
Introduction

The filtering problem can be formulated as

xk = f(xk−1)+vk−1 (1a)
zk = h(xk)+wk (1b)

where v and w are the process noise and the observation noise. The state transition density is fully specified
by f and the process noise distribution and the observation likelihood is fully specified by h and the observation
noise distribution.

p(xk|xk−1) = pv(xk− f(xk−1)) (2a)
p(zk|xk) = pw(zk−h(xk)) (2b)

The problem is to find an update formula from p(xk−1|z1:k−1) to p(xk|z1:k), where z1:k denotes all observation
{z1, . . . ,zk} up to time k. The Bayesian approach gives the following update:

p(xk|z1:k) =
p(zk|xk)

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1∫

p(zk|xk)p(xk|z1:k−1)dxk
(3)

Breaking the problem up, performing the multi-dimensional integration:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (4)

can be seen as stage one, and multiplying with p(zk|xk) as stage two. In general the integral in stage one can
not be calculated analytically, hence, we need some way of estimating the distribution p(xk|z1:k−1) .

Kernel representation

With a Parzen density estimator a distribution can be approximated arbitrarily close by a number of identical
kernels centered on points chosen from the distribution. In the particle filter the kernels are delta functions, but
information can be gained by using a broader kernel. The distribution at time k−1 can be approximated by:

p(xk−1|z1:k−1)≈
N

∑
i

wi
k−1K(A i

k−1(xk−1−xi
k−1)) (5)

where A i is a transformation matrix used to keep track of distortions of the kernel. Each kernel can be prop-
agated through the mapping p(xk|xk−1) by using a local linearization, yielding a continuous output distribution
p(xk|z1:k). This is again a sum of kernels but the kernels are no longer identical (in the sense that they are from
the same family of functions, yet they have different parameters).



Although not directly related, these images are examples of how state space models similar to the one from
equation (1) can be used to predict mouth movements from a speech signal.
See e.g. www.imm.dtu.dk/∼tls/code/facedemo.php . The videos are taken from the VidTimit database.

The Method
Using the kernel representation equation (4) can be written as:

N

∑
i

wi
k−1

∫
pv(xk− f (xk−1))K(A i

k−1(xk−1−xi
k−1))dxk−1 (6)

Each part of the sum can be handled individually and f can be locally linearized. By linearizing f around
xi

k−1 the jacobian J|xi
k−1

= ∂f
∂x|xi

k−1
is introduced and the following change of variables can be employed: x̂k−1 =

xk− f(xi
k−1)−J|xi

k−1
(xk−1−xi

k−1). Inserting this in the integral from equation (6) yields:∣∣∣J|xi
k−1

∣∣∣−1∫
[pv(x̂k−1)K

(
A i

k−1J|−1
xi

k−1
(xk− f(xi

k−1)− x̂k−1)
)

]dx̂k−1 (7)

This integral is an expectation over the process noise Epv

[
K

(
A i

k−1J|
−1
xi

k−1
(xk− f(xi

k−1)− x̂k−1

)]
and can be

approximated by a sample mean. In the extreme case a single sample drawn from pv can be used, and the
result is a translation of the kernel by the noise sample:

Epv

[
K

(
A i

k−1J|−1
xi

k−1
(xk− f(xi

k−1)− x̂k−1)
)]

≈ K
(

A i
k−1J|−1

xi
k−1

(xk− f(xi
k−1)−vk−1)

)
,vk−1∼ pv

Writing p(xk|z1:k) = ∑N
i wi

kK(A i
k(xk−xi

k)) It is possible to identify the centers of the kernels xi
k = f(xi

k−1)+vk−1

and the transformation matrix A i
k = A i

k−1J|
−1
xi

k−1
. By considering equations (4,6,7) the weight update can be

found to be wi
k = wi

k−1p(zk|xi
k)

∣∣∣J|xi
k−1

∣∣∣−1
. This derivation holds for any kernel.

Using a Parzen density estimator the idea of particle fil-
tering is extended. Kernels are propagated through the
non linear functions instead of delta functions. In this
way a better density estimate can be obtained and the
number of particles can be reduced.
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Results
Performance of the Parzen particle filter is compared to the performance of the standard particle filter. The
method is tested on a one dimensional problem. The mean square error is plotted as a function of the number
of kernels, it can be seen that with few kernels the methods produces similar results, but as the number of
kernels increases the kernel method becomes better. For this one dimensional example the number of particles
can be reduced drastically by improving the density estimate.


