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Abstract

We discuss an identification framework for noisy speech mixtures. A
block-based generative model is formulated that explicitly incorporates
the time-varying harmonic plus noise (H+N) model for a number of latent
sources observed through noisy convolutive mixtures. All parameters
including the pitches of the source signals, the amplitudes and phases of
the sources, the mixing filters and the noise statistics are estimated by
maximum likelihood, using an EM-algorithm. Exact averaging over the
hidden sources is obtained using the Kalman smoother. We show that
pitch estimation and source separation can be performed simultaneously.
The pitch estimates are compared to laryngograph (EGG) measurements.
Artificial and real room mixtures are used to demonstrate the viability
of the approach. Intelligible speech signals are re-synthesized from the
estimated H+N models.

1 Introduction

Our aim is to understand the properties of mixtures of speech signals within a generative
statistical framework. We considerconvolutivemixtures, i.e.,

xt =
L−1∑

k=0

Akst−k + nt, (1)

where the elements of the source signal vector,st, i.e., theds statistically independent
source signals, are convolved with the corresponding elements of the filter matrix,Ak.
The multichannel sensor signal,xt, is furthermore degraded by additive Gaussian white
noise.

It is well-known that separation of the source signals based on second order statistics is
infeasible in general. Consider the second order statistic

〈xtx>t′ 〉 =
L−1∑

k,k′=0

Ak〈st−ks>t′−k′〉A>
k′ + R, (2)

whereR is the (diagonal) noise covariance matrix. If the sources can be assumed stationary
white noise, the source covariance matrix can be assumed proportional to the unit matrix



without loss of generality, and we see that the statistic is symmetric to a common rotation
of all mixing matricesAk → AkU. This rotational invariance means that the acquired
statistic is not informative enough to identify the mixing matrix, hence, the source time
series.

However, if we consider stationary sources withknown, non-trivial, autocorrelations
〈sts>t′ 〉 = G(t − t′), and we are given access to measurements involving multiple val-
ues ofG(t − t′), the rotational degrees of freedom are constrained and we will be able to
recover the mixing matrices up to a choice of sign and scale of each source time series.
Extending this argument by the observation that the mixing model (1) is invariant to filter-
ing of a given column of the convolutive filter provided that the inverse filter is applied to
corresponding source signal, we see that it is infeasible to identify the mixing matrices if
these arbitrary inverse filters can be chosen to that they are allowed to ‘whiten’ the sources,
see also [1].

For non-stationary sources, on the other hand, the autocorrelation functions vary through
time and it is not possible to choose a single common whitening filter for each source.This
means that the mixing matrices may be identifiable from multiple estimates of the second
order correlation statistic (2) for non-stationary sources. Analysis in terms of the number
of free parameters vs. the number of linear conditions is provided in [1] and [2].

Also in [2], the constraining effect of source non-stationarity was exploited by the simul-
taneous diagonalization of multiple estimates of the source power spectrum. In [3] we
formulated a generative probabilistic model of this process and proved that it could esti-
mate sources and mixing matrices in noisy mixtures. Blind source separation based on
state-space models has been studied, e.g., in [4] and [5]. The approach is especially useful
for including prior knowledge about the source signals and for handling noisy mixtures.
One example of considerable practical importance is the case of speech mixtures.

For speech mixtures the generative model based on white noise excitation may be improved
using more realistic priors. Speech models based onsinusoidalexcitation have been quite
popular in speech modelling since [6]. This approach assumes that the speech signal is
a time-varying mixture of a harmonic signal and a noise signal (H+N model). A recent
application of this model for pitch estimation can be found in [7]. Also [8] and [9] exploit
the harmonic structure of certain classes of signals for enhancement purposes. A related
application is the BSS algorithm of [10], which uses the cross-correlation of the amplitude
in different frequency. The state-space model naturally leads to maximum-likelihood esti-
mation using the EM-algorithm, e.g. [11], [12]. The EM algorithm has been used in related
models: [13] and [14].

In this work we generalize our previous work on state space models for blind source sepa-
ration to include harmonic excitation and demonstrate that it is possible to perform simul-
taneous un-mixing and pitch tracking.

2 The model

The assumption of time variant source statistics help identify parameters that would other-
wise not be unique within the model. In the following, the measured signals aresegmented
into frames, in which they are assumed stationary. The mixing filters and observation noise
covariance matrix are assumed stationary acrossall frames.

The colored noise (AR) process that was used in [3] to model the sources is augmented to
include a periodic excitation signal that is also time-varying. The specific choice of periodic
basis function, i.e. the sinusoid, is motivated by the fact that the phase is linearizable,



facilitating one-step optimization. In framen, sourcei is represented by:

sn
i,t =

p∑

t′=1

fn
i,t′s

n
i,t−t′ +

K∑

k=1

αn
i,k sin(ωn

0,ikt + βn
i ) + vn

i,t

=
p∑

t′=1

fn
i,t′s

n
i,t−t′ +

K∑

k=1

cn
i,2k−1 sin(ωn

0,ikt) + cn
i,2k cos(ωn

0,ikt) + vn
i,t (3)

wheren ∈ {1, 2, .., N} and i ∈ {1, 2, .., ds}. The innovation noise,vn
i,t, is i.i.d Gaus-

sian. Clearly, (3) represents a H+N model. The fundamental frequency,ωn
0,i, enters the

estimation problem in an inherent non-linear manner.

In order to benefit from well-established estimation theory, the above recursion is fit-
ted into the framework of Gaussian linear models, see [15]. The Kalman filter model
is an instance of this model. The augmented state space is constructed by includ-
ing a history of past samples for each source. Source vectori in frame n is defined:

sn
i,t =

[
sn

i,t sn
i,t−1 . . . sn

i,t−p+1

]>
. All sn

i,t’s are stacked in the total source vec-

tor: s̄n
t =

[
(sn

1,t)
> (sn

2,t)
> . . . (sn

ds,t)
> ]>

. The resulting state-space model is:

s̄n
t = Fns̄n

t−1 + Cnun
t + v̄n

t

xn
t = As̄n

t + nn
t

wherev̄t ∼ N (0,Q), nt ∼ N (0,R) ands̄n
1 ∼ N (µn,Σn). The combined harmonics in-

put vector is defined:un
t =

[
(un

1,t)
> (un

2,t)
> . . . (un

ds,t)
> ]>

, where the harmonics
corresponding to sourcei in framen are:

un
i,t =

[
sin(ωn

0,it) cos(ωn
0,it) . . . sin(Kωn

0,it) cos(Kωn
0,it)

]>

It is apparent that the matrix multiplication byA constitutes aconvolutivemixing of the
sources, where thedx × ds channel filters are:

A =




a>11 a>12 .. a>1ds

a>21 a>22 .. a>2ds

...
...

. ..
...

a>dx1 a>dx2 .. a>dxds




In order to implement the H+N source model, the parameter matrices are constrained as
follows:

Fn =




Fn
1 0 · · · 0

0 Fn
2 · · · 0

...
...

. . .
...

0 0 · · · Fn
ds


 , Fn

i =




fn
i,1 fn

i,2 · · · fn
i,p−1 fn

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Qn =




Qn
1 0 · · · 0

0 Qn
2 · · · 0

...
...

. ..
...

0 0 · · · Qn
ds


 , (Qn

i )jj′ =
{

qn
i j = j′ = 1

0 j 6= 1
∨

j′ 6= 1

Cn =




Cn
1 0 · · · 0

0 Cn
2 · · · 0

...
...

.. .
...

0 0 · · · Cn
ds


 , Cn

i =




cn
i,1 cn

i,2 · · · cn
i,2K

0 0 · · · 0
0 0 · · · 0
...

...
. ..

...
0 0 · · · 0






3 Learning

Having described the convolutive mixing problem in the general framework of linear Gaus-
sian models, more specifically the Kalman filter model, optimal inference of the sources is
obtained by the Kalman smoother. However, since the problem at hand is effectivelyblind,
we also need to estimate the parameters. Along the lines of, e.g. [15], we will invoke an EM
approach. The log-likelihood is bounded from below:L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂)−R(p̂),
with the definitionsJ (θ, p̂) ≡ ∫

dSp̂(S) log p(X,S|θ) andR(p̂) ≡ ∫
dSp̂(S) log p̂(S).

In accordance with standard EM theory,J (θ, p̂) is optimized wrt. θ in the M-step. The
E-step infers the relevant moments of the marginal posterior,p̂ = p(S|X, θ). For the Gaus-
sian model the means are also source MAP estimates. The combined E and M steps are
guaranteed not to decreaseL(θ).

3.1 E-step

The forward-backward recursions which comprise the Kalman smoother are employed in
the E-step to infer moments of the source posterior,p(S|X, θ), i.e. the joint posterior of
the sources conditioned on all observations. The relevant second-order statistic of this
distribution in segmentn is the marginal posterior mean,ˆ̄sn

t ≡ 〈s̄n
t 〉, and autocorrelation,

Mn
i,t ≡ 〈sn

i,t(s
n
i,t)

>〉 ≡ [ mn
i,1,t mn

i,2,t .. mn
i,L,t ]>, along with the marginal lag-one

covariance,M1,n
i,t ≡ 〈sn

i,t(s
n
i,t−1)

>〉 ≡ [ m1,n
i,1,t m1,n

i,2,t .. m1,n
i,L,t ]>. In particular,

mn
i,t is the first element ofmn

i,1,t. All averages are performed overp(S|X, θ). The forward
recursion also yields the log-likelihood,L(θ).

3.2 M-step

The M-step utility function,J (θ, p̂), is defined:

J (θ, p̂) = −1
2

N∑
n=1

[
ds∑

i=1

log detΣn
i + (τ − 1)

ds∑

i=1

log qn
i

+τ log detR +
ds∑

i=1

〈(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )〉

+
τ∑

t=2

ds∑

i=1

〈 1
qn
i

(sn
i,t − (dn

i )T zn
i,t)

2〉+
τ∑

t=1

〈(xn
t −As̄n

t )T R−1(xn
t −As̄n

t )〉]

where〈·〉 signifies averaging over the source posterior from the previous E-step,p(S|X, θ)
andτ is the frame length. The linear source parameters are grouped as

dn
i ≡

[
(fn

i )> (cn
i )>

]>
, zn

i ≡
[

(sn
i,t−1)

> (un
i,t)

> ]>

where

fn
i ≡ [ fi,1 fi,2 .. fi,p ]> , cn

i ≡ [ ci,1 ci,2 .. ci,p ]>

Optimization ofJ (θ, p̂) wrt. θ is straightforward (except for theωn
0,i’s). Relatively minor

changes are introduced to the estimators of e.g. [12] in order to respect the special con-
strained format of the parameter matrices and to allow for an external input to the model.
More details on the estimators for the correlated source model are given in [3].

It is in general difficult to maximizeJ (θ, p̂) wrt. to ωn
i,0, since several local maxima exist,

e.g. at multiples ofωn
i,0, see e.g. [6]. This problem is addressed by narrowing the search

range based on prior knowledge of the domain, e.g. that the pitch of speech lies in the range



50-400Hz. A candidate estimate forωn
i,0 is obtained by computing the autocorrelation

function ofsn
i,t − (fn

i )>sn
i,t−1. Grid search is performed in the vicinity of the candidate.

For each point in the grid we optimizedn
i :

dn
i,new =

[
τ∑

t=2

[
(Mn

i,t−1) ŝn
i,t−1(u

n
i,t)

>

un
i,t(ŝ

n
i,t−1)

> un
i,t(u

n
i,t)

>

]]−1 τ∑
t=2

[
mn

i,t,t−1

ŝn
i,tu

n
i,t

]
(4)

At each step of the EM-algorithm, the parameters are normalized by enforcing||Ai|| = 1,
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Figure 1: Amplitude spectrograms of the frequency range 0-4000Hz, from left to right: the
true sources, the estimated sources and the re-synthesized source.

that is enforcing a unity norm on the filter coefficients related to sourcei.

4 Experiment I: BSS and pitch tracking in a noisy artificial mixture

The performance of a pitch detector can be evaluated using electro-laryngograph (EGG)
recordings, which are obtained from electrodes placed on the neck, see [7]. In the following
experiment, speech signals from the TIMIT [16] corpus is used for which the EGG signals
were measured, kindly provided by the ‘festvox’ project (http://festvox.org ).

Two male speech signals (Fs = 16kHz) were mixed through known mixing filters and
degraded by additive white noise (SNR∼20dB), constructing two observation signals. The
pitches of the speech signals were overlapping. The filter coefficients (of2 × 2 = 4 FIR
filter impulse responses) were:

A =
[

1.00 0.35 −0.20 0.00 0.00, 0.00 0.00 −0.50 −0.30 0.20
0.00 0.00 0.70 −0.20 0.15, 1.30 0.60 0.30 0.00 0.00

]

The signals were segmented into frames,τ = 320 ∼ 20ms, and the order of the AR-
process was set top = 1. The number of harmonics was limited toK = 40. The pitch
grid search involved30 re-estimations ofdn

i . In figure 1 is shown the spectrograms of
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Figure 2: The estimated (dashed) and EGG-provided (solid) pitches as a function of time.
The speech mixtures were artificially mixed from TIMIT utterances and white noise was
added.

approximately 1 second of 1) the original sources, 2) the MAP source estimates and 3) the
resynthesized sources (from the estimated model parameters). It is seen that the sources
were well separated. Also, the re-synthesizations are almost indistinguishable from the
source estimates. In figure 2, the estimated pitch of both speech signals are shown along
with the pitch of the EGG measurements.1 The voiced sections of the speech were manually
preselected, this step is easily automated. The estimated pitches do follow the ’true’ pitches
as provided by the EGG. The smoothness of the estimates is further indicating the viability
of the approach, as the pitch estimates are frame-local.

5 Experiment II: BSS and pitch tracking in a real mixture

The algorithm was further evaluated on real room recordings that were also used in [17].2

Two male speakers synchronously count in English and Spanish (Fs = 16kHz). The mix-
tures were degraded with noise (SNR∼20dB). The filter length, the frame length, the order
of the AR-process and the number of harmonics were set toL = 25, τ = 320, p = 1 and
K = 40, respectively. Figure 3 shows the MAP source estimates and the re-synthesized
sources. Features of speech such as amplitude modulation are clearly evident in estimates
and re-synthesizations.3 A listening test confirms: 1) the separation of the sources and
2) the good quality of the synthesized sources, reconfirming the applicability of the H+N
model. Figure 4 displays the estimated pitches of the sources, where the voiced sections
were manually preselected. Although, the ’true’ pitch is unavailable in this experiment, the
smoothness of the frame-local pitch-estimates is further support for the approach.

1The EGG data are themselves noisy measurements of the hypothesized ‘truth’. Bandpass filtering
was used for preprocessing.

2The mixtures were obtained fromhttp://inc2.ucsd.edu/˜tewon/ica_cnl.html .
3Note that the ’English’ counter lowers the pitch throughout the sentence.
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Figure 3: Spectrograms of the estimated (left) and re-synthesized sources (right) extracted
from the ’one two . . . ’ and ’uno dos . . . ’ mixtures, source 1 and 2, respectively

6 Conclusion

It was shown that prior knowledge on speech signals and quasi-periodic signals in general
can be integrated into a linear non-stationary state-space model. As a result, the simultane-
ous separation of the speech sources and estimation of their pitches could be achieved. It
was demonstrated that the method could cope with noisy artificially mixed signals and real
room mixtures. Future research concerns more realistic mixtures in terms of reverberation
time and inclusion of further domain knowledge. It should be noted that the approach is
computationally intensive, we are also investigating means for approximate inference and
parameter estimation that would allow real time implementation.
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