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Abstract: The KALMTOOL 2 toolbox is a set of MATLAB tools for state estimation for
nonlinear systems. The toolbox contains functions for extended Kalman filtering as well
as for two new filters called the DD1 filter and the DD2 filter. Italso contains function for
Uncented Kalman filters as well as three versions of particlefilters. The toolbox requires
MATLAB ver. 6, but no additional toolboxes are required.
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1. INTRODUCTION

In this paper a newly developed platform for evalua-
tion of estimation algorithms, Kalmtool 2, will be de-
scribed. The purpose of the platform is to make eval-
uation of different algorithms for solving nonlinear
state estimation problems and to enable a comparison
with new methods.

During the work it was found that the extended
Kalman filter was somewhat inconvenient to use in
some of our applications. A small modification of the
application sometimes had serious implications on the
EKF implementation. Moreover, it was often difficult
to implement. Our problem was that the EKF requires
a linearization of the system model. Sometimes this
is easy to find but sometimes it can be pretty hard. In
any case, it makes things inflexible. If a small change
is made in the model, one has to work out a new
set of derivatives. This is particularly inconvenient in

model calibration where certain model parameters are
temporarily included in the state vector and estimated
simultaneously with the actual states.

Since it was suggested, the extended Kalman filter
(EKF) has undoubtly been the dominating technique
for nonlinear state estimation. Nevertheless, the EKF
is known to have several drawbacks. These are mainly
due to the Taylor linearization of the nonlinear trans-
formations around the current state estimate. The lin-
earization requires that Jacobians of state transition
and observation equations are derived, which is often
a quite complex task. Moreover, sometimes there are
points in which the Jacobians are not defined. In ad-
dition to the difficulties with implementation, conver-
gence problems are often encountered due to the fact
that the linearized models describe the system poorly.



Previous work include several toolboxes and other
platform. Focus here is on comparision and trans-
parency.

The paper is organized as follows: first overall design
philosophy behind the platform is described. Next
a description of the estimation algorithms are given
including the extended Kalman filter, the Uncented
Kalman filter and different types of particlefilters.
Section 4 gives an extensive example study as well
as a demonstration of the platform for comparing
algorithms for navigation of a mobile robot. Finally
conclusions and references are given.

2. THE PLATFORM

The design philosophy of the simulation platform has
been to provide a tool, which is simple and transparent
in its inner workings, yet powerful and reliable. With
this in mind, ease of use in applications and with
respect to development of new algorithms have been
a high priority.

The platform itself is based on a series of func-
tions written in Matlab, which are combined with a
Simulink graphical interface for ease of contruction.
As Simulink by design resembles the block-diagrams
of control theory, construction of systems becomes
very straightforward and all signal paths are visible.
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Fig. 1.The Simulink layout of a continuous system.
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Fig. 2.The Simulink layout of a discrete time systems

The algorithms, which are implemented in the plat-
form, are constructed in a model-independent manner.

The models are defined externally as simple function
files in Matlab, in accordance with the format used
for solving differential equations numerically (see the
documentation for Matlab). Depending on the appli-
cation and the system at hand, continuous time step
or fixed time step integration may be used, as well as
discrete time systems.

Finally, the functions are not intended solely for use
with Simulink. This means that any data set consisting
of measurements and inputs may be filtered using
the functions, given that a system and measurement
description is provided. All in all, this provides a great
deal of flexibility, ease of testing control algorithms,
as well as testing various data filtering methods.

3. ESTIMATION ALGORITHMS

Consider a system in which the evolution of the state
sequence{xk ∈ R

n
, k∈N} is given by

xk+1 = fk(xk,uk,vk) (1)

where fk is a possible nonlinear function of the state,
xk, the input (control) signal,uk and the process noise,
vk. The process noise is assumed to be a sequence
{vk ∈ R

n k∈ N} of i.i.d. stochastic vectors.

The objective is to estimatexk from measurements

yk = gk(xk,ek) ∈ R
m (2)

where alsogk is a possible nonlinear function of the
state and the measurement noise,ek. The measurement
noise is assumed to be a sequence,{ek ∈ R

m k ∈ N},
of i.i.d. stochastic vectors. More specific we seek an
estimate ofxk based on all available measurements
(and known inputs)Y0:k = {(yi ,ui), i = 0, ...,k}.

The solution to this problem is embedded in the con-
ditional degree of belief in the state,xk given the data,
Y0:k. The problem is then (recursively) to determine
the pdf. p(xk|y0:k). If the initial distribution, p(x0),
is known then the solution can in principle be deter-
mined through the recursions:

p(xk|Y0:k−1) =

∫

Ωx

p(xk|xk−1)p(xk−1|Y0:k−1)dxk−1

(3)
and

p(xk|Y0:k) =
p(yk|xk)

p(yk|Y0:k−1)
p(xk|Y0:k−1) (4)

These two recursions are related to the dynamic ((3))
and the inference ((4)) step, respectively and can only
in special cases be solved analytically. In the linear
Gaussian case the pdf. can be parameterized in terms
of mean and variance and the recursions results in
the well known Kalman filter. In that case (the linear
Gaussian case with standard assumptions including
x0 ∈ N(x̂0,P0)) the system is assumed to be given by
the recursions:

xk+1 = Axk +Buk +vk vk ∈Niid (0,R1)



yk = Cxk +ek ek ∈Niid (0,R2)

The Kalman filter is given by the prediction or the time
updates

x̂k+1|k = Ax̂k|k +Buk (5)

Pk+1|k = APk|kA
T +R1 (6)

and the inference recursion

x̂k|k = x̂k|k−1 +Kk(yk− ŷk|k−1) (7)

Pk|k = Pk|k−1−KkCPk|k−1 (8)

where:

Kk = Pk|k−1C
TS−1

k

and

ŷk|k−1 = Xx̂k|k−1 Sk = CPk|k−1C
T +R2

In this case, the prediction in (3) results in (5) and
can also be found as an application of calculus for
linear operations on Gaussian vectors. The inference
recursion in (7) emerge from (4) or as an application
of the Projection Theorem.

The various filters differs in the way the handle the
propagation of the distributions through the two non-
linearities, f andg, and how the inference is carried
out. The next three filters are all based on the projec-
tion Theorem.

3.1 The Extended Kalman filter

The Extended Kalman filter is as its name indicate
based on an extension of the application of the Kalman
filter to the nonlinear case. The Extended Kalman
filter (EKF) is based on a standard Taylor expansion of
the nonlinear functions and can be regarded as a local
approximation. In general the approximation is best
for small deviations from the point of linearization.

The basic idea is related to the problem of determine
the distribution ofz if

z= F(x)

and the distribution ofx is known to beN(x̂,Px). The
approximation is simply to use

z∈ N
(

F(x̂),APxA
T)

where

A =
∂
∂x

F

∣

∣

∣

∣

x̂

This approximation applies both to the process equa-
tion (and f ) and the measurement equation (andg). In
fact, the only changes with respect to (5)-(8) is

x̂i+1|i = fi(x̂i|i ,ui ,0) ŷi|i = gi(x̂i|i ,0)

The variance update, (6) and (8), are unchanged (ex-
cept for the state dependent system matrices).

3.2 Divided difference filters

The divided difference filter exists in a first order
version (DD1) and in a second order version (DD2)
and is based on Stirlings interpolation formula (see
(Nørgaardet al., 2000) and Figure 3 for illustration).
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Fig. 3. Comparison of a second-order polynomial
approximation obtained with the Taylor (dot-
dashed) and the Stirling method (dashed)

Let again,xbe a stochastic variable andx∈N
(

x̂,SxST
x

)

.
The approximation which takes the variation ofw into
account is

F(x) = F(x̂)+ ∇̄zF(x̂)(x− x̂)+
1
2

∇̄2
xF(x̂)(x− x̂)2 + ε

where

∇̄xF(x̂) = Matr i j

{

1
2h

[Fi(x̂+hSx j)−Fi(x̂−hSx j)]

}

∇̄2
xF(x̂)= Matr i j

{

1
h2 [Fi(x̂+hSx j)+Fi(x̂−hSx j)−2Fi(x̂)]

}

Hereh is a scale parameter andSx j is the j ’th column
in Sx. In the Gaussian case the choiceh2 = 3 is in some
sense optimal (see (Nørgaardet al., 2000)).

Introduce the notation

F+
p = F(x̂+hSx,p) F−p = F(x̂−hSx,p) F0 = F(x̂)

For the DD2 filter the approximation is then

ẑ =
h2−nx

h2 F0 +
1

2h2

nx

∑
p=1

F+
p +F−p

and

Pz =
1

4h2

nx

∑
i=1

(F+
p −F−p )(F+

p −F−p )T

+
h2−1
4h2

nx

∑
i=1

(F+
p +F−p −2F0)(F+

p +F−p −2F0)T

For the first order filter (DD1) only the first terms in
the approximations are used.

In the divided difference filters (DD1 and DD2)
the propagation of mean and variance is determined
through the approximations mentioned above. The in-
ference is based on the Projection Theorem.



3.3 The Unscented kalman filter

The Uncented filter is based on the (uncentedi) trans-
formation of a stochastic variable,x, through a nonlin-
ear function,F(x) (see (Julier and Uhlmann, 2004)).
Assuming again the mean ofx is x̂ and the variance
matrix isPx = SxST

x , then the sigma points are defined
as:

x(1) = x̂ w0 =
κ

nx + κ
x(i) = x̂+

√

(nx + κ)Sxi wi =
κ

2(nx + κ)
i = 1, ... nx

x( j+nx) = x̂−
√

(nx + κ)Sx, j wj+nx =
κ

2(nx + κ)
j = 1, ... ,nx

Here κ is a scaling parameter andwi is the weight
associated with a point and

2nx

∑
i=0

wi = 1

Each sigma point is propagated through the nonlinear
function

z(i) = F(x(i)) i = 0, ... 2nx

and the approximation is then

ẑ=
2nx

∑
i=0

wiz
(i)

and

Pz =
2nx

∑
i=0

wi(z
(i)− ẑ)(z(i)− ẑ)T

The standard UKF is based on the approximation
mentioned above and the Projection Theorem. In the
scaled version of UKF the weight is chosen in a
slightly different manner (see (Julier, 2002) or (Wan
and van der Merwe, 2000) for details).

3.4 Particle filters

Particle filters comes in several versions and imple-
mentations (see e.g. (Arulampalamet al., 2002) or
(van der Merweet al., 2000)). In the most basic
version (Exp. PF) implemented in the platform the
nonlinearities are dealt with by propagating a swarm
of particle through the nonlinearities. Again assuming
x∈N(x̂,Px) a number (N) of particles are generated

x(i) ← N(x̂,Px) i = 1, ... N

and propagated through the nonlinear function

z(i) = F(x(i))

The approximation is then simply

ẑ=
N

∑
i=1

z(i) Pz =
N

∑
i=1

(z(i)− ẑ)(z(i)− ẑ)T

In the most basic version (Exp. PF) the inference is
based on the Projection Theorem and the nonlineari-
ties are handled with the method mentioned above.

In the generic particle filters (Gen. PF) the inference
is not based on the Projection Theorem, but is carried
out by applying 4 directly. That results in weights
associated with each of the particles. In this version
the particle are only initially generated as described
above. After the inference step the particles are resam-
pled from a distribution characterized by the weights.
In the last version (MH. PF) implemented here on this
platform, the resampling is performed by means of the
Metropolis-Hastings algorithm.

4. EXAMPLE STUDY

The versatility of the simulation framework is most
evident when implementing a number of examples.
For the purpose of this demonstration, a continuous
time differential equation system and a discrete time
difference equation system are selected. The contin-
uous time system is a very simple model of a dead-
reckoning guidance for a small mobile robot. The dis-
crete time system is an academic example of a nonlin-
ear system (though in a simplified form), which have
been used previously as a benchmark for testing filter
algorithms (Nettoet al., 1978))

The model of the small mobile robot (unicycle type)
is given by the set of equations stated below and is
only slightly nonlinear. The equations yield a position
in a two dimensional space as well as a heading.
An input signal consisting of the velocity,γ, and
turnrate,ω , is used as a way of introducing an external
source of disturbance. The observation equations are
purely linear, and the noise is modelled as being
additive, zero mean, Gaussian distributed in both sets
of equations.

ẋ = γ cos(θ )+v1

ẏ = γ sin(θ )+v2 (9)

θ̇ = ω +v3

The process noise sources,vn, as well as the observa-
tion noise sources,wn, are specified byN(0,0.01).

z1 = x+w1

z2 = y+w2 (10)

z3 = θ +w3

An example of a simulation using the Divided Differ-
ence (2nd order) as estimator can be seen in figure 4.
The integral of the control signal,ω , is seen below the
path traced by the robot.

In order to compare a range of techniques imple-
mented in the framework, accuracy results are given
in table 1. Attempting to find a fair estimate of the
accuracy, 100 runs were made with each algorithm and
the average values were found. The particle filters all
used 200 particles per time update. The table contains
the "worst case" values for the three states.
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Fig. 4.A path traced by the small unicycle robot. The
estimation routine employed is the 2nd order Di-
vided Difference filter with a sampling frequency
of 1 Hz. At every other estimated state, the 95%
confidence intervals are drawn as ellipses or bars
respectively. The estimate is at no point outside
the confidence intervals.

Algorithm Max. RMSE Max. Var. Est. Time

C.D. EKF 0.06799 0.005717 1.000
Std. UKF 0.07399 0.006779 2.678
Scl. UKF 0.07331 0.006693 3.673
DD1 0.07251 0.006779 2.640
DD2 0.07177 0.006781 2.658

Exp. PF 0.07591 0.006479 16.86
Gen. PF 0.09698 0.039829 17.82
PF (MH) 0.08960 0.058690 18.53

Table 1.Small mobile robot, worst value of
mean estimate (x,y,θ ) and maximum mean
variance estimate of 100 Monte Carlo sim-
ulations. The table is split into Kalman fil-
ter variants (top) and particle filters (bot-
tom). The particle filters all used 200 parti-

cles.

Also listed in the table is the computational burden of
each algorithm. The latter is given as a relative num-
ber compared to the runtime of a continuous-discrete
extended Kalman filter (C.D. EKF). The times are
relative, as other processor speeds and types will yield
different absolute results. Furthermore, the algorithms

and their runtimes may well benefit from numerical
optimizations in application specific implementations.
The algorithms used a fixed step integration (Matlab,
Dormand-Prince, order 5) to solve equation 9. The
standard Unscented Kalman filter (Std. UKF) per-
forms very well, while it’s scaled version gives a lower
mean RMSE and a slightly lower mean variance esti-
mates. The DD1 and DD2 both give low mean RMSE
and consistent variance estimates - in this case, the
second order parts of the DD2 does not yield much.

The second example is a nonlinear equation with a
linear and noisy measurement. First, the process equa-
tion,xk+1 is listed, next the measurement equation,yk.

xk+1 =
1
2

xk +
25xk

1+x2
k

+8cos(1.2k)+vn

(11)

yk = xk +wk;

Note that, both the noise sources,vk andwk, are zero
mean Gaussian white noise with variances of 10.0 and
1.0 respectively. As was the case with the small robot
model, a Monte Carlo series of simulations was made
with a variety of estimation algorithms. Two examples
of the appearance of a simulation can be found in
figure 5.

The result of the Monte Carlo simulation can be seen
in table 2. The Kalman filter type algorithms were
simulated 1000 times and the means of the root mean
square errors (RMSE) were found as well as the means
of the variance estimates. The Particle Filter types
were simulated 100 times with 200 particles per time
update in all filters.

Algorithm Mean RMSE Mean Var. Est. Time

C.D. EKF 0.9573 0.9206 1.000
Std. UKF 0.9472 0.9238 0.126
Scl. UKF 0.9503 0.9247 0.151
DD1 0.9417 0.9221 0.133
DD2 0.9260 0.9238 0.137

Exp. PF 0.9513 0.9165 2.067
Gen. PF 4.2326 31.595 5.917
PF (MH) 4.0238 28.165 8.543

Table 2.Table of results for a Monte Carlo
series of simulations on the discrete nonlin-

ear and noisy system.

Finally, in order to compare the precision of the three
particle filters as a function of the number of particles
per time update, a Monte Carlo series of simulations
was made using the benchmark system. The results
can be seen in figure 6. The series consisted of 100
runs per particle count, from 2 to 256 particles in in-
creasing steps. The algorithms converge rather quickly
as the particle count increases.
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Fig. 5. Two examples of the highly nonlinear and
noisy system given in equation 11. The topmost
is the 2nd order Divided Difference filter, while
the bottommost is a generic Particle Filter.

5. CONCLUSION

In this paper we have presented the toolbox KALM-
TOOL ver. 2 which a set of MATLAB tools for state
estimation for nonlinear systems. It contains func-
tions for extended Kalman filtering as well as for the
two new filters the DD1 filter and the DD2 filter. It
also contains functions for Unscented (standard and
scaled) Kalman filter as well as three versions of par-
ticle filters.

REFERENCES

Arulampalam, M.S., S. Maskell, N. Gordon and
T. Clapp (2002). A tutorial on particle filters for
online nonlinear/non-gaussian bayesian track-
ing. IEEE Transactions on Signal Processing
50(2), 174–188.

Julier, S. (2002). The scaled unscented transformation.
Proceedings of the American Control Conference
pp. 4555–4559.

Julier, Simon and Jeffrey Uhlmann (2004). Unscented
filtering and nonlinear estimation.Proceeding of
the IEEE92(3), 401–422.

50 100 150 200 250
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Particles

RM
SE

50 100 150 200 250
10

15

20

25

30

35

40

Particles

M
ea

n 
Va

r. 
Es

t.
Exp. Unsc. PF.
Generic PF.
Generic PF. (MH)

Fig. 6. Two graphs depicting the effect of varying
the particle count per update on the benchmark
system. The mean RMSE and mean variance esti-
mates are seen to converge rather quickly to rel-
atively stationary values at around 100 particles
per time update.

Netto, A.M.L., L. Gimeno and M.J. Mendes (1978).
A new spline algorithm for non-linear filter-
ing of discrete time systems.Proceedings of
the 4th IFAC Symposium on Identification and
System Parameter Estimation, Tbilisi, U.S.S.R.
pp. 2123–2130.

Nørgaard, Magnus, Niels K. Poulsen and Ole Ravn
(2000). New development in state estimation for
nonlinear systems.Automatica36, 1627–1638.

Nørgaard, Magnus, Niels Kjølstad Poulsen and Ole
Ravn (2003). Kalmtool for use with matlab.
In: 13th IFAC Symposium on System Identifi-
cation, SYSID03, Rotterdam. IFAC. Rotterdam.
pp. 1490–1495.

van der Merwe, R., A. Doucet, N. de Freitas and
E. Wan (2000). The unscented particle filter.
Technical report. Cambridge University Engi-
neering Department.

Wan, Eric and Rudolph van der Merwe (2000). The
unscented kalman filter for nonlinear estima-
tion. In: Proceedings of the IEEE 2000 Adaptive
Systems for Signal Processing, Communications,
and Control Symposium. pp. 153–158.


