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Abstract

This report presents our master’s thesis on global illumination and real-time
computer graphics written at the Technical University of Denmark. The
thesis has two objectives. First objective is to identify and study different
traditional methods for the two computer graphics fields called photorealistic
rendering and real-time graphics. Following this study in known methods
we introduce some of our own ideas for improvements on, or construction
of, global illumination effects in real-time. One idea was chosen for a more
detailed investigation. We have named the method contained within this
particular idea “Direct Radiance Mapping” (DRM) and it is mainly a method
for real-time simulation of diffusely reflected indirect illumination. DRM is
implemented and compared to other methods, which are able to simulate the
same visual effects. Capabilities, drawbacks, advantages, and disadvantages
of the method are discussed on this background.

The second objective is to investigate the work flow that is necessary
if we want to create a scene using a modeling tool and move that scene
to an application that can render global illumination effects in real-time.
The idea is to put together the fundamental tools needed if the results of
this report were to be useful for creation of a commercial dynamic real-
time application such as an architectural previewer or a computer game.
To meet this objective we have studied the modeling application Blender
and provided the report with an introduction to its usage. Through export
and import scripts we are able to create scenes in Blender and use them for
demonstration purposes in a separate Windows application.

Keywords: Computer graphics, radiometry, light transport, local illumina-
tion, global illumination, ray tracing, photon mapping, real-time rendering,
modeling, Blender, direct radiance mapping.






Resumé

Denne rapport praesenterer vores eksamensprokekt ved Danmarks Tekniske
Universitet, som omhandler global illumination og realtids computer grafik.
Projektet har to formal. Det fgrste er at identificere og studere forskellige tra-
ditionelle metoder inden for fotorealistisk rendering og realtids grafik. Efter
dette studie i kendte metoder, vil vi introducere nogle af vores egne idéer til
konstruktion af globale illuminations effekter i realtid. En idé er udvalgt til
en mere detaljeret gennemgang. Vi har valgt at kalde denne metode “Direct
Radiance Mapping” (DRM, kortleegning af direkte radians). Metoden bruges
primaert til simulation af diffust reflekteret indirekte illumination. DRM er
implementeret og sammenlignet med andre metoder, der ogsd kan simulere
lignende visuelle effekter. Egenskaber, manglende egenskaber, fordele og
ulemper vil blive diskuteret pa baggrund af denne sammenligning.

Det andet formal er at undersgge det arbejdsforlgb, der er ngdvendigt for
at skabe en scene vha. et modelleringsvaerktgj. Modellen skal kunne overfgres
til et program, som er i stand til at rendere globale illuminations effekter i
realtid. Idéen er at sammenfgre de veerktgjer der skal bruges for at skabe en
kommerciel dynamisk realtids applikation, som f.eks. et computer spil. For
at imgdega dette formal har vi studeret modelleringsapplikationen Blender
og indsat en tutorial i rapporten. Gennem export /import scripts er vi i stand
til at modellere scener i Blender og bruge dem til demonstrationsformél i en
seperat Windows applikation.
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Chapter 1

Introduction

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke (1962):  Profiles of the Future: An Inquiry
into the Limits of the Possible
Clarke’s Third Law



2 Introduction

Through some decades now people have tried to generate computer graphics
that could replicate sceneries from real life. Today they have almost reached
their goal. We see movies with computer animated scenes that are truly
difficult to distinguish from real life. Soon even experts will find it hard, if
not impossible, to tell whether or not a scene is taken with a real camera or
created by an animator in a studio. This thesis concerns the fundamental
theory and methods behind the making of synthetic images.

The creation of realistic computer graphics images is a heavy computa-
tional process, and it can take a long time to create small movie scenes even
using the most powerful computers. The art of creating synthetic images
replicating the real world very much depends on the ability to simulate how
light interacts with its surroundings. This interaction is referred to as illu-
mination. Throughout this project we will discuss two kinds of illumination;
local and global. Local illumination means that the shade of each point in a
scene is based solely on the directions towards the light sources and the di-
rection towards the eye point (or camera position). Global illumination also
takes into account the geometry surrounding each point in which the shade
is to be determined. This has the effect that global illumination includes
such effects as shadows, reflections, refractions, caustics, color bleeding, and
translucency. The price is, however, high. Global illumination is a computa-
tionally expensive model and therefore the methods proposed to simulate it
are usually not considered in the context of real-time graphics. Contrariwise
many different approaches have been employed in order to create visual ef-
fects similar to global illumination effects in an otherwise local illumination
model.

To achieve perfect realism it is clear that global illumination must be
introduced or at least a simulation of the effects resulting from global illumi-
nation. Sometimes we have plenty of time to generate our image but there
are situations where we are very short on time. Situations like this are found
in dynamic computer applications as for example computer games. In such
applications it is impossible to foresee every user interaction, hence, images
must be generated on the fly. The calculations must be carried out so fast
that the user does not register each new picture. The process of generat-
ing images fast enough for the human eye not to register is referred to as
real-time illumination. In real-time computer graphics we often use local
illumination methods as these traditionally are the only ones that can be
calculated at sufficient speed.

The making of synthetic (2-dimensional) images from a three-dimensional
representation (or model) by combination of lighting, texturing, and geome-
try is in computer graphics referred to as rendering. The following is a good
description of what it takes for a rendering method to be called ‘real-time’

[2, p. 1]:

The rate at which images are displayed is measured in frames per



second (fps) or Hertz (Hz). At one frame per second, there is little
sense of interactivity; the user is painfully aware of the arrival of
each new image. At around 6 fps, a sense of interactivity starts
to grow. An application displaying 15 fps is certainly real-time;
the user focuses on action and reaction. There is a useful limit,
however. From about 72 fps and up, differences in the display
rate are effectively indetectable.

It is our intension and the first objective of this thesis to explore how
close we can bring realistic image synthesis to real-time execution rates.

As real-time computer graphics and realistic image synthesis are two
different branches of computer graphics we have chosen to start at each
end and move them slowly in the direction of each other in the firm belief
that we can make them meet somewhere mid-way. We know, however, that
compromises must be taken both with respect to real-time (72 fps) and
realism, otherwise this objective will not be met.

Since we start at both ends of a long rope stretching the distance between
the global illumination and real-time rendering we must start out having a
basic implementation in both camps. First we must have a basic real-time
renderer as seen in most video games today. This is achieved using the
standard tools available in a 3D graphics library such as OpenGL. Second
we must have a decent renderer simulating global illumination. We have
chosen to let this global illumination method be based on the rendering
concepts known as ray tracing and photon mapping.

After the emergence and rapid development of GPUs (Graphical Pro-
cessing Units) the prevailing way to implement real-time graphics is through
hardware. The foundation of 3D computer graphics is points and vectors
and the rendering of 3D models consisting of thousands of triangles results in
millions of calculations including such mathematical entities, it is, therefore,
evident that an efficient implementation of vector math is crucial if image
synthesis is to be brought closer to real-time graphics. Fortunately the GPUs
are developed, in essence, to process such calculations concurrently and ef-
ficiently. The GPU processing is, however, not reached easily. GPUs are
constructed to render triangles in particular and the rendering pipeline that
a GPU implements is not necessarily well suited for the different approaches
that has been found for global illumination.

We have studied different aspects of global illumination theory to cre-
ate the foundation which we think is necessary in order to come up with
new approaches to global illumination effects in real-time. Several ideas for
methods will be discussed in the report and the most promising one, which
we have chosen to call “Direct Radiance Mapping”, will be thoroughly exam-
ined. Direct radiance mapping is a method mainly for calculation of diffusely
reflected indirect illumination. Diffuse reflection occurs when light is equally
likely to be scattered in any direction [19], this happens when the scattering
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material looks rather dull. Oppositely specular surfaces (such as mirrors
and glass) reflect (and refract) light closely around a particular direction.
Surfaces that have material properties in-between diffuse and specular are
called glossy. When light has scattered around in a scene multiple times on
arbitrary surfaces (be they diffuse, glossy, or specular), it is called indirect
illumination. If the indirect illumination has scattered on diffuse surfaces
at least twice before reaching the eye, it is called diffusely reflected indirect
illumination. As other approaches for creating diffusely reflected indirect
illumination in real-time already exists, we will compare our method with
these. Some methods only treat perfectly diffuse surfaces (a hypothetical
material that scatters light uniformly in all directions), such surfaces are
often referred to as Lambertian surfaces.

Coming up with new ideas for real-time global illumination is not easily
accomplished and to come even close to something useful, most of the existing
theory must be studied thoroughly. With this in mind we have implemented
several existing global illumination methods both to get familiar with them
and to have them later for comparison with real-time results.

In scientific articles, papers or reports we often see simple test scenes
demonstrating the treated algorithm or method. This is of course suitable
for proof of concept purposes, but for the method to be applicable in commer-
cial applications it must demonstrate efficiency in more complicated setups.
As the second objective of this thesis we want to make a platform for develop-
ment of real-time applications. We examine not only the rendering method
but also the entire process from scene creation to rendering and use of it.
This implies that we must be able to model scenes and therefore elementary
use of a modeling tool is described in this report. We must also describe
integration between the modeling tool and our rendering method. In this
thesis we establish a connection from scene creation to rendering of it by our
own methods using free of charge tools only. Finally we have created a small
demonstration application, serving the purpose of arranging and presenting
all the implemented methods, but also to demonstrate that a scene can be
build from scratch, exported, and then imported in another application.

We have chosen to restrict this project in a couple of ways. First we have
chosen not to emphasize on the process of software development, rather on
the application of mathematical tools to solve a complex problem. Imple-
mentation is regarded as a tool for experiments and verification of the ideas
that we put forth. With respect to computer graphics, we have chosen not
to discuss matters of anti-aliasing in detail at any point. We also consider
real-time soft shadow methods to be outside the scope of this report. No
particular emphasis will be placed on spatial data structures for optimiza-
tion in this report. We also do not go into parametric curves and surfaces
at any point. All these subjects are left out to save time for other parts of
the project.
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1.1 Background

Prior to this project our knowledge in the field of computer graphics was
limited to introductory courses. This is reflected in the report by some
issues being described more comprehensively than perhaps necessary. This
should be regarded as a documentation of the learning process that we have
gone through during this thesis.

Other courses that we have followed may have had an impact on the out-
come of the project as well. We have a background in autonomous agents
and computational intelligence, which has inspired several of the ideas pre-
sented in this report. A prior knowledge of array theory has also been a
great source of inspiration.

1.2 Report structure

The report is divided into four parts. Part I concerns the theoretical sub-
jects which are the foundation of the project. In this part we consider ba-
sic knowledge in the field of global illumination and construction of virtual
scenes. Many subjects are introduced since they make us able to appreciate
the ideas and conceptions of later parts better. Part IT concentrates on scene
creation, that is, creation of contents for the rendering methods. In here we
introduce methods for building a dynamic computer scene, since this is what
we seek to render in real-time. While part I is theoretically minded part 11
is more practically minded. Part III presents the ideas that we have come
up with for bringing global illumination closer to real-time rendering, and it
gives a thorough description of the method we saw as the most promising
of our ideas; direct radiance mapping. Part III will also present the demon-
stration application as well as the test scenes that we have created using the
tools described in part II. Part IV contains discussion and conclusion of
the thesis.

Part 1

Chapter 2 concerns some of the most basic subjects in computer graphics,
subjects that are common to all applications and rendering methods in 3D
graphics. We describe how the basic elements in a computer scene are set
up and we introduce our math engine, which does all calculations that are
not carried out on the GPU. The math engine builds on array theory, which
is therefore also introduced here.

Chapter 3 is about the theory behind an illumination model. The
chapter describes the physical model of light and how it is transformed into
computer graphics. In this chapter we describe the mathematical model
which all computer graphic methods and algorithms seek to simulate or solve.
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In other words this is the theory that is the foundation of all illumination
models that are used in computer graphics.

Chapter 4 describes traditional approaches to realistic image synthesis.
Here we describe some of the most commonly used global illumination meth-
ods: Traditional radiosity, traditional ray tracing, Monte Carlo ray tracing,
and photon mapping.

In chapter 5 we look at rendering from a slightly different angle as
traditional methods for real-time rendering are treated here. For that reason
this chapter will mainly concern local illumination. We will discuss the
rasterization pipeline which is most commonly used for real-time rendering
and we will take a brief look at textures.

In chapter 6 different methods for simulation of global illumination
effects in real-time are presented. Some of the methods presented here will
later be used in combination with direct radiance mapping while some of the
methods will be used for comparison with direct radiance mapping.

Part 11

Chapter 7 takes a practical angle on creation of a computer scene using
the theory given in chapter 2. Different more or less acknowledged methods
for creating 3D objects will be introduced. The description of the methods
uses the free of charge modeling tool called Blender for examples. This is
the modeling tool that we have chosen for this project as a part of the work
flow from scene creation to rendering that we wish to describe.

Chapter 8 discusses the visual appearance of materials according to
their color and material parameters. In this chapter we seek to take a more
practical approach as compared to that of part I, since the main purpose is
to describe how materials can be set in a modeling application. Nevertheless,
we also need to relate the different conceptions to the theory presented in
part I.

In chapter 9 we introduce methods for creating dynamic objects in a
scene. This is an interesting subject which arises when computer graphics
are available in real-time. Two different ways of creating dynamic objects
are presented. First, we describe how to make animation sequences for use
in our real-time application. Secondly, we describe how user interaction can
define dynamic movement of objects and camera in a real-time environment.

Chapter 10 specifies how scene creation, material settings, and anima-
tion of dynamic objects are carried out in Blender. In this way we provide
the basics needed to build a scene from scratch, which is a part of the de-
velopment platform that we strive at. The chapter also reflects the learning
process that we have gone through, since none of us new Blender beforehand,
some of the experiences that we have had may be useful to others.
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Part 111

Chapter 11 presents different ideas that we have come up with during the
project. Those are the ideas that we did not have time to examine in detail
during this thesis. The chapter serves the purpose of inspiration and reflects
the process that we went through before reaching the idea of direct radiance
mapping.

Direct radiance mapping is the subject of chapter 12. Here we describe
the method in details. The chapter will discuss abilities, advantages, and
drawbacks of the method. Direct radiance mapping will also be compared
to the real-time methods providing the same effects which were described in
chapter 6.

In chapter 13 we address other illumination methods that have been im-
plemented during the project. These are mostly global illumination methods
or real-time methods supplementing direct radiance mapping.

Chapter 14 describes our demonstration application. We will give a
description of the different options that the graphical user interface of the
application offers. The options all correspond to methods or visual effects
described elsewhere in the report. Contents and purposes of the different
test scenes will also be described.

Chapter 15 presents a number of design diagrams to describe the im-
plementation behind the demonstration application. We will not describe
every function in every file of the application in detail, but concentrate on
the overall data flow.

Part IV

Chapter 16 discusses the outcome of this thesis and the course of the
project. Some additional experiments and future applicabilities will be dis-
cussed here as well. Chapter 17 concludes the report.
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Part 1

Real-Time Rendering versus
Realistic Image Synthesis
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In the following chapters we will introduce the fundamental theory and ter-
minology that is necessary in order to describe the relationship between
photorealistic rendering and real-time computer graphics. The first chap-
ters discuss some of the theoretical and mathematical subjects that are the
building blocks of computer graphics and realistic image synthesis. The last
chapters will discuss different traditional approaches to photorealistic as well
as real-time rendering, and some of the latest combinations of these.

The purpose of part I is to provide the basic knowledge of computer
graphics that is necessary in order to appreciate the methods and ideas
(such as direct radiance mapping) presented in part III. Some chapters may
be a bit more comprehensive than needed if they only served the purpose of
making the contents of part III understandable. However, we feel that the
information provided in the following chapters (especially chapter 3) gives
valuable knowledge some of which is rarely included in modern computer
graphics text books. Therefore we consider our analysis of the theoretical
foundation to be an important part of the learning process that led us to most
of the ideas described in part III. The comprehensiveness of the following
chapters also reflects a desire to build or implement elements from the bot-
tom up, and thereby to get a full understanding of concepts in as many areas
as possible. An example is the array-based math engine. For several reasons
we chose to rebuild a previous implementation of a math engine: First of all
we felt that there was a good chance of some minor improvements concern-
ing processing speed. Secondly, it gave us a complete overview of functions
available and the capabilities of the engine. If new functionality was needed
we could easily extend the math engine. Furthermore the array-based im-
plementation of the math engine bases most operations on a few general
geometrical operators such that improvements of those few operators will
improve the performance of the entire math engine significantly.

The math engine along with other fundamental mathematical tools that
are often used in computer graphics are presented in chapter 2. The intention
of this chapter is to sum up some of the key tools used in the rest of the
report. The chapter starts with a description of the math engine based
on array theory; hence the concepts of array theory will also be addressed
here. The rest of the chapter sums up basic geometrical and computational
issues often used throughout the report. All in all it should provide a good
background for the rest of the report.

Chapter 3 concerns the rendering equation, which in some version or an-
other is the equation that global illumination methods seek to solve. The
chapter treats optics, optical radiation, and radiometry which are the fun-
damentals of the rendering equation. Other areas of research that can be
related to computer graphics are discussed in short (eg. photometry). For
reasons mentioned above chapter 3 digs a bit deeper than perhaps necessary.

After a thorough examination of the basic theories and physics of light we
move on to the actual algorithms used in computer graphics. Photorealistic
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rendering seek to solve the global illumination model and since we would like
to simulate photorealistic rendering in real-time we start out with chapter
4, where we describe traditional methods for global illumination such as ray
tracing and radiosity. Hybrid methods such as photon mapping are described
and some expansions are addressed shortly.

Not only do we want to create photorealistic effects, we also want them
in a real-time scenario. Traditional approaches to real-time rendering are
described in chapter 5. Most real-time graphics are based on a local illu-
mination model rather than a global. The reason is that the calculations
needed for local illumination are much simpler and, hence, so are the com-
putation times. This is necessary if the illumination of a scene needs to
run in real-time. We will try to describe briefly how real-time graphics are
done traditionally using rasterization and a local illumination model. Even
though we seek to generate global illumination effects we find that much of
our final implementation has to be based on rasterization in order to run in
real-time. Therefore it is necessary to describe the basics of rasterization as
well as global illumination techniques.

The last chapter of part I, chapter 6, seeks to combine global illumination
and real-time rendering by treatment of different visual effects that exist
in global illumination, but not in local illumination, individually. Some of
the visual effects that have been approached using real-time techniques are:
Shadows, reflections, refractions, translucency, caustics, and colour bleeding.
The techniques for real-time simulation of global illumination effects are
plenty: Shadow volumes, environment mapping, light mapping, etc. Some
of these techniques are described in chapter 6. Normally methods for real-
time global illumination focus on one of the visual effects, therefore there
will be examples of different approaches to address different visual effects.
In short chapter 6 seeks to give a brief presentation of what others have
done to approach global illumination in real-time. This is important to us,
since our own methods do not present a solution for all global illumination
effects and neither does it rule out a combination with methods presented
by others.



Chapter 2

The Building Blocks of
Computer Graphics

What are you able to build with your blocks?
Castles and palaces, temples and docks.
Rain may keep raining, and others go roam,
But I can be happy and building at home.

Robert Louis Stevenson (1850-1894): Block City
from “A Child’s Garden of Verses and Underwoods”
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In this chapter we will describe some of the basic concepts and mathemat-
ical tools that are (or could have been) used in this project. There are no
particular graphical methods in this chapter rather the mathematical foun-
dation to build these methods from. Most of the chapter concentrates on
basic vector math in a three dimensional world.

In section 2.1 we will present an array-based math engine that imple-
ments the geometrical calculations and vector math that has been used for
the implementation of algorithms that are described in chapters to come,
with the exception of calculations that take place on the GPU (Graphical
Processing Unit). We have chosen to rebuild a vector library called CGLA
that has been implemented by Andreas Barentzen, and was distributed dur-
ing the DTU “Computer Graphics” course (02561). Though we could have
used CGLA or other implementations of more or less the same functions, we
chose to make our own implementation inspired by CGLA. As mentioned
before the reason for starting over is that we get a much better understand-
ing of what is needed in graphical calculations and if some things need to
be changed or modified we are able to do so faster and easier. Moreover the
idea of a math engine based on a few array theoretic operators is appealing.

The geometry displayed in 3D computer graphics, and especially real-
time computer graphics, often build on polygons. Section 2.2 will discuss
ways of representing objects in a virtual environment such as a computer
scene. In this project we use polygons for object representation; hence, the
section will introduce how a clever representation of polygons can be put
together.

A 3D virtual scene is made visible to us on a 2D screen. In the virtual
environment this is enclosed by a view plane. The position of the view plane
is determined by the position of the viewer or eye point, normally represented
by a camera. Section 2.3 briefly presents the different elements in a typical
virtual scene.

Another important issue in computer graphics is visibility and culling,
which we address in section 2.4. A lot of computations can be saved if the
invisible parts of a scene are ruled out when rendering. A good idea is to
look closer at how we leave out backsides of objects not visible to the eye in
a scene. This is normally referred to as culling.

To do graphics fast it is necessary to handle the data representing the
objects of a scene in a clever way. Section 2.5 addresses spatial data struc-
tures and scene graphs, which are used to handle the huge amounts of data
representing a scene in a smart way that can speed up processing time. The
subject of section 2.5 will only be treated briefly, since we did not have time
to implement these improvements in our final application. However, the sec-
tion has not been left out entirely since spatial data structures and scene
graphs ought to be implemented in future versions of our application.
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2.1 An Array-Based Math Engine

The amount of vector math needed for computer graphics is limited. First a
data structure must be created to represent a vector v in the n dimensional
Euclidian space denoted R™. An n-tuple is an ordered list of real numbers,
which is used for this purpose [2]:

vER" <— v= _ with v, € Ri=0,...,n—1 (2.1)

Un—1

Basic math operations on vectors must be implemented efficiently. Vector
addition is done componentwise:

Uuo Vo ug + Vg
U1 U1 ur + v
u+v= _ + _ = _ eR" (2.2)
Up—1 Un—1 Up—1 + Up-1

Likewise multiplication of a vector and a scalar is done componentwise:

aug
aul

au eR" (2.3)

AUn -1

Applying an operation componentwise, that is, to each element of an
array (or tuple), is in fact a general geometric operation. To avoid indices,
which are inherent in the standard matrix notation, we employ a more func-
tional notation given in array theory, founded by Trenchard More in 1973
[84, 85, 86].

Array theory introduces the concept of higher order functions. What
is generally known as a mathematical function is more likely a first order
function. The values which the function takes as arguments are seen as
a function of order zero or data so to speak. To get a grasp of second
order functions we need only think of the integral operator, the differential
operator or the composite operator, which are the most commonly known
second order functions. The functions of second order take functions of first
order as arguments. Clearly the integral operator is an unary second order
function, while the composite operator is binary. Table 2.1 gives a schematic
view of function orders.

A generalization of the concept reveals that there is nothing to prevent us
from constructing third order functions or even n'" order functions. However,



16 The Building Blocks of Computer Graphics

Logic Mathematics | Array Theory Examples
0" order function | Value, element | Data (box) 1,m 2

15 order function | Operation Function (gin) +,-,sin
27d order function | Operator Transformer (rig) /o

Table 2.1: A schematic view of function orders including a few examples.

since even the functions of second order are quite abstract and at many
occasions difficult to grasp, it is even more difficult to imagine the specific
use of third order functions taking transformers (or second order functions)
as arguments. On the other hand transformers have shown their worth and
the few well known transformers given as examples in table 2.1 are only the
top of the iceberg, so we may yet also find a third order function which is
practically useful.

When applying a function f to a value z the usual notation is f(z)
returning a value y being a function of the same order as 2. To treat functions
of arbitrary order it is important that we can separate the function from its
argument, so that

y=fle)=f ()=(fz)=f=

this has a meaning when a second order function 7' is introduced. Suppose
we would like to transform f into a different function according to a general
geometric operation T then g = T'f defines a new function g, which is the
transformation of f according to T', meaning that

9(x) =(Tf)(x) = (T flz=Tfx

The equation above indicates that an array theoretic expression is left
associative.

Definition 1 (Left Associativity) FEzpressions having left
associativity are analyzed from left to right. Let T be a trans-
former, f a function and x a value then the expression T f x
first evaluates T f and then combines with x.

Left associativity rises some questions of interpretation given an arbi-
trary expression. The meaning of zf is for example not immediately clear.
Consider the expression a + b, here + is a binary function taking two ar-
guments: +(a,b). This indicates that we can interpret a+ as a new unary
function adding the value a to its argument, that is, zf binds x to the first
argument of the function f:
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Arrays Functions Transformers
Aand B fand g T and U
Strand Currying Currying
AB Af AT
Array Function Transformer
Application Composition Alloying
fA fyg T
Array Function Transformer
Annexing Application Composition
T A Tf TU
Transformer Function Transformer

Table 2.2: Pairs of objects that may be encountered in an array theoretic expression.
In each cell the terminology is stated first then the specific pair and finally the result of
such a pair. The table closely resembles the one presented in [101].

rfy=zf)y)=flr,y)=f(zry)=fzy

Binding arguments with a function is in array theory and functional pro-
gramming called currying, which is a terminology named after of Haskell
Brooks Curry, the founder of combinatory logic [23]. The latter equality
f (zy) = fzy of the equation above shows an exception to the rule of left
associativity, the exception arises since z and y are both arrays of data'. In
that case they are considered to be a strand, that is, a successive juxtapo-
sition of two or more arrays, which might as well be interpreted as a single
nested array A with its first element being 2 and its second element being y.

Table 2.2 describes the interpretation of different pairs that we may en-
counter in an array theoretic expression. The general notion of composite
functions give rise to the following associative laws:

fa)x = flgx) (2.4)
TU)x = TWUx) 2.5

LA single value is merely an array consisting of a single item only.
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where x is a function of arbitrary order. Annexing, (2.6), and alloying, (2.7),
are also bound by associative laws:

(TA) ¢ = T (A4) (2.6)
fT)yx = f(Tx) 2.7

>0
|
~

where 1 is an n'® order function and n > 0. Finally currying is also associa-
tive when the currying function is of an order greater than one:

(Ao) x=A4 (o x) (2.8)

where o is an m'" order function and m > 1. We will not consider the
impact on the associative syntax if a third order function was introduced.

Instead, now that the most basic syntax is in place, we can define some of
the transformers that will come in handy. First a very basic array theoretic
transformer called EACH? is introduced.

Definition 2 (EACH) Let A be an array of data and let f
be an unary first order function, then

EACH f A (2.9)

1s defined as the function f applied to each element of the
array A.

Since an n-tuple is a special case of an array we can redefine multiplica-
tion of a vector and a scalar, (2.3), as

au = EACH (ax) u (2.10)

where x is used for multiplication to make sure that it is confused neither
with the dot product nor the cross product.

To deal with componentwise addition we introduce another transformer
from array theory called EACHBOTH.

2In array theory transformers are traditionally written in capital letters.



2.1 An Array-Based Math Engine 19

Definition 3 (EACHBOTH) Let A and B be two equally
shaped arrays of data and let f be a binary first order func-
tion, then

AEACHBOTH f B = EACHBOTH f A B (2.11)

1s defined as the function f applied to pairs of elements found
at corresponding positions in the arrays A and B.

In light of the EACHBOTH transformer componentwise addition, (2.2),
is simply given as

v+ u =vEACHBOTH + u (2.12)

and we can easily define componentwise multiplication®:

v*u=vEACHBOTH x u (2.13)

Componentwise subtraction and division, as well as division by a scalar
follows from (2.12), (2.13) and (2.10) respectively by use of negated or re-
ciprocal values.

Similarly the comparison functions <, >, <,> are defined to work in a
componentwise manner returning an array of Boolean values holding the
result of each comparison. An example is:

0 1 true
1 2 _ true
2 | <| 1|7 false
3 2 false

Equality, however, is expected to work in a slightly different manner.
When testing the equality of two arrays or vectors we expect a single Boolean
value as the result, that is, we expect the function to compare for equality
componentwise and afterwards a logical & operation is applied to the result-
ing array deciding whether the two arrays were equal in all cases. In other
words equality is given by an inner product using the equality and logical
& operations instead of the more common multiplication and addition. An
inner product is, in fact, a geometrical operation, which can be defined as a
binary transformer taking two functions as arguments.

%Some texts (eg. [2]) use ® for componentwise multiplication.
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Definition 4 (INNER) Let A and B be two arrays of data
and let f and g be binary first order function, then

AINNER [f,g] B = INNER [f,g] A B (2.14)

is defined as the inner product of A and B with respect to
f and g, where f is the “reductive” operation and g is the
distributive operation.

(Meaning that INNER [+, | is matriz multiplication.) [102]

Hence equality of two vectors is given as:

v=u < vINNER &, =]u (2.15)

The INNER transformer is obviously also convenient in defining the dot
product?:

v-u =v INNER [+, %] u (2.16)

and as stated in Definition 4 matrix multiplication is given similarly:

AB = AINNER [+, B (2.17)

where A € R™*™ and B € R"*P.

Why go through all this theory in order to describe a relatively simple
vector math library? Because it reduces the amount of work we have to do to
implement it, and even more important; there is a good chance that we can
do the implementation more efficiently, since the few transformers that have
been used each can be implemented efficiently with the result that the entire
library gets more efficient. In fact the transformers described in Definitions
2, 3, and 4 already have an efficient implementation in the C4++ standard
library.

The terminology in C++ is quite different, see [125]. Here transformers
are referred to as adapters and since the functional syntax described above
does not fit into the syntax of the procedural C++ programming language
they use a special case of adapters, namely binders, to describe currying.
Hence bindist and bind2nd of the C++ standard library corresponds to
z f and y CONVERSE f respectively, where = and y are first and second
argument to the binary function f and CONVERSE is a transformer that
swaps the arguments of a binary function.

(2.9) and (2.11) are available in C++ as an overloaded function transform
that treats either an unary function and input and output arrays or a binary

“Which may be short for the “inner plus dot product”.
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function and two input and one output array. Likewise (2.14) is implemented
as the function inner_product. The exact description of these C++ func-
tions are given in [125].

Moreover the theory that has been described in this section gives the fun-
damentals needed in order to describe functional algorithms mathematically,
hence we will draw upon it in sections to come when we see fit.

In the following section we will describe the basics of polygons and how 3-
dimensional virtual worlds are composed of polygonal geometry. The subject
of section 2.2 may at first seem relatively distant from the math engine, but
a mathematical representation and treatment of polygons goes hand in hand
with vector math.

2.2 Polygonal Geometry

Definition 5 (Polygon) A closed figure in the plane given
by points po,p1,...,pn and bounded by line segments

POP1, P1P2s - -, Pn—1Pn> PnPo [98].

As stated in definition 5, a polygon is defined as a closed planar figure
bounded by line segments connecting vertices such that they enclose one
and only one region. The following list describes the properties of a polygon
[112, p. 245]:

1. The number of vertices in a polygon equals the number of its sides.

2. The number of vertex angles of a polygon equals the number of its
sides.

3. Each side of a polygon is a side of two vertex angles.

4. A vertex angle is not a straight angle (# 180°).

All polygons can easily be divided into polygons of the lowest order;
triangles. Triangles have certain appealing properties, an example is that
triangulation of all polygons largely will eliminate view-dependent interpo-
lation effects [19], which result from linear interpolation of shade or colors
across a polygon. This is exploited by graphics hardware specializing in fast
triangle processing. The result is that almost all real-time application base
their graphics on triangle meshes, since this gives the highest possible reso-
lution at a very low rendering time. The level of detail of an object depends
on the number of triangles used in the mesh and so does the processing time
for rendering the object.



22 The Building Blocks of Computer Graphics

Figure 2.1 shows an example of a cylinder represented by polygons. The
figure also shows that polygons can be generated from the connection points
or the edges between them. Polygonal objects are often represented by hi-
erarchical data structures. Each object is defined by pointers into a list of
surfaces and each surface by pointers into a list of vertices. Normally the
data structures are optimized, so that each point or edge only needs to be
stored once [135].

Object Surfaces Polygons Vertices

Figure 2.1: An object is represented by surfaces, which are represented by polygons,
which are represented by vertices or edges. This figure is a combination of figure 1.1 in
[135, p. 5] and figure 2.4 in [134, p. 38|.

In computer graphics a vertex is a geometric entity consisting of a point
in space, an associated normal, and possibly parametric (u,v)-coordinates
specifying the position of the vertex on the surface of the object which it is
a part of. The vertex position is represented by three coordinates. When
manipulation of these positions is needed, it is evident that the math engine
described in the previous section come in handy.

The vertex normal is used for shading. Shading is described in subsequent
chapters of this part. Each polygon need to have a face normal defined as
well (the face of a polygon is short for its surface). The face normal is the
true geometric normal to the plane containing the polygon. Face normals are
used for example in culling algorithms (section 2.4 relates to this subject).
Sometimes it can be appropriate to store the edges between polygons as well
as vertices, since they can be useful in shadow calculations where in principle
only the silhouette of the object casting a shadow is interesting. A group of
polygons forming an object is called a polygon mesh.

The biggest drawback of the polygonal representation is that the detail
level of objects very much depends on the number of polygons used for its
creation. Since all polygons are plane objects, curves in an object can only
become more precise if more polygons are added. Moreover each manipu-
lation of an object must be carried out on each polygon present. A high
polygon count can therefore create a computational bottleneck on the CPU
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(Central Processing Unit). An attempt to solve the problem is the rapidly de-
veloping GPU (Graphical Processing Unit) which is the core part of modern
graphics cards. The GPU is concerned mainly with operations on polygons
(in particular triangles).

The number of polygons is not the only issue. GPUs today are so fast
that the problem is actually not rendering the required amount of triangles,
the limitation lies in the amount of data that it is possible to transfer between
the CPU and the GPU [134].

One way to speed up processing time is, therefore, to reduce, as much
as possible, the data that need to be transferred. To do this we can either
reduce the amount of data stored for each vertex, or seek to reduce the
number of vertices. The latter option is typically done by exploiting that
many polygons may share the same vertices or by simplifications of the object
details according to the needs of a particular view (this concept is often
referred to as level of detail, or LOD).

Having introduced the basic drawing unit that will be used with few ex-
ceptions throughout this project, namely polygons and especially triangles,
and having presented a way to implement a basic math engine to process
mathematical operations on points and vectors in three dimensions (as de-
scribed in section 2.1), it is now time to describe the contents of a traditional
three-dimensional virtual scene, which is the subject of the next section.

2.3 The Virtual Scene

When watching computer graphics, either on a TV or on the computer
screen, we are presented with a window into a virtual world. In the photore-
alistic case this world often replicates our own world. This means that what
we see is a three dimensional virtual environment.

To simulate this in a fairly realistic way we must represent all elements
or objects in a scene in three dimensions. We must also define where we
want to place the viewer in the scene and in which direction she should be
looking. In movies we have a predetermined route for the viewer to follow,
which means that we know exactly what will be visible to her at any given
time throughout a sequence of pictures. This enables us to pre-calculate all
the necessary pictures, meaning that we in principle are able to spend as
much time as we like for each single image, or frame, in a movie sequence.
In a dynamic application such as a computer game this is, however, not the
case. There is no way to determine the exact movement of the viewer, that
is, we need to create each image, or frame, on the fly according to the current
location and direction of the viewer.

To produce a picture we need to keep track of all elements in the scene
and most importantly the position of the viewer and the direction in which
she is looking. Figure 2.2 represents a simple virtual scene in two dimensions.
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View plane. -~~~ A

-

Field of View-~"" w

~
N
N
S~
~

Viewer S~

Figure 2.2: The visible part of the scene depends on the location of the viewer, the field
of view (which is an angle specifying the size of the view plane), and the direction, which
the viewer is facing. In this case objects A and B will be partly visible to the viewer,
while object C is not visible at all. (Note that object B is also only partly visible, since
the viewer can not see the backside of the sphere, or circle in the 2D case.)

The view plane is the virtual representation of the screen and the volume
subtended by the field of view encloses the parts of the scene that becomes
visible when projected onto the screen. This means that the field of view is
an angle defining the visible area.

In figure 2.2 the front of object B is fully displayed while the front of
object A is only partly visible. Some of the object lies behind object B and
a part of the top corner will be missing since it is outside the visible area.
To include the top corner of object A we can either move the eye point up
or backwards or we could make the view plane larger by a broadening of the
field of view. Object C is present in the scene but not inside the visible area,
hence, we can usually leave out C in the calculations until it becomes visible.
By knowing what is visible and what is not, we can save many computations.
This is the subject of section 2.4.

The eye point and view plane are normally represented by a camera. The
functionality of a camera is comparable to the functionality of eye and view
plane; you frame out the part of the world that you want to preserve when
you chose a motif for your picture. What happens outside the picture is cut
off and forgotten. The simplest model of a camera is the pinhole camera,
which is shown in figure 2.3.

Asin figure 2.2 the front of objects C, D and partly B will be visible on the
screen. Objects A and E are both invisible due to the near and far clipping
planes. The clipping planes are in principle not a part of the pinhole camera
model, but are practical especially in large scenes. The clipping planes simply
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Figure 2.3: In computer graphics the eye point and view plane are represented by a
camera. This figure shows the simplest camera model; the pinhole camera and how it
captures a scene.

rule out objects that are too close or too far away. When using near and
far clipping planes, the volume subtended by the field of view is cut by two
parallel planes and is, hence, called a view frustum. Rasterization, which is
the rendering method used for real-time rendering most often, can effectively
cut away all objects that are not partly or fully contained within the view
frustum. This is not always possible in photorealistic rendering, since light
may be reflected off objects residing outside the view frustum.

Normal cameras adjust the size of the view plane by use of different lenses
placed in the hole. Lenses are also used for adjustment of the visible area.
The simple pinhole camera has no lens, therefore if the visible area, or the
field of view, is to be changed, we need to change the size of the camera
by changing hight, breadth, or length and thereby increase the size of the
view plane at the bottom of the camera. This is similar to moving the eye
point or opening the eye more in figure 2.2. In this case a lens is much more
convenient. Moreover a lens also lets in more light, which makes it preferable
in most cases.

There is another difference between a pinhole camera and a lens cam-
era. In the ideal pinhole camera everything is in focus. This has the effect
that computer graphics often produce synthetic images that tend to have an
“unnatural” sharpness about them. Lens cameras (and the eye as well) has
a certain adjustable distance at which the pictured objects will be sharp,
meaning that we can only keep focus on objects in a given depth interval,
while the pinhole camera has an infinite depth of field [3|. In real life the
lens camera is preferred, since it is practical to keep the camera in the same
size and we would like a lot of light to pass through the camera. In com-
puter graphics our camera is arbitrary and we can change the size and light
without any problems. Therefore we prefer to use the much simpler pinhole
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Figure 2.4: The pinhole camera is used as a model for the virtual camera in our scene.
A more detailed description can help us define some parameters for determining our view.
The figure is a combination of figures 1.15, 1.16 and 1.18 in [3].

model.

Looking closer at the pinhole camera model a few parameters can define
our view. Figure 2.4 shows the pinhole camera again, this time including
parameters. The angle a is the field of view. Considering figure 2.4 it is seen
that the lines of length d and h/2 defines a triangle of which:

a _h
tan E = ﬁ

giving us the following way to calculate the field of view:

h
a=2tan ! 24 (2.18)

where h is the height of the view plane and d is the distance to it from the
pinhole (In three dimensions h is sometimes specified as the diagonal of the
view plane, see eg. [14]). In practice we see that the closer our eye point gets
to the view plane the bigger angle we get and the larger an area of the scene
becomes visible. Normally d is the parameter that is changed, since the size
of the screen then remains the same. Setting d is equivalent to choosing the
right lens for a camera.

The object in front of the camera in figure 2.4 is projected to the view
plane through the hole. Since there is no lens in the camera it is possible
to draw a straight line between a point in the scene and the same point in
the view plane. The line passes through the origin (the hole) and the angle
between the z-axis and the line will be the same on each side of the y-axis.
The size of the object depends on d, this follows the simple rules of projection
where (0,0) is the center of projection. The point on the view plane will be:

(Yps 2p) = (yp, —d)
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where
Y
= —— 2.19
and a similar calculation can be made for z,:
T
= —— 2.20

The resulting image on the view plane, which is incident with the back-
side of the pinhole camera in figure 2.4, will as indicated be turned upside
down, this is called back projection. In order to achieve front projection by
projection of the image back through the origin to a view plane in front of
the camera (at position z = d), we need merely change the sign in equations
(2.19) and (2.20) [14].

This section has focused on a virtual scene with a coordinate system with
origin in the eye point and z-axis along the line of sight. A virtual scene has,
however, several coordinate systems to keep track of. The space with a co-
ordinate system as the one used in this section is called eye (or view) space.
Besides eye space we have a world space, which has a predetermined coor-
dinate system that globally stays the same throughout a rendering session.
Objects, lights, and the viewer are placed in world space. Sometimes each
object has its own local coordinate system around which it was modeled, this
is called object (or model) space. When rasterization is used for rendering,
the view frustum (including its contents) is transformed into the unit cube,
this space is called clip space. Last we have the two-dimensional window co-
ordinate system which is the coordinate system of the screen or view plane.
These spaces each have their purpose, and they are described in more detail
in chapter 5. In the following we shall shortly describe how transformations
are represented mathematically in computer graphics.

Homogenous Coordinates

Consider a point in space p = (py, py, p.) and a vector in space v = (v, vy, v;).
The point describes a location, while the vector describes a direction and has
no location. Both are represented by the same three-tuple, which makes it
difficult to distinguish between them with respect to transformations.

We can perform linear transformations, such as rotations, scalings, and
shears, on a three-tuple using 3 x 3 matrices (this will be described in chapter
9). This suffices for transformation of vectors, since they do not have a loca-
tion. If we, however, want to translate a point it is not possible using a 3 x 3
matrix. Because of this obvious limitation to the three-tuple representation
of points and vectors computer graphics employs a mathematical tool called
homogenous coordinates.

Suppose we represent vectors and points using a four-tuple (z,y, z, w).
Then, when w # 0, homogenous coordinates are given as:
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xT Yy z
(_7 Ty 1)
ww w
In other words we let points and vectors be defined in three-dimensional

projective space (or projective three space). Now, transformations can be
represented by 4 x 4 matrices:

moo M1 Moz Iy
mig M1 M1z Iy
mog M21 Moy T,

0 0 0 1

where:

Mmoo MMo1 MMo2
mip Mi1 Mi2
Mmoo Ma21 M22

is the same transformation matrix as the 3 x 3 matrix that, as mentioned,
can be used for rotation, scaling, and shearing. (¢,%,,t,) is the translation
of a point to which this transformation is applied.

It now becomes clear that points are given in homogenous coordinates
as p = (Paz,Py:Pz, 1) and vectors are given as v = (vy,vy,v,,0). In this
way vectors will be unaffected by the translation, while points indeed will
be translated.

Even though we have changed to projective three space, matrix-matrix
multiplications and matrix-vector multiplications are still the same. There-
fore the homogenous coordinates are very useful.

Previously equations were given for projection of a three-dimensional
virtual scene into the view plane representing the screen output. In fact we
could say that the scene (in eye space) is represented in two-dimensional
projective space with respect to the view plane.

Having the above description of homogenous coordinates in mind, we can
define a (4 x 4) projection matrix P, finding the perspective projection of a
point p according to (2.19) and (2.20):

10 0 0 Px Pz

_ 1 01 0 0 Dy _ Dy

a=Pp=|( .45 | o | = s (2.21)
0 0 —1/d 0 1 —p./d

where q is the resulting point on the view plane given in projective three
space.

With a basic knowledge of the virtual scene, the representation of objects,
and a simple camera model, we can move on to a few efficiency schemes that
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are often useful in computer graphics. Section 2.4 describes how visibility
can be exploited and section 2.5 shows how spatial data structures often can
be an advantage.

2.4 Hidden Surface Removal

When a scene is rendered there is usually (at least in the case of local illumi-
nation) no need to spend unnecessary time calculating lighting and shading
conditions for object parts that are partly occluded or not visible at all. The
previous section showed how only a part of the scene is visible to the virtual
camera. This section will discuss how to rule out invisible objects or parts
of objects before doing expensive lighting calculations.

There are three steps to go through when removing hidden surfaces. First
of all we must remove all objects outside the visible area, the visible area
corresponds to the view frustum, see section 2.3. In figure 2.5 the visible
part of the scene is bound by six planes and in a moment we will show how
to find them. Furthermore we can remove all back facing surfaces, that is,
surfaces with normals pointing away from the viewer and last we can remove
all parts of objects that lie behind other objects in the scene.

(-Xs, Y1, €
\A (X, yr, € —
Line of sight

Eye
point z
\7 (%, -1, €)

d e
X5, -Yr, €)

Figure 2.5: Tllustration of the view frustum constrained by six planes. The view plane
is incident with the near clipping plane. 2a is the height and 2b is the width of the view
plane. d is the distance from the eye point (residing in the origin since we are working in
eye space) to the near clipping plane, while e is the distance to the far clipping plane. The
n subscript denotes near, while the f subscript denotes far. The figure resembles figure
1.9 of [135].

The six planes bounding the view frustum are referred to as the top,
bottom, left, right, near, and far planes. In practice it is normal to place
the near clipping plane just in front of the camera so that you can not see
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through objects. Another practical issue is what to do when the visible
area exceeds the far clipping plane, which often is the case when simulating
outdoor environments. Simply cutting when the far clipping plane is reached
can give unwanted effects, for example objects suddenly disappearing or
emerging in the horizon (this is called popping). Fog is a simple atmospheric
effect that can gradually hide distant objects giving a smoother transition
[2].

To define the view frustum we identify each plane individually. A plane

can be described by a normal n = («,3,7) and a point in space & =
(0, Y0, 20):

ax+PBy+v2+6=0 (2.22)
where 0 = —(mn - ). The normal can be determined as the cross product of

two linearly independent vectors, which are referred to as the basis of the
plane.

The left, right, top and bottom planes of the view frustum all have the
eye point in common. From each corner of the view plane a common basis
vector for two of those four planes can be found by subtraction of the eye
point.

The view plane is perpendicular to the line of sight and follows the z-axis
in the eye space coordinate system. Therefore the line of sight is a normal
for both the near and the far clipping planes, and a point on the plane is
given by the distances d and e as shown in figure 2.5. Using the line of sight
and the basis vectors defined by the corners of the view plane we can define
an equation for each of the six planes bounding our view frustum.

Consider a point in eye space (Ze, Ye, 2ze), for the four points in the near
clipping plane z, = d and for the far clipping plane z, = e. Since the eye
point resides in the origin the four basis vectors given by the corners of the
view plane (which in this case is incident with the near clipping plane) are
given as:

—Zn —b
bo = —Un = —a
d d
—Zn —b

by = Un = a
d d

T b

by = Yn =1 a
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Tn b
bs = —Yn = —a
d d

The cross product of each pair of adjacent basis vectors defines the normal
of a side plane, and since all the side planes have the eye point in common
0 = 0 in eqn. 2.22. This results in the equation for each of the six planes
shown in table 2.3.

Plane Equation

Near clipping plane Ze=d

Far clipping plane Ze =€

Right plane (boxb1) (TeyYey2e) =0 < dre+bze =0
Top plane (b1 xb2) (TeyYes2e) =0 & dye—aze =0
Left plane (ba xb3g) (TeyYey2e) =0 < dre—bze =0
Bottom plane (bg xbg) (TeyYes2e) =0 & dyetaze =0

Table 2.3: Equations defining the bounding planes of a view frustum in eye space. Note
that left and right are left and right as seen from the eye point in figure 2.5, and that the
coordinate system of figure 2.5 is right-handed

Having defined the view frustum which contains the visible part of a
scene, the task is now to limit, according to the frustum, the number of
objects that we must process. Suppose we enclose each object in the scene
by a bounding volume of much simpler geometrical shape than the object
itself. Then the point is that it should be much easier to test the bounding
volume for containment within the view frustum than to test the object
itself. Examples of bounding volumes are spheres and axis aligned bounding
boxes (AABBs). The bounding sphere is indifferent to rotation, which is
often an advantage, but unfortunately they grow unnecessarily large and do
not always fit well the object that it bounds, for example if the object is long
and thin. The axis aligned bounding box (AABB) is easy to handle because
its faces are axis aligned, and it resizes in three directions not uniformly in
all directions as the sphere. Therefore AABBs often fit the bounded object
better. A disadvantage is that its size must be adjusted after rotation. We
propose an idea in section 11.3 which use bounding spheres and we use
AABB:s for ray tracing, see section 4.2.

Using a bounding volume for each object in the scene we can test whether
an object is (a) completely inside, (b) partly inside, or (c¢) completely out-
side the view frustum. In the second case (b) the object should be clipped
against the view frustum. There is a standard algorithm for clipping which
is described in many computer graphics textbooks (eg. [134, 38, 135, 3]).
clipping is a part of the rendering pipeline that will be described in chapter
5, and is often implemented in hardware. While a good understanding of the
view frustum is useful when operations are carried out in different coordinate
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systems (world space, eye space, clip space, etc.), we feel that clipping is a
procedure so standardized that there is no reason to replicate it here.

Usually the polygons left by the clipping algorithm for further processing
are still plenty. To further bring down the number of triangles we can remove
all back facing surfaces. This process is referred to as back face culling.

Back face culling consists of a simple geometrical test. If we describe
the line of sight by the directional vector w = (wy,wy,w,) and the face
normal of a polygon as n = (ng,ny,n,), then the dot product between the
two determines whether the polygon is facing towards the eye point or away
from it. Line of sight is sometimes described as the direction from the point
on the surface towards the eye point, in that case visibility is determined as
w-n > 0. In eye space the test simplifies to n, > 0.

When drawing triangles the face normal is often determined as the cross
product of the directional vectors given by the first two edges drawn. The
result is that, by convention, polygons drawn in a counter clockwise manner
(from the point of view of the eye point) will have a normal pointing towards
the eye point and will, hence, be front facing.

The last and most tricky part is to remove all objects or parts of objects
covered by other objects. This is referred to as occlusion culling. Efficient
algorithms for occlusion culling are complex. The problem is that it is dif-
ficult to determine which objects that are likely to be occluders [134]|. The
subject of occlusion culling will not be addressed in detail in this project, a
few references on the subject are [2, 134, 50].

Another way to speed up the process of choosing visible objects for ren-
dering is scene graphs. Scene graphs are often useful in computer graphics
and they are usually constructed using some kind of spatial data structure to
split up the scene in a sensible way. Scene graphs and spatial data structures
will be described briefly in the following section.

2.5 Scene Graphs and Spatial Data Structures

Both realistic image synthesis and real-time techniques run into the problem
of “unrealistic computation times” ([135]) if they choose a naive brute force
rendering technique. The problem is usually the huge amount of triangles
that must be processed in order to display images in the desired quality. One
way to rule out large parts of a scene quickly is by spatial subdivision of the
scene.

Spatial data structures encompass data structures such as octrees (and
quadtrees), kd-trees, BSP (Binary Space Partitioning) trees, bounding vol-
ume hierarchies, Voronoi diagrams, etc. which are useful for spatial subdi-
vision of a two- or three-dimensional scene.

The kd-tree is an important part of the rendering technique called photon
mapping, see [60, Chap. 6]. Recent articles have, however, tested other
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spatial data structures with photon mapping. Giinther et al. have had
success with a uniform grid of voxels [44].

A kd-tree is, in fact, short for a k-dimensional tree. The special case
of 3d-trees, which are most commonly used in computer graphics, split (or
subdivide) the scene using planes perpendicular to the axes of the world
coordinate system. Each split results in two subsets of photons. The concept
is illustrated in figure 2.6.

R

Figure 2.6: A simple example of a kd-tree. p1, p», and p3 represent photons stored in a
photon map. ¢; and ¢ represent splitting planes.

An algorithm for the construction of a 3d-tree could be as follows, where
d denotes the recursion depth and the d = 0 at the root node:

1. If d mod 3 = 0 split with a plane perpendicular to the z-axis, if
d mod 3 = 1 split with a plane perpendicular to the y-axis, or if
d mod 3 = 2 split with a plane perpendicular to the z-plane.

2. Store the splitting plane in the node.

3. Let the left child receive the subset of points behind or on the splitting
plane.

4. Let the right child receive the subset of points in front of the splitting
plane.

5. For each child; return to step 1 unless the maximum recursion depth
has been reached.

Proper placement of the splitting planes is important. In the original
algorithm the splitting planes should be placed at the median of each point
set. The kd-tree for photon mapping (as described in [60]) also find medians.

If the kd-tree is properly balanced, the resulting data structure locates
a leaf node at complexity O(log N), where N is the number of leaf nodes in
the tree. For specific details on the use of kd-trees for photon mapping we
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refer to [60], and for further details on the geometrical aspects of kd-trees
and many other useful spatial data structures [25] is a good reference.

In addition to the use of kd-trees for photon mapping, spatial data struc-
tures have countless applicabilities in computer graphics. A few examples
are: A quad-tree storing objects computed on the fly and used as a fast scene
graph for real-time environments [35], octrees, BSP trees, and bounding vol-
ume hierarchies for reduction of ray-triangle intersections in ray tracing [135]
(ray-triangle intersections are described in section 4.2), and a quad-tree for
shaft occlusion culling and shadow ray acceleration [117]. In general spatial
data structures are used to achieve speed-ups whenever the objects in a scene
have to be searched in one way or another.

A scene graph, as presented in [35], is a higher level tree structure storing
more than just geometry. Light sources can be stored in a scene graph,
textures, and transformation matrices as well. When rendering, the tree
is traversed in a depth-first order and textures, tranformations, and light
sources can be associated with an internal node so that it is only applied to
the subtree of that particular node [2]. When a dynamic environment grows
in size scene graphs are indispensable, both to keep track of objects in the
scene and to speed up rendering. Scene graphs and spatial data structures
are some of the subjects that we have chosen not to treat thoroughly in this
project. Nevertheless they are quite useful, and they should be studied in
the future if our test scenes grow larger.

The drawback of spatial data structures for real-time rendering is that
they are often quite costly to construct and re-construct when things change
dynamically. This has the result that they must be either very simple having
a reasonable size or they must be pre-computed.

For a truly dynamic scene it is difficult to pre-compute all possible ver-
sions of spatial data structure, not to say impossible if we want, for example,
a BSP tree with a single triangle in each leaf node. Tiles are therefore often
used in scenes for real-time rendering and a graph is established and pre-
computed between those, or simple data structures (such as the quad-tree
mentioned before) are computed on the fly.

Unfortunately we have not been able to spare time during this project
for a thorough investigation of spatial data structures. Most of the scenes
that we have tested have not been sufficiently complex to draw advantage
of BSP trees or the like. However, we have developed a simple spatial data
structure based on solid angles, and used a few other optimization schemes
for ray tracing, those will be described in part III.



Chapter 3

The Mathematical Model of
Illumination

Socrates:

Glaucon:
Socrates:

Glaucon:

Though wvision may be in the eyes and its possessor may
try to use it, and though color be present, yet without the
presence of a third thing specifically adapted to this purpose,
you are aware that vision will see nothing and the colors will
remain invisible.

What is this [third] thing of which you speak? he said.
The thing, I said, that you call light.
You say truly, he replied.

Plato (427-347 BC.): The Republic 507e
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One purpose of this project is to visualize a three-dimensional digital model
as photorealistic images on a computer screen, and to make those images
appear on the screen at a frequency that allows interactive animation of the
pictured elements.

These apparently harmless objectives are, in fact, quite contradictive. At
least they are contradictive on current computer hardware using the current
visualization techniques. Why so? Since a perfect synthetic representation
of the real world would consist of infinite complexities. Luckily we need not
compute an exact copy of the real world, we can merely focus on the human
visual interpretation of the world.

What we need is a model that can simulate vision (or photography) as it
takes place in real life. What we see is light, hence, what the mathematical
model must capture is the interaction of light with matter, or the illumination
of a scene. Such a mathematical model will be referred to as an illumination
model.

Simple as it may seem, it is not at all simple to model or even give an
exact explanation of light. Through times many attempts have been made on
the nature of light (see appendix B). Today quantum mechanics explain light
on the particle level while light in general is considered to be electromagnetic
radiation in the infrared, visible, and ultraviolet spectrum. The spectrum of
electromagnetic waves is illustrated in figure 3.1.

In order to construct an illumination model we must give a mathematical
description of light. First the propagation of light through different media
must be modeled. The scientific field of optics includes a mathematical
model for the description of light propagation. Section 3.1 presents some
fundamental postulates concerning light propagation on which we can build
our illumination model.

Next we must introduce a terminology in our model by which we can
specify how light is measured by the eyes and other optical detectors. Ra-
diometry offers mathematical definitions of the necessary physical terms and
is described in section 3.2.

The strict physical measures of light do not necessarily fit the visual
response of the human eye exposed to light. Photometry is closely related
to radiometry except for the fact that it includes the visual response of a
standard observer in the quantification of light measurements. Photometry
is shortly introduced in section 3.3.

Since illumination includes the interaction of light with matter we must
include in our model how light is reflected off, refracted through, and ab-
sorbed by different materials. These processes, and the relation between
them, are referred to as light scattering and are modeled in the field of heat
transfer. Light scattering will be the topic of section 3.4.

Consecutively the mathematical description of light and how it scatters
will be gathered in an integral equation that we can use for rendering. The
rendering equation is described in section 3.5.



3.1 Optical Radiation 37

To explore the model a little deeper section 3.6 will go into the recursive
nature of the rendering equation. It is shown how the illumination of a scene
can be described as recursive steps of light propagation and light scattering.

Section 3.7 describes some of the different illumination models that can
be derived from the rendering equation, and, finally, section 3.8 will present
some of the tools that can be used when we need to solve recursive integral
equations such as the rendering equation.

All in all the purpose of this chapter is to put forth a mathematical model
describing how light illuminates its surroundings.

3.1 Optical Radiation

In order to describe how light propagates, we must introduce a number of
physical terms from the broad literature of optics, radiometry, and thermal
radiation.

Radiation is energy propagated in the form of electromagnetic waves or
particles (photons). The range of radiation which can be reflected, imaged,
or dispersed by optical components, such as mirrors, lenses, or prisms, is re-
ferred to as optical radiation'. Hence, light is composed of optical radiation.

OPTICAL RADIATION
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Figure 3.1: Spectrum of electromagnetic waves. Identical to fig. 1.1 of [89]. (Courtesy
of F. E. Nicodemus et al.)

Optics is a theory or model for the description of physical phenomena
involving the generation, propagation, and detection of light. Like most other
physical models optics is an abstraction or idealization that approximates
‘real life’. The historical development (see app. B) of optical models has
resulted in different levels of sophistication, “each with its own region of
useful validity” [89].

As seen in figure 3.1 the visible light region of the electromagnetic spec-
trum extends from wavelengths of approximately 380 to 780 nanometers.?

!The definition of optical radiation is adopted from [89].
2Note that only approximate boundaries exist between the wavelength regions of the
electromagnetic spectrum.
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When light waves propagate through and around objects whose dimensions
are much greater than the wavelength (this is, for example, a reasonable as-
sumption in virtual realities and 3D environments for games and animation),
the wave nature of light is not readily discerned and for that reason light
can adequately be described by rays obeying a set of geometrical rules [116].
This model of light is referred to as ray optics or geometrical optics. Approx-
imating light waves with rays is the simplest approach to optics. However, it
accounts very well for the way in which optical radiation is propagated from
the most common light sources [89].

The shortcomings of ray optics are revealed by optical phenomena such
as diffraction and interference found in focal regions where rays sharply con-
verge. To treat such phenomena light must be described in terms of wave
optics or electromagnetic optics. Moreover if we want to treat the interaction
of light with matter in microscopic detail it is necessary to recognize that
optical radiation is being propagated in discrete “packets” or photons, whose
large numbers produce average energy distributions in time and space cor-
responding to electromagnetic waves [89]. Such a model relies on quantum
theory and is, hence, referred to as quantum optics. Figure 3.2 describes the
increasing levels of sophistication in optical models. In computer graphics
the simplifying assumption of ray optics is reasonable and therefore this the-
sis will exclusively make use of ray optics in order to solve problems of light
wave propagation in virtual worlds.

Electromagnetic Quantum
optics optics

VWave optics Ray optics

Figure 3.2: The theory of quantum optics provides an explanation of virtually all known
optical phenomena. Electromagnetic optics provides the most complete treatment of light
within the confines of rigorous electromagnetic theory. Wave optics is a scalar approxima-
tion of electromagnetic optics. Ray optics is the limit of wave optics when the wavelength
is infinitesimally small. The figure is adopted from [116].

Ray optics are based on four postulates that are provided here without
proof (though they follow naturally from the more sophisticated models).
From those we can “determine the rules governing the propagation of light
rays, their reflection and refraction at the boundary of different media, and
their transmission through various optical components” [116].
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The four postulates are given in [116] and are replicated below in short:

1. Light travels in the form of rays. The rays are emitted from light
sources and can be observed when they reach an optical detector.

2. An optical medium is characterized by a refractive inder n = 2 > 1,
where ¢ is the speed of light in a medium and ¢y is the speed of light
in vacuum.

3. In an inhomogeneous medium the refractive index () is a function of
the position r = (z,v, 2).

4. Fermat’s Principle. Optical rays traveling between two points fol-
low a path such that the time of travel is an extremum relative to
the neighboring paths. The extremum is most often a minimum in
which case the ray follows the path of “least time” as Fermat originally
expressed it.

To illustrate shortly the consequences of the postulates we may consider
the propagation of light in a homogenous medium. The refractive index
is constant throughout a homogenous medium, and it follows then from
the second postulate that so is the speed of light. The path of least time,
which is required by Fermat’s principle, is then also the path of minimum
distance. This property of light was first discovered by Hero of Alexandria
(see appendix B) and is referred to as Hero’s principle. A consequence of
Hero’s principle, which follows from the postulates, is therefore that light rays
travel wn straight lines in a homogenous medium. Throughout this report,
unless stated otherwise, it will be assumed that all media are homogenous.

Furthermore we can derive from the postulates how light reflects off and
refracts through a perfectly specular surface marking the boundary between
two homogenous media.

Reflection

Consider two locations, A and C, in a homogenous medium, see figure 3.3.
If a ray of light is to travel from A to C' by reflection off a perfectly specular
mirror surface §, it will according to Hero’s principle follow the path of
minimum distance. That is, we must choose a point B on the mirror surface
such that the distance AB 4+ BC is minimized. First to follow the shortest
path the light must travel in the plane of incidence, which is spanned by the
two vectors C'— A and B — A. Figure 3.3 pictures the plane of incidence.
Let C' be a mirror image of C in the tangent plane T}, to the specular
mirror surface S, then BC = BC'. Now AB+ BC’ must be minimum, which
is indeed the case when a connection of the points A, B, and C’ is a straight
line. If ABC' is a straight line, we have that Z(AB,T,) = Z(T,, BC"), and
because C' is a mirror image of C it is evident that Z(T,, BC") = Z(BC,T,):
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b1

Figure 3.3: Light traveling in a homogenous medium from a point A reflecting off a
perfectly specular mirror surface S at the point B ending in the point C. T, is the
tangent plane to S, and C' is the mirror image of C in T).

Z(AB,T,) = Z(T,,BC") = Z(BC,T,) = ¢

Since Z(AB,T,) = Z(BC,T,), and since the normal n at the surface
point B by definition is perpendicular to 7T}, it follows that:

/(AB,n) = £(n,BC) =0 (3.1)

which states that the angle of reflection equals the angle of incidence (cf. fig.
3.3).

Let w' = Hf‘:—g\ denote the direction from which the incident radiance
is arriving at the mirror surface S, then, according to (3.1), the direction of
the reflected ray w, can be found as:

ws =2cosfn —w =2(w n)n — ' (3.2)

where 6 is the angle of incidence and m is the unit normal at the point of
incidence. (3.2) is one of many ways to express the law of reflection. Another
enunciation is as given in [116, p. 5]:

The reflected ray lies in the plane of incidence;
the angle of reflection equals the angle of incidence.

Refraction

Again the fourth postulate (Fermat’s principle) gives means by which we can
establish how light refracts when it passes from one homogenous medium to
another. The difference between the two media is stated as two different
indices of refraction, n; and 7y (one for each media). In order to find the
path that light takes from a point A in the medium of refraction index
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Figure 3.4: The path of light when it travels from one homogenous medium to another.

to a point B in the medium of refraction index 79, we must find the path of
least time. Again we need only consider the plane of incidence as pictured
in figure 3.4.

Let B be the point of incidence at the surface S, which marks the bound-
ary between the two different media, and let 8; be the angle of incidence such
that:

!
cosy =w ' n

where w' = Hfl:—g\ is the direction of incident light, and n is the unit normal
at the point of incidence. Now, we denote the angle of the refracted light 6
such that:

cosbly = w, - n

where w, = ﬁ is the direction of the refracted light.

The time it takes for light to travel a distance d equals d/c = nd/cy. The
travel time is thus proportional to the optical path length, which is defined as
nd. To find the path of least time we can, therefore, minimize the optical path
length instead of the travel time. Meaning that what we seek to minimize is
7]1@ + 772B—C.

Suppose we let the normal n define a v-axis in the plane of incidence,
then B = (u,0) in (u,v)-coordinates. Furthermore let A = (uj,v;) and
C = (ug,vs), then AB = \/(u — u1)?2 + v? and BC = \/(ug — u)? + v3. The
derivative of the optical path length is then given as:

d(nd) u — Uy —u + u

_l’_
dx m\/(u—ul)?—i-v% G (ug — u)?

Setting the derivative equal to zero we will discover an extremum (which
will most probably be a minimum) as is required by Fermat’s principle. This
yields the following:
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U — Ul Us — U

(u —up)? + v?

m

or put differently:

di do

TIIE - T’ZB—C
where d; and dy are the projections on the tangent plane of AB and BC
respectively. Now, Snell’s law follows by the trigonometry of a right triangle:

m sin 91 =12 sin 92 (33)

Snell’s law gives means by which we can find a formula for the calculation
of the direction of refraction w,. Suppose t is a unit tangent vector to the
perfectly specular surface S at the point B in the plane of incidence, and
that m is the unit normal pointing into the medium of refraction index 7y,
then the direction of the refracted light is:

wy = —n cos by + tsinby (3.4)

Suppose the normal n and the direction towards the incident light '
are given. Then the component of w' that is perpendicular to the normal, is
given as:

W =(w -n)n-uo
while the length of w', simply is sin€;. An expression for the unit tangent
vector t then follows:
W' (W n)n— o'

t = =
IZA sinfy

To find cos s of (3.4) we use the property that the angle of incidence

always lies in the interval [0, 5], and get that:

cosfy = \/1 — sin? 6,

(3.4) then has the following form:

wy = —nV/1 —sin? 6 + STHZQ (W n)n—w')

sin 01

and by Snell’s law and a few rearrangements, we retrieve the law of refraction
as it is expressed in many text books (eg. [38, 60, 30]):
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w, = sin 0y (W -n)n —w') —ny1—sin? 6y

sin 91

2
= m((w' ‘n)n —w') — n\/l — (ﬂ) sin? 6
2 72

2
- ﬂ((w'-n)n—w')—n\/1—<ﬂ> (1-(w'n)2) (3.5)

12 12

The more textual enunciation of the law of refraction is given in [116, p.
6] as:

The refracted ray lies in the plane of incidence; the angle of
refraction 6y is related to the angle of incidence 6; by Snell’s law,

m sin 91 =12 sin 92
U

Based on the four postulates of ray optics, it has now been established how
light propagates in homogenous media. The three simple rules are:

e Propagation in straight lines
e The law of reflection

e The law of refraction

The laws of reflection and refraction concerns only perfectly specular
material, nevertheless, they are important since the reflection and refraction
of glossy materials (which are materials with properties that lie in-between
perfectly specular and perfectly diffuse) in general are centered around the
perfect directions.

Having established the basic properties of light propagation on which to
build our illumination model, we can proceed to the radiative properties of
light, which will allow us a description of the light that can be measured at
optical detectors such as the eye.

3.2 Radiometry

While optics concern the generation, propagation, and detection of light,
radiometry is the science of electromagnetic radiation measurement.

The basic quantity of radiometry is radiance, L, which most closely rep-
resents the colors that we see [60]. Therefore radiance is a very important
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quantity in computer graphics, and radiance is what we must calculate and
display to an observer in order to visualize a 3D model.

Technically speaking radiance is the amount of radiant energy arriving
at or departing from an infinitesimal area per unit time with respect to a
given direction. Meaning that radiance can be used to describe the intensity
of light at a given point in space.

Radiance is a third derivative of radiant energy, QQ. To give a better
understanding of radiance the different derivatives of radiant energy will be
described in the following.

Radiant Flux

First we would like to consider the flow of energy rather than isolated
amounts. This is obvious since the eyes percept light waves continuously
rather than on timely intervals. Radiant energy per unit time is called radi-
ant fluz, ®:

P
dt

When looking at an object the eye registers the radiant flux departing the
object in the direction of the eye. To describe a directional volume through
which the energy can flow, we need to introduce the concept of a solid angle.

(3.6)

Solid Angle

In 2-dimensional space the more familiar plane angle, 6, is formed at the
point Oy where two straight lines meet, see figure 3.5a. It is defined as the
locus of all directions that may be occupied by either line as it is rotated
about the vertex to bring it into directional coincidence with the other line.
Drawing a unit circle centered at Oy the length of the circular arc intercepted
by 6 is a measure of the plane angle.

The solid angle is formed at a point O, in 3-dimensional space. Con-
sider a simply-connected curve (not passing through O,,) perhaps forming
the contour edge of a convex object, see figure 3.5b. The conical surface,
containing all possible straight lines that extend from O, to a point on the
curve, forms the delimiter or bounding cone of the solid angle exactly as
the straight lines in figure 3.5a forms the delimiter of the plane angle. The
solid angle w is then defined as the locus of all directions lying within the
bounding cone. Drawing a unit sphere centered at O, the spherical-surface
area Ay intercepted by w is a measure of the solid angle.

The magnitude of plane angles is radians [rad| or degrees [°|. The rela-
tionship between these two entities is:

_ 180

1°=—[rad
= [rad)
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(@)

Figure 3.5: (a) A plane angle @ formed at the point Og. The length of the red circular
arc, which is a part of the unit circle, is a measure of 6. (b) A solid angle w formed at the
point O, . The area of the blue patch on the unit sphere is a measure of w.

The magnitude of a solid angle w is steradians [sr], which is the ratio of
the intercepted spherical-surface area A; to the square radius of the sphere
r2. As previously noted this magnitude is identical to the intercepted area
on the unit sphere (where r = 1):

% [s7] (3.7)

w =
Meaning that the entire unit sphere contains 4 [sr].

Since computer graphics use ray optics, and therefore rays, to describe
the propagation of light, the solid angle is mostly described by the direction
around which it is defined. The directional element of