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1 Introduction

Through the use of strong encryption and well-designed communications pro-
tocols it is possible to engineer secure systems which allow a sender and a
receiver to exchange confidential messages supported by authentication guar-
antees which confirm the identity of the principals in the communication. A
very high level of confidence in the correctness of protocols such as these can
be obtained by the application of static analysis methods to detect unwanted
control flows. Such an analysis can ensure the absence of information flows
from the sender or recipient to an attacker who is trying to eavesdrop on their
conversation or to interfere through inserting bogus messages or otherwise
subverting meaningful information flow between the sender and the receiver.

Supported by strong and justified belief in the encryption techniques used
and the communication protocol deployed it might be tempting to conclude
that no information could be leaked from the communication and gained by the
attacker. However, digital communications are susceptible to a particularly
subtle form of attack which is not always well defended against. Those attacks
in which information is leaked through an inference obtained from timing a
secure interaction are known as timing attacks.

The effects of a successful timing attack can be catastrophic. A successful
timing attack can reveal the encryption keys which secure protocols depend
upon. Messages believed to be private can now be read by an attacker. Addi-
tionally, an attacker can forge digitally signed messages and thereby entirely
subvert the message authentication process.

It was previously believed to be the case that timing attacks could only
be applied to hardware security tokens such as smartcards where they had
been shown to be able to expose the secret keys used for RSA decryption [20].
In the context of a networked computing application it was hoped that the
unpredictable delays which are inherent to networks would introduce sufficient
“noise” to make timing attacks impractical in such a setting. Unfortunately
this hope was shown to be misplaced when Brumley and Boneh were able to
mount a remote timing attack against OpenSSL [8]. By measuring the time
which a server takes to respond to decryption queries Brumley and Boneh’s
attack client is able to extract the private key stored on the server. Their
attack applies in networked environments but also in interprocess and virtual
machine environments as well.

Many cryptographic libraries completely ignore the problem of timing
attacks and have no defenses implemented to prevent it, so this is not merely a
problem with one particular implementation of a secure protocol but instead
is a general problem which is not widely understood or one which is being
methodically fought using well-founded analysis methods.

In the context where developers have access to the source code of the
implementation of their encryption routine then it might be possible to add
an implementation of RSA blinding, which draws from a random number dis-
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tribution and applies encryption to this in order to add a random delay to
the time taken per encryption step. Somewhat problematically, this method
requires developers to have the ability and expertise to implement this oper-
ation correctly. In practice, many application programmers are unfamiliar
with the details of encryption routines, and there is genuine reason for con-
cern that they could compromise the integrity of the encryption in the process
of modifying its implementation.

Timing attacks can be mounted by timing the exchange of messages dur-
ing a session between two parties. The parts of the communication which do
not require user interaction have sufficient repeatability that timings of these
interactions can be used to derive information. Any user interaction, even a
single keystroke or button click, introduces sufficient random delay to mask
any information which could have been obtained from the timing information.
Indeed, measuring the time between user keystrokes is used as a source of unre-
peatable, weakly correlated random numbers in seeding many cryptographic
routines.

Where a secure session between two parties can be monitored by an eaves-
dropper then information about the time of parts of the interaction can be
recorded. In the case where there is a difference in the time taken by a suc-
cessful interaction and one which fails then one bit of information is leaked
from the communication, namely whether this session ended in success or fail-
ure. One scenario in which this single bit of information might be of some
value is if an eavesdropper is timing the exchange of messages during a ses-
sion between a buyer and a seller. The longer interaction could correspond to
buying shares (successful completion) and the shorter one could correspond
to getting a quote for a share price, with no attendant purchase (the failure
outcome). If they are unable to break the encryption which is used then the
eavesdropper can infer that some shares have been purchased, but not how
much, or by whom.

An alternative method of combating timing attacks against secure sessions
such as the one described above—and one which does not depend on a deep
understanding of how to securely modify sophisticated encryption routines—
is to introduce delays in the faster of the important interactions in order to
mask the difference between a slower and a faster interaction.

It might seem strange to deliberately insert delays into a protocol. Surely
we should be concerned with making the protocol run at top speed and there-
fore we should speed up the execution of whichever of the success or failure
interactions takes the longer time. That might be possible to achieve if we
have some additional insights into how the longer-running interaction can be
made more efficient (using better algorithms for encryption or authentication,
or compressing the transmitted data using lossless compression, or some other
means). While that might be the most desirable option in an ideal world
in practice we may not have better authentication protocols. In addition,
to achieve a faster encryption rate we might be tempted to use lower grade
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encryption and so such an approach would even give rise to the possibility
that the security of the system is compromised by trying to reduce the time
taken by the slower of the two interactions.

In contrast to the above we can always make the faster route slower by
introducing delays. This requires the invention of no novel algorithms with
untested security and performance behaviour and no utilisation of previously-
untried authentication protocols. For this reason we frame the problem in the
terms of padding out a protocol with delays but our method is equally well
applicable to the case where we do have the insight or skill to speed up the
slower of the success and failure paths to come in line with the other.

The modification brought about by adding delays to a protocol gives rise
to two interrelated questions:

(i) is the protocol with the additional delays still a secure protocol or have
the delays themselves somehow compromised its security; and

(ii) do the delays which are inserted actually achieve the effect of masking
the difference between a successfully completed session and one which
was unsuccessful?

In order to be able to address these questions we need to have a way to
efficiently re-run previously-developed security and performance analyses of a
protocol.

It would be possible to take an engineering approach to attempting to
determine the answer to these questions by padding an implementation of
the system with delays and profiling it over multiple success and failure runs.
Repeated testing in this way could give us some confidence that padding with
delays had achieved the desired effect but it is difficult to believe that we could
achieve the same level of confidence as could be achieved using a well-founded
formal approach.

To perform formal analysis of security protocols we need a formal frame-
work in order to describe the protocols and to conduct analysis of these descrip-
tions. Rather than developing an entirely new framework, we make use of
already-developed modelling formalisms and analysis tools. We use the pro-
cess calculi LySa [10] and PEPA [18] for security and performance analysis,
respectively. The software tools which we use to process our models in these
calculi are the LySatool [11] and the Imperial PEPA Compiler (IPC) [6,5] with
DNAmaca [19].

Structure of this paper:

We continue with an overview of the process calculi which we use in this
paper, examining their similarities and differences. In Section 3 we describe
our method of working with these calculi in order to achieve a federated anal-
ysis of security and performance. In Section 4 we present the case study of
the paper, a secure mobile m-commerce application in which the transactions
between the buyer and the seller are secured using the “Wide-Mouthed Frog”
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protocol. A discussion of related work follows in Section 5 and the conclusions
of the paper are presented after that.

2 Overview of the calculi

The LySa and PEPA calculi are used for different analysis purposes. LySa
models can be used to determine if a protocol is secure against malicious (or
accidental) harm, guaranteeing trustworthy exchange of information even in
the presence of the hardest attacker. PEPA models can be used to determine
if a protocol with continue to perform under malicious (or accidental) over-
loading, guaranteeing timely exchange of information even in the presence of
increasing network traffic.

Due to their different ends, LySa and PEPA offer the modeller different
linguistic constructs. In this section we contrast the features of the PEPA and
LySa process calculi through the use of a common example. The intention
in this section is to give the reader sufficient familiarity with the notation to
be comfortable with the remainder of the paper. If further details are needed
they can be found in Appendix A and B.

We begin with a simple example which models a user printing documents.
The user issues lpr print commands which send a document to the print
daemon. The print daemon converts them to PostScript and spools them to
a printer which prints them. In PEPA the rates at which these events happen
are quantified. The producer and consumer roles in a communication are
distinguished because the producer (generating the work) determines its rate
and the consumer passively accepts this (without specifying the rate).

User
def
= (lpr , rl).User

Daemon
def
= (lpr ,>).(toPS , rPS).(spool , rs).Daemon

Printer
def
= (spool ,>).(print , rp).Printer

System
def
= (User ��

{lpr}
Daemon) ��

{spool}
Printer

We present the LySa version of this example next. The LySa version looks very
similar although there are a number of small differences in the presentation:

(i) LySa uses process replication (via the ! operator) instead of binding names
to processes and implementing looping behaviour using recursion;

(ii) in PEPA co-operation is symmetric whereas in LySa inputs and outputs
are syntactically distinguished, as in the π-calculus;

(iii) the parallel composition operator is not indexed in LySa, processes syn-
chronise on all of their common names; and

(iv) there are no individual actions in LySa, so we take the step of introducing
a process which models the PEPA environment and has the function of
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matching the individual activities to make an input/output pair.

To facilitate the comparison step-by-step we introduce syntactic abbreviations
for process terms using ≡ though technically this notation is not a part of
LySa, which has nameless processes.

User ≡ !〈lpr , rl〉.0

Daemon ≡ !(lpr , rl; ).〈toPS , rPS〉.〈spool , rs〉.0

Printer ≡ !(spool , rs; ).〈print , rp〉.0

Environment ≡ !(toPS , rPS; ).0 |!(print , rp; ).0

System ≡ User | Daemon | Printer | Environment

Co-operations in PEPA have been replaced by pattern matching in the LySa
model. Patterns such as those used above require inputs and outputs to
be identical in order to match. More specifically, the LySa input requires
everything before the semi-colon to be component-wise identical to the values
in an output for the synchronisation to take place. PEPA’s actions are made
up of an activity type and an activity rate. These are represented by tuples
of size two in the LySa model.

We could observe that individual activities should not be seen by an
attacker (because they do not involve activities which cross the network).
If we did not care about the timing behaviour of the protocol we could remove
all of the individual activities and therefore the environment as well to have
a much simpler LySa model.

User ≡ !〈lpr , rl〉.0

Daemon ≡ !(lpr , rl; ).〈spool , rs〉.0

Printer ≡ !(spool , rs; ).0

System ≡ User | Daemon | Printer

However, in this paper we certainly do care about the timing behaviour of
protocols and so we retain the individual activities of the PEPA model now
and later.

In stochastic process algebras it is usual to abstract away the data values
which would be passed from process to process. However, in an analysis of
security and confidentiality it is crucial to know which messages are being
passed between the principals in the interaction. For this reason we now
progress to consider a notational extension of PEPA, PEPA with value pass-
ing and function symbols. In this version of our model of a user printing
documents we supplement the action types with an annotation which gives
the local name of the data which is being passed. Thus the user refers to his
file as myFile, the daemon calls this the userFile, and the printer sees it after
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conversion to PostScript as the spoolFile.

User
def
= (lpr(myFile), rl).User

Daemon
def
= (lpr(userFile),>).

(toPS (userFile), rPS).(spool(userFile), rs).Daemon

Printer
def
= (spool(spoolFile),>).(print(spoolFile), rp).Printer

System
def
= (User ��

{lpr}
Daemon) ��

{spool}
Printer

In contrast to PEPA, LySa supports value passing in its syntax. Values
are passed through input/output pairs where passing a value involves the
exact matching of values to ensure that the correct inputs and outputs are
being married and the binding of formal parameter names to actual parameter
names. In the example below the match on the lpr , rl activity gives rise to
the binding { userFile 7→ myFile }. The names used within a pattern in an
input action prefix are syntactically separated from the variables used there
by a semi-colon.

User ≡ !〈lpr , rl,myFile〉.0

Daemon ≡ !(lpr , rl; userFile).〈toPS , rPS, userFile〉.〈spool , rs, userFile〉.0

Printer ≡ !(spool , rs; spoolFile).〈print , rp, spoolFile〉.0

Environment ≡ !(toPS , rPS; PSFile).0 | !(print , rp; printFile).0

System ≡ User | Daemon | Printer | Environment

This brief example has illustrated some differences between the two process
calculi used here. We will discuss the encryption and decryption primitives in
the LySa calculus in a later section.

3 Methodology

Distilled to their essence, process algebras record a causal ordering on the
events in a discrete-event system formed as a composition of concurrently-
active communicating processes. This view of the system allows the verifi-
cation of properties of the model which are expressible as inter-dependencies
between events. Richer analyses are facilitated by decorating the events from
the model in a variety of ways. One type of decoration is an estimate of the
duration of events; another is a record of the security classification of values.
In their turn, these types of decoration lead us to stochastic process algebras
and calculi for security analysis.

Different analyses are applicable to languages of different types. The anal-
yses can be so different in their nature and their use that they deserve the
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separate labels and classifications of static analysis and dynamic analysis. We
wish to apply both static analysis and dynamic analysis to a protocol and so
we should ask which analysis should be done first. Static analysis is computa-
tionally cheaper than dynamic analysis so static analysis should be completed
first. If the results from the static analysis process are encouraging then one
would follow with dynamic analysis. To begin with dynamic analysis would be
a less prudent course of action because the computationally more expensive
results of the dynamic analysis of a model would have to be discarded if a
subsequent static analysis found the model to be unsatisfactory.

3.1 Extracting LySa and PEPA models from UML diagrams

To drive the static and dynamic analyses of the protocol under study, we start
with a root description of the protocol expressed as a UML project and from
this we draw out a LySa model (which is used in the static, security analysis)
and a PEPA model (which is used in the dynamic, performance analysis).

The UML project which is the root of the federated analysis of security
and performance which we perform contains a number of diagrams of differ-
ent types. Among them are included class diagrams, sequence diagrams, state
diagrams and collaboration diagrams. In our case these contain additional
annotations from which the formal objects of the LySa and PEPA models can
be extracted. In the DEGAS project we have implemented software compo-
nents called extractors which automate this process. The extraction process
is discussed in prior publications on the ForLySa extractor [9] and the PEPA
extractor [13] so we do not discuss it further here.

3.2 Relationship between the PEPA and LySa models

We learned in the previous section that the process calculus models which we
use have a common root (they come from the same high-level model expressed
as a UML project). We now discuss the relationship between these derived
models in formal language terms when they are viewed as processes which
generate labelled transition systems.

The LySa model represents an interaction with an unbounded number of
copies of the principals at work. In contrast, the PEPA model represents an
interaction with a bounded number of copies of the principals at work. The
components are fixed in number and processes are not dynamically spawned
in PEPA.

The reason for the difference between the two models is due to the different
types of analysis which are to be performed, as follows.

• When analyzing for security, we want to be certain that we do not exclude
attacks which are possible when many runs of the protocol are concurrently
active. Hence, we model the protocol using process replication in LySa and
the LySatool computes its best approximation to this using parameterised
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replication instantiated at a sufficiently large bound.

• When analyzing for performance, we can compute the measures of interest
as long as we have at least one of the principals of each type in the model.
Additional copies of the components would incur greater state-space gener-
ation and model solution costs without changing the measures which can be
computed. Therefore, in the PEPA model, we work with the least number
of principals necessary.

A consequence of this difference is that the strong relationships which might
naively be expected to hold between the two models (such as bisimulation
equivalence) do not hold. However, the weaker relationship of trace subsump-
tion does hold: every observable sequence of transitions from the PEPA model
is an observable trace of the LySa model (but not the other way around). Fur-
ther, if additional copies of the principals are added to the PEPA model then
the traces generated by the PEPA model continue to be subsumed by those
of the LySa model. Thus, the observations of the LySa model represent the
behaviour of the PEPA model in the limit, as more and more principals par-
ticipate in the interaction described by the protocol.

4 Case study: secure m-commerce

We consider a small case study of a buyer and a seller communicating securely
using the “Wide-Mouthed Frog” (WMF) protocol due to Michael Burrows and
studied by Burrows, Abadi and Needham in their paper on the BAN logic for
authentication analysis [12].

Before the protocol commences the buyer makes an initial contact with
the seller to set up the connection. After the protocol finishes there is a final
handshake which closes the connection. Both the initial contact and the final
handshake can be seen by an attacker, and this is the basis of the timing
attack.

The design of such a system might seem to be fundamentally flawed. Why
is it not the case that all of the communication between the buyer and the seller
is protected by a secure protocol? The reason for this is that the application
which we consider is a secure m-commerce (mobile e-commerce) application
where buyers and sellers spontaneously meet and establish a connection. In
consequence, the business topology is not static and so virtual introductions
are necessary. Small devices such as PDAs and handhelds are the essential
execution platform for a mobile computing application but devices such as
these are limited in their computing and storage capabilities and cannot sup-
port many simultaneous connections. This makes virtual goodbyes a necessary
part of our application software model.

Our concern is whether or not an attacker can draw success/failure infer-
ences from a timing analysis of an implementation of the secure m-commerce
application, under the assumption that they can time a significantly large
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number of interactions between buyers and sellers, through playing the role of
a buyer and compiling tables of timings of success and failure outcomes.

4.1 Static analysis

From the point of view of authentication analysis the salient points of the
description of the WMF protocol used in a mobile e-commerce setting are that
it aims to establish a secure session under a secret session key KAB between a
buyer A and a seller B, who are the two principals in the dialogue. A trusted
server is used to establish the secure session and A has registered a master
key with the server, KAS. Similarly, B has registered KBS with the server.

The protocol has three steps, which we describe informally first.

• Principal A sends a message to the server including the name of B and the
new session key KAB, encrypted under KAS.

• The server decrypts this and sends the name of A and the new key KAB

to B, encrypted under KBS.

• Principal A sends a message to B encrypted under KAB.

In LySa this protocol can be modelled as three parallel processes represent-
ing each of the principals A, B, and S. In Figure 1, we model the source and
destination addresses of each message as the first two values of the message.
Notice that these addresses are sent in the clear, thus allowing an attacker to
modify or fake addressing information at will.

Symmetric key encryption in LySa is written as {B, KAB}KAS
denoting

that the name of principal B and the session key is encrypted under the key
which principal A shares with the server. The corresponding decryption of
this message takes place at the server in the process PS in a separate language
construct. It checks whether the correct key has been used for encryption and
additionally uses matching to ensure that the first value inside the encryption
is B before binding the second value to the variable zk . The ν operator, famil-
iar from the π-calculus, is used to generate new session keys and new message
content. In addition to symmetric key encryption the LySatool also supports
public/private key pair encryption, but that is not used in this protocol.

The LySa model of the Wide-Mouthed-Frog protocol has been annotated
with information about the authentication properties that the protocol is
intended to have. The static analysis conducted by the LySatool is able to tell
whether these properties are satisfied when executing the protocol in parallel
with a “standard” network attacker in the style of Dolev and Yao [14].

To specify these authentication properties we first introduce labels or
crypto-points, such as [at a1 ] and [at s1 ], to denote the places where infor-
mation is encrypted or decrypted. Second, at each encryption point we
describe a set of destination crypto-points where this message is intended to
be decrypted. In the case, such as above, where we know exactly the intended
recipient of the message this set has only a single element. Third, at each
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decryption point we assert where we believe that this message was encrypted
by giving a set of possible origin points.

The static analysis performed by the LySatool works by computing over-
approximations to what a LySa process can do in all executions of the process
executed in parallel with an arbitrary attacker. The analysis will compute
information about which messages may be sent over the network and compute
information about which values may become bound to the variables used in the
model. The latter includes the variables which may occur within the attacker
and thus the analysis will report whether a specific value will be kept out of
reach of the attacker i.e. whether the value is confidential or not.

The LySa processes are additionally annotated with authentication prop-
erties specifying intended origin and destinations of messages. Violations of
these properties will also be reported by the static analysis. Since the analysis
computes over-approximations of the behaviour of a process it may also report
too many errors. In [4] it is proven that, with respect to the formal semantics
of LySa, the analysis cannot report too few errors and also illustrated that
reporting too many errors does not pose a big problem in practice.

Technically, the static analysis is specified as a flow logic, which gives a
logical description of how the behaviour of a process is represented in the
analysis result. For example, the analysis result contains a relation κ which is
used to keep track of the possible message tuples which may be transmitted
over the network. To generate a formula that describes e.g. how an output
of a LySa process affects the analysis result, we use a constraint generation
function G of the following form.

G(〈a, b, c〉.P ) = (a, b, c) ∈ κ ∧ G(P )

This states that to have an analysis of the LySa process 〈a, b, c〉.P it must
hold that the tuple (a, b, c) is present in κ because it is possible that this tuple
is sent in some run of the process. Furthermore, there must be an analysis of
the process P , which will be executed after the output. A similar constraint
generation takes place for the other language constructs of LySa.

The actual analysis result is computed by finding a relation κ (and other
analysis components), which satisfies the generated formula. This is done by
using standard tools for solving systems of logical constraints. To perform the
analysis process the LySa model is encoded into a fragment of first order logic
and the solution to the constraints can be found by the Succinct Solver [21].
This computation of the analysis result is guaranteed to terminate in a time
bounded by a polynomial in the size of the LySa process. The full analysis of
LySa may be found in [4] while a thorough introduction to flow logics may be
found in [22].

The LySa model of the WMF protocol is presented in Figure 1. The
LySatool confirms that the message sent from A to B in the WMF protocol is
confidential as is the session key KAB, since neither can come into the posses-
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PA ≡ !(ν KAB) 〈A, S,A, {B, KAB}KAS
[at a1 dest s1 ]〉.

(ν message) 〈A, B, {message}KAB
[at a2 dest b2 ]〉.0

PB ≡ !(S, B; x).decrypt x as {A; xk}KBS
[at b1 orig s2 ] in

(A, B; y).decrypt y as {; ym}xk [at b2 orig a2 ] in 0

PS ≡ !(A, S,A; z).decrypt z as {B; zk}KAS
[at s1 orig a1 ] in

〈S, B, {A, zk}KBS
[at s2 dest b1 ]〉.0

WMFLySa ≡ PA | PB | PS

Fig. 1. LySa model of the Wide-Mouthed Frog protocol

sion of an attacker in any run of the protocol. Furthermore, the authentication
properties do hold for this version of the protocol though small variants of the
model are vulnerable to parallel session attacks. More information on these
LySa encodings of the WMF protocol and its analysis can be found in [4].

4.2 Dynamic analysis

Figure 2 shows a PEPA model of the Wide-Mouthed Frog protocol. This
records the causality information of the protocol (by requiring A to commu-
nicate with the server first, and subsequent dependencies) and quantifies the
average cost in time of each of the exchanges through the use of a random
variable to use as the parameter of a negative exponential distribution.

PA
def
= (as , ras).(ab, rab).PA

PB
def
= (sb,>).(ab,>).PB

PS
def
= (as ,>).(sb, rsb).PS

WMFPEPA
def
= PA ��

{ as,ab }
(PS ��

{sb}
PB)

Fig. 2. PEPA model of the Wide-Mouthed Frog protocol

Through the use of the IPC/DNAmaca tool chain we are able to analyse a
PEPA model such as that in Figure 2 via the calculation of steady-state, tran-
sient and passage-time distributions. The DNAmaca solver provides direct and
iterative solution methods, Krylov subspace techniques, and decomposition-
based methods for both Markovian and semi-Markov processes. All PEPA
models generate Continuous-Time Markov Chains (CTMCs) so we are only

12



Buchholtz, Gilmore, Hillston and Nielson

using the Markovian analysis capabilities provided by DNAmaca. The ver-
sion of DNAmaca which extracts passage-times from purely Markov systems
(release version HYDRA) uses uniformization to calculate both passage-time
densities and cumulative distributions.

The advantages of such an exact solution method over the approxima-
tion offered by discrete-event simulation include the greater efficiency of the
solution and the fact that the results do not need to be interpreted against
difficult-to-compute confidence intervals which estimate a bound on the errors
in simulation results. The methods implemented by the DNAmaca tool have
been shown to scale to very complex models which generate state-spaces in
excess of 15 million states [7].

Here we are using the IPC/DNAmaca tool chain to compute the difference
between the passage-time distributions for successful and failing runs of the
protocol. Our measure of a successful obfuscation of the difference between
a success run and a failure run will be if the relative difference between
their observed completion rates is less than a chosen small tolerance. The
observed completion rates are plotted as a cumulative density function (CDF)
showing how the probability of completion increases as time progresses. The
CDF of the model before and after padding with delays are computed using
IPC/DNAmaca.

Figure 3 shows the determination of a suitable value for the delay to be
inserted into the execution of the protocol. The smooth bezier curve in the
figure illustrates the protocol in a success run acting as the reference point
for our experimentation. We wish to move the other plots as close to this
reference curve as is required by varying the amount of delay which is inserted
into the protocol.
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Three estimates are taken for the value of the delay to be inserted into the
failure scenario, 0.5, 1.0 and 2.0 seconds (plotted as diamond, plus and box
symbols respectively). A delay of 0.5 seconds is insufficient and means that
the faster path remains faster than the slower one. A delay of 2.0 seconds
overcompensates and errs in the other direction, making the modification of
the faster path slower than the slow one, and still perhaps detectably different.
Inserting a delay of 1.0 seconds would seem to be a reasonable compensation.
Further tuning might identify a better value somewhere between 0.5 and 1.0.

Using the Imperial PEPA Compiler and DNAmaca together with the
method of stochastic probes [3] to select different start and end points for
passages it is possible to automate the process of repeated passage-time anal-
ysis. The objective of repeated analyses is to rule out attacks which are based
on correlating the timing of one path through the system with the timing
of another, and making an indirect inference from that. Demonstrating that
these passage-time distributions are acceptably close for all observable paths
through the system which do not involve user interaction or another source
of random stochastic delay is sufficient to show that a timing attack based on
aggregating the results of timed observations is infeasible.

By selecting a value for the maximum tolerated difference between the
distributions for the original and the version of the protocol which is padded
with delays it is possible to increase the difficulty of a timing attack to the
point where the users of the networked application which uses this protocol
are satisfied that a timing attack is sufficiently difficult to mount that it would
be uneconomic for an attacker to do so.

5 Related work

The problem of timing information leakage in security protocols has previ-
ously been studied by Focardi et. al. [16], and in the context of cryptographic
protocols in [17]. In this work the authors use an real-time extension of Secu-
rity Process Algebra [15]. A discrete time domain is used and processes are
assumed to be synchronous. In [16] the authors develop a timed version of
the property of bisimulation-based nondeducibility on compositions and show
that this is useful to check for the absence of covert information flows. In [17]
this work is extended to cryptographic protocol analysis.

One approach which has some similarities to ours and has similar aims of
reconciling security and timing behaviour has been taken in the work of Vol-
pano and Smith on probabilistic noninterference for concurrent languages [23].
That work uses Markov chains to study timing leakages between concurrent
threads arising from the probabilistic behaviour of the scheduler.

Papers by Agat and Sands [1,2] have considered introducing dummy steps
into an implementation in order to ensure that the fast path is no faster
than the slow path. They construct type and transformation systems which
transform a sequential imperative program P into a secure version P ′ which
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is semantically equivalent in a time-ignorant semantics and which would not
allow leaks with respect to a time-observant semantics (expressed by a sim-
ulation result). Our work differs from theirs in that we consider protocols
expressed at a high-level of design using annotated process algebras in con-
trast to the imperative language programs of Agat and Sands. Thus our work
has the potential to apply to a range of satisfactory implementations of the
protocol used instead of only a single instance.

6 Conclusions

In the innovative and experimental design of novel communications protocols it
is necessary to consider both the security and performance of the new design,
where the objective of the performance analysis may be to supplement the
strong security provided by encryption and authentication.

Formal languages are helpful here because they provide an unambiguous
statement of the protocol and because they are amenable to automated analy-
ses. These analyses depend also on an unambiguous expression of the property
which is being checked. In such a setting both the security and performance
analyses can be re-run after a change to the protocol in order to ensure that
the change has had no detrimental effect. We have applied this methodology
here in the analysis of a high-level model of secure communications between
a buyer and a seller.

Security and performance concerns are often at variance. It is frequently
the case that application developers who are concerned with achieving peak
performance view the security measures built into layers of application soft-
ware as an overhead on execution time. However, in the networked world of
today security is not an optional extra and so performance analysis and secu-
rity analysis must work harmoniously together. In the example considered in
the present paper we have shown how performance analysis can supplement
a static analysis of system security, and how a control-flow analysis can add
value to a stochastic model of system behaviour. Thus each analysis reinforces
the usefulness of the other providing much-needed assistance in the design of
reliable systems which give guarantees of security and performance properties.
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A LySa

In this appendix we give an informal introduction to the LySa calculus. We
focus on the features of the calculus which were useful in the present study.
This appendix is not a definitive reference for LySa. The reader is referred
to [10] for a more comprehensive introduction to the calculus and its capabil-
ities.

Briefly, LySa is a variant of the Spi-calculus which includes pattern match-
ing on values at input and decryption. LySa identifies the syntactic categories
of terms and processes. Terms include variables ; names used to represent
keys, nonces, and uninterpreted data; and encrypted values {t1, . . . , tk}t0 rep-
resenting perfect symmetric key cryptography where a tuple of k terms are
encrypted under a key t0.

Process in LySa include the following syntactic forms:

Parallel: P1 | P2 is the parallel composition operator which evaluates its left
and right operand in parallel, allowing them to match inputs and outputs.

Replication: !P replicates as many copies of P as necessary and in this way
provides a mechanism to generate long runs from terminating processes.

Terminated process: 0 is the terminated process, used to end a process
term.

Restriction/name generation (ν n) P is the construct which introduces a
new name n, to be used in the process term P . New names are needed for
session keys and message content in protocol descriptions.

Output 〈t1, . . . , tk〉.P outputs the tuple t1, . . . , tk and continues as P .

Input (t1, . . . , tj; xj+1, . . . xk).P describes a pattern match input. Input will
synchronise with an output of length k but only if the first j values of the
output are equal to the first j values of the input. In this case, each of
the remaining k − j values of the output will be bound component-wise to
the variables placed syntactically after the semi-colon in the input. These
values will be used for the variables in the continuation P .

Decryption decrypt t as {t1, . . . , tj; xj+1, . . . , xk}t0 in P attempts to decrypt
and pattern match the term t. Decryption succeeds when t is a tuple of
length k encrypted under the key t0. In that case, pattern matching takes
place on the first j values and possibly results in binding of the last k − j
values, similarly to input.
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B PEPA

This appendix provides a brief introduction to PEPA in order to make the
paper self-contained. It can safely be skipped by anyone who already knows
the PEPA language. For a full explanation which complements the brief
description presented here the reader is referred to [18].

Prefix: The basic mechanism for describing the behaviour of a system
with a PEPA model is to give a component a designated first action using
the prefix combinator, denoted by a full stop. For example, (α, r).S carries
out activity (α, r), which has action type α and an exponentially distributed
duration with parameter r, and it subsequently behaves as S.

Choice: The component P + Q represents a system which may behave
either as P or as Q. The activities of both P and Q are enabled. The first
activity to complete distinguishes one of them: the other is discarded. The
system will behave as the derivative resulting from the evolution of the chosen
component.

Constant: It is convenient to be able to assign names to patterns of
behaviour associated with components. Constants are components whose

meaning is given by a defining equation. The notation for this is X
def
= E.

The name X is in scope in the expression on the right hand side meaning

that, for example, X
def
= (α, r).X performs α at rate r forever.

Hiding: The possibility to abstract away some aspects of a component’s
behaviour is provided by the hiding operator, denoted P/L. Here, the set L
identifies those activities which are to be considered internal or private to the
component and which will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation between P and Q
over L. The set which is used as the subscript to the cooperation symbol,
the cooperation set L, determines those activities on which the cooperands are
forced to synchronise. For action types not in L, the components proceed
independently and concurrently with their enabled activities. We write P ‖ Q
as an abbreviation for P ��

L
Q when L is empty.

However, if a component enables an activity whose action type is in the
cooperation set it will not be able to proceed with that activity until the
other component also enables an activity of that type. The two components
then proceed together to complete the shared activity. The rate of the shared
activity may be altered to reflect the work carried out by both components to
complete the activity (for details see [18]).

In some cases, when an activity is known to be carried out in cooperation
with another component, a component may be passive with respect to that
activity. This means that the rate of the activity is left unspecified (denoted
>) and is determined upon cooperation, by the rate of the activity in the other
component. All passive actions must be synchronised in the final model.
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