pre-
omputation of global illumination would not be possible, andas des
ribed in se
tion 6.8 the method has problems the moment severaldynami
 obje
ts need to intera
t in the same s
ene. These are both issuesthat do not a�e
t dire
t radian
e mapping sin
e it is independent of thes
ene geometry.In other words the most important drawba
ks of pre-
omputed radian
etransfer are the limitations regarding intera
tion between dynami
 obje
tsand the massive pre-
omputations needed. The advantage of pre-
omputedradian
e transfer is the quality of the global illumination, whi
h is only vi
-tim of the limitations in spheri
al harmoni
s basis fun
tions. Pre-
omputedradian
e transfer is good for simple s
enes
raving detailed illumination, su
has a talking person. In
omparison dire
t radian
e mapping has almost oppo-site features. While there is no restri
tions on s
ene dynami
s, the di�uselyre�e
ted indire
t illumination is
rude and impre
ise.Environment Map Rendering vs. Dire
t Radian
e MappingThe method, whi
h we have
hosen to
all environment map rendering2builds on the same philosophy with respe
t to s
ene dynami
s as does dire
tradian
e mapping. Therefore it has many of the same advantages as dire
tradian
e mapping.Environment map rendering (in the sense of Nijasure et al. [93℄) is doneby estimation of radian
e transfer fun
tions at the nodes of a regular gridspa
ed throughout the s
ene. The transfer fun
tions are represented in aspheri
al harmoni
s basis and estimated using environment maps. For ea
hlo
ation in the s
ene to be rendered an interpolation between the nearesttransfer fun
tions should de
ide the illumination at that spe
i�
 lo
ation.The problemati
 issues are the regular grid, the interpolation, and theusual limitations to spheri
al harmoni
s representation of transfer fun
tions.First, the resolution of the regular grid depends on s
ene
omplexity. We
an
ompare the nodes of the grid where environment maps are found tothe sample points in dire
t radian
e mapping. The interpolation
an
ausesome
olor or shadow leakage through walls for example, whi
h is again also
onne
ted to the spheri
al harmoni
s representation of the transfer fun
tions.2No parti
ular name has been given to the method by its authors.

258 Dire
t Radian
e MappingThe inventors of the method suggest solutions for most of these problems(for more details see se
. 6.9).All in all environment map rendering is a method having
apabilitiessimilar to dire
t radian
e mapping. It also has some problems, but seeminglythey are few. The frame rates are a bit lower (approximately 10 fps), but theresult is more
orre
t. The solution suggested for
olor and shadow leakage
an not yet run in hardware. Nevertheless, the environment map renderingmethod presented by Nijasure et al. is a tough
ompetitor to dire
t radian
emapping. Nijasure's method probably gets the upper hand.SummaryThe
omparisons are summarized in table 12.1, whi
h presents positive fea-tures of the di�erent methods as we see them. The features listed should beseen with regards to the multiple di�use re�e
tions term only. For exam-ple it is possible to have dynami
 obje
ts in s
enes using the light mappingmethod but the indire
t light does not
hange with them.Some markings are set in parentheses, this illustrate that there are
ertain
onditions that must be ful�lled before it is true. The following list shortlysum up these restri
tions.� Real-time photon mapping simulation supports an arbitrary numberof dynami
 obje
ts, but the dynami
 obje
ts must be pointed out inadvan
e.� In the des
ription of real-time photon mapping it is stated that di�useobje
ts must be assumed. This is, however, only ne
essary in the lastboun
e of the indire
t illumination, sin
e interpolation between pointsdistributed in the s
ene is used. At all light boun
es ex
ept the se
ondto last di�use intera
tion an arbitrary BRDF
an be employed.� Pre-
omputation does o

ur in the real-time photon map simulationmethod, but only of BSP trees for speeding up the rendering pro
ess.� Pre-
omputed radian
e transfer supports both perfe
tly di�use andglossy BRDFs. An inherent limitation to the spheri
al harmoni
s ap-proa
h used in pre-
omputed radian
e transfer, is that the
loser theBRDF
omes to a perfe
tly spe
ular BRDF, the more spheri
al har-moni
s basis fun
tions will the method need to model the re�e
tionwithout serious aliasing artifa
ts. Therefore pre-
omputed radian
etransfer only supports low-frequen
y lighting environments.� Indire
t shadows are supported in the environment map renderingmethod, but only if the method is implemented in software (not inhardware).

12.4 Comparison 259� Environment map rendering uses spheri
al harmoni
s in the same wayas pre-
omputed radian
e transfer, hen
e, it is subje
t to the samerestri
tions regarding BRDFs.Looking at the table we �nd that methods building on pre-
omputationare the ones
urrently fast enough to be used in
ommer
ial appli
ations.However, there are
ertain restri
tions to them that are only fully solvedusing methods that do not need pre-
al
ulations. On this observation wedare predi
t that other methods based on GPU intensive rendering will winin time (at least in some situations).Another thing revealed from the table is
ertain drawba
ks of the dire
tradian
e mapping in features supported by other methods. In the report wehave suggested solutions to many of these drawba
ks, others might be solvedby
ombination of our method with some of the others. Parti
ularly inter-esting
ould be a
ombination of dire
t radian
e mapping and environmentmap rendering as the two methods builds on the same philosophy
arriedout a bit di�erently. Although the table reveals fewer
apabilities in someareas for dire
t radian
e mapping
ompared to the other methods we stillhave faith in the idea, as it is at an early state of development.This
on
ludes our presentation of dire
t radian
e mapping. The next
hapter will shortly des
ribe the di�erent traditional rendering methods thatwe have implemented for referen
e.

260
Dire
tRadian
eMapping

Feature Light Mapping Real-Time
Photon Map
Simulation

Pre-computed
Radiance
Transfer

Environment
Map Rendering

Direct
Radiance
Mapping

Support of single dynamic object X X X X

Arbitrary number of dynamic objects (X) X X

Support of dynamic light sources X X X X

Support of deformable objects X X

Independent of geometry with
respect to object shading

 X X X X

Independent of geometry with
respect to processing speed X X X X

Independent of the number of light
sources X X X X

Independent of scene size X X

Support of indirect shadows X X X (X)

Arbitrary BRDFs X (X) (X) (X) X

Multiple light bounces X X X X

Runtime sampling not required X X X

Pre-calculation not required (X) X X

Sufficient frame rate for commercial
applications (eg. games)

X X

Table12.1:Listofpositivefeaturesforea
hofthedi�erentmethodsasweseethem.

Chapter 13Other Implemented RenderingMethods

Virtue is never isolated; it always has neighbors.Confu
ius (552-479 BC.): Anale
ts 4:25

262 Other Implemented Rendering MethodsSin
e it was the original idea for this proje
t to
ombine photorealisti
 ren-dering and real-time rendering by having an implementation in ea
h
amp,we started out
onstru
ting a ray tra
er and added di�erent optimizationss
hemes of our own (des
ribed in
hap. 11) before implementing our real-timerenderer.The result of this pro
edure is that we have implemented a fairly fun
-tional ray tra
er as well as other global illumination methods, whi
h we
anuse as referen
e for our results from dire
t radian
e mapping (DRM). Thedrawba
k is perhaps that by putting fo
us in two pla
es we have not beenable to go as deep into one subje
t as we
ould have. On the other handwe feel that working with traditional photorealisti
 rendering has given us abetter fundament for the real-time implementation; in fa
t, we think that itis doubtful whether we would have
ome up with any of the ideas presentedin
hapters 11 and 12, if we had not followed this pro
edure.In this
hapter we will des
ribe rendering features implemented besideDRM. Se
tion 13.1 will mention the rendering methods that have been im-plemented for photorealisti
 rendering, and se
tion 13.2 will point out themethods that have been implemented for
ombination with DRM in ourreal-time renderer.13.1 Photorealisti
 Rendering MethodsRadiosity, ray tra
ing, and photon mapping have all been implemented andare available in the appli
ation a

ompanying this report. Ea
h of thesemethods have been implemented in a very simple version, sin
e they aremainly there for referen
e. In the following we will point out whi
h parts ofea
h method that have been implemented.RadiosityRadiosity is a simple implementation, whi
h only in
lude two approa
hes:Radiosity using the simple analyti
al approa
h to the form fa
tor
al
ulationgiven in (4.4), in this
ase we do not
onsider visibility between pat
hes,and radiosity using the hemi
ube method, where �ve pi
tures are taken fordetermination of ea
h form fa
tor.A progressive re�nement approa
h similar to the one des
ribed in se
-tion 4.1 is used to solve the system of linear equations. Our radiosity im-plementation features no expansions and is merely there for referen
e whenwe simulate the multiple di�use re�e
tions term using other methods. Sometypi
al s
reen shots of our radiosity implementation are shown in �gure 13.1.

13.1 Photorealisti
 Rendering Methods 263

Figure 13.1: S
reen shot of the s
ene pat
hes for radiosity and the result of the hemi
uberadiosity solution (as implemented for this proje
t) applied to the Cornell box.Ray Tra
ingA naïve one-ray-per-pixel ray tra
er has been implemented. It follows thesame
on
epts as des
ribed in se
tion 4.2. The idea of angular visibility,des
ribed in se
tion 11.1, is always used with the ray tra
er, sin
e it improveson rendering times without
ompromising image quality. Other spatial datastru
tures have not been implemented. Hardware optimization as des
ribedin se
tion 11.7 has been implemented as well. It
an be toggled on and o�,sin
e it redu
es image quality a little.Soft shadows have been implemented using Monte Carlo ray tra
ing asdes
ribed in se
tion 4.3. A number of shadow rays (we use 50) are tra
edtowards positions on a square area light sour
e sampled using Quasi-MonteCarlo Halton sequen
es (see eg. [141℄). The fra
tion of these rays rea
hingthe light sour
e denotes the visibility term.The three simplest BRDFs have been implemented for shading in theray tra
er. The BRDFs are
alled Phong, Blinn-Phong, and Modi�ed Blinn-Phong. All of them are des
ribed in se
tion 5.2.Photon MappingPhoton mapping has been implemented as des
ribed in se
tion 4.4, ex
eptwe have not found time for an implementation of �nal gathering. Insteadwe divide the photon map into four di�erent maps, one for ea
h term thatwe wish to simulate. The four photon maps are used for dire
t illumination,
austi
s, indire
t illumination, and shadows respe
tively.The
austi
s photon map is used as des
ribed in 4.4. The indire
t illu-mination map is used for a dire
t visualization of the indire
t illumination.This is not optimal sin
e a dire
t visualization of a photon map always re-sults in low frequen
y noise. Our implementation is like this be
ause we

264 Other Implemented Rendering Methodshad in mind to �lter the dire
t visualization of the indire
t illumination us-ing a neural network, our proje
t moved in another dire
tion though. Theshadow photon map is used for optimization of the soft shadow Monte Carloray tra
ing operation. If no shadow photons are found nearby, we need not
al
ulate the visibility term we
an merely set it to one.If �nal gathering was to be implemented we would need to have a globalphoton map, whi
h would be a
ombination of the dire
t,
austi
s, andindire
t maps.Some s
reen shots of our ray tra
ing solution in
luding some photonmapping are given in �gure 13.2.These were, in short, the global illumination methods implemented andavailable through the JR Viewer (see
hap. 14). In the next se
tion we pointout the di�erent real-time rendering methods that we have implemented for
ombination with dire
t radian
e mapping.

Figure 13.2: S
reen shots of our ray tra
ing solution applied to the Cornell box. Fromleft to right: (a) Ray tra
ing in
luding soft shadows and a
austi
s photon map. (b)The same as (a), but also in
luding a dire
t visualization of the photon map simulatingmultiple di�use re�e
tions. Ex
ept for the noise the se
ondary
austi
s should be noti
edbelow the glass sphere.13.2 Other Real-Time Rendering MethodsAs des
ribed in
hapter 6 many di�erent real-time methods
an be
ombinedin order to simulate di�erent rendering equation terms. The only rule to
omply with is that no
lass of light paths
an be in
luded more than on
e.In this se
tion we shortly point out the di�erent methods that we havemade available in our implementation for
ombination with dire
t radian
emapping. We will also mention a few of the methods that advantageously
ould have been
ombined with dire
t radian
e mapping if we had had extratime for the implementation.

13.2 Other Real-Time Rendering Methods 265The basi
 real-time renderer implements the simple rasterization ap-proa
h des
ribed in
hapter 5. The standard shading is Phong highlighting.The expansions are as follows: First
urved and planar re�e
tions have beenimplemented as des
ribed in se
tions 6.2 and 6.3. It is an option in the imple-mentation to use re
ursive
urved re�e
tions. Se
ond fragment shading hasbeen implemented for dire
t illumination as an alternative to the standardPhong highlighting. Shadow volumes have been implemented as des
ribedin se
tion 6.1. Finally refra
tions have been implemented for the spe
ial
aseof a sphere.Real-Time Glass Ball RenderingRefra
tions are found using an environment map in the same way as for
urved re�e
tions only the refra
ted dire
tion should be used for texture
oordinates rather than the re�e
ted dire
tion. In the spe
ial
ase of asphere the light refra
ts twi
e; on
e at the �rst interse
tion point and on
ewhen the refra
ted ray has passed through the sphere and is again refra
tedba
k into the environment.The �rst refra
ted dire
tion !t;1 is found using the refra
tion formula(3.5). The refra
tion formula is available as a hardware instru
tion on mostGPUs. Now, to �nd the se
ond refra
ted dire
tion !t;2 we must �nd thenormal, n2, at the se
ond point of interse
tion. Considering �gure 13.3 wequi
kly realize that n2 is the normal, n1, at the �rst point of interse
tionre�e
ted in the dire
tion opposite to the �rst refra
ted dire
tion �!t;1.

•

ωωωω

n2

n1

ωωωω t,2

ωωωω t,1

n1

Figure 13.3: Double refra
tion through a sphere.

266 Other Implemented Rendering MethodsUsing the re�e
tion formula (3.2) we get:n2 = 2(n1 � �!t;1)(�!t;1)� n1and sin
e the environment map assumes that all dire
tions used for tex-ture
oordinates originate at the
enter of the obje
t, the se
ond refra
teddire
tion
an be found by the refra
tion formula used between �!t;1 and n2.The refra
tion should afterwards be blended with the re�e
tion a

ordingto the Fresnel re�e
tan
e. If we use the simpli�ed formula given in (3.36)and insert �1 = 1 for air outside the sphere and �2 = 1:5
orresponding tothe refra
tion index of glass, we get the following simple Fresnel formula:Fr;glass(�) = 0:04 + 0:96(1 �
os �)5where � is the angle of in
iden
e.Sphere Causti
sCreating
austi
s in real-time for arbitrary obje
ts is a di�
ult task. Themost promising method we have found is the one presented in [74℄, whi
his also des
ribed shortly in se
tion 6.4. Causti
s for a simple primitive likea sphere, resulting from light emitted from a point light sour
e,
an beapproximated in a straightforward manner. To
reate
austi
s in real-timefor a sphere we
ould
reate a
one with an axis through the
enter of thesphere. In a plane also through the
enter of the sphere and perpendi
ularto a line between the sphere
enter and the light sour
e, we
ould mirror thelight
one. The
austi

aused by the light will then appear where the
oneinterse
ts with another surfa
e. The
on
ept is illustrated in �gure 13.4.

Sphere

Light
source

Caustic Figure 13.4: A fast approximation of a sphere
austi
.The
austi
s area
an be marked in the sten
il bu�er and illuminationattenuated a

ording to Fresnel re�e
tan
e
an be added to the
austi
s area.

13.2 Other Real-Time Rendering Methods 267Similar simple assumptions about light traveling through other primitiveobje
ts
ould be
reated. However, the method will not work for arbitraryobje
ts and it gives only a
rude approximation. To make real
austi

al-
ulations, rays must be tra
ed inside the obje
t. In [74℄ it is des
ribed howthis
an be done in real-time. Unfortunately there has been no time inthis proje
t for an implementation of real-time
austi
s (not even the
rudesphere
austi
 presented here).The remaining real-time rendering methods that have been implementedwere des
ribed in
hapter 12. In the following
hapter we will give a presen-tation of the GUI that has been developed for the appli
ation implementingthe di�erent rendering methods.

268 Other Implemented Rendering Methods

Chapter 14Graphi
al User Interfa
e

Un
roquis vaut mieux qu'un long dis
ours.Napoleon Bonaparte (1769-1821)

270 Graphi
al User Interfa
eMany proje
ts
on
erning global illumination in real-time limit themselves toa proof of
on
ept only using prede�ned test s
enes. This is, of
ourse, quitealright, but if the method developed is to be appli
able for a
ommer
ialappli
ation, it must be able to
ope with more
omplex s
enarios. To takethe proje
t a little step further we have enabled a way to
reate s
enes ina modeling appli
ation and then export them to a graphi
al user interfa
e(GUI) where our illumination methods
an be tested on the s
ene. This isa part of the se
ond obje
tive for this proje
t in whi
h we want to show thework �ow from modeling to real-time rendering using our own methodsSe
tion 14.1 will des
ribe the test s
enes
reated for the proje
t. Ea
hobje
t in ea
h s
ene will be identi�ed and their purpose will be explained.About half of the test s
enes are written dire
tly in
ode sin
e they to a
er-tain extent are ben
hmark s
enes (Cornell boxes
ontaining di�erent simpleobje
ts, the Cornell box data
an be found in [95℄). The rest of the s
enesare
reated in Blender. How to use Blender is explained in
hapter 10.The s
enes are available through the windows GUI. How to use the GUIand all its features is
overed in se
tion 14.2.14.1 Test S
enesTo demonstrate our implementations of rendering methods and to
omparethem to ea
h other we have
reated a number of test s
enes available througha small demonstration appli
ation: The JR Viewer. In this se
tion we presentthe test s
enes one by one in order to explain what ea
h of them is usefulfor.The s
enes are available through the �le dropdown menu (see next se
-tion). The following s
enes
an be sele
ted:� Cornell Box - Empty� Cornell Box - Two Boxes� Cornell Box - Two Spheres� Cornell Box - Sphere and Box� (Cornell Box - Orb)� (Cornell Box - Arthur)� Cave S
eneWe will now present the s
enes one by one.

14.1 Test S
enes 271Cornell Box - EmptyThe Cornell box is a
omputer graphi
s ben
hmark s
ene invented at theCornell University and used very frequently. The box is physi
ally built anddetailed material parameters are measured from it. The data
an be foundin [95℄. It is an almost quadrati
 box with one side open towards the
amera.In this way an almost quadrati
 room is
reated. The �oor, ba
k wall and
eiling are white (not purely white, just white), while the left wall is red andthe right wall is green (�gure 4.1 in
hapter 4 shows a Cornell box with twoboxes inside it). The empty Cornell box is the simplest test s
ene we haveand all rendering methods work for this s
ene.Cornell Box - Two BoxesTraditionally the next level of
omplexity for Cornell boxes is to pla
e twoboxes in them, as a representation of simple obje
ts. With the two boxeswe
an better illustrate
olor bleeding and shadows. Subsurfa
e s
attering isenabled for the tall box in the s
ene for demonstration of our
rude real-timeimplementation of this e�e
t. The Cornell box with two boxes is the onlys
ene besides the empty Cornell box that is available for radiosity rendering.This is be
ause we transferred the radiosity implementation, as previouslymentioned, from a DTU
ourse (02561) merely to have radiosity for referen
e.The two boxes s
ene is therefore well suited for
olor bleeding
omparison.Cornell Box - Two SpheresIn this s
ene the two boxes are repla
ed with two other simple obje
ts:Spheres. The spheres have di�erent material parameters. The left sphereis a
hrome (or mirror) sphere while the right sphere is a glass sphere. Thiss
ene is made to demonstrate re�e
tive and refra
tive rendering methods
reated for the proje
t. When working in the rasterization menu (see next
hapter) both spheres will have
hrome material if refra
tions are not en-abled.Cornell Box - Sphere and BoxThe Cornell box
ontaining a sphere and a box
ombines the box with sub-surfa
e s
attering and the refra
tive sphere. This gives an opportunity totest (almost) all the di�erent rendering methods in the same s
ene. In thisway we
an also
hallenge the renderer and see if it
an keep up the framerate when all the di�erent methods are applied at the same time.Cornell Box - OrbThis Cornell box,
ontaining the orb, is the �rst s
ene whi
h has not beenimplemented in
ode, but exported from Blender. The orb represents a

272 Graphi
al User Interfa
eslightly more
omplex obje
t. The orb itself has glass material parameterswhile the pedestal beneath it has varying material parameters. The idea ofthis s
ene is to have a few more triangles in the s
ene. In that way we
anqui
kly show the limitations of our ray tra
er. The orb was exported fromBlender using our `homemade' export dire
tly to
ode, therefore ray tra
ingis also possible in the orb s
ene. Unfortunately the orb has
urrently notbeen inserted in the appli
ation and is therefore not available.Cornell Box - ArthurYet a little more
omplex is our gargoyle (Arthur), who is also
reated inBlender. Arthur is
omposed of 4861 verti
es resulting in 6024 fa
es, andhe has subsurfa
e s
attering enabled. This serves the purpose of showingthat the subsurfa
e s
attering method
an be used on more
omplex obje
tsas well. The larger number of verti
es
an also indi
ate that our method isindi�erent to how many verti
es we have in the s
ene. Arthur is exportedusing the xml_export.py s
ript and imported using the BMesh, this importis not yet
onne
ted to our ray tra
er, and therefore this s
ene
urrently
annot be ray tra
ed. Arthur is also not available in a Cornell box at themoment.Cave S
eneThe
ave s
ene was
onstru
ted as an example of a s
enario that we
ouldmeet in a
ommer
ial appli
ation. The s
ene has a little of everything. Thereis a plane mirror, Arthur the gargoyle, and a gargoyle twin (named Conrad).Only one of the gargoyles has subsurfa
e s
attering material parameters toshow the di�eren
e. To better examine the indire
t lighting there is an openand a
losed
orridor. The surrounding
ave has a warm
olor whi
h bleedsonto the �oor that is otherwise gray. All obje
ts in the
ave s
ene
an bemoved around freely. There is also a person in the
ave s
ene, who haseven been animated to move around with a lantern holding a light sour
e.Exporting the animation and making it work in the JR Viewer is a futureplan.Looking ba
k at
hapters 11 and 12 most of the di�erent s
enes
an befound in the various �gures
ontaining s
reen shots. Having an overview ofthe di�erent s
enes, we
an pro
eed to a des
ription of the JR Viewer itself.14.2 JR ViewerTo demonstrate our implementations we have
reated a small appli
ation
alled JR Viewer. The appli
ation is
reated for MS Windows, meaning thatit only runs on Mi
rosoft platforms. The illumination algorithms are onthe other hand platform independent. The program stru
ture implemented

14.2 JR Viewer 273behind the appli
ation is des
ribed in
hapter 15. Figure 14.1 shows a s
reenshot of the JR Viewer. In this se
tion we shortly present the fun
tionalitiesof JR Viewer.

Figure 14.1: JR Viewer.When the appli
ation is started, the only menu point available is �File�.In general the menu points of the appli
ation are only available when fun
-tionalities for the
hosen s
ene are available. For example all menu pointare available for the Cornell box with two boxes, but for the Cornell boxwith two spheres the radiosity menu is unavailable. In this way we hope toavoid problems. Many of the methods depend on graphi
s hardware, in
aseswhere the needed hardware is not available, e�e
ts that
an not be renderedare grayed as well.All s
enes loaded have a tra
k ball enabled, so that the s
ene
an beexamined from di�erent view points. It is also possible to sele
t obje
ts byholding the mouse over them and pressing P to sele
t. When an obje
t issele
ted the tra
k ball will work on the sele
ted obje
t instead of the s
ene.The math behind the tra
k ball was presented in se
tion 9.3. Note that tra
kball fun
tionalities for obje
ts only work under rasterization, tra
k ball fun
-tionalities for
amera navigation work both in radiosity and in rasterization.When rendering with ray tra
ing the
amera is lo
ked at a sensible
ameraposition in the s
ene and obje
ts are pla
ed at their original positions. Thetra
k ball fun
tionalities were also des
ribed in se
tion 9.3.At the bottom of the appli
ation window there is a status bar. The �rst�eld of the status bar shows the rendering time, or the frame rate when thisis appropriate. The se
ond �eld shows the rendering method and the third

274 Graphi
al User Interfa
e�eld (in general) shows the
urrent s
ene.In the following we will present the dropdown menus one by one.The File Menu

 Figure 14.2: The File menu.In the File menu, see �gure 14.2, we �nd all the available test s
enes. Wehave
hosen to make the s
enes des
ribed in the previous se
tion dire
tlyavailable1 so that a user more easily
an make sample images at all times.Beneath these test s
enes we have made an option for import of an arbitraryX3D s
ene. For reasons mentioned in the previous se
tion, it is only possibleto use the rasterization menu with su
h a s
ene.When a new s
ene is loaded all settings are reset. This means that nomatter the settings that were sele
ted for the last s
ene and the renderingmethod that was used, all settings will we desele
ted and the rendering ofthe s
ene will appear as plane OpenGL rasterization when a new s
ene isloaded.Two setting dialogs are also available in the �le menu. There is a set-ting dialog for s
ene parameters and a setting dialog for obje
t parameters.The s
ene parameter settings dialog is only available when a s
ene has beenopened and the obje
t parameter settings dialog is only available when anobje
t has been pi
ked. Figure 14.3 shows the s
ene parameters dialog and�gure 14.4 shows the obje
t parameters dialog. Parameter
an be set toexa
t values by the text �elds. Obje
t parameters have asso
iated slide barsfor intera
tive
hanges to the parameters. Otherwise parameters should be1Some of the s
enes may be grayed be
ause we did not �nd time to insert them in the�nal frame work.

14.2 JR Viewer 275

 Figure 14.3: S
reen shot of the s
ene parameter dialog.updated by the
urrent number when <RETURN> is pressed. To leave the text�elds without updating <ESC> should be pressed. Unfortunately we have nothad the time to
ouple the parameter settings to our render engine, but thewindows exist for future use.Sin
e the parameter settings still do not quite
ouple to the render engine,they will not be des
ribed any further at this point.Using the last �le menu option we
an exit the appli
ation.The Radiosity MenuThrough the radiosity menu (�gure 14.5) we
an sele
t a few radiosity ren-dering methods. The radiosity menu will only work with two s
enes: Theempty Cornell box and the Cornell box with two boxes. The radiosity ren-dering is merely present in this appli
ation for
omparison with the otherimplemented methods.As des
ribed in se
tion 13.1, we
an
hose between two di�erent methodsfor radiosity solutions: The analyti
al method and the hemi
ube method.Also available is a view of the pat
hes used in the
al
ulations.Camera movement is possible after the radiosity solution has been
al-
ulated. Obje
ts
an not be moved without re
al
ulation of the radiositysolution, therefore obje
t sele
tion has been disabled under the radiositymenu.

276 Graphi
al User Interfa
e

Figure 14.4: The obje
t parameter dialog.
 Figure 14.5: The Radiosity menu.The Ray Tra
ing MenuThe ray tra
ing menu (�gure 14.6) enables ray tra
ing of the simple s
enes.Di�erent rendering equation terms, shading methods, and shadow methods
an be applied in the ray tra
ing pro
ess. These are
hosen from the menu.The menu presents a number of e�e
ts that
an be toggled on or o� witha mouse
li
k. Some e�e
ts rule out others, for example it makes no senseto render both hard and soft shadows, hen
e if soft shadows are sele
ted,hard shadows are automati
ally desele
ted. Setting points that rule ea
hother out are isolated from the other points by lines (the �rst points do notrule out ea
h other). Some menu points have no e�e
t on some s
enes, forexample it gives no e�e
t to enable spe
ular re
ursions if none of the obje
tsin the s
ene are spe
ular. When appropriate settings have been sele
ted themenu option �Go. . . � should be sele
ted for ray tra
ing of the s
ene.Sin
e no intera
tivity is available after ray tra
ing the resulting image isstret
hed over a quad as a texture in order to make it s
alable. The original

14.2 JR Viewer 277

 Figure 14.6: The Ray Tra
ing menu.texture is 512x512 pixels. In ray tra
ing we have
hosen to have the
amera�xed at a sensible position in the s
ene. The s
enes in whi
h the ray tra
ingmenu is available were pointed out in the previous se
tion.In
hapter 13 we des
ribed the di�erent rendering methods that are avail-able with pointers ba
k through the report. In the following we will shortlydes
ribe the di�erent menu options for ray tra
ing and photon mapping:� �Ambient light� adds a
onstant ambient term to the rendering equa-tion in order to give a
rude simulation of multiple di�use re�e
tions.� �Spe
ular re
ursions� spawn re�e
ted and refra
ted rays if the materialparameters indi
ate that it is ne
essary.� �Causti
s� estimate the
austi
s term of the rendering equation by useof a
austi
s photon map.� �Hardware optimized� toggles
al
ulation of the �rst interse
tion inhardware using the idea des
ribed in se
tion 11.7.� �Phong shading� uses Phong shading for the dire
t illumination term.Phong shading desele
ts the other available shading options.� �Blinn-Phong shading� uses Blinn-Phong shading for the dire
t illumi-nation term and desele
ts the other available shading options.

278 Graphi
al User Interfa
e� �Modi�ed Blinn-Phong shading� uses modi�ed Blinn-Phong shadingfor the dire
t illumination term and desele
ts the other available shad-ing options.� �Hard shadows� enables shadow rays.� �Soft shadows� enables a Quasi-Monte Carlo estimation of the visibilityterm.� �Indire
t illumination� enables a dire
t visualization of a photon map
ontaining indire
t illumintation re�e
ted di�usely at least on
e.� �Smoothed indire
t illumination� is a
heap version of the indire
t il-lumination option. Therefore these two options ex
lude ea
h other.� �Final gathering� is a menu option for future implementations.The Rasterization Menu

 Figure 14.7: The Rasterization menu.In the rasterization menu, see �gure 14.7, we �nd the available real-time ren-dering methods. Any s
ene
an be rendered using these menu points. Whena new s
ene is loaded it will automati
ally be rendered using traditionalreal-time rendering (as des
ribed in
hapter 5) implemented in OpenGL. Atthis point no menu options are sele
ted. In
ontrast to the other menusall settings in the rasterization menu are
hanged right away when they are
li
ked. In the rasterization menu dire
t radian
e mapping is responsible forthe indire
t lighting options. As in the ray tra
ing menu some settings rule

14.2 JR Viewer 279out others and some settings are irrelevant for some s
enes. To shift to ras-tization after having used another rendering method (su
h as ray tra
ing),sele
t the top menu option �OpenGL. . . �.The following list des
ribes the di�erent options one by one.� �Blinn-Phong shading� swit
hes from the standard Phong highlightingto Blinn-Phong shading implemented in a fragment shader.� �Dire
t lighting� enables an analyti
al solution of the dire
t illumina-tion term whi
h is des
ribed in
hapter 12. The Blinn-Phong shadingand the dire
t lighting options both simulate the dire
t illuminationterm, and therefore they ex
lude ea
h other.� �Sub-surfa
e s
attering� enables our
rude simulation of subsurfa
es
attering as des
ribed in
hapter 12.� �Planar re�e
tions� allows real-time planar re�e
tions.� �Curved re�e
tions� use environment mapping for real-time
urved re-�e
tions.� �Full re�e
tions� makes sure that the
orre
t lighting is used in the
urved re�e
tions and it also makes the
urved re�e
tions re
ursive.� �Refra
tions� enables the spe
ialized refra
tions des
ribed in se
tion13.2.� �Indire
t lighting - single pass� enables dire
t radian
e mapping re-
al
ulated for ea
h frame.� �Indire
t lighting - multiple passes�
al
ulates dire
t radian
e mappingover several frames. This implementation exists in an early version ofthe appli
ation, but unfortunately we did not �nd the time to in
or-porate it in the
urrent frame work.� �Hard shadows� enables shadow volumes.� �Soft shadows� are in the future works department.The Photon Maps MenuSeveral e�e
ts under the ray tra
ing menu uses photon mapping. To give anidea of the te
hnology behind the s
ene, we have made a visualization of thedi�erent photon maps available in the Photon Maps menu, see �gure 14.8.Any
ombination of photon maps is allowed. The following photon maps areavailable:� �Dire
t light� shows the dire
t photons, whi
h are photons stored whenthe surfa
e interse
ted �rst is a di�use surfa
e.

280 Graphi
al User Interfa
e
 Figure 14.8: The Photon Maps menu.� �Causti
s� shows the photon map storing photons that have followedthe light paths LS+D.� �Indire
t light� shows the remaining photons, whi
h have been storedneither in the photon map for dire
t illumination nor in the photonmap for
austi
s.� �Shadows� store a spe
ial kind of photons
alled shadow photons, theyare presented in [62℄. When a dire
t photon is stored a shadow photonis simply tra
ed in the same dire
tion as the dire
t photon, but fromthe interse
tion point and onwards through the s
ene storing shadowphotons on all di�use surfa
es that it en
ounter on its way.The �Go. . . � option tra
es the photons and visualizes the photon map. Alast option whi
h has also been pla
ed in this menu is �Smoothed irradian
eestimate� whi
h shows a
heap dire
t visualization of the photon map storingindire
t light. This is the estimate used in the option �Smoothed indire
tillumination� of the Ray Tra
ing menu.The Textures Menu
 Figure 14.9: The Textures menu.The dire
t radian
e map
onsists of di�erent textures. A visualization ofthese textures is available in the Textures menu (�gure 14.9). The textures

14.2 JR Viewer 281are presented in the following list. All the textures are used for the dire
tradian
e mapping method and are not applied as
olor textures anywhere inthe s
ene.� �Position� is a texture providing the �rst interse
tion points seen fromthe light sour
e.� �Dire
t radian
e� gives the dire
t illumination stored in the dire
t ra-dian
e map.� �Normals� is a texture providing the normals at ea
h interse
tion pointseen from the light sour
e.� �Sub-surfa
e positions�
orresponds to the Position texture ex
ept itpi
tures interse
tion points found inside translu
ent obje
ts.� �Sub-surfa
e radian
e� �nds the radian
e rea
hing the points givenin the Sub-surfa
e positions texture after attenuation while travelingthrough the translu
ent obje
t.� �Obje
t
enters� provides the obje
t
enters a

ording to whi
h thesubsurfa
e s
attering is sampled. This texture is not absolutely ne
-essary sin
e the obje
t
enters
an be provided to the dire
t radian
emapping method as uniform variables.This
on
ludes the presentation of our graphi
al user interfa
e (GUI). Ween
ourage use of the appli
ation itself whi
h is available on the CD-ROMa

ompanying this report, see appendix A. In the following
hapter we willdes
ribe the stru
ture of the implementation behind the GUI.

282 Graphi
al User Interfa
e

Chapter 15Implementation

Progress lies not in enhan
ing what is, but in advan
ing towardwhat will be.Kahlil Gibran (1883-1931): A Handful of Sand on the Shore

284 ImplementationMu
h implementation has been done during this proje
t, in this
hapter wepresent the design of our �nal appli
ation, whi
h is a

essed through theGUI des
ribed in the previous
hapter. Implementation has been done usingthe following freely available tools:� OpenGL open sour
e graphi
s library (in
luding extensions)� BCC55 Borland C++
ommandline
ompiler version 5.5� makegen for
reating make�les� expat for XML parsing� GLUT OpenGL Utility Toolkit� CG C for Graphi
s� Python for export s
riptingThe purpose of this
hapter is to provide the reader with an overviewof the program parts. Thereby we hope to reveal all the aspe
ts of theappli
ation. After giving an overview the
hapter will present ea
h programpart in a more detailed manner. The a
tual
ode will not be presented inthis
hapter but is available on the atta
hed CD-ROM, see appendix A.Se
tion 15.1 des
ribes the overall program stru
ture. After that the se
-tions of this
hapter are divided into di�erent kinds of menu options. Se
tion15.2 des
ribes status options, se
tion 15.3 des
ribes render options, and se
-tion 15.4 des
ribes s
ene options. Finally se
tion 15.5 gives a design diagramof the render engine, whi
h is used for several di�erent menu options.15.1 Program Stru
tureThrough the JR Viewer we give a

ess to the di�erent rendering methods thathave been implemented. The sour
e
ode for the program is divided intodi�erent libraries ea
h treating its own part of the proje
t. Ea
h sour
e �lestarting with a
apital letter implements an obje
t, otherwise it implementsa tool for the obje
ts or the appli
ation in general. The main �le (whi
his
alled main.
pp)
ontains the WinMain fun
tion for the JR Viewer. Thestru
ture of the program is quite similar to the stru
ture of the sour
e �lesand libraries, whi
h are divided mainly a

ording to the menus in the GUI.Appendix C shows the stru
ture of the sour
e �les and the libraries for theprogram. The stru
ture of the program is presened in �gure 15.1.There are three
ore modules in for the appli
ation. The WinMain fun
-tion pla
ed in the main �le (main.
pp), whi
h
ontrols the GUI, and therebyalso the appli
ation. The render engine (pla
ed in the engine library, see app.C) where all the geometry is
ontained and where the most basi
 rendering

15.1 Program Stru
ture 285

Math Engine

Trackball

B-Mesh

File

Logo

Radiosity

02561
Exercise

Ray Tracing

Photon Maps

Rasterization

Textures

Render
Engine

JR VIEWER

WIN Main

Figure 15.1: The program stru
ture. The names in the boxes refer partly to the menuoptions, partly to the libraries and partly to
ontrolling �les.is done. 02561 Exer
ise (from the radiosity library) that takes
are of theradiosity rendering.The rest of the boxes inside the JR Viewer
ontainer in �gure 15.1 ea
hrefer to a menu of the appli
ation ex
ept for the logo box whi
h is the logoused as the starting pi
ture. The boxes outside the JR Viewer
ontainer aregeneral tools that
an be used by all of the �les in the JR Viewer.The JR Viewer is a MS Windows appli
ation. Windows is a multitaskingoperating system; this means that multiple appli
ations or programs
an runat the same time in what is
alled threads [47℄. A great tutorial for gettingstarted with windows programming
an be found at [83℄.To enable a
tions, messages are sent from windows to the appli
ation,it is then up to the appli
ation to respond to these messages. The fun
tionhandling messages is the
allba
k fun
tion. The
allba
k fun
tion is merelya long list of
ases with a
ase for ea
h relevant message (irrelevant messagesare simply ignored).There are a number of
allba
k fun
tions in the appli
ation. The most

286 Implementationimportant is perhaps the one handling the menu options available in theappli
ation. Menu options are gathered under the WM_COMMAND message. Ifsu
h a message is sent to the appli
ation
allba
k fun
tion, it will go throughthe di�erent menu option ID's
olle
ted in another
ase list. The IDs for ea
hmenu option is generated in the header �le resour
e.h and linked to themenu in the resour
e �le menu.r
.Most of the menu options simply set di�erent parameters or �ags tolet the render engine know whi
h e�e
ts to in
lude in the rendering of as
ene. We will refer to su
h menu options as status options. The �ags forthe render engine are initiated in menuflags.h. Besides there are the menuoptions that a
tually swit
h the
urrent rendering method. These menuoptions a
tivates rendering a

ording to the �ags sele
ted. Finally we havethe menu options loading new s
enes into the appli
ation. Whenever an olds
ene is left all settings are reset, meaning that all menus are desele
ted andall status options are reset. Ea
h time a new s
ene is loaded we will have togray or un-gray (disable or enable) the menus that we want to be available.To give an idea of the data �ow in the program we will in the followinggive an example of ea
h type of menu option. Note that radiosity falls abit out of these
ategories sin
e it uses its own render engine from the DTU�Computer Graphi
s�
ourse (02561) as previously mentioned.15.2 Status OptionsTake the �Phong shading� e�e
t in the Ray Tra
ing menu as an example ofa status option. We will now des
ribe what happens step by step when the�Phong shading� menu option is sele
ted. Figure 15.2 shows a diagram ofthe events.When �Phong shading� is sele
ted from the ray tra
ing menu a WM_COM-MAND is sent from Windows to the appli
ation.1. The WM_COMMAND has an asso
iated ID of the Phong shading menuoption
alled ID_RAY_PHONG. This is re
eived by the
allba
k fun
tion.2. In the
ase of ID_RAY_PHONG we
he
k if Phong shading is alreadysele
ted. If this is not the
ase we sele
t it and desele
t all the othershading methods available for ray tra
ing.3. We then make sure that the shadow algorithms are not grayed sin
e itis possible to render shadows in
ombination with the Phong shadingalgorithm. This would not be possible without a shading algorithmsin
e no dire
t light is then simulated.4. Last but foremost the �ag BRDF_PHONG is set telling the render enginethat it must now ray tra
e the s
ene using our Phong implementation.

15.3 Render Options 287

WM_COMMAND ID_RAY_PHONG

Check / un-check
menu points

Gray / un-gray
menus / menu
points

brdf_flag BRDF_PHONG

WINDOWS main.cpp Global Figure 15.2: The diagram for menu options that toggles render features.This is in prin
iple what happens when a status option is sele
ted in theJR Viewer. Table 15.1 names all the menu options in the JR Viewer that
lassi�es as status options.15.3 Render OptionsThe status options are used by the render engine. The render engine istriggered when we
hoose a menu option that demands rendering. We referto these options as render options. Table 15.2 shows menu options that fallsinto the
ategory of render options.Again we
ould mention the radiosity menu options in this list, but theyare left out sin
e they use their own isolated render engine.We
an
ontinue the example from before by going through the pro
essof pressing �Go. . . � in the ray tra
ing menu. When �Go. . . � is pressed therendering starts. The
urrent rendering method is determined by a variable
alled menu. menu is set to a value
orresponding to the menu where a renderoption was sele
ted - in this
ase it
orresponds to the Ray Tra
ing menu.menu is an index for an array of display fun
tions. Ea
h menu has its owndisplay fun
tion (for rendering the s
ene using the render engine) and itsown reshape fun
tion (for reshaping the window).In the
ase of ray tra
ing we use the menu value to
all �rst the reshape-_raytra
ing fun
tion, whi
h prepares and initializes the ray tra
ing, thenthe display_raytra
ing fun
tion, whi
h does the a
tual ray tra
ing of thes
ene using the render engine. The reshape and display fun
tions for raytra
ing are de
lared in raytra
ing.h and implemented in raytra
ing.
pp

288 ImplementationRay Tra
ing !Ambient LightRay Tra
ing !Spe
ular Re
ursionsRay Tra
ing !Causti
sRay Tra
ing !Hardware optimizedRay Tra
ing !Phong shadingRay Tra
ing !Blinn-Phong shadingRay Tra
ing !Modi�ed Blinn-Phong shadingRay Tra
ing !Hard shadowsRay Tra
ing !Soft shadowsRay Tra
ing !Indire
t illuminationRay Tra
ing !Smoothed indire
t illuminationRasterization!Blinn-Phong shadingRasterization!Dire
t lightingRasterization!Sub-surfa
e s
atteringRasterization!Planar re�e
tionsRasterization!Curved re�e
tionsRasterization!Full re�e
tionsRasterization!Refra
tionsRasterization!Indire
t light - single passRasterization!Hard shadowsRasterization!Soft shadowsPhoton Maps!Dire
t lightPhoton Maps!Causti
sPhoton Maps!Indire
t lightPhoton Maps!ShadowsPhoton Maps!Smoothed irradian
e estimatesTable 15.1: A list of all the status options in the JR Viewer, that is, all the menu optionsthat
an be sele
ted or desele
ted with in�uen
e on the rendering method.Ray tra
ing !Go. . .Rasterization!OpenGL. . .Photon Maps!Go. . .Textures !PositionTextures !Dire
t radian
eTextures !NormalsTextures !Sub-surfa
e positionsTextures !Sub-surfa
e radian
eTextures !Obje
t
entersTable 15.2: Menu options that triggers the rendering engine.

15.4 S
ene Options 289(in the raytra
ing library). The render engine makes use of the �ags set bythe status options, we will return to this in a little while. reshape_raytra
-ing is
alled on
e when �Go. . . � is pressed, and it is only
alled subsequentlyif the window is reshaped. display_raytra
ing is
alled in the main loopwhenever the appli
ation has nothing else to deal with.The pro
ess is des
ribed in the following sequen
e and illustrated in �gure15.3. In other words the following is what happens when WM_COMMAND is
alledwith ID_RAY_GO.1. The WM_COMMAND has an asso
iated ID of the �Go. . . � menu option
alled ID_RAY_GO. This is re
eived by the
allba
k fun
tion.2. A message is sent to the status bar telling that ray tra
ing is now the
urrent rendering method.3. A shade option is
al
ulated using the status �ags. It is used formaterial
al
ulation purposes in the render engine.4. The menu parameter is set to a value
orresponding to the Ray Tra
ingmenu.5. Initialize OpenGL for rendering. This is always done when a renderoption is sele
ted to make sure that we start from s
rat
h.6. reshape_raytra
ing is
alled for initialization of the ray tra
ing.7. Sin
e the menu variable has been altered the main loop will now
allthe display_raytra
ing whenever the appli
ation is idle. Thereforethe display_raytra
ing fun
tion
arries out the ray tra
ing of thes
ene using the render engine.This example is for ray tra
ing, but the pro
ess is nearly the same nomatter what rendering method we
hoose. In the
ase of radiosity thoughall pro
essing is
arried out in the separate renderer for radiosity.15.4 S
ene OptionsTo make all this useful we need something to render. We load s
enes throughthe �le menu. When a �le is loaded all previous menu settings are reset. News
enes are always rendered using the OpenGL menu option under rasteriza-tion as this is available for all s
enes. Table 15.3
ontains all menu option inthis
ategory. We
all those menu options s
ene options.As an example of loading a s
ene we look
loser at the Cornell box
on-taining two spheres. The ID for this s
ene is ID_FILE_TWOSPHERECB, whenthis
ase entry is triggered the old world will be erased and the fun
tion

290 Implementation

WM_COMMAND

WINDOWS Send message to
status bar

ID_RAY_GO

Global

BRDF_PHONG

Shade option
calculation

Set menu value

main.cpp

shade_option

Main loop display

Function call

raytracing.cpp

Render
engine

reshape_raytracing

display_raytracing

Figure 15.3: Rendering using the JR Viewer.
File!Cornell box - EmptyFile!Cornell box - Two boxesFile!Cornell box - Two spheresFile!Cornell box - Sphere and boxFile!Cornell box - OrbFile!Cornell box - ArthurFile!Cave s
eneFile!Load s
ene. . . Table 15.3: The s
ene options.

15.5 The Render Engine 291
ornell_2spheres will load the new s
ene into a new world.
ornell-_2spheres is de
lared in file.h and implemented in file.
pp (
ontainedin the �le library). This fun
tion loads a Cornell box
ontaining two spheresinto the appli
ation. After this the network of angular visibility between theobje
ts (
f. se
. 11.1) is initialized. Then di�erent relevant menus and menuoptions are un-grayed as all menus are grayed and all settings are reset whena new s
ene is to be loaded. Finally we send a message to the status bar withthe name of the s
ene and a boolean variable is set whi
h indi
ates whetherthe loading of the s
ene was su

essful or not. If this �ag is set false thestart up logo will be loaded instead of the
hosen s
ene.The following list des
ribes the pro
edure step by step and �gure 15.4shows a diagram of what happens.1. The WM_COMMAND has an asso
iated ID of the Cornell box - two spheresmenu option
alled ID_FILE_TWOSPHERECB. This is re
eived by the
all-ba
k fun
tion.2. The fun
tion
ornell_2spheres is
alled for loading of a s
ene
on-taining two spheres in a Cornell box.3. Angular visibility network is initialized in the World obje
t of the ren-der engine.4. All menus ex
ept radiosity, whi
h is not available for this s
ene, area
tivated.5. As the s
ene
ontain a refra
tive obje
t
austi
 menu options are en-abled in the ray tra
ing and photon maps menus. S
ene parameterdialog menu option is un-grayed as well, sin
e a s
ene is now available.6. The s
ene name is sent to the status bar.7. It is reported whether the loading was su

essful or not.8. If the load was su

essful OpenGL rendering is initialized and the menuvariable is set to the rasterization menu.15.5 The Render EngineThe above text and diagrams should explain the di�erent aspe
ts of theimplemented appli
ation. One important step is still missing though; therendering pro
ess
arried out by the render engine. A design diagram of therender engine is presented in �gure 15.5When a new s
ene is loaded as des
ribed above, a new World obje
tholding s
ene geometry, material, and light sour
es is
reated for the render

292 Implementation

WM_COMMAND

WINDOWS

ID_FILE_
TWOSPHERECB

Render
Engine

Load scene

main.cpp

Initialize network

file.cpp

cornell_2spheres

Check / un-check
menu points

Gray / un-gray
menus / menu
points

Send message to
status bar

Report load
successful

Figure 15.4: The pro
ess of loading a s
ene.

15.5 The Render Engine 293

R
ay

 T
ra

ci
n

g

World Object
Selection
Correction

Photon
Emission

Photon Map

Geometry

Ray Tracing

Rasterization

Material Shading

Render
Engine

P
h

o
to

n
 M

ap
s

R
as

te
ri

za
ti

o
n

T
ex

tu
re

s

Global

Figure 15.5: A design diagram for the render engine.

294 Implementationengine. Depending on the rendering method
hosen by a render option, therender engine will be invoked di�erently. As indi
ated in �gure 15.5 raytra
ing will tra
e single rays through the s
ene by interse
tion
al
ulations,while rasterization will rasterize the s
ene geometry on
e. The shading boxin �gure 15.5 should be regarded di�erently depending on the renderingmethod.Ray tra
ing will shade ea
h ray independently by use of the render engine.To speed up the ray tra
ing pro
ess by avoiding time
onsuming if-senten
esin the main loop of the ray tra
ing algorithm, we have
hosen to
reate fun
-tions for ea
h
ombination of sele
ted status options. The di�erent fun
tionsare assembled in an array and the fun
tion to use is by shade_option, whi
has previously mentioned was
al
ulated using the di�erent �ags set in theray tra
ing menu. The array of di�erent shading fun
tions is implementedin Material.h and in Material.
pp.Rasterization will rather use the render engine to obtain geometry, mate-rial, and light settings before rasterizing the s
ene using vertex and fragmentprograms. The shading box
ould therefore be regarded as a fragment pro-gram in the rasterization
ase. Textures are
reated using the render enginein the same way as when rasterization is done. Where we in the rasterizationapproa
h use the textures for later passes, we display them dire
tly when therender options in the Textures menu have been
hosen.Photon mapping is
oupled to the ray tra
ing pro
edure as indi
atedby the stippled route through the diagram in �gure 15.5. If we store thephotons, whi
h are stored in a photon map, in an OpenGL display list aswell while emitting photons. We
an visualize the photon maps as indi
atedby the green arrows in the diagram.This
hapter has des
ribed the super�
ial �ow of data in our program.For exa
t implementation details we refer to the sour
e
ode on the atta
hedCD-ROM (see appendix A). This
on
ludes the des
ription of our experi-ments, ideas, and implementations. What remains are some
on
lusive wordsgiven in part IV.

Part IVCon
lusions

Chapter 16Dis
ussion

. . . as we know, there are known knowns; there are things we knowwe know. We also know there are known unknowns; that is to saywe know there are some things we do not know. But there arealso unknown unknowns - the ones we don't know we don't know.Donald Rumsfeld, US Se
retary of Defen
e (2003)

298 Dis
ussionOne purpose of this thesis was to move realisti
 image synthesis
loser to real-time
omputer graphi
s. After thorough studies of illumination methods andhow to repli
ate the intera
tion of light with matter we set out to generateour own methods for simulation of global illumination e�e
ts in real-time. Anumber of ideas appeared and one was
hosen as the most promising. Thisidea, referred to as dire
t radian
e mapping, has been dis
ussed in detail in
hapter 12.Another obje
tive was to produ
e the entire work �ow from the
reationof s
ene meshes to the illumination of them in real-time, using a dynami
appli
ation. This obje
tive has been obliged through revision of Blenderand the building of a demonstration appli
ation (the JR Viewer). The fun
-tionalities of Blender were des
ribed in
hapter 10 and the demonstrationappli
ation was presented in
hapter 14.In this
hapter we will
on
entrate on the parts that yet remains tobe dis
ussed in this report. Se
tion 16.1 will address future aspe
ts of theproje
t and what we would have done if more time had been available. Theappli
abilities of the proje
t ideas, results, and experiments will be dis
ussedin se
tion 16.2.16.1 Future experimentsThe idea of dire
t radian
e mapping
ame to us at a fairly late time dur-ing the proje
t, sin
e it was the out
ome of in-depth theoreti
al studies ofglobal illumination and the pra
ti
al angle gained through implementationof di�erent illumination methods. The same studies and implementationsformed a number of other ideas as well presented in
hapter 11. It
ouldbe interesting to pursue some of the ideas a little further. The more
on-
eptual ideas su
h as the topologi
al network des
ribed in se
tion 11.2 andthe multi-agent approa
h des
ribed in se
tion 11.4 are the ideas that we �ndmost interesting for future development. These two approa
hes
ould be
ombined and perhaps they may even be useful in a
ombination with dire
tradian
e mapping.A modest idea su
h as angular visibility, des
ribed in se
tion 11.1,
anin fa
t �nd many small appli
abilities here and there. Re
all, for example,that we assume in our dire
t illumination
al
ulation that light sour
es arevery distant from the s
ene. This means that the angle used for the
osineterm in the radian
e
al
ulation is found a

ording to the dire
tion towardsthe
enter of the light sour
e. The result is that the side of the large box inthe Cornell box (see �g. 12.2) is entirely bla
k though the area light sour
ewould in fa
t illuminate it from a part of its area. The angular visibility
ould be used to �nd the size of this area and thereby a better estimate ofthe dire
t illumination resulting from an isotropi
 area light approximatedby a point light would be available.

16.1 Future experiments 299Dire
t radian
e mapping in itself still
ontains unexplored territories.There are many interesting expansions and experiments that
ould be workedwith. The method still has many �aws and ideas for removing some of theseare presented in
hapter 12. To better
ompare the
on
ept of dire
t radian
emapping with ordinary global illumination methods and to generate a proofof
on
ept implementation, it
ould also be interesting to implement the
on
eptual method (se
. 12.1) in software with an a
tual network for lightpropagation instead of the instru
tion limited implementation that we havenow on the GPU.In the nearest future a trimming of the method would be appropriateremoving some of the most signi�
ant drawba
ks like �i
kering and overex-posure of indire
t illumination and missing indire
t shadows, some proposalsfor their solutions were given in
hapter 12.New GPUs, already available at the market, have fun
tionalities whi
hour method
an bene�t from signi�
antly. Important fun
tionalities of 6thgeneration GPUs are the feature
alled render to multiple targets, whi
hwould make the many passes for rendering low-resolution texture a singlepass or two only, and true looping whi
h
an signi�
antly improve on thepro
essing time
onsumed by our fragment programs for indire
t illumina-tion. Render-to-texture is another improvement that we even
ould havetried on the hardware we
urrently have available. Unfortunately we did not�nd time for this. Wishful thinking from our side is to hope for new GPUswith a mipmapping instru
tion available in fragment programs.The demonstration appli
ation of the proje
t also has its limitations. Asthe basi
 appli
ation is merely made to demonstrate our proje
t a

omplish-ments and to show that we are able to use s
enes that we have modeledexternally in a modeling tool, it is important to make the export and imports
ripts more robust and
ooperative. This is
ru
ial for using our implemen-tations in other
onne
tions. Therefore a future assignment is to improve onthose.A number of global illumination algorithms have been implemented for
omparison purposes. These implementations have also been important inour learning pro
ess and therefore more su
h implementations are wel
omein the future.For
omparison purposes as well, it
ould be enlightening to implementsome of the
ompetitive methods des
ribed in
hapter 6. As mentioned inse
tion 12.4 some of the ideas used in these methods might also be
ombinedwith dire
t radian
e mapping. Implementing them would therefore be anopportunity to study the method in details and �nd out how
ombinations
ould be
arried out best.In
hapter 12 we mention and idea of an environment map for ea
h obje
tin the s
ene. We �nd that this idea, though dependent on the number ofobje
ts in the s
ene,
ould be very interesting to pursue. It seems as a good
hoi
e for
al
ulation of multiple boun
es in the estimate of di�usely re�e
ted

300 Dis
ussionindire
t illumination.Looking at the in
orre
t bright spots in �gure 12.6, we may shortly bringup an old-timer - Lambert after whom Lambertian surfa
es are named. Inhis Photometria (1760) Lambert presented the ��ve-times� rule of thumb [2,p. 187℄:If the distan
e from the light sour
e is �ve times or more thatof the light's width, then the inverse square law is a reasonableapproximation and so
an be used. Closer than this and thesolid angle the light
overs will vary noti
eably di�erent from aninverse square relationship.Thinking of the sample points in our s
ene as light sour
es of a size equalto eg. AM=N , where N is the number of sample points, we may be able toavoid the bright spots by Lambert's ��ve-times� rule of thumb.Though mipmaps are dis
ussed here and there in the pre
eding
hapters,we think that many opportunities yet lie in mipmapping
ombined withdire
t radian
e mapping. An idea is to use a mipmap for the light sour
eimages. Then we should use the level in the mipmap that
orresponds bestto the number of sample points that we
an a�ord. This might make dire
tradian
e mapping mu
h more robust. Another thing is that we
ould
ombineshadow maps with this idea. Then the shadow map
an use a high resolutiontexture while DRM uses a low resolution texture at a higher level in themipmap. For this to work, it is ne
essary that we must be able to
hoosespe
i�
ally in the fragment program, whi
h level in the mipmap that wewant to use. This fun
tionality is fortunately available on modern graphi
shardware.With respe
t to modeling it would be ni
e to examine the Blender Renderin-depth. Then we
ould
ompare Blender renders to our own renderings.Also we
ould
ompare our real-time results to the real-time results availablethrough Blender's game engine.As a development of our work �ow
on
ept we would also like to developthe JR Viewer further by adding di�erent features
ontinually. Examples offeatures are: Conne
tion of several s
enes, animations and dynami
 lighte�e
ts, and maybe even a physi
s engine. By adding su
h features we wouldgradually
ome
loser to a truly dynami
 appli
ation and eventually we wouldhave all the tools needed for a free of
harge game development platform.This se
tion holds many ideas for future experiments and more
ouldprobably be found. For example, we
ould work on some of the subje
tsthat have largely been negle
ted in this proje
t; S
ene graphs, spatial datastru
tures, anti-aliasing, real-time soft shadows, et
. This
on
ludes ourdis
ussion on future work. In the following se
tion we will dis
uss the appli-
abilities of this proje
t.

16.2 Appli
ability 30116.2 Appli
abilityDire
t radian
e mapping in its
urrent form is not su�
ient for use in
om-mer
ial appli
ations it is still on an experimental stage. To make it suitablefor
ommer
ial appli
ations there are many problems that must be dealtwith. First of all the frame rate must be higher and the �i
kering andoverexposure of indire
t illumination must be
orre
ted. With more timeinvested in improvements of the method and the frequently in
reasing speedof graphi
s hardware we believe that there is hope for dire
t radian
e map-ping. Still the method very mu
h depends on hardware and sin
e it maytake a while before GPUs be
ome fast enough for the method, it will takeeven longer before the average
onsumer will have su
h hardware available.One thing speaking in favor of dire
t radian
e mapping, in this respe
t, isthat it
an be applied at di�erent levels of
omplexity (the sample points
an be adjusted or spread over several frames).One of the goals of this proje
t was to
reate a platform for developingreal-time dynami
 appli
ations su
h as
omputer games. During the proje
twe have managed to establish the beginning of a free of
harge game de-velopment platform. This is done using various sour
es in
luding our ownsoftware. All tools that have been used, from
ompiler to modeling program,are free of
harge and available on the internet. Although we have not
re-ated a
omplete game we have taken the �rst small step by generating anappli
ation able to present our own modeled s
enes using our own renderengine. Of
ourse there is a long way to a �nished produ
t, but we believe tohave provided a proof of
on
ept showing that it is possible to get far withlittle expenses on software.The appli
ation that we have built is used mainly for presentation pur-poses and for
omparing di�erent rendering methods. As it is possible to loadarbitrary s
enes in X3D format others
an use the appli
ation for demon-stration purposes as well. The appli
ation
an of
ourse be used by othersto
ompare their rendering methods with the traditional methods as well asours.In the �nal
hapter we will sum up on the report and give our �nalremarks.

302 Dis
ussion

Chapter 17Con
lusion

We have a habit in writing arti
les published in s
ienti�
 journalsto make the work as �nished as possible, to
over up all the tra
ks,to not worry about blind alleys or des
ribe how you had the wrongidea at �rst, and so on. So there isn't any pla
e to publish, in adigni�ed manner, what you a
tually did in order to get to do thework. Ri
hard Bu
kminster Fuller (1895-1983)

304 Con
lusionThis thesis en
ompasses two main obje
tives. First, we wanted to explorehow
lose we
ould bring realisti
 image synthesis to real-time exe
utionrates, and se
ondly, we wanted to make a platform for development of real-time appli
ations.The report is divided into four parts. The �rst part mainly serves the �rstobje
tive, the se
ond part mainly serves the se
ond obje
tive, and part IIIserves both obje
tives by a presentation of the ideas, results, and experimentsthat we have had during this proje
t. Part IV (this part) dis
usses and
on
ludes the report.The �rst part builds the theoreti
 foundation for the rest of the proje
t.The
hapters of this part have served several purposes. Chapter 2, for exam-ple, presents an array-based math engine whi
h
an be used for an e�
ientimplementation of ve
tor and matrix math. Chapter 3 is important in or-der to understand the fundamental illumination model behind the globalillumination that we would like to simulate in real-time. Having a goodunderstanding of the global illumination model enable us to dis
over theabilities and limitations of a method before taking it too far.The theoreti
al angle to a subje
t is rarely enough to give a full under-standing. Therefore we introdu
ed di�erent traditional methods for bothrealisti
 image synthesis (
hapter 4) and real-time rendering (
hapter 5).Whi
h parts of these methods that we have implemented are des
ribed in
hapter 13.During the implementation of these methods we
ame up with severalideas, some for improvement of spe
i�
 methods, others for more
on
eptualapproa
hes to rendering of global illumination. The ideas are des
ribed in
hapter 11 and listed below.1. Angular visibility between axis aligned bounding boxes (AABBs) forfewer interse
tion tests in ray tra
ing.2. A topologi
al network for radian
e transfer between obje
ts.3. Displa
ement mapping for fast ray/obje
t interse
tion.4. A multi-agent approa
h to global illumination, where ea
h obje
t is anautonomous agent
ontrolling its own shade.5. An `atmosphere' to limit the in�uen
e of ea
h obje
t in global illumi-nation.6. A line-of-sight algorithm for fewer interse
tion tests in ray tra
ing.7. Gouraud interpolation of the �rst interse
tion point. A rasterizationapproa
h to the �rst level of the ray tra
ing algorithm.8. Single pixel images ea
h representing a ray. An attempt to let rasteri-zation do full re
ursive ray tra
ing.

305A
ombination of the di�erent traditional methods we had implementedand the ideas in
hapter 11, ended up in a spe
i�
 idea
alled dire
t radian
emapping, whi
h found its inspiration in the idea of angular visibility andmade extensive use of the idea
on
erning Gouraud interpolation of the �rstinterse
tion point.Chapter 12 basi
ally des
ribes dire
t radian
e mapping. First the
on-
eptual idea is des
ribed (in se
. 12.1) to give an insight in the thoughts thatled to the idea. The
on
eptual formulation of the idea may not be pra
ti
alfor implementation purposes, but it gave us many ideas for solutions to theproblems and limitations that we found in the method.The dire
t radian
e mapping method is des
ribed in se
tion 12.2. Build-ing on the theory of part I, a pra
ti
al method for implementation of dire
tradian
e mapping is des
ribed mathemati
ally step by step. Dire
t radian
emapping was originally an idea for simulation of a single boun
e of di�uselyre�e
ted indire
t illumination.To have possibilities of both expansions of dire
t radian
e mapping and
omparison of dire
t radian
e mapping to other methods simulating the samepart of the global illumination model, a number of other methods for real-time global illumination were explored. These are des
ribed in
hapter 6.The study of methods presented by others is, of
ourse, important to theproje
t both for ideas and for
omparison purposes.A number of extensions to dire
t radian
e mapping have been done.Those in
lude use of sten
iled planar re�e
tions and environment mappingfor spe
ular re�e
tions, and use of sten
iled shadow volumes for hard shad-ows. We also propose a simple version of subsurfa
e s
attering as an ex-tension to dire
t radian
e mapping. We
an therefore
on
lude that dire
tradian
e mapping is ri
h in possibilities for expansions, whi
h is importantwhen we think of the many
urrent problems and limitations. Limitationssu
h as la
k of multiple boun
es and missing indire
t shadows are worst sin
ethey are not solved in the original method. Lesser problems have also beendis
overed but we
an explain them through our mathemati
al des
riptionand give possible solutions for them.The general
omparison between dire
t radian
e mapping and other meth-ods for global illumination e�e
ts in real-time revealed some short
omingsof the method. However, it also revealed several advantages parti
ularly in
onne
tion with freedom of the s
ene mesh,
ompared to some of the othermethods. A s
heme holding the di�erent methods up against ea
h other
anbe found in
hapter 12, table 12.1. Although there are still features missingwe have suggested solutions to most problems mentioned, and as the methodmust be
lassi�ed as in an early state of development we still �nd hope forit. All options are still open.Part II takes a more pra
ti
al angle addressing the se
ond obje
tive ofthe proje
t, whi
h was to
reate a platform for development of real-timeappli
ations. The
hapters of the part address di�erent modeling issues.

306 Con
lusionThe last
hapter (10) introdu
es Blender; a free of
harge modeling appli
a-tion. Through Blender we
an generate models for later use in a dynami
appli
ation. This should be seen as an initializing step towards
reation of
ommer
ial dynami
 appli
ations su
h as
omputer or
onsole games.Later in part III we des
ribe the JR Viewer, our demonstration appli
a-tion, whi
h
an be seen as a beginning implementation of a dynami
 appli
a-tion. This is justi�ed sin
e we are able to render a s
ene
ontaining our ownmodeled s
enes using our own implementations in a separate appli
ation.The JR Viewer even allow us to move obje
ts about in a simple manner us-ing the tra
k ball and pi
king fun
tionalities. The tra
k ball was developedto enable intera
tive movement of obje
ts in se
tion 9.3.The fa
t that the work �ow has been
reated alone from freeware tools
an be seen as a proof of
on
ept, that it is possible to get started as adeveloper with little or no �nan
ial means.From the dis
ussion
hapter and the
hapter
on
erning dire
t radian
emapping we
an
on
lude that mu
h work is still to be done. Our methodis in an early stage of development and several ideas for improvements aresuggested throughout the report, just waiting to be implemented and tested.Dire
t radian
e mapping depends very mu
h on hardware. The develop-ment in this �eld is
urrently rapid and pointing in dire
tions bene�
ial toour method. We believe, without doubt, that already the next generationof GPUs will enable features that
an improve our method signi�
antly interms of frame rate and sample points. This is not only build on intuition butalso on promised features like more instru
tions possible and better loopingin fragment programs as well as render to multiple targets, whi
h would allbe very useful for dire
t radian
e mapping.We believe that global illumination
ontinuously will move towards areal-time implementation with little or no limitations. Whether or not dire
tradian
e mapping will be useful in this pro
ess, only time
an show.

Appendix AContents of Atta
hed CD-ROMThe
ompa
t dis
 a

ompanying this report
ontains all the tools used forthe proje
t. These are also available on the internet in the newest versions(Blender as an example has been updated twi
e during this proje
t alone).The CD also
ontains many of the arti
les and other writings presented inthe referen
e list. Most writings are in .pdf format and named after the titleof the paper. Finally our appli
ation and all the program
ode are in
luded.The JR Viewer is made exe
utable from the root of the CD. To exe
ute runthe �le JRView.bat or programJRView.exe.

308 Contents of Atta
hed CD-ROMThe following list presents the
ontents on the CD.Library Contents..\. (root) A s
ript running an exe
utable ver-sion of the JR Viewer demonstrationappli
ation (JRView.bat)..\lit All literature available in digitalform that is referred to in the report.The literature is sorted by author insubdire
tories...\lit\TUTMAN Tutorials and manuals for di�erenttools and programming languagesused in the proje
t...\modeling Contains the installation �les for thedi�erent Blender versions availablefor us through the proje
t. Thedes
riptions in part II �ts version2.33a. Newest version is alwaysavailable on www.blender.org...\modeling\export The export s
ript used for exporting�les from Blender in X3D format...\modeling\manual The Blender manual from the website www.blender.org in pdf format...\modeling\s
enes Di�erent s
enes
reated during theproje
t in
luding those used in theJR Viewer. All in the blend formatused by Blender...\program Contains the
ode �les. The stru
-ture is presented in appendix C...\report The report in pdf and ps format asreport01.pdf and report01.ps...\tools\reader Installation �le for A
robat Reader..\tools\CG Installation �le for the CG library..\tools\
ompiler Installation �le for the BorlandC++ Command Line Compiler 5.5
ompiler used in this proje
t and themakegen appli
ation used to gener-ate make �les...\tools\latex A tutorial for LaTeX in the �letnssitl.pdf..\tools\OpenGL dll �les needed to run OpenGL.

Appendix BHistori
al RemarksThe nature of light has been studied and investigated ever sin
e man beganto philosophize.Presumably the Pythagoreans (�582�500 BC.) of an
ient Gree
e putforth the �parti
le� theory of light [138℄ in whi
h it is hypothesized that theeyes send rays to obje
ts and that these rays give us information about theobje
t's shape and
olor [96℄.Though we know, today, that light is emitted from light sour
es, notthe eyes, the mathemati
al model des
ribed by the an
ient philosophers isbasi
ally the same as when we tra
e rays from the eyes in ba
kward raytra
ing.The �rst to theorize that the medium of sight (light) is from the obje
tand is re
eived by the visual per
eption organ (eye) is Empedo
les (�480BC.) [96℄. However, many years should pass before this theory was generallya

epted.Eu
lid's Opti
s (�300 BC.) is the oldest surviving work on geometri
alopti
s (or ray opti
s) [32℄. He notes that light travels in straight lines. Fur-thermore the prin
iples of perspe
tive are established and the law of re�e
tionis given [33℄, presented below in its modern enun
iation [116℄:The re�e
ted ray lies in the plane of in
iden
e;the angle of re�e
tion equals the angle of in
iden
e.Approximately one and a half
enturies later Hero (or Heron) of Alexan-dria (�150 BC.) showed geometri
ally that the a
tual path taken by a rayof light re�e
ted from a plane mirror is shorter than any other re�e
ted paththat might be drawn between the sour
e and the point of observation [4℄.The prin
iple of the path of minimum distan
e is later known as Hero's Prin-
iple. This result leads towards Fermat's Prin
iple that should later be
omeone of the four fundamental postulates of ray opti
s [116℄.Refra
tion when light passes from air into water or glass was observedand studied by Cleomedes (50 AD.) and Ptolemy (130 AD.). In the work of

310 Histori
al Remarksthe latter it is suggested that the angle of refra
tion is proportional to theangle of in
iden
e [4℄. Later this shall result in Snell's law.Through logi
 and experimentation the Arabian s
ientist and s
holarIbn al-Haitham1 known to the Europeans as Alhazen (965�1039 AD.) �nallydis
ounted the theory that vision issues forth from the eye. He used a fore-runner of the
amera obs
ura (a pinhole
amera) as a model for the eye andinvestigated both spheri
al and paraboli
 mirrors. He was aware of spheri
alaberration and also investigated the magni�
ation produ
ed by lenses andatmospheri
 refra
tion. His work in�uen
ed all later investigations on light[138, 4, 82℄.Quite a few
enturies should now pass before the next break throughin the theory of light would emerge. Opti
s had again be
ome an ex
it-ing area of resear
h with the invention of teles
opes and mi
ros
opes in theearly seventeenth
entury. In 1611 Johannes Kepler dis
overed total inter-nal re�e
tion and des
ribed the small angle approximation to the law ofrefra
tion [30℄. A de
ade later, in 1621, Willebrord Snell dis
overed the re-lationship between the angle of in
iden
e and the angle of refra
tion whenlight passes from one transparent medium to another [4℄. This relationshipis
alled Snell's law, whi
h led to the law of refra
tion. The same law was,in 1637, independently dis
overed and formulated in terms of sines by RenéDes
artes. It was published in his Dis
ourse on Method
ontaining a s
ien-ti�
 treatise on opti
s [26℄. In its modern form the law of refra
tion is givenas [116℄:The refra
ted ray lies in the plane of in
iden
e; the angle ofrefra
tion �2 is related to the angle of in
iden
e �1 by Snell's law,n1 sin �1 = n2 sin �2Pierre de Fermat's Prin
iple of �least time�, a

ording to whi
h a ray oflight follows the path whi
h takes it to its destination in shortest time, isenun
iated in 1657 [4℄. From this prin
iple both the laws of re�e
tion andrefra
tion
an be dedu
ed. Today Fermat's Prin
iple has a slightly di�erentpresentation [116℄:Opti
al rays traveling between two points, A and B, follow a pathsu
h that the time of travel (or the opti
al path length) betweenthe two points is an extremum relative to neighboring paths.The extremum may be a minimum, a maximum, or a point of in�e
tion.It is, however, usually a minimum, in whi
h
ase Fermat's original formula-tion is true. In a homogenous medium the index of refra
tion (n) is the same1Full name: Abu Ali Mohamed ibn al-Hasan Ign al-Haytham.

311everywhere, and so is the speed of light. The path of minimum light is thenalso the path of minimum distan
e, whi
h leads to the following formulationof Hero's Prin
iple: In a homogenous medium light travels in straight lines[116℄. De
idedly Hero's Prin
iple is a spe
ial
ase of Fermat's Prin
iple.In 1665, Grimaldi and Hooke
on
lude upon their observations of di�ra
-tion, the phenomenon where light �bends� around obstru
ting obje
ts, thatlight is a �uid that exhibits wave-like motion. Hooke proposed a wave theoryof light to explain this behavior [30℄. Around the same time Isaa
 Newtondes
ribes his theory of
olor using a prism to show that white light is a
ombination of di�erent
olors [4℄ (the phenomenon is
alled dispersion).Ole Rømer dedu
es an approximate value of the speed of light in 1676.This is done from detailed observations of the e
lipses of the moons of Jupiter.From Rømer's data, a value of about 2 � 108m=s is obtainable [4℄.A major milestone for a wave theory of light is the "Traite de Lumiere"published by Huygens in 1690. He
onsidered that light is transmittedthrough an all-pervading aether that is made up of small elasti
 parti
les,ea
h of whi
h
an a
t as a se
ondary wavelet [4℄. Huygens also dis
overedthe phenomenon of polarization during his experiments [30℄. His theory was,though able to explain many of the known propagation
hara
teristi
s oflight, put aside when Newton published his "Opti
ks" (1704) in whi
h heput forward the view that light is
orpus
ular (parti
les traveling in straightlines).A
entury should pass before Thomas Young (1801) provided the ne
es-sary support for a wave theory of light by demonstration of the prin
iple ofinterferen
e through his double-slit experiment.In 1816, Augustin Jean Fresnel presents a rigorous treatment of di�ra
-tion and interferen
e phenomena showing that they
an be explained in termsof a wave theory of light. Later (1821) he presented the laws whi
h enablethe intensity and polarization of re�e
ted and refra
ted light to be
al
u-lated, [4, 30℄. Modern text books present the Fresnel equations as follows[60℄: �k = �2
os �1 � �1
os �2�2
os �1 + �1
os �2�? = �1
os �1 � �2
os �2�1
os �1 + �2
os �2Fr(�) = 12(�2k + �2?)Using the wave theory Helmholtz (1821�1894) re
ords the
urves for thebasi
 mixing
olors: ultramarine blue, green, and red. These three
olorsand their mixing
olors are as
ribed to three kinds of
olor sensitive re
ep-tors in the eye. This theory be
omes known as the Young-Helmholtz ThreeComponent Theory [96℄.

312 Histori
al RemarksMaxwell puts forth his famous theory of the ele
tromagneti
 �eld in1865. Taking earlier experimental and theoreti
al work of Coulomb, Poisson,Ørsted, Ampere, Faraday, and others; he
ompleted the theory [76℄. Fromhis studies of the equations des
ribing ele
tri
 and magneti
 �elds, it wasfound that the speed of an ele
tromagneti
 wave should, within experimen-tal error, be the same as the speed of light. Maxwell
on
luded that light isa form of ele
tromagneti
 wave [4℄.Heinri
h Hertz validated Maxwells theory experimentally [76℄ and in1887 he a

identally dis
overed the photoele
tri
 e�e
t, whi
h is the pro
esswhereby ele
trons are liberated from materials under the a
tion of radiantenergy [30℄. An e�e
t that
an not be des
ribed by the wave model.Nevertheless light
an, at this point, be des
ribed as the visible part of thespe
trum of ele
tromagneti
 radiation. Ele
tromagneti
 waves range fromradio waves, whi
h
an have wavelengths of kilometers, to
osmi
 rays withwavelengths of less than 10�10
entimeter. The range of visible wavelengthsis approximately 0:4 � 0:7�m, and it is in
luded in the area of ele
tromag-neti
 waves dete
ted as heat radiation [121℄. The resear
h area of thermalradiation heat transfer is therefore of interest to the theory of light.In 1879 Joseph Stefan published an experimental investigation of thespe
tral distribution of heat transfer from bodies of di�erent temperatures.His results were a number of
urves showing that the emitted power in
reaseswith in
reasing temperature, and that the maximum point of a distributionis found at shorter wavelengths when the temperature in
reases [11℄.A few years later (1884) Ludwig Boltzmann was able to dedu
e theo-reti
ally that the emissive power varies with the temperature power four.Similarly Willy Wien2 dedu
ed the displa
ement law a de
ade later (1896):�maxT =
onstantSin
e heat and light is ele
tromagneti
 waves, many attempts to �nd a
onne
tion between the experimental results of Stefan and the theoreti
alresults of Boltzmann and Wien were
ondu
ted using Maxwell's equations.However, it was only possible to �nd fun
tional expressions that
ould
on-�rm Stefan's experimental results at very long or at very short wavelengths[11℄. In 1901 Max Karl Ernst Ludwig Plan
k provided the missing
on-
ept. He proposed the existen
e of a light quantum, based on this quantumtheory he was able to explain the spe
trum of radiation emitted from abla
kbody [107℄. Plan
k found it ne
essary to introdu
e a universal
on-stant des
ribed as the quantum of a
tion, now known as Plan
k's
onstant(h � 6:63 � 10�34Js) [4℄.Plan
k's theory remained mystifying until Albert Einstein in 1905 ex-plained the photoele
tri
 e�e
t on the basis that light is quantized, the2Willy was a
onvenient ni
kname sin
e his full name was Wilhelm Carl Werner OttoFritz Franz Wien.

313quanta would subsequently be
ome known as photons [4℄. During the nexttwo de
ades s
ientists re
ast all of physi
s to be
onsistent with Plan
k'stheory [82℄. However, the wave model of light was still ne
essary to des
ribephenomena su
h as interferen
e and di�ra
tion - Niels Bohr
alled this the
omplementary nature of light [60℄.In 1913, Bohr put forth a theory explaining the observation that atomsabsorb and emit light at parti
ular frequen
ies that are
hara
teristi
 ofthe atom [4℄. His theory was based on quantum me
hani
s. By
onsider-ing submi
ros
opi
 phenomena, resear
hers su
h as Bohr, Born, Heisenberg,S
hrödinger, Pauli, De Broglie, Dira
, and others, have been able to explainthe
omplementary nature of light [30℄.To summarize four major models for the explanation of light have beenput forth through times. Those are ray opti
s, wave opti
s, ele
tromagneti
opti
s, and quantum (or photon) opti
s. Ea
h model has a set of postulateson whi
h all possible results of that model depend. The more advan
edmodels in
lude the simpler ones and therefore the postulates of ray opti
sfor example follows naturally from the postulates of wave opti
s. A thoroughexplanation is provided in [116℄.

314 Histori
al Remarks

Appendix CStru
ture of Sour
e Files andLibraries

316 Stru
ture of Sour
e Files and Libraries
BMesh

CG

engine

file

headers

Components

AdjFace.cpp load_mesh.cpp OneRing.cpp TexmapDraw.cpp
AdjFaceList.cpp Material.cpp OneRingDB.cpp TriMesh.cpp
Bmesh.lib mesh_plane.cpp Parse.cpp vrml_save.cpp
draw.cpp MeshFunc.cpp smooth.cpp x3d_load.cpp
Edge.cpp obj_load.cpp TexCoord.cpp X3DBMesh.cpp
Instance.cpp Object.cpp Texmap.cpp

direct.cg indirect.cg phongshade_fp.cg subsurf_fp.cg
direct_fp.cg indirect_fp.cg position.cg translucent_fp.cg
directVertOnly.cg indirSubSurf_fp.cg reflection.cg
extrude.cg normal.cg refraction.cg

AreaLightSource.cpp PointLightSource.cpp LightSource.h Timer.h
BSPTree.cpp Ray.cpp Material.h Triangle.h
Camera.cpp Sphere.cpp Mesh.h Window.h
envmap.cpp Traingle.cpp nnraytrace.h World.h
Material.cpp World.cpp Object3D.h AABB.h
Mesh.cpp AABB.cpp PhotonMap.h
nnraytrace.cpp BSPTree.h Plane.h
PhotonMap.cpp Camera.h Ray.h
Plane.cpp envmap.h Sphere.h

file.cpp FinalScene.x3d
file.h

AdjFace.h Material.h Parse.h
AdjFaceList.h mesh_plane.h TexCoord.h
draw.h Mesh4FaceModifier.h TexMap.h
Edge.h MeshFunc.h TexmapDraw.h
Instance.h obj_load.h TriMesh.h
Light.h Object.h vrml_save.h
load_mesh.h OneRing.h x3d_load.h
loader.h OneRingDB.h X3DBMesh.h

Timer.h

BMesh

GL extgl.h glui.h glut.h

ME MEdouble2.h MEfloat3x3.h MESqMatrix.h
MEdouble3.h MEfloat4.h MEVector.h
MEdouble3x3.h MEfloat4x4.h Quaternion.h
MEdouble4.h MEfloatQuat.h
MEdouble4x4.h MEint2.h
MEfloat2.h MEint3.h
MEfloat3.h MEMatrix.h

expat.h
Timer.h

logo bitmap.cpp bitmap.h logo.h
logo.cpp JRLogo2.bmp

MEsrc MEfloat3.cpp MEfloat4.cpp MEint3.cpp

photonmaps photonmaps.cpp photonmaps.h

radiosity Hemicube.cpp SceneGraph.cpp Mesher.h Tools.h
IdexedFaceSet.cpp SceneGraphLoader.cpp ProgRef.h Resource1.xml
Loader.cpp SceneGrapTools,cpp radiosity.h Resource2.xml
Mesher.cpp Tools.cpp ResourceLoader.h cornell_1.x3d
ProgRef.cpp DataFormat.h SceneGraph.h cornell_2.x3d
radiosity.cpp Hemicube.h SceneGraphLoader.h
ResourceLoader.cpp Loader.h SceneGraphTools.h

317

raytracing

textures

TrackBall

JRLogo32.ico
menu.rc
menuFlags.h
message.h
main.cpp
resource.h

rasterization rasterization.cpp rasterization.h

raytracing.cpp raytracing.h

textures.cpp textures.h

TrackBall.cpp TrackBall.h

318 Stru
ture of Sour
e Files and Libraries

Bibliography[1℄ Tomas Akanine-Möller and Ulf Assarsson. Approximate soft shadowson arbitrary surfa
es using penumbra wedges. In Rendering Te
hniques'02 (Pro
. of the Thirteenth Eurographi
s Workshop on Rendering),pages 297�306, 2002.[2℄ Tomas Akenine-Möller and Eri
 Haines. Real-Time Rendering. A KPeters, Nati
k, Massa
husetts, se
ond edition, 2002.[3℄ Edward Angel. Intera
tive Computer Graphi
s: A Top-Down Approa
hUsing OpenGLTM. Addison-Wesley, third edition, 2003.[4℄ A brief history of opti
s. http://members.aol.
om/WSRNet/D1/hist.htm. A
-
essed 3rd of June 2004.[5℄ James Arvo and David B. Kirk. Parti
le transport and image synthe-sis. Computer Graphi
s (SIGGRAPH '90 Pro
eedings), 24(4):63�66,August 1990.[6℄ Ian Ashdown. Photometry and radiometry: A tour guide for
omputergraphi
s enthusiasts. www.helios32.
om/Measuring Light.pdf, O
tober 2002.[7℄ Ulf Assarsson. A Real-Time Soft Shadow Volume Algorithm. PhDthesis, Chalmers University of Te
hnology, 2003.[8℄ Ulf Assarsson, Mi
hael Dougherty, Mi
hael Mounier, and TomasAkenine-Möller. An optimized soft shadow volume algorithmwith real-time performan
e. In M Doggett, W. Heidri
h,W. Mark, and A. S
hilling, editors, Pro
eedings of the ACM SIG-GRAPH/EUROGRAPHICS Conferen
e on Graphi
s Hardware, pages33�40. Eurographi
s Asso
iation, 2003.[9℄ James F. Blinn. Models of light re�e
tions for
omputer synthesizedpi
tures. Computer Graphi
s (SIGGRAPH '77 Pro
eedings), pages192�198, July 1977.[10℄ James F. Blinn and Martin E. Newell. Texture and re�e
tion in
om-puter generated images. Communi
ations of the ACM, 19(10):542�547,O
tober 1976.

320 BIBLIOGRAPHY[11℄ Erik Both and Gunnar Christensen. Termodynamik. Den private In-geniørfond, third edition, 2002.[12℄ Chris Brennan. Shadow volume extrusion using a vertex shader. InWolfgang F. Engel, editor, ShaderX: Vertex and Pixel Shader Program-ming Tips and Tri
ks. Wordware, May 2002.[13℄ Nathan A. Carr, Jesse D. Hall, and John C. Hart. GPU algorithms forradiosity and subsurfa
e s
attering. In Pro
eedings of the ACM SIG-GRAPH/EUROGRAPHICS
onferen
e on Graphi
s hardware, pages51�59. Eurographi
s Asso
iation, 2003.[14℄ Jens Mi
hael Carstensen, editor. Image Analysis, Vision, and Com-puter Graphi
s. IMM, Te
hni
al University of Denmark, Lyngby, 2001.[15℄ Subrahmanyan Chandrasekhar. Radiative Transfer. Dover Publi
a-tions, In
., New York, 1960. Unabridged and slightly revised editionof the work �rst published in 1950.[16℄ Keshav Channa. Light mapping - theory and implementation.http://www.�ip
ode.
om/arti
les/arti
le_lightmapping.shtml, July 2003. A
-
essed 31st of August 2004.[17℄ Per H. Christensen. Adjoints and importan
e in rendering: Anoverview. IEEE Transa
tions on Visualization and Computer Graph-i
s, 9(3), 2003.[18℄ Mi
hael F. Cohen and Donald P. Greenberg. The hemi-
ube: A ra-diosity solution for
omplex environments. Computer Graphi
s (SIG-GRAPH '85 Pro
eedings), 19(3):31�40, July 1985.[19℄ Mi
hael F. Cohen and John R. Walla
e. Radiosity and Realisti
 ImageSynthesis. A
ademi
 Press Professional, 1993.[20℄ Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed raytra
ing. Computer Graphi
s (SIGGRAPH '84 Pro
eedings), 18(3):137�145, July 1984.[21℄ Robert L. Cook and Kenneth E. Torran
e. A re�e
tan
e model for
omputer graphi
s. ACM Transa
tions on Computer Graphi
s, 1(1):7�24, 1982.[22℄ Franklin C. Crow. Shadow algorithms for
omputer graphi
s. Com-puter Graphi
s (SIGGRAPH '77 Pro
eedings), 11(3):242�248, July1977.[23℄ Haskell Brooks Curry and Robert Feys. Combinatory Logi
, volume 1.North Holland Publishing Company, Amsterdam, 1958.

BIBLIOGRAPHY 321[24℄ Erik B. Dam, Martin Ko
h, and Martin Lillholm. Quaternions, interpo-lation and animation. Te
hni
al Report DIKU-TR-98/5, Departmentof Computer S
ien
e, University of Copenhagen, July 1998.[25℄ Mark de Berg, Mar
 van Kreveld, Mark Overmars, and OtfriedS
hwartzkopf. Computational Geometry: Algorithms and Appli
ations.Springer, Berlin, se
ond edition, 2000.[26℄ René Des
artes. Dis
ourse on Method, Opti
s, Geometry, and Meteo-rology. Ha
kett Publishing Co, In
, revised edition, May 2001.[27℄ Kirill Dmitriev, Stefan Brabe
, Karl Myszkowski, and Hans-Peter Sei-del. Intera
tive global illumination using sele
tive photon tra
ing. InRendering Te
hniques '02 (Pro
. of the Thirteenth Eurographi
s Work-shop on Rendering), pages 21�34, 2002.[28℄ Craig Donner and Henrik Wann Jensen. Faster gpu
omputations usingadaptive re�nement. In Pro
eedings of SIGGRAPH 2004, Te
hni
alSket
hes, August 2004.[29℄ Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, andHans Køhling Pedersen. Modeling and rendering of weathered stone.In Pro
eedings of SIGGRAPH 1999, pages 411�420, 1999.[30℄ Philip Dutré, Philippe Bekaert, and Kavita Bala. Advan
ed GlobalIllumination. A K Peters, Nati
k, Massa
husetts, 2003.[31℄ Jens Eising. Lineær algebra. Institut for Matematik, DanmarksTekniske Universitet, 1997.[32℄ Adventures in
ybersound: Eu
lid. http://www.a
mi.net.au/AIC/EU-CLID_BIO.html. A

essed 14th of May 2004.[33℄ Eu
lid. Opti
s. http://www.
alstatela.edu/fa
ulty/hmendel/An
ient Mathe-mati
s/Eu
lid/Opti
s/Opti
s.html. A

essed 14th of May 2004.[34℄ Cass Everitt and Mark J. Kilgard. Pra
ti
al and robust sten
iledshadow volumes for hardware-a

elerated rendering. NVIDIA WhitePaper, Mar
h 2002. http://developer.nvidia.
om.[35℄ Kasper Fauerby and Carsten Kjær. Real-time soft shadows in a gameengine. Master's thesis, Department of Computer S
ien
e, Universityof Aarhus, De
ember 2003.[36℄ Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The De�ni-tive Guide to Programmable Real-Time Graphi
s. Addison-Wesley,2003.

322 BIBLIOGRAPHY[37℄ F. Fisher and A. Woo. R.e versus n.h spe
ular highlights. In Paul S.He
kbert, editor, Graphi
s Gems IV, pages 388�400. A
ademi
 Press,1994.[38℄ Foley, van Dam, Feiner, and Hughes. Computer Graphi
s: Prin
i-ple and Pra
ti
e. The Systems Programming Series. Addison-Wesley,se
ond edition, 1997.[39℄ Aa. Frøslev-Nielsen. Lys, farver og farvers reproduktion. Te
hni
alreport, Den Gra�ske Højskole, 1996.[40℄ Cindy M. Goral, Kenneth E. Torran
e, Donald P. Greenberg, and Ben-nett Battaile. Modeling the intera
tion of light between di�use sur-fa
es. Computer Graphi
s (SIGGRAPH '84 Pro
eedings), 18(3):213�222, July 1984.[41℄ Henri Gouraud. Computer display of
urved surfa
es. Te
hni
al ReportUTEC-CS
-71-113, Department of Computer S
ien
e, Uni
ersity ofUtah, June 1971. Also in IEEE Transa
tions on Computers, vol. C-20,pp. 623�629, June 1971.[42℄ Jens Gravesen. Di�erential Geometry and Design of Shape and Mo-tion. Department of Mathemati
s, Te
hni
al University of Denmark,November 2002. Le
ture notes for 01243.[43℄ Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Green-berg. The irradian
e volume. IEEE Computer Graphi
s & Appli
a-tions, 18(2):32�43, 1998.[44℄ Johannes Günther, Ingo Wald, and Philipp Slusallek. Realtime
austi
susing distributed photon mapping. In H. W. Jensen and A. Keller,editors, Eurograhi
s Symposium on Rendering, 2004.[45℄ Pat Hanrahan and Wolfgang Krueger. Re�e
tion from layered surfa
esdue to subsurfa
e s
attering. Computer Graphi
s (Pro
. SIGGRAPH'93), pages 165�174, August 1993.[46℄ Xuejun Hao, Thomas Baby, and Amitabh Varshney. Intera
tive sub-surfa
e s
attering for translu
ent meshes. In Pro
eedings 2003 ACMSymposium on Intera
tive 3D Graphi
s, April 2003.[47℄ Kevin Hawkins and Dave Astle. OpenGL Game Programming. PrimaTe
h's Game Development Series. Premier Press, 2001.[48℄ Paul S. He
kbert. Adaptive radiosity textures for bidire
tional raytra
ing. Computer Graphi
s (SIGGRAPH '90 Pro
eedings), 24(4):145�154, August 1990.

BIBLIOGRAPHY 323[49℄ Tim Heidmann. Real shadows real time. IRIS Universe, (18):28�31,1991.[50℄ Heinri
h Hey. Photorealisti
 and Hardware A

elerated Rendering ofComplex S
enes. Ph.D. dissertation, Te
hnis
hen Universität Wien,Te
hnis
h-Naturwissens
haftli
he Fakultät, May 2002.[51℄ Bjarke Jakobsen, Niels J. Christensen, Bent D. Larsen, and Kim S. Pe-tersen. Boundary
orre
t real-time soft shadows. In Computer Graphi
sInternational 2004 Pro
eedings, pages 232�239, June 2004.[52℄ Greg James and Simon Green. Real-time animated translu
en
y.Game Developers Conferen
e, 2004. http://developer.nvidia.
om/obje
t/gd
_2004_presentations.html.[53℄ Henrik Wann Jensen. Global illumination via bidirektional monte
arloray tra
ing. Master's thesis, Te
hni
al University of Denmark, 1993.[54℄ Henrik Wann Jensen. Importan
e driven path tra
ing using the photonmap. In P. Hanrahan and W. Purgathofer, editors, Rendering Te
h-niques '95 (Pro
. of the Sixth Eurographi
s Workshop on Rendering),pages 326�335. Vienna: Springer-Verlag, June 1995.[55℄ Henrik Wann Jensen. Global illumination using photon maps. InXavier Pueyo and Peter S
hröder, editors, Rendering Te
hniques '96(Pro
. of the Seventh Eurographi
s Workshop on Rendering), pages21�30. Vienna: Springer-Verlag, 1996.[56℄ Henrik Wann Jensen. The Photon Map in Global Illumination. PhDthesis, Te
hni
al University of Denmark, September 1996.[57℄ Henrik Wann Jensen. Rendering
austi
s on non-lambertian surfa
es.In Wayne A. Davis and Ri
hard Bartels, editors, Graphi
s Interfa
e'96, pages 116�121, Toronto, May 1996. Canadian Information Pro-
essing So
iety, Canadian Human-Computer Communi
ations So
iety.[58℄ Henrik Wann Jensen. Parallel global illumination using photon map-ping. SIGGRAPH 2000 Course Notes, New York: ACM Press, July2000.[59℄ Henrik Wann Jensen. A pra
ti
al guide to global illumination usingphoton maps. SIGGRAPH 2000 Course Notes, New York: ACM Press,July 2000.[60℄ Henrik Wann Jensen. Realisti
 Image Synthesis Using Photon Map-ping. A K Peters, Nati
k, Massa
husetts, 2001.

324 BIBLIOGRAPHY[61℄ Henrik Wann Jensen and Juan Buhler. A rapid hierar
hi
al renderingte
hnique for translu
ent materials. In J. F. Hughes, editor, Pro
eed-ings of SIGGRAPH 2002, pages 576�581, July 2002.[62℄ Henrik Wann Jensen and Niels Jørgen Christensen. E�
iently ren-dering shadows using the photon map. In Harold P. Santo, editor,Compugraphi
s '95, pages 285�291, De
ember 1995.[63℄ Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps inbidire
tional monte
arlo ray tra
ing of
omplex obje
ts. Computers& Graphi
s, 19(2):215�224, Mar
h 1995.[64℄ Henrik Wann Jensen, Justin Legakis, and Julie Dorsey. Rendering ofwet materials. In D. Lis
hinski and G. W. Larsoi, editors, RenderingTe
hniques '99 (Pro
. of the Tenth Eurographi
s Workshop on Render-ing), pages 273�282. Vienna: Springer-Verlag, 1999.[65℄ Henrik Wann Jensen, Stephen R. Mars
hner, Mar
 Levoy, and PatHanrahan. A pra
ti
al model for subsurfa
e light transport. In Pro-
eedings of SIGGRAPH 2001, pages 511�518, August 2001.[66℄ James T. Kajiya. The rendering equation. Computer Graphi
s (SIG-GRAPH '86 Pro
eedings), 20(4):143�150, August 1986.[67℄ Ashraf A. Kassim and B. V. K. Vijaya Kumar. The wave expansionneural network. Neuro
omputing, 16:237�258, 1997.[68℄ Ashraf A. Kassim and B. V. K. Vijaya Kumar. Path planners basedon the wave expansion neural network. Roboti
s and Autonomous Sys-tems, 26:1�22, 1999.[69℄ A. Keller. Instant radiosity. In Turner Whitted, editor, Pro
eedings ofSIGGRAPH 1997, pages 49�56, Reading, 1997. MA: Addison-Wesley.[70℄ Mark J. Kilgard. Improving shadows and re�e
tions viathe sten
il bu�er. NVIDIA White Paper, November 1999.http://developer.nvidia.
om.[71℄ Mi
hail G. Lagoudakis. Hop�eld neural network for dynami
 path plan-ning and obsta
le avoidan
e. Semester proje
t for CMPS 588 �NeuralNetworks�, 1997. http://www.
s.duke.edu/�mgl/a
adpape.html.[72℄ Bent Dalgaard Larsen. Global Illumination for Real-Time Appli
ationsby Simulating Photon Mapping. PhD thesis, Informati
s and Mathe-mati
al Modeling, Te
hni
al University of Denmark, 2004.[73℄ Bent Dalgaard Larsen and Niels Jørgen Christensen. Optimizing pho-ton mapping using multiple photon maps for irradian
e estimates. InWSCG'2003 Posters Pro
eedings, pages 77�80, February 2003.

BIBLIOGRAPHY 325[74℄ Bent Dalgaard Larsen and Niels Jørgen Christensen. Simulating pho-ton mapping for real-time appli
ations. In H. W. Jensen and A. Keller,editors, Eurographi
s Symposium on Rendering, 2004.[75℄ Hendrik P. A. Lens
h, Mi
hael Goesele, Philippe Bekaert, and JanKautz. Intera
tive rendering of translu
ent obje
ts. In Pro
. IEEEPa
i�
 Graphi
s 2002, pages 214�224, 2002.[76℄ Mal
olm Longair. Light and
olour. In Lamb and Bourriau, editors,Colour: Art and S
ien
e. Cambridge University Press, 1997.[77℄ Rafal Mantiuk, Sumanta Pattanaik, and Karol Myszkowski. Cube-map data stru
ture for intera
tive global illumination
omputation indynami
 di�use environments. In Pro
eedings of International Con-feren
e on Computer Vision and Graphi
s, pages 530�538, September2002.[78℄ Morgan M
Guire, John F. Hughes, Kevin T. Egan, Mark J. Kilgard,and Cass Everitt. Fast, pra
ti
al and robust shadows. NVIDIA WhitePaper, November 2002. http://developer.nvidia.
om.[79℄ Tom M
Reynolds, David Blythe, Brad Grantham, Mark J. Kilgard,and S
ott Nelson. Advan
ed graphi
s programming te
hniques usingopengl. SIGGRAPH 1999 Course Notes, July 1999.[80℄ Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, andHans-Peter Seidel. E�
ient rendering of lo
al subsurfa
e s
attering.In Jon Rokne, Reinhard Klein, and Wenping Wang, editors, 11th Pa-
i�
 Conferen
e on Computer Graphi
s and Appli
ations, pages 51�58,Canmore, Canada, O
tober 2003. IEEE.[81℄ Tom Mertens, Jan Kautz, Philippe Bekaert, Hans-Peter Seidel, andFrank Van Reeth. Intera
tive rendering of translu
ent deformable ob-je
ts. In Per Christensen and Daniel Cohen-Or, editors, Eurographi
sSymposium on Rendering, pages 130�140, June 2003.[82℄ Light: History of light theories. Mi
rosoft r
 En
arta r
 Online En
y-
lopedia, 2004. Reviewed by John H. Marburger. http://en
arta.msn.
om.A

essed 3rd of June 2004.[83℄ Brook Miles. theForger's Win32 API Tutorial, 1998�2003. Version 2.0.http://winprog.org/tutorial/.[84℄ Tren
hard More, Jr. Notes on the development of a theory of ar-rays. Te
hni
al Report 320-3016, IBM S
ienti�
 Ctr., Philadelphia,Pa., 1973.

326 BIBLIOGRAPHY[85℄ Tren
hard More, Jr. Notes on the axioms for a theory of arrays. Te
h-ni
al Report 320-3017, IBM S
ienti�
 Ctr., Philadelphia, Pa., 1973.[86℄ Tren
hard More, Jr. Axioms and theorems for a theory of arrays. IBMJournal of Resear
h and Development, 17(2):135�175, 1973.[87℄ L. Neumann, M. Feda, M. Kopp, andW. Purgathofer. A new sto
hasti
radiosity method for highly
omplex s
enes. In Rendering Te
hniques'94 (Pro
. of Fifth Eurographi
s Workshop on Rendering), pages 195�206, Darmstadt, Germany, June 1994.[88℄ F. E. Ni
odemus, J. C. Ri
hmond, J. J. Hsia, I. W. Ginsberg, andT. Limperis. Geometri
al
onsiderations and nomen
lature for re-�e
tan
e. Te
hni
al report, National Bureau of Standards (US), O
to-ber 1977.[89℄ Fred E. Ni
odemus, editor. Self-Study Manual on Opti
al Radia-tion Measurements. National Institute of Standards and Te
hnol-ogy, U.S. Department of Commer
e, 1976�1985. NBS Te
hni
alnotes, Series 910-1 through 8. Chapters were published as
ompleted.http://physi
s.nist.gov/Divisions/Div844/manual/studymanual.html.[90℄ Kasper Høy Nielsen. Real-time hardware-based photorealisti
 render-ing. Master's thesis, Informati
s and Mathemati
al Modeling, Te
hni-
al University of Denmark, November 2000.[91℄ Kasper Høy Nielsen and Niels Jørgen Christensen. Real-time re
ur-sive spe
ular re�e
tions on planar and
urved surfa
es using graphi
shardware. Journal of WSCG, 3:91�98, 2002.[92℄ Mangesh Nijasure. Intera
tive global illumination on the graphi
s pro-
essing unit. Master's thesis, B. E. University of Bombay, November2003.[93℄ Mangesh Nijasure, Sumanta Pattanaik, and Vineet Goel. Intera
tiveglobal illumination in dynami
 environments using
ommodity graph-i
s hardware. In Pro
eedings of the 11th Pa
i�
 Conferen
e on Com-puter Graphi
s and Appli
ations, pages 450�454, 2003.[94℄ T. Nishita and E. Nakamae. Continuous tone representation of 3-d obje
ts taking a

ount of shadows and interre�e
tion. ComputerGraphi
s (SIGGRAPH '85 Pro
eedings), 19(3):23�30, July 1985.[95℄ Cornell University Program of Computer Graphi
s. Cornell box data.http://www.graphi
s.
ornell.edu/online/box/data.html, April 1998. A

essed25th of August 2004.

BIBLIOGRAPHY 327[96℄ History of
olor s
ien
e and theory. http://www.total.net/�daxx/
olour_theory_history.shtml. A

essed 3rd of June 2004.[97℄ James M. Palmer. Radiometry and photometry faq. http://www.opti
s.arizona.edu/Palmer/rpfaq/rpfaq.htm, O
tober 2003.[98℄ Sybil P. Parker, editor. M
Graw-Hill Di
tionary of Mathemati
s.M
Graw-Hill, 1997.[99℄ S. N. Pattanaik and S. P. Mudur. The potential equation and im-portan
e in illumination
omputations. Computer Graphi
s Forum,12(2):131�136, 1993.[100℄ Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis lighttransport for parti
ipating media. In B. Pero
he and H. Rushmeier,editors, Rendering Te
hniques '00 (Pro
. of the Eleventh Eurographi
sWorkshop on Rendering), pages 11�22, New York, 2000. Springer.[101℄ Allan Pedersen. An introdu
tion to array theory and nial. Ele
-tri
 Power Engineering Department, Te
hni
al University of Denmark,September 1990.[102℄ Allan Pedersen and Jens Ulrik Hansen. Q'nial stand-by. Ele
tri
 PowerEngineering Department, Te
hni
al University of Denmark, May 1988.[103℄ Ingmar Peter and Georg Pietrek. Importan
e driven
onstru
tion ofphoton maps. In G. Drettakis and N. Max, editors, Rendering Te
h-niques '98 (Pro
. of the Ninth Eurographi
s Workshop on Rendering),pages 269�280, Vienna: Springer-Verlag, 1998.[104℄ Joseph D. Petru

elli, Balgobin Nandram, and Minghui Chen. AppliedStatisti
s for Engineers and S
ientists. Prenti
e Hall, Upper SaddleRiver, New Jersey, 1999.[105℄ Matt Pharr and Pat Hanrahan. Monte
arlo evaluation of non-linears
attering equations for subsurfa
e re�e
tion. In Pro
eedings of SIG-GRAPH 2000, pages 75�84, July 2000.[106℄ Bui Tuong Phong. Illumination for
omputer-generated pi
tures. Com-muni
ations of the ACM, 18(6):311�317, June 1975.[107℄ Max Plan
k. On the low of distribution of energy in the normal spe
-trum. Ann. Physik, 4(3):553�563, 1901. http://dbhs.wvusd.k12.
a.us/webdo
s/Chem-History/Plan
k-1901/Plan
k-1901.html.[108℄ Timothy J. Pur
ell, Craig Donner, Mike Cammarano, Henrik WannJensen, and Pat Hanrahan. Photon mapping on programmable graph-i
s hardware. In M Doggett, W. Heidri
h, W. Mark, and A. S
hilling,

328 BIBLIOGRAPHYeditors, Pro
eedings of the ACM SIGGRAPH/EUROGRAPHICS Con-feren
e on Graphi
s Hardware, pages 41�50. Eurographi
s Asso
iation,2003.[109℄ Brian Ramage. Fast radiosity using pixel shaders. Game Developer,11(7):20�39, August 2004.[110℄ Ravi Ramamoorthi and Pat Hanrahan. An e�
ient representation forirradian
e environment maps. In Pro
eedings of SIGGRAPH 2001,pages 497�500, 2001.[111℄ Ravi Ramamoorthi and Pat Hanrahan. Frequen
y spa
e environmentmap rendering. In Pro
eedings of SIGGRAPH 2002, pages 517�526,2002.[112℄ Barnett Ri
h. Review of Elementary Mathemati
s. S
haum's Outlines,se
ond edition, 1997. revised by Philip A. S
hmidt.[113℄ Ton Roosendaal and Carsten Wartmann, editors. The O�
ial BlenderGamekit: Intera
tive 3-D for Artists. No Star
h Press, San Fran
is
o,2003.[114℄ Holly E. Rushmeier. Extending the radiosity method to transmittingand spe
ularly re�e
ting surfa
es. Master's thesis, Program of Com-puter Graphi
s, Cornell University, 1986.[115℄ Holly E. Rushmeier and Kenneth E. Torran
e. Extending the radios-ity method to in
lude spe
ularly re�e
ting and translu
ent materials.ACM Transa
tions on Graphi
s, 9(1):1�27, January 1990.[116℄ Bahaa E. A. Saleh and Malvin Carl Tei
h. Fundamentals of Photoni
s.John Wiley & Sons, New York, 1991.[117℄ Gernot S
hau�er, Julie Dorsey, Xavier De
oret, and François Sillion.Conservative volumetri
 visibility with o

luder fusion. In Pro
eedingsof SIGGRAPH 2000, pages 229�238, July 2000.[118℄ Christophe S
hli
k. An inexpensive BRDF model for physi
ally basedrendering. Computer Graphi
s Forum (Pro
. of Eurographi
s '94),13(3):233�246, September 1994.[119℄ Mark Q. Shaw. Evaluating the 1931
ie
olor mat
hing fun
tions. Mas-ter's thesis, Center of Imaging S
ien
e, Ro
hester Institute of Te
hnol-ogy, Ro
hester, New York, June 1999.[120℄ Ken Shoemake. Animating rotation with quaternion
urves. ComputerGraphi
s (SIGGRAPH '85 Pro
eedings), pages 245�254, July 1985.

BIBLIOGRAPHY 329[121℄ Robert Siegel and John R. Howell. Thermal Radiation Heat Transfer.Taylor & Fran
is, New York, fourth edition, 2002.[122℄ François X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P.Greenberg. A global illumination solution for general re�e
tan
e distri-butions. Computer Graphi
s (SIGGRAPH '91 Pro
eedings), 25(4):187�196, August 1991.[123℄ Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre
omputed radian
etransfer for real-time rendering in dynami
, low-frequen
y lighting en-vironments. ACM Transa
tions on Graphi
s, 21(3):527�536, July 2002.[124℄ Philipp Slussalek. Vision: An Ar
hite
ture for Physi
ally-Based Ren-dering. Ph.D. dissertation, Der Teknis
hen Fakultät der UniversitätErlangen-Nürnberg, 1995.[125℄ Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massa
husetts, third edition, 1997.[126℄ Frank Suykens De Laet. On Robust Monte Carlo Algorithms for Multi-Pass Global Illumination. Ph.D. dissertation, Katholieke UniversiteitLeuven, Dept. of Computer S
ien
e, September 2002.[127℄ Greg Turk. Re-tiling polygonal surfa
es. Computer Graphi
s (SIG-GRAPH '92 Pro
eedings), 26:55�64, July 1992.[128℄ Urb. lat. 1329 fol. 1 re
to math04 NS.19.[129℄ Tom Vykruta. Simple and e�
ient line-of-sight for 3d lands
apes. InSteve Rabin, editor, AI Game Programming Wisdom. Charles RiverMedia, In
., Hingham, Massa
husetts, 2002.[130℄ Mi
hael Wand and Wolfgang Straÿer. Real-time
austi
s. In P. Brunetand D. Fellner, editors, Computer Graphi
s Forum, volume 22(3),September 2003.[131℄ Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, BainingGuo, and Heung-Yeung Shum. View-dependent displa
ement mapping.ACM Transa
tions on Graphi
s, 22(3):334�339, July 2003.[132℄ Gregory J. Ward. Measuring and modeling anisotropi
 re�e
tion. Com-puter Graphi
s (SIGGRAPH '92 Pro
eedings), 26(2):265�272, July1992.[133℄ Gregory J. Ward, Fran
is M. Rubinstein, and Robert D. Clear. A raytra
ing solution for di�use interre�e
tion. Computer Graphi
s (SIG-GRAPH '88 Pro
eedings), 22(4):85�92, August 1988.

330 BIBLIOGRAPHY[134℄ Alan Watt and Fabio Poli
arpo. 3D Games: Real-Time Renderingand Software Te
hnology, volume One of ACM SIGGRAPH Series.Addison-Wesley, 2001.[135℄ Alan Watt and Mark Watt. Advan
ed Animation and Rendering Te
h-niques: Theory and Pra
ti
e. Addison-Wesley, 1992.[136℄ Gerhard Weiss, editor. Multiagent Systems: A Modern Approa
h toDistributed Arti�
ial Intelligen
e. The MIT Press, Cambridge, Mas-sa
husetts, 1999.[137℄ Turner Whitted. An improved illumination model for shaded display.Communi
ations of the ACM, 23(6):343�349, June 1980.[138℄ Bill Williams. A history of light and lighting. http://www.mts.net/�william5/history/hol.htm, 1999. Edition 2.2. A

essed 3rd of June 2004.[139℄ Lan
e Williams. Casting
urved shadows on
urved surfa
es. ComputerGraphi
s (SIGGRAPH '78 Pro
eedings), pages 270�274, August 1978.[140℄ Lan
e Williams. Pyramidal parametri
s. Computer Graphi
s (SIG-GRAPH '83 Pro
eedings), 17(3):1�11, July 1983.[141℄ Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. Sampling withhammersley and halton points. Journal of Graphi
s Tools, 2(2):9�24,1997.[142℄ Chris Wynn and Sim Dietri
h. Cube maps. NVIDIA Presentation,Mar
h 2001. http://developer.nvidia.
om.[143℄ Information te
hnology |
omputer graphi
s and image pro
essing |extensible 3d (x3d). ISO/IEC FDIS 19775:200x.[144℄ Information te
hnology |
omputer graphi
s and image pro
essing |extensible 3d (x3d) en
odings. ISO/IEC 19776:200x.

