
Boundary Correct Real-Time Soft Shadows

Bjarke Jakobsen Niels J. Christensen Bent D. Larsen Kim S. Petersen
Informatics and Mathematical Modelling

Technical University of Denmark
{bj, njc, bdl}@imm.dtu.dk, kim@deadline.dk

Abstract

This paper describes a method to determine correct
shadow boundaries from an area light source using um-
bra and penumbra volumes. The light source is approx-
imated by a circular disk as this gives a fast way to ex-
trude the volumes. The method also gives a crude es-
timate of the visibility of the area light source as seen
from a point in the shadow region. Instead of render-
ing the volumes to the stencil buffer, we use an extended
shadow map - a so-called D-buffer, which among other
things stores distances from the center of the light source
to the umbra and penumbra volumes. The method is
suited for implementation on most programmable hard-
ware. Though some crude approximations are used in
the visibility function, the method can be used to produce
soft shadows with correct boundaries in real time.

1. Introduction

Soft shadows provide information which is important to
give the viewer of a scene an impression of spatial rela-
tionships between objects. They are able do so because
the softness of a shadow provides information of the rel-
ative distances between the light source, the occluding
objects and the objects receiving the shadow. When
hard shadows are used, this information is not avail-
able, which can lead to misinterpretations of the scene.
Non-real time global illumination methods, such as ra-
diosity and distributed ray tracing, can handle various
types of area light sources and thus render soft shadows
by approximating the mathematics of light transporta-
tion. Real-time rendering of shadows is dominated by
two hard shadow methods - shadow mapping ([23]) and
shadow volumes ([9], [15]). The current methods for
generating soft shadows in real time can be divided into:

• Image based methods, which use one or more
shadow maps.

• Object based methods, where the actual geometry
in the scene is used.

1.1. Image Based Methods

In a number of methods the area light source is sampled
by a number of point light sources, and regular shadow
maps are rendered from each sample. These samples are
then combined into either aRadiance Texture([14]) or a
Layered Depth Map([1]). To reduce the number of sam-
ples needed, other methods render shadow maps for only
the vertices of a linear ([16]) or polygonal ([25]) light
source and interpolate these for each receiving pixel. In
[22], a convolution filter is used on a traditional shadow
map to produce a soft shadow texture. The convolution
filter is dependent on the light source and the distances
between the light source, the occluder and the receiver.
[18] uses both a regular shadow map and ashadow-
width mapand performs shadow calculation by applying
a 2D function from a look-up of each map.

1.2. Object Based Methods

Several methods ([12], [6], [24], [8]) add information
of object geometry to a shadow map in order to gen-
erate object driven penumbrae. [19] usesPenumbra
wedgesas an extension of the shadow volume method,
and visibility is approximated using a 16-bit stencil-
buffer. The wedges are generated by extruding silhou-
ette edges, which are determined from the center of the
light source. In more recent work ([2], [3]), the authors
use programmable graphics hardware to project the sil-
houette edges onto the light source to calculate the visi-
bility.

1.3. Problem statement

In survey [13] a number of general issues concerning
soft shadows are presented. It is claimed that physically
exact soft shadows are impossible to include in a real
time rendering method for general scenes. Where most
global illumination methods approximate the visibility
using hundreds of samples of the light source, the pre-
sented real time methods all try to overcome this sam-
pling through various simplifications. However, in none
of the current methods, true soft shadows can be gener-

c

(a) Point determined
silhouette

(b) Area determined
silhouette

Fig. 1. The shadow regions are not cast correctly if sil-

houettes are found using a single point c when gen-

erating penumbra wedges instead of using the umbra

and penumbra volumes from an area light source.

ated in real time for any given scene.
Among the presented methods, the one from [3] is

superior to the others, as it produces very convincing
soft shadows. The two main approximations used are
that the silhouettes are found using a single point of the
light source, and that overlapping occluders are not han-
dled correctly in the penumbra region. An example of
the consequences of the first approximation is shown in
Figure 1.

The case in Figure 1 is quite extreme, since the light
source is very large compared to the geometry of the
scene. It is noted in [3], that few subdivisions of a large
light source will make the artifact sketched in Figure 1
become practically indistinguishable. This is, however,
not a general solution, and the problem of generating
soft shadows in real time thus still needs work.

The situation in Figure 1(b) could be obtained ifum-
bra volumesandpenumbra volumeswere used as an ex-
tension to the shadow volume method. These volumes
are defined in [20] as respectively the intersection of and
the minimum convex hull enclosing all shadow volumes
generated from every point on the light source. The dif-
ferent types of volumes are illustrated in Figure 2.

The first task in generating these volumes is to deter-
mine the silhouettes of the occluding objects. This step
is not shown for the simple occluding triangle in Figure
2, since all edges are silhouette edges. When using more
complex occluders, the silhouette determination must be
performed prior to the volume extrusion. The determi-
nation procedure depends on the shape of the particular
light source.

The silhouette extraction for shadow volumes is de-
scribed in [11]. For closed polygonal, two-manifold
meshes, the method marks each polygon as being either
front or back facing with regards to the light source. An
edge belongs to the silhouette if it connects a front and
a back facing polygon. The shadow volume is gener-
ated by extruding each silhouette edge toward infinity in
the direction defined by the light source and the edge it-
self. The umbra and penumbra volumes are described
elaborately in [7]. Here, as in Figure 2, the volumes are
generated separately for each occluding triangle, since

(a) Shadow volume (b) Umbra volume (c) Penumbra volume

Fig. 2. Different types of volumes for shadows

no silhouette is calculated.
In the following, we describe a method that over-

comes the problem of using the wrong silhouette. This
is done because the shape of the soft shadow probably is
an important factor in the perception of spatial relations
between objects. The method is hardware accelerable
with ability to run in real-time.

2. Our Method
The key part of the algorithm is to determine the bound-
ary of the soft shadow correctly. This means, that we
shall be able to determine the umbra and penumbra re-
gions of the shadow receiver correctly. Secondly, we
will make an estimate of the visibility of the area light
source as seen from every pointx in the shadow region.
For these purposes, we will introduce some simplifica-
tions. First, a planar n-polygonal light source is approxi-
mated by a circular disk in order to determine the umbra
and penumbra regions fast and to be able to use a single
parameter,t, for the estimation of the visibility function.
For the hardware implementation of the visibility cal-
culation, we will introduce an extension of the shadow
map concept - a so-called D-buffer, which among other
things stores distances from the center of the light source
to the umbra and penumbra volume, respectively. The
method thus contains elements from both the shadow
volume and shadow map methods.

The individual parts of the method are described in
the following sections: Section 2.1 describes the proce-
dure for generating the umbra and penumbra volumes.
Sections 2.2 and 2.3 give an introduction to the render-
ing procedure. Sections 3 and 4 describe each of the
two render passes. Sections 5 and 6 present the results
and discus these along with suggestions for future work.
Finally, we conclude in section 7.

2.1. Umbra and Penumbra Volumes

For this particular method, a fast procedure for gener-
ating umbra and penumbra volumes for a circular light
source is required. As with shadow volumes, the proce-
dure consists of: a) finding the silhouettes and b) extrud-
ing the actual volumes.

Silhouette Determination To determine the silhou-
ettes, we test the front facing relationship between the

particular faceΦ and the light source for each face.
Since the light source is a circular disk, the previously
used method cannot be used directly. Instead we use
the fact, that - in constant time - we are able to find a
single pointpnear on the disk which is used to deter-
mine whether no points on the disk are front facing to the
given face. Similar, a pointpfar determines whether all
points are front facing. This is illustrated in Figure 3(a).

Assuming the normals are normalized, we find

pnear = c + r((~n × ~nc) × ~nc) (1a)

pfar = c − r((~n × ~nc) × ~nc) (1b)

wherer, c and~nc are radius, center and normal of the
light source, respectively. Ifpnear is in the negative
half-space ofΦ, so is every other point on the disk. Sim-
ilarly if pfar is in the positive half-space, then every
other point is too.

Using this property, the polygons are marked as be-
ing front facing to either the whole light source (all-
frontfacing), or to no part of the light source (none-
frontfacing). An edge belongs to the umbra volume sil-
houette if it connects a none-frontfacing face with one
that is not. Similarly, an edge belongs to the penumbra
volume silhouette if it connects an all-frontfacing face
with one that is not. It must be noted that some spe-
cial faces are neither all-frontfacing or none-frontfacing.
These faces are located between the two silhouettes, and
we denote thesesilhouette faces. The silhouette faces
are described further in section 3.3.

Volume Extrusion Once the edges defining the sil-
houettes are found, the volumes can be extruded. This
is done similarly to the way a shadow volume is ex-
truded. Here, the point light source is used as the ex-
trusion point, that defines the direction, in which the sil-
houette edge is extruded.

When an area light source is used, we calculate sepa-
rate extrusion points for each umbra and penumbra vol-
ume quad. These are denotedpu andpp, respectively.
In the following, we describe how to calculate these
points for an edgee, which is assumed to be part of the
silhouette for both volumes. This is not a general case,
since an edge might be part of only one silhouette.pu

andpp must be the two points each containing a plane
throughe that is tangent to the circle defining the light
source.

If e, defined by the pointsv1 andv2, and the light
source are not parallel, we find the intersectiona be-
tween the light source plane and the line defined bye.

a =
−−→
cv1 · ~nc
−−→
v2v1 · ~nc

−−→
v1v2 + v1

If a is outside the circle,pu andpp are found using reg-
ular 2D geometry, which can easily be deduced from

c
pnear

pfar

~nc

~n

Φ

(a) Silhouette determination

c

a

e
v1

v2

pu

pp

(b) Quad extrusion

Fig. 3. The points used to determine silhouettes and

extrude the volume quads

Figure 3(b). Ifa is inside the circle, the extrusion points
are undefined. Fortunately, this situation never occurs
for a silhouette edge in a closed two-manifold mesh.

The special case wheree is parallel to the light source
require special treatment, see [17].

As seen in Figure 2, the extruded quads of the umbra
volume need to be trimmed as they will otherwise inter-
sect. Similarly, the penumbra volume requires extrusion
of triangles between the quads in order to close the vol-
ume. The way this is done is completely dependent on
the shape of the light source, but a solution is to form a
connecting triangle between the extruded quads. This is
correct for the triangular light source shown in Figure 2,
and the approach can be used as an approximation for
other light source shapes. In the case of a circular light
source, it is preferable to extrude more triangles using
interpolation betweenpp for each of the two adjacent
edges.

2.2. Rendering Procedure

The proposed rendering method is a multi-pass algo-
rithm. The first render pass renders the objects of the
scene and the umbra and penumbra volumes as seen
from the center of the light source. This is done using
a vertex program where distances to the rendered enti-
ties are written to the individual color channels of the
framebuffer. The result of this render-pass is stored in
a D-buffer, similar to the way the shadow map method
uses the Z-buffer. The main difference between the two
buffers is, that the shadow map contains only one depth
value, whereas the D-Buffer contains several distances.
This render pass is where the method differs from other
shadow volume based methods, where the volumes nor-
mally are rendered in screen space to the stencil buffer.

The second render-pass renders the objects in screen
space using a fragment program to calculate visibility.
This fragment program uses the distances from the D-
buffer by performing a texture look-up and calculates
the visibility using the retrieved values.

In order to make the generation of the umbra and

replacements

non-occluded
area

occluded area

x

c

(a) Light source intersection

x

c
t

(b) 2D view

Fig. 4. The 2D projection of the problem.

penumbra volumes fast, we have limited the scene to
contain only one circular light source.

2.3. Parameterization

To calculate the visibility,V , we introduce a crude sim-
plification:

Assumption 1 For a givenx in the penumbra region,
the light source is divided between occluded and non-
occluded area by one and only one straight line.

The cases wherex is outside the penumbra region are
trivial, since the light source seen from such a point is
either completely occluded or completely non-occluded,
henceV = 0 or V = 1.

This enables a projection of the problem into 2D,
which simplifies the problem into finding the parame-
ter t, as illustrated in Figure 4. In general, the partition
of the light source can be any curve resulting in both
convex or concave areas.

Oncet is found for the givenx, the problem is pro-
jected back to 3D using a parameter function, that de-
scribes the visible area of the light source. We have thus
redefined the visibility function to a parameter function
V (t).

3. D-Buffer
The parametert can, as it will be shown in section 4, be
found from various distances along the line between the
centerc of the light source and the arbitrary pointx on
the receiver. These distances are stored in theD-Buffer,
which can be thought of as a modified (and augmented)
shadow map.

3.1. Definition

The differences between the ordinary shadow map and
the D-Buffer is shown on Figure 5. The shadow map is
generated by rendering the scene as seen from the light
source and storing the contest of the Z-Buffer as shown
in Figure 5(b). Instead of z-values, the D-Buffer stores
distances fromc to various geometry in the scene as il-
lustrated in Figure 5(a).

xo
xs
xuv

c

Penumbra
volume

Umbra
volumex

(a) D-Buffer

xo

zo

z

c

x

(b) Z-Buffer

Fig. 5. Difference between shadow map and D-buffer.

In the shadow map, only zo is stored, whereas the

D-Buffer stores the distances |cxo|, |cxuv| (|cxpv|)
and |cxs|

The distance|cxo| is the distance fromc to the oc-
cluder. In the case wherex is not placed in the umbra
region |cxo| and |cx| will be the same. The distances
|cxpv| and |cxuv| are used to get information of dis-
tances from the light source to the penumbra and um-
bra volumes, respectively.|cxs| is used to normalize the
volume distances and describes the distance between the
light source and the silhouette edge. The distance|cxs|
can be calculated when the volumes needed to determine
|cxuv| and |cxpv| are rendered. In the case where the
line cx intersects the umbra volume (see Figure 5(a)),
the calculation is performed using the following formula
for the particular silhouette edgee.

|cxs| =
dir(c,xuv) · ~n
dir(c, e) · ~n dist(c, e) (2)

where~n is the normal of the light source,dir(c, e) and
dir(c,xuv) are normalized direction vectors fromc to e

andxuv, respectively.dist(c, e) is the distance between
c ande which is uniquely defined because of assumption
1. If the linecx intersects the penumbra volume,|cxs|
is calculated using|cxpv| instead of|cxuv|.
3.2. Rendering to the D-Buffer

The values|cxo|, |cxuv| and |cxpv| are generated by
rendering the occluder and the volume geometry as seen
from c. Instead of using standard matrix multiplica-
tion to transform the vertices from world space to light
source view space, the z-coordinate of the vertices is cal-
culated as the distance between the vertex andc using
the euclidian distance formula. This can be done by pro-
grammable vertex engines.

The distance|cxs| is generated simultaneously with
|cxuv| and |cxpv| by implementing equation (2) in the
same vertex shader, that performs the specialized view
transformation. This way,|cxs| is generated without
constructing additional geometry. This vertex shader
must have the silhouette edgee passed as a parameter.

Silhouette face
Penumbra volume

Umbra volume

Gap

Fig. 6. Silhouette faces can cause undefined values

in the D-buffer

Furthermore, color masking can be used to ensure that
the distances are rendered to the appropriate color chan-
nels of the texture, that stores the D-Buffer.

During rasterization, the distances are interpolated.
This yields inaccurate values, since the interpolation
scheme is based on linearly distributed values instead of
spherically distributed values which is the case for the
D-Buffer. This causes problems if the occluding objects
consists of very large polygons without subdivisions. In
practice, this artifact is virtually unnoticeable.

3.3. Silhouette Faces

When the volumes are rendered into the D-buffer, a par-
ticular special case often arises, when a given edge is
part of only one of the two silhouettes. When rendering
only the volume quads into the D-buffer, gaps appear in
the D-Buffer because of the presence of silhouette faces,
as described in section 2.1. This is shown in Figure 6.

In the gap, neither|cxuv| values nor|cxpv| values
are rendered as part of either the umbra or penumbra
volume, respectively. The straight-forward solution to
this problem is to render the silhouette faces as a part of
the umbra volume.

There are two types of silhouette faces. The one
shown in Figure 6 is front facing to less than half of
the light source area. The other type is front facing to
more than half of the light source area. To determine
which category a given silhouette face belongs to, we
check which half-space of the faces’ plane the center of
the light source lies in. If the center is in the negative
half-space, it belongs to the category shown in Figure 6.

4. Visibility Approximation
The visibility V is calculated by a parametert, which
can be found from values in the D-Buffer. It can be
shown using the 2D-projection that two congruent tri-
angles exist and that these share an edge. This property
yields

t =

{

|cxs|(|cx|−|cxuv|)
2|cxuv|(|cxuv|−|cxs|)

, |cx| < |cxo|
1 − |cxs|(|cx|−|cxpv|)

2|cxpv|(|cxpv|−|cxs|)
, |cx| ≥ |cxo|

(3)

The second branch of equation (3) is found by observing
symmetry aroundc wheret = 1

2 . This symmetry is only
valid in the cases where the given edge is a silhouette

edge in both the umbra and penumbra volume. However,
when rendering the silhouette faces as part of the umbra
volume, equation (3) is valid in general. In equation (3)
only values from the D-Buffer and|cx| appear. This is
essential for the possibility to calculatet (and thereby
V) for each pixel in the framebuffer.

When using a circular light source, the functionV (t)
can be found by integrating the equation of a plane cir-
cle. The function obtained by this is, however, quite
complex and needs to be approximated by a simpler
function. As noted in [21], a reasonable approximation
would be to use

V (t) ≃ 3t2 − 2t3 (4)

The described visibility calculation works for many
scenes where assumption 1 holds. The cases where the
assumption does not hold are:

1. Concave and/or overlapping occluders
2. No umbra region
3. Acute silhouette corners
In the first case, the problem is to determine from

what occluding geometry the values stored in the D-
Buffer should come from. This choice must be made,
since the visibility function is only dependant of one pa-
rameter. When the desire is to be able to handle concave
occluders, the best solution is to choose the geometry
with the greatest distance from the light source. This
can be done using depth test when rendering to the D-
Buffer. In this case, the visibility function should still be
equation (4).

The second case occurs when the light source is much
larger than the occluder. In this case, a given point on
the receiver can “see” the light source from more than
one side of the occluder. The problem becomes to ren-
der appropriate geometry for the umbra volume to the
D-Buffer because of self-intersection. This can be han-
dled by geometrical trimming of the umbra volume, but
this is not trivial. It is much easier to use depth test to
ensure storing of proper distances in the D-Buffer. The
visibility calculated using equation (4) will in this case
yield values that are too low. Depending on the scene,
an alternative function might be preferable.

The third case is hard to improve, because of the way
visibility is calculated. The artifacts due to this violation
are fortunately less visible than the other two cases.

5. Results

The proposed method for approximating soft shadows
was implemented using OpenGL, and the Cg language
was used for the GPU-programming. The test system
was a 3Ghz PC equipped with a QuadroFX 3000 Graph-
ics card. The fragment program needed to calculate the

(a) Our method (b) 1024 samples

Fig. 7. Scene as in Figure 1 where the umbra region

is determined correctly. 7(a) is rendered with our

method, and 7(b) is ray traced using 1024 samples of

the light source

visibility contains 21 lines in the current implementa-
tion. Due to this simplicity, it is also possible to imple-
ment the method with the older NV20-architecture by
using Register Combiners, as described in [17].

Figure 7 shows how the method handles the situa-
tion sketched in Figure 1. The images in Figure 7(a) are
made by our method, and Figure 7(b) are ray traced ref-
erence pictures, where visibility is calculated using 1024
samples on the light source. These sequences show that
the method calculates the shadow boundaries correctly.

Figure 8 shows the capabilities of the method. In Fig-
ure 8(b) it is noticed that the penumbra region expands
correctly as the light source size increases. Similarly,
it is noticed in Figure 8(a) that the penumbra region di-
minishes as the occluder approaches the receiver. Figure
8(c) shows a scene with a fairly complex occluder. This
image shows that the method is capable of casting shad-
ows onto arbitrary geometry, which is the case because

Table 1. Performance of different scenes

tri. FPS at different resolutions
Scene count 300*300 600*600 1k*1k

Fig. 8(a) 224 212 120 61.0
Fig. 8(b) 960 107 75.0 45.0
Fig. 8(c) 5760 14.2 13.0 12.1
Fig. 8(c)* 1440 28.4 21.3 16.9
* Simplified occluder geometry

(a) Varying distance (b) Varying size light source

(c) Complex occluder. Rendered using our method

(d) Same as above ray traced using 1024 samples

Fig. 8. Different scenes showing the capabilities of

the method

visibility is calculated per pixel. The reference picture
is shown in Figure 8(d). The overall performance of the

method is shown in table 1. It is noticed, that the method
is fill-limited for scenes with occluders of low complex-
ity, and CPU-limited for scenes with high complexity.

6. Discussion
The presented method is based on conserving the prop-
erties mentioned in the introduction. Here, it was noted
to which extent the shadows depend on having correct
shadow boundaries.

Figure 7 shows how the correct shadow boundaries
give more information of the shape of the occluder than
the method proposed in [3] where a single silhouette is
used. The method from [3] would render exactly the
same shadow for the two different occluders.

Another very important benefit of our method is that
it is implementable on a broader set of hardware ar-
chitectures including the X-Box and all Nvidia GPUs
since the GeForce3. Since the current implementation
of the fragment program uses about 35% fewer instruc-
tions than the one used in [3], a performance increase is
achieved compared to their method.

6.1. Optimizations

The performance of the method could be improved if
some optimizations were made in the implementation.
The current implementation uses no coherence between
each rendered frame, which means that everything is cal-
culated from scratch for each frame. This is done to en-
sure complete interactivity as everything in the scene can
be changed in real time. However, if the volumes only
were updated when the relation between occluders and
light source is changed, it could be possible to improve
the overall performance of the method.

Another point where the current implementation
could be improved is the way the volumes are gener-
ated, since the method becomes very CPU-limited when
the complexity of the occluder yields many geometry
calculations done by the CPU. There is a possibility that
a hardware accelerating method for volume generation
could be used to improve this. It is, however, not trivial
to accelerate the volume generation in current vertex en-
gines, as the number of vertices needed for the various
volumes is not constant. If future vertex engines were
to allow scene geometry to be stored in the memory of
the graphics hardware, this might be exploitable in or-
der to achieve hardware accelerated volume generation.
Furthermore, the method presented in [5] for generating
shadow volumes entirely on the GPU could possibly be
enhanced to generate umbra and penumbra volumes.

6.2. Artifacts

The primary drawback of the method is the limitations
caused by the assumption. The fact that the light source
for a givenx only can be occluded by one convex ob-

ject should diminish the number of scenes where the
method is applicable. However, The implementation
shows that in situations where the assumption is vio-
lated, the method still provides renderings that are rea-
sonably satisfying, and in the cases where the assump-
tion is valid, the results are quite convincing.

An example of this is seen in Figure 7(a) where the
concave occluder violates the assumption. As noted ear-
lier, the D-Buffer stores only the distances of the furthest
of the overlapping occluding faces. This yields artifacts
in the penumbra region of the occluder’s self shadow,
but this problem is not very noticeable in contrast to an
incorrect penumbra region on the receiver object. This
is because self shadows generally have small penumbra
regions since distances between typical occluders and
typical receivers are greater than distances within con-
cave occluders. Furthermore, the stencil buffer is used
to avoid “overwriting” umbra regions.

Another case where the assumption is not valid is
when the occluder is very small as shown in the top im-
age of Figure 8(a). In this casex can “see” the light
source from more than one side of the occluder. The
approximate visibility becomes too low, which makes
small occluders cast more significant shadows than they
physically ought to. This artifact can be reduced as
shown in Figure 7(a), where a more suited visibility
function is used (V =

√
t).

In the case where the angle between two connected
silhouette edges is very acute, the penumbra region will
have some artifacts due to the simplification of only
dealing with occlusion of one of the two edges.

Because the method uses projective texturing, sam-
pling artifacts are bound to occur because of the limited
resolution of the texture. This artifact is usually handled
by implementing the light source as a narrow spot light,
thus using as much as possible of the resolution in the
projection texture. This issue is discussed in [4].

6.3. Future Work

As mentioned earlier, the primary limitation is the re-
striction of only handling one intersection of the light
source. This topic is where future expansions should fo-
cus. When dealing with more intersections, the D-Buffer
must contain more values than the current method. This
expansion could be performed by applying theDepth
Peelingtechnique described in [10]. This would enable
storing more intersections. The main problem lies in de-
termining the area function when more intersections are
present. Figure 9 shows this problem for two intersec-
tions of a circular light source.

As seen in the Figure, the angleα must be taken into
account when the area functionV is defined. The angle
between some vector in the plane of the circle and the

PSfrag

α
t1

t2

Fig. 9. Two silhouette edges cause a circular light

source to be intersected by two lines.

axis of t could be stored in the D-Buffer by projecting
the normal of the quads of volumes onto the circle.α

could then be found as the difference between the angle
corresponding tot1 and t2 respectively. The problem
remains to determine a functionV (t1, t2, α) that takes
into account the overlap between the two areas. One
possibility would be to use a look-up texture, as done in
[3], instead of calculatingV (t1, t2, α) on the fly.

If more than two intersections must be taken into ac-
count, the problem becomes even more complex.

7. Conclusion
We have presented a new method for producing soft
shadows with correct boundaries in real time. The
method is implementable on a wider range of existing
graphics hardware than other existing methods produc-
ing similar (or better) quality shadows. The limitations
discussed do of course narrow the range of scenes where
the method can give acceptable results, but as the image
in Figure 8(c) shows, quite complex geometry can be
used with decent results.

Furthermore, we have succeeded in in resolving the
problem from Figure 1, since our method determines the
shadow boundaries better than other methods. This is
mainly because the choice of using umbra and penum-
bra volumes has proven successful. The artifacts are all
related to the visibility calculation, which implies that
this is the weaker part of the method.

Even though the images from the current implemen-
tation are limited to a circular light source, the method
in itself may, as it has been noted, be used with other
shapes of light sources. The modifications needed for
this are relatively small.

References
[1] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll.

Efficient image-based methods for rendering soft shad-
ows. InProc. of Siggraph, pages 375–384, 2000.

[2] U. Assarsson and T. Akenine-Moller. A geometry-based
soft shadow volume algorithm using graphics hardware.
ACM Trans. on Graphics (TOG), 22(3):511–520, 2003.

[3] U. Assarsson, M. Dougherty, M. Mounier, and
T. Akenine-Moller. An optimized soft shadow volume al-
gorithm with real-time performance. InProc. of the ACM
SIGGRAPH/EUROGRAPHICS conf. on Graphics hard-
ware, pages 33–40, 2003.

[4] S. Brabec, T. Annen, and H.-P. Seidel. Practical shadow
mapping.Journal of Graphics Tools, 7(4):9–18, 2003.

[5] S. Brabec and H.-P. Seidel. Shadow volumes on pro-
grammable graphics hardware.Computer Graphics Fo-
rum, 22(3):433–440, 2002.

[6] S. Brabec and H.-P. Seidel. Single sample soft shadows
using depth maps.Graphics Interface, pages 219–228,
2002.

[7] A. T. Campbell. Modeling Global Diffuse Illumination
for Image Synthesis. PhD thesis, Dept. of Computer Sci-
ences, University of Texas, 1991.

[8] E. Chan and F. Durand. Rendering fake soft shadows with
smoothies. InProc. of the 13th Eurographics workshop
on Rendering, pages 208–218, 2003.

[9] F. C. Crow. Shadow algorithms for computer graphics.
Computer Graphics, 11(2), 1977.

[10] C. Everitt. Interactive order-independant transparency,
2001. Available at www.nvidia.com.

[11] C. Everitt and M. J. Kilgard. Practical and robust shadow
volumes, 2002. Available at rlwww.nvidia.com.

[12] E. Haines. Soft planar shadows using plateaus.Journal
of Graphics Tools, 6(1):19–27, 2001.

[13] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and
F. cois Sillion. A survey of real-time soft shadows algo-
rithms. InEurographics, 2003. State-of-the-Art Report.

[14] P. S. Heckbert and M. Herf. Simulating soft shadows
with graphics hardware. Technical Report CMU-CS-97-
104, CS Dept., Carnegie Mellon U., Jan. 1997.

[15] T. Heidmann. Real shadows, real time.Iris Universe,
18:28–31, 1991.

[16] W. Heidrich, S. Brabec, and H.-P. Seidel. Soft shadow
maps for linear lights.Eurographics Workshop on Ren-
dering, pages 269–280, 2000.

[17] B. Jakobsen, K. S. Petersen, N. J. Christensen, and B. D.
Larsen. Implementing boundary correct soft shadows.
Technical report, Informatics and Mathematical Mod-
elling, Technical University of Denmark, DTU, 2004.

[18] F. Kirsch and J. Doellner. Real-time soft shadows using
a single light sample.Journal of WSCG, 11(2):255–262,
2003.

[19] T. A. Moller and U. Assarsson. Approximate soft shad-
ows on arbitrary surfaces using penumbra wedges.Euro-
graphics Workshop on Rendering, pages 1–9, 2002.

[20] T. Nishita and E. Nakamae. Continuous tone representa-
tion of three-dimensional objects taking account of shad-
ows and interreflection. InProc. of Siggraph, pages 23–
30, 1985.

[21] S. Parker, P. Shirley, and B. Smits. Single sample soft
shadows. Technical Report UUCS-98-019, Computer
Science Department, University of Utah, October 1998.

[22] C. Soler and F. cois X. Sillion. Fast calculation of soft
shadow textures using convolution. InProc. of Siggraph,
pages 321–332, 1998.

[23] L. Williams. Casting curved shadows on curved surfaces.
In Proc. of Siggraph, pages 270–274, 1978.

[24] C. Wyman and C. Hansen. Penumbra maps: approximate
soft shadows in real-time. InEurographics workshop on
Rendering, pages 202–207, 2003.

[25] Z. Ying, M. Tang, and J. Dong. Soft shadow maps for
area light by area approximation.10th Pacific Conf. on
Computer Graphics and Appl., pages 442–443, 2002.

