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Summary

This thesis describes statistical methods for modelling space-time phenomena.
The methods were applied to data from the Danish marine monitoring program
in the Kattegat, measured in the five-year period 1993-1997. The proposed
model approaches are characterised as relatively simple methods, which can
handle missing data values and utilize the spatial and temporal correlation in
data. Modelling results can be used to improve reporting on the state of the
marine environment in the Kattegat.

The thesis also focus on design of monitoring networks, from which geostatistics
can be successfully applied. Existing design methods are reviewed, and based
on these a new Bayesian geostatistical design approach is suggested. This focus
on constructing monitoring networks which are efficient for computing spatial
predictions, while taking the uncertainties of the parameters in the geostatistical
model into account. Thus, it serves as a compromise between existing methods.

The space-time model approaches and geostatistical design methods used in this
thesis are generally applicable, i.e. with minor modifications they could equally
well be applied within areas such as soil and air pollution.






Resumeé

Denne PhD afhandling beskriver statistiske metoder til modellering af fasnomener
i tid og rum. Metoderne er anvendt pa data fra det danske marine overvanings-
program i Kattegat, der er malt i perioden 1993-1997. De foreslaede mod-
eller er karakteriseret ved at veere forholdsvis simple metoder, der kan handtere
manglende observationer, samt udnytte den spatielle og tidslige korrelation i
data. Model resultaterne kan anvendes til at forbedre viden og afrapportering
af miljgtilstanden i Kattegat.

PhD afhandlingen omhandler ligeledes design af maleprogrammer, saledes at
effektiv modellering ved brug af geostatistik muligggres. Der gives en oversigt
over eksisterende design metoder, og pa baggrund af disse er foreslaet en ny
Bayesiansk design metode. Denne fokuserer pa at konstruere maleprogrammer,
der kan anvendes til effektiv beregning af spatielle prediktioner ved brug af
en geostatistisk model, og under hensyntagen til usikkerhederne i modellens
parametre. Den Bayesiansk design metode kombinerer saledes eksisterende de-
sign metoder.

De statistiske metoder til modellering af feenomener i tid og rum, samt de
geostatistiske design metoder, der anvendes i PhD afhandlingen, er generelle
metoder, og kan med sma sndringer anvendes indenfor andre miljgomrader,
som f.eks. jord- og luftforurening.
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phenomena and geostatistical design of monitoring networks using a dataset
containing measurements of nutrients, biomass, salinity and temperature in the

Kattegat.

The thesis consists of a summary report and a collection of six research papers
written during the period 2001-2004, and elsewhere published.
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CHAPTER 1

Introduction

Environmental monitoring is often conducted over time at a number of fixed
sampling sites. In the past, most resources for monitoring programs have been
allocated to collecting data, while less emphasis has been put into designing
monitoring programs, in-depth statistical analysis of the data and development
of methods for extracting meaningful information. [Ward et all (1986) referred
to this as the ”Data-rich but Information-poor” syndrome.

This thesis applies statistical methods for designing an environmental moni-
toring program, and analysing data from it. The dataset used as an exam-
ple consists of measurements of salinity, temperature, nutrient concentrations,
chlorophyll-a and phytoplankton from the Kattegat in the period 1993-1997.
The Kattegat is the estuaries between Denmark and Sweden limited to the
north by the North Sea. The dataset is a part of the Danish marine monitoring
program, which was established in connection with the adoption of the Action
Plan on the Aquatic Environment in 1987.

Although a quite comprehensive dataset exists, the monitoring program in the
Kattegat comprise a puzzle where at many sampling sites only a few measure-
ments have been carried out during the five-year period. Hence, many sampling
sites may not provide any detailed information when considered individually,
while combining data from several sampling sites could potentially increase the
information content significantly.



2 Introduction

The overall objective of this thesis is to investigate how the reporting on the
state of the marine environment in the Kattegat can be improved by means of
statistical methods for data analysis and design of monitoring programs. An
improvement in the reporting on the state of the marine environment would
increase the knowledge on the processes in the marine environment and provide
a better assessment of effects of anthropogenic stresses. Statistical methods have
been developed with this specific application in mind. However, the generality
of the methods is discussed throughout the thesis.

1.1 Outline of the thesis

This thesis consists of six research papers (Papers A-F) and a summary report
(Chapters 1-5), for which an overview is given below. For the summary report
the content of the individual chapters is shortly described, while the presentation
of the research papers aims at shortly describing the objectives, the methodology
and the main results of the individual papers.

1.1.1 The summary report

Chapter[2 gives an overview of the Danish marine monitoring program, including
a description of the hydrography of the Kattegat basin from where the data
used in this thesis were obtained. Furthermore, a short description of how the
measurements were carried out and what information is contained in the data is
given. The description is supported by statistical descriptive analyses and aims
at providing readers without a chemical or biological background information
about the monitoring data analysed.

Chapter [ gives an overview of the statistical theory applied in the research pa-
pers, including a description of geostatistics (section B.I]), space-time statistics
(section[B.2)) and geostatistical design methods (section[33]). The primary focus
is on geostatistics, because this gives the background theory of space-time statis-
tics and geostatistical design methods. The theory of these two topics can be
seen as extensions of the geostatistical theory. Rather than trying to give a very
comprehensive description, the chapter aims at shortly describing the principles
of the theory, and moreover refer to the relevant literature for further reading.
This should enable readers without a geostatistical background to better under-
stand the applications in the research papers. The description is supported by
statistical analyses using marine monitoring data from the Kattegat area.
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The applied statistical methods and the results obtained in the thesis are dis-
cussed in chapter El while chapter Bl concludes on the obtained results.

1.1.2 The research papers

The six research papers can be separated into three groups: 1) Paper A, which
is about parameter estimation in geostatistics 2) Paper B, C and D, which deal
with space-time modelling of nutrients in the Kattegat 3) Paper E and F, which
are about geostatistical design methods. The first group (Paper A) deals with
classical geostatistics, and in that sense it can be seen as a background pa-
per. The second and third group deals with two different extensions of classical
geostatistics, as illustrated in Figure [T}

Classical geostatistic

(Paper A)

Space-time statistics
(Paper B, C, D)

Geostatistical design methods
(Paper E, F)

Figure 1.1: Querview of the research papers included in the thesis.

When applying geostatistics the spatial correlation in data has to be determined.
Spatial correlation is usually modelled by a parametric correlation or covariance
function. Various methods for estimating the parameters in such functions have
been proposed, and paper A compares the efficiency of eight of these. When
assuming that data are normally distributed likelihood-based methods, such
as maximum likelihood (ML) and restricted maximum likelihood (REML) can
be used. Another way, which is traditionally used within geostatistics, is to
estimate the parameters by least squares fitting of the sample (experimental)
semivariogram with a valid semivariogram model. The comparison includes ML
and REML as well as six estimation approaches based on the sample semivar-
iogram. The comparison is made from a simulation study, where values of a
Gaussian random field are simulated in a number of spatial locations. Different
types of covariance functions, parameters of these, grid structures and sample
sizes are investigated. The comparison show that when data are normally dis-
tributed maximum likelihood estimation results in the smallest variances, while
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the smallest biases, on the other hand, were found when restricted maximum
likelihood is used to estimate the parameters. The results also show that spa-
tial predictions computed by kriging, is relatively insensitive to the choice of
estimation method.

Paper B aims at developing a statistical approach, which can be used to predict
nutrient concentrations with a temporal resolution of one week at the locations
of monitoring stations in the Kattegat. The model is formulated as a sum
of a mean field and a residual component. The mean field is discretised so
that variations between monitoring stations and time intervals are described
by means of indices for each week and monitoring station. Different modelling
approaches are tested and compared by means of cross validation, which shows
that the inclusion of a spatial covariance structure to individual weeks gives
predictions which are more efficient than assuming uncorrelated residuals.

Paper C also aims at developing a statistical approach, which can be used to
predict nutrient concentrations with a temporal resolution of one week at the
locations of monitoring stations in the Kattegat. Paper C use paper B as a
starting point, and focus on improving the weaknesses of this approach, e.g. the
high number of parameters and the lack of temporal correlation in the model. A
station-effect is still included in the mean field while the week-effect in the model
in paper B is substituted by the sum of a year-effect and two sine-functions. Both
spatial and temporal correlation are included in the residual component, and
the spatial covariance structure is modelled by means of a separable space-time
model. Results are presented for two monitoring stations and show that the
predictions fit observations quite well.

Paper D extends the model presented in paper C to non-sampling locations
by geostatistical modelling of the station effect. Both spatial and temporal
correlation are included in the residual component, and the spatial covariance
structure is modelled by means of a separable space-time model. The approach
can be applied to compute maps of the spatial distribution of monitoring data
with a weekly resolution. Results are presented for dissolved inorganic nitrogen
in four different weeks, representing the four seasons, and at three different
locations, and agree very well with our prior belief about the spatial distribution
and temporal dynamics of this variable.

Paper E describes, implements and tests some of the geostatistical design meth-
ods found in the literature. These methods focus on either designs which are
optimal from a spatial prediction point of view, or designs optimal for esti-
mation of the parameters in a geostatistical model, and hence they could be
separated into two groups. The problem of the first group of methods is that
these assume that the model parameters are known, which in reality they are
not. The problem of the second group is that the final goal of most geostatisti-
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cal applications is to compute efficient predictions rather than estimating model
parameters. The paper also suggests how the two groups of design methods
could be combined.

Paper F describes and applies a geostatistical approach for reducing the number
of sampling stations in the Kattegat area. The choice of design approach is
based on the review of geostatistical design methods given in paper E. The idea
of the applied approach is to find the design which produces the most efficient
spatial predictions whilst making proper allowance for the effects of parameter
uncertainty. The design criterion to be optimised is formulated based on the
variance of the predictive distribution computed by Bayesian kriging, and the
application showed that the number of monitoring stations can be reduced from
31 to 14 with only a marginal increase in this criterion.



Introduction




CHAPTER 2

The Danish marine
monitoring program

The first real marine monitoring program in Denmark was the Belt Sea project
from 1974 to 1978. In 1979 a national monitoring program was established
including the monitoring set out by HELCOM’s first monitoring program. In
the beginning the national monitoring program only covered the Belt Sea and
Arkona Basin while Kattegat, Skagerrak and the North Sea were included at a
later stage. In 1987 the first Danish Action Plan for the Aquatic Environment
was passed through the Danish parliament, resulting in a new more extensive
monitoring program of the Danish waters starting in 1989. This program was
revised in 1993 to incorporate more intensive monitoring stations. A new re-
vision started in 1998 including new measurement variables such as harmful
substances and biological effects, however, with reductions in other measure-
ment variables.

The monitoring in Danish waters is carried out by National Environmental Re-
search Institute (NERI) and 15 counties. Monitoring at some HELCOM stations
is co-ordinated with Norway, Sweden and Germany. The majority of stations
are located in tributaries and coastal areas, where the monitoring is conducted
by the local authorities (counties).
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2.1 Area of study - Kattegat

The Kattegat is a shallow transition area between the saline North Sea/Skagerrak
and the brackish Baltic Sea (Figure Z1I)) with a surface area, volume and average
depth of 22,290 km?, 533 km? and 23.9 m, respectively (Gustafsson, 2000). The
general circulation is dominated by north-flowing surface water with a salinity
gradient from 15-30 psu and south-flowing deep water with salinities around
30-34 psu. It is considered to be almost permanently stratified with a halocline
located at approximately 15 m depth (Andersson and Rydberg, [1988).

The Kattegat is characterised by a coastal shelf <20 m in the western part
and a trench in the eastern part, where the outflow from the Baltic Sea dom-
inates. Major tributaries to the Kattegat are scattered along the Jutland and
Swedish coast and include Limfjorden, Randers Fjord, Rénne A | Lagan, Nis-
san, Atran, Viskan and Géta river, which occasionally spills into Kattegat with
winds from northerly directions. The Kattegat-Skagerrak front in the northern
part, where surface salinities rapidly changes with 5-10 psu (Jakobsen, [1997),
is another important feature leading to increased primary production (Richard-
son, [1985).

Water exchange between the Baltic Sea and the North Sea through Kattegat
is closely coupled to the wind conditions. Strong westerly winds forces Skager-
rak water into Kattegat building up a southward surface current, while easterly
wind forces Baltic Sea water through @resund and the Great Belt. Changing
wind conditions give rise to alternating flow patterns in Kattegat, however, on
an annual basis there is a net flow from the Baltic Sea of 470 km?, which is equal
to the freshwater input to the Baltic Sea. When the wind is westerly, surface
water is initially blown away from the east coast of Jutland and sea level rises
along the west coast of Sweden. Replacement of surface water along the Jutland
coast with nutrient-rich bottom water (upwelling) is an important process for
bringing nutrients to the surface layer (Kigrboe, [1996).

The Jutland Coastal Current is another important source of nutrients to the
Kattegat. It derives from the German Bight bringing nutrient-rich water along
the west coast of Jutland and occasionally spills into Kattegat. The episodic
character of the Jutland Coastal Current is governed by wind conditions where
strong south-westerly wind forces the current into Kattegat, where it enters at
intermediate depths of 10-25 m and can mix with both surface and bottom wa-
ters. It is estimated that 10-20% of the bottom water derives from the German
Bight with the Jutland Coastal Current (Christensen, [1998).

Bioassay studies have shown that primary production is nitrogen limited (Granéli,
1987; |Granéli et all,11990). The external loading of total nitrogen was on average
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Figure 2.1: The Kattegat area as a transitional sea between the North Sea and
the Baltic Sea.
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Figure 2.2: Nitrogen and phosphorus budgets for the Kattegat in 1000 tons per
year (Christensen, |1998).

69000 ton N/year (1989-1997) with large inter-annual and seasonal variations.

During the last four decades the Kattegat has been seriously affected by eutroph-
ication, and frequent oxygen depletions of bottom waters have been recorded
(Andersson, 11996). The nitrogen load has increased fourfold during the period
1930-80 (Edlexn, 11984) and doubled in the period 1950-80 (KErtebjerg,1986). The
gross nutrient budgets are dominated by the water exchange with the North Sea
and the Baltic Sea (Figure 2:2)). However, if we consider the net fluxes the load
from land and atmosphere becomes important. A total of 90-95% of the annual
primary production is degraded in the water mass and at the sediment-water
interface (Anton et all, [1993).
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2.2 Description of data

The majority of monitoring data is sampled by traditional shipboard surveys
from research vessels, which has been constructed for this specific purpose, vis-
iting a number of predefined stations (Figure 223]). New emerging technologies
include continuous measurements from moored buoys, ships-of-opportunity, re-
mote sensing etc. Although several of these technologies make good promises
for the future of monitoring, they are still in a premature stage to substitute
the traditional shipboard sampling. The focus of this work have therefore been
directed towards the information contained in traditional monitoring data.

The water column is normally sampled at discrete depths for analysis. Wa-
ter samples at discrete depths are pooled to constitute an integrated sample
over a depth interval. Samples representing discrete depths or depths intervals
are analysed to measure the hydrochemical and biological composition. The
data used in this thesis are surface concentrations, measured in the five-year
period 1993-1997. Surface concentrations represent the upper 10 meters of the
water column. The different variables in the dataset are briefly described below.
The description is accompanied by statistical descriptive analyses, i.e. Figure
[2.4] shows for each variable in the dataset the total number of observations, the
number of monitoring stations where samples have been taken, and the number
of weeks where samples have been taken, Figure shows the temporal dynam-
ics of the variables in the dataset at individual monitoring stations, Figures
and R7]show histograms of the variables in the dataset, while Figure 2.8 shows
the relationship between the variables in the dataset.

% | .

° ?ﬁﬁ a
Figure 2.3: A) Locations of all the monitoring stations included in the dataset.
B) Locations of monitoring stations which are intensively sampled nowadays.
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2.2.1 Salinity (SALI) and temperature (TEMP)

Salinity is given in psu (practical salinity unit). It is chosen so that a water
mass with approximately 35g salt/kg has a salinity of 35 psu. In the Kattegat
the salinity varies from approximately 30 psu in the northern part to approx-
imately 20 psu in the south. Above 30 psu is termed as oceanic environment
while freshwater is characterised by less than 0.5.

Today salinity is estimated with the help of conductivity, which is measured with
a CTD probe (CTD=Conductivity, Temperature, Depth). The probe measures
conductivity, temperature and pressure simultaneously while it is continuously
lowered from the surface to the bottom. Salinity is then calculated from these
continuous observations.

Advanced thermometers were developed for oceanic conditions in the begin-
ning of this century. However, temperature may also be measured with the help
of a thermistor. This is lowered into the water and the temperature is reported
at predefined depths.

2.2.2 Dissolved inorganic nitrogen (DIN)

DIN is the inorganic form of nitrogen that is used as nitrogen source by the pri-
mary producers. In fact, in most marine waters DIN is assumed to control the
size of the primary production. High supplies of DIN can cause a severe algae
bloom. The concentration of DIN in the euphotic zone is mainly controlled by
the biological activity. Other factors that have an impact is the mixing of surface
and deep waters, load from land and atmosphere. Normally the concentration
in the surface layer is relatively low (0-2 pmol 171) during the production sea-
son, i.e. March-September, while the DIN concentration in the surface waters
increases during winter. DIN consists of several nitrogen compounds (mainly
ammonia, nitrite and nitrate), which are all more or less readily available for
primary production.

Ammonia is formed when proteins and other nitrogen rich organic compounds
are reduced. In undisturbed waters the ammonia is oxidised, by nitrifying bacte-
ria, to nitrate. In oxygenated marine waters the typical ammonia concentration
level is 0-0.5 gmol 171, Ammonia is measured with photometric or ion selective
electrodes.

Nitrite is the inorganic nitrogen form that constitutes the middle step in the
microbial oxidation/reduction processes between ammonium and nitrate. In
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conditions of low oxygen supply, nitrate may be reduced to nitrite and in an
anaerobic situation nitrite and nitrate can be reduced by denitrifying bacteria
to nitrogen gas.

Nitrate is analysed photometrically where nitrate is reduced to nitrite before
the analysis. The nitrite concentration is then decided with the help of a colour
reagent. In addition, nitrate may also be measured using an ion selective elec-
trode or with ion chromatography.

2.2.3 Dissolved inorganic phosphorus (DIP)

Phosphorus is a necessity for all living organisms but phosphate (equivalent to
DIP) is the only form of phosphorus that plants can assimilate. It is released
either directly from living organisms or by dead organic material. The latter
occurs mainly in the deep waters where the phosphate concentrations are high.

The ratio of phosphate/phosphorus is hard to measure as it varies greatly with
season, type of water area and effects from the surroundings. Usually, how-
ever, this relation is 1/3 or larger. During the production season the phosphate
concentrations in the surface waters are very low - sometimes even down to the
limit of detection. Despite this, several algae can reach a high growth rate. This
is partly a consequence of its high recycling rate.

At oxic conditions, in the sediments, phosphate is adsorbed onto clay particles
and iron oxyhydroxides. By doing this ten percent of the deep water phosphorus
leaves the water mass. At conditions with low oxygen the iron will be reduced
(from Fe?T to Fe?*) and the adsorbed phosphate will once again be available in
the water mass. Phosphate is analysed photometrically, usually on an unfiltered
sample.

2.2.4 Silicate (DSi)

Dissolved and particulate Si are supplied by rivers to the marine environment.
Dissolved silicate (DSi) comes from the weathering of soil and bedrock. Par-
ticulate silicate comes in two forms: 1) mineral silicates, which are considered
unreactive on biological time scales, and 2) biogenic silica (BSi), an amorphorus
form of Si biogenically precipitated by a variety of organisms, but mostly from
diatoms in aquatic systems.

DSi is an important nutrient element and can influence the growth of diatoms
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in aquatic environments and DSi:DIN ratios suggest that DSi will be more lim-
iting than DIN (dissolved inorganic nitrogen) concentrations for diatoms in the
future (Rahm_ et _all, [1996). DSi is also analysed photometrically.

2.2.5 Chlorophyll a (CHLA)

Chlorophyll concentration is a surrogate measurement of the phytoplankton
biomass in a water sample. It varies with light, temperature, and availability of
nutrients and grazing pressure. Chlorophyll is measured in the upper layer, just
below the surface. The sample is filtered and then dissolved, and the colour of
the solution is decided with the help of spectrophotometer or a flourometer.

2.2.6 Phytoplankton biomass (PB)

Phytoplankton biomass by species is not only important as a quantitative mea-
sure of the amount of algae in the water column. These measurements provide
invaluable information on the phytoplankton composition, which is important
for understanding the function of the algae community. In particular, identifi-
cation of harmful algae blooms is of great interest to the public. Phytoplankton
biomass is normally determined from samples representing an integrated depth
interval (e.g. 0-10 m).
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CHAPTER 3

Methodology

This chapter describes the theory of geostatistics (section[31l), space-time statis-
tics (section B2) and geostatistical design methods (section [B3]). The chapter
aims at shortly describing the principles of the theory applied in the research pa-
pers, rather than trying to give a very comprehensive description. The primary
focus is on geostatistics, because this gives the background theory of space-time
statistics and geostatistical design methods.

3.1 Geostatistics

Geostatistics involves the analysis and prediction of continuous spatial phenom-
ena (Cressie, 1993), such as metal grades, porosities, pollutant concentrations
etc. The prefix geo- comes from geology, since geostatistics has its origins in
mining. Nowadays, geostatistics is just a name associated with a class of tech-
niques used to analyse and predict values of a spatially distributed variable,
which are implicitly assumed to be spatially correlated.

A lot of books have been written on the subject of geostatistics, ranging from
books which mainly focus on the applications of geostatistics (Isaaks and Sri-
vastava, [1989), to books which treat geostatistics from a more mathematical
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and statistical point of view (Cressie, 1993; [Stein, [1999; Diggle et._all, 2003).

Other good and recent books on geostatistics are \Wackernagel (2003): Chiles

and Delfiner (1999); Kitanidis (1997). In this thesis the intension has been to

provide a statistical description of geostatistics, because it makes it easier to

see the link between geostatistics and other areas of statistical theory. The

c(%ption below is mainly inspired by the work of |D_].gg]_eﬁ_alj (12003), Steinl
).

Given data y;, i = 1,...,n at spatial locations z; it is assumed that data follow
the model

Y; = S(x;) + Zi, i=1,...,n (3.1)

where S(z) is a stationary Gaussian process with expectation E[S(z)] = u =
F3, where F is a n X p matrix of covariates, and (3 is the parameter vector.
Furthermore, S(x) has variance Var[S(x)] = 02 and correlation function p(u) =
Corr[S(z;), S(x;)], where u =|| &; — z; || is the spatial distance between z; and
z;, and Z; ~ N(0,72).

3.1.1 The spatial correlation function

From the above description it is seen that the correlation function p(u) only
depends on the distances between observations, and eventually on the direction
(see section B:I4). The correlation is usually modelled by some parametric
function, which has to be valid in the sense that it has to be positive definite,
see m (@) and research paper A for an introduction. A widely used
and valid family of models is the spherical family given by

3

p(U;d))z{é_%%jL%% Z?;Qﬁ (3.2)

where ¢ > 0 is a parameter describing the correlation. As seen this family of
correlation models only have one parameter which makes it less flexible com-
pared to the other widely used families. Another disadvantage of the spherical
family is that it can cause difficulties when using likelihood-based methods for
estimating the unknown parameters (IS_tﬁj.nL 1999; Diggle et. all, 121)_03) Another
family of models is the powered exponential family, which is defined for ¢ > 0
and 0 < kK < 2 and given by

plus (9, ) = exp ( - (g)“) (3.3)

The inclusion of an additional parameter x makes this family more flexible than
the spherical. For k = 1 we have the exponential correlation model, while
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k = 2 leads to the Gaussian model. It is well known that applying the latter
may cause the correlation matrix to be ill-conditioned (Ababou et _all, 1994).
Estimation of the parameters in the above described models can be based on
likelihood methods (maximum likelihood or restricted maximum likelihood) or
on the sample (or experimental) semivariogram. A thorough description and
comparison of these methods is given in research paper A. At this point it should
be noted that the approach suggested by [Cressie (1985), which is included in

the comparison in paper A, has received some criticism, see e.g. [Zhang et al.
(1995).
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Figure 3.1: A) The powered exponential correlation model with ¢=35 and k=1,
1.5 and 2. B) The spherical correlation model with ¢p=35.

3.1.2 Prediction

In geostatistics predictions are usually computed via kriging. The kriging pre-
dictor is the predictor that minimizes E[(S(z) — S(z))?]. It can be shown that
the kriging predictor for T' = S(z) is

T = p+ 2T (721 + 0*R) " (y — pl) (3.4)
with prediction variance
Var[T|y] = 0* — o*rT (1% + c*R) " o?r (3.5)

where R is a symmetric n X n matrix with elements p(|| z; —z; ||) and r is a
n X 1 vector with elements p(|| o — #; ||). The case where E[S(z)] = p = Ff
is referred to as universal kriging, while the case E[S(z)] = pu = ( is called
ordinary kriging, and is probably the most frequently used kind of kriging. The
case where p is constant and known, i.e. not estimated from data, is called
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simple kriging. Predictions via some form of kriging have been computed in all
six research paper.

The kriging predictor compromises between the mean p, i.e. what we believe is
the truth, and the observed data y;. This is very similar to the way the Kalman
filter works. The compromise depends on the location in which we want to
compute a prediction, the n data-locations, the values of the model parameters
as well as the chosen model.

3.1.3 Simulation

As described above predictions computed via kriging (B:4]) minimise the error
variance. However, there is no guarantee that the predictions have the same
covariance structure as the original data. Simulation allows us to come up with
a number of realizations (typically some hundreds or thousands) of maps, each
of which has approximately the same covariance structure as of the original data.
Theoretically, the average of a large number of simulated maps would look like
the kriged map. Simulating a Gaussian random field in n points with zero mean
and a n x n covariance matrix ¥ involves calculating the ”square root” %'/2 of
¥ such that ¥ = £/2(XY/2)T, This can be done using Cholesky decomposition
which requires that the covariance matrix is positive definite. Afterwards a
simulated Gaussian random field S = $1/27 is computed, where the elements of
the vector Z are simulated independently from a standard normal distribution,
ie. Z;~N(0,1),7=1,--- ,n. Simulation of Gaussian random fields is used in
research paper A and F.

3.1.4 Directional effects

Directional effects can be induced by environmental conditions such as wind,
soil formation etc. As a consequence the spatial correlation may vary not only
with the distance between observations but also with direction. Such directional
effects can be identified by estimation of directional sample semivariograms, and
is referred to as anisotropy (Zimmerman, [1993). Given the angle of anisotropy
14 and the anisotropy ratio g, anisotropy can be handled by rotating and
stretching the original spatial coordinates (z1,z2)

N cos(tpa) —sin(wa) 1 0
(x1,$2) = (xlaxQ) < Sln(wA) COS(wA) 0 d)él (36)
After transforming the original coordinates (x1, 2 ), the spatial correlation func-
tion can be modelled as a function of the distance in the transformed space
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/ /

(z1, 7).

3.1.5 Multivariate geostatistics

When more than one variable have been measured in the study area, it is some-
times desirable also to include the spatial cross-correlation between variables in
the prediction of the variable of primary interest. Cokriging is a multivariate
extension, which can handle this situation (Wackernagel,[2003; Kitanidis, 1997).
Usually the linear model of coregionalization is used to determine the geosta-
tistical model, including the covariance structures of the variables involved, as
well as their pairwise cross-covariance structures. If the number of variables
involved are denoted by p and the number of data points by n, then predictions
are computed by R

T = Tym (3.7)
where T}, is a p X 1 vector of predictions at location xg, ¥, is a np x 1 data
vector, and I';, is found by solving

Ko I'T = Kom (3.8)

Ko = ( III(T IOI ) (39)

where 1 is the np X p matrix formed of n identity matrices of size p x p, 0 is a
p X p matrix of zeros, and K is the (np X np) matrix of point to point covariances
for the p variables. Thus, K is formed of n x n submatrices K;; of size p X p
giving the covariances between point ¢ and j for the p variables. Furthermore,

Kom in B.8) is
Kom = ( I§0 ) (3.10)

where K is the np X p matrix of covariances between a sampling point and x,
i.e. Ky is formed of n matrices Ky; of size p x p for the p variables, and [ is a
p X p identity matrix.

with

3.1.6 Bayesian geostatistics

In the Bayesian geostatistical approach model parameters, i.e. the parameters
describing the mean field as well as the covariance structure, are treated as
random variables. This means that parameter uncertainty is incorporated in
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the computed predictions, which makes the approach attractive to apply for
constructing or comparing monitoring networks. Bayesian methods for geosta-
tistical analysis were proposed independently by [Kitanidis (1986); [Le and Zidek
(1992); Handcock and Stein (1993). A recent and thorough description is given
in Banerjee et all (2004). Diggle et all (1998) extended the Bayesian methodol-
ogy to embrace generalized linear models (McCullagh and Nelder, [1989).

In general given data y and prior distributions pr() = pr(3,02, ¢,72) of the
parameters the posterior distributions are found using the relation

pr(B,0%,6,7%y) o pr(B,0°, ¢, 7|2 + o>R|?

1
exp (E(y — FB)(r*I +0*R)" ! (y — Fﬁ)) (3.11)
and the predictive distribution pr(yo|y) by

pr(voly) = / pr(yoly, 0)pr(6ly)d6 (3.12)

Classical geostatistical methods estimate the parameters, and then use these
to perform predictions as if the estimates were the truth (plug-in prediction).
Predictions computed by the Bayesian approach can be interpreted as a weighted
average of a number of classical predictions, with weights given by the posterior
distributions of the parameters. Furthermore, it is seen in (B.11]) that posterior
distributions are computed by weighting the likelihood function with the prior
distributions.

The prior distributions, or just the prior, of the model parameters can be flat
or non-informative, improper or conjugate. Flat priors have a minimal effect on
the posterior distributions, improper priors, are priors which are not probability
distributions, and conjugate priors are priors which give posterior distributions
on closed form, i.e. distributions that can be expressed analytically. Thus,
within the general framework, various types of the Bayesian geostatistical ap-
proach can be applied, according to how the prior distributions of the model
parameters are specified. Classical geostatistical methods like ordinary and uni-
versal kriging can be seen as special cases of the Bayesian approach, obtained
by specifying an improper uniform prior for 3, while assuming that o2, ¢ and 72
are well-known. In the following we first consider the situation where the cor-
relation parameter ¢ is fixed, 72=0, and 3 and o2 are random, and afterwards
the more general situation with ¢ random as well.
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Fixed correlation parameter ¢

In the applications of Bayesian geostatistics in this thesis a conjugate prior for
(3,0%|¢), which is the product of normal and scaled-inverse-y? densities, was
used. This is given by

[ﬁ702|¢] ~ N(mbvozw)X%cI(nmSg) (3'13)

With the above prior specification the posterior distribution of the random
parameters is

18,07y, ¢] ~ N(B, V5)X&er(no + n, S?) (3.14)
where
Vs = (V, '+ F'RT'P)!
B = Va(Vytmy+ FTR™'y)
, SV TRy = TV
5?2 = — (3.15)

Having specified the posterior distribution the predictive distribution is given
by

pr(yoly@)=//pr(yoly,ﬁ,02,¢)pr(6,02|y,¢)dﬂd02 (3.16)

where [yo|y, 3,02, #] is a multivariate normal distribution with mean and vari-
ance given by ([B.4) and (B.H). For the prior distributions considered here analyt-
ical solutions can be obtained, i.e. the predictive distribution is a multivariate
t-distribution defined by

[Y0|ya ¢] ~ tnUJrn(M*v 522*)

E(Yoly,¢) = n
Var(Yoly, ¢) = %522* (3.17)
where S? is given by ([B.15) and
pto= (Fo—r"ROF)VV, iy 4 [PT R+ (Fy —rTRTVE)VEFT Ry
¥ = Ro—r"R Y+ (Fy—r"RF)(V, ! + V[;l)—l((F0 —rTR7IF)T
(3.18)

Random correlation parameter ¢

In the more general case where the correlation parameter is considered as ran-
dom, no conjugate prior exist for ¢. Instead, a discrete prior 7(¢) is used, i.e.



3.1 Geostatistics 29

a reasonable range of discrete values is selected, and a discrete uniform prior is
assigned in a set of values spanning the chosen range. In this case the posterior
of the parameters is given by

pr(B,0%,0ly) = pr(B8,0°y, d)pr(¢|y) (3.19)
with [3, 02|y, #] given by (B.14) and
pr(oly) = m()|V5[Y? | RI7V/2(52)- 5 (3.20)

where V5 and S? are given by (3I5). Given this the posterior distribution the
predictive distribution is given by

m%mwz/m%m@mmww (3.21)

In the situation where ¢ is also treated as a random variable, inference is done
by Monte Carlo simulations, where samples are taken from the posterior and
predictive distributions and used for inference and predictions. An algorithm
for computing the posterior distribution when 3, 0% and ¢ are random, while
72 is fixed is:

1. Choose a range of values for the distribution (¢|y) which is sensible for
the given data, and assign a discrete uniform prior for ¢ on a set of values
spanning the chosen range.

2. Compute the posterior probabilities on this discrete support set using
(320)). This defines the discrete posterior distribution pr(¢|y)

3. Sample a value of ¢ from this discrete distribution pr(¢|y).

4. Attach the sampled value of ¢ to the distribution pr(3, o2|y, ¢) given by
(3:14)), and sample from this distribution.

5. Repeat steps 3 and 4 as many times as required/desired. The resulting
sample is a sample from the joint posterior distribution of the parameters

pr(B3,02, 9ly).

After having obtained the posterior distribution, the predictive distribution is
computed by the following algorithm:

1. Choose a range of values for the distribution (¢|y) which is sensible for
the given data, and assign a discrete uniform prior for ¢ on a set of values
spanning the chosen range.
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2. Compute the posterior probabilities on this discrete support set using
(320). This defines the discrete posterior distribution pr(¢|y)

3. Sample a value of ¢ from this discrete distribution pr(ly).

4. Attach the sampled value of ¢ to the distribution pr(yoly, ¢) given by
(316]), and sample from it to obtain realisations of the predictive distri-
bution.

5. Repeat steps 3 and 4 as many times as required/desired. The resulting
sample is a sample from the predictive distribution.

If both ¢ and 72 are random, a range of values are chosen for the distribution
(¢,72]y) in step 1 in both algorithms.

3.2 Space-time statistics

Modelling of space-time phenomena is the subject of paper B, C and D. It
is relatively straight forward to extend the geostatistical model (section [BI])
to the space-time domain. However, one major issue is how to specify and
model the space-time covariance structure. One approach could be simply to
consider time as another dimension. This would require an appropriate metric
in space-time, and consequently the technique of separability is used instead,
which means that distances in space and time are computed separately. A
short description of space-time covariance structures and space-time modelling
approaches is given in paper B, while separable models are applied in paper C
and D for modelling nutrient concentrations in the Kattegat. It is important
to note that not all space-time covariance structures formed by a spatial and
a temporal component can be used, e.g. the sum of a spatial covariance and a
temporal covariance will not in general or at least for some designs be positive
definite, i.e. the kriging equations (4] can not be solved. On the other hand
the product of two covariances will be a valid covariance, while the product of
two semivariograms is not a semivariogram (De_Cesare et all, 2001a). Another
group of space-time covariance models is the nonseparable models. These are
not applied in this thesis, and consequently not treated in this section. The
reader is referred to [De Iaco et all (2002);|Gneiting (2001); ICressie and Huang
(1999); Brown et all (2000) for a description of such models.

In this section all experimental space-time semivariograms (Figures B3, B4l and
BH) and cross-semivariograms (Figures B8, B-fland B.8) which can be computed
from the Kattegat monitoring data are shown. The computations are based
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on log-transformed values of DIN, DIP, DSi, chlorophyll a and phytoplankton
biomass, while original data values for salinity and temperature are used. Below
a short description of the space-time covariance and semivariogram is given.

It is assumed that data values are realisations of a second order stationary
space-time random field

Y ={Y(a,t), z€D, teT} (3.22)
with expected value E[Y (z,t)] = 0. In this case the space-time covariance
Cat(ug,ut) = Cov]Y (x + ug, t + ut), Y (x,t)] (3.23)
and semivariogram

Var[Y (2 + uq, t +u;) — Y (2, t)]
2
E[(Y (2 + ug, t +up) — Y (2,1))?]

= 5 (3.24)

Yat (ua:y ut) =

depend solely on the lag vector (us,ut), i.e. they do not depend on the spatial
location or the time. To estimate the experimental space-time semivariogram
from data the expectation in[3.24lis replaced by an average, yielding

1

TNl 2@ + et u) — y(@, )’ (3.25)

Yt (Um, Ut) =

where N (uz,ut) is the number of datapairs with spatial distance u, and tempo-
ral distance u; (see Figure B-3). Similarly, the experimental semivariogram for
no spatial separation distance (Figure B.5) or no temporal separation distance
(Figure B:4) can be computed as

al0w) = g Yl u) — (.0

The corresponding experimental cross-semivariogram describing the space-time
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variability between two variables Y; and Y5 are estimated by

’?12@1& (ua:a ut) =
1

2N (g, uz) S (x4 ug, t+ue) — y1(z, ) (y2 (x4 g, t 4+ ue) — ya(z, 1))

@12@1&(0, Ut) =

m > (et 4 u) — yi(x, 1) (y2 (.t + ur) — ya(x, 1))
V12,2t (Ug,0) =
m S (4 v, t) — y1 (2, 0) (g2 ( + ug, t) — y2(x,t)  (3.27)

Plots of experimental space-time cross-semivariogram for all combinations of
two variables are shown in Figures B.6] 3.7 and B8]

3.3 Geostatistical design methods

Environmental monitoring of air, soil and water pollution is a challenge to the
modern society. Ultimately, it is desirable to sample at all possible locations
within a specific area of interest, but in practice the design of a monitoring
program is limited by economic and operational constraints. In such cases the
limited number of locations where samples are to be taken has to be determined.
Existing monitoring networks have mainly been established on heuristic rules
such as appointing a sampling location to be representative for a larger area,
rather than defining statistical optimality criteria and determine the location of
sampling stations on this basis.

One major problem of using a statistical optimality criterion is that a single
criterion encompassing all the different pollutants and biological effects in the
monitoring network cannot be established, due to contrasting definitions of op-
timality. Moreover, the general objectives of a monitoring network is often
formulated in rather broad terms making the translation into a more stringent
mathematical optimality formulation quite difficult.

A part of this thesis has focused on how to design a monitoring program when
the objective is to model the spatial distribution of the studied phenomenon.
In this situation the optimality criterion is usually based on geostatistics, and
the applied methods are referred to as geostatistical design methods. These
can be separated into two groups focusing on either parameter estimation or
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Figure 3.8: Temporal cross-semivariograms for the monitoring data in the Kat-
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spatial prediction. A review of classical geostatistical design methods is given
in paper E. This paper also describes how the two groups of methods can be
combined. Such a combination is applied in paper F for reducing the number
of monitoring stations in the Kattegat. In practice the design situation could
be that a monitoring program has to be constructed from scratch, or that an
existing monitoring program is to be revised, which is the situation with the
monitoring program in the Kattegat. |Diggle and Lophaven (2004) denoted
these two design situations as prospective and retrospective, respectively. They
suggest two classes of prospective designs (Figure[B). The (k x k, m, «) lattice
plus close pairs design consist of locations in a regular k x k lattice at spacing A
together with a further m points, each of which is located uniformly at random
within a disc of radius 6 = oA whose centre is at a randomly selected lattice
location. The (k x k,m,r x r) lattice plus in-fill design consists of locations in a
regular k x k lattice at spacing A together with further locations in a more finely
spaced lattice within m randomly chosen cells of the primary lattice. Each in-
filled lattice cell consists of an r x r lattice and therefore involves r? —4 additional
locations. The lattice plus in-fill design was used in [Diggle et all (1998).

A) Lattice plus close pairs design B) Lattice plus in—fill design
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Figure 3.9: Ezamples of a (7 x 7,15,0.5) lattice plus close pairs design, and a
(7 % 7,3,3 x 3) lattice plus in-fill design.

A comparison of the efficiency of the suggested designs showed that the lattice
plus close pairs design is a good design from a prediction point of view, whereas
the performance of the lattice plus in-fill design is only slightly better than that
of the regular lattice.
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CHAPTER 4

Discussion

This chapter gives a discussion and an overview of the statistical methods ap-
plied in this thesis and the results obtained. Thus, questions like are the applied
methods sufficient, which other statistical methods could be used, and what are
the implications of the obtained results will be addressed. Section 1] focus on
space-time modelling first from a methodological point of view, and afterwards
in relation to the Kattegat. Section[4.2] focus on design of monitoring programs
and is organised in a similar way. The statistical methods applied to the Katte-
gat dataset in this thesis are general, and with minor modifications they could
equally well be applied within areas such as soil and air pollution.

4.1 Space-time modelling

Environmental monitoring datasets are very often sampled over time on a dis-
tinct number of locations in the area of interest. Usually sampling is done
quite frequently, whereas the number of locations is relatively small. However,
the Kattegat dataset, which is used in this thesis, is quite different from this
general pattern. This consist of measurements from a lot of rarely sampled
monitoring stations, compared to the temporal dynamics of the variables being
measured. Consequently, the methodological starting point of space-time mod-
elling in this thesis has been geostatistics rather than time series analysis. In
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this thesis a temporal resolution of one week has been used, and this resulted
in a huge amount of missing data values for combinations of monitoring station
and week. Hence, an important requirement of the space-time models being
used, is that they are able to handle missing values.

4.1.1 Methodology

Different space-time modelling approaches are described and applied in papers
Bl [ and Dl The models are on the general decomposed form

Y(x,t) = m(z,t) + ez, t) (4.1)

where Y is the response variable, m is the deterministic mean component and
€ the stochastic residual component. In the general setting all of these are
functions of space x = (x1,x2) and time ¢. In paper Bl the mean component
is described by different levels of the two factors station and week, while the
residual component accounts for spatial variation in individual weeks, i.e. when
estimating parameters in the general linear model the covariance matrix is a
kind of block-diagonal matrix. Due to the station-effect in the mean component
it is not straight forward to apply the model to non-sampling locations in the
Kattegat. Thus, paper [B] focus on modelling time series at the locations of
monitoring stations by including information from surrounding stations in terms
of the week-effect and the covariance matrix. One problem with this approach
is that the number of parameters in the model is high, i.e. more than 300
parameters are included, which is primarily due to the week-effect. It is well-
known that models with many parameters might cause over-fitting, i.e. it is not
just the signal of interest that is modelled, but also some random fluctuations.
In fact, some of the Figures in paper [Bl indicate over-fitting, e.g. Figure [B.6
Another methodological problem in paper Blis that temporal correlation in data
is not included.

These two weaknesses caused the development of the model approach in papers
[Cland[D] in which the station-effect is still included in the mean component while
the week-effect is substituted by the sum of a year-effect and two sine-functions.
Both spatial and temporal correlation are included in the residual component,
and the spatial covariance structure is modelled by means of a separable space-
time model. As shown in paper [D]the model can be extended to non-sampling
locations by geostatistical modelling of the station-effect.

The basic form of the space-time models in this thesis is the same, i.e. given by
(£1)). Parameters describing the residual component are modelled by means of
the semivariogram, and prediction is based on classical geostatistics. Another
type of space-time model, which recently have been widely used is the space-time
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Kalman filter (Huang and Cressié, [1996; Mardia et all, |199&;Brown et al., 2001)).
This can be seen as an extension of traditional time series models, whereas the
models in this thesis are extensions of classical geostatistics. The idea is to treat
data as spatially correlated time series in discrete time, and write the model in
state space form. For a given time ¢ and n locations we have

Observation: Y; = [A;+ (X:8)+02Z;, Z;~ N(0,1)
State: A PAi—1 + Hny, ne ~ N(0,1) (4.2)

where Y; is a n x 1 vector of observations, A; is a n x 1 vector of states, ¢ is
a parameter which in [Brown et all (2001)) is a scalar, I is the identity matrix,
H is an n X n matrix of spatial interactions, 3 is a p X 1 vector of parameters,
and X is a n X p matrix, where p is the number of parameters. Thus, each row
in X; correspond to a location. In this setting spatial correlation is included
by making the H-matrix non-diagonal. Furthermore, parameter estimation is
based on maximum likelihood rather than the semivariogram, and predictions
E[A:|Y1,...,Y}] are computed by the Kalman filter rather than kriging. This
approach is interesting because it can handle missing values, it is relatively
simple to implement, and computations are expected to be fast. It would be an
interesting study to compare the performance of the space-time Kalman filter
with the space-time models used in this thesis.

4.1.2 The Kattegat

In relation to the Kattegat, this thesis have aimed at developing model ap-
proaches which are simple and utilize a high amount of data, by incorporating
correlation in the models. Space-time models with different residual compo-
nents were tested and compared in paper The comparison was done by
means of cross validation, and showed that better predictions of DIN were ob-
tained when introducing spatial correlation in the residual component. The best
of the tested methods seem to fit observations quite well. In paper [Dl a model
approach, which could be applied to any location in space and point in time,
was presented. Results were presented for DIN as time series for three different
locations, and as maps for four different weeks. The results obtained can be
interpreted biologically and physically. Thus, for improving reporting the state
of the marine environment in the Kattegat, these models have proved very use-
ful. As mentioned elsewhere, modelling results could also be applied as forcing
functions for deterministic, hydrodynamic ecosystem models, and thereby ad-
vance the knowledge of the biochemical processes in the marine environment,
and reduce uncertainties of regional nutrient and carbon budgets. In this the-
sis the performance of the applied models is neither measured in terms of a
quantitative reduction in the uncertainties of nutrient and carbon budgets, nor
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as a quantitative advance in the knowledge of biochemical processes. Hence,
the coupling to the marine processes is not made directly, and the mentioned
applications of the obtained modelling results should therefore only be seen as
suggestions.

4.2 Design of monitoring programs

When designing environmental monitoring networks it is desirable to formulate
an optimality criterion based on the objective of monitoring. Many monitoring
programs, and in particular the Danish marine monitoring program, do not
have one single objective, or the objective can only be formulated in rather
broad terms like ”reporting the state of the environment”. Thus, it is a general
problem in environmental monitoring that the question ”why are we monitoring
?” is not clearly specified (Ward et al., [1986).

The problem of where to take samples is highly relevant in connection to the
Danish marine monitoring program in the Kattegat, because the monitoring
network is characterised by having a lot of monitoring stations at which only
few samples are taken. The most frequently sampled stations in the Kattegat
are sampled biweekly, which is due to the fact that monitoring is conducted
by traditional shipboard sampling. Compared to the highly fluctuating con-
centrations of for example DIN over time, the temporal resolution of data is
not sufficient. Hence, a natural thing to do when revising the Danish marine
monitoring program would be to reduce the number of monitoring stations.

4.2.1 Methodology

The thesis deals with this problem from a statistical point of view, focusing on
designing monitoring networks based on which geostatistics can be successfully
applied. Thus, the idea of using statistics for design of monitoring networks
is to go beyond heuristic rules, such as appointing a sampling location to be
representative for a larger area. The results obtained should not be seen as the
final answer to the design problem, but should be used as a decision tool in
cooperation with other experts.

Prior to this thesis a number of studies have addressed this problem (see pa-
per [£). These focus on designing monitoring networks which are optimal for
estimating the parameters in a geostatistical model or for computing spatial
predictions. The resulting networks are quite different, i.e. those optimal for



4.2 Design of monitoring programs 45

estimation consist of clustered sampling sites, while those optimal for computing
spatial predictions consist of sampling sites where distances between neighbor-
ing points are large. However, it is well known that an overall efficient design is
obtained by combining these two conflicting design criteria, see IMiiller (2001/),
who also show some rather ad hoc ways of doing this (see paper [E]). One of
the main contributions of this thesis is that a statistically more correct way of
combining design criteria is through the Bayesian paradigm (see section
and paper [[). The idea has been to formulate a design criterion based on the
variance of the predictive distribution, in which parameter uncertainties are
included.

There are many good things to say about the Bayesian design approach. First
of all, it is very flexible and general, and therefore it can be applied to a great
variety of situations. For example, differences in the mean value, can be ac-
counted for by including a polynomial trend. Anisotropy can be included, and
the approach can in principle be extended to designs for non-Gaussian data, e.g.
counts, either through data-transformation or through models formulated as a
combination of generalized linear and geostatistical models (Diggle et al., [1998;
Christensenl, 2002). On the other hand, the Bayesian design approach leaves
some open questions which need further investigation. For example, a neces-
sary consequence of working within the Bayesian paradigm is that the choice
of design depends on the choice of prior. This dependence remain unexplored,
but it is expected that when a relatively informative prior is used, there is less
need to choose a design which provides information on the parameters, and
consequently less clustered designs are optimal, and vice versa. The Bayesian
approach is computational intensive but can easily be applied to situations where
points are to be deleted from an existing monitoring network. For example Fig-
ure [E.5]in paper [El was computed in only a few minutes. For design situations
where points are to be added to an existing network, or where a new network
is to be constructed the time for computation increases dramatically, see Diggle
and Lophaven (2004) who due to this fact only compared a limited number of
different designs without claiming that they were the optimal solutions. Work
by [Rud (2001); Rue and Tjelmeland (2002) is leading to substantial gains in
the speed of computations for geostatistical models. Another area which needs
further investigation is how to compute designs in the multivariate case. One
solution to this could be to apply one of the design approaches in paper [E to
the principal components.

4.2.2 The Kattegat

In relation to the Kattegat the Bayesian design approach was applied to reduce
the number of monitoring stations from the network of 31 stations, which are
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currently intensively monitored (paper[E]). This design situation is complicated
by the fact that data are measured in both space and time. Before applying
the design approach the seasonal variation was removed to give residuals with
zero mean. Based on these the spatial semivariogram vu¢(ug, ut) = Yot (tz, 0)
was estimated. Thus, the design approach was based on a model describing the
spatial variation, from which data can be simulated, rather than actual data
values. The approach switches in 1000 runs between simulating data values in
the design points and predicting values and variances in 103 points covering
the Kattegat area. A design criterion to be minimised was formulated as a
function of the prediction variances. Although this approach is computationally
intensive, i.e. it takes a few days to compute the map in Figure [E.6] it is better
than the other methods described in paper [E], because it addresses the problem
of parameter uncertainty. As described in paper [[ the selection of monitoring
stations to be removed is, at least in the beginning of the selection process, to
some degree random. Thus, the main result of this design application is not
which monitoring stations to delete from the network, but more the pattern of
the final monitoring network, i.e the approach ensures that the final network
consist of some monitoring stations close together in clusters, and some allocated
for prediction anywhere in the Kattegat. Another important result of paper [ is
the number of stations which can be removed (Figure[F.6]). The paper concluded
that the current network can be reduced to 14 monitoring stations with only
a marginal increase in the design criterion, i.e. the prediction variance. Thus,
one way of revising the current monitoring network in the Kattegat could be
to reduce the number of monitoring stations to approximately 14, and monitor
these frequently to obtain an increased knowledge about the temporal dynamics.
This strategy could be supplied by intensive spatial sampling in some periods
of the year.

In the above design situation the answer to the question ”why are we monitoring
dissolved inorganic nitrogen in the Kattegat 7”7 is assumed to be ”because we
want to determine the spatial distribution of it 7”7, which is of course a strong
simplification of the true answer. On the other hand, this is one of the answers,
and it is probably an intermediate answer to objectives like improving report-
ing the state of the marine environment in the Kattegat, determining regional
nutrient and carbon budgets and increasing the knowledge of the chemical and
biological processes in the marine environment.

Another issue of monitoring the marine environment is that traditional ship-
board sampling, which is associated with large costs for personnel and equip-
ment, might in the future be substituted by new technologies such as continu-
ous measurements from moored buoys, ships-of-opportunity and remote sensing.
However, there will still be a need for traditional sampling in calibrating these
methods.
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Conclusion

This thesis describes methods for modelling space-time phenomena. The meth-
ods are applied to data from the Danish marine monitoring program in the
Kattegat, measured in the five-year period 1993-1997. The proposed model
approaches are characterised as relatively simple methods, which can handle
missing data values and utilize the spatial and temporal correlation in data.
The modelling results improve the reporting on the state of the marine environ-
ment in the Kattegat.

The thesis also describes methods for designing monitoring networks based on
which geostatistics can be successfully applied. There has been a need to
combine existing design methods, which has motivated the development of a
Bayesian geostatistical design approach. This approach focus on constructing
monitoring networks which are efficient for computing spatial predictions, while
taking the uncertainties of the parameters in the geostatistical model into ac-
count. When applied to the Kattegat the approach shows that the current
monitoring network can be reduced to 14 stations, with only a minor increase
in the prediction variances.

Finally, further applications of the space-time model approaches, and recom-
mendations on design of monitoring programs are given. Space-time modelling
results could serve as a surrogate model for a more advanced and eventually
computationally intensive model, i.e. it could be used to correct the advanced
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model or to speed up computations in this. The Bayesian design approach sug-
gest that the number of monitoring stations in the Kattegat could be reduced
substantially, which should be accompanied by an increase in the sampling fre-
quency at the remaining stations, and intensive spatial sampling in some periods
of the year. The space-time model approaches and geostatistical design methods
used in this thesis are generally applicable, i.e. with minor modifications they
could equally well be applied within areas such as soil and air pollution.
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Abstract

Modelling spatial variability, typically in terms of the semivariogram, is of great
interest when the objective is to compute spatial predictions of parameters measured
in space. Such parameters could be rainfall, temperature or concentrations of
polluting agents in aquatic environments. In the existing literature various methods
for modelling the semivariogram have been proposed, while only a few studies
have been made on comparing different approaches. In this paper we compare
eight approaches for modelling the semivariogram, i.e. six approaches based on
least squares estimation of an experimental semivariogram, as well as maximum
likelihood and restricted maximum likelihood estimation. The comparison is made
by simulating spatial data with a known covariance structure, and comparing the
”true” parameters with those computed. The comparison showed that maximum
likelihood and restricted maximum likelihood performed better than the least squares
approaches. We also modelled the performance as a function of the sill/nugget
effect - ratio. This showed that the advantage of using maximum likelihood is much
greater when this ratio is high, while for small ratios the improvement of estimation
is insignificant. Taking into account the complexity of the maximum likelihood
approaches, we recommend only to use these methods when the sill/nugget effect -
ratio is high. We also applied maximum likelihood and least squares estimation to
a real dataset, containing measurements of salinity at 71 sampling stations in the
Kattegat basin. This showed that the calculation of spatial predictions is insensitive
to the choice of estimation method, but also that the uncertainties of predictions
were reduced when applying maximum likelihood.

KEY WORDS: Ezxperimental semivariogram, semivariogram model, least
squares estimation, mazrimum likelihood, restricted maximum likelihood.

A.1 Introduction

Many of the various parameters measured to describe the environment are func-
tions of space. Examples of such parameters could be measurements of rainfall,
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temperature and sunshine at climatological stations, or concentrations of pollut-
ing agents in a lake or in the sea, at a number of sampling stations. It is of great
interest to know the magnitude of environmental parameters at any location in
space, however, it is usually impossible, both financially and operationally, to
sample at all possible locations in the area. Instead samples are taken at a
finite number of locations, and mathematical or statistical models are applied
to compute the spatial distribution.

Kriging is the most widely used statistical approach for describing the spa-
tial distribution of a parameter measured in space. Different variants of kriging,
e.g. ordinary kriging, universal kriging and cokriging exist. The common idea
of these approaches is to weight the point observations in a way that minimizes
the squared prediction error, and the computation of the weights is therefore
based on the spatial varibility of data.

A lot of studies have been made on applying and comparing different vari-
ants of kriging, see e.g. Brus et all (1996); [Laslett (1994); |Asli and Marcotte
(1995); Hosseini et all (1993), but there seems to be a lack of studies concen-
trating on estimating the spatial variability, which for kriging is expressed in
the form of a semivariogram. A comprehensive work within this area was done
by |Zimmerman and Zimmerman| (1991)). They used Monte Carlo simulations
for comparison, and found that the nonparametric least squares methods, see
section [A-3.1] for estimating the semivariogram perform as well or nearly as
well as more computationally demanding parametric methods like maximum
likelihood and restricted maximum likelihood, see section [AZ4l Zimmerman and
Zimmerman (1991/) only considered regular grid structures, however, we believe
it is very relevant to include irregularly grids, because environmental data are
almost always irregularly sampled in space. Furthermore, Zimmerman and Zim-
merman (1991)) only compared the semivariogram estimators for different values
of one of the model parameter. In our study all three model parameter, i.e. the
sill, range and nugget effect, are varied. [Swallow and Monahan (1984) focuse
on comparison of maximum likelihood and restricted maximum likelihood for
estimation of variance components, while McGilchristi (1989) applied and com-
pared the same estimators in regression models. Both studies found that the
restricted maximum likelihood estimator can have a significantly smaller bias.

In this paper eight approaches will be tested and compared. Some of these
are the same as those considered by |Zimmerman and Zimmerman (1991), while
others were not included in their comparison. The different approaches can be
separated into two groups, one containing maximum likelihood estimators and
the other containing least squares estimation of an experimental semivariogram.
This means that the second group consists of estimation methods on two lev-
els, i.e. first the experimental semivariogram is estimated and afterwards the
parameters of a proposed semivariogram model are estimated by least squares
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fitting of the experimental semivariogram. Three different methods for calcu-
lating the experimental semivariogram are considered, see section [AZ2] and each
of these can be fitted by ordinary or weighted least squares, as described in
section [AZ3T] This gives six nonparametric approaches for estimating the semi-
variogram. The last two approaches are maximum likelihood and restricted
maximum likelihood, see section [A4] i.e. a total of eight approaches are con-
sidered. As indicated in Figure [A.1] the two maximum likelihood methods are
not based on an experimental semivariogram. Spatial data for the estimation is
generated as a Gaussian random field, with a given sample size, grid structure,
and covariance structure, as shown in Figure [A.1l The comparison is made by
computing 100 realizations of a random field and applying the eight approaches
to each realization. Afterwards the mean and variance of the estimations can
be calculated, as well as the bias, which is found as the difference between the
mean and "true” value of the Gaussian random field.

Choose: Sample size, grid structure, semivariogram model,
parameters of semivariogram model

Y
(Simulate Gaussian random field )

Y

Compute experimental semivariogram ]

[ Method of moments| [ Robust | [Loess smoothing]

* Y

[Parameter estimation in semivariogram model ] [ Parameter estimation in semivariogram model

[Maximum Likelihood] [Restricted Maximum Likelihood]

Figure A.1: The principle of estimating the semivariogram of a Gaussian ran-
dom field, given a given sample size, grid structure, and covariance structure.

A.2 Estimating the experimental semivariogram

The spatial patterns of a region can be characterized quantitatively by the semi-
variogram, which is defined as

1(d) = gVar(Z(s +d) — Z(s)] = SEI(Z(s +d) ~ Z()7) (A1)
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where Z is a stochastic variable and d is the distance between observations mea-
sured in space. The typical form of the semivariogram is illustrated in Figure
The parameters of the semivariogram model are also illustrated in the Fig-

4
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05 Nugget effect 1

0 L L L L L L
[ 5 10 15 20 25 30 35 40

Distance

Figure A.2: Example of a typical semivariogram. The horizontal axis plots the
distance between pairs of data, while the vertical axis plots the semivariance.

ure. The nugget effect describes the fact that measurements taken at locations
infinitely close to each other are different. This is caused by measurement error
and micro-variability. The range describes the distance beyond which data are
assumed to be uncorrelated. The semivariance corresponding to the range is the
total variability, and this valus minus the nugget effect is called the sill. The
semivariogram is the most commonly used function for describing spatial vari-
ability, but the covariance- or correlation function could also be applied. The
main reason for using the semivariogram is that it does not depend on the mean
value of Z.

A.2.1 The method of moments estimator

The simplest and most commonly used estimator of the semivariogram is the
method of moments, which is given by
N(d
1 (d)

Y(d) = IN(d) >zt +d) = z(s0)) (A.2)

=1
where 4 is called the experimental semivariogram, and N(d) is the number of
data pairs with a separation distance d. With n observations, z(s;) { =1, -+ ,n,
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of Z, the number of pairs becomes w When data are irregularly located in
space, which is usually the case in environmental studies, ([AZ2)) takes the form

2

1 (k)

A(di) = INGE) 2 [2(s}) — 2(sh)]? (A.3)

In this case the distances are grouped into k intervals (lags), characterized by
the midpoint of the interval, di, and a distance tolerance, e. We have

|sh — sl € [di — €, di + €] (A.4)

The method of moments has some disadvantages, which were described by
Cressie_ and Hawking (1980). The first objection is that the method is not
robust to outlying values of Z. Secondly, if Z is normally distributed, then the
distribution of (Z(s1) — Z(s2))? is of the form 2v(d)x?, and it is well-known
that the distribution of X € x? is highly skewed.

A.2.2 The robust estimator

To overcome the problems of the method of moments mentioned above, Cressie
and Hawkins (1980) suggested to compute more robust estimations by using
power transformations to transform the problem to one of estimating a center
of symmetry. It was found that the distribution of X'/4 is nearly symmetric, if
Z is normally distributed, see Figure [AZ3l This means that sample averages of
|Z(s1) — Z(s2)|'/? are better behaved than those of (Z(s1) — Z(s2))?, and leads
to the suggestion of using

4
k
3 (vt S Ja(sh) - 2(s5)]2)

B
(k) (0.457 + 0.494/N (k)

(A.5)

as a robust estimator of the experimental semivariogram. It can be shown that
the denominator in (A.E) is a bias correction (Cressie and Hawkins, [1980).

A.2.3 Smoothing the semivariogram cloud

In addition to the computation of the experimental semivariogram, the so-called
semivariogram cloud should be computed and investigated. In the semivari-
ogram cloud, one point is plotted for each pair of data, instead of combining
data pairs into one value, representing the semivariance for a single lag. The
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Figure A.3: Boxplots for data pairs. Data are generated as a Gaussian random
field with spherical covariance structure. The parameters are: Range=2, sill=1,
nugget effect=0. A) 0.5(z(s1) — z(s2))%. B) 0.5|z(s1) — z(s2)|'/?. Note the
difference in scale.

distance, d;;, between two data points, s; and s;, is plotted on the x-axis, while
an estimate of Var(Z(s;) — Z(s;)) corresponding to d;;, is plotted on the y-axis.
The semivariogram cloud can be used to identify outliers in data. Two estimates
of Var(Z(s;) — Z(s;)) can be considered, these are:

Method of moments: 0.5(z(s;) — z(s;))?
Robust: 0.5z(s;) — z(s;)|/?

Semivariogram clouds computed using the two different estimates are shown in
Figure[A.4l The idea is to use locally weighted regression (LOESS), for smooth-
ing the semivariogram cloud, and use the smoothed curve as an estimate of the
experimental semivariogram. In this study LOESS will only be used to smooth
the method of moments semivariogram cloud, while the robust semivariogram
cloud is not considered. LOESS is a nonparametric estimation method, see e.g.
Cleveland (1979, 1988), where the relationship between a dependent variable,
v, and an independent variable, d;, is

vi = g(di) + € (A.6)

where ¢ is the regression function and ¢; are independent normally distributed
variables with a mean 0 and a variance o2. In LOESS data within a neighbour-
hood around a point d can be approximated by fitting a regression function,
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Figure A.4: Semivariogram cloud for data pairs. Data are generated as
a Gaussian random field with spherical covariance structure. The parame-
ters are: Range=2, sill=1, nugget effect=0. A) 0.5(z(s1) — 2z(s2))®. B)
0.5|2(s1) — 2(s2)|'/2. Note the difference in scale.

g(d), to data. The fitting is done by weighted least squares, where points in the
neighbourhood are weighted according to the distance from d, i.e. points close
to d are given a higher weight than those further away. The size of the neigh-
bourhood is chosen by the value of the nearest neighbour bandwidth, f = ¢/n,
which is a fraction of the total number of observations n.

Locally weighted regression requires a weight function, which is often defined as

iy = { -0 < @

The weight corresponding to the ith observation in the neighbourhood of a point

d is calculated as
wild) = w(Ld=di | (A.8)
dist(d)

where || d — d; || is the Euclidean distance between d and d;, and dist(d) is the
distance of the g-nearest d; to d. By combining (A7) and (A.S)) it is seen that
the weights w;(d) decrease when d; increase in distance from d. In this study
polynomials of second order will be used in the estimation, i.e. the estimated
value ¥; can be written as

Vi

9(di) = Bo + Brd; + B2d? (A.9)
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The values of 8 are found by minimizing (AI0).
> wi(d) (i — %) (A.10)

When applying LOESS the bandwidth f has to be chosen. This can be done
using apriori information or optimization methods like Akaike’s information
criterion (AIC). In the case of a parametric regression AIC is given as

AIC =nlogd.® +2(p+ 1) (A.11)

. . . ~ 2
where n is the number of observations, p is the number of parameters and J,
given as

02 = 23 i =) (A12)

It is seen that AIC is a function of the goodness of the fit and the complexity
of the model, i.e. the criterion has the form

log(d*) + (L) (A.13)

where 1 is a so-called penalty function, which decreases by increasing smooth-
ness of the fit. L is the smoothing matrix, that satisfies

4 = Ly (A.14)

The smoothing parameter is selected as the one that minimizes the criterion.
For nonparametric regression methods the trace of the matrix L, i.e. the sum
of the diagonal elements, _ [;;, can be interpreted as the effective number of
parameters. In this case AIC is

AIC = nlogd.? + 2(trace(L) + 1) where
R 1< X ~T(I - L)Y (I-L)y
i=1

Figure [A5] shows estimation of the experimental semivariogram using the three
methods described in section [A2]
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Figure A.5: Experimental semivariograms computed by the three methods de-
scribed above. Data are generated as a Gaussian random field with spherical
covariance structure. The parameters are: Range=2, sill=1, nugget effect=0.

A.3 Estimating the parameters of the semivari-
ogram model

Spatial predictions can be calculated using the following model

Z(s) =m(s) +€(s) (A.16)
where s is the location given by (z,y), Z(s) is a random function, m(s) is called
the trend, and €(s) is the residual. The expectation of Z(s) is E{Z(s)} = m(s),

and the trend is modelled as a linear combination of known functions, usually
low-order polynomia, multiplied by unknown coefficients, i.e.

m(s) =Y _ f;(s)B (A.17)
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which in matrix notation can be written as

w = Xg
poo=[m(s1),m(s2), - ,m(sn)] (A.18)

where X is a matrix of known regressors and 3 is a vector of unknown coeffi-

cients. As an example X and 3 for a quadratic polynomial drift, P=6, and n
observations of Z, are given as

1z oy 27y mwn

X = R e

i y721 TnYn

B [B1, B2, -+, Pe] (A.19)

Prior to the computation of spatial predictions, the experimental semivariogram
has to be replaced by a parametric semivariogram model, v*(d, 8). The param-
eters, 0, of the model can be estimated by least squares fitting of the experimen-
tal semivariogram, while maximum likelihood or restricted maximum likelihood
estimation is not based on any prior computation of the experimental semivar-
iogram. It is not just any function which can be a valid semivariogram model.
—~*(d, @) must be conditionally positive definite, i.e. for all sq,---,s, € R?,
and for all A\,--- A, € R, n coefficients satisfying > A; = 0, then

— Z Z AiXjv*(si —s5,0) >0 (A.20)
i g

1 Tn Yn T

Moreover v*(d, ) must increase less rapidly than |d|? for |d| — oo, i.e.
7*(d, 0)

jdl—oo  |d]?
The conditions (A20) and (A2T), must be fulfilled in order to ensure that the
kriging equations have one, and only one, stable solution. Two semivariogram

models, which are valid according to (A20) and (A21)) will be considered in
this study. These are the spherical model given by

-0 (A.21)

0 d=0
1(d0)={ Co+Ci(34-14&) 0<d<R (A.22)
Co+ Cy d>R
and the exponential model, as shown below
0 d=20
7'(d.0) = { Co+ C4 (1 - exp(—}%)) 0<d (A.23)

Cy is called the nugget effect, R is the range and C is the sill. The nugget effect
is caused by measurement errors and microvaribility. The sill plus the nugget
effect, Co + C1, is defined as 02 = limg—oo7y(d).
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A.3.1 Least squares methods

Given the experimental semivariogram, §(d) at k distances, dj, we want to fit
a parametric semivariogram model, v*(d, ), e.g. the exponential or spherical,
where @ is the parameter vector containing the sill, range and nugget effect. 6
can be found by non-linear ordinary least squares (OLS) regression, in which
is chosen to minimize

{3(d) = 7*(d,0)}" {4(d) — v*(d, 0)} (A.24)

Another and more efficient way of finding 6 is to apply weighted least squares
(WLS) regression, i.e. choose 6 to minimize

{3(d) =7"(d,0)} "W (0) " {4(d) —v*(d, )}. (A.25)

Here W (6) is a diagonal matrix containing the variances of 4(d). [Cressid (1985)
suggested to choose @ to minimize

3 ING| (2 1) (A.26)

v*(d, 8)

This criterion is an approximation to WLS, and takes into account the number
of data pairs corresponding to single lags, and uses this for describing the uncer-
tainty of the estimation of v*(d, ). It does not account for correlation between
lags.

Figure shows ordinary and weighted least squares estimation of the ex-
perimental semivariogram, computed by the method of moments.

A.4 Maximum likelihood estimation

In this section two methods for estimating the parameters of the semivariogram
model are described. These are not, like the least squares methods, based on
an experimental semivariogram.

A.4.1 Maximum likelihood

As an alternative to the non-parametric least squares methods described in sec-
tion [A.3.T] parametric methods as maximum likelihood (ML) and restricted
maximum likelihood (REML) can be applied for estimating the parameters of
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Figure A.6: FEzxperimental semivariogram, estimated by the method of moments,
and spherical semivariogram models fitted using ordinary and weighted least
squares. The weighting is done according to |Cressie (1984).
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the semivariogram model. These methods rely crucially on the Gaussian as-
sumption, i.e.
Z e N(XB, %) (A.27)

where X is a matrix of known regressors, 3 is a vector of unknown coefficients,
see ([AI§)), and X is the covariance matrix of the observations. The covariance

matrix can be factored as
¥ =aV(0) (A.28)

where « is a scale parameter and V() is a matrix of standardized covariances.
Z, defined by (A27), has the probability density function

(2m) 2B 2 exp(~1/2(Z — XB)TEN(Z — XB)) (A.29)
and the negative log likelihood of that is given by
n n 1 1 T 1
1(B,a,0) = B log(27r)+§ log ats log |V(0)|+%(Z—X,6) V(0) (Z-Xp)

(A.30)
If we define

BO) = (XTve) 'x)'xTv(e) 'z
G*0) = (Z-XpB()"V(0)'(Z-XpB()) (A.31)

we get the following negative log likelihood
- n n 1 1
1(B(0),a,0) = B log(2m) + 5 loga + 5 log |V (0)| + %G (0) (A.32)

(A232) can be minimized numerically with respect to o and @ or analytically
with respect to a by defining

2
a(0) = G (6) (A.33)
n
In that case we have to minimize
G*0) 1

1(B(8), 4(6),0) = glog(27r) + 2log

n
=1 — A.34
- +log[VO)+ 5 (A3Y)

with respect to @ (Zimmerman and Zimmerman, 1991); [Pardo-Tguzquiza, [1997;
Smith, 2001)).

A.4.2 Restricted maximum likelihood

The motivation of using restricted maximum likelihood is that the simultaneous
estimation of both the trend and semivariogram parameters produces biased
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parameter estimates. Instead of working with the original data, linear combi-
nations of data are used, which serve to filter out the trend (Pardo-Iguzquiza,
1997). We have

W e N(0,A7xA) (A.35)

where W = AT Z is a vector of n — ¢ linear independent contrasts, and AT X =
0. The negative log likehood function of W' is

lw(a,0) = n;qlog(%r)—i—n;

+%WT(ATV(0)A)‘1W (A.36)

L 10g(a) + %log ATV (6) A

where o and V(8) are given by (A28). When chosing A to satisfy AAT =
I-X(XTX)"'X" and AT A = I, (A36) can be simplified to

Iw(a,0) = o ; q log(2m) + t ;

1 1 1
+5 log IXTV(0)"1X| + 5 log[V(9)] + ﬁaz(e) (A.37)

1
q log(ar) — 5 log| XTX|

where G2(0) is the same as in (A34). (A.37) is minimized with respect to
by setting & = G2(0)/(n — q), and (A-37) can be reduced to

lw(0) = lw(a0)

= n;q log(2m) + n—d log(

2 n—gq

n—q

1 1
+3 log| X7V (0)"1X| + 5 log|V(O)] + (A.38)

Comparing (A:34)) and ([A38)), it is seen that the coefficient & changes to =52,
and that there is an additional term of 1 log IXTVv(e)1X]|.

Figure [A.7] shows the estimated semivarigram model using maximum likelihood
and restricted maximum likelihood. The experimental semivariogram, estimated
by the method of moments, have been added to the Figure, even though the
likelihood estimation methods are not based on an experimental semivariogram.
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Figure A.7: Ezxperimental semivariogram, estimated by the method of moments,
and spherical semivariogram models fitted using mazimum likelihood and re-
stricted mazimum likelihood.

A.5 Results and discussion

The above described methods for estimating the semivariogram have been com-
bined into eight approaches. The combinations are described in the introduction
of this paper, and are illustrated in Figure [A1l Table [AT] gives a summary,
where the methods are given a number, which is used as a reference when pre-
senting the results in Figure [A_8 and in Table [A4] and [A-5l The computations
are made by simulating spatial data as a Gaussian random field with a known
covariance structure, and comparing the estimated parameters with the true
values.

The comparison is executed for different values of the sill, range and nugget
effect, and for different sample sizes, types of semivariogram models and grid
stuctures, i.e. for six different factors. If two levels of each factor are considered,
it means that the input can be combined in 2° = 64 different ways. The two
levels of the six factors, that will be used, are shown in Table[A2. Changing
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Approach number  Methods for estimation of the semivariogram

Method of moments 4+ Ordinary least squares
Method of moments + Weighted least squares
Robust method + Ordinary least squares
Robust method + Weighted least squares
LOESS + Ordinary least squares
LOESS + Weighted least squares
Maximum likelihood
Restricted maximum likelihood

00O~ O U W

Table A.1: FEight approaches for estimating the semivariogram.

these six factors does not change the distribution of data. We only considered
data which are normally distributed, i.e. generated as a Gaussian random field.
One should keep this in mind when analyzing environmental data, which are
not necessarily normally distributed. The calculations are very time-demanding,

Levels | Range (A) Sill (B) Nugget (C) Grid (D) Sample size (E) Model (F)
Low 2 1 0 Regular 100 Exponential
High 4 2 1 Irregular 225 Spherical

Table A.2: Factors and levels of factors for which the comparison is executed.

and instead of making all 64 experiments, a 2(6=3) factor experiment have been
designed by confounding the two-factor interactions, AB, AC and BC, with the
main factors D, E and F. The resulting design of the eight experimental trials is
shown in Table[A.3. For each experimental trial, 100 realizations of a Gaussian

Experimental trial | A B C D=AB E=AC F=BC Design

1 - - - + + + DEF

2 + - - - - + AF

3 -+ - - + - BE

4 + + - + - - ABD

5 - -+ + - - CD

6 + - + - + - ACE

7 -+ + - - + BCF

8 + + + + + + ABCDEF

Table A.3: Design of a 2(6=3) factor experiment.

random field are generated, and the mean value and variance of the parameter
estimates are calculated. The difference between the mean and ”true” value
is a measure of bias, while the variance is a measure of the uncertainty of the
parameter estimation. As described in section the bandwidth for locally
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weighted regression of the semivariogram cloud is found using Akaikes infor-
mation criterion (AIC). It was found that a bandwidth of approximately 0.5
minimizes AIC, thus this value seems to be optimal when smoothing the semi-
variogram cloud by locally weighted regression.

The results of the comparison study are shown in appendix, for each combi-
nation of design and estimation approach. Furthermore, Figure [A.8 shows the
results where we have summed over designs. It is seen, in the upper part of
the Figure, that the variances of the three semivariogram parameters are small-
est when maximum likelihood is used for estimation. Also restricted maximum
likelihood results in relatively small variances. The six different least squares
approaches seem to give estimation variances which are quite similar, however,
regarding the nugget effect LOESS smoothing of the semivariogram cloud re-
sults in estimation variances, which are nearly as small as those obtained by the
maximum likelihood methods.

The lower part of Figure [A.8] shows the sum of the absolute values of biases,
summed over designs. Only restricted maximum likelihood seems to give signifi-
cantly smaller biases than the other approaches, which agrees very well with the
studies of Swallow and Monahan (1984); McGilchrist (1989), while the biases of
the maximum likelihood estimators are very similar to the values found for the
nonparametric least squares estimators.

Table [A4] and [A-H in the appendix indicate that the ratio between the sill and
nugget effect, sill/nugget effect, influences the variance of the estimator. This is
especially true for the maximum likelihood estimators, and the choice between
using maximum likelihood and least squares estimation is therefore believed to
depend on this ratio. The relationship between the variance of the estimator
and the sill/nugget effect - ratio was studied by simulating 100 realizations of a
Gaussian random field on a regular 15 x 15 grid. The covariance structure was
chosen to be spherical with a range=6 and sill=4, while the sill/nugget effect
- ratio was varied by varying the nugget effect from 1 to 9 in steps of 1. Two
methods, for estimation of the three parameters, were considered. These were
maximum likelihood estimation and estimation of the experimental semivari-
ogram by the methods of moments, with subsequent parameter estimation by
ordinary least squares. The results are shown in Figure [A.9], where the esti-
mation variances, computed by maximum likelihood, have been fitted using a
function of the form variance = expl(sill/nugget effect) - a] - b.

It is clearly seen that the variance of the maximum likelihood estimator increases
when decreasing the sill/nugget effect - ratio for all the three parameters. When
estimating the nugget effect the variance of the least squares estimator shows
a similar dependence, while no dependence is found when estimating the range
and the sill. The corresponding results for the biases are not shown in Figure
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Figure A.8: Variances and biases, summed over designs, of the three parameters
of the semivariogram model, computed by eight different approaches.
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[A9 However, a dependence between the sill/nugget effect - ratio and the bi-
ases of the maximum likelihood estimators have not been found. Taking into
account the complexity of the maximum likelihood methods, as well as the fact
that the computations of the maximum likelihood estimators are much more
time-demanding, we believe that these methods should only be applied when
the sill/nugget effect - ratio is high, e.g. > 1, otherwise the advantages of the
methods are insignificant.

We also applied maximum likelihood and least squares estimation to a real
dataset, containing measurements of salinity at 71 sampling stations in the Kat-
tegat basin. The least squares approach we considered was estimation of the
experimental semivariogram by the method of moments, with subsequent pa-
rameter estimation by ordinary least squares. The experimental semivariogram
is shown as circled dots, o, in Figure [A.10l while the two lines show spherical
semivariogram models estimated by ordinary least squares and maximum like-
lihood. In this case the estimated models are very similar, and they go through
the experimental semivariogram. In general, this is not necessarily the case for
the maximum likelihood estimator, see Figure[A 7] because it is not based on the
experimental semivariogram. Figure [A.11] shows spatial predictions computed
by ordinary kriging, see e.g. |Cressid (1993); Isaaks and Srivastava (1989), and
based on semivariogram models estimated by ordinary least squares and max-
imum likelihood. It is seen that both predictions and standard deviations are
almost identical for the two cases, which is caused by the similarity of the esti-
mated semivariogram models. However, the standard deviations of predictions
based on maximum likelihood are slightly lower than in the case of ordinary
least squares.

A.6 Conclusion

This paper describes and compares eight different approaches for estimating spa-
tial variability, in form of the semivariogram. The comparison showed that maxi-
mum likelihood estimation results in the smallest variances of the semivariogram
parameters, while the smallest biases were found by using restricted maximum
likelihood. Furthermore, it was found that the variances of the maximum likeli-
hood estimators depend on the sill/nugget effect - ratio, i.e. higher sill/nugget
effect - ratios result in lower estimation variances. For the least squares methods
a similar dependence is only found for the nugget effect-estimator. This means
that the advantage of using maximum likelihood is large when the sill/nugget
effect - ratio is high. Taking into account the complexity of the maximum like-
lihood methods, as well as the fact that the computations of the maximum
likelihood estimators are much more time-demanding, we therefore recommend
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Figure A.10: Ezperimental semivariogram estimated by the method of moments,
and semivariogram models estimated by maximum likelihood and ordinary least
squares.

only to apply maximum likelihood when the sill/nugget effect - ratio is high. We
also applied maximum likelihood and least squares estimation to a real dataset,
containing measurements of salinity at 71 sampling stations in the Kattegat
basin. This showed that the calculation of spatial predictions is insensitive to
the choice of estimation method, but also that the uncertainties of kriging pre-
dictions were reduced when applying maximum likelihood.
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Figure A.11: Spatial predictions of salinity in Kattegat. A) Spatial predictions
using a spherical semivariogram model estimated by ordinary least squares. B)
Standard deviations of the spatial predictions based on least squares estimation.
C) Spatial predictions using a spherical semivariogram model estimated by maz-
imum likelihood. D) Standard deviations of the spatial predictions based on
mazximum likelthood estimation.
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Appendix
Design Estimation Statistics
Method R Cy Co
Mean Var Mean Var Mean Var
DEF 1 2.1269  0.6950 0.9676 0.0501 0.0061 0.0037
DEF 2 2.0195  0.3806 0.9742 0.0445 0.0068 0.0018
DEF 3 2.1466  0.6528 1.0046 0.0578  -0.0035 0.0044
DEF 4 2.0737  0.4399 1.0104 0.0521 0.0020 0.0018
DEF 5 2.2388  0.6528 0.9517 0.0699 0.0219 0.0127
DEF 6 2.3644 1.0014 0.8621 0.0441 0.1101 0.0141
DEF 7 1.9902  0.0607 0.9525 0.0200 0.0025 0.000010267
DEF 8 2.0292  0.0681 0.9758 0.0238 0.0024 0.0000099098
AF 1 4.3069  2.1599 1.0546 0.1147  -0.0217 0.0274
AF 2 4.2351 1.5599 1.0568 0.1074  -0.0189 0.0192
AF 3 4.4409  2.6931 1.1203 0.1476  -0.0417 0.0443
AF 4 4.2610 1.7039 1.1372 0.1355  -0.0479 0.0304
AF 5 4.2254  1.7630 1.0554 0.1066  -0.0254 0.0232
AF 6 4.1259 1.2323 1.0631 0.1112  -0.0309 0.0197
AF 7 3.9572  0.1632 0.8902 0.0289 0.0243 0.0014
AF 8 4.0626  0.2941 0.9263 0.0313 0.0221 0.0014
BE 1 2.8757  5.5567 2.4023 1.2232  -0.0763 0.1436
BE 2 2.5432  3.1543 2.2774 0.9921  -0.0470 0.0909
BE 3 2.7684  5.6289 2.4760 0.9075  -0.1657 0.2142
BE 4 2.5763  3.3459 2.3804 0.8961  -0.0930 0.1364
BE 5 2.8220  5.3005 2.3464 1.1047  -0.0649 0.1459
BE 6 2.6454  3.6152 2.2628 1.0432  -0.0147 0.0819
BE 7 2.0767  0.7648 1.8981 0.4101 0.0337 0.0033
BE 8 2.4636 1.2846 2.1599 0.6065 0.0421 0.0042
ABD 1 2.7738  3.6863 1.7165 1.3000  -0.0524 0.0055
ABD 2 3.0885  5.2050 1.7027 1.1885  -0.0061 0.00016507
ABD 3 2.9028  5.1217 1.8345 1.4387  -0.0699 0.0071
ABD 4 3.3448  7.1188 1.9348 2.0866  -0.0137 0.00068714
ABD 5 2.6596  3.4763 1.6652 1.1856  -0.0571 0.0087
ABD 6 3.2272  5.4987 1.4823 0.7619 0.0478 0.0061
ABD 7 2.9197  2.1371 1.4388 0.4425 0.0016 0.0000064270
ABD 8 3.6560  3.7145 1.7800 0.8303 0.0017 0.0000061003

Table A.4: Comparison of different approaches for estimating the semivari-

ogram.
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Design Approach Statistics
Number R Ch Co
Mean Var Mean Var Mean Var
CD 1 1.6195 1.0732 1.0467 0.2898 0.9115 0.0383
CD 2 1.6211 1.5559 1.0421 0.3545  0.9298 0.0317
CD 3 1.5786 1.8349 1.0447 0.2101 0.8864  0.0556
CD 4 1.6304  1.5809 1.0602 0.2752  0.9246  0.0435
CD 5 1.7560  1.7783 1.0399 0.3010 0.9261 0.0337
CD 6 1.7337  1.8024 1.0446 0.3585  0.9291 0.0351
CD 7 1.5439  0.9189 0.8632 0.1102  0.9650  0.0268
CD 8 2.1606  3.1402 1.0181 0.2046  0.9741 0.0280
ACE 1 3.2535  4.4260 1.0347 0.3121  0.9039  0.0532
ACE 2 3.2131  4.1673 1.0647 0.3709  0.9068  0.0431
ACE 3 3.1144  4.2107 1.1038 0.3126  0.8430  0.0995
ACE 4 3.0798  3.3359 1.0675 0.3032 0.8726  0.0716
ACE 5 3.2990 5.1093 1.0251 0.3452  0.9110 0.0465
ACE 6 3.3340 5.0313 1.0767 0.3719  0.8896  0.0488
ACE 7 2.7544  2.7727 0.8680 0.1821  0.9270  0.0399
ACE 8 3.7645  5.6019 1.0087 0.2201 0.9364  0.0404
BCF 1 2.5470  1.4421 2.0719 0.8575  0.9571 0.7232
BCF 2 2.6377  1.6351 2.1132 0.9125 0.9588  0.8663
BCF 3 2.7340  1.7259 2.0654 1.0293 0.9733 1.0151
BCF 4 2.7098 1.3765 2.1469 1.0649  0.9597  0.9846
BCF 5 2.7312 1.5441 1.5639 0.4862 1.4749  0.3167
BCF 6 2.7521 1.2148 1.5844 0.4847  1.4820 0.3312
BCF 7 2.1768  0.5224 2.1076 0.6775  0.8554  0.4825
BCF 8 2.3154  0.8403 2.1422 0.6852  0.8830 0.5026
ABCDEF 1 4.1631 2.2504 2.0206 0.6641 1.0016  0.0324
ABCDEF 2 4.3650  2.8321 2.0117 0.6790 1.0398  0.0360
ABCDEF 3 4.1290  2.6264 2.0738 0.6922  0.9874  0.0394
ABCDEF 4 4.3964  3.2681 2.1746 0.9132 1.0282  0.0363
ABCDEF 5 4.0957  1.9661 2.0568 0.6966  0.9787  0.0443
ABCDEF 6 4.2044  2.1928 2.0383 0.7170  1.0035 0.0464
ABCDEF 7 3.9399  0.5598 1.8378 0.3426  1.0144 0.0173
ABCDEF 8 4.0960  0.7040 1.9640 0.4212 1.0097 0.0168

Table A.5: Comparison of different approaches for estimating the semivari-

ogram.
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Abstract

This study describes and applies statistical methods for space-time modeling of
data from environmental monitoring programs, e.g. within areas such as climate
change, air pollution and aquatic environment. Such data are often characterized by
sparse sampling in both the temporal and spatial dimensions. In order to improve
the amount of information on the physical system in question we suggest using
statistical modeling methods for monitoring data. Model predictions combined
with observations could be analysed directly to assess the environmental state or as
forcing functions for time series models and deterministic, hydrodynamic models.
To illustrate the approach we applied the proposed modeling methods to data from
the Danish and Swedish marine monitoring programs. Time series with a weekly
resolution were predicted from observations of dissolved inorganic nitrogen (DIN)
from the Kattegat basin (1993 - 1997). DIN observations were sparse, irregularly

distributed and comprised approximately 10 % of the generated time series.

KEY WORDS: Space-time modeling, dissolved inorganic nitrogen, Kattegat

B.1 Introduction

Anthropogenic disturbances in the environment have increased substantially
over the last century ranging from a global scale (e.g. climate change, ozone
depletion) over regional scales (e.g. eutrophication, acidification) to local scales
(e.g. air pollution in cities, point source discharge of harmful substances). Moni-
toring programs have been established in many industrialized countries to assess
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the magnitude and consequences of human stress on the environment. However,
the complexity of the many interacting processes and the costs associated with
environmental monitoring poses a paradox that frequently results in only par-
tial fulfillment of monitoring objectives. It is therefore important that these
data are exploited to the fullest extent for optimal use of the limited resources
available for environmental monitoring.

Environmental processes reflect temporal and spatial variations on a variety
of scales that are only partially captured in monitoring data. In particular,
the marine environment comprises a complex mosaic of interacting processes,
which range from small-scale microbial processes to global-scale oceanic circu-
lation. On the other hand, monitoring at sea by traditional shipboard sampling
is associated with large costs for personnel and equipment, and new technolo-
gies aiming at reducing costs have not yet proven adequate to substitute for
monitoring vessels. Consequently, the spatial and temporal coverage of data is
limited and often irregular, and temporal and spatial variations can only be as-
sessed on a coarse resolution scale, unless methods are employed that integrate
monitoring data in time and space.

The aim of this study is to describe statistical methods for temporal and spa-
tial modeling of environmental data characterized by sparse sampling in time
and space. The method description leads to four different approaches which are
illustrated by observations of dissolved inorganic nitrogen (DIN) from the Kat-
tegat basin during 1993-1997. The approaches assume that the log-transformed
DIN observations are uncorrelated or spatially correlated, respectively. Fur-
thermore, two different back transforms from the log to the original scale are
presented, and hence the two approaches for modeling log-transformed DIN and
the two back transforms can be combined into four ways of modeling DIN. The
methods are general and can be applied to other sources of monitoring data as
well, e.g. air pollution and climate data. The combination of model predictions
and observations provide an improvement for assessing effects of proposed nu-
trient reductions by means of statistical analyses. Moreover, model predictions
combined with observations can be applied as forcing functions for time series
models and deterministic, hydrodynamic models. This will advance the knowl-
edge of the chemical and biological processes in the marine environment, and
reduce uncertainties of regional nutrient and carbon budgets.

B.2 Study area and data material

During the 1980s numerous episodes of oxygen deficiency, covering large areas
of the Danish estuaries, were observed (Kronvang et all, [1993). This resulted
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in the adoption of the Action Plan on the Aquatic Environment in 1987, which
required that total discharge of nitrogen from diffuse sources (agriculture) and
point sources (municipal wastewater treatment plants and industrial outfalls)
were to be reduced by 50 % from a total of 290,000 tonnes per year in 1987 to
around 145,000 tonnes per year in 1993. During the same period phosphorus
discharges were to be reduced by 80 % from a total of approximately 12,000
tonnes per year to 2,200 tonnes per year. In connection with the adoption of
this plan a monitoring program, DNAMAP, was established. The purpose of
the program was to characterise the state of the aquatic environment and to
document the effects of the measures being taken to reduce nutrient delivery
to the marine environment (Kronvang et all, [1993). As a result of DNAMAP,
Danish estuaries are among the best-monitored marine systems in the world.

The Kattegat basin is a transition zone between the North Sea and the Baltic
Sea (Figure B.IA) with a surface area of 22,290 km?, a volume of 533 km?® and
a mean depth of approximately 24 meters (Gustafsson, 2000). The area is domi-
nated by advective transport of low-saline water from the Baltic Sea as a surface
current and water with a high salinity from the North Sea as a bottom current.
This advection creates a strong salinity stratification located at 15-20 meters
depth throughout most of the year (Andersson and Rydberg, [1988). Observa-
tions for this study were made at 65 stations in Kattegat (Figure [BIB) during
a five-year period 1993 - 1997) by Danish and Swedish authorities. A variety
of water quality parameters were measured in samples from depths through the
water column.

In this study we have chosen to focus on DIN, which is the sum of the follow-
ing nitrogen constituents: ammonium (NHJ-N), nitrite (NO5-N) and nitrate
(NO3-N). DIN is an important parameter, because algac growth in Kattegat
is generally nitrogen limited (Granéli, [1987). Observations from the top 10 m
of the water column were averaged to produce surface DIN, which is readily
available for algae production.

DIN data comprise 1932 observations scattered over 5 years and 65 stations
(Figure[B.2)) with only a few weeks having more than 20 surface values at various
stations (Figure [B.2) whereas 60 % of the weeks had fewer than 8 observations.
Many stations had fewer than 15 observations over the five-year period (Figure
B.2B) and only 4 stations were sampled more than 100 times corresponding to
biweekly sampling. If we consider the data matrix consisting of 65 stations and
260 weeks, i.e. a data matrix of 65 x 260 = 16900 cells, then monitoring data
would fill in approximately 10 % of the cells. The remaining 90 % of missing
values are to be predicted by the proposed model. Results will be presented for
stations 20004, 1001 and SI2 (Figure BIB). Stations 20004 and 1001 represent
coastal and open-water stations, respectively, whereas SI2 was chosen to show
the method performance for a station with few observations.
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Figure B.1: The study area. A) Kattegat as a transitional sea between the North
Sea and the Baltic Sea. B) Locations of sampling stations (e), and the depth
contours (in meters) in Kattegat. Three stations selected for presentation of

results are marked with (+).
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Figure B.2: A) Number of stations with DIN observations for each week during

the study period. B) Number of observations for each station over the entire

study period.
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B.3 Space-time modeling methods

Methods for modeling space-time data are usually developed with a specific
application in mind. Most studies apply a model of the general decomposed
form

Z(s,t) = u(s,t) +€(s,t) (B.1)

where u(s,t) is mean component or trend modeled as a deterministic function
depending on space s and time ¢, and €(s, t) is the residual component describing
fluctuations around the mean in space and time.

The mean component

The mean component u(s,t) is generally modeled by means of a deterministic
function in both space and time. For example Haad (1998) used a space-time
model for predicting wet sulfate deposition with the mean component modeled
as

1;(s,t) = Bo + 151 + Basa + B35 + Busa + Bss152 + Bt + Bjt6, s = (51, 52)
(B.2)

where s; and s9 are spatial coordinates, ¢ is time and the four seasonality param-
eters, B7 through B9, are constrained by Z?Zl Bj+6 = 0. The model assumed
that spatial and temporal variations were not interacting. |Carroll et al! (1997)
used a deterministic mean component for predicting urban ozone concentrations
in Harris County, Texas, which was only a function of time

11(s,t) = p(t) = dtnour + Bmontn + y1temp(t) + yatemp?(t) (B.3)

where temp(t) is the median of the temperatures reported at various places in
Harris County at time ¢, apour accounts for the overall hourly level of ozone and
Bmonth for the overall monthly level of ozone. Spatial variations were included
in the residual component, and the model was used to examine the population
exposure of ozone, as well as to evaluate the siting of monitors.

The residual component

The residual component €(s, t) in (B.I) is assumed to be a second order station-
ary stochastic process with expected value

Ele(s,t)) =0 (B.4)
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and covariance function
Cst(hs, he) = Cov(e(s + hs, t + ht), €(s,t)) (B.5)

where hg is the spatial and h; the temporal separation distance. One way to
model the covariance in (BXE) is to separate it into a spatial and a temporal
component. Three types of separability are frequently used: the product, the
sum and the product-sum model, given by

Cst (hsa ht) - Cs (hs)ct (ht) (B6)
Cst(hs,he) = Cs(hs) + Ci(ht)
Cst(hsa ht) = klcs(hs)ct(ht) + kQCs(hs) + k3ct(ht)

A brief discussion of separable space-time covariance models can be found in
De Cesare et all (2001a)). The product model was applied in|[Haas (1995, [1998)
for wet sulfate deposition, whereas the product-sum model was used in De Ce-
sare et al. (2001E) for modeling NO2 concentrations in the Milan district. The
product and the product-sum covariance models (B.6]) in these studies were
implemented by modifying the GSLIB FORTRAN 77 routines, originally devel-
oped specifically for modeling spatial data (De Cesare et al), 2002). Another
class of space-time covariance models is the non-separable models, which do not
assume that the temporal and spatial components can be separated. A descrip-
tion of this class of models is found in |Cressie and Huang (1999). De Iaco et al.
(2001}, 12002) also described non-separable space-time covariance models as gen-
eralizations of the separable product and product-sum models in (B.6]). Brown
et al. (2001) discussed the use of both separable and non-separable models for
calibration of radar rainfall data. They argued, with respect to the spatial res-
olution of the rainfall data, that a separable model adequately approximated
data. |[Meiring et all (1998) applied a non-separable model for estimation of
hourly ozone levels, and compared their predictions with the SARMAP photo-
chemical air-quality model for a region of northern California. They found that
their model improved prediction of hourly ozone levels compared to SARMAP.

B.3.1 The DIN model

Our modeling strategy reflects the fact that DIN is sparsely sampled and that
DIN exhibits variations in time and space which cannot be adequately described
by a continuous and yet simple function of s and t. Furthermore, the highly
dynamic properties of DIN concentrations in Kattegat required a temporal res-
olution in the predictions greater than that given by seasonal components as
in [Haad (1998). A temporal resolution of one week was the greatest attainable
frequency from the monitoring data in Kattegat.
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In the following let Zy(s, t) denote the surface DIN concentration and let Z(s,t) =
Ln(Zy(s,t)) be the log-transform of Zy(s,t). Z(s,t) is modeled using the gen-
eral decomposed form (BI), where the mean component describes variations
between stations and weeks by means of indices for each station and each week,
ie.

pri(s,t) = stationy, + week; k=1, nstation and =1, Nyeek
(B.7)

This implies that the spatial variation is modeled by nstation levels, one for each
station, and the temporal variation is modeled by nqeer levels corresponding to
a weekly resolution. No interaction between space and time is assumed. Another
consequence of the discrete mean component model ([BXZ) is that predictions of
Z(s,t) cannot be generated at non-monitored sites or for weeks without moni-
toring data at any station. Using the mean component in (BX7) the model for
Z(s,t) can be written as

Zyi(s,t) = stationy, + week; + €(s, t), e(s,t) ~ N(0,0°%) (B.8)

where 02X is the covariance matrix, i.e. in general we have Cj; (hs,he) = o3,
In matrix form (B.8) can be written as

Z=XB+e (B.9)

where Z is an observation vector of log-transformed surface DIN, and X is
the design matrix containing indicator variables, i.e. ones for combinations of
station and week for which an observation exists, and zeros at all other places
in the matrix. Furthermore, 3 is the parameter vector, and € a vector of model
residuals. 3 is estimated as

B=(X'2'X)'X'n"1z (B.10)

The simplest way to model the residual component €(s,t) in (B.8) is to as-
sume that the covariance function is o2 when hy;=h,=0 and zero otherwise.
This means that no temporal or spatial correlation in Z(s,t) is included in the
model, and this corresponds to a general linear model for normal distributed,
uncorrelated residuals. In this case ¥ in (BI0) is the identity matrix, and a
predicted value of Z(s,t) is obtained by

Z(s,t) =z, B (B.11)

where x,, is a column vector of indicator variables corresponding to the combina-
tion of station and week for which we want to predict Z(s,t). The corresponding
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prediction variance is

V(Z(s,t)) = p'D(B)xp (B.12)

where D(3) = 02(X’271X)~! is the dispersion matrix of 8. In this case the
model is still capable of modeling DIN at individual stations, because it uses
data from surrounding stations through the week-effect in the mean component,
however, it does not consider distances between stations.

If the residuals from this model are in fact spatially correlated we propose to
model €(s,t) by means of a spatial covariance structure Cs;(hs, ht) = Cs(hg)
assuming the temporal correlation in the residuals to be neglectable, see|Cressie
(1993). We used a spherical model for the spatial covariance structure as this
model has shown to be adequate in [Lophaven (2001). If the residuals are tem-
porally correlated the covariance structure should include this, e.g. by means of
an autoregressive process, see Box and Jenking (1970). We have chosen not to
focus on temporal covariance structures, because the majority of stations had a
low sampling frequency and observations were irregularly distributed over the
5 year period (Figure[B.2). As a consequence spatial and temporal covariance
structures could not be simultaneously estimated. The modeling strategy pur-
sued in this study was first to apply the described model assuming uncorrelated
residuals. Secondly the residuals from this model were analysed by computing
seasonal spatial experimental semivariograms, where the four seasons are de-
fined as the periods December - February, March - May, June - August and
September - November. The experimental semivariogram is used to model the
semivariogram ~y(h), and having a semivariogram model with a sill the transi-
tion C(h) = C(0) —~(h) can be used to convert the semivariogam model to the
covariance function, see|Cressid (1993). The use of a semivariogram model esti-
mated based on an experimental semivariogram for the model residuals results
in a biased estimator B, see (Cressig (1993). Seasonal spatial experimental semi-
variograms were computed by considering all possible datapairs for each of the
weeks in each of the four seasons. For all datapairs the squared differences were
computed and separated into 14 spatial lags each with a width of 10 km. The
number and width of the spatial lags were chosen in order to have a reasonable
number (>30) of data pairs in each lag. For each lag the average divided by 2
was computed to produce seasonal spatial experimental semivariograms. If the
residuals were found to be spatially correlated, the spatial covariance structure
was estimated for each of the four seasons, and the mean component (B.7) was
subsequently estimated by means of these four seasonal structures, i.e. weeks
within the same season had the same spatial covariance structure. In this case
the elements of the matrix X in (B.10) only depend on the spatial distance and
direction between monitoring stations. For observations from different weeks
the corresponding element in the matrix is zero, while observations from the
same week are spatially correlated, and the value of the corresponding matrix
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element is given by one of the four seasonal covariance structures. A prediction
of Z(s,t) is computed as

Z(s,t) =,/ B+ S Z - XB) (B.13)

where c is a vector of spatial covariances between the monitoring station at which
we want to predict and surrounding monitoring stations, where observations
were made in the same week. The elements of ¢ corresponding to observations
from different weeks are zero. The corresponding prediction variance is

V(Z(s,t) =0 - T e (xp — X' ) (X'EX) e, - X'E )
(B.14)

The model was investigated using log-transformed observations because of the
skewed distribution of DIN. Predictions from the model were back-transformed
to the original scale using two different approaches a) back-transform into the
mean value, i.e.

Zo(s,t) = exp{Z(s,t) + V(Z(s,1))/2} (B.15)

where Z(s, t) is the prediction of surface DIN, and b) transform into the median
value on the original scale, i.e.

Zo(s,t) = exp{Z(s,t)} (B.16)

The reason for investigating these two approaches was that a great number of
predictions were associated with high prediction variances due to the highly ir-
regular sampling in time and space, consequently affecting the back-transform
into mean values. |Journel (198() described the use of the back-transform (B.I5)
when Z(s,t) is a kriging estimator. In our model Z(s,t) is not a kriging esti-
mator and the work by Journel (1980) is therefore used only for motivation.

The two back-transforms (B.I5) and (BI6) combined with models assuming
uncorrelated and spatially correlated residuals result in four different methods
for modeling DIN, as shown in Table [B1]

Name of approach Model residuals Back-transform
la uncorrelated into mean
1b uncorrelated into median
2a spatially correlated into mean
2b spatially correlated into median

Table B.1: The four approaches.
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Furthermore, the models assuming uncorrelated and spatially correlated resid-
uals were compared on the log-scale by means of cross validation. This was
carried out by removing log-transformed observations from a single year and
station from the estimation data set, and subsequently predicting these based
on the estimated model. The procedure was repeated for all possible (Nz2) com-
binations of station and week for which observations exist, and the goodness of
the model (GOM) value was computed as

1 No 1 Nl(ij) . )
GOM = — —_— Zii — Zij B.17
N2 ;{Nl(lj) ; ( J J) } ( )

where Np(ij) is the number of observations removed from the estimation data
set for the ¢j’th combination of year and station, and Z;; and Z] are the log-
transformed observations removed and predictions of these, respectively. For
the DIN observations in the Kattegat No was 211 and Ny (ij) varied between 1
and 30. The GOM statistic in (BI7) is computed on the log-scale, and does
therefore not take the two different back-transforms into account. Consequently,
the GOM statistic is not influenced by the bias introduced when applying the
back-transform in (BI6). Other possible statistics could be used instead of or
in addition to the GOM, e.g., the errors in the GOM could be normalized by
dividing the error by the prediction standard deviation.

B.4 Results and discussion

B.4.1 Data preparation

At eight of the monitoring stations DIN was observed only once during the entire
study period. Consequently, this single observation will have a high influence on
the predictions at the remaining weeks for this particular station. Furthermore,
the estimate of this particular station level will be associated with a large uncer-
tainty that will affect the back-transform to DIN mean concentration levels. For
example, a relatively high DIN concentration at a station with only one obser-
vation would lead to overestimation of the station effect for this single station.
Therefore data from the eight monitoring stations with only one observation of
DIN were removed prior to applying the proposed model. We also investigated
discarding stations with two or three DIN observations, as well as for weeks
with one observation. This would reduce the model dimension by another eight
stations and 24 weeks. Weeks with only one observation did not influence the
predictions to the same extent as stations with one observation, because the
within-stations variation was larger than the within-weeks variation, and it was
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therefore not neccesary to remove observations from weeks with only one obser-
vation. Furthermore, we did not find that observations from stations with two
or three observations caused an over- or underestimation of the station levels
for these stations. Consequently, these observations were not removed from the
dataset. In summary, only DIN data from stations with one observation were
discarded before the model was employed on 57 stations and 260 weeks.

B.4.2 Modeling of space-time data

Surface DIN concentrations in Kattegat are expected to be high during winter-
time corresponding to low algae production in this period. In spring enhanced
light conditions and increasing temperatures causes growth of algae, and con-
sequently DIN becomes depleted from the surface layer. DIN concentrations
remain low during summer when algae production is nitrogen limited, increas-
ing again with the first autumn storms when nutrient-rich bottom water is
entrained into the surface layer by increasing winds and buoyancy. The four
proposed methods for space-time modeling (Table [B.]) of DIN resulted in pre-
dicted time series that all described the expected seasonal behavior of DIN at
the three stations of interest (Figures B.3UB.4l and [B.6{B.7).

The main difference between the time series for the different stations is the mean
DIN concentration level, described by station in (B.7). Estimates of stationy
revealed that mean DIN levels ranged from 0.42 to 3.71 for the 57 stations with
highest values at coastal stations, in particular, along the Jutland coast.

DIN peaks in the time series were occasionally predicted by all four approaches,
which were due to high concentrations at surrounding stations observed within
the same week and partially due to high prediction variance for the mean back-
transform (BI5). There are three gaps in the time series, when DIN was not
observed at any station in the Kattegat and consequently the DIN level could
not be estimated for these particular weeks. However, the model can be used for
the time series for the many monitoring stations with few observations (e.g. SI2).

When analysing sparse, irregularly sampled data the prediction variance, given
by (B12) or (B:14), might be substantially influencing the back-transform into
the mean value (B.I5). The back-transform into median values (B.16]) resulted
in less spiked dynamics although not all peaks were removed. As an exam-
ple, the high peaks in winter time 1996 at station 20004 and SI2 by the mean
back-transform were reduced substantially by the median back-transform. The
Kattegat is a relatively large marginal sea and the physical and biogeochemical
processes acting on DIN levels, e.g. nutrient input from land and atmosphere,
remineralisation of organic matter or upwelling/entrainment of nutrient-rich
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Figure B.3: Modeling of time series of DIN assuming uncorrelated residu-
als. Predictions were back-transformed into the mean value (approach 1a). A)
Coastal station. B) Open-water station. C) Station with few observations.
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bottom water into the surface layer, cannot account for the spiked behavior
modeled using the mean back-transform, because these processes take time, and
hence, the median back-transform appears to produce more realistic predictions
of surface DIN levels.

The seasonal spatial experimental semivariograms showed that the residuals
within weeks were spatially correlated (Figure [B.5), i.e. a spatial covariance
structure should be included in the model (B.8). The experimental semivari-
ograms were computed using a maximum distance of 120 kilometres, lag dis-
tances of 10 kilometres, and distance tolerances of 5 kilometres. Seasonal semi-
variogram models were estimated by weighted least squares regression of the
experimental semivariogram, where the weights are the number of data pairs
in each spatial lag, and these all have a range and a sill/nugget effect - ra-
tio which is of the same order of magnitude, supporting the assumption of a
time-independent spatial covariance structure, i.e. the spatial dependency was
formulated for each season but applied separately for each week in the five-
year period. This means that the parameters of the spherical semivariogram
model changed from season to season (Figure [B:5)), and that these models were
used for the respective seasons for all years. However, in our model the sea-
sonal semivariogram models were applied to each week, and thereby we assume
that the spatial variation on a weekly basis is the same for all weeks within
the respective seasons. The reason is that weekly semivariogram models could
not be estimated due to lack of available data on a weekly basis (Figure [B.2]).
When modeling DIN from a given week observations from other weeks were not
included in the covariance structure, i.e. elements of ¥ and ¢ in (BI3) cor-
responding to observations from other weeks were zero. However, observations
from other weeks were used to estimate the effect of stationy in (B.8). Direc-
tional experimental seasonal semivariograms have been estimated in the same
way as described above for the omnidirectional experimental seasonal semivar-
iograms. These showed that the experimental seasonal semivariograms did not
depend on direction, and anisotropy was therefore not included in the spatial
dependency. The results, when using a spherical spatial covariance structure, as
formulated above, in the model (B.8)), are shown in Figures [B.6land [B.7 for the
same three stations as in Figures [B.3]and B4 It is seen that a larger week to
week variation in DIN concentrations was predicted when including the spatial
covariance structure.

The two approaches assuming uncorrelated and spatially correlated residuals
were compared statistically on the log-scale by cross validation. Results using
the goodness of model (GOM) measure given by (BI7) are shown in Table[B.2]
and it is seen that the spherical covariance structure improved the GOM relative
to assuming uncorrelated residuals.
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Figure B.4: Modeling of time series of DIN assuming uncorrelated residuals.
Predictions were back-transformed into the median value (approach 1b). A)
Coastal station. B) Open-water station. C) Station with few observations.
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Figure B.6: Modeling of time series of DIN using a spherical spatial covariance
structure. Predictions were back-transformed into the mean value (approach 2a).
A) Coastal station. B) Open-water station. C) Station with few observations.
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Model Goodness of model
Assuming uncorrelated residuals 3.59
Spherical covariance structure 1.66

Table B.2: Performance of two models compared on the log-scale.

B.5 Application of modeled space-time data

We demonstrate the application of modeled time series by computing weekly
maps of the surface DIN concentration in the Kattegat area (Figure[B.8). Maps
of the corresponding kriging standard deviations are shown in Figure[B9. Three
different weeks, with different numbers of observations (Table [B3), were cho-
sen, and spatial predictions were obtained by ordinary kriging using a unique
neighborhood, see |Cressie (1993), and a spherical semivariogram model.

Week Number of observations
Second week of July 1993 13
First week of April 1994 5
Third week of May 1994 10

Table B.3: The number of observations in the three weeks for which the maps
in Figure[B.§ was computed.

Spatial predictions were calculated based on both the raw DIN observations and
on the combination of DIN observations and model predictions. In the latter case
the semivariograms were reestimated using DIN observations combined with
model predictions, while it was not possible to reestimate the semivariograms
using only the raw DIN observations, due to the small number of weekly observa-
tions. Consequently, the same semivariogram models, as those reestimated from
DIN observations combined with model predictions, were used when calculat-
ing spatial predictions based on DIN observations. Moreover, when calculating
spatial predictions and the corresponding kriging standard deviations based on
DIN observations combined with model predictions the uncertainty in the model
predictions was not incorporated, which affects the kriging standard deviations
mapped in Figures[B.9B, D and F. Maps based on DIN observations combined
with model predictions were based on a larger amount of data (observed and
predicted) and therefore include substantially more detail. In fact, only the
map produced from 13 observations in a week in July 1993 (Figure B.8A) was
capable of describing the spatial variations with appropriate detail, i.e. similar
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to the maps computed based on the combination of DIN observations and model
predictions. The maps from weeks in April and May 1994 were based on 5 and
10 observations only, resulting in large areas of the Kattegat with a predicted
DIN level close to the mean value. Relatively few weeks have 13 or more DIN
observations (Figure [B22A), and the spatial variation may consequently be in-
vestigated for very few periods unless DIN observations are aggregated to lower
temporal resolution, e.g. months or seasons.
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Figure B.8: Weekly maps of surface DIN in the Kattegat predicted by means of
ordinary kriging. The mapping in the left panel was based on raw DIN obser-
vations, whereas the mapping in the right panel was based on model predictions
combined with DIN observations using approach 2b. X indicate locations of sta-
tions. Corresponding iso-lines were used for plotting A and B, C and D as well
as F and F.
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Figure B.9: Weekly maps of the kriging standard deviation corresponding to the
maps of surface DIN shown in Figure [B.8 The mapping in the left panel was

based on raw DIN observations, whereas the mapping in the right panel was
based on model predictions combined with DIN observations using approach 2b.

X indicate locations of stations.
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The maps computed from DIN observations combined with model predictions
tend to have a common pattern (Figure[B.8)) which is mainly due to the station
means of the model (B:E]). High concentrations were predicted along the coast
of Jutland due to sediment interactions in the shallow water, upwelling and
discharges of nutrient-rich water from tributaries. The high DIN concentrations
in the north eastern part of the Kattegat were caused by discharge of nutrient-
rich water from Go&ta River and the Skagerrak - Kattegat frontal system.

B.6 Conclusion

This paper describes modeling of sparsely sampled space-time data. Environ-
mental monitoring programs very often lead to such datasets, which is due to a
limited amount of economical resources. It is important to consider and use the
correlation in data in order to extract as much information as possible from the
sparsely sampled monitoring data. The model in the present study is formu-
lated using the general decomposed form, i.e. the sum of a mean and a residual
component. The mean and residual components describe the space-time trend
of the response variable and the fluctuations around the mean, respectively.
For modeling of sparsely sampled data we recommend discretizing the mean
component so that it describes variations between monitoring stations and time
intervals by means of indices for each monitoring station and each time inter-
val. All other space-time models that have been found in the readily available
literature apply a continuous function for modeling the mean component. The
proposed model is generally applicable for many types of environmental data
reflecting space-time interaction, as exemplified in the present study by DIN
concentrations in the Kattegat.
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Abstract

This paper describes an approach for predicting space-time phenomena. The method
is tested on observations of dissolved inorganic nitrogen in the Kattegat. The
covariance structure is modelled as a function of both space and time, assuming
that it can be separated into a spatial and a temporal component. Results are
presented for 2 of 65 monitoring stations in the Kattegat, and show that the model
is capable of predicting the temporal dynamics of dissolved inorganic nitrogen at

these 2 stations.

KEY WORDS: Space-time semivariogram, separable covariance structure,

kriging

C.1 Introduction

This paper describes an approach for modeling data measured at a given time
and location. The proposed modeling approach is applied to observations from
the Kattegat of dissolved inorganic nitrogen (DIN), which is the sum of the
following nitrogen constituents: ammonium (NH}-N), nitrite (NO;-N) and ni-
trate (NO3-N). DIN is an important parameter, because algae growth in the
Kattegat is generally nitrogen limited. Observations have been made at 65
monitoring stations during 1993-1997.
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C.2 The modeling approach

The applied model is of the decomposed form
Z(s,t) = p(t) + (s, t) (C.1)

where Z is log-transformed DIN, which depends on the location s, given by a
x- and y-coordinate, and on time ¢. p is the mean component, and ¢ is the
residual component describing fluctuations around the mean in space and time.
The mean component describes the temporal dynamics of DIN, and is modeled
as

52 26

where «; are the monitoring station effects, and 3; the year effects where the
years were defined as starting and ending the first of July. This was done because
the concentrations of DIN are low in the summer period, and the discontinuity,
introduced by the year effects 3;, in the limit from year to year is therefore
reduced. Furthermore, d1, 62, 1 and o are the yearly amplitude, the half-year
amplitude, the yearly phase shift, and the half-year phase shift, respectively,
while ¢ is time given in weeks. The residual component is assumed to be a
second order stationary stochastic process with expected value and a covariance
function given by

27t 27t
i (t) = a; + B + 1 sin <l + 301) + 99 sin <l + 302) (C.2)

E(e(s,t)) 0 (C.3)
Cst(hs,he) = Cov(e(s+ hg,t + he),e(s, 1))

One way to model the covariance in (3) is to separate it into a spatial and a
temporal component, e.g. by using the product model given by

Cst(hs, ht) = Cs(hs)Ci(hy) (C4)

A discussion of the product model and of other separable space-time covariance
models can be found in De Cesare et al! (2001d). The product model was applied
in [Haas (1995) for modeling of wet sulfate deposition.

C.3 Results

In Figure results are presented for the two monitoring stations 1001 and
20004, representing open-sea and coastal stations, respectively. For station 1001
the model predictions seem to fit the observations quite well, and the model is
able to predict the high DIN peaks during winter. For station 20004 these peaks
are also predicted even though the observed concentrations are much smaller.
This is caused by high winter concentrations at the surrounding stations.
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Figure C.1: Predictions and observations of DIN at the two monitoring stations
1001 and 20004 in the Kattegat.
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Abstract

Environmental monitoring datasets often contain a large amount of missing values,
and are characterised as being sampled over time on a distinct number of locations
in the area of interest. This paper proposes a stochastic approach for modelling such
data in space and time, by taking the spatial and temporal correlations in data into
account. It has been applied to observations of dissolved inorganic nitrogen in the
Kattegat during the period 1993-1997. Modelling results are shown as maps of the
spatial distribution of DIN in four weeks, representing the four seasons, and as time
series of DIN at three different locations. However, the model approach could be
applied to any space-time point given by a location in the Kattegat area and a week
in the five-year period 1993-1997. The results can be interpreted from a biological
and physical point of view. Thus for the specific application the approach seems to
perform very well. The results obtained could be used to improve status reporting
of the environment, or as forcing functions for time series models and deterministic,

hydrodynamic ecosystem models.

KEY WORDS: dissolved inorganic nitrogen, geostatistics, space-time mod-
elling, the Kattegat

D.1 Introduction

Environmental monitoring programs have been established in many industrial-
ized countries to assess the magnitude and consequences of human stresses on
the environment. It is important that the monitoring data are exploited to the
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fullest extent for optimal use of the limited resources available for environmental
monitoring.

Environmental processes reflect temporal and spatial variations on a variety
of scales that are only partially captured in monitoring data. In particular,
the marine environment comprises a complex mosaic of interacting processes,
which range from small-scale microbial processes to global-scale oceanic circu-
lation. On the other hand, monitoring at sea by traditional shipboard sampling
is associated with large costs for personnel and equipment, and new technolo-
gies aiming at reducing costs have not yet proven adequate to substitute for
monitoring vessels. Consequently, the spatial and temporal coverage of data is
limited and often irregular, and temporal and spatial variations can only be as-
sessed on a coarse resolution scale, unless methods are employed that integrate
monitoring data in time and space.

The aim of this study is to describe and apply a statistical approach, which
can be used for modelling space-time phenomena by taking account of the tem-
poral as well as spatial correlation in data. The proposed model is able to cope
with a high number of missing values, and it is applied to dissolved inorganic
nitrogen (DIN) observed in the Kattegat (Figure[D]). In principle the proposed
method is general, and could be applied to other types of environmental moni-
toring data as well, e.g. air pollution and climate data. The model predictions
provide an improvement for reporting the state of the environment and for as-
sessing effects of proposed nutrient reductions by means of statistical analyses.
Moreover, model predictions combined with observations can be applied as forc-
ing functions for time series models and deterministic, hydrodynamic ecosystem
models. This will advance the knowledge of the biogeochemical processes in the
marine environment, and reduce uncertainties of regional nutrient and carbon
budgets.

D.2 Study area - The Kattegat

During the 1980s numerous episodes of oxygen deficiency, covering large areas
of the Danish estuaries, were observed (Kronvang et all, [1993). This resulted
in the adoption of the Action Plan on the Aquatic Environment in 1987, which
required that total discharge of nitrogen from diffuse sources (agriculture) and
point sources (municipal wastewater treatment plants and industrial outfalls)
were to be reduced by 50 % from a total of 290,000 tonnes per year in 1987 to
around 145,000 tonnes per year in 1993. During the same period phosphorus
discharges were to be reduced by 80 % from a total of approximately 12,000
tonnes per year to 2,200 tonnes per year. In connection with the adoption of
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this plan a monitoring program, the Danish National Aquatic Monitoring and
Assessment Program (DNAMAP), was established. The purpose of the pro-
gram was to characterise the state of the aquatic environment and to document
the effects of the measures being taken to reduce nutrient inputs to the marine
environment (Kronvang et all, [1993).

The Kattegat basin is a transition zone between the North Sea and the Baltic
Sea (Figure [DJ1A) with a surface area of 22,290 km?, a volume of 533 km3
and a mean depth of approximately 24 meters (Gustafsson, 2000). The area is
dominated by advective transport of low-saline water from the Baltic Sea as a
surface current and water with a high salinity from the North Sea as a bottom
current. This advection creates a strong salinity stratification located at 15-20
meters depth throughout most of the year (Andersson and Rydberg, [198R).

D.3 Data material

The observations used for this study were sampled at 65 stations in the Kattegat
(Figure [D1B) during a five-year period (1993 - 1997) by Danish and Swedish
authorities. Various water quality parameters were measured from the samples
taken at various depths within the water column.
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Figure D.1: A) The Kattegat is the transitional area between the North Sea
and the Baltic Sea. B) Locations of the 65 monitoring stations (e) with DIN
observations.
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In this study we have chosen to focus on surface concentrations (0-10 m) of DIN.
DIN is the inorganic form of nitrogen that is used as nitrogen source by the pri-
mary producers. The concentration of DIN in the surface layer is mainly con-
trolled by the biological activity through uptake, regeneration processes trans-
forming organic nitrogen into DIN, mixing between surface and deeper waters
across the pycnocline, and direct inputs from land and atmosphere. Normally
the concentration in the surface layer is relatively low (0-2 pmol 171) during the
productive season (March-September), whereas DIN accumulates in the surface
waters until the onset of the spring bloom. DIN is an important monitoring
parameter, because primary production in the Kattegat is considered to be ni-
trogen limited (Granéli, 1987). In this study the DIN data comprised 1832
observations scattered over 5 years and 65 stations with only a few weeks hav-
ing more than 20 surface values at various stations, and 60 % of the weeks
had fewer than 8 observations. Many stations had fewer than 15 observations
over the entire five-year period and only 4 stations were sampled more than 100
times corresponding to biweekly sampling. Considering that the data matrix
consisted of 65 stations and 260 weeks, i.e. a data matrix of 65 x 260 = 16900
cells, then the actual DIN data accounted for approximately 10 % of the cells.
Thus, given that a weekly resolution was desired, the dataset was characterized
by having a high number of missing values.

D.4 Modelling DIN in space and time

This section describes a simple statistical approach which utilize the spatial
and temporal correlation in the DIN data, and can handle missing data values.
This kind of model was used, rather than a deterministic approach, because
of the complexity of DIN dynamics in the Kattegat. The model enables us to
predict the DIN concentration in both space and time. Until recently, space-
time processes has been a relatively unexplored research area. However, over the
last decade a number of statistical methods for analyzing and modelling space-
time data have been proposed. A thorough review of geostatistical space-time
models is given in|Kyriakidis and Journel (1999), while more recent applications
were described by Brown et all (2001); De Cesare et all (2001a); [Figueira et al.
(2001). The DIN model that we propose is of the general decomposed form

Y(x,t) = m(z,t) + e(x, t) (D.1)

where Y (z, t) is the log-transform of DIN. Thus, the approach was applied to log-
transformed DIN, because this change of scale was found to improve modelling.
Moreover, m(z,t) is the mean component modelled as a deterministic function
depending on space x = (1, z2) and time ¢, and €(z, t) is the residual component
describing fluctuations around the mean in space and time.
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The DIN modelling was separated into three steps. In the first step the mean
component was estimated at the 65 monitoring stations by assuming uncor-
related residuals. In the second step the mean component at the monitoring
stations was extended to the whole Kattegat area. Finally, in step three the
residuals from the first step were analysed and modelled using a separable space-
time covariance structure.

D.4.1 Step1

The mean component was used to describe the temporal dynamics of dissolved
inorganic nitrogen at the 65 monitoring stations in the Kattegat. This meant
that in the first step the mean component was not extended to non-sampling
locations. The mean component was given by

2mt 2mt
mi;(t) = a; + B + d1sin <5—7; + 301) + g sin <2—7; + gpg) (D.2)

where a; were the station effects, and 3; the year effects where the years were
defined as starting and ending the first of July. This was done because the
concentrations of DIN were low in the summer period, and the discontinuity,
introduced by the year effects 3;, in the limit from year to year was therefore
reduced. Furthermore, 61, d2, 1 and @y were the yearly amplitude, the half-
year amplitude, the yearly phase shift, and the half-year phase shift, respectively,
while ¢ was time given in weeks. Hence, a temporal resolution of one week is
used. The mean component was denoted m;;(t) to indicate that it corresponded
to the ith monitoring station and the jth year, and was a function of time t.
Thus, the mean component is given by a level for each monitoring station and
year in addition to some seasonal variation. Equation (D.2) can be rewritten
using the addition formulas

mii(t) = a;+ 65+ 0 <sin <%> cos(¢p1) + cos <%) sin(apﬂ)

s (3 Yt o (3 Jsnen) )

and by introducing four new parameters: ¥; = 01 cos(¢1), Y2 = d1sin(p1),
Y3 = dacos(p2), g = dosin(ips), it is seen that the model is linear in the
parameters. In the first step, the parameters of the mean component were
estimated using the general linear model

B=(XTX)"'Xy (D.4)
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where 3 was a 75x 1 vector of estimated parameters (A1, - 065,015 - 06,01, - -4,
X was a 1832x75 design matrix, and y was a 1832x1 vector containing log-
transformed values of DIN. The use of (4] implied that the residuals in step

1 were assumed to be independent, and identically distributed, €;; € N(0, o?),
where 03 is estimated by

N

1
52 = — i — Ai 2 D
0= N_—p_1 g:l(y, 9i) (D.5)

In (D) N = 1832 was the number of observations and p = 75 was the number
of model parameters. The variance of 3 was given by

Var[@] = (XTX) 102 (D.6)
After estimation of B the mean component was computed by
m= X0 (D.7)

where each row in the matrix X ; defined for which station, year and week
the mean component was to be computed. Variances of the computed mean
component were

Var[m] = XfVar(,@)X? (D.8)
The original parameters in ([D-2)), which can be physically interpreted, were

found from
) > ()
arctan | — | = 01 = —
<¢1 Y sin(pr)

$1

V2 arctan <%> = g = i (D.9)

3 sin(p2)

D.4.2 Step 2

In the second step the mean component was extended to non-sampling locations,
i.e. m;(t) — m;(z,t), by geostatistical modelling of the station effect (Cressie,
1993; (Chiles and Delfiner|, [1999; [Stein, [1999; [Wackernagel, |2003). Given the
station effects «;, i = 1,...,65 at spatial locations x; it was assumed that these
could be modelled by

o = S(IEJ—}—ZH 1=1,...,65 (DlO)
where S(x) was a stationary Gaussian process with expectation E[S(z)] = p,
variance Var[S(z)] = o2 and correlation function p(u) = Corr[S(z;), S(x;

)

]
u =|| ; —z; || being the spatial distance between x; and z;, and Z; ~ N(0,72)
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In the current application we had p = 0, which was due to the nature of the
station effects. In this case the station effect at location xy was predicted by

a(zo) = o?rT (7’ I + 0’ R) '« (D.11)

where R was a symmetric 65 x 65 matrix with elements p(|| z;—x; ||), risa65x1
vector with elements p(|| zo — x; ||) and a is a 65 x 1 vector of station effects.
The variances of the station effects «; in step 1 were estimated by (D.f]). These
variances were incorporated in the spatial predictions (.11]) by adding them to
the corresponding diagonal elements of the covariance matrix ¢2R. Estimation

of the parameters of the geostatistical model was based on the semivariogram
defined by

1(u) = 3 Varla(e:) — a(e;)] = 5Bl(a(w) — a(a)?), w=la -z (D12)

The sample semivariogram was estimated by substituting the expectation in
(D-12) with an average, i.e.

0) = ey (@) = alay) (D.13)

where Ny(u) was the number of pairs of data, i.e. station effects. The relation-
ship between the semivariogram and the correlation function was

Y(w) =7+ 0*(1 - p(w)) (D.14)

where 72

was the nugget effect, which described small-scale random variation
and measurement errors. In the second step the exponential correlation function
was used

p(u) = exp(—|ul/¢) (D.15)

where ¢ was the correlation parameter. Parameter estimation was based on the
sample semivariogram which was fitted with the semivariogram in (O.14) by
means of weighted least squares regression, where the weights were the number
of datapairs in each distance bin.

D.4.3 Step 3

In the third step the residuals € = y — m from the first step were analysed
and modelled using an approach very similar to step 2, but in step 3 distances
are measured in both space and time. It was assumed that the residuals were
realisations of a second order stationary space-time random field

e={e(z,t), €D, teT} (D.16)
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with expected value E[e(z,t)] = 0. In this case the space-time covariance func-
tion

Yot (Ug, ur) = Covle(z;, t;), e(x), ;)] (D.17)
and the semivariogram

Var[e(x;, t;) — €(x;,t;)]
2

_ El(e(@is ti) — e(zj,t5))?]
_ - (D.18)

Vot (U, Ug) =

depended solely on the lag vector (u;,u:). To estimate the experimental space-
time semivariogram from data the expectation in ([D.18)) is replaced by the mean
value, yielding

Vat (ta e) = m > (elwisti) — e(wy, t5))? (D.19)

where No(u;,u:) was the number of datapairs with spatial distance u, and tem-
poral distance u;. When modelling the space-time covariance structure ¥,; we
assumed that this could be separated into a spatial and a temporal component
in the following way

where ¥, (u,) and X (h:) were the spatial and temporal component, respectively
(De_Cesare et all, [2001b; [De Taco et all, 2001)). In this paper we used a common
2 ie. 02 = o2, which implies that the space-time semivariogram
reaches a common level for long separation distances, and exponential correla-
tion functions for both the temporal and the spatial component. In this case

the space-time covariance was given by

variance o

St (g, ur) = 0% exp(—|us|/¢s)o? exp(—|ue| /d1) (D.21)
and the space-time semivariogram with a common nugget effect as
Yot (g, ug) = 72 + 0% (0% — 0” exp(—|ug|/dz) exp(—|usl /1)) (D.22)

After having estimated the space-time covariance function for the residuals,
predictions were computed by

é(zo,t0) = U.Ztrft(fgtl + U.ZtRmt)_le (D.23)

As for the station effects the variances of the residuals in step 1 (i.e. 031 +
Var[m]) were added to the diagonal of the space-time covariance matrix.
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D.5 Results

In this section results for DIN in the Kattegat are presented for four different
weeks, representing the four seasons. These weeks were chosen as from January
1997, April 1997, July 1997 and September 1997. For each of these four weeks
spatial predictions were computed in a regular grid covering the Kattegat hav-
ing a grid spacing of 5 kilometers in both directions. Furthermore, modelled
time series for three arbitrarily selected locations in the Kattegat are presented.
However, the model approach could be applied to any space-time point given
by a location in the Kattegat area and a week in the five-year period 1993-
1997. When estimating 8 in (0.4) we found ;=1.62, 1)2=0.78, 15 = 0.20 and
1y = —0.21 and the original parameters of (D.2)) were consequently calculated
as

0.78 0.78
= _— = .4 = " = 1.
1 arctan (1.62) 0.45 = 4, Sin(0.45) 80
—0.21 —0.21
= arctan | —— ) = 081 =0y = ————— =02
v2o= oA an( 0.20 > 081 =02 = G o8y = 0%

The estimates of the six year effects 1, ..., 8¢ ranged from -0.11 to 0.51, and
65 station effects aq, ..., ags ranged from -1.20 to 2.96. The estimated «; were
in general highest for monitoring stations in the coastal shallow areas and in
the northern part (Figure [D.2A), whereas the variances of the estimated «;
computed by (D.6) were highest in the northern and eastern parts of the Kat-
tegat (Figure [D.2B). These variances are highly dependently on the number of
observations at individual stations during the five-year period. In the second
step « is extended to non-sampling locations in the Kattegat area by means of
a geostatistical model (D.I0)). Parameter estimation was based on the sample
semivariogram (Figure [D-2IC), as described in section [D:4.2] This yielded the
estimates (72,02, ¢) = (0.25,0.4,15).

Step three consist of modelling the residuals from step 1 by means of space-time
geostatistics. To estimate the model parameters in (D23 we first computed
the spatial sample semivariogram 4, (u,,0). This was done by considering all
possible datapairs for each of the weeks. For all datapairs the squared differences
of the residuals were computed and separated into spatial bins. For each bin the
average divided by 2 was computed to produce the spatial sample semivariogram

(Figure [D.3A).

From the spatial sample semivariogram it is seen that the residuals were spa-
tially correlated until a separation distance of approximately 60 kilometers. The
temporal sample semivariogram was computed in a similar way, but this time
we considered all possible datapairs for each of the monitoring stations (Fig-
ure [D-3B). The residuals were correlated until a temporal separation distance
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Figure D.2: A) Estimated station effects ranging from -1.20 to 2.96 indicated
by the size of the circle. The locations of monitoring stations are given by the
circle centers. B) Standard deviations of the station effects ranging from 0.34 to
1.20 indicated by the size of the circle. C) Sample semivariogram of the station
effects.
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Figure D.3: A) Spatial sample semivariogram of the residuals B) Temporal sam-
ple semivariogram of the residuals C) Space-time sample semivariogram of the
residuals D) Space-time semivariogram model corresponding to separability of
the space-time dimension.
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of approximately 15 weeks. Furthermore, the plot indicated that some sea-
sonal variation still remained in the residuals. This phenomenon was caused
by some high winter concentrations which the estimated mean component did
not describe sufficiently. Fitting the two sample semivariograms with common
parameters 72 and o2 gave (72,02, ¢4, ¢:) = (0.6,0.6,30,5). When separabil-
ity according to (D.20) was assumed, these two semivariograms corresponded
to the semivariogram surface in Figure [D.3D. Comparing the estimated to the
sample space-time semivariogram (Figure [D.3IC and [D.3D) the assumption of
separability could be examined. Given that the estimated space-time variogram
reflected the overall features of the sample space-time variogram we concluded
that separability was a valid assumption. Thus, we did not find any reasons
for using non-separable space-time covariance structures (Cressie and Huang,
1999; Brown et all, 12000; De Iaco et all, 2002), and consequently the following
space-time semivariogram was employed

Yot (Ug, ut) = 0.6 + 0.6(0.6 — 0.6 exp(—|uy|/30) exp(—|ut|/5)) (D.24)

The residuals were predicted using ([D.23) and added to the estimated mean
component to give predictions on the log-scale. These were back-transformed
by means of the exponential function, to yield the results in Figures [D.4 and

D.5l

D.6 Discussion

Surface DIN concentrations in Kattegat are expected to be high during win-
tertime corresponding to low primary production in this period. In spring en-
hanced light conditions and increasing temperatures causes growth of algae, and
consequently DIN becomes depleted from the surface layer. DIN concentrations
remain low during summer when algae production is nitrogen limited, increasing
again with the first autumn storms when nutrient-rich bottom water is entrained
into the surface layer by increasing winds and buoyancy. This temporal dynam-
ics is predicted by the model and accounted for by the mean component (Figure

[0.4).

Furthermore, high concentrations are expected in the coastal areas, in particular
along the eastern coast of Jutland, in the north eastern part of the Kattegat
near Gothenburg, as well as near the Swedish coast in the south eastern part
of the Kattegat. This expected pattern is due to sediment interactions in the
shallow water, upwelling and discharges of nutrient-rich water from tributaries.
The high concentrations in the north eastern part of the Kattegat are associated
with discharges of nutrient-rich water from the Géta River and the Skagerrak -
Kattegat frontal system. The described spatial pattern fits very well with the
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Figure D.5: A) Spatial predictions of DIN for one week in A) January 1997, B)
April 1997, C) July 1997, and D) September 1997.
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size of the station effects (Figure [D2A), which are measures of the overall DIN
level at individual stations. It also fits well to the predicted DIN concentrations
in the summer week (Figure[[D.DIC), whereas the model does not predict high DIN
concentrations in the south eastern part relative to other parts of the Kattegat
in the three other weeks (Figure [DXHA, and [D3D). In these three weeks
relatively high concentrations were only predicted in the northern part of the
Kattegat. This is caused by the fact that high DIN concentrations were not
measured in the south eastern and south western part in these weeks as well as
in weeks just before and after.

In relation to the application that this study deals with, i.e. DIN concentrations
in the Kattegat, we have thought of the proposed model approach as a method
for obtaining more information from the monitoring data. Subsequently, as
mentioned in the introduction, model predictions could for example be used to
reduce uncertainties of nutrient and carbon budgets in the Kattegat. We have
aimed at proposing a simple approach which utilize the spatial and temporal
correlation in data, can cope with a huge number of missing data values, and
enable us to predict the DIN concentration in both space and time. We believe
the proposed approach is general applicable for modelling phenomena observed
over time at a number of spatially located monitoring stations, as the mean
component of the model can be modified to fit the studied phenomenon. We
also believe that this simple model could serve as a surrogate model for a more
advanced and eventually computationally intensive model, and in that sense it
could be used to correct the advanced model or to speed up computations in
this.

D.7 Conclusion

This paper describes and applies an approach for modelling the DIN concentra-
tion in space and time. The main feature of the model approach is that it takes
spatial and temporal correlations in data into account. The model is used to
predict maps of the spatial distribution of DIN in four weeks, representing the
four seasons, and to model time series of DIN at three different locations. The
results can easily be interpreted from a biological and physical point of view,
i.e. for this specific application the model performs very well. The proposed
model approach is general, and can be applied to monitoring datasets observed
over time at a number of locations.
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Computing spatial designs in R
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Abstract

This paper describes parametric and non-parametric statistical methods for
determining the optimal set of locations where samples are to be taken. This is
a frequently occurring problem within environmental monitoring. The methods
presented here are primarily based on geostatistics and focus on either estimation of
model parameters or on spatial prediction. It is shown how these methods can be
combined, and how these computations can be made in the statistical analysis and

programming environment R.

KEY WORDS: Bayesian geostatistics, classical geostatistics, semivariogram,

space-filling design.

E.1 Introduction

Today, monitoring networks have been established for reporting the state of
the environment, and it is anticipated that the number of such networks will
continue to increase in the future. These networks often aim at determining
the spatial distribution of one or more pollutants. Ultimately, it is desirable to
sample at all possible locations within a specific area of interest, but in practice
the design of a monitoring network is limited by economic and operational con-
straints. In such cases the limited number of locations where samples are to be
taken has to be determined. In principle two different design situations exists,
i.e. a prospective design situation where the locations for a new set of sampling
points have to be determined, and a retrospective design situation where an
existing design is modified by adding sampling points to, or deleting sampling
points from the design.
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In this paper we describe statistical methods for computing the optimal set of
sampling points, here referred to as the spatial design, and give some guidelines
about when to apply the different methods. Furthermore, we show how the
computations can be made in the statistical analysis and programming envi-
ronment R (Thaka and Gentleman, [1996; [Grunsky, 2002). Some functions for
computing spatial designs already exist, i.e. the ossfim-function in the gstat-
package (Pebesmal, 2004) and the cover.design-function (Royle and Nychkal,
1998) in the fields-package. It is shown how these work, as are the four new
R-functions (krige.conv.design, warrick.myers.design, zimmerman.homer.design
and krige.bayes.design) that we have implemented. Hence, the spatial design
problem is treated from a statistical point of view, without considering any
practical aspects.

The design methods can be grouped according to whether they focus on es-
timation of the parameters in a geostatistical model (section [E.5] and [E.6) or
on computing efficient spatial predictions using the estimated model (Section
[E:3] and [E4)). Furthermore, we show that these two groups of methods result
in different and conflicting designs, and describe how the methods could be
combined (section [E7)). Section discusses various aspects of the described
methods. Most of the design methods described in this paper are based on the
geostatistical theory, which is therefore briefly presented in section [E.21

E.2 Geostatistics

Geostatistics is the part of spatial statistics which is concerned with continuous
spatial variation (Cressi€,11993). Given data y;, i = 1, ..., n at sampling locations
x; it is assumed that data can be modelled by

K:S(xz)—i—Z?, i=1,..,n (El)
where S(x) is a stationary Gaussian process with expectation E[S(x)] = g,
variance Var[S(z)] = o2 and correlation function p(u) = Corr[S(z;), S(x;)],

u =| x; —z; || being the spatial distance between z; and z;, and Z; ~ N(0,72),
where 72 is the nugget effect. A possible model for describing spatial correlation
is the powered exponential correlation function p(u) = exp[(—u/¢)"|, where
¢ > 0 and 0 < k < 2 are parameters (Stein, 1999; [Diggle et all, [2003). For
k =1 and k = 2 the powered exponential correlation function is usually called
the exponential and the Gaussian correlation function, respectively. The model
parameters can be estimated by maximum likelihood (Pardo-Tguzquiza, 1997),
or based on the semivariogram, which is related to the correlation function in
the following way

() = 72+ 02(1 — plu) (£:2)
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The predictor that minimizes E[(S(x) — S(x))2] is called the kriging predictor.
It can be shown that the kriging predictor for T' = S(xg) is
T =p+ 0T (721 + o*R) "y — pl) (E.3)
with prediction variance

Var[T] = 0% — o%rT (12] + 0?R) "*o?r (E4)

where R is a symmetric n X n matrix with elements p(|| ; — z; ||) and r is
a n x 1 vector with elements p(|| zo — x; ||). see e.g. |Cressie (1993); Chiles
and Delfiner (1999); [Diggle et all (2003). An important characteristic of the
prediction variance ([E4) is that it does not depend on the data values y;, which
makes it attractive to use as a design criterion.

E.3 Spatial designs based on the prediction vari-
ance

McBratney et al. (1981) applied the classical kriging approach to the prospec-
tive design situation. They showed that if the model parameters in (E]) are
regarded as well-known then in the isotropic case the regular grid design is op-
timal for computing efficient spatial predictions. They also implemented their
design approach in a Fortran-program (McBratney and Webster, [1981). This
determines the necessary grid spacing, given the model parameters. In the
anisotropic case the approach finds the necessary grid spacing in the direction
of minimum spatial correlation, and the grid mesh is then elongated in the per-
pendicular direction in proportion to the anisotropy ratio. The Fortran program
originally implemented by [McBratney and Webster (1981) is now available in
gstat (Pebesma, 2004). Assuming that gstat has been installed and loaded, then
the R-commands

> x <- ossfim(seq(0.1,2,by=0.1),0.1, model = vgm(1,"Exp",0.3))
> plot(x$spacing,x$kriging.se,type="b",1lwd=2,xlab="Grid spacing",
ylab="Block kriging standard error")

produce a plot of the block kriging standard error against the grid spacing of a
regular grid when the exponential correlation function with ¢ = 0.3, a constant
mean /i, a variance o2 = 1, a nugget effect 72 = 0, and an isotropic field are used
(Figure [ET)). We will use this model in the examples throughout the paper.

Various studies have computed retrospective spatial designs based on the pre-
diction variance ([E4)). As an example, [Spruill and Candela (1990) showed how
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Figure E.1: The block kriging standard error as a function of grid spacing in a
reqular design. The block size is 0.1.

the number of sampling locations in a ground-water monitoring network mea-
suring chloride-concentrations could be reduced from 120 to 99, with only a
marginal increase in the prediction variance. Such a design can be computed
with the R-function krige.conv.design which is based the function krige.conv in
the geoR-package (Ribeiro et all,12003). Assuming that geoR has been installed
and loaded, then the R-commands

> simgrf <- grf(30,cov.model="exponential",cov.pars=c(1,0.3))

> x <- krige.conv.design(candidate.start=as.matrix(cbind(simgrf$coords,simgrf$data)),
grid=expand.grid(seq(0,1,1=17),seq(0,1,1=17)) ,fixed=NULL, cov.parameter=c(1,0.3),
kappa=1,nugget=0,n.add=15,mean.max=1,nruns=5,nn=9)

> plot(x$design([,1],x$design[,2],1wd=2,pch=19,cex=2,xlab="x1",ylab="x2",x1lim=c(0,1),
ylim=c(0,1))

> points(simgrf$coords[,1],simgrf$coords[,2],1lwd=2,pch=1,cex=2)

> text(0,1,"A",cex=2.5)

produce a plot (Figure[E21A) showing the simulated starting design (all points)
of 30 points and the 15 points that remain in the design (e) when minimizing
the average prediction variance is used as design criterion. It is seen that the
15 remaining sampling points fill up the area of interest, i.e. distances between
neighboring points are large.
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E.4 Space-filling design

As noted by Royle and Nychkd (1998) a basic problem with the above de-
scribed approach is that one must know the true geostatistical model, i.e. mis-
specification of the model produces designs that are not optimal. Instead, Royle
and Nychka (1998) proposed a space-filling design criterion, which is based on
geometry, i.e. it is only a function of the distance between sampling locations
and a defined set of non-sampling locations (the candidate set), rather than on
a stochastic model like (E.I). Based on results in |Johnson et al (1990) the
authors showed that the resulting designs are nearly optimal from a spatial pre-
diction point of view. The idea of a space-filling design is to find a combination
of sampling points which fills up the available space in some suitably defined
sense. A measure of how well a set of sampling points, ®, covers a location x,

can be written as y
P
e = (L la-ul) (E5)

ueD

where p can be any negative number. An overall geometric coverage criterion,
i.e. the space-filling design criterion, can then be written as

q@@=(2%mmﬂw (E6)

zeC

where ¢ > 0, and the sum is taken over all x in the space of possible locations
C. The goal is now to choose ® to minimize C), (D).

Royle and Nychka (1998) also proposed a point-swapping algorithm, used to
find the optimal design. This is the algorithm which is implemented in our four
R-functions (krige.conv.design, warrick.myers.design, zimmerman.homer.design
and krige.bayes.design). The basic idea of the algorithm is simple. For a given
point in the current design, replace this point with members of the candidate set.
If a particular swap reduces the design criterion, then this new point is included
in the design and the old point is moved to the candidate set. This process is
repeated for each member of the spatial design until there are no longer any
productive swaps. Note, that when the design is modified, the design criterion
will always be reduced, i.e. the algorithm will always converge to some solution
depending on the randomly chosen starting design set. A space-filling design can
be computed with the R-function cover.design in the fields-package. Assuming
that this has been installed and loaded, then the R-commands

> x <- cover.design(R=sim$coords,nd=15,nruns=5,nn=9)
> plot(x$design[,1],x$design[,2],1wd=2,pch=19,cex=2,xlab="x1",ylab="x2" ,x1im=c(0,1),
ylim=c(0,1))
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> points(simgrf$coords[,1],simgrf$coords[,2],1lwd=2,pch=1,cex=2)
> text(0,1,"B",cex=2.5)

produce a plot (Figure [E2B) very similar to Figure [E2A, i.e. the remaining
points fill up the area of interest. This property is of course what is indicated
by the name ”space-filling design” and agrees with the fact that such designs
are nearly optimal from a spatial prediction point of view.
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Figure E.2: Reduction of an existing spatial design (all points) by deleting 15
points (open symbols). A) Design according to the classical prediction variance
and B) Design according to the space-filling criterion. Filled circles (o) mark
the remaining 15 sampling points.

E.5 Spatial designs based on the sample semi-
variogram

One problem about spatial designs based on the prediction variance is that they
assume that the model parameters are known, i.e. the uncertainty of the param-
eter estimates is not included in the design criterion. The space-filling design
criterion leads to designs with points filling up the area of interest as well, and
in that sense it also generates designs which are efficient from a prediction point
of view, without taking proper care of the parameter uncertainties. The model
parameters are rarely well-known, and therefore some studies have focused on
how to design in order to estimate the semivariogram efficiently.

Some early studies of this was done by |Russd (1984);[Warrick and Myerd (1987)
who proposed criteria for finding the optimal set of sampling points in order to
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estimate the sample semivariogram, used in classical geostatistics for analysing
the second moment structure of a spatial stochastic process. [Warrick and Myers
(1987) proposed minimising the design criterion

N N N
azwi(fi—fi*)Q‘f'melri-CZm% (E.7)
i=1 i=1 i=1

where f; is the number of datapairs in the ith bin, f is the target value of
fi, N is the number of bins, m1; and msy; are respectively the variances of the
distances and angles for the ith bin, and finally w;, a, b and ¢ are constants.
These constants can be chosen arbitrarily, however, [Warrick and Myers (1987)
used the values a = 4[N(N —1)]72, w; =1, b= c =0 and all f} the same. The
criterion in (E7) results in designs for which the number of datapairs for each
distance-angle bin is large, while the average of the distances and angles in each
bin are close to the plotted distance and angle, respectively, and the variance
of the distances and angles in each bin is small. The approach by Warrick and
Myers (1987) is more general than the one by Russd (1984), because the latter
only included the average and variance of the distances for each bin. The two
criteria are the same if a = 0, b = 1, and ¢ = 0. A spatial design produced
according to (E.7) can be computed with the R-function warrick.myers.design,
which does not depend on any existing package. The R-commands

> x <- warrick.myers.design(candidate.start=simgrf$coords,fixed=NULL,N=8,n.add=15,
a=1,b=1,c=0,n.directions=1,nruns=5,nn=9)

> plot(x$design[,1],x$design[,2],1wd=2,pch=19,cex=2,xlab="x1",ylab="x2",x1im=c(0,1),
ylim=c(0,1))

> points(simgrf$coords[,1],simgrf$coords[,2],1wd=2,pch=1,cex=2)

> text(0,1,"A",cex=2.5)

produce a plot (Figure [E3JA) with a high proportion of points located close
together, the points tend to be spatially clustered. Such a design is in contrast
to space-filling designs or designs based on the prediction variance (Figure [E2)).

E.6 Spatial designs based on the semivariogram
model

Zimmerman and Homer (1991) extended the ideas by[Warrick and Myers (1987)
to consider not only estimation of the sample semivariogram but also parametric
estimation of the semivariogram model. They proposed maximising the design
criterion

det(VIWYV) (E.8)
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where V' is a matrix of partial derivatives of the chosen semivariogram model
with respect to its parameters and W is a diagonal matrix, with non-zero ele-
ments equal to the reciprocal squared values of the assumed semivariogram. The
rationale for this is given by |Cressie (1985). [Zimmerman and Homer (1991) also
included the matrix D in their design criterion. This contains partial deriva-
tives of specified parametric functions g; with respect to the parameters, and
the g; identify the semivariogram attributes which are of particular interest.
Thus, the criterion in (E.8) occurs when all parameters of the semivariogram
are of interest. Miiller and Zimmerman (1999) used a modification of (E.8)) in
which W is non-diagonal. A very similar approach was suggested by Bogaert
and Russo (1999). For computational reasons we have implemented the crite-
rion in (E.8)) rather than those suggested by Miiller and Zimmerman| (1999);
Bogaert and Russd (1999). Computations are performed with the R-function
zimmerman.homer.design, which does not depend on any existing package. The
R-commands

> x <- zimmerman.homer.design(candidate.start=simgrf$coords,fixed=NULL,
cov.parameter=c(1,0.3) ,kappa=1,nugget=0,n.add=15,nruns=5,nn=9)

> plot(x$designl[,1],x$designl[,2],1lwd=2,pch=19,cex=2,xlab="x1",ylab="x2",x1im=c(0,1),
ylim=c(0,1))

> points(simgrf$coords[,1],simgrf$coords[,2],1lwd=2,pch=1,cex=2)

> text(0,1,"B",cex=2.5)

produce a plot (Figure [E-3B) which also has a high proportion of points located
close together, even though the clustered pattern is less pronounced than in

Figure [E-3A.

E.7 Combining spatial designs

The above description shows two groups of spatial designs focusing on either
spatial prediction, assuming that the model parameters are known, or on pa-
rameter estimation based on the semivariogram. When computation of spatial
predictions is the primary goal of the spatial design, some points should also
be allocated for estimating the model parameters, because good parameter esti-
mates are required for computing efficient predictions (Stein, [1999). Thus, the
design should consist of some points allocated for predicting the spatial distri-
bution and some for estimating the model parameters (Miiller, 2001; Martin,
2001)).

Miiller (2001) showed that for ng ~ 0.3n the number of small bins of the sample
semivariogram equals the number of large bins. Here n is the total number of
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Figure E.3: Reduction of an existing spatial design (all points) by deleting 15
points (open symbols). A) Design according to the criterion proposed by Warrick
and Myers (1987) and B) Design according to the criterion proposed by Zim-
merman and Homer (1991). Filled circles (o) mark the remaining 15 sampling
points.

sampling points in the design, and ng < n is the number of sampling points
in the design used to compute spatial predictions. There are more small bins
than large bins when ng < 0.3n and vice versa when ng > 0.3n. To allow for a
larger proportion of small bins, [Miiller (2001)) recommended to have ng < 0.3n,
e.g. ng = 0.2n. Such a combined spatial design is computed by combining one
of the R-functions krige.conv.design or cover.design with warrick.myers.design
or zimmerman.homer.design. In the example below we combine the functions
cover.design and warrick.myers.design to the prospective situation where a spa-
tial design of 30 points is to be constructed. The 30 points are chosen from a
candidate set consisting of 200 randomly chosen points. The R-commands

candidate <- cbind(runif(200),runif(200))

x1 <- cover.design(R=candidate,nd=6,nruns=5,nn=30)

x2 <- warrick.myers.design(candidate.start=candidate,fixed=x1$best.id,N=10,
.add=24,a=1,b=1,c=0,n.directions=1,nruns=5,nn=30)

> plot(candidate[,1],candidate[,2],1lwd=2,pch="+",xlab="x1",ylab="x2",x1im=c(0,1),
ylim=c(0,1))

> points(x1$design[,1],x18design[,2],1lwd=2,pch=15,cex=2)

> points(x2$design[1:24,1] ,x2$design[1:24,2],1wd=2,pch=19,cex=2)

B VvV VvV Vv

first allocates six points for spatial prediction according to the space-filling de-
sign criterion, and afterwards 24 points, with the first six points fixed, according
to the criterion proposed by [Warrick and Myers (1987). This means that the
first six points are not swapped, but included in the computation of the design
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criterion. The resulting design (Figure [E4]) serves as a compromise between
the conflicting issues of focusing on spatial prediction or parameter estimation.
However, Figure [E24] also shows that a large proportion of the points are close
together in clusters, indicating that we might choose ng = an with o > 0.2.
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Figure E.4: A prospective design situation in which a new spatial design is to be
constructed. Based on a combination of the space-filling criterion and the design
criterion proposed by Warrick and Myers (1987), 30 sampling points (shown by
B and o) were selected from a candidate set (all points) of 200 points. Filled
squares (B) mark the siz points selected by means of the space-filling criterion.
Filled circles (o) mark the 24 points selected by means of the| Warrick and Myers
(1987) - criterion.

Another way to combine spatial designs, which overcomes the problem of choos-
ing «, is to compute spatial predictions and associated variances using a Bayesian
approach (Diggle et all, [2003;Handcock and Stein, [1993; [Le and Zidek, 1992). In
the classical geostatistical approach parameters are estimated, and afterwards
these are plugged into (E3) and (E4) to compute predictions and associated
prediction variances as if the parameter estimates were the truth. Predictions
computed using the Bayesian approach can be interpreted as a weighted av-
erage of a number of classical predictions, with weights given by the posterior
distributions of the parameters. This means, that in the Bayesian approach the
uncertainty of the model parameters, described by the posterior distribution, is
automatically incorporated in the predictive distribution. Hence, good parame-
ter estimates, i.e. a narrow posterior distribution, leads to more efficient spatial
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predictions. The Bayesian approach is computationally intensive, but can be
used when sampling points are to be deleted from an existing design. When
adding points to a design the computational work usually increases dramatically,
and this situation is not considered here. The R-function krige.bayes.design is
based on the krige.bayes function in geoR, and uses the average or the maximum
of the variances of the predictive distributions as a design criterion. Computa-
tional details can be found in [Ribeira (1999). Again we investigate the retro-
spective situation where we want to delete 15 points from the starting design of
30 points (Figures [E:2land [E.3]). The R-commands

> x <- krige.bayes.design(candidate.start=as.matrix(cbind(simgrf$coords,simgrf$data)),
grid=expand.grid(seq(0,1,by=0.1),seq(0,1,by=0.1)),fixed=NULL,n.add=15,mean.max=1,
nruns=1,nn=9)

> plot(x$design[,1],x$design[,2],1lwd=2,pch=19,cex=2,xlab="x1",ylab="x2",x1im=c(0,1),
ylim=c(0,1))

> points(simgrf$coords[,1],simgrf$coords[,2],1wd=2,pch=1,cex=2)

produce a plot (Figure [EH) of a design with most sampling points allocated to
fill up the area of interest, but also of a few points located close together, e.g.
the two points approximately at (z1,2z2) = (0.15,0.25), allocated to account for
the uncertainty in the model parameters.
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Figure E.5: Reduction of an existing spatial design (all points) by deleting 15
points (open symbols). Filled circles (o) mark the remaining 15 sampling points.
The design is computed by means of the Bayesian design criterion.
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E.8 Discussion and conclusions

The design methods described in sections -[EX6lcan be grouped according to
whether they focus on estimation of the parameters in a geostatistical model or
on computing efficient spatial predictions using the estimated model. They could
also be grouped according to whether they are non-parametric (Sections[E-4 and
[EZA]) or model-based (Sections and[EZ6]). Obviously, to apply the latter group
of methods prior knowledge about the model parameters are required, while the
non-parametric methods only depend on the distances between sampling points
in the design.

In a prospective design situation it would be reasonable to apply a method
which focus on parameter estimation, and then after some time change the de-
sign according to a criterion which focus on spatial prediction. Alternatively,
the spatial design could be constructed by means of a combination of two crite-
ria, as described in section [E.d. The retrospective design situation where points
are to be deleted from an existing design can be handled by the Bayesian de-
sign criterion. Although this is computationally intensive it gives designs which
ensures that spatial predictions can be computed efficiently, while taking pa-
rameter uncertainty into account. In the situation where points are to be added
to an existing design, we believe that in most situations it is reasonable to add
points by means of a criterion focusing on spatial prediction. The R-functions
described in this paper can be used in these situations, and the resulting designs
should be compared with expert judgement to make decisions about where to
sample, or about which points to delete.

Some assumptions were made in the implementation of the methods, e.g. in
the functions zimmerman.homer.design and krige.conv.design isotropy, a con-
stant mean, and a powered exponential correlation function are assumed, while
krige.bayes.design also assumes isotropy and a constant mean, as well as a flat
prior for ¢, an improper prior for o2 and a nugget effect 72 which is fixed in
value. Most of these settings can easily be changed in the functions. The effect
of our choice of priors is an area which needs further investigation. We expect
that for small designs the priors will affect the design substantially, and that
using a flat prior for 72 rather than keeping it fixed would result in designs with
more points close together in clusters.

The point-swapping algorithm was analysed by Royle and Nychka (1998) when
applied to the space-filling criterion. They found that the resulting designs are
sufficiently close to being optimal, and that the nearest-neighbor search strategy
is reasonable, especially when applied to large designs and candidate sets.

Thus, we believe that the described methods cover the different spatial design
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situations that can arise, and by implementation in the statistical analysis and
programming environment R they are easy to use in combination with other
statistical analysis.
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Appendix

The function krige.conv.design

x < — krige.conv.design(candidate.start,grid,fixed=NULL,cov.parameter, kappa,nugget,n.add,
mean.max=1,nruns,nn)

candidate.start: Matrix of candidate points (first two columns) and data values
(third column).

grid: Two-column matrix of points in which the predictive distribution is computed.

fixed: Vector specifying points to be forced into the spatial design.

cov.parameter: Two-element vector with values of the covariance parameters (02
and ¢)

kappa: parameter in the powered exponential correlation function

nugget: The nugget effect 72

n.add: Number of points to add to the design.

mean.max: If 1 minimising the average prediction variance is used as design criterion,
otherwise the maximum prediction variance is used.

nruns: The number of random starting designs to be optimized.

nn: Number of nearest-neighbors to search over.

The function can be used retrospectively as well as prospectively. Isotropy, a constant
mean, and a powered exponential correlation function are assumed. These settings
can easily be changed by changing the call to krige.conv.
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The function warrick.myers.design

x < — warrick.myers.design(candidate.start,fixed=NULL,N n.add,a,b,c,n.directions,nruns,nn)

candidate.start: Two-column matrix of candidate points (first two columns).
fixed: Vector specifying points to be forced into the spatial design.

N: Number of bins for the semivariogram

n.add: Number of points to add to the design.

a,b,c: Constants corresponding to [Warrick and Myers (1987).

n.directions: Number of directions to consider.

nruns: The number of random starting designs to be optimized.

nn: Number of nearest-neighbors to search over.

The function can be used retrospectively as well as prospectively. A constant mean is
assumed and all weights w; in|[Warrick and Myers (1987) are =1. Both isotropy and
anisotropy can be handled.
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The function zimmerman.homer.design

x < — zimmerman.homer.design(candidate.start,fixed=NULL,cov.parameter,kappa,nugget,
n.add,nruns,nn)

candidate.start: Matrix of candidate points (first two columns) and data values
(third column).

fixed: Vector specifying points to be forced into the spatial design.

cov.parameter: Two-element vector with values of the covariance parameters (o>
and ¢).

kappa: parameter in the powered exponential correlation function

nugget: The nugget effect 72.

n.add: Number of points to add to the design.

nruns: The number of random starting designs to be optimized.

nn: Number of nearest-neighbors to search over.

The function can be used retrospectively as well as prospectively. Isotropy, a constant
mean, and a powered exponential correlation function are assumed. The correlation
can of course be changed, but requires that the partial derivatives of another model
are specified.
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The function krige.bayes.design

x < — krige.bayes.design(candidate.start,grid,fixed=NULL,n.add,mean.max=1,nruns,nn)

candidate.start: Matrix of candidate points (first two columns) and data values
(third column).

grid: Two-column matrix of points in which the predictive distribution is computed.
fixed: Vector specifying points to be forced into the spatial design.
n.add: Number of points to add to the design.

mean.max: If 1 minimising the average prediction variance is used as design criterion,
otherwise the maximum prediction variance is used.

nruns: The number of random starting designs to be optimized.

nn: Number of nearest-neighbors to search over.

The function delete points from an existing design by means of the variance of the
predictive distribution. Isotropy and a constant mean are assumed. Prior are chosen as
the default for krige.bayes (see documentation). These settings can easily be changed
by changing the call to krige.bayes.
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A Bayesian geostatistical approach to
optimal design of monitoring networks
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Abstract

This paper applies a Bayesian geostatistical approach for reducing the number of
sampling stations within a marine monitoring program. The approach focuses on
designing a monitoring program which is efficient from a prediction point of view,
while taking parameter uncertainty for the spatial correlation into account. The
novelty is that it combines different classical geostatistical design methods. The
number of sampling stations can be reduced from the present 31 to 14 with only a
marginal increase in the design criterion. The reduced network consist of sampling
stations covering the Kattegat area as well as some stations close to each other.
The approach can be applied for revising the monitoring effort in different types of

networks provided that spatial correlation prevails.

KEY WORDS: Bayesian geostatistics, the Kattegat, spatial design

F.1 Introduction

Environmental pollution has become a major problem on all possible scales from
local, regional to global. Today, monitoring networks have been established to
obtain information on the spatial distribution of different pollutants as well
as their biological effects more recently. Environmental monitoring of air, soil
and water pollution is a challenge to the modern society having the aim of
determining the spatial distribution on a wide range of substances. Ultimately,
it is desirable to sample at all possible locations within a specific area of interest,
but in practice the design of a monitoring network is limited by economic and
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operational constraints. In such cases the limited number of locations where
samples are to be taken has to be determined.

Existing monitoring networks have mainly been established on heuristic rules
such as appointing a sampling location to be representative for a larger area,
rather than defining optimality criteria and determine the location of sampling
stations on this basis. One major problem associated with optimizing the moni-
toring network design is that it requires a priori information on the spatial scales
of variation, which may not be readily available in the case of a new monitoring
network design. Another problem is that a single criterion encompassing all
the different pollutants and biological effects in the monitoring network can-
not be established, due to contrasting definitions of optimality. Moreover, the
general objectives of a monitoring network is often formulated in rather broad
terms making the translation into a more stringent mathematical optimality for-
mulation quite difficult. Statistical methods for design of monitoring networks
should not be seen as an alternative to the traditional heuristic rules based on
expert judgement, but more as a complementary tool that give modifications or
support to the design decisions made.

Most monitoring networks undergo revisions at different times during their life
span. Here we shall consider such a situation when the monitoring network
has already been established and the necessary a priori information can be ob-
tained from historical data. In section [F.2] geostatistics and geostatistical design
methods are briefly reviewed. Based on this review an appropriate approach for
reducing the number of sampling stations within the Danish National Aquatic
Monitoring and Assessment Programme (DNAMAP) in the Kattegat, a coastal
marginal sea. Nutrients, oxygen, chlorophyll a, temperature and salinity in addi-
tion to a wider range of biological measurements were sampled at the monitoring
stations. The application of the approach is described in section [E.3l

F.2 Methodology

F.2.1 GGeostatistics

Geostatistics is the part of spatial statistics which is concerned with continuous
spatial variation (Cressi€, 1993). Given data y;, i = 1,...,n at spatial locations
x; it is assumed that data can be modelled by

Y= S(xi)+ Zi, i=1,..n (F.1)
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where S(x) is a stationary Gaussian process with E[S(x)] = p = F 3, where F is
a n x p matrix of covariates, and 3 is the parameter vector, Var[S(z)] = o2 and
correlation function p(u) = Corr[S(z;), S(x;)], u =|| x; — z; || being the spatial
distance between x; and z;, and Z; ~ N (0, 72). A possible model for describing
spatial correlation is the exponential correlation function p(u) = exp(—u/@),
where ¢ is the range parameter. Other widely used models are the spherical,
the Gaussian and the Matérn model, the latter of which the exponential and
the Gaussian correlation functions are special cases (IDiggle_e:LaJJ, 120113) The
predictor that minimizes E[(S(z) — S(x))?] is called the kriging predictor. It
can be shown that the kriging predictor for T'= S(xq) is

T=p+*r" (12T + o*R)" Yy — pul) (F.2)
with prediction variance

Var[T|y] = 0* — %7 (1% + 0*R) ! (F.3)

where R is a symmetric n X n matrix with elements p — xH% and r is
a n X 1 vector with elements p(|| g — z; ||), see e.s. Cresa 1993): Chiles
and Delfiner (1999); Diggle et all (2003). An important characteristic of the
prediction variance (23] is that at any given location the prediction depends
on the distances to the sampling points in the design and the model parameters,
which for the exponential correlation function the parameter vector is given by
0 = (3,02, ¢,7%). The prediction variance does not depend on the data values,
which makes it attractive to use as a criterion for constructing or modifying
sampling designs.

F.2.2 Geostatistical design methods - Review

A reasonable design criterion could be to minimize the average or the maximum
prediction variance over all prediction points. Given the values of the model
parameters and a maximum tolerable value of one of these design criteria the
necessary grid spacing of regular, rectangular or triangular designs can be cal-
culated dMCBLaIn_e;LeLa.lJ, |_'L9BJ.|) Geostatistical design based on the predlctlon
variance (E.3)) are widely used in the literature, see e.g.

(1997); Spruill and Candela (1990); Ben-Jemaa et all (1995) who studied op-
timal design of environmental monitoring networks. |BQ¥le_a.ud_N_;Ldlkd 419_98
suggested a design criterion based on geometry, i.e. it is only a function of the
distance between sampling and non-sampling (candidate) points, rather than
on a stochastic model like (E21)). Based on results in Johnson et all (1990) the
authors showed that the resulting designs are nearly optimal from a spatial pre-
diction point of view. Sampling designs based on the prediction variance have
sampling points with almost equal distances between the neighboring locations,
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and are optimal from a prediction point of view if the model parameters are
known. This is usually not the case, particularly not if a monitoring network
is to be designed. Thus, these designs are not well-suited for parameter esti-
mation, especially not for estimating the nugget effect 72, which is critical to
efficient spatial predictions (Stein, 1999).

Rather than focusing on designs for minimizing the average or the maximum
prediction variance over all prediction points, various studies concentrate on
how to construct sampling designs from which the model parameters can be
optimally estimated. Early studies proposed algorithms for finding the optimal
combination of sampling points in order to estimate the sample semivariogram,
used in geostatistics for analyzing the second moment structure of a spatial
stochastic process (Russo, [1984; [Russo and Jury, 1988; [Warrick and Myers,
1987). Zimmerman and Homer (1991)); Miiller and Zimmerman ([1999); Bo-
gaert and Russo (1999) extended these ideas to consider not only estimation of
the sample semivariogram but also parametric estimation of the semivariogram
model.

The above description shows two groups of design criteria focusing either on
spatial prediction or parameter estimation. |Lark (2002) illustrated that errors
in the model parameters result in errors in the estimated prediction variances.
This means that if the primary goal of the monitoring network is to compute
spatial predictions a combination of the two groups of design criteria should
be used. This ensures that efficient spatial predictions can be computed while
taking proper care of the uncertainties of the model parameters. Hence in
this case an efficient design should consist of some sampling points allocated
for estimating model parameters and some for computing spatial predictions
(Miillex, 2001; Martin, 12001).

A way to combine designs for computing spatial predictions with designs for
estimating model parameters is to compute spatial predictions and associated
prediction variances using a Bayesian approach, see e.g. [Diggle et all (2003);
Handcock and Stein (1993); Le and Zidek (1992). In the Bayesian approach the
uncertainty of the model parameters, described by the posterior distribution, is
automatically incorporated in the predictions. This means that good parameter
estimates, i.e. a narrow posterior distribution, leads to more efficient spatial
predictions. In the next section a Bayesian geostatistical approach is applied
to analyze how the DNAMAP in the Kattegat should be reduced, i.e. which
monitoring stations should be removed from the existing monitoring network.
The Bayesian approach is chosen, because the monitoring program has already
existed for several decades, and information on the geostatistical model can be
obtained from the existing monitoring data. This information should be uti-
lized in a model based design approach, rather than applying a non-parametric
approach, e.g. as suggested by [Warrick and Myers ({1987); [Rovle and Nychka
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(1998). Furthermore, we want to focus on accurate prediction, but at the same
time take parameter uncertainty into account.

F.2.3 Geostatistical design methods - A Bayesian approach

Consider the stochastic variable Y in (EZT]) with probability distribution pr(y|6),
0 = (3,02, 4, 7%)" being the unknown parameter vector. The distribution of ¥
is given by

(Y1802, 6,7%) ~ N(FB,7°I + 0*R)) (F.4)

The likelihood is a function of the parameter vector 6 and is given by
2 2p1 1 1o 2 2 oy —1
L(0ly) < |7°I + c°R|2 exp (i(y—Fﬁ) (T°I +0°R) (y—Fﬁ)) (F.5)

In the Bayesian approach Y and 6 are considered random quantities. Given data
y and prior distributions pr(6) = pr(8, 02, ¢, 72) of the parameters the posterior
distributions are found using the relation

pr(B,0%,6,72y) o pr(B,0% 6,7 |21+ 0*R|?

1 _
o (50 PO/ (1 +0*R) (- 1)) (0
and the predictive distribution pr(yo|y) by

pr(voly) = / pr(yoly, 6)pr(6ly)d6 (F.7)

Classical geostatistical methods estimate the parameters, and then use these to
perform predictions as if the estimates were the truth. Predictions computed
using the Bayesian approach can be interpreted as a weighted average of a
number of classical predictions, with weights given by the posterior distributions
of the parameters.

In order to determine the specific monitoring stations to be removed from the
network, stations were removed one at a time by the following algorithm. The
jth station was removed and values of a Gaussian random field were simulated
in the remaining sampling points using the exponential model with parameters
estimated from data. This was repeated 1000 times, and for each simulated
set, predictions E(yoly(;)) and prediction variances V'(yoly(;)) were computed
in a regular grid of 103 points covering the entire Kattegat area (Figure [E.]).
For each of the 103 prediction locations the averaged prediction variance v;; for
the ith prediction location, and corresponding to removing the jth station was
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computed by

1000
Vij = 1000 Z Vyolyy), i=1,---,103 (F.8)

The maximum of the 103 averaged prediction variances was used as a design
criterion Cj, i.e.

Cj = m?X(Vij) (Fg)

Finally, the monitoring station for which its removal resulted in the smallest
design criterion, min;(C;), is permanently removed from the network. The
whole process can then be repeated for a number of times, depending on how
many stations we want to remove. It is seen that the design criterion is based
on minimizing the maximum prediction variance. This approach was chosen in
order to ensure efficient predictions everywhere in the Kattegat, rather than on
efficient predictions on average.

F.3 Application: Modifying the Danish National
Aquatic Monitoring and Assessment Pro-
gramme in Kattegat

F.3.1 Study area

The Kattegat (Figure [ETIA) is a relatively shallow coastal ecosystem signifi-
cantly affected by man-made eutrophication over the last 4-5 decades (Richard-
son, [1996; |Carstensenl, 2003). It comprises the transition zone between the
Baltic Sea and the North Sea with an area of 22,290 km?, a volume of 533
km?® and a mean depth of 24 meters (Gustafssor, 2000). Monitoring is carried
out as a joint effort between Danish and Swedish authorities and includes rou-
tine measurements of nutrients, oxygen, chlorophyll a, temperature and salinity
in addition to a wider range of biological measurements. The first monitoring
program was established in the beginning of the 1970s and in the following mon-
itoring programs the number of stations gradually increased. In recent years the
number of sampling stations has been reduced due to reallocation of resources
within the monitoring program.
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F.3.2 Data description and preparation

In this study we will consider 31 stations (Figure [FXIB) and focus on the con-
centration of dissolved inorganic nitrogen (DIN) in the surface layer monitored
with various frequencies during the 5-year period from 1993 to 1997. Nitrogen
is assumed to be the nutrient limiting phytoplankton growth in the Kattegat
during the productive season (March - October). The concentration of DIN in
the surface layer has a seasonal variation with low concentrations during sum-
mertime and high concentrations during winter, when primary production and
DIN uptake by phytoplankton are low.
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Figure F.1: The study area. A) Kattegal is a transitional sea between the North
Sea and the Baltic Sea. B) Locations of existing monitoring stations (e ), denoted
by a name of two letters, and prediction locations (X ) in the Kattegat.

Due to the skewed distribution of the DIN values (Figure [£2), data were log-
transformed prior to making geostatistical analysis. Afterwards the seasonal
variation was removed using a harmonic function for the mean value

. (2wt . (27t
Mijt = + (G +018in | — + 1 | +dasin| — + 2 (F.10)
52 26
where a; (i =1,-- -, 31) are the monitoring station effects, and ¢; (j =1,---,5)

the year effects where the years were defined as starting and ending the first of
July. This definition of the year effect was chosen the reduce the discontinu-
ity between separate years, since DIN concentrations are generally low during
summer. Furthermore, d1, d2, 1 and @9 are the yearly amplitude, the half-year
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amplitude, the yearly phase shift, and the half-year phase shift, respectively,
while ¢t = 1,--- ,52 is the week number. After removing the seasonal variation
we analyzed the residuals assuming that (EZI0) described the true mean field p

in (ET).

900

800 b

600 b

Number of observations

20 25 30 35 40

Figure F.2: Histogram for DIN.

The monitoring data were unevenly distributed in time and space (Figure [F.3]),
and for many weeks the total number of observations was less than 10, and
around 20 for a few weeks only. consequently, this would complicate the geo-
statistical analyses if these were to be carried out on a weekly basis.

Rather than focusing on individual weeks the sample semivariogram was com-
puted by considering all possible datapairs for each of the weeks in the 5-year
period. For all datapairs the squared differences were computed and separated
into 14 bins each with a width of 10 km. For each bin the average divided by 2
is computed to produce the spatial lag 0 sample semivariogram, i.e. the spatial
semivariogram for no time lag. This can be interpreted as the average spatial
sample semivariogram, averaged over all weeks in the period 1993-1997 (Fig-
ure [.4). Analysis of directional lag 0 semivariograms showed no anisotropy.
Estimates of the parameters of the exponential semivariogram model, found us-
ing ordinary least squares regression, were (02, ¢, 72)=(1.08,26.70,0.41). This
model was the basis for our Bayesian design approach. Based on the sample
semivariogram a uniform prior for ¢ on (2,52) was chosen, for (3, 02|¢) a prior
proportional to 1/02 was used, whereas the nugget effect 72 = 0.41 was assumed
known in order to reduce the time of computation.
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Figure F.3: A) The number of observations of DIN per monitoring station. B)
The number of observations of DIN per week.
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Figure F.4: Spatial lag 0 sample semivariogram.

F.3.3 Results and discussion

The design criterion, and hence the maximum prediction variance, for the 103
considered locations ranged between 0.93 and 1.14 when removing one of the 31
stations at a time (Figure [F.5A). For the first iteration the removal of station
aj results in the smallest design criterion, and consequently this station should
be removed from the network, although we could probably equally well have re-
moved other stations like al, au or az which also had small values of the design
criterion. The reason for this is that the station-specific design criteria (Figure
[E25) were associated with uncertainty introduced by the variation between sim-
ulations when estimating the prediction variances in each of the 103 prediction
locations. Data were simulated due to the lack of data on a weekly basis. If
the design problem was purely spatial with a data value for each of a number of
sampling locations, no simulated data would be necessary and the uncertainty
of the station-specific design criteria would be removed. This means that the
proposed design approach is generally applicable when reducing the number of
stations from an existing purely spatial monitoring network. In our case the
design situation is complicated by the fact that data were measured in both
space and time as well as by the lack of data on a weekly basis, which made
simulation of data necessary.

Despite this uncertainty we adopted the strategy of removing the station with
the smallest design criterion one at a time, corresponding to a backwise elim-
ination approach. When removing more than one station a stepwise approach
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would probably perform better. However, for computational reasons the strat-
egy of removing the station with the smallest design criterion one at a time was
preferred.

Some agreement between the iterations is seen (Figure [EL5), e.g. removing
monitoring stations be, ao or aq is seen to result is high maximum prediction
variances in all three cases. However, the design criterion for some stations
changed a lot, e.g. station al had a low design criterion in the first iteration,
and was very close to being removed, whereas the design criterion for station al
in the second iteration was significantly increased.

The design criterion, and hence the maximum prediction variance, increased
when stations were removed although not monotonically (Figure [.6]). The mi-
nor decreases in the criterion were caused by the Monte Carlo error introduced
when estimating the prediction variance. The design criterion increased rapidly
after having removed approximately 17 monitoring, indicating that the moni-
toring network should comprise at least 14 stations.

In the beginning of the selection process, stations close to other stations were
removed. However, after removing the first four stations a station was selected
which was relatively distant to other stations, whereas stations situated close
to each other, e.g. the three stations numbered 16, 18 and 19, remained in
the design. This variation between removing nearby or distant stations became
clearer when the distance from the selected station to the nearest station was
calculated (Figure[EZT). This analysis also showed that the first four monitoring
stations removed from the network were located relatively close to other stations
while the next three were relatively distant to other stations. This fluctuating
pattern continued as monitoring stations were removed from the network and
illustrated the compromise between designing for prediction and for estimation
of the model parameters. The general trend in Figure [E.d was simply caused by
the fact that removing sampling stations from the network increased the over-
all average distance between remaining stations. Furthermore, if 17 sampling
stations were removed from the existing network (Figure [E.6]), the resulting
monitoring network consisted of stations with inter-distances at all ranges.

The prediction performance of the reduced monitoring network consisting of 14
stations was also compared to the existing network of 31 stations by comparing
maps of the predicted surfaces based on data from both networks (Figure [F.8]).
Data values were simulated in the 31 sampling locations as a Gaussian random
field with parameters estimated from data. Afterwards spatial predictions were
computed based on all 31 data values and on data values from the 14 sampling
locations in the reduced network. The reduced network was capable of identi-
fying the area with high DIN values along the northern coast of Zealand and
in the north-western part of the Kattegat, the low values in the south-western
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Figure F.5: Station-specific values of the design criterion for removing the first
(A), second (B) and third station (C). The locations of stations are found in
Figure [F1].
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Figure F.6: A) The minimized design criterion as a function of the number
of monitoring stations removed. B) Map of Kattegat with monitoring stations
numbered according to their rank in the removing strategy. The six remaining
stations after removing 25 are marked by e.
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Figure F.7: The distance from the removed monitoring station to its mearest
sampling location as a function of the number of sampling locations removed.

and south-eastern part of the Kattegat, but some details were missing in the
north-eastern part of the Kattegat, due to lack of monitoring stations in this
area. At this stage it is important to note that we could probably equally well
have chosen 14 other monitoring stations to be our reduced network, i.e. the
approach that has been outlined only give suggestions to which stations to re-
move. What is important about these suggestions is not so much the specific
stations which it chose to remove, but more the fact that the reduced network
consists of some stations close to each other as well as some more distant.
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Figure F.8: Spatial predictions based on a simulated dataset. Sampling loca-
tions are indicated by e. A) Predictions computed from the existing monitoring
network of 81 stations. B) Predictions computed from the reduced monitoring
network of 14 stations.

F.4 Conclusion

This paper describes classical geostatistical methods for designing monitoring
networks, i.e. for finding the locations of the optimal set of sampling stations.
These methods focus either on spatial prediction assuming known model pa-
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rameter or on estimation of model parameter. Rather than using these classical
methods, a design approach focusing on spatial prediction, but at the same
time taking uncertainty in the model parameters into account, was applied.
The approach was used to reduce the number of sampling stations for mea-
suring dissolved inorganic nitrogen in the Kattegat. The approach serves as a
compromise between the conflicting issues of designing for prediction and for
estimation of the model parameters. It can be used to identify the appropri-
ate number of stations and the specific stations to be removed from existing
monitoring networks.
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