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Abstract

This thesis is concerned with the problem of applying an approximate Bayesian
learning technique referred to as variational Bayes to different Gaussian latent
variable models and their mixture extensions.
I will try to give a smooth transition between the different models used in this
thesis, starting from the single (multivariate) Gaussian model to the more complex
Linear Factor and its mixture extension Mixture of Factor Analyzers model, where
either/both the hidden dimensionality and the hidden number of components (in
the case of mixtures) are unknown.
One of the aims of this thesis is to investigate how the Bayesian framework infers
the wanted parameters, e.g. number of components in a mixture model, given a
model, and how it succeeds in solving the different problems related to overfit-
ting. I also investigate which one of these models that perform best for a range of
tasks. Throughout the report I will try to discuss the performance of the Bayesian
techniques, mainly by comparing it to the standardMaximum Likelihood approach.

Each of the models discussed in the thesis are applied to one or more of the fol-
lowing problems: Density estimation, Classification, Signal separation and Image
compression. Both synthetic and real data are tested.

Keywords: Graphical Models, Linear latent variable models, Mixture Models, Maxi-
mum Likelihood, Bayesian Inference, Variational Bayes.
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Nomenclature

Below follows the most used symbols and abbreviations.

EM Expectation maximization.

VB Variational Bayesian.

FA Factor analysis.

Tr[X ] Trace operator, i.e,
∑

j diagj [X],see diag.

MLFA Maximum likelihood factor. analysis.

VBFA Variational Bayesian factor analysis.

ARD Automatic relevance determination.

KL Kullback-Leibler divergence.

IID Independently and Identically Distributed

diag[X ] Diagonal operator, i.e, diagj [X] = xj,j .

PCA Principal component analysis.

PPCA Probabilistic Principal component analysis.

AIC Akaike’s information criterion.

〈·〉 Expectation operator also denoted by E [·].

p(·) Probability distribution.

Q(·) Variational posterior distribution.

dX Data dimension.

N Number of samples.

X Data matrix of dimension [dX ×N ].

S Hidden states [dS ×N ].

A Factor loading matrix of dimension [dX × dS ]

F(·) Lower bound on the log marginal likelihood.
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Linc(Θ) Incomplete data log likelihood.

Lc(Θ) Complete data log likelihood.



CHAPTER 

Introduction

The ever increasing amount of production and consumption of information in those recent
decades, demand robust and reliable analyzing and processing techniques, to make it even
possible to work with, and to extract some, for the user, useful data. Text search in the
internet is just one example. In Machine learning models are developed to make these
task possible. When constructing such models at least two different learning problems
can be used: supervised and unsupervised.
Supervised Learning is the case where the data set D consists of pairs of patterns

xi and targets (e.g., labels for classification) ti represented as:

D = {(x1, t1), . . . , (xN , tN )}

known as the training set. In the case where the targets are discrete classes, we are
dealing with a classification problem. If, otherwise, the target are real valued, the
problem is then referred to as a regression problem. This will not be discussed further
in this report, for a comprehensive and detailed book see [5].
Unsupervised Learning on the other hand is more diverse and difficult to define.

This type of learning mostly deals with discovering clusters or other structures in the
input data, without having any knowledge of class labels for the data and obvious crite-
ria to guide the search. A convenient way of dealing with many forms of unsupervised
learning in a probabilistic way is through density estimation. One of the most popu-
lar density estimation methods is the Gaussian Mixture Model (GMM) (section 5.1).
Promising alternatives to GMMs are the Latent Variable Models and their Mixtures
extension. Examples of these models are Probabilistic Principal Component analysis
(PPCA) and Factor Analysis (FA) (section 4.3), and their mixture extension Mixture
of PCA and Mixture of FA (section 5.2). The advantage of these latent variable models
is that they are capable of representing the covariance structure with less parameters by
choosing the dimension of a subspace in a suitable way. This is explained in section 4.2.
An empirical evaluation on a large number of data sets shows that mixtures of latent
variable models almost always outperform GMMs (5.1).

What we are really interested in, is a model which not only learns the training set
but also generalizes1 well on unseen examples. In a probabilistic way, we assume that
there is some unknown probability density function p(x) (or p(x, t) in the supervised
case), from which all examples are drawn independently, and of which the training set
is a sample. Learning then involves extracting that information from the training data,
which is characteristic for the density p(x), while avoiding two extreme situations. The

1In probabilistic modelling, we will define generalization of model M by the probability it assigns to
a new previously unseen validation data-set.

3



CHAPTER 1. INTRODUCTION 4

first one occurs when the model learns the inherent noise in the finite training set, this
is commonly referred to as overfitting. The other extreme situation appears where the
model is too simple or not flexible enough, this is known as underfitting . It can be seen
that the learning has to deal with a kind of dilemma between the bias and variance, and
its believed that the best model is the one that balances between these two problems [5].
Inmaximum likelihood (ML) learning, also referred to in many literatures as conventional
learning, the choice of the model complexity2 requires the use of methods based on,
for example, cross-validation techniques, briefly explained in section 3.1. To choose an
appropriate model, these techniques are computationally expensive, wasteful of data, and
give noisy estimate for the optimal number of components [7]. An appropriate learning
technique, which efficiently uses the data set and returns the posterior distribution over
the model complexity, is the Bayesian treatment. Techniques of solving the Bayesian
problem can be characterized as follows [14] (part IV):

• Exact Methods which computes the required quantity directly. However, due
to their computational complexity, they are still rarely used in Machine Learning.
There exist however exceptions such as exact inference in Bayesian networks with
the junction tree algorithm which is widely used [15].

• Approximate Methods which can be subdivided into

- Deterministic approximation this subgroup includes: Maximum Likeli-
hood (section 3.1), Laplace’s method , and Variational methods (section 3.3)

- Monte Carlo methods are mainly used when the deterministic approxi-
mation, such as Laplace’s method, does not work. Some methods to imple-
ment Monte Carlo are: important sampling, rejection sampling, the Metropolis
methods and Gibbs sampling [14]. One of the disadvantages of these methods
is that they require saving the whole posterior distribution, and they are usu-
ally too slow. An implementation of fully Bayesian technique using Markov
Chain Monte Carlo (MCMC) for a mixture model can be found in [2].

Neither Monte Carlo methods, nor the exact methods will be discussed further in this the-
sis. The focus is concentrated on Variational Bayesian (VB) techniques and Maximum
Likelihood. Maximum Likelihood, though, does not return the posterior distribution over
the model, but can be extended by a regularization factor (proportional to the prior)to
penalize the large or complex models.

Throughout this thesis a comparison of the performance of ML and the VB is dis-
cussed. The discussion will in many cases be illustrated graphically.

Roadmap

So far I have given a very short description of some learning techniques, which are going
to be used in the thesis. The general flow goes from the simple model to more complex
model, and from Maximum Likelihood to Variational Bayes. But first some theory on
both techniques are presented.

2by the complexity I mean the number of components and/or the number of dimensions depending
on the used model
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Structure of the course of the thesis looks like:

• Chapter 2: describes Bayesian Networks, relevant notations and how they can
be used in learning models.

• Chapter 3: deals with learning in Bayesian networks. The two learning meth-
ods ML and Bayesian approach are discussed. The last section of this chapter
introduces the Bayesian approximation method called Variational Bayes.

• Chapter 4: introduce and links several models used in machine learning. All these
models can be included in the framework of Latent variable models. A detailed
derivation of ML and VB for these model is given.

• Chapter 5: introduces the mixture extension to linear latent variable models, and
gives a general idea of how these models are related to each other

• Chapter 6: focuses on model order selection. VB and BIC penalized ML models
are tested, on real and synthetic data.
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Bayesian Networks

G L  S

 BR

(a) A Bayesian Net representation
of full version of joint distribution
(equation (2.1)), for the Lie Detec-
tor problem

G L  S

 BR

(b) A simplified Bayesian Net
representation of figure 2.1(a)
(Equation (2.2)).

Figure 2.1: A Bayesian networks corresponding to the probabilistic model used in a simplified Lie
Detector problem [46]. The graphical model represents a conditional decomposition of
the joint probability in equation (2.1). The circular nodes represent random variables,
with some distribution over them. The shaded circles are the observed variables, while
the unshaded are hidden ones. The arcs (edges) goes from the parent/parents to the
child/children, and represent the probabilistic connection between two variables. The lack
of arcs encode conditional independencies. (a) Represent the model of the full version
of the joint distribution, corresponding to equation (2.1). (b) The unnecessary arcs (de-
pendencies) are removed using expert knowledge and definition (2.1); the resulting graph
corresponds to equation (2.2).

In real world problems, we might be faced with a problem involving a large number
of variables, hundreds or thousands. For example, a digital color image contains many
millions of measurements, which discourage representing or manipulating with the joint
distribution of all these variables. However, we can assume that, of all possible direct
dependencies between variables, only a fraction are needed in most interesting problem
domains. The dependencies and independencies between variables can be represented
graphically, in the form of Probabilistic Graphical Models.

2.1 Graphical Models

"Graphical models are a marriage between probability theory and graph theory. They
provide a natural tool for dealing with two problems that occur throughout applied math-
ematics and engineering . . .

a complex system is built by combining simpler parts. Probability theory provides the glue
whereby the parts are combined, ensuring that the system as a whole is consistent. . .

6



CHAPTER 2. BAYESIAN NETWORKS 7

Many of the classical multivariate probabilistic systems studied in fields such as statistics,
systems engineering, information theory, pattern recognition and statistical mechanics are
special cases of the general graphical model formalism – examples include mixture models,
factor analysis, hidden Markov models, Kalman filters and Ising models. The graphical
model framework provides a way to view all of these systems as instances of a common
underlying formalism.. . . "

Michael I. Jordan , Learning in Graphical Models

http://www.ai.mit.edu/∼murphyk/Bayes/bnintro.html

The probabilistic graphical models are not only a tool of visualizing the relationship
between variables but, by exploiting the conditional independence relationships, also
provide a backbone upon which, it has been possible to derive efficient algorithms such
as massage-propagating algorithms [46] for updating the uncertain beliefs of the ma-
chine [17]. In the graph models the nodes represent variables, and arcs (edges) represent
dependencies. There are two types of nodes, circles and rectangles: circles denote ran-
dom variables, (with distribution over them) while rectangles correspond to determin-
istic1 parameters (i.e., fixed although unknown variables [9]), with no distribution over
them. The circles in their turn are subdivided into two groups: observed shaded circles,
and hidden unshaded circles.
There are also two kinds of arcs: directed (marked with arrows) and undirected .
Graphs with the former type of arcs are called directed graphs, where the basic graph
model is the Bayesian Networks also called Belief Nets, which is most popular in Arti-
ficial Intelligence. The arcs are taken to represent the conditional relationships between
the variables corresponding to the parent and the child.
As their name implies undirected graphs are graphs with undirected arcs. These graphs
are sometimes called Markov network , and are used in image processing and statistical
physics. There are also graphs involving both types of arcs, and this type of graph is
called Mixed graphical models. For more detail about graphical models and their exten-
sions see e.g. the tutorials by David Heckerman [9], and Buntine [28].

2.2 Bayesian Networks

Bayesian Networks is the type of graph we are dealing with in this thesis. The directed
arcs in this type of graphs are used exclusively to form a directed acyclic graphs (DAG).
Graphical models are based on a trivial yet important notion of independence, which is
worth to state here.

Definition 2.1 x is independent of s given Θ if p(x, s|Θ) = p(x|Θ)p(s|Θ) whenever
p(Θ) 6= 0 for all x, s and Θ,

The ability of the graph models to represent the conditional decomposition of the
joint distribution, which is an extension to definition (2.1), together with the important
notations of hidden and observed variables are illustrated in the following simplified Lie
Detector example adapted from J. Winn [46]

1It is just like how the frequentist looks at the parameters they want to infer when using Maximum
Likelihood, we return to that shortly.
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Example 2.1 Consider building a simplified Lie Detector machine, where the aim is
to determine whether a suspect is guilty of a crime. The binary variable G is true if
the suspect is guilty. The yes/no response of the suspect, of whether he committed the
crime is recorded in R and let L represent whether the suspect is lying. The principle
behind lie detectors is that most people will become stressed when attempting to deceive
another person and that this can be detected by examining their physiological reaction.
Let S be whether the suspect is stressed and B be some biophysical measurements (heart
rate, respiratory rate, skin resistance etc.). Since the suspect has no interest in facing
jail, he will try to hide his guilt (G), by lying (L). The true value of (L) and (G) are
only known by the suspect himself, and hidden from the detectives, these variables are
therefore referred to as hidden variables. To cheat the detectives, the suspect try to hide
symptoms of stress (S) while lying. (S) is therefor hidden too. Unfortunately (for the
suspect) stress can be measured, and the result can be seen in the (B). (B) is therefore
an observed variable.
To express the joint probability distribution over these five variables we can use the chain
rule (figure 2.1.a).

P (G,L, R, S, B|M) = (2.1)

P (G|M)P (L|G,M)P (R|G,L,M)P (S|G,L, R,M)P (B|G,L, R, S,M),

where M is the conditioning context, for instance the expert’s knowledge and/or the
choice of the Architecture of the graphical model, (the architecture is referred to some
times as model). From the expert’s knowledge it can be assumed that the suspect’s stress
levels depend only on whether he is lying and so P (S|G,L,R,M) can be simplified to
P (S|L,M). Similarly, it is assumed that the bio−physical measurements depend only
on whether the suspect is stressed, so P (B|G,L,R, S,M) reduces to P (B|S,M). Now
we can rewrite our joint distribution as a product of factors each involving only a small
subset of the variables (figure 2.1.b):

P (G,L, R, S,B|M) = P (G|M)P (L|G,M)P (R|G,L,M)P (S|L,M)P (B|S,M). (2.2)

In this example, we have exploited conditional independencies between variables in
the model, to factorize the joint distribution. In equation (2.2) some expert’s knowledge
has been used to reduce the dependencies. Each variable is then writing conditioned
on its parents, where parents(x) (parents of x) in the Bayesian networks is the set of
variables with direct arc into x.
A Bayesian network is a compact representation of a full joint probability distribution.
A general way of writing this equation is

p(X|M) =
∏

x∈X

p(x|parents(x),M). (2.3)

Bayesian networks representation of equations (2.1) and 2.2 are illustrated in Figure 2.1(a)
and 2.1(b), where observed variables are shown as shaded nodes. In figure 2.1(b) the lack
of possible arcs between variables (nodes), encodes conditional independencies.

Another important extension which allows us to use graphical models to represent and
reason about the task of learning, is the notion of a plate or replicated node. This will
be explained, too, using an example (this time taken from Buntine [28]).
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 θ

heads
1

heads
2

heads
N

(a) The coin model with re-
peated group of headsi and
deterministic parameter θ.

 

 θheads i

i=1, ..., N

(b) The coin model with
plate and deterministic pa-
rameter θ.

 θheads i

i=1, ..., N

a b

Beta(α  = a ,α = b )
1 2

(c) The same model as (b)
with deterministic hyperpa-
rameters {a, b} .

Figure 2.2: Bayesian Net of a simple unsupervised learning problem containing uncertainty (see ex-
ample 2.2), where we model tossing a biased coin with physical probability of heads equal
to θ. The observed variables are shown as shaded circles, the deterministic3 variables are
shown as rectangles and stochastic hidden variables are the non-shaded circles. When
assuming headsi to be (IID) the repeated group of (headsi, i = 1, · · · , N) in (a) can
be replaced by a single node in (b), with a plate (rounded box) around it. (b) This type
of Bayesian nets models where the parameters θ are deterministic (rectangle), is referred
to as ML models ( see 3.1). (c) θ is a stochastic variable (circle), the parameters {a, b}
governing its distribution are referred to as hyperparameters, they are deterministic in this
case.

Example 2.2 Consider a very simple unsupervised learning problem containing uncer-
tainty, where we have a biased coin with an unknown bias θ for heads (and (1 − θ) for
tail). that is, the long-run frequency of getting heads for this coin on a fair toss is θ.
The coin is tossed N times and each time the binary variable headsi is recorded (0/1 for
heads/tail respectively and i = 1, · · · , N) . The graphical model can be seen in figure 2.2.
Assume that all the data of size N , is generated by sampling from the Binomial distribu-
tion with parameter θ (i.e Nheads ∼Bin(N,θ), where Nheads is the number of heads in N

trials). Nodes headsi in figure 2.2 are represented as circles, their value is given at each
trial, headsi are therefore observed variables and they are represented as shaded circles.
θ is the parameter to infer, when we assume that its value is (although unknown) as in
the case of Maximum Likelihood inference, the parameter is represented as a rectangle,
see figure 2.2(a) and 2.2(b). When θ is assumed to be a stochastic variable with a distri-
bution over it (i.e. prior distribution p(θ)), the node is represented as a circle, since its
value is hidden the circle is unshaded see figure 2.2(c). The prior could be in this case
p(θ|a, b) ∼ Beta(α1 = a, α2 = b) (Appendix B). Since a and b are parameters for the
distribution of another parameter θ, we referred to them as hyperparameters.
The joint distribution of everything in figure 2.2(a) can be writing as:

p(θ, heads1, · · · , headsN ) = p(θ)p(heads1|θ)p(heads2|heads1, θ)

· · · p(headsN |heads1, · · · , headsN−1, θ) (2.4)

With the assumption that headsi are independently and identically distributed ( IID),
the repeated group of headsi nodes in figure 2.2(a) can be replaced by a single node, with
a box around it in figure 2.2(b). This box is referred to as a plate. Equation (2.4) can
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be rewriting as

p(θ, heads1, · · · , headsN ) = p(θ)p(heads1|θ)p(heads2|θ) · · · p(headsN |θ)

p(θ, heads1, · · · , headsN ) = p(θ)
N∏

i

p(headsi|θ) (2.5)

The result from equation (2.5) is what we will get if we try to write down the joint
distribution of figure 2.2(b).

The plate introduced in example (2.2) (figure 2.2(b)) implies that

• The enclosed subgraph is duplicated N times.

• The enclosed variables are indexed.

• Any exterior-interior links are duplicated

When dealing with plates in Bayesian networks, one should express the joint probability
ignoring the plates, and take a product to index the variable inside it, as in equation (2.5).
The next question is how to learn such models.



CHAPTER 

Inference in a Bayesian Network

Once the Bayesian network is constructed for a certain problem involving unknown
parameters (variables). Logically ‘the’ task is to find the true value of these parameters.
However, in almost all practical cases, finding these values involves some impossible
computations, for instance, example (2.2) the task was to find the true head’s physical
probability θ:

θtrue = lim
N→∞

Nheads

N
.

This is not possible to compute since it requires infinite number of trials. Then given the
limited amount of observations (training data) at hand, an single estimate to the true
parameters (maximum likelihood way) or a distribution over them (Bayesian technic)
should be inferred.
In the frequentist school, a single parameter (set of parameters) Θ∗ = {θ∗j}K

j=1 which
maximizes the fit to the data, is to be found. The fit in this case is measured by
the likelihood function p(x|θ). Due to the monotonicity of the logarithm, as well as
its many advantages, such as concavity and algebraic convenience, the log likelihood
L(θ) = ln p(x|θ) is taken instead, as a measure of the fit.
The other school (Bayesian school) has a different view of what it means to learn from
data, in which probability is used to represent uncertainty about the relationship being
learned. In a Bayesian sense, learning a model involves calculating the posterior proba-
bility density over the possible model parameter values. In both methods the inference
can be divided into two levels:

Model fitting: Here we assume that one of the models M, which we invented is
true. By model in Bayesian nets we mean the number of parameters (nodes in the
graph), whether they are stochastic variables (circles) or deterministic variables (rectan-
gles), and the dependencies between those parameters (the presence or lack of the arcs).
The model is then fitted to the data. Typically a model includes free parameters Θ.
Fitting the model to the data involves inferring what values those parameters should
take, given the data. This level is repeated for each model.

Model selection: Here we compare the different models in the light of the data.
Using some measure, a "best" model is chosen.

The two different schools solve the above levels differently. This is what we are going
to discuss in the rest of this chapter.

11
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(a) The observed data (b) A possible model M1. (c) Another possible modelM2.

Figure 3.1: This figure shows an unsupervised problem of density estimation using mixture of gaussian
models. (a) is the observed data, generated by a mixture of 4 gaussians. (b) is a possible
model with a mixture of 9 gaussians. (c) is an other possible model, this time with a
mixture of only 3 gaussians. There is no doubt that the model in (b) will have higher score,
than the one in (c), in form of higher likelihood, i.e., Linc(ΘM1 |M1)>Linc(ΘM2 |M2),
ML tends to prefer the more complex models that over-fit to data, i.e., it does not penalize
complex models. This is in fact one of the major problems of ML. A regularization factor
can though be add to the likelihood function to take into account the complexity of the
model, while training.

3.1 Maximum likelihood

As mentioned earlier, a frequentist way of learning a model, where the complexity is
taken into account, can be done in two levels: Model fitting and model comparison.

Model fitting: The frequentists assume that the parameters are deterministic vari-
ables and try to infer them by maximizing the (log-) likelihood function.
Given a certain model M to be true, a general expression of the log-likelihood function
of parameters Θ = {θj}K

j=1 can be written as:

L(Θ|M) = ln p(X|Θ,M)

= ln
Y

i

p(xi|Θ,M)

=
X

i

ln p(xi|Θ,M), (3.1)

where in the second line of the above equation, we used the assumption implied by the
plate that the examples are IID, which allow us to factorize the probability p(X|Θ,M).
The estimate Θ∗

M is then found by

Θ∗
M = argmax

Θ

L(Θ|M). (3.2)

This is intuitively appealing since it corresponds to values for Θ which describe the data
well.
Since we are going to deal with Latent Variable Models (section 4.2), it is convenient
to assume that we also have hidden states (or missing data1) s that help in modelling
the observed data X. The hidden states can, for example, be discrete component labels

1hidden state or missing data in Bayesian nets, are the hidden variables (unshaded circles) that are
inclosed with the observed data in a plate. Hidden state can either be continuous or discrete variables.
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which represent a sort of imaginary class labels for the observed data. In fact this is a
way to define mixture models, as we will see in section 5. The factors in a Factor Analysis
Model (section 4.3) are also an example of hidden states. The log-likelihood of Θ is then
obtained by marginalizing over the hidden states S. Since L(Θ|M) in equation (3.1),
does not include these missing data, this quantity is usually referred to as incomplete
log-likelihood , and from now on is written as Linc(Θ|M).
Including the marginalization over the missing variables S, equation (3.1) can be rewrit-
ten as:

Linc(Θ|M) = ln p(X|Θ,M) =
X

i

ln

Z
p(xi, s|Θ,M) ds. (3.3)

An intuitive approach to maximize Linc(Θ|M) is to take the partial derivative to each
of its parameters θj , and try to solve for zero.
Since the integral (or sum) over s is required to obtain the marginal probability of the
data, and due to the fact that the log of the integral can potentially couple all of the para-
meters of the model, maximizing (3.3) directly is often difficult. Furthermore for models
with many hidden variables, the integral (or sum) over s can be intractable. This problem
will be solved later (see section 3.3.2) when dealing with variational techniques. A major
problem of maximum likelihood is that, it does not take the complexity of the model into
account. This problem will lead the maximum likelihood to choose more complex mod-
els, this is illustrated in figure 3.1, for a hypothetical example of density estimation using
mixture of gaussian models (more about this type of models will be discussed later in
this thesis.). Where the model in figure 3.1(b) will certainly have higher score, than the
one in figure 3.1(c), in form of higher likelihood, i.e., Linc(ΘM1 |M1)>Linc(ΘM2 |M2).
To prevent ML in choosing the more complex models, a penalty term Cp(Θ) [35] which
grows as the complexity of the model grows, should be subtracted from the likelihood
function. The new score function C(Θ|M) becomes

C(Θ|M) = Linc(Θ|M)− γ Cp(Θ|M), (3.4)

where γ is a regularization parameter, which controls the influence of the penalty term
on the total score function.
In words equation (3.4) states that, a model which provides a good fit to the training
data will give high likelihood Linc(Θ|M), while one which is very simple will give a
small value for Cp(Θ|M). The learning then becomes a trade off between maximizing
the fit to data and minimizing the complexity of the model. A well known example of
regularization is the weight decay :

Cp(Θ|M) =
1

2
||Θ||2, (3.5)

which are applied to numerous linear and non-linear model e.g., Neural networks [5].
This regularizer favors a smoother mapping by penalizing large parameter values which
are often an indication of overfitting. Note that there is only one regularization term γ

for the whole model. A more complex example of regularization, which is motivated by
the framework of automatic relevance determination (ARD)(section 4.3), is used in this
thesis to control the dimension of the latent space in FA and PPCA (see section 4.3):
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1

2

dX
j=1

γj ||Aj ||2, (3.6)

where Aj (A = {Aj}d
j=1) are the columns of the factor loadings in FA model, and d

is the dimension of the observed variable X. Note here that there is one regularizer for
each column {γj}d

j=1, where each of them tries to cancel its corresponding column if it
is unnecessary to interpret the information in the data.

Model selection: The choice of a good model depends on how well that model
performs on wide range of unseen data (i.e., how well the model generalizes) [5]. The
inclusion of a regularizer, such as weight decay or ARD in (3.6) simplifies the task of
model selection, since we can now choose a rather complex model and rely on the penalty
term to control the effective complexity. The problem here is that the appropriate choice
of the regularization parameters γ in (3.4) cannot be found by increasing C(Θ|M) using
training data since this will of course result in a optimal choice of zeros. This means
that we need to keep a part of data set (test set) (unseen during training) to compare
the performance of the model. This procedure can itself lead to overfitting to the test
set. The performance of the selected model should then be confirmed by measuring its
performance on a third independent data called validation set. This becomes unwieldy
for more complex regularizer with several regularization terms such as {γj}d

j=1 in (3.6).
The need of keeping aside part of, in the most cases, limited data set highlights another
disadvantage of ML methods. An attempt to remedy this problem, techniques based on
cross-validation are used [5], but they are computationally expensive, and are wasteful
of data [7].

The frequentist has developed various criteria, often in context of linear models, to
estimate the value of the generalization performance of trained models without the use
of validation data. One of these criteria is Akaike Information Criterion (AIC) (3.8).
Such criteria take the general form of the prediction error (PE) [5], which consists of the
sum of two terms

PE = trainning error + complexity term, (3.7)

where the complexity term represents a penalty term which grows as the number of
free parameters in the model grows. Note that this is not exactly the same as the
regularization in ARD (3.6) or weight decay (3.5), where the complexity was expressed
by the values taken by the parameters, i.e., we could still have large number of parameters
and low penalty if those parameters take on values close to zero.
Another quantity which arises from the Bayesian approach, is the Bayesian information
criterion (BIC)2 (see section 3.2.2), which can also be expressed as (3.7). AIC and BIC
are defined as:

AIC(ΘML|Mj) = Linc(ΘML|Mj)− |Mj | (3.8)

BIC(ΘML|Mj) = Linc(ΘML|Mj)− |Mj |
2

ln N, (3.9)

2BIC is the same as the negative of Minimum Description Length (MDL) BIC = −MDL
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where |Mj | is the number of free parameters to be estimated in the model, and N is size
of training set. The fact that BIC does not depend on the distribution over Θ, makes
it suitable for use in ML where Θ is deterministic.
Following equation (3.7), a certain model is better than another one, if it has a higher
AIC (or BIC) value (i.e., lower prediction error PE). Both AIC and BIC have solid
theoretical foundations: Kullback-Leibler distance in information theory (for AIC), and
integrated likelihood in Bayesian theory (for BIC) (section 3.2.2). If the complexity of
the true model does not increase with the size of the data set, BIC is the preferred
criterion, otherwise AIC is preferred [30]. In the chapter 6, BIC will be compered to a
Bayesian approach. Note that using BIC, the good thing is: all the data is now used to
infer what we need, namely the parameter values, and the complexity control is just a
part of training. But the bad thing is: even when using BIC or AIC it is still necessary
to run the training for different models to choose the best one.

3.2 Bayesian Learning

"Bayesian inference is an approach to statistics in which all forms of uncertainty are
expressed in terms of probability"

Radford M. Neal, Philosophy of Bayesian Inference

http://www.cs.toronto.edu/∼radford/res-bayes-ex.html

If you are still not convinced, here comes another one:
"I like Bayesian methods, because I know what my assumptions are, and I know what

my approximations are, and I obtain error bars with a well-defined meaning, and I can
marginalize over nuisance variables in order to obtain predictive distributions. It is all
well-defined, mechanical and beautiful."

D.MacKay, http://www.cs.toronto.edu/∼mackay/Bayes_FAQ.html

In the previous section we discussed maximum likelihood, which attempt to find a single
set of values for the parameters. By contrast, the Bayesian approach has another way
of interpreting learning from data, where a probability distribution function over the
parameter space is used to represent the relative degrees of belief in different values for
the parameters.
In this section we consider the application of Bayesian inference techniques to Bayesian
nets (see section 2.2). We will see that the regularization discussed in the last section
(see equation (3.4)) can be given a natural interpretation in the Bayesian framework
(3.11), and that in Bayesian methods the values of regularization terms (such as γj in
(3.6)) can be selected using only training data, without the need to use separate train-
ing and validation data. We will also show that Bayesian model comparison embodies
Occam’s razor [12], the old principle that states a preference for simple models.
To be consistent with levels of learning, stated before, we will describe Bayesian learning
as a 2 level learning, using the steps of evidence framework [10].

Level 1: Model fitting:
Assuming that one model Mm is true, we infer what the model’s parameters might be
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given the data. In the absence of any data, our belief is expressed by the prior distribution
p(Θ|Mm). Once we observe the data X we can compute the posterior probability of the
parameters Θ using Bayes’ rule. The process of computing the posterior p(Θ|X,Mm)
is termed Bayesian inference.

p(Θ|X,Mm) =

Likelihood︷ ︸︸ ︷
p(X|Θ,Mm)

Prior︷ ︸︸ ︷
p(Θ|Mm)

p(X|Mm)︸ ︷︷ ︸
Evidence

. (3.10)

This relationship has far reaching consequences for Machine Learning, and it is a pre-
scription on how to systematically update our guess of a problem given the data observed.
In words equation (3.10) states that our understanding of Θ after seeing data X (cap-
tured by the posterior distribution over the parameters p(Θ|X,Mm)) is the previous
knowledge of Θ (the prior p(Θ|Mm)) modified by how likely the observation X is under
that previous model (likelihood p(X|Θ,Mm)). Thus the parameters that seemed plau-
sible before, but failed in performing a well match, will now be seen as being much less
likely, while the probability for values of the parameters that do fit the data well will
increase.
The denominator p(X|Mm) is a normalizing term called marginal likelihood or evidence,
and ensures that the posterior behaves as a probability. Note that, with or without
this term, the mean value and the parameter that maximizes the resulting distribution
will still be the same. This term is sometimes omitted, but only in this level, since the
evidence is crucial in the next level (model selection).

Including the hyperparameter in equation (3.10), we can interpret the cost function
in (3.4) entirely in a probabilistic way, as follows:

C(Θ|Mm) = ln p(Θ|X, γ,Mm) = ln [
p(X|Θ, γ,Mm)p(Θ|γ,Mm)

p(X|γ,Mm)
]

= ln p(X|Θ, γ,Mm) + ln p(Θ|γ,Mm)−Z
= Linc(Θ|γ,Mm)− [− ln p(Θ|γ,Mm)]−Z, (3.11)

where Z is the log evidence, and is regarded here as constant (wrt. Θ). The weight decay
regularizer in (3.5) then corresponds directly to the prior distribution for the parameters

p(Θ|γ,Mm) = N (Θ; 0, 1/γ) (3.12)

∝ exp(−γ||Θ||2
2

)

⇒ − ln p(Θ|γ,Mm) ∝ γ||Θ||2
2

.

Thus, maximizing the regularized cost function in (3.4) is similar to taking themost prob-
able parameter valueΘ∗ = ΘMP that maximizes the posterior distribution p(Θ|X, γ,Mm).
This is a nice probabilistic interpretation of the cost function. This is in fact what is
referred to as maximum a priori estimator (MAP), and ΘMP = ΘMAP, lets write the
MAP for Θ, corresponding to weight decay:
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Θ∗ = ΘMAP = argmax
Θ

C(Θ|Mm)

= argmax
Θ

ln p(Θ|X, γ,Mm)

= argmax
Θ

Linc(Θ|γ,Mm)− γ||Θ||2
2

. (3.13)

This can easily be extended to the more complex case of the ARD used in this thesis,
simply by assuming that the parameters Θ = {θj}d

j=1 are IID and that each parameter
is a vector equal to a column in the factor loading matrix, i.e., (Θ = A = {Aj}d

j=1), and
where each one of those vectors has a precision (inverse of the variance) γ = {γj}d

j=1.
Using a diagonal3 gaussian distribution as a prior for the parameters. Equation (3.11)
can be then rewritten as:

C(A|Mm) = Linc(A|γ,Mm)− [− ln p(A|γ,Mm)]−Z

= Linc(A|γ,Mm)− [− ln
d∏

j=1

p(Aj |γj ,Mm)]−Z

= Linc(A|γ,Mm)− [−
d∑

j=1

ln p(Aj |γj ,Mm)]−Z (3.14)

∝ Linc(A|γ,Mm)− 1
2

d∑

j=1

γj ||Aj ||2. (3.15)

Equation (3.15) corresponds exactly to ARD regularization of the maximum likelihood
function in equation (3.6), when included in equation (3.4).

It should be noted that in order to make inferences of the true parameters Θtrue,
based on our knowledge of the system at this level, the expected value 〈Θ〉p(Θ|x,Mm)

is chosen, instead of ΘMAP, where the expectation is taking wrt. the posterior of the
parameter of interest p(Θ|x,Mm):

Θ∗ = 〈Θ〉 =
∫

Θ p(Θ|X, γ,Mm) dΘ. (3.16)

This estimate happens to minimize the mean square cost function J (Θtrue,Θ∗), which
penalizes the wrong estimate Θ∗, where

J (Θ,Θ∗) =
(Θ−Θ∗)2

2
. (3.17)

The expected loss function J (Θ∗) is then found by marginalizing the above equation,
wrt. Θ as

J (Θ∗) =
∫
J (Θ,Θ∗)p(Θ|X,Mm) dΘ. (3.18)

3The diagonal choice of the covariance matrix reflects our assumption that column in the factor
loading matrix are independent from each other.
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Figure 3.2: This figure illustrates a hypothetical example of a posterior distribution p(Θ|X,Mm)

over the parameter space Θ of a model Mm. Choosing the parameter that maximizes the
posterior (ΘMAP ), in this case, will result in the highest posterior probability (equivalently
the lowest training error). But because the narrow peak only contains a fraction of the
total probability mass, the spike is particular for the used training set. Thus the resulting
model is sensitive to this choice of parameters, and so may not explain further observations.
This is referred to as overfitting. To solve this problem, we choose the average Θ∗ =< Θ >

over all the possible parameters, weighted by their posterior probability (equation (3.16)).

Thus, minimizing this quantity gives the best estimate in mean square sense (3.17).
Minimizing the above quantity requires computing its partial derivative wrt. Θ∗ and
solving for zero

∂J (Θest)
∂Θ∗ =

∫
∂J (Θ,Θ∗)

∂Θ∗ p(Θ|X,Mm) dΘ

=
∫

[Θ−Θ∗]p(Θ|X,Mm) dΘ

= [〈Θ〉 −Θ∗] = 0,

⇒ Θ∗ = 〈Θ〉. (3.19)

A further supported to this choice is illustrated as a hypothetical example [29] of a
posterior distribution in figure 3.2. If the estimate is chosen to maximize the posterior
distribution Θ∗ = ΘMP , then the model is chosen to be in a narrow peak. The problem
is that the peak only contains a fraction of the total probability mass, which means that
the model will explain the training data very well, but will be very sensitive to the values
of the parameters, and may not explain further observations. To solve the problem we
take the average over all possible values weighted by their posterior probability, as in
equation (3.16). How confident we are about this estimation, can be expressed by the
second moment of the posterior distribution (and can be showed as error bars).

Note that in the fully Bayesian approach, all variables in the Bayesian network are
treated as stochastic variables and can be expressed as {Θ,R} ⊆ H, where Θ is those
hidden variables we want to reason or make prediction about their values. The re-
maining hidden variables R are regarded as nuisance variables. This holds also for the
hyperparameters as γ in equation (3.11) and their ancestors (if any). The posterior of a
particular parameter θj (e.g., γ) can then be found using the marginalization over the
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rest of parameters

p(θj |X,Mm) =
∫

p({θk}K
k=1|X,Mm)

∏

all k 6=j

dθk. (3.20)

All the other (nuisance) hidden variables R 6= Θ are integrated over (marginalized), to
get the joint distribution p(X,Θ|Mm) in the nominator of equation (3.10)

p(X,Θ|Mm) = p(X|Θ,Mm)p(Θ|Mm) =
∫

p(H,X|Mm) dR

=
∫

p({Θ,R},X|Mm) dR, (3.21)

which coincide with the following quotation.

"Integrating over a nuisance parameter is very much like estimating the parameter
from data, and then using that estimate in our equations."

G. L. Bretthorst [13], S

ince we are not implementing a fully Bayesian learning, some of the hyperparameters
or their ancestors are treated as deterministic variables (rectangles in the graph), where
their values are inferred using type-II maximum likelihood.
The real strength of Bayesian framework only emerges when going to higher levels of
inference.

Level 2: Model comparison:
In fact, Bayesian inference leads to a natural method for comparing models. One can
compare alternative models, Mm by calculating the posterior

p(Mm|X) =
p(X|Mm)p(Mm)

p(X)
(3.22)

∝ p(X|Mm)p(Mm), (3.23)

where the normalization factor p(X) was omitted, since it is independent of the choice
of the model in this level. The data dependent term p(X|Mm) is the normalizing con-
stant of the posterior p(Θ|X,Mm) in the previous level of inference (equation (3.10))
and it is called the evidence for the model Mm. If all models have equal probability
prior to comparison, the model prior p(Mm) will not be considered. The maximum4 of
equation (3.23), and thereby our choice of the model, is then equivalent to the maximum
of the ‘evidence’ p(X|Mm), which can be expressed as:

evidence = p(X|Mm) =
∫

p(X|Θ,Mm)p(Θ|Mm) dΘ. (3.24)

Because of this marginalization over the parameters, the evidence automatically penalizes
too "complex" models. Complex models have more degrees of freedom so can model a
wide range of data sets, therefore the probability given to any one data set, say X,

4A fully Bayesian framework will take the whole posterior into account, and not only the model that
maximize this distribution.
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is relatively low. Models that are too simple will not be able to fit the whole data
set X adequately so will also be given relatively small probability for X. Only models
complex enough to explain the data sufficiently, but not too complex to spread themselves
too thinly, will be scored highly. This leads to a natural ‘Occam’s Razor’ for model
selection [48].
Note that asymptotically the overfitting problem is avoided simply because no parameter
in the pure Bayesian approach is actually fit to the data (3.24).

3.2.1 Conjugate-Exponential Models

Bayesian model inference relies on the marginal likelihood, which has at its core a set
of prior distributions over the parameters of each possible structure, p(Θ|Mm). Priors
comes in several flavors, and can be roughly categorized into subjective, objective and
empirical approach. To some degree all those priors are subjective, since they are based
on ‘our’ choice. Here the emphasis is not on whether we use a prior or not, but rather
on what knowledge (if any) is put into the prior [32].
As its name implies the subjective priors includes as much prior knowledge as possible,
based either on previous experiments or on expert knowledge. A favorable class within
the subjective priors are the conjugate priors in the exponential family . The priors are
said to be conjugate if the posterior distribution resulting from multiplying the likelihood
and prior term is of the same form as the prior, this can be mathematically expressed as

f (Θ|α̃) = p(Θ|X) ∝ f (Θ|α)p(X|Θ), (3.25)

where f (Θ|α) is some probability distribution specified by a parameter (or set of para-
meters) α.
In the course of the thesis we consider conjugate-exponential models (CEM), CEMare
models that satisfy the following two conditions:

Condition (1). The incomplete data likelihood Linc(Θ) is in the exponential family :

Linc(Θ) = p(xi|Θ) = g(Θ)f (xi) exp {φ(Θ)>u(xi)}, (3.26)

where g(Θ) is a normalization constant, φ is the vector of the so-called natural parame-
ters, and u and f are functions defining the exponential family.

Condition (2). The parameter prior is conjugate to the Linc(Θ):

p(Θ|η, ν) = h(η, ν)g(Θ)η exp{φ(Θ)>ν}, (3.27)

where η and ν are hyperparameters of the prior. Note that g(Θ) and φ(Θ) are the
same as in condition (1). Condition (2) usually implies condition (1). Apart from some
particular cases, the exponential family are the only classes of distributions with fixed
number of sufficient statistics, therefore conjugate priors exist only for this family.
In Bayesian inference we are interest in determining the posterior over the parameters
p(Θ|X). Using equations (3.26) and (3.27) into equation (3.25) we get
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p(Θ|X) ∝ p(Θ|η, ν)p(X|Θ) ∝ p(Θ|η̃, ν̃) (3.28)

where

η̃ = η + N

ν̃ = ν +
N∑

i=1

u(xi),

where ν̃ and η̃ are the updated parameters of the posterior distribution which has the
same functional form as the prior.

3.2.2 Approximation Methods

In practice, in most cases, it is computationally intractable to perform exact inference.
Bayesian inference requires calculating marginals over hidden variables. It can be seen
by taking the evidence in equation (3.10), and equation (3.21)

p(X|Mm) =
∫

p(Θ,X|Mm) dΘ

=
∫ ∫

p({Θ,R},X|Mm) dR dΘ. (3.29)

These integrals are typically high-dimensional, non-linear and in many cases non-analytic.
The intractability of exact inference in both discrete and continuous models has lead to
the development of a number of approximate inference techniques. As mentioned in the
introduction, these approximation methods can be partitioned in two groups [14]:

Samplings approximations:

Instead of trying to determine the posterior, sampling methods are stochastic approaches
that attempt to obtain a number of samples from that posterior. The most widely used
samplings techniques lie in the family of Markov Chain Monte Carlo (MCMC) methods.
Those methods have been applied to several machine learning problems [36, 2]. MCMC
are computationally expensive, and very slow [17, 32].

Deterministic approximations:

This family includes among others, the previously discussed maximum likelihood, max-
imum a posteriori (MAP), laplace methods, and variational methods.

3.2.3 Laplace approximation and BIC

Laplace approximation to the evidence p(X,Mm) makes a local Gaussian approximation
around a MAP parameter estimate, which after some mathematical manipulations [12,
32] can be written as:
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p(X|Mm)Laplace = p(ΘMAP,X|Mm)p(ΘMAP)|2πH−1|1/2 (3.30)

⇒ ln p(X|Mm)Laplace = ln p(ΘMAP,X|Mm)− 1
2

ln |H|+O(1), (3.31)

where H is the hessian of the log posterior evaluated at ΘMAP [32], and O(1) is all terms
independent on N . Assuming that the prior is non-zero at ΘMAP, in the limit of large
N , the above equation becomes the BIC score:

ln p(X|Mm)BIC = ln p(ΘMAP,X|Mm)− dMm

2
ln N, (3.32)

where dMm is the dimension of the model Mm. There are two interesting points in the
BIC expression, first it is independent on the prior p(Θ|Mm), this feature is mostly
interesting for point estimate methods such as ML and can to some degree be in-
terpreted as the prediction error (PE) in equation (3.7), therefore it was written in
equation (3.9). The second interesting point is that BIC is invariant to reparameterisa-
tion of the model [32], and is appealing in Bayesian approach, since this should fall out
of an exact Bayesian treatment in any case.

However, the laplace approximation (3.30) can be poor for small data set (for which, in
principle, the advantages of Bayesian integration overML are largest.) and the gaussian
approximation requires computing or approximating the Hessian at the MAP estimate,
which can be computationally costly.

My focus in this thesis is on the variational methods that approximate expectations
of functions under the posterior.

3.3 Variational Inference

Unlike sampling methods, variational inference is a deterministic approximate method [14]
that attempt to optimize directly the accuracy of the approximated posterior distribu-
tion. The aim of variational approximation can be roughly explained as a method where
we convert a complex problem into a simpler problem by decoupling degrees of freedom
in the original problem. Variational methods can be applied, to approximate exact dis-
tributions by simpler variational distributions, which has loose dependency structure,
by using an assumption that, certain hidden variables may become approximately inde-
pendent when conditioned on the observed data. The variational inference is therefore
referred to the case, where these approximated distributions are the posterior distribu-
tions of hidden variables H:

p(H|X) ≈ Q(H). (3.33)

The inference is then performed by minimizing the difference between variational distrib-
ution QH and the true posterior. The difference is measured in terms of the dissimilarity
function d(Q, P ). A choice of dissimilarity function where the minimization is tractable
is the Kullback-Leibler divergence.
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P(x)
Q(x)

(a) KL(Q||P )

P(x)
Q(x)

(b) KL(P ||Q)

Figure 3.3: This figure illustrates the difference between minimizing KL(Q||P ) (a) or KL(P ||Q) (b).
This difference is due to the asymmetry of the Q divergence. Suppose P is bimodal
distribution (solid line), and we attempt to approximate it using a unimodal distribution
Q (dashed line), that in: (a) minimizes KL(Q||P ), this will give a Q distribution with
almost all probability mass in one mode of P and neglecting the other mode. And in: (b)
minimizes KL(P ||Q) that will give a Q that covers both modes, but which also places a
high probability between the modes, where P is negligible. Thus a care should be taken
when minimizing the KL between the posterior and the variational distribution.

3.3.1 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is an entropy-like measure, defined as

KL(Q||P ) =
∫
Q(x) ln

Q(x)
P (x)

dx. (3.34)

The KL divergence has the property of being zero when Q = P and positive otherwise,
moreover it is not symmetric and thus

KL(Q||P ) 6= KL(P ||Q).

A simple illustration in figure 3.3 shows the difference between minimizing the above two
divergences. Where the first one attempts to cover a part of the distribution, and the
second one tries to cover both modes.

3.3.2 Variational Maximum Likelihood

In section 3.1 we discussed the problem of direct maximization of the log-likelihood
function in the presence of hidden variables (incomplete data log-likelihood Linc(Θ),
equation (3.3)). The function is rewritten here for convenience

Linc(Θ) =
∑

i

ln p(xi|Θ) =
∑

i

ln
∫

p(xi,S|Θ) dS, (3.35)

where we have assumed the data is IID, the model M is omitted from the expression
for simplicity. Here one should remember that in ML, Θ is a deterministic variable
(no distribution over it), whereas the hidden state S = {si}N

i=1 are stochastic variables
(continuous or discrete).
We can simplify the problem of maximizing Linc wrt. Θ by making use of the following
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Θ

Q(S)

F(Q,Θ)m

Figure 3.4: This figure shows that EM is a coordinate ascent algorithm in F .

insight [40],[42]: Any distribution Q(S) over the hidden variables defines a lower bound
on Linc(Θ). In fact for each data point xi we use a distinct distribution Qsi over the
hidden variables to get the lower bound. This can be shown by a simple manipulation
of equation (3.35)

Linc(Θ) =
∑

i

ln p(xi|Θ) =
∑

i

∫
lnQsi(si)

p(xi, si|Θ)
Qsi(si)

dsi (3.36)

≥
∑

i

∫
Qsi(si) ln

p(xi, si|Θ)
Qsi(si)

dsi (3.37)

= F({Qsi}N
i=1,Θ), (3.38)

where the last equality follows from the fact that the observed data is IID. This as-
sumption results also in the following important independency

QS(S) =
N∏

i=1

Qsi(si). (3.39)

Amore detailed derivation of the above important expression can be found inAppendix A
(A.1). This inequality is referred to as Jensen’s inequality and is based on the concav-
ity property of the logarithmic function. Defining the complete data log-likelihood to
be Lc(Θ) = ln p(X,S|Θ)5, the lower bound F ≥ Linc(Θ) is the negative of a quantity
known in statistical physics as the free energy :

F({Qsi}N
i=1,Θ) =

∑

i

∫
Qsi(si) ln

p(xi, si|Θ)
Qsi(si)

dsi (3.40)

=
∑

i

∫
Qsi(si) ln p(xi, si|Θ) dsi −

∑

i

∫
Qsi(si) lnQsi(si) dsi

= < Lc(Θ) >QS
−

∑

i

H(Q(si)), (3.41)

or equivalently
5Some times its negative −Lc(Θ) will be referred to, in the thesis, as the energy of the global

configuration (X,S).
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F({Qsi}N
i=1,Θ) =

∑

i

∫
Q(si) ln p(xi|si,Θ) dsi −

∑

i

∫
Q(si) ln

Q(si)
p(si)

dsi

= < ln p(xi|si,Θ) >QS
−

∑

i

KL(Q(si)||p(si)), (3.42)

where < Lc(Θ) >QS
is the expected energy underQS, andH(Q(si)) =

∫ Qsi(si) lnQsi(si) dsi

is the entropy of Q(si). The Expectation Maximization (EM) [23, 44, 40, 5] alternates
between maximizing F wrt. QS and Θ respectively , while holding the other fixed, which
is coordinate ascent in the function space of variational distribution of hidden variables
QS(S) and the deterministic parameters Θ, this is illustrated in figure 3.4. The EM
steps can be written as:

E step: Qk+1
si

← argmax
Qsi

F(Q,Θk), ∀i (3.43)

M step: Θk+1 ← argmax
Θ

F(Qk+1,Θ),

⇒ Θk+1 ← argmax
Θ

< Lc(Θ) >QS
, (3.44)

⇒ Θk+1 ← argmax
Θ

< ln p(X|S,Θ) >QS
. (3.45)

Thus the M step will correspond to either maximizing6 the expected log-likelihood
< Lc(Θ) >QS

(3.44), since the entropy in (3.41) is independent on Θ, or maximiz-
ing < ln p(X|S,Θ) >QS

, since the KL divergence in (3.42) is also independent on Θ.
The maximum of the E-step is reached when Qk+1

si
= P (S|xi,Θ), at that point the

bound becomes an equality: F(Qk+1
si

,Θk) = Linc(Θk), this can easily be deduced from
equation (3.40) by replacing Q(si) with P (si|xi,Θ)

F({Qsi}N
i=1,Θ) =

∑

i

∫
Qsi(si) ln

p(xi, si|Θ)
P (si|xi,Θ)

dsi (3.46)

=
∑

i

∫
Qsi(si) ln p(xi|Θ) dsi (3.47)

=
∑

i

ln p(xi|Θ)
∫
Qsi(si) dsi (3.48)

=
∑

i

ln p(xi|Θ) = Linc(Θ). (3.49)

Since F = Linc(Θ) at the beginning of each M-step, and since Θ do not change in
the E-step, we are guaranteed not to decrease the likelihood after each combined EM
step. Maximizing F in the E-step is equivalent to minimizing KL(Q(S)||P (X,S|Θ))
(see (3.40) and (3.34)).
By constraining Q to be for instance factorized Q =

∏
iQsi , the E-step can be simplified,

and F will still be optimized as a functional of constrained distributions Q using calculus
of variations [5]. This is the key step of variational approximations. The E-step of this
variational EM consist of a sub loop where Qsi is optimized. This can be done by taking

6By maximizing a function f (x, y) wrt. x (i.e., x ← argmax
x
f (x, y)), we mean that, one should take

the partial derivative of f wrt. x and equate it to zero ∂
∂x

f (x, y) = 0, and then solve for x.
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Figure 3.5: The variational Bayesian EM (VBEM) algorithm. In the VBE step, the variational
posterior over hidden variables QS(S) is set according to equation (3.56). In the VBM,
the variational posterior over parameters is set according to equation (3.57). Each step is
guaranteed to increase (or leave unchanged) the lower bound on the marginal likelihood.
Note that the exact marginal likelihood is a fixed quantity, for each model, and is not
affected by the VBEMsteps-it is only the lower bound that changes.

the derivative wrt. the parameters of Qsi .
Note that ML learning of model parameters, is performed by maximizing the total or
incomplete-data log likelihood Linc(Θ) = ln p(X|Θ) (3.35), but as a consequences of
using the EM algorithm we end up maximizing the complete-data log-likelihood

< Lc(Θ) >Q=< ln p(X,S|Θ) >Q,

as seen in equation (3.41). Thus it appears that we are maximizing the incorrect quantity,
but doing so is in fact guaranteed to increase (or keep unchanged) the quantity of interest,
as shown in figure 3.4.

3.3.3 Variational Bayes

Contrary toML, Bayesian learning avoids the problems of overfitting and can be used to
model selection (section 3.2). But because of computations such as (3.29), the problem
is computationally intractable. In this section we deal with a variational approximation
to the integrals required for Bayesian learning. The process is almost the same as in
EM, where the incomplete data log-likelihood of the deterministic variables Θ was lower
bounded. Except that in variational Bayes (VB) it is the model evidence7 p(X|M)
that is r bounded, and the set of parameters Θ is regarded as stochastic variables,
where their prior distributions p(Θ|M) are included in the process. Thus the variational
distribution to infer here is one that approximate the joint posterior distribution of S
and Θ: Q{Θ,S} ≈ p(Θ,S|X,M). The assumption that the variational distribution are
factorized (separable) is usually used, but for the moment only between QΘ

8 and QS

Q{Θ,S} ≈ QΘ QS.

7The evidence is still regarded as the incomplete data likelihood since it only depends on the observed
data and deterministic hidden variables which is the model M in this case.

8For simplicity, trough out the report, when writing Qα, the argument is explicitly α, i.e. Qα = Q(α),
except other argument is specified.
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The evidence in equation (3.24) can then be rewritten as:

Linc(M) = ln p(X|Mm) =
∫
QΘQS ln p(X|Mm) dSdΘ

=
∫
QΘQS ln[

p(X,S,Θ|Mm)
QΘQS

QΘQS

p(S,Θ|X,Mm)
]dSdΘ

=
∫
QΘQS[ln

p(X,S,Θ|Mm)
QΘQS

+ ln
QΘQS

p(S,Θ|X,Mm)
]dSdΘ

= Fm(QΘ,QS) + KL(QΘQS||p(S,Θ|X,Mm)) (3.50)

≥ Fm(QΘ,QS) (3.51)

= Fm(QΘ, {Qsi}N
i=1), (3.52)

where in (3.51) we used Jensen’s inequality (this can also be explained by the fact
that KL ≥ 0 (section 3.3.1)), and in the last equality follows from the fact that the
observed data is IID. Note the similarity between equations (3.38) and (3.51). While we
maximize the former wrt. hidden states distributions and the parameters, the latter is
maximized wrt. hidden states distributions and the parameters distributions. Due to the
factorization of the hidden variables Θ and S the variational Bayesian algorithm can be
implemented as the EM algorithm , this is in fact called variational Bayesian EM where
we iteratively maximizes Fm wrt. the distributions, QX and QS, which is coordinate
ascent in the function space of variational distributions, this is similar to the illustration
in figure 3.4, except this time we have a distribution QΘ(Θ) in stead of a deterministic
parameter Θ. From equation (3.50) we can see that maximizing Fm is equivalent to
minimizing the KL divergence between QΘQS and the joint posterior p(S,Θ|X,Mm).
To infer the variational distributions lets first right down the lower bound expression

Fm(QS,Θ) =
∫
QS(S)QΘ(Θ) ln

p(X,S,Θ|Mm)
QS(S)QΘ(Θ)

dΘdS. (3.53)

Using the calculus of variations we can prove that the solution for each of the individual
QHk

distributions that maximizes the functional F is of the form:

QHk
(Hk) =

exp < ln p(X,H|Mm) >Qj 6=k∫
exp < ln p(X,H|Mm) >Qj 6=k

dHk
, (3.54)

or equivalently

lnQHk
(Hk) =< ln p(X,H|Mm) >Qj 6=k

+k, (3.55)

where H = {Hk}K
k=1 represent all hidden variables in the model: {Θ,S} ⊆ H, this

generale expression will become useful later when we assume further factorization for
some of the variables in Θ.
Due to the constraint made by the Lagrange multipliers in the calculus of variations [].
All the elements resulting from equation (3.54) (including those from the nominator),
that are independent on Hk, represent the inverse of the normalization factor ZHk

, which
ensures that QHk

(Hk) behaves as a probability distribution, this can be shortly seen in
e.g. VBE-step.
Using equations (3.39) and (3.54) we can write down the VBEM (similar to EM)
algorithm as follows:
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VBE step:

Q(t+1)
si

(si) =
exp < ln p(X,S,Θ|Mm) >Q(t)

Θ∫
exp < ln p(X,S,Θ|Mm) >Q(t)

Θ

dsi

=
exp <

∑
n ln p(xn, sn|Θ,Mm) + ln p(Θ|Mm) >Q(t)

Θ∫
exp < ln p(X,S,Θ|Mm) >Q(t)

Θ

dsi

= exp < ln p(xi, si|Θ,Mm) >Q(t)
Θ

exp <
∑

n6=i ln p(xn, sn|Θ,Mm) + ln p(Θ|Mm) >Q(t)
Θ∫

exp < ln p(X,S,Θ|Mm) >Q(t)
Θ

dsi

Q(t+1)
si

(si) =
exp < ln p(xi, si|Θ, Mm) >Q(t)

Θ

Zsi

∀i (3.56)

and similarly

VBM step:

Q(t+1)
Θ (Θ) =

exp < ln p(X,S,Θ|Mm) >Q(t+1)
S∫

exp < ln p(X,S,Θ|Mm) >QS (t+1) dΘ

=
exp < ln p(X,S|Θ,Mm) + ln p(Θ|Mm) >Q(t+1)

S

ZΘ

Q(t+1)
Θ (Θ) =

p(Θ|Mm) exp < ln p(X, S|Θ, Mm) >Q(t+1)
S

ZΘ

(3.57)

where in both steps we used the properties of the expectation operator < · >9 and the
logarithmic function10. The VBEMsteps are illustrated in figure 3.5

9〈x + y〉 = 〈x〉+ 〈y〉
10ln(x · y) = ln x + ln y
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Figure 4.1: The Bayesian network for a probabilistic model represents a set of N observed data
points with a Gaussian distribution of mean µ and precision ΨX . The plate (section 2.2)
indicates that the contained node and its connected edges are duplicated N times, and
that the observed variable x is assumed IID. (a) represents the MLmodel, where the
hidden parameters Θ = {µ, ψx} are deterministic variables; whereas (b) is the Bayesian
approach, where both parameters are regarded as stochastic variables.

In this chapter we will present the different models used through out this report, we
will also discuss their advantages and drawbacks, based on their performances, mainly in
estimating the probability density of some given toy data. A more detailed comparison
based on some real world data or more complex toy data, will be discussed later in
chapter 6.
The models are presented as Bayesian nets (section 2.2), and they will be learned using
both ML- and VB-techniques.
In the next section I will discuss density estimation using a single Gaussian, and based
on its failure, I will give the reason why one should use better models, namely Latent
variable models.

4.1 Density modelling using a single Gaussian

A simple and widely used example of density function is the Gaussian or normal distri-
bution defined on x ∈ Rd

p(X|Θ) = N (X|µ,Ψ−1
x ) =

|Ψx|1/2

(2π)d/2
exp[−1

2
(X− µ)>Ψx(X− µ)], (4.1)

with mean µ and a [d× d] symmetric and positive definite covariance matrix Σ ≡ Ψ−1
x .

Ψx is referred to as the precision matrix, and for mathematical convenience will be
used through out the thesis instead of the covariance matrix. The univariate Gaussian

29
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distribution is a special case of the multivariate distribution (4.1), where Ψx is [1× 1].
Consider a simple problem of a model that fits a univariate Gaussian distribution with
parameters Θ = {µ, ψx}, which represents mean and precision respectively, to some
observed data x = {xi}N

i=1. The Bayesian network for such model in two versions: ML
and VB are shown in figure 4.1(a), and figure 4.1(b) respectively, and in both models
the x is assumed to be IID.

Maximum likelihood estimation

We start by inferring parameters using ML. The incomplete-data log likelihood can be
written as:

Linc(Θ|M) = ln p(x|µ,Ψ−1
x ) =

N∑

i=1

ln p(xi|µ,Ψ−1
x ). (4.2)

For most choices of density function, the optimum Θ have to be found by an iterative nu-
merical procedure such as EM-algorithm. However for the special case of (multivariate)
normal density, the maximum likelihood solution can be found analytically by differen-
tiating (4.2), with p(xi|µ,Ψ−1

x ) given by (4.1). Since there are no hidden states in the
ML model, inferring parameters can be regarded as an one step of the "EM-algorithm"
consisting of only an M-step:

M-step: Compute the sample mean, and the sample covariance

µ̃ =
1
N

N∑

i=1

xi , ψ̃x
−1

= Σ =
1
N

N∑

i=1

(xi − µ̃)2. (4.3)

Variational Bayes estimation

Variational inference can be used to learn an approximate posterior distribution over
the parameters. However it is first necessary to complete the model by defining prior
distributions over µ and ψx. As discussed earlier (see section 3.2.1), we choose conjugate
priors to make inference tractable. Due to the restriction that the precision must be
positive, Gamma distribution (Appendix B) is chosen, and µ is chosen to be normal
distributed

p(µ) = N (µ|m,β−1); (4.4)

p(ψx) = Γ(ψx|a, b). (4.5)

The Bayesian network for this model is shown in figure 4.1. The variational distribution
is chosen to be fully factorized:

Q(Θ) = Q(µ, ψx) = Q(µ)Q(ψx). (4.6)

For full conjugacy, we could use Normal-Gamma (or Normal-Wishart in multivariate
case), our choice of a factorized variational distribution will be justified in example
(4.1). As mentioned in section 3.2.1, using conjugate priors result in an optimal Q that
has the same distribution as the prior

Q(µ) = N (µ|m̃, β̃−1); (4.7)

p(ψx) = Γ(ψx|ã, b̃). (4.8)
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Figure 4.2: This figure illustrate that when factorizing the variational posteriors Q ≈ Q(µ)Q(ψx) (b)
it fails in capturing the correlations between variables (b), however if the right KL(Q||P )

rather than KL(P ||Q) (see figure 3.3) is minimized, which is the case here, the optimal
variational distribution will lay on the area of high probability. This can easily be seen
in (d). In (c) we can see the data points and their distribution (solid line), together
with a distribution (dashed line) whose parameters are the expectations of the variational
posterior Θ = {< µ >Q, < ψx >Q}.

Inference involves then updating the set of variational parameters Θ = {m̃, β̃, ã, b̃}.
Using equation (3.55) we get

β̃ = β + N < ψx >; (4.9)

m̃ =
1
β̃

(
βm+ < ψx >

N∑

i=1

xi

)
; (4.10)

ã = a +
N

2
; (4.11)

b̃ = b +
1
2

N∑

i=1

(x2
i − 2xi < µ > + < µ2 >). (4.12)

All the expectations are wrt. Q. Note the similarity between these updates and the one
from equation (3.28). At convergence the variational distribution over the parameters
will be the separable distribution closest to the true posterior, in KL divergence sense.
This can be illustrated by the following example.

Example 4.1 Consider a small data set X = {xi}N
i=1 of N = 5 samples drawn from

a normal distribution with parameters µtrue = 7.5 and ψxtrue = 1. The hyperparame-
ters are chosen to give a broad (uninformative) priors over µ and ψx (Appendix B),
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Figure 4.3: (a) and (b) shows that when the observed data is uni-modal and can be assumed nor-
mal distributed, the simple normal Gaussian model gives a good representation to data.
However, this simple model has significant limits, it is not suited for multi-modal distrib-
utions as shown in (d). Another drawback is that the number of independent parameters
can become excessive, where the data can be represented with fewer parameters as in (c),
where the latent dimension of X is lower than the observed d (2D in this case), i.e, several
eigenvalues are close to zero.

by setting a = b = 1e-3. Figure 4.2(a) and (b) show the true joint posterior p(µ, ψx|x)
and the converged factorized variational posterior Q = Q(µ)Q(ψx). It can be seen that
the factorized (separable) variational distribution fails in capturing the correlation be-
tween the variables, but in the other hand it is similar to the true posterior distribution,
particularly in the areas of high probabilities which are of interest. This can in fact be
explained by figure 3.3, where we showed that when minimizing KL(Q||P ) the learning
favors the distribution Q that fits an area of high probability (or one mode in case of
bimodal). Figure 4.2(c) shows the distributions whose parameters are the expectation of
the variational posterior, i.e., Θ = {< µ >Q, < ψx >Q}, together with the data points
and the distribution they were sampled from.

The results from the above example will be taken as argument, in future models to
perform a factorized variational distribution between the mean and the covariance.

While the simple normal distribution is widely used, it suffers from some significant
limitations. In particular, it can be insufficiently flexible since it can only represent uni-
modal distributions, (figure 4.3(a) and (b), for 1D and 3D respectively.), and fails in
representing multi-modal distributions (figure 4.3(d)). A more general family of distrib-
utions can be obtained by considering mixture of Gaussians section 5.1, corresponding to
the introduction of a discrete latent variable. On the other hand the normal distribution
can often be proven to be flexible [6] in that the number of independent parameters can
be excessive, and grows rapidly with the dimensionality d, where often fewer parameters
are needed, due to the assumption that in higher dimension, several eigen values are very
small. This is illustrated in figure 4.3(c), where the hidden dimensionality of the data is
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lower than the observed one (rank(X) = 2 < d = 3), and therefore data can be described
by fewer parameters. Each of those approaches will be discussed in following sections.

4.2 Latent variable models

A Gaussian model with full covariance matrix have several disadvantages [33], all related
to the fact that, the sample covariance (4.3) then contains d(d + 1)/2 free parameters
(the factor 1/2 is due to the symmetry). There are further d parameters for the mean,
making d(d + 3)/2. which become unwieldy for high-dimensional data. Consequently
computing the covariance in "M-step" (4.3) requires O(d2N), and excessively large num-
ber of data is required to ensure that the maximum likelihood for Σ is well determined
(N > d + 1)1. One way to reduce the number of free parameters in the model is to
consider a diagonal covariance matrix, which has just d free parameters. This, however,
corresponds to a very strong assumption, namely that the components of X are statis-
tically independent2, and such a model is therefore unable to capture the correlations
between different components. Next we show how the number of degrees of freedom
within the model can be controlled, while still allowing correlations to be captured, by
using latent (or ‘hidden’) variables. The goal of a latent variable model is to express
the distribution p(x) (X = {xi}N

i=1) of the variables xi = {xij}dX
j=1 (where dX is what

we previously noted as d) in terms of a smaller number of latent variables si = {sik}dS
k=1

where dS < dX . This can be interpreted as a form of dimensionality reduction or feature
extraction. Assuming that the latent variable are continuous now, marginalizing over
them is done by the integration in equation (3.3) repeated here for convenience

Linc(Θ) = ln p(X|Θ) =
∑

i

ln
∫

p(xi, s|Θ) ds =
∑

i

ln
∫

p(xi|s,Θ)p(s) ds, (4.13)

where the model M is omitted for brevity. To keep this integration tractable, we limit
ourselves to Gaussian distributions. Assuming a single data point x, we can define
p(x|s,Θ) trough the following mapping from data space to latent space, together with
a Gaussian prior p(s) for the latent state

X = f (s;A) + ε, where { s ∼ N (0,C)
ε ∼ N (0,Ψ−1)

(4.14)

where f (s;A) is a function of the latent variable s with parameters A, and ε is the
s-independent zeros mean noise process, with precision matrix Ψ. If the components in
ε are uncorrelated (i.e., Ψ is a diagonal matrix), the conditional distribution p(x|s,Θ)
will factorize as follows

p(x|s,Θ) =
dX∏

j=1

p(xj |s,Θ). (4.15)

The definition of latent variable model is completed when specifying the distribution
p(ε), the mapping f (s;A), and the prior p(s).

1If N ≤ d + 1 the covariance becomes singular.
2Note that this should not be confused with IID.
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Figure 4.4: This figure illustrate how the hidden states s of dimension dS (2D in this case), is trans-
formed to a higher dimensional data space dX (3D in this case) using the mixing matrix A

from the linear generative model (4.16), the rectangle is added to illustrate the plan where
the latent data is lying. Note that the added noise is not illustrated here for simplicity.

4.3 Factor Analysis and PPCA

A simple latent variable model is achieved by constraining the mapping to be a linear
function. Thus equation (4.14) becomes:

x = As + µ + ε, (4.16)

with parameters Θ = {A, µ,Ψ}. Since the mapping is now restricted to be linear, and
since the output of a linear system whose input is Gaussian distributed (p(s)), is again
Gaussian distributed, everything stays entirely in the Gaussian domain. The conditional
distribution of the latent states given the observed variables, p(x|s,Θ) (4.15) can be
written as 3:

x|{s,Θ} ∼ N (As + µ,Ψ−1) (4.17)

where x|· is a shorthand for p(x|·). The convolution of the above quantity with Gaussian
prior p(s) (4.13) can be performed analytically. This gives the marginal distribution of
the observed data p(x|Θ), which is also Gaussian:

x|Θ ∼ N (µ,ACA> + Ψ−1) (4.18)

Due to the degeneracy between C and A [37], there is no loss of generality in restricting
C to be either a diagonal or even the identity matrix4 Ids , where A will include all the
informations that might be assigned to C. Thus setting C = Ids , the above equation
then becomes:

x|Θ ∼ N (µ,AA> + Ψ−1) (4.19)

Furthermore the noise precision Ψ must be restricted in some way, for the model to
capture any interesting or informative projections in the state s, otherwise the learning
will assign Ψ−1 to the sample covariance of the observed data by setting A = 0 (i.e.,

3Since < x|s,Θ >=< (As + µ + ε)|· >= A < s|· > + < µ|· > + < ε|· >= As + µ and
cov(x|s,Θ) =< (As + µ + ε)(As + µ + ε)>|· >=< εε>|· >= Ψ−1

4If we split C to its eigenvectors U and eigenvalues Λ and rewrite the covariance of x (4.17) the
degeneracy becomes clear: ACA> = (AUΛ1/2)(AUΛ1/2)>. To make C diagonal: ⇒ A ← AU , or
identity matrix Ids : ⇒ A ← AUΛ1/2.
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Ψ = Ψx (4.3)). Thus the model will explain all the structure in the data as noise.
Figure 4.4 gives an intuitive spatial way to think about the model in equation (4.16)
(where µ = 0 in this case.). Consider an unseen dS dimensional Gaussian data s, with
identity covariance C = Ids , therefore the circular (spherical ball, for dS > 2) shape in
figure 4.4(a). This ball is then stretched and rotated into dX -dimensional space by the
mixing matrix A as seen in figure 4.4(b). The resulting shape is then convolved with the
diagonal covariance of ε (Ψ−1) to get the final covariance model for x. The learning then
consist of getting this model to be as close as possible to the sample covariance of the
data. By constraining Ψ we can force interesting information to appear in both Ψ and A.

Note that by constraining the covariance C to be the identity matrix, there will be
an infinite number of solutions to the mixing matrix A, this can easily be shown by
rewritten the covariance model for x in (4.19) as

AA> + Ψ−1 = A(VV>)A> + Ψ−1 ∀ V such that VV> = Ids (4.20)

where V is any [dS × dS ] orthonormal matrix, their are several methods to avoid this
non-uniqueness, one of the most used criteria is the one introduced by Kaiser, the so-
called varimax [27, 39], which states, that one should choose the orthonormal matrix V

which maximizes the following quantity

∑

k

dS


∑

j

(
Aj,k

h2
j

)2 − 1
dS
{
∑

j′
(
Aj′,k

h2
j′

)}2


 (4.21)

where h2
j =

∑
kA2

j,k. Maximizing the above criteria will result in large numbers of Ai,j

being either zero or large value, which is actually an answer to a simple structure that
is easy to interpret.

Restricting the noise precision matrix Ψ in an appropriate way, will result in powerful
models used by among others Machine learning community, two cases are stated here:

- Ψ ← diag(Ψ): The latent variable model is the standard statistical model known
as maximum likelihood Factor Analysis [39] (MLFA). The bayesian network of
such model is shown in figure 4.5. The unknown states s are called factors, the
matrix A is called the factor loading matrix and the diagonal elements in Ψ−1 are
called the uniqueness

- Ψ = σ−2Ids: In this case the latent variable model is referred to as Probabilistic
Principle Component Analysis (PPCA) [8] or sensible PCA (SPCA) [37], where
σ2 is referred to as the global noise level. In this case the columns of A will span
the principle subspace (the same found by PCA). Setting σ2 → 0 conventional
PCA is then recovered.

From above one can wonder, what is the consequences of the small difference in the shape
of noise, spherical for PPCA and elliptical for FA, might be. However it is easy to see
from the generative model (4.16), and from the model covariance of the marginal distrib-
ution (4.19) that, FA model is insensitive to rescaling the coordinate of data (i.e., scaling
parallel to the original axes), since the rescaling of the j’th dimension will corresponds
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(b) MAP model for A.

Figure 4.5: This figure shows the Bayesian net for two learning methods ML (a) and MAP (b).
Both cases include two statistical models for (a): when Ψ is a diagonal [dX × dX ] matrix,
i.e. the distribution of the noise N (0,Ψ−1) is an hyperellipsoid, the model corresponds to
maximum likelihood FA. Whereas if Ψ is replaced by the [1 × 1] dimensional precision
ψ = σ−2, i.e., the noise is hyperspherical, the model corresponds to maximum likelihood
PPCA. (b) is the augmented model where the parameter A is no longer a deterministic
variable, but a stochastic variable with a (Gaussian) prior distribution, controlled by the
(deterministic) hyperparameter α (precision). The resulting model is the penalized ML
or MAP model, though only for A, since Ψ is still deterministic and inferred using ML.

to multiplying the scaling factor to the corresponding row of A and the corresponding
elements in the diagonal Ψ, independently on the other dimensions. However, FA is
sensitive to the choice of coordinate system in data space, i.e. an orthogonal transforma-
tion of data can not be captured by the diagonalized Ψ, since the noise is only measured
along the data axis.
PPCA on the other hand, is exactly the other way around. Its insensitive to rotation,
since this rotation does not affect the spherical shaped model of noise, and can be in-
corporated by left multiplying A by the same rotation matrix [37]. However, because of
this spherical property of Ψ = ψdX , PPCA can only handle the case of rescaling the
data coordinate, when it is performed by the same factor (for all axis). A simple test
that reveals the weakness of PPCA compare to FA in separating the information from
noise can be seen in 4.2.

The restrictions applied to linear latent variable model can be regarded as way of cap-
turing the covariance structure of the dX -dimensional observed data trough AA> + Ψ−1

using at most dX(dS + 1) parameters. This might be interpreted as a sort of discrete
regularization in which one can tune the complexity of the model by choosing the dimen-
sion of latent space dS . This means that one can cover the whole spectrum of covariance
matrices with O(dX) parameters for a very flexible model, to a more complex model
with O(d2

X) parameters. However, given a data set, we are mostly interested in finding
the most appropriate value of dS .
From the above items, it can be seen that a learning algorithm for PPCA will be a
special case of learning FA-model. The problem of fitting a FA (or PPCA) model to
the observed data, can be thought of as equivalent to inferring the appropriate model
parameters Θ = {A, µ, Ψ} as well as the hidden states s, which when plugged into the
generative model (4.16) are most likely to generate the observed data distribution.
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Learning FA and PPCA using EM.

The simplest FA model is the one where all the the parameters are deterministic, this
model is MLFA, shown in figure 4.5(a). Given a set of N data points X we wish
to estimate the parameters Θ = {A, µ,Ψ}. When a closed form ML is intractable
the EM algorithm can be used, as described earlier (see section 3.3.2), in the EM for-
malism instead of maximizing the incomplete data log-likelihood Linc(Θ) = ln p(X|Θ)
of the observed data (3.35), we attempt to maximize the complete data log-likelihood
Lc(Θ) = p(X,S|Θ). Since this quantity is a function of the the hidden states S, which
we obviously can not observe, we must work with the expectation of this quantity wrt.
some distribution Q(X) (the left hand term in equation (3.41)). We showed also that
this expectation is always a lower bound to the incomplete data likelihood for any ar-
bitrary Q(S) (3.38), and is only equal to Linc(Θ) when the expectation is taking wrt.
the posterior distribution of S (i.e., when Q(S) = p(S|X,Θ)). The complete data log
likelihood can be written as follows:

Lc(Θ) = ln
N∏

i

p(xi, si|Θ) (4.22)

=
N∑

i

ln p(xi, si|Θ)

=
N∑

i

ln p(xi|si,Θ) +
N∑

i

ln p(si), (4.23)

where the factorization of data in (4.22) is due to the assumption that X is IID. Using
equations (4.17) for p(X|S,Θ) and (4.18) for p(S), the expectation of the complete data
log likelihood Lc(Θ) wrt. to some distribution Q(S) is then expressed as

< Lc(Θ) > = <

N∑

i

ln p(xi|si,Θ) > + <

N∑

i

ln p(si) >

=
N∑

i

< ln p(xi|si,Θ) > +
N∑

i

< ln p(si) > (4.24)

=
N∑

i

< ln
|Ψ|1/2

(2π)dX/2
exp

{− 1
2
(xi −Asi)>Ψ(xi −Asi)

}
>

+
N∑

i

< ln
1

(2π)dS/2
exp

{− 1
2
s>i si

}
> (4.25)

=
N∑

i

< ln
|Ψ|1/2

(2π)dX/2
exp

{− 1
2
(xi −Asi)>Ψ(xi −Asi)

}
>

+
N∑

i

< ln
1

(2π)dS/2
exp

{− 1
2
s>i si

}
>, (4.26)

where linearity property of the expectation operator < . > is used, for brevity the suffix
Q(S) is omitted. According to equation (3.45), the quantity to maximize in the M step
is < ln p(X|S,Θ) >, which is, the left hand term in equation (4.25), using the fact that
< y >Qz= y for any variable y independent on z, we get
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< ln p(X|S,Θ) > = k +
N

2
ln |Ψ| − 1

2

N∑

i=1

〈(xi −Asi)>Ψ(xi −Asi)〉 (4.27)

= k +
N

2
ln |Ψ| − 1

2

N∑

i=1

(x>i Ψxi − 2x>i ΨA < si >

+Tr[A>ΨA < sis>i >]). (4.28)

Here the relation x>Ax = Tr[Axx>], where Tr[·] is the trace operator, has been used.
The term k represent constants.
Maximizing the quantity < ln p(X|S,Θ) > involves taking partial derivative wrt. each
parameter of interest. For the case of A it is convenient to work with (4.28) as

∂

∂A
< ln p(X|S,Θ) > = −1

2

N∑

i=1

(− 2Ψxi < si >> +2ΨA < sis>i >
)
, (4.29)

where ∂
∂Z A>ZB = AB>. For the case of Ψ on the other hand it is convenient to work

with (4.27) as

∂

∂Ψ
< ln p(X|S,Θ) > =

N

2
Ψ−1 − 1

2

N∑

i=1

xix>i +
( N∑

i=1

xi〈si〉>
)
A> − 1

2
A

( N∑

i=1

〈sis>i 〉
)
A>.(4.30)

Care must be taking when constraining Ψ properly, which is fortunately in case of FA
as easy as taking the diagonal of the unconstrained ML estimate. In case of PPCA we
take the average of these diagonal elements.
Now setting equations (4.29) and (4.30) to zeros and solve for A and Ψ−1 respectively
to get the M step:

M step:

{A,Ψ}ML = argmax
{A,Ψ}

〈ln p(X|S, {A,Ψ})〉 (4.31)

A =
( N∑

i=1

xi < si >>
)(

< sis>i >
)−1 (4.32)

(FA) ⇒ Ψ−1 =
1
N
diag

[ N∑

i=1

xix>i −
(
xi〈si〉>

)
A>]

(4.33)

(PPCA) ⇒ ψ−1 =
1
N
Tr

[ N∑

i=1

xix>i −
(
xi〈si〉>

)
A>]

. (4.34)

We are still left with the problem of determining the actual values of 〈si〉 and 〈sis>i 〉.
As mentioned earlier, in order to guarantee that we indeed maximizing the incomplete
data log likelihood, it is essential that the expected complete log likelihood is maximized
by taking the expectation wrt. the posterior p(S|X,Θ). Thus the expectations 〈si〉 and
〈sis>i 〉 should actually be computed wrt. that posterior. In this relatively simple case,
we can actually obtain an analytical expression for the posterior distribution p(si|xi,Θ)
using Bayes rule as follows:
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p(si|xi,Θ) ∝ p(xi|si)p(si)

⇒ ln p(si|xi,Θ) = Lc(Θ) + k

= −1
2
(
x>i Ψxi − 2x>i A>Ψxi + s>i (Ids + A>ΨA)si

)
+ k. (4.35)

From the quadratic form we can infer that the posterior distribution of si is Gaussian:

p(si|xi,Θ) = N (m(i)
si

,Σs), (4.36)

with

Σs =
(
Ids + A>ΨA

)−1 (4.37)

m(i)
si

= ΣsA>Ψxi

=
(
Ids + A>ΨA

)−1
A>Ψxi

= Mxi, (4.38)

where we define M ≡ (
Ids + A>ΨA

)−1A>Ψ. Given this distribution, the E step can
then be written as:

E step:

〈si〉 = m(i)
si

= Mxi; (4.39)

〈sis>i 〉 = Σs + 〈si〉〈si〉>
=

(
Ids + A>ΨA

)−1 + Mxix>i M>

= Ids −A>(
Ψ + AA>)−1

A + Mxix>i M> (4.40)

⇒ 〈sis>i 〉 = Ids −MA + Mxix>i M>, (4.41)

where we applied the Sherman-Morrison-Woodbury matrix inversion theorem on equation (4.40)
as

A>(
Ψ + AA>)−1 =

(
Ids + A>ΨA

)−1
A>Ψ = M. (4.42)

Notice that the second form is much easier to evaluate since
(
Ids + A>ΨA

)
is a smaller

matrix than
(
Ψ + AA>)

and Ψ is diagonal.

As mentioned earlier in section 3.1, the maximum likelihood does not take into account
the model complexity, and thus tends to prefer more complex models. Take the case of
inferring A [dS × dX ], the closest dS gets to dX , the more it becomes quadratic in shape,
and the fraction of information that should be explained as noise, and hence included
in Ψ, will now be explained as useful information and included in A instead, as extra
columns. To prevent this type of problems the penalized log likelihood was introduced
in form of ARD (see equations (3.4) and 3.6). This quantity was later expressed in a
nicer probabilistic way, as a MAP estimate in equation (3.15), generated by multiplying
the incomplete likelihood with the parameter prior (3.11). We define a hyperellipsoidal
Gaussian prior of the mixing matrix A = {Ak}d

k=1
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p(A|α) = N (A; 0, α−1) (4.43)

=
( |α|
2π

)dX/2 exp
(− 1

2
AαA>)

(4.44)

=
d∏

k=1

(αk

2π

)dX/2 exp
(− αk

2
A>k Ak

)
. (4.45)

α is a diagonal matrix with diagonal element βi representing the precision of column
vector Ai. This matrix has to be inferred as the other deterministic parameters. The
variable d over the product symbol in equation (4.45) is the estimate to the true hidden
dimensionality dS .
As seen in figure 4.5(b), the change we made to the MLFA model, to become a MAP
model (though only for A since Ψ is still deterministic and therefore inferred using
ML.) can be expressed graphically by adding a hyperparameter α as a parent to A,
which becomes now a circle due to the (Gaussian) distribution over it.
The new cost function is now proportional to the posterior distribution (p(A|X, α)) and
can be expressed using the Bayes rule as:

p(A|X, α) ∝ p(X|A) p(A|α)

⇒ ln p(A|X, α) = Linc(A,Ψ) + ln p(A|α) + k, (4.46)

where the constant k represent all the values that are independent on A (in this case
− log p(X|α)). Using equation (4.45) in (4.46) we get:

ln p(A|X, α) ∝ Linc(A,Ψ)− 1
2

d∑

k

αkA>k Ak. (4.47)

Since we showed that Lc is a lower bound to the true data log likelihood Linc, i.e.,
Lc ≥ Linc, equation (4.47) can be rewritten as:

ln p(A|X, α) ∝ Lc(A,Ψ)− 1
2

d∑

k

αkA>k Ak. (4.48)

Since this penalty term increases together with the number of valid columns in the mixing
matrix A (i.e., d estimation to the latent space dimensionality.). In this way the new cost
function is no longer maximized by increasing the hidden dimensionality of the model.
A and Ψ are inferred by maximizing the MAP (for A) function (4.48)

AMAP = argmax
A

ln p(A|X, α)

= argmax
A

Lc(A,Ψ)− 1
2

d∑

k

αkA>k Ak, (4.49)

we replace Lc(A,Ψ) used in theEM algorithm (4.22) by the new cost function ln p(A|X, α)
and proceed exactly as before. Without going into details, we present the updating for-
mula for A, this result is achieved by taking the expectation of (4.48), and maximizing
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with respect to A. In the case of FA each row Aj in factor loading A is updated in the
M step as:
MAP M step: for FA

Aj =

(
N∑

i

xi,j〈si〉T
) (

N∑

i

〈sisT
i 〉 + ψjα

)−1

. (4.50)

Since for the PPCA case the noise is hyper-spherical, with a single precision parameter
ψ. The updating formula for A in PPCA becomes:

MAP M step: for PPCA

A =

(
N∑

i

xi〈si〉T
) (

N∑

i

〈sisT
i 〉 + ψα

)−1

. (4.51)

Note that Ψ (FA) and ψ (PPCA) are still inferred using ML in equations (4.33) and
(4.34) respectively.
The estimation of α is somewhat more difficult, since the likelihood of α (see figure
4.5(b)) requires marginalizing the random value A.

p(X|α) =
∫

p(X|A) p(A|α) dA. (4.52)

The above integration is hard to track analytically, and requires a Taylor expansion or
some sampling approach as Monte Carlo methods to approximate the integrand, the
joint distribution p(A,X|α).

The model can be further improved by fitting a distribution over the hyperparameter
α, since this parameter represent the inverse of the variance, the values in α should
be positive and therefore a Gamma distribution (Appendix B), which belong to the
exponential family (section 3.2.1), is an appropriate choice. Drawing a distribution over
α makes it possible to integrate over it and choose a more appropriate value instead of
taking the α that maximizes the likelihood. The new model can be seen in figure 4.5(b),
where we introduce new hyperparameters aα and bα. The prior distribution of α can be
then expressed as:

p(α) =
d∏

k

p(αk)

=
d∏

k

G(αk, ak, b)

=
d∏

k

bak

Γ(ak)
αak−1 exp(−bαk). (4.53)

The new model is too complex and makes the marginalization over the parameters too
difficult to be solved analytically, as was the case in the two precedents ones. Thus
fighting the problem of inferring more complex model (e.g. large d in FA) inherited
in ML, by maximizing the penalized ML (or MAP) instead, requires interchanging
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Figure 4.6: This figure shows the Bayesian net for VB − FA and VB − PPCA model. As in
figure 4.5 the model correspond to VB − FA when the noise is hyper-elliptical with
a diagonal precision matrix Ψ, and corresponds to VB − PPCA when the noise is
hyper-spherical with a single precision ψ parameter. This distribution is controlled by the
deterministic hyperparameters k and e.

the deterministic parameter of interest with a random variable. To control the para-
meter’s distribution a hyperparameter is introduced, hence increasing the hierarchical
model. Further increase in the hierarchical model becomes rapidly hard to solve using
the standard EM, due to the intractable required integrations (e.g. (4.52)). One should
remember here that the resultingMAP model (technique) is still a point estimate (4.49),
which is also a victim of overfitting (see e.g., figure 3.2). Lets see what Variational Bayes
can do about these problems.

4.3.1 Variational FA and PPCA

In the previous section we saw that, increasing the flexibility of the FA model, and incor-
porating controlling terms, to get a the penalized or MAP model, makes the parameter
estimation hard to solve, since they require some analytically intractable integrations.
Variational techniques are used to approximate such integrals. Furthermore MAP, like
ML, is still point estimate and therefore suffers from overfitting. In the Bayesian ap-
proach the whole parameter posterior p(Θ|X) is taken into account, and when inferring
parameters, the average wrt. to this posterior, over all parameter space is performed.
The second moments are then taking as uncertainty of these inferences, and can be
showed as error bars.
Variational Bayes incorporate both variational techniques and Bayesian approach to op-
timize directly the accuracy of the approximate posterior distribution [46].
While in EM we maximized the lower bound F(Q(S),Θ) of the incomplete log likeli-
hood Linc(Θ) (3.38). In VB we maximize the lower bound F(Q(H)) of the log evidence
ln p(X|Mm)(3.52)

ln p(X|Mm) = F(Q(H)) + KL(Q(H)||p(H|X))

≥ F(Q(H)), (4.54)

where H represent all hidden random variables, i.e. H = {S,A, α,Ψ}. The Bayesian
nets representation of variational FA/PPCA is shown in figure 4.6, where Ψ in the
case of VB − FA (ψ for VB − PPCA) is Gamma distributed (Appendix B) random
variable, controlled by the hyperparameter k and e, this choice is due to the fact that the
diagonal elements of Ψ (ψ for VB−PPCA) represent the precisions of the noise model,
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and therefore should be greater than zeros, furthermore to be used in VB, p(Ψ|c, e)
(p(ψ|c, e)) must be a conjugate prior. The prior distribution of α, S and A was presented
in the previous section and they are all of them chosen to conjugate priors:

p(S) = N (S;0, Id) =
N∏

i=1

N (si; 0, Id) (4.55)

p(A|α) = N (A;0, α) =
d∏

k=1

N (Ak; 0, αk) (4.56)

p(α|a,b) = G(α; a,b) =
d∏

k=1

G(α; a,bk) (4.57)

FA ⇒ p(Ψ|c, e) = G(Ψ; c, e) =
dX∏

j=1

G(ψj ; c, ej) (4.58)

PPCA ⇒ p(ψ|c, e) = G(ψ; c, e). (4.59)

It was earlier assumed the factorization of the variational distributions of Θ and S, here
this factorization is extend to include Ψ, hence

Q(H) = Q(S)Q(A, α)Q(Ψ).

This choice is supported by structure of the model (see figure 4.6), where Ψ is condi-
tionally independent (given the data) on the rest of the random variables, i.e., there is
no direct arc between them.
The solution to each of the individual Q(Hi) distribution that maximizes the free energy
F(Q(H)), can be found using equation (3.54) or equivalently (3.55) as:

lnQ(Hl) = 〈ln p(X,H|Mm)〉Qk 6=l
+ k

= 〈ln p(X,S,A,Ψ, α|Mm)〉Qk 6=l
+ k, (4.60)

where 〈·〉Qk 6=l
denotes expectation taken with respect to all distributions exceptQ(Hl).Using

the Bayesian net in figure 4.6 we can easily express the the joint distribution of every-
thing, for a FA model p(X,H|Mm) = p(X,S,A,Ψ, α|Mm) as:

p(X,H|Mm) = [
N∏

i

p(xi|si,A,Ψ)p(si)] p(A|α)p(α|a, b)p(Ψ|c, d) (4.61)

⇒ ln p(X,H|Mm) =
N∑

i

ln p(xi|si,A,Ψ) +
N∑

i

ln p(si) + ln p(A|α) + ln p(α) + ln p(Ψ)
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=
N

2
ln |Ψ| − 1

2

N∑

i

(xi −Asi)>Ψ(xi −Asi)

−1
2

N∑

i

s>i si

+
dX

2

d∑

k

ln αk − 1
2

d∑

k

αkA>k Ak

+
d∑

k

(ak − 1) ln αk −
d∑

k

b αk

+
dX∑

j

(cj − 1) ln ψj −
dX∑

j

e ψj + k. (4.62)

By setting dX = 1 in the last line on the above equation, corresponding to a single noise
precision, the joint probability for PPCA model, can be recovered.

4.3.2 Density estimation

By taking the expectation of (4.62) with respect to Qk(Hk) for all k 6= l we obtain the ex-
pression for Ql(Hl) that is the closest to the posterior distribution p(Hl|X,Ψ), in terms of
minimizing the previous mentioned kullback-Liebler divergence. Proceeding this way we
are going to give the expression for the needed functions namely {Q(S),Q(A),Q(α),Q(Ψ)}.
Since we are using conjugate prior, each variational posterior Q(Hi) will have the same
form as its prior p(Hi), see equation (3.28) in section 3.2.1

Q(S):

To solve for Q(S) we take the expectation of (4.62) wrt. {Q(A),Q(α),Q(Ψ)}, this stage
can be regarded as the E step in the VBEM algorithm

〈p(X,H)〉Q
A
QαQΨ

= −1
2

N∑

i

(
x>i 〈Ψ〉xi − 2s>i 〈A>〉〈Ψ〉xi + s>i 〈A>ΨA〉si

)

−1
2

N∑

i

s>i si

= −1
2

N∑

i

[
x>i 〈Ψ〉xi − 2s>i 〈A>〉〈Ψ〉xi + s>i

(
I + 〈A>ΨA〉) si

]
.

We can see that the above expectation is quadratic in si. By using (4.55) we can express
Q(S) as:

Q(S) =
N∏

i

Q(si)

=
N∏

i

N
(
si;µ

(i)
S ,ΣS

)
, (4.63)

where
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ΣS =
(
Id + 〈A>ΨA〉)−1

; (4.64)

µ
(i)
S = ΣS〈A>〉〈Ψ〉xi, (4.65)

where for FA model, Ψ is diagonal and hence

〈A>ΨA〉 = 〈
dx∑

j

ψjAjA>j 〉

=
dx∑

j

〈ψj〉〈AjA>j 〉, (4.66)

where Aj is a column vector corresponding to the j’th row. For a single precision
parameter in PPCA, this expectation becomes:

〈A>ΨA〉 = 〈A>ψIdA〉 = 〈ψ〉〈A>A〉. (4.67)

Q(α):

To solve for Q(α) we take the expectation of (4.62) wrt. {Q(S),Q(A),Q(Ψ)}

〈ln p(X,H)〉QSQAQΨ =
d

2

d∑

k

ln αk − 1
2

d∑

k

αk〈‖A>k ‖2〉

+
d∑

k

(a− 1) ln αk −
d∑

k

bkαk + k

=
d∑

k

(a +
d

2
− 1) ln αk −

d∑

k

(
bk +

〈‖A>k ‖2〉
2

)
αk + k, (4.68)

where k in the above equation includes all the terms not involving the variable of interest
(α in this case). Using (4.60) together with (4.57) we get

Q(α) =
d∏

k

Q(αk)

=
d∏

k

G
(
αk; ã, b̃k

)
,

where

ã = [a +
d

2
]; (4.69)

b̃k = [bk +
〈‖A>k ‖2〉

2
]. (4.70)

Note that we used a single hyperparameter a to control the shape of all d columns in A.
This is a heuristic choice, based on several experiments, though not shown in the report.
However it can easily be extended.
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QA(A):

As in the case of inferring Q(α), we take the expectation of (4.62), but this time with
respect to {Q(S),Q(α),Q(Ψ)}. We begin by rewriting (4.62) to a scalar form and retaining
only the terms involving A we get:

ln p(X,H) = −1
2

N∑

i

dx∑

j

ψj(xi,j −A>j si)2 − 1
2

dx∑

j

A>j αAj + k

= −1
2

N∑

i

dx∑

j

ψj(x2
i,j − 2xi,jA>j si +A>j sis>i Aj)− 1

2

dx∑

j

A>j αAj + k

= −1
2

dx∑

j

ψj

[ N∑

i

x2
i,j − 2A>j

(
N∑

i

xi,jsi

)
+A>j

(
N∑

i

sis>i +
1
ψj

α

)
Aj

]
+ k(4.71)

WhereAj represent a column vector corresponding to the j’th row of A. The expectation
of (4.71) can be written as:

〈ln p(X,H)〉QSQαQΨ
= −1

2

dx∑

j

〈ψj〉
[ N∑

i

x2
i,j − 2A>j

(
N∑

i

xi,j〈si〉
)

+A>j
(

N∑

i

〈sis>i 〉+
1
〈ψj〉 〈α〉

)
Aj

]
+ k. (4.72)

Using (4.60) and the fact that the above expectation is quadratic in Aj , we can infer
Q(A) as:

Q(A) =
dx∏

j

Q(Aj)

=
dx∏

j

N
(
Aj ;µ

(j)
A , Σ(j)

A
)

, (4.73)

where for FA

Σ(j)
A =

(
〈ψj〉

N∑

i

〈sis>i 〉+ 〈A〉
)−1

; (4.74)

µ
(j)
A = 〈ψj〉Σ(j)

A

(
N∑

i

xi,j〈si〉
)

, (4.75)

and for PPCA

ΣA =

(
〈ψ〉

N∑

i

〈sis>i 〉+ 〈A〉
)−1

; (4.76)

µ
(j)
A = 〈ψ〉ΣA

(
N∑

i

xi,j〈si〉
)

. (4.77)
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Q(Ψ):

Following the same steps as before, we write down the expectation of (4.62) wrt.
{Q(S),Q(A),Q(α)}:

FA : 〈ln p(X,H)〉QSQAQα =
dX∑

j

(
c +

N

2
− 1

)
ln ψj + k

−
dX∑

j

(
ej +

1
N
diagj [

N∑

i

〈(xi −A>si)(xi −A>si)>〉]
)
ψj ,(4.78)

PPCA : 〈ln p(X,H)〉QSQAQα =
(
c +

NdX

2
− 1

)
ln ψ + k

−(
e +

1
N
Tr[

N∑

i

〈(xi −A>si)(xi −A>si)>〉]
)
ψ. (4.79)

This corresponds to a the log of a Gamma distribution, of the following form:

Q(Ψ) =
dX∏

j

Q(ψj) =
dX∏

j

G (ψj ; c̃, ẽj) ,

as in the case of a (4.69), c is unique for all diagonal elements. The updates are

FA : c̃ = [c +
N

2
] (4.80)

ẽ = e +
1
2
diag[

N∑

i

〈(xi −A>si)(xi −A>si)>〉] (4.81)

PPCA : c̃ = [c +
N

2
dX ] (4.82)

ẽ = e +
1
2
Tr[

N∑

i

〈(xi −A>si)(xi −A>si)>〉]. (4.83)

Note that e in FA is a dX -dimensional vector, while in PPCA is a scalar variable.
The presented formula for the parameters of the variational posterior distribution, should
be run, given some data, until some stop criteria is achieved. In the codes I made, the
criteria was a combination of two criteria, a max number of iterations nmax and when
the free energy FMm is stable in a range of iteration, i.e., If ∆F = Fn −Fn−1 falls bellow
some critical value ε then convergence can be assumed. However it is not easy to define
such simple thresholds that scales appropriately with both model complexity and size of
data set.

Now that two learning algorithms ML and VB for the two models FA and PPCA
are presented, lets look at a simple toy data example, where the performance of (VB)
FA vs. (VB) PPCA in capturing information from data is tested.

Example 4.2 Consider a 4-dimensional Gaussian toy data set X = {xj}4
j=1 of size

N = 100, where x1 and x2 are uncorrelated with each other and the rest of variables
in the data set. x1 and x2 have a small and large variances respectively, x3 and x4 are
highly negative correlated and have almost the same variance. a small variance Gaussian
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Figure 4.7: This figure is based on example (4.2), where a 4D Gaussian toy data of size N = 100 was
generated. The correlation between the different variables is shown in (a), note the high
negative correlation between x3 and x4. (b) shows the diagonal elements of (a) (sample
variance). The data is fitted to FA (c) and PPCA (d). It can easily be seen that FA
with its diagonal noise precision is able to find both the noisy component x2 shown as
large rectangle in the right column of (c), and the large negative correlation between x3

and x4 left column in (c). PPCA gets confused by the large variance in x2 and finds
correlation between the wrong components x2 and x4. The latent dimensionality in both
VBFA and VBPPCA was set to a fixed value 1.

noise is added to the data set X. All the quantities of interest are shown as Hinton
diagrams in figure 4.7, where positive and negative values corresponds to gray and black
squares respectively, and their absolute values corresponds to the area. The covariance
matrix of the data set can be seen in (a), and its diagonal in (b). One can see that the
x2 is much noisier than the rest of variables. The VBFA5 model with a 1 dimensional
latent variable, is fitted to data. With its diagonal noise precision VBFA succeeds in
modelling the noisy component x2. The diagonal element of Ψ−1 are shown in column
to the right in (c). VBFA finds also the negative large correlation between the two
correlated components x3 and x4, shown in the left column in (c). PPCA with its single
precision noise is confused by the high variance in x2 and finds a correlation between x2

and x4, shown in the left column in (d). The PPCA noise estimate is the average of
the estimated noise in the four direction (right column in (d)). The failure of PPCA
compering to FA in extracting information in noisy data, can be roughly explained by the
fact that PPCA does pay attention to both variance and covariance, whereas FA only
pays attention to the covariance [37, 8].

Other properties such as finding the effective latent space, and how A relates to the
principle components of data in both PPCA and FA will be seen in the applications
chapter.
Note that since we are dealing with a single factor analyzer, inferring the mean can be
expressed as in equation (4.3) in the case of ML, and as (4.10) in VB case, and could
be subtracted from data before performing our analysis. For brevity of the model and
analysis I did not include it here, but it will be unavoidable in the case of mixture models.

5Due to the large size of data N = 100 wrt. the dimension dX = 4, both EMFA and VBFA
gives almost the same result, furthermore the aim is to compare FA with PPCA. Therefor only VB
is considered here.
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Mixture Models

In the previous section it was shown how data which lies on a linear subspace can be
modelled through single Gaussian or linear latent variable models, such as FA and
PPCA. These models can not handle multi-modal data, this was shown for the case of
a single Gaussian (figure 4.3(d)) in section 4.1. It is obvious that the linear models FA
and PPCA will face the same problem.
A more flexible model can be obtained by considering mixture models. Mixture models
can be shown as a weighted average of M simple components densities p(x|Θm)

p(x|Θ) =
M∑

m=1

πmpm(x|θm), (5.1)

where πm is the mixing proportion of the the m’th component, and satisfies πm ≥ 0 and∑M
m=1 πm = 1. This guarantees that p(x|Θ) is a valid density function. pm(x|θm) is

the dX -dimensional density model corresponding to the m’th component, and controlled
by the set of parameters θm. Given the expression of mixture models (5.1), several
interesting models can be obtained depending on the choice of the form for the component
densities pm(x|θm):

GMM⇒ pm(x|θm) ∼ N (X;µm,Ψx
−1
m ) (5.2)

MFA⇒ pm(x|θm) ∼ N (X;µm,AmA>
m + Ψ−1) (5.3)

MPPCA⇒ pm(x|θm) ∼ N (X;µm,AmA>
m + ψ−1Ids), (5.4)

where GMM, MFA and MPPCA stands for Gaussian Mixture Models,Mixture of Fac-
tor Analyzers and Mixture of Probabilistic Principle Components respectively. These
are the models discussed in the following sections. Learning these models using ML
requires the computing the (log) likelihood function Linc(Θ). Consider an observed data
set X = {xi}N

i=1 independently drawn from the mixture distribution in (5.1). Linc(Θ) is
given by

p(X|Θ) =
N∏

i=1

[
M∑

m=1

πmpm(xi|θm)]

⇒ Linc(Θ) = ln p(X|Θ) =
N∑

i=1

ln[
M∑

m=1

πmpm(xi|θm)]. (5.5)

A direct maximization of the above quantities is a hard task. However, re-interpreting
the mixture model as a latent variable model, by introducing an unobserved state z,

49
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makes it possible to use EM algorithm to infer the parameters of interest as discussed in
section 3.3.2, where the complete data log likelihood Lc(Θ) = ln p(X,Z|Θ) is maximized
instead of the incomplete data log likelihood Linc(Θ) = p(X|Θ). The hidden variables
zi can be expressed as an M dimensional vector with 1 in the element whose index m

corresponds to the selected m’the mixture component, and the rest are set to 0 [7] as

zi = [0 0 · · · 0 1 0 · · · 0 0]︸ ︷︷ ︸
M elements

>,

where p(zi,m = 1) = πm in equation (5.5), and Z = {zi,m}N,M
i=1,m=1 is an [M ×N ] matrix,

when it is considered as discrete variable. Thus, it can be thought of zi as a binary
way to write the index of the component that gave rise to the data point xi. A nice
property of this way of expressing zi, is

∑N
i zi,m = Nm, where Nm is the number of data

points in the m’th component. Conditional on zm, the data points are assumed to be
independently drawn from the distribution of the data given the parameters of the m’th
component θm. Lc(Θ) can now be expressed as follows:

Lc(Θ) = ln p(X,Z|Θ)

= ln
N∏

i

p(xi, zi|Θ)

= ln
N∏

i

M∏
m

[p(xi|zi,m = 1,Θ)p(zi,m = 1)]zi,m

=
N∑

i

M∑
m

zi,m[ln p(xi|zi,m = 1,Θ) + ln πm]. (5.6)

Bayesian Learning on the other hand requires the introduction of prior distribution (see
section 3.2) over the parameters as well as the mixing proportions. Since all the used
models (5.2-5.59) are defined together with their required priors in the previous chapter,
except the mean µ which was neglected for simplicity, where it is just the sample mean
in the case of ML, and the Bayesian case was dealt with in example (4.1). In mixture
model the mean can not be computed separately and added at last as was the case in
e.g., FA or PPCA. A conjugate prior of µm could be the normal distribution

p(µ) =
M∏
m

N (µm|mm,Vm) (5.7)

where mm and Vm are the the mean and the precision respectively for the prior of
the mean µm of the m’th component. Since in this chapter I use the general case of
multivariate GMM, the precision Ψm is now a [dX × dX ] matrix, thus, the prior p(Ψm)
is the Wishart distribution (see Appendix B)

Ψm ∼ W(Ψm;Cm,Dm), (5.8)

where Gamma is the univariate special case.
Now I only need to introduce the priors over the new variables. Another way of writing
p(zi,m = 1) = πm [41] is
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Figure 5.1: This figure shows the Bayesian net for ML Gaussian Mixture Model (GMM), µm and
Ψm are the mean and the precision of m’th Gaussian component p(X|θm), pi is the set of
mixing proportions. Note that the extension from a single Gaussian consisted of adding
the mixing proportions and the plate over the model parameters.

p(zi|π) =
M∏

m=1

πzi,m
m

(Z ∼ IID) ⇒ p(Z|π) =
N∏

i=1

M∏
m=1

πzi,m
m , (5.9)

(5.10)

or equivalently, by using Nm =
∑N

i zi,m:

p({Nm}M
m=1|π) =

N∏

i=1

(
N

N1, · · · , NM

) M∏
m=1

πNm
m , (5.11)

where the (5.9) follows from the fact that Z is IID. Both equations (5.9) and (5.11)
are multinomial distribution with parameter π. The Binomial distribution is the special
case where M = 2 as seen in example (2.2). A conjugate prior for π is the Dirichlet
distribution:

p(π|u) ∼ D(π;u) =
Γ(

∑
m um)∏

m Γ(um)

∏
m

πum−1
m , (5.12)

where um (u = {um}M
m=1) can be interpreted as a virtual count for value m, before seen

Z. The Beta distribution mentioned in example (2.2) is the special case when M = 2,
and represent a conjugate prior for the Binomial distribution. The properties of Dirichlet
and Beta are described in Appendix B.

5.1 Gaussian Mixture Models

GMM and its extension has been used by many researchers and leads to interesting
works, e.g., in text modelling [21], in modelling annotated data [4]. In the next subsection
I introduce ML of GMM’s.
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5.1.1 ML Gaussian Mixture Models

Bayesian net for ML learning of GMMs is shown in figure 5.1. ML learning can be per-
formed using EM algorithm (section 3.3.2), where the M step corresponds to maximizing
the expected complete data log likelihood 〈Lc(Θ)〉, wrt. the variational distribution of
the hidden states Q(Z) (3.45), using equation (5.6) this expectation can be expressed as:

〈Lc(Θ)〉Q(Z) =
N∑

i

M∑
m

〈zi,m〉[ln p(xi|zi,m = 1,Θ) + ln πm]. (5.13)

M step: in the M step we maximize the quantity in (5.13) wrt. to the parameter of
interest, i.e., Θ = {πm, µm,Ψm}.

Differentiating 〈Lc(Θ)〉 wrt. µm

∂〈Lc(Θ)〉
∂µm

=
N∑

i

〈zi,m〉 ∂

∂µm
ln p(xi|zi,m = 1,Θ) = 0, (5.14)

where p(xi|zi,m = 1,Θ) is the following normal distribution:

p(xi|zi,m = 1,Θ) = N (xi; µm,Ψ−1
Xm

)

=
|ΨXm |1/2

(2π)dX/2
exp[−1

2
(xi − µm)>ΨXm(xi − µm)]. (5.15)

The partial derivative of the logarithm of the above equation can be computed as

∂

∂µm
ln p(xi|zi,m = 1,Θ) = (xi − µm)>ΨXm , (5.16)

where I used the relation ∂
∂xx>Ax = x>(A + A>). Substituting the above result into

equation (5.14), gives:

µm =
∑N

i 〈zi,m〉xi∑N
i 〈zi,m〉

. (5.17)

Following the same steps ΨXm can be inferred to be

ΨXm =
∑N

i 〈zi,m〉(xi − µm)(xi − µm)>∑N
i 〈zi,m〉

. (5.18)

A careful look at equations (5.17) and (5.18) it can be seen that these result are similar
to focusing on a single component (m’th here) and computing the sample mean and
sample covariance.
In order to maximize the quantity in equation (5.13) wrt. πm, one should keep in mind
that π should sum to 1, i.e.,

∑M
m πm = 1. To maintain this constraint I used Lagrange

multiplier, to augment equation (5.13) as follows:

C(Θ) = 〈Lc(Θ)〉 − λ
( M∑

m

−1
)
. (5.19)
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Differentiating C(Θ) wrt. each πm gives:

∂

∂πm
C(Θ)− λ = 0, for 1 ≤ m ≤ M

which result in λ = N , which used to get the update

πm =
∑N

i 〈zi,m〉
N

. (5.20)

E step: To make sure that the incomplete data log likelihood (which the quantity we
are truly interested in maximizing) is maximized while maximizing the complete data log
likelihood. The expectation should taken wrt. the posterior distribution of the hidden
state p(Z|X,Θ). Hence the expectations used in the M step 〈zi,m〉 should be computed
as follows:

〈zi,m〉p(Z|X,Θ) = 1 · p(zi,m = 1|xi,Θ) + 0 · p(zi,m = 1|xi,Θ)

= p(zi,m = 1|xi,Θ)

=
p(xi|zi,m = 1,Θ)p(zi,m = 1)∑M

m′ p(xi|zi,m′ = 1,Θ)p(zi,m′ = 1)

=
p(xi|zi,m = 1,Θ)πm∑M

m′ p(xi|zi,m′ = 1,Θ)πm′
.

(5.21)

As mentioned earlier, the EM Algorithm is just a nice way to simplify the math be-
hind the intractable maximization of ML. Hence the overfitting problems inherited in
the point estimate ML are still there. GMM’s are extremely flexible and simply max-
imizing the Linc(Θ) will lead to "infinite overfit" [21]. Given an N large data set X, a
possible scenario of such overfitting occurs when µm = xm for m = 1, · · · ,M−1, and the
corresponding covariances shrinks to zero matrix (or equivalently ΨXm grows to infinite
matrix). The last (M ’th) Gaussian is then fitted to the remaining N − M + 1 data
points. The generalization error becomes here roughly equal to the single "background"
Gaussian [21]. Thus, increasing M results in increasing ML until the limit (M = N),
where each data point is fitted by a single Gaussian. Appropriate model selection criteri-
ons was introduced earlier in section 3.1 AIC and in section 3.2 BIC1. These criterions
will be tested later on, when the VB for GMM is described. First lets look at simple
example where the model in figure 5.1 is learnt using ML.

Example 5.1 Consider a Mixture of 5 Gaussians, where Nm = 100 data points was
sampled from each one of them, i.e N =

∑M
m Nm = 500. MLGMM in figure 5.1 was

used to estimate the probability density function p(X|Mj) of the observed data X. As ex-
pected, during learning, the expected complete data log likelihood < Lc(Θ|Mj) > is always
a lower to the incomplete data log likelihood Linc(Θ|Mj) (see section 3.3.2), this can be
seen in figure 5.2(d), where both quantities increases until convergence. Figure 5.2(a)

1Even if BIC follows as a limiting case of the VB framework, due to its simple form it can be
included in ML directly.
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Figure 5.2: This figure shows the ability of the GMM’s to find clusters or groups in the observed
data given a data set (a). The observed data set X is generated from a mixture model
with 5 mixtures, each of which has independently generated Nm = 100 data points i.e.,
Ntotal = 500. (b) shows how GMM can be used as density estimators in unsupervised
learning. (c) shows the likelihood scores of several mixture models from M = 2, where
(Linc(Θ|M2) = −845.2855) to M = 10, where (Linc(Θ|M10) = 525.5203). This shows
that the likelihood just keeps on growing even for models larger then the true one. This
is in fact what we discussed in section 3.1, to be the inherited problem of overfitting, the
point estimate maximum likelihood suffers from. Note that these models was learned using
EM, which shows that EM has no positive effect on this problem, but it is just a way to
solve the intractability of maximizing Linc(Θ). The last figure (d) shows how in learning
〈Lc(Θ)〉 is always a lower bound to Linc(Θ|M).

shows the result of 4 models, with 2, 4, 5 and 8 mixtures, are fitting to the same data
set. The likelihood score of each of them can be readen from the graph in (c), where it
can be seen that the likelihood keeps on increasing even after reaching the true number
of mixtures (i.e., 5), hence, the figure represent an example of the overfitting problem
inherited in the point estimate ML. Figure 5.2(b) shows the resulting estimate of the
probability density function p(X|Mj), obtained by marginalizing the complete data like-
lihood (p(X,Z|Θ,M)) over the mixture indicators zm as follows:
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Figure 5.3: This figure shows the Bayesian net for VB Gaussian Mixture Model (GMM), µm and
Ψm are the mean and the precision of m’th Gaussian component p(X|θm), pi is the set of
mixing proportions. Note that the extension from a single Gaussian consisted of adding
the mixing proportions and the plate over the model parameters.

p(X|Θ,Mj) =
M∑
m

p(xi|zi,m = 1,Θ,Mj)p(zi,m = 1|Mj).

5.1.2 Bayesian Gaussian Mixture Models

The Bayesian net for VB GMM is shown in figure 5.3. Thus the joint distribution of
all the random variables H = {Hk}K

k , conditioned on the model Mj , is given by

p(X,H|Mj) = p(X, µ,Ψx,Z, π|Mj)

= [
N∏

i

p(xi|µ,Ψx, zi)p(zi|π)] p(π|u) [
M∏
m

p(µm)p(Ψxm)]

= [
N∏

i

M∏
m

(
p(xi|µm,Ψxm , zi,m|πm)p(zi,m|πm)

)zi,m ]

·p(π|u) [
M∏
m

p(µm|mm,Vm)p(Ψxm |C,D)]

⇒ ln p(X, µ,Ψx,Z, π|Mj) =
N∑

i

M∑
m

zi,m ln[p(xi|µm,Ψxm , zi,m|πm)p(zi,m|πm)]

+ ln p(π|u) +
M∑
m

ln[p(µm|mm,Vm)p(Ψxm |C,D)]. (5.22)

The definition of the model is completed by defining conjugate priors over the parameters

p(µm) = N (µm;mm,V−1) (5.23)

p(Ψm) = W(Ψm;Cm,D) (5.24)

p(Z|π) = Multin(Z; π) (5.25)

p(π) = Dirichlet(π|u). (5.26)

A separable prior over µ and Ψ is chosen for simplicity. The use of Normal-Wishart
prior would mean that the variational posterior over these two parameters would not
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be separable, leading to a slightly improved approximation. However, using a separable
prior will still model the interesting area of high probability, as seen in the univariate
case in example (4.1).
VB learning involves maximizing the lower boundF(Q(H)) (3.52), whereH = {Z, µ,Ψ, π},
which is convenient to rewrite here

p(X|M) =
∫
Q(H) ln

p(X,H|Mj)
Q(H)

dH+
∫
Q(H) ln

Q(H)
p(H|X,Mj)

dH
= F(Q(H)) + KL(Q(H)||p(H|X)) (5.27)

≥ F(Q(H)) (5.28)

=
∫
Q(H) ln p(X,H|Mj) dH−

∫
Q(H) lnQ(H) dH

= 〈ln p(X,H|Mj)〉Q −
∫
Q(H) lnQ(H) dH, (5.29)

where we assume Q(H) factorizes over subsets {Hk} of the variables in H, so that

Q(H) =
∏

k

Qk(Hk)

= Q(µ)Q(Ψ)Q(Z|π)Q(π). (5.30)

Maximizing the free energy or minimizing the KL divergence in equation (5.27) results
in equation (3.54), repeated here for convenience

Qk(Hk) =
exp < ln p(X,H|Mj) >Ql 6=k∫

exp < ln p(X,H|Mj) >Ql6=k
dHk

. (5.31)

Due to the conjugacy of the priors, when optimized the factors of Q have the same form
as the corresponding factors in the priors.

Q(µm) = N (µm; m̃m, Ṽ−1) (5.32)

Q(Ψm) = W(Ψm; C̃m, D̃) (5.33)

Q(zi|π) = Multin(zi|π̃) (5.34)

Q(π) = MD(π|ũ). (5.35)

Following equation (5.31), to infer Q(H) the expectation of the complete data log like-
lihood2 in equation (5.60) wrt. all the variational posteriors except the one of interest,
i.e., Q(Hk). Thinking of the learning as VBEM, the updates in the VBE step, can be
expressed as3:

VBE step: This step consist of inferring Q(Z)

(5.34) ⇒ Q(zi|π) = Multin(zi; π̃)

=
N∏

i

M∏
m

π̃
zi,m

i,m , (5.36)

2As mentioned earlier p(H|M) can also be regarded as Lc(M), since it is the joint distribution of
the observed data and all the random variables, given a "deterministic" model.

3The variables with "tilde" (x̃) represent the updates of the initial value x.
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where

π̃i,m =
τ̃i,m∑N
n τ̃i,n

=
exp[ 12 〈ln |Ψm|〉 − 1

2Tr[〈Ψm〉〈(xi − µm)(xi − µm)>〉] + 〈ln πm〉]∑N
n τ̃i,n

.

The expected value of the indicator is

〈zi,m〉 = π̃i,m. (5.37)

VBM step: In this step the sufficient statistics of the variational distributions, over
all the hidden random variables is updated
µ:

(5.32) ⇒ Q(µ) = N (µ; m̃, Ṽ)

=
M∏
m

N (µm; m̃m, Ṽm), (5.38)

where

Ṽm = Vm + 〈Ψm〉
N∑

i

〈zi,m〉 (5.39)

m̃m = Ṽ−1
m

(
Vmmm + 〈Ψm〉

N∑

i

〈zi,m〉xi

)
. (5.40)

To get an uninformative prior for µm it suffice to set the precision Vm to a very small
value, corresponding to a flat distribution, this explanation is supported by the update
formula above, for small value of Vm only the data that decide the updates. The expected
value and the covariance of the variational distribution over the mean 〈µm〉 and cov(µm)
respectively are

〈µm〉 = m̃m (5.41)

cov(µm) = 〈µmµ>m〉 − 〈µm〉〈µm〉> (5.42)

= Ṽm. (5.43)

Ψ:

(5.33) ⇒ Q(Ψ) = W(Ψ; C̃, D̃)

=
M∏
m

W(Ψm; C̃m, D̃m), (5.44)

where
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C̃m = Cm +
N∑

i

〈zi,m〉

= Cm + Ñm (5.45)

D̃m = Dm + [
N∑

i

〈zi,m〉〈(xi − µm)(xi − µm)>〉]. (5.46)

The expected value of the variational distribution over the precision matrix 〈Ψm〉 is

〈Ψm〉 = C̃mD̃−1
m . (5.47)

π:

(5.35) ⇒ Q(π) = D(π; ũ)

=
M∏
m

W(Ψm; C̃m, D̃m), (5.48)

where

ũm = um +
N∑

i

〈zi,m〉

= αüm + Ñm, (5.49)

where ü = {üm}M
m=1 and

∑M
m üm = 1. α is a scale parameter and its effect is discussed

below. The expected value and the covariance of the variational distribution over the
the mixing proportions 〈π〉 and cov(π), respectively are

〈π〉 =
ũ∑M

m ũm

(5.50)

cov(π) = 〈ππ>〉 − 〈π〉〈π〉>

=
u0diag(ũ)− ũũ>

u2
0(u0 + 1)

, (5.51)

where u0 =
∑M

m um.
Note that the effect of Dirichlet D(π; αü) choice for the prior distribution over α can
be seen in equation (5.49), where for relatively large values of α (compare to N/M),
data has no effect on the updating ũ, and hence the mixing proportion 〈π〉 remains
unchanged from the initialization, this can easily be shown by inserting a large α ( and
um = 1/M, ∀ m) in (5.49) and (5.50) result in:

ũ ≈ αü (5.52)

⇒ 〈π〉 ≈ αü

α
∑M

m üm

= ü,
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Figure 5.4: Plots of p(π1) of a two dimensional Dirichlet (i.e., Beta distr.). The plots are made for
different α = {1, 2, 4, 32} and , u1 = u2 = 1/M = .5 for all plot except, down-right
side figure. One should remember that Dirichlet is mainly used as a distribution over
probabilities. Thus, in our case over the mixing proportion π1 of component m = 1. The
figure in top-right side is known as noninformative, and shows that the probability π1 can
take equally any value between 0 and 1. Jefferys prior on top-left side states that π1 must
be either probable or improbable, as it will be seen later in example (5.2), this type of
priors result in a quick cancellation of the components. Figure in down-left side shows
a informative prior, where α takes on a large value 32, this prior will force us to chose
the initial mixing proportion, in this case π1 = .5. Another informative case is shown in
down-right side figure, where u1 = .8, u2 = .2 and α = 32 the initial π1 = u1

u1+u2
= .8 is

the most probable. From these figures one can see that for α it acts as the precision of the
distribution, this is even better seen when taking the logit of the distribution [14].

since
∑M

m üm = 1. This is of course nice if it is a priori known how many mixtures
are wanted, but this is not the case in most practical unsupervised learning problems.
In the Dirichlet distribution [14], α can be thought of as a measure of sharpness, similar
to the precision in the Gaussian distribution. For large α (high precision) the distribution
over π is sharply peaked around the mean ü. Thus for an uninformative prior over π,
α should be smaller (law precision) i.e, broader distribution. The uninformative case is
actually when α = 1, for α < 1 the Dirichlet prefer the extreme cases (i.e., 0 or 1). This
is shown in figure 5.4, where I show the special case of the Dirichlet, for M = 2 (Beta
distribution (Appendix B)). Note that the choice of the symbol α here, is to emphasize
the similarity to α in FA, where it was used as the ARD factor, here though, it is αüm

which "shut down" the improbable m’th component. The effect of α in VB will be some
how clearer in example (5.2), see also Appendix B.
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5.1.3 Model order selection

In order to get a measure of a given model, we need to compute the negative free
energy Fj of the particular model. Given the assumption in equation (5.31), F in
equation (5.28) can be rewritten as:

F(Q(H)) =
∫
Q(H) ln

p(X,H|Mj)
Q(H)

dH

=
∫
Q(H) ln

p(X|H,Mj)p(H|Mj)
Q(H)

dH

=
∫
Q(H) ln p(X|H,Mj) dH−

∫
Q(H) ln

Q(H)
p(H|Mj)

dH

= 〈ln p(X|H,Mj)〉Q
k Qk(Hk) −

∫ K∏

k

Q(Hk)
K∑

k”

ln
Q(Hk”)

p(Hk”|Mj)
dH

= 〈ln p(X|H,Mj)〉Q
k Qk(Hk) −

K∑

k

∫
Q(Hk) ln

Q(Hk)
p(Hk|Mj)

dHk

= 〈ln p(X|H,Mj)〉Q −
K∑

k

KL(Q(Hk)||p(Hk|Mj)) (5.53)

Using equations (5.23-5.26) and (5.32-5.35) equation (5.53) becomes:

F = −KLD(ũ; ũ)

−
M∑
m

KLW(C̃m, D̃m;Cm,Dm)

−
M∑
m

KLN (m̃m, Ṽm;mm,Vm)

+
M∑
m

Lav(m), (5.54)

where

Lav(m) = 〈p(X,Z|µ,Ψ, π)〉Q (5.55)

The KLf if is the KL divergence for the distribution f distribution. The KL divergences
for the distributions used in this report can be found in Appendix B.

Bayesian Information Criterion BIC

As mentioned before both BIC = −MDL are the limiting cases of the VB framework
for large data set [1]. From equation (3.9) BIC can be written as

BIC(M) =
N∑

i

ln p(xi|Θ)− KM

2
ln N (5.56)

where KM is the number of free parameters in the model with M mixtures. KM in the
case of GMM is given by
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KM = M(1 + dX +
dX(dX + 1)

2
). (5.57)

The first term is for the mixing proportions, the second for means and the third for the
precisions.
To get an understanding of the VB works, lets try to solve the same problem in
example (5.1), this time withVB and see how it finds an appropriate number of mixtures.

Example 5.2 Given the same data set as in example (5.1). The aim is to see how VB
will select the number of components, this will be compared with the previously introduced
BIC. The VBGMM model is shown as Bayesian net in figure 5.3. The hyperparameters
in the model are initialized as follows:

mm =
1
N

N∑

i

X

Vm = 100Id

Dm = .01dXIdx

Cm = 1dXIdx

um = α/M

α = {100, 10,
1
M
},

these initializations are the same for all m components. I started with a large number
of components M = 20. The VB learning consist of 100 iterations. As the learn-
ing proceeds, the components that are not supported by the data will "automatically" be
shot down. This is done in practice by removing the components with 〈πm〉 < ε. The
used choice is ε = .005%

∑
m〈π̃m〉, i.e., kind of vote, the candidates supported by fewer

than .005% of the population are unwanted (and removed at the end of the learning).
Figure 5.5(a)(b) and (c) corresponds to α = {100, 10, 0.05} respectively. Left side figure
in (a) shows the valid components left after training. (a) (mid.) shows the hinton dia-
gram for the last update of 〈π〉 where it can be seen the size of the mixing proportions
for the components. (a) (right) is the history of 〈π〉, it can be seen here that it almost
preserve its initial values, following the Dirichlet distribution the learning should end up
choosing 〈π〉 = ü (5.50). While in (b) and (c) it can be seen how fast the components
are cancelled out, until an appropriate number of components is found, when using small
α values. This can be explained by the effect of Dirichlet figure 5.4(down-left) with small
α values, where it prefers the extremes, i.e., either p = 0 or p = 1.
Figure 5.6(top) shows how the lower bound F increases throughout the learning until
convergence. The effect of cancellation of components on the lower bound F , can be seen
by looking at the similarities between the indices of peaks in (down) and the difference in
the lower bound ∆F = Ft−Ft−1 (mid.), it can be seen that high increases occurs exactly
after each component have been cancelled out.
Finally in figure 5.6(b) it can be seen how both BIC and the variational lower bound F
succeeded in finding the true number of components. In this example the number of data
is unchanged through the learning N = 500. It is interesting to see how the changing the
number of data will affect the model selection, This will be seen later.



CHAPTER 5. MIXTURE MODELS 62

α= 100

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

<π
m

>

(a)

α= 1

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

# itr

<π
m

>

(b)

α= 0.05

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

# itr

<π
m

>

(c)

Figure 5.5: This figure shows how VB learning deals with the problem of finding model order. Given
the same data set as in example (5.1). As in the case of FA the hidden space was mainly
the work of theARD. Here is the Dirichlet distributed mixing proportions π that has the
similar task, of finding the intrinsic number of components. For large value of α = 100 (a)
the initial number of components remains unchanged. Note that since üm = 1/M = .05 for
all m, and 〈πinit〉 = ü (5.50), if we learn the model longer time all 〈π〉 will converges to that
value, as described by the Dirichlet distribution in figure 5.4 (down-left figure). However
for smaller values, α = 10 (b) or α = 1/M = .05 (c) the model finds an appropriate
number of components M̃ = M = 5, already around itr = 35 right-side figure in (b) and
(c), where the curves represent the values of 〈π〉 during learning. One can see how fast
the values drops down for small values of α, this can be explained by figure 5.4 (top-left
figure), where for small α the model prefer the extremes, i.e., 0 or 1. .

5.2 Mixture of Factor Analysis and PCA

An important advantage of linear latent variable models discussed in chapter 4 is that
they define a proper probability model which can be extended to mixture model. As was
the case in the previous section, where the extension from a single Gaussian to mixture of
Gaussians (GMM) was by, roughly speaking interchanging pm(x|θm) in equation (5.1)
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Figure 5.6: This figure shows how the lower bound F increases (a) until convergence. In (b) I showed
the history of updating the mixing proportions 〈π〉, where α = 0.01. In (b) the difference
in ∆F = Ft+1 − Ft is plotted. Note that high increases occurs when components are
cancelled out, this can be seen by looking at similarity of time (itr.) indices for tops in
∆F/∆t with indices for cancellations in the history of 〈π〉. (b) shows model selection
problem, for the same data used in examples (5.2) and (5.1). The x axis represent the
number of components in each Mj . It can clearly be seen that both BIC and VB using
the lower bound, finds the "true" latent number of mixtures, namely 5 .

by the Gaussian distribution N (x;µm,Ψ−1
xm

), as in equation (5.2). For Mixture of Factor
Analyzers equation (5.58) is used, i.e., a linear combination of component distributions,
repeated here for convenience:
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Figure 5.7: This figure shows Bayesian net for Variational Bayes Mixture Factor Analysers. Note that
I did not insert the noise precision into inside the plate, since I assume the noise to be
sensor noise, i.e, the same noise for all the components. Note also that their is two hidden
state in this model S (from the linear FA) and Z (from mixture distributions). As in the
case of linear latent variable models, by constraining the noise precision Ψ to σ−2Idx a
mixture of probabilistic PCA, is obtained.

MFA⇒ pm(x|θm) ∼ N (X;µm,AmA>
m + Ψ−1) (5.58)

MPPCA⇒ pm(x|θm) ∼ N (X;µm,AmA>
m + ψ−1Ids), (5.59)

As described before for spherical precision Ψ the model is referred to as Mixture of
Probabilistic PCA (MPCA) [43], if the noise precision is elliptical the model is then called
a Mixture of Factor Analysers [18]. These mixtures can be interpreted as a mixture of
constrained Gaussians in which the number of parameters can be controlled through the
dimension of the latent space dS without putting too strong constraints on the flexibility
of the model, that is, on the form of the precision matrix.
Bayesian net for VBMFA is illustrated in figure 5.7. All the needed quantity for VB
learning are presented earlier in either FA, for the factor loading A, the hidden states
S, the ARD parameter α, or in VBGMM for the mixing proportion π and the hidden
states (indicators) Z.
Due to the similarity to the previous simpler model modelFA andGMM, I will just write
down the complete data likelihood p(X,H|M) needed for evaluating the VB learning.

p(X,H|Mj) = p(X, µ,Ψx,Z, π,A, α,S|Mj)

= [
N∏

i

p(xi|µ,Ψx, zi)p(zi|π)p(si)] p(π|u) [
M∏
m

p(µm)p(Am|αm)p(αm)]p(Ψ)

⇒ ln p(X,H|Mj) =
N∑

i

M∑
m

zi,m[ln p(xi|zi,m, µm,Ψ−1, si) + ln p(zi,m|πm) + ln p(si)]

+
∑
m

ln p(πm|um) + ln p(Am|αm)

+
M∑
m

[ln p(µm|mm,Vm) + ln p(α|a,b)] +
dX∑

k

p(ψk). (5.60)
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All the above needed quantities such as priors, are given in sections for the simpler
models. The priors should be plugged in, and the expectation is then taken wrt. to
all the variables except the one of interest as given in equation (5.31). Since all the
priors are conjugate priors, the variational posterior Q(Hk) will have the same form as
the prior p(Hk), thus when solving the expectation, quantities are gathered together so
as the result will look like, the logarithm of the distribution of interest Q(Hk), all the
constants and terms (even variables) independent on the one of interest, i.e., Hl 6=k ∀ l

are then regarded as the normalization constant.
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Figure 6.1: This figure shows the artificial (a) data, and real data (b) used to compare the models in
the thesis. (a)(left) is a 3D view of Ueda’s 1D noisy spiral described by equation (6.1).
(a)(right) is a modified version of Ueda’s data with intrinsic dimension of 2. (b) is the
histogram of Galaxy data set

The aim of this chapter is to see how the models described in the course of thesis
works, for both ML and VB learning. These models will be also compared to each
other, and their performance will be tested on real and artificial data. Since ML suffers
from overfitting as shown in example (5.2), a BIC penalized ML will be used. The data
sets used in this chapter will be described next.

6.1 Artificial data

One of the used artificial data to compare mixture models is Ueda’s noisy shrinking
spiral figure 6.1(left). This data set is used by many researchers for the purpose of
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testing mixture models e.g., [32, 16]. Ueda’s spiral is generated as follows:

xi = [(13− 0.5ti), −(13− 0.5ti) sin ti, ti] + εi (6.1)

where ti ∈ [0, 4π], ε ∼ N (0,diag([.5, .5, .5])),

the parameter ti determines the point along the spiral in one dimension. Ueda’s data
described above, can be seen in figure 6.1. This is a nice data set for testing mixture
models,GMM,MFA andMPPCA, since the data has a 1D line folded as a spiral. Thus
a good model will be the one that is able to find the hidden dimensionality. However
this data does not contain a true number of clusters to make a decision about how good
is the estimated model size inferred by a model of interest.
Figure 6.1(mid.) shows my version of this data, where the hidden dimensionality is
increased to two, and where M distinct 2D mixture components are embedded in the
shrinking spiral.
To generate such data I followed the same steps as in equation (6.1), where I first generate
the mean of the mixtures as:

µm = [(13− 0.5tm), −(13− 0.5tm) sin tm, tm] (6.2)

where t = {tm}M
m=1 =

[0 : M − 1]
M − 1

4π.

Each of these mean µm will represent a centroid of a rotated 2D Gaussian components,
the rotation is in 3D, i.e., around x, y and z axis, by the orthonormal rotation matrices
Q = AxAyAz, where:

Ax =




1 0 0
0 cos(Ax) sin(Ax)
0 − sin(Ax) cos(Ax)


 (6.3)

Ay =




cos(Ay) 0 sin(Ay)
0 1 0

− sin(Ay) 0 cos(Ay)


 (6.4)

Az =




cos(Az) sin(Az) 0
− sin(Az) cos(Az) 0

0 0 1


 . (6.5)

To perform the multiplication QXm of each single 2D Gaussian a row of for instance
zeros should be appended to X, i.e., Xm ← [X>

m,0>]>, the resulting set is a "3D" data,
and can then be multiplied by the rotation matrix.

6.2 Real Data

For real data I choose a simple univariate ‘Galaxy data’, which was first described by
Roeder [2]. The data set consists of the velocity of 82 distant galaxies, diverging from our
own galaxy. This data set was subsequently analyzed under different mixture models.
Figure 6.4 shows the histogram of these data.
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Figure 6.2: This figure shows howVBGMM determines the number of components. (a) (left) shows
the initialization, where 22 components were used. (a)(right) VBGMM after conver-
gence 14 components were left. (b) (right) shows hinton diagram of the resulting mix-
ing proportions, where large squares correspond to large positive values, and there are
14 of them, corresponding to the number of inferred components. (b)(mid) shows the
lower bound Fm during learning, the model converges already after the first 20 itera-
tions. (b)(left) is just an easier way to visualize the inferred number of components, where
the < π > is sorted and differentiated (−∆〈π〉

∆t
). Note that 14 was found by many re-

searchers [16, 32]. (c)(left) shows the expected complete data log likelihood (lower bound)
vs. the incomplete data log likelihood for the case of 20 components. (c)(right) shows
the BIC penalized MLGMM, runs for several components, and the highest score is
assigned to a mixture of 16 components.
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6.2.1 Determining the number of components using BIC and VB.

As a first test VBGMM and penalized MLGMM will be tested to find the number of
mixtures in ueda’s spiral, note that in this data there is no true number of mixtures.
BIC criterion for GMM’s can be seen in equations (5.57) and (5.56).
Figure 6.2 shows VBGMM applied to Ueda’s spiral data, and the initial number of
mixture is 22. After convergence the inferred number of components is M = 14, which
is similar to, e.g., [16, 32]. A good thing about VB is that there is no need for discrete
search of the model size. The unneeded components will simply die out as they don’t get
support from data. And as we will see shortly, this depends not only on data but also on
our choice of the prior. BIC as seen in figure 6.2(c)(left) needs to "try" the appropriate
model before deciding whether it should be chosen, by compering its performance with
that of other models. Since the appropriate model is unknown, a large search in the
model space should be made, which is computationally costly.

Since there is no true number of components, testing the model using new unseen data
is almost a must. The Ueda spiral contains N = 800 data point. I used 70% of them
as training data, and the rest as test data, the results are shown below, where GMM,
MPCA and MFA are tested.

GMM
spherical diagonal full MFA MPCA

Train 2.47 2.4 -0.99 -0.2 -056
Test 2.64 2.2 1.92 0.45 0.92

In the above table each data represent the average over 20 runs of ML learning. As
it can be seen and expected, MFA and PCA outperform the non constrained or poorly
constrained GMM. This expectation is based on the fact that the data has an intrin-
sic dimension, which is impossible for GMM to estimate without getting singularity
problems, and then break down. MPCA or MFA has the ability to deal with those
problems, due to their structure (see chapter 4).

In the next experimentVB andBIC are performed on 3 Gaussian mixture models with
M = {3, 5, 7} components, corresponding to (a), (b) and (c) in figure 6.3 respectively.
Each of these mixtures (d), gave rise to 3 independently drawn data sets, with N =
{40, 80, 500} corresponding to the 1st. 2nd. and 3rd. rows in figure 6.3 respectively. In
this experiment α was set such that, the data term is dominant (5.49), this is done by
assigning a small value to α (.01) in this experiment. For the case of 3 mixtures (a),
N = 40 was enough for both BIC and VB to infer the number of components. Whereas
given N = 40 for M = 5 mixtures VB fails, and assigns a higher score (Fm) to a model
with 3 components, which is of lower complexity. BIC however has selected the true one
M̃BIC = 5, this is not what one should expected, since according to equations (5.56) and
(5.57), for a small data set BIC over-penalizes large models. MoreoverVB was supposed
to satisfy with small amount of data, which is enough to compute sufficient statistics of
the model. Also in the case of 7 mixtures (c) for both N = 40 and 500, BIC was closer
to the true value of M = 7, M̃BIC = 8, while M̃VB = 4 and M̃VB = 3 for N = 40 and
N = 80 respectively. A similar result for the case of linear FA, was achieved by my
colleague F.B.Nielsen [34] when he deduced that VB tends to underestimate the model
choice. The same phenomena can be seen here.
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Figure 6.3: Data sets of different size N = {40, 80, 500}, drawn independently from each of the
3 Gaussian mixtures with number of mixtures M = {3, 5, 7} (d). The 9 data sets are
modelled by VBGMM and BIC penalized ML, each of the learning consist of 100

iterations. The resulting curves fromBIC (dashed line) andVB-lower bound (solid line)
are illustrated in (a), (b) and (c) for the nine data sets.

6.3 The effect of priors

Obviously the choice of prior has an effect on the computed posteriors and model selec-
tion. A close look at equations (5.39)-(5.49), one can easily see that updating is a sum
of prior term and a data term. Allowing for weak priors is similar to allowing the data to
dominate the updates. However for large priors, or equivalently small data set, the up-
dates will be mainly based on the prior, which in this case will act as a regularizer. The
effect of the prior p(π|αü) (see equation (5.12)) is investigated in a simple experiment of
estimating the density distribution of the Galaxy data. In figure 6.4 (a), (b) and (c) 3
different values of α controlling the mixing proportions π are tested, α = {100, 1, 10−2}
corresponding to strong, noninformative and weak priors respectively and correspond-
ing to left, middle and right figures respectively. For a strong prior all components will
survive the learning, and are forced to represent the data equally, while for a weak prior
only few will survive. This can be clearly seen in figure 6.4(c)(down), for weak prior
(α = 10−2) (right), around 40 iterations 8 components die out very fast, which can be
seen by the lines of < π > falling down almost vertically, resulting in a density esti-
mation with a mixture of 4 components. For α = 1 (mid) the components die a bit
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Figure 6.4: VBGMM and aBIC penalizedML applied to ’Galaxy’ data. (a) shows the final result
of density estimation using VBGMM with different α = {100, 1, .01}, from left to right,
respectively. (b) shows the hinton diagram of the final values of the mixing proportions at
the end of the learning. (c)(up) shows the change in the lower bound ∆F = Ft − Ft−1.
In (c)(down) one can see that for large α components do not ’die out’ as fast as for small
ones. A large factor (α = 100) was used to compare how BIC will perform comparing to
VB, (d) shows the scores for BIC and F , both of them agreed for the same number of
latent mixtures 4.

slower, ending with a mixture of 6 components. Finally for strong prior (α = 100) all
components survive, where the values of < π > (left) remain almost the same as in the
initialization and the density is then represented by a mixture of all the 12 components.
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In figure 6.4 (d) the performance of BIC and VB to choose an appropriate model size
(i.e., number of mixtures) to estimate the density of the Galaxy data is tested. For the
comparison to make sense, the effect of π must be switched off, i.e., choose a strong prior
(α = 100 in this case), the best model is then the one which gives the highest score, the
figure shows that both BIC and VB agreed for density estimation using a mixture of 4
components.

6.4 Image compression

In this section the performance of PPCA, EMFA and EMMFA, in image compres-
sion, will be tested. As the usual methods for image compression such as Karhunen-Lòeve
transformation or PCA, an image is subdivided into nonoverlapping blocks of K × K

pixels, usually K = 8 or K = 16 is used. Each block is transformed to a vector x K2×1.
The whole image is then X = {xi}, and the compression algorithm is then described as
follows:

1 Choose a desired dimension q and number of mixture components M .

2 Estimate µm and Am, for all m, by fitting an MFA to X.

3 For each x ∈ X

(a) compute

x̃m = Am(A>A)−1A>
m(x− µm) + µm, ∀ m (6.6)

(b) the vector that minimizes ||x̃m − x||2 is assigned to x̃∗m

4 Transform x̃∗m back to a block image

for more detail see N. Ueda et.al [44]. Figure 6.5-(a)(right),-(b)(left) and (b)(right) shows
an example of compressing an image using PPCA, EMFA and EMMFA respectively,
where the original image is shown in (a)(left). As expected it can be seen that MFA
performs best with an error of e = 0.0015, followed by FA with e = 0.0029 and at
last comes PPCA with a slightly larger error e = 0.003. This is probably due to the
fact that PPCA confuses noise with information in the K2 dimensional X, as shown
in example (4.2), where I showed the particular problem of variance confusion PPCA
suffers from. The performance can also be visually judged by looking at the quality of
the compression, where K = 4, and q = 3, i.e., a compression ratio of q/K2 = 0.1875.

Figure 6.5(c) shows how the error (e=||x̃m − x||2) decreases to zeros as the latent
dimensionality gets closer to the true dimension, for the three technics. The experiment
confirms that MFA performs best followed by FA and PPCA.

6.5 Inferring Latent Dimensionality

As a last example, I will show here, how MFA finds the mixtures and the latent dimen-
sionality. This is shown in figure 6.6, where it can be seen that the model finds actually
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the 1D hidden space, and manage to separate the noise from the information, which
here the shrinking spiral. An other example is shown in (b), consisting of a rotated
uniformly distributed 2D source. The reconstructed signal is a rotated version of the
true source, and this is mainly because FA expects to model a Gaussian and therefore
finds the direction of high variance and its quadratic to be its diagonals. This can be
seen in the rotated way, the Gaussian estimate lies on the hidden source in (b)(left).
This represents in fact a major drawback of FA models and their extension. And Attias
however combined FA with GMM to get a better model [19].
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Figure 6.5: (a)(left) is the original image of Lenna (commonly used in image processing), the compres-
sion with a ratio of q/K2 = 0.1875. (a)(right) is a reconstructed image after compression
using PPCA where a texture appears on the image the square error .003. (b)(left) is
the MLFA .002. (b) (right) EMMFA .001. It is visually clear that a MFA model
performs better, followed by FA and at last come PCA. This is supported by the error
function plotted as function of the latent dimensionality q (c).
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Figure 6.6: Figure(a) shows how VBMFA is able to find the mixtures in a manifold, and also
their latent dimension. Figure (b)(left) shows that VBFA is able to find the hidden
dimensionality. Note, the signal it self is non-Gaussian, therefore the reconstructed latent
source in (b)(right) is rotated according to correlation and not independency, higher mo-
ments than are therefore needed in order to solve the problem. This figure shows in fact
a drawback of FA in general, because these models assumes the sources to be Gaussian
distributed, which is not the case in most practical cases.
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Conclusion

The principle of building complex models based on simpler ones, has been proved to be a
fruitful idea throughout this thesis. An important advantage is that it leads to learning
algorithms which are analytically and computationally tractable. In fact at the heart of
the learning algorithm of a complex model, lies the algorithm of a simpler one. The EM
algorithm for maximum likelihood estimation embodies this idea in a probabilistic way.
The idea of building more complex models by an extension to simpler or basic models,
gave rise to a unified framework of many well known techniques in machine learning.
Such framework is the generative model or latent variable model discussed in the thesis.

A detailed derivation of latent variable models, where techniques such as FA, PPCA
are their special cases. Two learning methods for the linear latent variable models were
given in chapter 4. The first one was ML learning section 3.1, which was made tractable
by the EM algorithm. The other discussed learning method was Bayesian learning
chapter 3.2. Because of its intractable derivation, approximation methods were dis-
cussed, with the focus on variational Bayes technique section 3.3, where EM can be
regarded as a special case.

A further extension to basic models was achieved by introducing mixture of latent vari-
able models chapter 5, which includes GMM, MFA and MPCA. A detailed derivation
of the simplest case GMM was made in section 5.1. Based on GMM and linear latent
variable models, it is easier to derive the learning algorithm for the other two models,
MFA and MPCA, which were briefly mentioned in section 5.2.
Within the pervious mentioned sections and chapters small examples were derived, to
compare models, or to justify some made assumptions. One of the assumptions was to
use separate priors for means and covariance in a linear model, which from example (4.1)
proved to be worse than the joint prior, but still gave nice result due to the form of mini-
mizedKL divergence. Another example was the failure ofPPCA to separate information
from noises.

In chapter 6 VB vs. BIC was discussed in form of experiments, which leads to
unexpected results, such as BIC can outperform VB in small data set.
However all the discussed models are Gaussian, which are not always the case in real
data. Non-Gaussian extension to the discussed models could be more general. Another
way could be to use nonlinear transformation of the linear models, while keeping the nice
derivation achieved by the simplicity of Gaussian model. Furthermore all the discussed
model are static models where the time factor is neglected, which certainly limits the
use of such models.
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APPEDNDIX A
Important derivations

A.1 Lower bound derivation

A more detailed derivation of the lower bound equation (3.37).

Linc(Θ) =
X

i

ln p(xi|Θ) (A.1)

=
X

i

ln p(xi|Θ)

Z
Qsi(si) dsi (A.2)

=
X

i

Z
Qsi(si) ln p(xi|Θ) dsi (A.3)

=
X

i

Z
Qsi(si) ln[

p(xi, si|Θ)

p(si|xi,Θ)

Qsi(si)

Qsi(si)
] dsi (A.4)

=
X

i

Z
Qsi(si) ln

p(xi, si|Θ)

Qsi(si)
dsi +

X
i

Z
Qsi(si) ln

Qsi(si)

p(si|xi,Θ)
dsi (A.5)

=
X

i

Z
Qsi(si) ln

p(xi, si|Θ)

Qsi(si)
dsi +

X
i

KL(Qsi ||p(si|xi,Θ)) (A.6)

≥
X

i

Z
Qsi(si) ln

p(xi, si|Θ)

Qsi(si)
dsi (A.7)

= F({Qsi(si)}N
i=1,Θ) (A.8)

Researchers adopt different ways to get the same above result, depending on where they
start the derivation, most of them use directly the jensen’s inequality which is based on
the concavity property of the logarithmic function, see e.g.[17, 46, 40].
An explanation of the different steps of the above derived relation can be explained as
follows:

- In equation (A.3) the integral over the hidden variables does not affect the likeli-
hood since

∫ Qsi(si) dsi = 1.

- Since ln p(xi|Θ) is independent on the hidden variable s, it can be, with no harm,
be placed inside the integral in equation (A.4).

- In equation (A.5) the Bayes’ rule has been used.

- The quantity KL(Qsi ||p(si|xi,Θ)) =
∫ Qsi(si) ln Qsi (si)

p(si|xi,Θ) dsi in equation (A.7) is
the kullback-Liebler divergence presented in section 3.3.1.

- The inequality in equation (A.8) is usually referred to as Jenssen’s inequality that
is based on the concavity property of the logarithmic function. It can be explained
here by the fact that KL ≥ 0 (see section 3.3.1).
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- F(Qsi ,Θ) =
∫ Qsi(si) ln p(xi,si|Θ)

Qsi(si)
dsi in the last equation (A.8) is the negative of

a quantity known in statistical physics as the free energy , and represent the lower
bound.



APPEDNDIX B
Distributions, sufficient statistics and KL

In the following table, gives the formula of the used distributions, their sufficient statis-
tics and KL divergences.

B.0.1 Multivariate Gaussian

Notation & Parameters

θ ∼ N (µ,Ψ−1) µ mean vector; Ψ precision matrix

density function

p(θ|µ,Ψ) = (2π)−d/2|Ψ|1/2 exp(−1/2Tr[Ψ(θ − µ)(θ − µ)>])

sufficient statistics & KL

〈θ〉 = µ, 〈θθ>〉 = Ψ−1 KL(µ̃, Ψ̃||µ,Ψ−1) = −1
2

(ln |Ψ−1Ψ̃|+Tr[I − [Ψ̃−1 + (µ̃− µ)(µ̃− µ)>]Ψ] ln e)

B.0.2 Gamma

Notation & Parameters

τ ∼ G(α, β) α > 0 shape; β > 0 inv. scale

density function

p(τ |α, β) = β
Γ(α)

τα−1 exp−βτ

sufficient statistics & KL

〈τn〉 = Γ(α+n)
βnΓ(α)

〈τ〉 = α
β

KL(α̃, β̃||α, β) = α̃ ln β̃ − α ln β − ln Γ(α̃)
Γ(α)

+(α̃− α)(ψ(β̃)− ln β̃)− α̃(1− β

β̃
)

B.0.3 Dirichlet

π ∼ D(α), prior sample sizes α = {αk}K
1 ; αk > 0; α0 =

∑K
1 αk

density function

p(π|α) = Γ(α0)Q
k Γ(αk)

∏
k παk−1

k
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sufficient statistics & KL

〈π〉 = α/α0

KL(α̃||α) = ln Γ(α̃0)
Γ(α0) −

∑
k[ln

Γ(α̃k)
Γ(αk) − (α̃j − αk)(ψ(α̃k)− ψ(α̃0))]
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