
P2P Based Distributed Virtual Reality
– a DVE Architecture and Implementation

terrapeer

Henrik Gehrmann

Thesis Document
IMM, DTU 2004

TerraPeer • DVE Architecture and Implementation

Submitted in partial fulfillment of the
requirements for the degree of

Master Of Science In Computer Science

at the
Institute of Informatics and Mathematical Modeling

Technical University of Denmark (DTU)
February 2004

by
Henrik Gehrmann

Student ID s948179
gehrmann@earthlink.net

Supervisor for this project was
Niels Jørgen Christensen, IMM, DTU

Abstract

This thesis document represents the architecture and implementation of a distributed
virtual environment application – TerraPeer.

The idea of this project is to design an interface to a multi-user virtual space, which
runs on an absolute decentralized, server-independent network. The application is
built with specific technological choices, including a user interface framework on top
of the Java3D API, the JXTA peer-to-peer platform, and a XML-based protocol.

By examining existing systems and current research in relation to three-dimensional
virtual reality and distributed networks, this project aims to assemble the various
parts that are required to create such an interface..

Keywords

Distributed Virtual Environments (DVE), Peer-to-Peer (P2P), 3D User Interfaces,
Avatars, Virtual Spaces and Zones, Distributed Networks, Online Games and
Worlds, Cyberspace, User Rights, Trust and Access

Website http://www.student.dtu.dk/~s948179/master/

Last updated 26.02.2004

Henrik Gehrmann Master Thesis Page 3 of 200

 TerraPeer • DVE Architecture and Implementation

Page 4 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Afleveret som en del af eksamensprojektopgaven
til afslutning af uddannelsen til

Civilingeniør

ved
Institut for Informatik og Mathematisk Modellering

Danmarks Tekniske Universitet (DTU)
Februar 2004

af
Henrik Gehrmann

Student ID s948179
gehrmann@earthlink.net

Vejleder for dette projekt var
Niels Jørgen Christensen, IMM, DTU

Sammendrag

Dette eksamensprojekt dokument repræsenterer arkitekturen og implementeringen
af en distribueret virtuel verden applikation – TerraPeer.

Ideen bag projektet er at udvikle et system til et fler-brugers virtuelt rum, som
indrettes i et server-uafhængigt netværk. TerraPeer er konstrueret med specifikke
teknologiske valg, såsom et grænseflade framework der ligger i toppen af Java3D
API`en, peer-to-peer platformen JXTA og et XML-baseret protokol.

Ved at undersøge eksisterende prototyper og relevante forskningsområder i relation
til tredimensionale virtuelle verdener og distribuerede netværk, er det projektets mål
at samle de forskellige dele der er krævet for at bygge et brugervenligt system.

Nøgleord

Distributed Virtual Environments (DVE), Peer-to-Peer (P2P), 3D User Interfaces,
Avatars, Virtual Spaces and Zones, Distributed Networks, Online Games and
Worlds, Cyberspace, User Rights, Trust and Access

Website http://www.student.dtu.dk/~s948179/master/

Sidst Opdateret 26.02.2004

Henrik Gehrmann Master Thesis Page 5 of 200

 TerraPeer • DVE Architecture and Implementation

Page 6 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Foreword

It is with pleasure that I am allowed to present this paper, and attached software, which was mainly
constructed over a period of time between 2002 and 2003.

The intricate theme of the TerraPeer project is the architecture and implementation of a distributed
virtual environment that in its core employs a multi-user 3D graphical world running on a peer-to-peer
network. The design realizes an elementary set of functionalities, and emphasizes the construct itself,
promoted by summarizing initial research in related areas.

The technical aspects of the application primarily involve the J2SE and Java3D API's, the peer-to-
peer JXTA protocol, and XML.

To fully appreciate the content of this document, I recommend having the appendices handy. As most
areas in software engineering, understanding and contextualizing the text requires not only insight
into the technologies, but also good access to glossaries, definitions and abbreviations. Appendix II
should lists most of the terms used in this project.

- Henrik Gehrmann
IMM, Technical University of Denmark, February 2004

Acknowledgments

Thanks to fellow students,
the people at IMM, and other institutes at DTU.

Henrik Gehrmann Master Thesis Page 7 of 200

 TerraPeer • DVE Architecture and Implementation

Page 8 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Quick overview of Contents

1.Introduction...21

1.1.Overview...21
1.2.Background...22
1.3.Problem Scope..23
1.4.Prerequisites...24
1.5.Approach...24

2.Theoretical Scope...27

2.1.Research Overview and Technology Areas...27
2.2.Distributed Virtual Environments..42
2.3.3D Technologies...54
2.4.Network Technologies...57
2.5.GUI Design..65

3.Analysis...69

3.1.Extracting the theory...69
3.2.Outline of a solution..71
3.3.Approach...73

4.Architecture...79

4.1.Architecture Overview...79
4.2.Virtual Space Architecture..82
4.3.Distributed Platform Architecture..94
4.4.Zones...95
4.5.Open feedback-based trust model..98

5.Implementation...103

5.1.Use Cases...103
5.2.Class Structure..105
5.3.User Interface..105
5.4.3D World Code..111
5.5.P2P Network Code..116
5.6.Utility Code..117
5.7.Data Repositories..118
5.8.Unresolved Issues...120
5.9.Installation and Documentation..121
5.10.Testing...121

6.Discussion...123

6.1.Results...123
6.2.Experience and Difficulties...126

7.Conclusion..129

7.1.Reaching the Objectives...129
7.2.The Future...129

Henrik Gehrmann Master Thesis Page 9 of 200

 TerraPeer • DVE Architecture and Implementation

Page 10 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Table of Contents

1.Introduction...21

1.1.Overview...21
1.1.1.Objective.. 21
1.1.2.Problem.. 21
1.1.3.Solution.. 22

1.2.Background...22
1.3.Problem Scope..23
1.4.Prerequisites...24
1.5.Approach...24

2.Theoretical Scope...27

2.1.Research Overview and Technology Areas...27
2.1.1.Related Research and Technologies... 27
2.1.2.Computer Graphics.. 28
2.1.3.Game Engines... 29

2.1.3.1.Game Engines... 29
2.1.3.2.Rendering.. 30

2.1.4.Games and Worlds.. 30
2.1.4.1.Quake, Half-life, EverQuest, and OpenWorlds.. 30
2.1.4.2.Crystal Space.. 31
2.1.4.3.CryEngine... 31

2.1.5.Networks.. 31
2.1.5.1.Overview... 31
2.1.5.2.Client/Server.. 32
2.1.5.3.Peer-to-Peer.. 33
2.1.5.4.Distributed Networks... 34
2.1.5.5.P2P Socket... 35

2.1.6.Virtual Environments for Multiple Users... 35
2.1.6.1.3D multi-user Virtual Space systems... 36
2.1.6.2.The Porta Susa Project... 36
2.1.6.3.Scene Graph Distribution.. 38
2.1.6.4.Avatars.. 38
2.1.6.5.Avatars, the HORB, and Quality-of-Service.. 39
2.1.6.6.Avatar Navigation, Zones, and Performance... 40

2.1.7.Cooperative Work.. 41
2.1.8.Distributed Computing.. 41

2.2.Distributed Virtual Environments..42
2.2.1.Introduction.. 42
2.2.2.Challenges... 44
2.2.3.Client/Server Architecture.. 45
2.2.4.Peer-to-Peer Architecture.. 45
2.2.5.Hybrids... 46
2.2.6.Research.. 46
2.2.7.Event Driven DVE.. 48
2.2.8.Division of the Environment... 48
2.2.9.MaDViWorld... 49
2.2.10.Active Networks... 51
2.2.11.DVE performance.. 52

Henrik Gehrmann Master Thesis Page 11 of 200

 TerraPeer • DVE Architecture and Implementation

2.2.11.1.Multi-server DVE performance.. 52
2.2.11.2.3D Sub-Spaces to Increase Performance... 53

2.3.3D Technologies...54
2.3.1.Java3D API.. 54
2.3.2.J3D-UI Framework... 55
2.3.3.X3D.. 56

2.4.Network Technologies...57
2.4.1.Peer-to-Peer Network.. 57

2.4.1.1.Advantages and Disadvantages.. 57
2.4.1.2.Requirements.. 57

2.4.2.JXTA.. 58
2.4.2.1.What is JXTA?.. 58
2.4.2.2.JXTA Framework Overview.. 58
2.4.2.3.JXTA Peers and Peergroups.. 60
2.4.2.4.Peer Discovery.. 60
2.4.2.5.Pipes and Peer Endpoints... 61
2.4.2.6.Fault-Tolerant Constructs.. 62
2.4.2.7.Pipe Endpoint Binding.. 62
2.4.2.8.Pipes and Peergroups... 63
2.4.2.9.Messages... 63
2.4.2.10.Advertisements... 64

2.5.GUI Design..65
2.5.1.HCI... 65
2.5.2.Application User interface.. 65
2.5.3.DVE User interface.. 66

3.Analysis...69

3.1.Extracting the theory...69
3.1.1.Projects and Technologies... 69
3.1.2.Design Experience... 70

3.2.Outline of a solution..71
3.2.1.Software attributes... 71
3.2.2.Selection of solutions... 72

3.3.Approach...73
3.3.1.Primary implementation goals.. 73
3.3.2.Specification and Technologies..74
3.3.3.User Perspective.. 75
3.3.4.Application features.. 76
3.3.5.Space... 76

4.Architecture...79

4.1.Architecture Overview...79
4.1.1.Application Features.. 79
4.1.2.Layered Structure.. 80
4.1.3.VUI Design... 81
4.1.4.User.. 82

4.2.Virtual Space Architecture..82
4.2.1.A 3D Interface to Cyberspace... 82
4.2.2.Environment and Zones... 84
4.2.3.Object Structure... 86
4.2.4.Space... 87

4.2.4.1.Position.. 88
4.2.4.2.Navigation... 88

Page 12 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

4.2.4.3.Create and Share Instances.. 89
4.2.4.4.Basic Rule-set... 89
4.2.4.5.Sharing.. 90
4.2.4.6.Interface Feedback.. 90

4.2.5.Navigation.. 91
4.2.6.Object Control and Clamping... 92
4.2.7.Object Persistence... 93
4.2.8.Object Sharing and Access... 93

4.3.Distributed Platform Architecture..94
4.3.1.Connecting at the Edge... 94
4.3.2.Data Exchange.. 94
4.3.3.Network Layer.. 95

4.4.Zones...95
4.4.1.Definition of a Zone.. 95
4.4.2.Zone Properties... 96
4.4.3.Building a Zone.. 97
4.4.4.Reservation System... 98

4.5.Open feedback-based trust model..98
4.5.1.Trust Model.. 98
4.5.2.Rating... 99
4.5.3.Votes.. 100
4.5.4.Private Feedback... 100
4.5.5.Automated Feedback... 100
4.5.6.Auto-Feedback Formulas...101
4.5.7.Personal Information & Trust System.. 101

5.Implementation...103

5.1.Use Cases...103
5.1.1.A Collaboration Space..103
5.1.2.Browsing the Virtual Streets of Cyberspace.. 103
5.1.3.Enhancing the Interface of Services.. 104
5.1.4.The Ultimate Virtual Reality.. 104

5.2.Class Structure..105
5.3.User Interface..105

5.3.1.Application Functionality and Interaction.. 105
5.3.2.Application GUI.. 106
5.3.3.3D Viewer, Widgets, Menus and Toolbars.. 108
5.3.4.Status, Feedback, and the South Panel.. 109
5.3.5.Web Browser Window... 109
5.3.6.Repository and Log Viewer.. 110

5.4.3D World Code..111
5.4.1.Basic Settings.. 111
5.4.2.View and Navigation.. 112
5.4.3.User Interaction.. 113

5.4.3.1.Input and Triggers... 113
5.4.3.2.Geometry and Transformation... 113
5.4.3.3.Feedback.. 113

5.4.4.Visualization and Visibility... 113
5.4.4.1.Principles... 113

Henrik Gehrmann Master Thesis Page 13 of 200

 TerraPeer • DVE Architecture and Implementation

5.4.4.2.Classes... 114

5.4.5.Zones... 115
5.4.5.1.Zone and Zone World.. 115
5.4.5.2.Zone Builder.. 115
5.4.5.3.Repository... 115

5.5.P2P Network Code..116
5.6.Utility Code..117
5.7.Data Repositories..118

5.7.1.Information Storage... 118
5.7.2.Distribution and Integrity.. 119
5.7.3.Data Formats... 120

5.8.Unresolved Issues...120
5.9.Installation and Documentation..121
5.10.Testing...121

6.Discussion...123

6.1.Results...123
6.1.1.Architecture and Implementation... 123
6.1.2.Results Overview... 123
6.1.3.Results Discussed.. 124

6.2.Experience and Difficulties...126
6.2.1.3D and Java Performance Limitations... 126
6.2.2.J3DUI Framework Problems.. 127

7.Conclusion..129

7.1.Reaching the Objectives...129
7.2.The Future...129

Appendix I.Resources..131

References..131
Bibliography and other Resources..141

Appendix II.Glossary..147

Abbreviations and Acronyms..147
Definitions and Connotations..149

Appendix III.Screenshots...153
Appendix IV.Application Tutorial..159
Appendix V.UML Design..159

Package overview...159
3D UI – package: terrapeer.vui.j3dui..160
Network – package: terrapeer.net...161
Space – package: terrapeer.vui.space...162
VUI – package: terrapeer.vui..163
XML – package: terrapeer.net.xml..164
Service – package: terrapeer.vui.service...165
Schema 1 – package: terrapeer.net.schema..166
Schema 2 – package: terrapeer.net.schema..167
Schema 3 – package: terrapeer.net.schema..168
Zone 1 – package: terrapeer.vui.zone..169
Zone 2 – package: terrapeer.vui.zone..170

Page 14 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Zone 3 – package: terrapeer.vui.zone..171

Appendix VI.Use Cases...173

P2P Network..174
Space Navigation..175
Trust System...176

Appendix VII.TerraPeer Repository...177

Repository XML Schema Design..177
Repository XML Schema Code...180
Example XML Repository Document..183

Appendix VIII.Drawings..185
Appendix IX.VE and DVE Comparison Tables..195
Appendix X.Game Servers ...199

Henrik Gehrmann Master Thesis Page 15 of 200

 TerraPeer • DVE Architecture and Implementation

Page 16 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Illustration Index
Illustration 2.1. Typical Client/Server network 26
Illustration 2.2. Typical P2P network with distributed processes 28
Illustration 2.3. MUD Client/Server Architecture 31
Illustration 2.4. Screenshot of Porta Susa Urban Map 32
Illustration 2.5. Screenshot of SVR Document Linking 33
Illustration 2.6. QoS of a DVE 34
Illustration 2.7. Dual-server DVE System 35
Illustration 2.8. AOI DVE Network 35
Illustration 2.9. Multi-Server Avatar Statistic 36
Illustration 2.10. A DVE GUI using 3D and Web Viewer 36
Illustration 2.11. Parallel graphics systems 40
Illustration 2.12. MaDViWorld Abstraction 45
Illustration 2.13. MaDViWorld Physical Layout 46
Illustration 2.14. MaDViWorld Architecture 46
Illustration 2.15. MadViWorld UI 47
Illustration 2.16. Processing with the nodes of an active network 48
Illustration 2.17. DVE Performance Study 49
Illustration 2.18. DVE Subspaces 50
Illustration 2.19. A sample Java3D Scene Graph 51
Illustration 2.20. J3DUI Framework - Object Picking 52
Illustration 2.21. JXTA Layered Architecture 56
Illustration 2.22. JXTA Protocols 57
Illustration 2.23. JXTA Peer Pipe Abstraction 58
Illustration 2.24. JXTA Peer Pipes (modes) 59
Illustration 2.25. JXTA Message 61
Illustration 2.26. JXTA Example Network 62
Illustration 2.27. Human-Computer Interaction by SIGCHI 63
Illustration 3.1. Possible topological grid view of Zones 75
Illustration 4.1. P2P Communication 78
Illustration 4.2. P2P Zone Visibility 79
Illustration 4.3. TerraPeer Layered Architecture 79
Illustration 4.4. TerraPeer Virtual User Interface (VUI) Package 80
Illustration 4.5. TerraPeer VE Zone Filtering 83
Illustration 4.6. TerraPeer VE Architecture 84
Illustration 4.7. TerraPeer Virtual Space View 85
Illustration 4.8. TerraPeer VE Coordinate System 86
Illustration 4.9. Possible topological grid view of Entry-points 87
Illustration 4.10. TerraPeer VE Visual Feedback 88
Illustration 4.11. TerraPeer VE Input and Feedback 90
Illustration 4.12. Object control in VE 90
Illustration 4.13. Visual control in VE 91
Illustration 4.14. TerraPeer Network Layers 93
Illustration 4.15. XML Schema for TerraPeer 93
Illustration 4.16. Zone Type XML 94
Illustration 4.17. TerraPeer VE Zone Building 95
Illustration 4.18. Zone Service Linking 95
Illustration 4.19. Reservation System 96
Illustration 4.20. Trust Feedback System 97
Illustration 4.21. Trusting Votes 98
Illustration 4.22. Trust Rating 98
Illustration 4.23. Automated Feedback 99
Illustration 4.24. Trust System Formula 100
Illustration 5.1. TerraPeer Class Package Overview (UML) 103
Illustration 5.2. Original TerraPeer GUI Layout 104
Illustration 5.3. Screenshot - TerraPeer Main Window 105

Henrik Gehrmann Master Thesis Page 17 of 200

 TerraPeer • DVE Architecture and Implementation

Illustration 5.4. Screenshot - TerraPeer 3D World 106
Illustration 5.5. TerraPeer Web Browser 107
Illustration 5.6. Screenshot - TerraPeer Repository Window 108
Illustration 5.7. TerraPeer Log 109
Illustration 5.8. C/S Centralized Repository 117
Illustration 5.9. P2P Repository Distribution 117
Illustration 5.10. Object Replication 118
Illustration 5.11. TerraPeer Repository XML Schema 119
Illustration 5.12. Testing Scenarios 121
Illustration 7.1. TerraPeer Terminology and Conventions 152
Illustration 7.2. Application screenshot 0 154
Illustration 7.3. Application screenshot 1 155
Illustration 7.4. Application screenshot 2 156
Illustration 7.5. Application screenshot 3 157
Illustration 7.6. Application screenshot 4 158
Illustration 7.7. UML Layout (draft version - depricated) 173
Illustration 7.8. Use Case - Network 175
Illustration 7.9. Use Case - Space and Navigation 176
Illustration 7.10. Use Case - Trust System 177
Illustration 7.11. Structure of TerraPeer Repository with collection of zones 178
Illustration 7.12. Structure of ZoneType 179
Illustration 7.13. Structure of a Zone 180
Illustration 7.14. Notes on virtual space representations and zoning 187
Illustration 7.15. Notes on the application and world design 188
Illustration 7.16. Hand drawing of class and object structures 189
Illustration 7.17. Hand drawing of zone-peer-service relationships 190
Illustration 7.18. Hand drawing of 3D environment specs 191
Illustration 7.19. Hand drawing of navigation interface, builder interface, and controls 192
Illustration 7.20. Hand drawing of user interface layers 193
Illustration 7.21. Hand drawing of visibility properties 194
Illustration 7.22. Hand drawing of user input and feedback 194
Illustration 7.23. Hand drawing of object sharing and zone repository updates 195
Illustration 7.24. DVE Comparison Table [AVOCADO, pp.31] 196
Illustration 7.25. DVE Comparison Table [AVOCADO, pp.32] 197
Illustration 7.26. DVE Comparison Table [AVOCADO, pp.33] 198
Illustration 7.27. Counter Strike Game Servers 199

Page 18 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation

Index of Tables
Table 1.1. Technological Advancements 17
Table 2.1. Related Areas of Research and Technologies 22
Table 2.2. Game Engine Structure 24
Table 2.3. Typical OSI Network Layers 27
Table 3.1. Networking and DVE 67
Table 3.2. DVE Experiences 69
Table 3.3. Problem-Solution Listing 71
Table 3.4. TerraPeer Component Layers 72

Henrik Gehrmann Master Thesis Page 19 of 200

 TerraPeer • DVE Architecture and Implementation

Page 20 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 1.Introduction

1.Introduction

Creating a multi-user distributed virtual environment is a complex endeavor. The goal of this work is
to develop a design and an implementation that can serve as a supportive model for research and
application development. Special attention was payed to the usability, the service abstraction, as well
as the fully distributed model.

1.1.Overview

1.1.1.Objective

The objective of this project is to construct an application for a distributed virtual environment (DVE)
that is based on a peer-to-peer (P2P) network.

An examination and analysis of existing systems and technologies results in the finding that DVE
systems often are dependent on central entities, or focus on the distibution of 3D graphics,
performance, or immersive techniques. Most often, these systems lack mechanisms for users to
publish information or services.

This thesis proposes a DVE solution that is absolutely decentralized and open. Any property can be
represented in 3D through services, including information publishing, sharing, and communication
between peers. The application prototype is able to demonstrate the concept of independence, as
well as visualization of services.

The attempt is to answer the question: How would a possible solution to visualize peer-based activity
and services by users in 3D space look like?

1.1.2.Problem

The scope of the problem is to create a large-scale, multi-user 3D virtual space that visualizes
network peers, information, and services in 3D. The system should be open, provide a user interface
for viewing and building the virtual world, support information publishing and sharing, as well as
communication. It should be based on a specific selection of technologies for the graphical interface
and underlaying network. Openness means any data, and any functionality can be supported (or
extended).

In a scientific context, the area of research looking into networked multi-user 3D worlds is called
Distributed Virtual Environments, or DVE.

The core intention is to design and implement a working environment, which adheres to the principle
of absolute independent peers. Independence means fully decentralized with no central entity (server-
independent), and can be achieved through the concept of peer-to-peer networks.

Although peer-to-peer is not new per se, it's popularity a few years ago began to rise with emerging
file-sharing tools. The main idea of P2P is to distribute processing power, memory and storage across
the networked computers, without the overhead and dependency of a central server, where each peer
acts as both client and server. The network is distributed, decentralized, and ad-hoc; sometimes
coined 'edge computing'.

This projects does not aim to study the properties of 3D virtual worlds, virtual reality, or distributed
peer networking technologies in particular, but rather suggest how an implementation of a DVE might
look like.

Henrik Gehrmann Master Thesis Page 21 of 200

1.Introduction TerraPeer • DVE Architecture and Implementation

1.1.3.Solution

The DVE as a combination of P2P and VE can essentially provide a platform for user collaboration
and socialization, as well as for services that users can utilize.

This project defines an architecture and implements a working application. Hence, the imminent task
is to narrow project boundaries, which requires deeper insight into each problem area.

To approach a solution, it is initially desirable to understand existing technologies and research areas.
An examination of related topics provides the necessary knowledge. Topics to be examined are DVE
systems and approaches, scalability and performance methods, distributed networks, 3D graphics to
visualize networks, 3D building and interaction mechanisms, and user interface design.

A solution is presented in the form of an analysis that results in a prototype architecture and
implementation. The application is based on the selection of JXTA and Java3D technologies, and
demonstrates a working DVE.

1.2.Background

The internet has evolved dramatically throughout the past 10 years, mainly due to the web-platform,
that enables creation of personal and business sites in a dynamic matter, but based on certain rules
and protocols (like HTML and HTTP).

New network technologies and software emerges constantly (multi-tier networks, J2EE, SAN), and
recent distributed peer-to-peer platforms have shown very interesting capabilities (for example
software such as Gnutella, Napster, Kazaa and SETI). 3D gaming and online virtual worlds, the latter
mostly rooted in social interaction, have become increasingly popular (there are countless examples:
Counterstrike, Wolfenstein, Ultima, Worlds, etc.).

The internet provides unique opportunities to create 'virtual spaces', differentiated in purpose,
functionality, content, and style. A virtual space could be defined as any kind of abstract environment
running on computer-based systems, not necessarily supporting real user interaction. There exist
numerous examples of virtual spaces, such as text-based systems, multi-user games and 3D
environments, design and engineering tools, collaboration and discussion spaces, messengers or file
sharing systems.

These Virtual Environments (VE's) often present overlapping characteristics, objectives and
attributes, depending on the architecture of each system. Most multi-user environments, for example,
usually provide essential communication tools, as well as abilities to send or share certain data.

Notably multi-user virtual spaces, abandoning physical boundaries, are subject of intense
development in recent years, and are based on a range of technologies running on the top OSI-7
layers. Further, the trend towards graphical 3D environments is set, as new graphical microprocessors
(GPU's) continue to grow in capacity, and especially online game engines have evolved to a state of
art, presenting ever new rendering features and interaction algorithms.

The network's inherent problem is its overwhelming accumulation of data as well as traffic bandwidth
when millions of users go online. When developing network-based applications, scalability, reliability,
extensibility, openness and interoperability are essential questions for the designer.

Furthermore, applications that utilize the network more than ever need to focus on usability, as
functionality and interaction becomes more complex. Navigation and search tools are essential aids
for a use; this is reflected in the build-up of user-friendly websites, directories or web-crawlers and
search-engines (examples include Google, Yahoo, and LDAP).

Page 22 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 1.Introduction

Previously, researchers have argued that virtual environments bring a paradigm shift in data
representation and information access. The following table, Table 1.1. Technological Advancements,
illustrates this assessment by technical advances [modified from PORTA01, pp.219].

Paradigm Time-sharing Desktop Networks

Period 1960's-1980's 1980's-2000's 1990's-2010's

User Specialist Individual Group

Interface Text 2D, 3D 2D, 3D, DVE

Interaction “Read and type” “Draw and click” “Model and navigate”

Table 1.1. Technological Advancements

Being totally immersed in a virtual reality – as the last half of a centuries studies and developments
indicate – usually requires an array of technologies ranging from hardware and user interface devices
to 3D software engines. The difficulties to artificially project a virtual environment onto the user,
implementing a spectra of sensors, as well as enabling control and feedback mechanisms, are slowly
pushed aside, and advancements in processing power, micro systems, haptic devices, and software
should soon be able to reach a state where an immersive – or at least an augmented – reality is
possible.

The opportunities in such an artificial reality seem unlimited, as they enhance the current virtual
space – the now commonly used internet – with more dimensions, creating a true cyberspace, as
William Gibson coined the virtual world (see Appendix II).

Considering the explosion of the world-wide-web after the first browsers emerged in the early 1990's
[MOSAIC], the increasing research in the field of distributed virtual environment (DVE) systems might
promote a new kind of a network. Development of DVE's is partly fueled by advances in computer
graphics and networking technologies that provide the necessary processing power to create these
environments.

1.3.Problem Scope

The problems to be examined can be distinguished by different perspectives, or 'levels', that the
project can be looked upon. This rough distinction will resurface later, at the architecture of the
system. The following list shows the core questions.

Application Level
• What virtualization (i.e. 3D representation) capabilities and functionality should the application feature?
• Which technologies could support such a system, and what properties are important in choosing a particular

platform or tool?
• How should the development be attempted, and what methods applied to successfully create a demonstration of

the system?

Visualization Level
• When creating a 3D multi-user environment, how should the interface be structured, from a users point-of-view?
• How should the standard HCI/MVC design pattern be applied? What model-view-control, navigation and

interaction functionality and restrictions are necessary to provide a usable interface?
• How should the virtual space be designed? How can it account for the distributed nature of P2P networks? Where

are how should users, content, and network peers be abstracted? Is it mandated to implement certain rules and
restrictions?

• What kind of objects might exist in the space, what should they represent, how could they be created, and who
should have access to them?

Network Level
• How can the user's disorientation in a P2P environment, with regards to both services and relationships be

circumvented?
• Which basic building blocks should enhance the virtualization of a distributed P2P system?

Henrik Gehrmann Master Thesis Page 23 of 200

1.Introduction TerraPeer • DVE Architecture and Implementation

These levels highlight the scope of the problem. Each require further investigation, which leads us to
the theoretical scope of this project in the next chapter. Before diving into the research and
technological aspects, though, the remainder of this chapter will shortly outline the prerequisites and
general approach.

1.4.Prerequisites

Major prerequisites to attempt an architecture and implementation include knowledge of software
design and engineering topics. They should encompass software modeling and object-oriented design
patterns, graphical design algorithms and methods, virtual environment architectures, and network
protocols.

The creation of application of the described type requires theoretical knowledge about DVE projects,
existing prototypes, and related research. To this extend, an examination of distributed system
designs, 3D graphics, environment sharing and networking technologies, multi-user settings,
performance and optimization issues, as well as network topologies is necessary.

As will be described later, the architecture and implementation is created through specific choices.
This project aims to build upon existing experiences and reuse frameworks as needed in order to be
able to concentrate on the central aspects.

1.5.Approach

This thesis consists of seven chapters. Chapter 2 begins by looking in more depth into the associated
research, and develops an understanding of existing DVE systems. Based on existing architectures,
studies and projects, a map of the DVE landscape and related issues is derived.

The chapter continues to describe that landscape to some extend, but emphasizes specific
technologies. In particular, a 3D User Interface Framework on top of the Java3D API for usability
enhancements, and the JXTA P2P platform for distributed networking, are examined.

Chapter 3 analyzes the research areas, projects and technologies. From this platform, an outline of a
suitable solution, and an approach for the design are described.

Chapter 4 presents the architecture. The focus in this chapter is moved to the application itself, where
the selected technologies are integrated into the application design. The major design issues for the
architecture are explained, starting from high-level principles to specific models.

Chapter 5 is more separate in that it describes the actual prototype implementation, rather than
specifying or analyzing certain methodologies. Not all source-code is listed, but distinct methods are
emphasized.

Chapter 6 discusses the results of the project work, and the thesis finishes in Chapter 7 with
conclusions and directions for future work.

A chronological path of the document is given below, which lays out how this project is approached by
briefly highlighting each major section:

Chapter 2. Theoretical Scope
2.1.Research Overview – About the current state of research on related topics such

as graphics, games, networks, and virtual environments
2.2.Distributed Virtual Environments – Detailed examination of DVE research
2.3.3D Technologies – Emphasis on Java3D
2.4.Network Technologies – Emphasis on JXTA

Page 24 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 1.Introduction

2.5.GUI Design – Emphasis on the graphical user interface

Chapter 3. Analysis
3.1.Extracting the theory
3.2.Outline of a solution
3.3.Approach – Implementation flow, technology choices, and overview

Chapter 4. Architecture
4.1.Architecture – Overview of application layers and structure
4.2.Virtual Space Architecture – The 3D environment construct
4.3.Distributed Platform Architecture – The P2P environment construct
4.4.Zones – Specific focus on the Zone construct
4.5.Trust Model – Specific focus on the Trust construct

Chapter 5. Implementation
5.1.Use Cases – Short description of possible use cases for the application
5.2.Class Structure – An overview of the application object model
5.3.User Interface – How the GUI is build up
5.4.3D World Code – Specific focus on 3D/VE related code
5.5.P2P Network Code – Specific focus on network related code
5.6.Utility Code – Other code of interest
5.7.Data Repositories – How application user data and scenes are stored
5.8.Unresolved Issues
5.9.Installation and Documentation
5.10.Testing

Chapter 6. Discussion
6.1.Results
6.2.Experience and Difficulties

Henrik Gehrmann Master Thesis Page 25 of 200

1.Introduction TerraPeer • DVE Architecture and Implementation

Page 26 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

2.Theoretical Scope

The intention of this chapter is to lay out the theory behind the application by illuminating the related
fields, formulating a preliminary design, and thereby prepare for the actual architecture and
implementation that will be described in the following chapters.

Through research on associated subjects, the chapter aims to bridge the gap between the initial goal
introduced in chapter 1, and the specific architecture in chapter 3.

Starting with section 2.1. about the current state of research on related topics, the second section 2.2.
looks into the particular area of distributed virtual environments, and introduces the essential
methodologies. Then, section 2.3 dives into the assumptions behind the project, and considers the
scope of the application.

Alas, this thread should prepare the reader with the concepts and scope of the application, and pave
the road to the architecture in the next chapter.

2.1.Research Overview and Technology Areas

This section provides a basic foundation for the TerraPeer project by examining the technological and
research areas that are related to the subject. It is the wealth of interesting and inspiring ideas that
have created the foundation for this thesis.

2.1.1.Related Research and Technologies

The main focus areas of research surround the following topics, sub-topics that to some degree are
associated, and related platforms, standards, and technologies. See Table 2.1. Related Areas of
Research and Technologies.

Central Areas Associated Areas Related Technologies

Distributed Virtual 3D
Environments (DVE)

3D Frameworks and Protocols

Multi-user Game Engines

Virtual Worlds

3D User Interfaces

Virtual Reality (VR), Augmented Reality (AR)

Avatars and User Representation

Event Driven Architectures

Computer Graphics

Java3D, OpenGL, X3D/VRML,
SDL, VRTP

P2P and Client/Server
Network Architectures

Distributed Architectures

Process-, Web- and File-sharing

Multi-agent systems (MAS), Autonomous Agents, Bots

JXTA, HTTP, XML, Schemas,
RDB/ODB, Gnutella,
FTP, SMTP,
WebServices/SOAP

Dynamic Network
Visualization

GUI Design, Usability

Information search, Information maps

Navigable information spaces

Web-crawling, ranking engines

HCI

Object-Oriented building
blocks (network implicit)

OOAD, UML, Java
(J2SE/J2EE), CORBA, DCOM

Henrik Gehrmann Master Thesis Page 27 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

Central Areas Associated Areas Related Technologies

Collaboration CSCW

MUD's, MOO's

User awareness

AI Neural Networks, Pattern Recognition

Trust Trust Feedback and Reputation systems

Policies and Privacy, Certificates

Encryption/PKI, P3P, MS
Passport, “Poblano” (JXTA)

Table 2.1. Related Areas of Research and Technologies

Considering the rapid growth of each of these technologies, one might imagine an alluring future,
where computer graphics on special mobile haptic devices can produce reality-like environments,
which combined with the expanding interconnectivity of everything from kitchen devices to satellites,
truly would create a cyberspace as Gibson imagined it. While there are many hurdles to be overcome
before this goal can be reached, laboratories, institutes, and businesses around the world are racing
ahead with new theories, designs, and applications.

The evolution of 3D hardware has been impressive. Game engine developers, for instance, have to
constantly keep up to date with the 3D card industry. The original Voodoo 1 graphic-card had 2 MB
on-board memory, the Riva TNT increased its memory to 16 MB, then the GeForce and ATI Rage
supplied 32 MB, and today the GeForce 4 and Radeon have 64 MB to 128 MB on-board memory.

The GeForce graphical chip itself well outperforms some of the recent standard CPU's on the market.
Mobile services provided by DoCoMo in Japan have reached broadband-like speeds, capable of
streaming video. New P2P file-sharing applications manage to download the same file from multiple
sources simultaneously. Software, such as the latest Half-life 3D game engine performs highly
efficient, while providing a very dynamic multi-user experience.

Multi-user online gaming using 3D graphical engines has reached proportions that cannot be
disregarded when considering large scale virtual environments. The Half-life game mod 'Counter
Strike' alone has a user-base of some 30.000 in Europe, running on a total of around 7.000 servers
(see Appendix X.).

2.1.2.Computer Graphics

Computer graphics has been studied ever since the first digital machines emerged, when pioneers
such as Weiner, Whitney, Sutherland, and Freeman thought about the possibilities of implementing
and using graphical interfaces, image processing, and animation. Representation of data on devices
capable of showing 2D and 3D graphics have proven mostly valuable.

Today, any given PC or mobile system could not exist without the important graphical user interface
(GUI). HCI, simulation and animation, Computer Games, CAD systems, Desktop Publishing, Web
Design and Usability, 3D graphics, Virtual as well as Augmented Reality, are all topics that have
evolved out of, and are build upon computer graphics; each is now a subject of study. 3D graphics is
being used extensively in a broad range of areas and industries, taking advantage of the increasing
processing power, speed, and specialized CPU's.

Using a virtual environment based graphical interface can only be valuable when viewing information
in 3D supersedes viewing it in 2D. The extra dimension should enhance the orientation and
representation of data to the user, or it just unnecessarily worsens the interface. This is often not the
case, as the step to the next dimension also involves new challenges, for example navigational
difficulties, cluttered views and object overlaying. The common hardware interface devices are still
limited: the monitor screen, keyboard, and mouse. Obviously, in most settings, the 3D space still is
displayed on a 2D screen.

Page 28 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

3D spaces exist in various forms, both networked and 'local' (non-distributed), as toolkits or
frameworks. The OpenGL and DirectX technologies are the de facto graphical API's for low-level
graphical calculations. OpenGL is used on different OS platforms, and is often able to utilize specific
hardware routines. Two examples of typical 3D spaces follow.

The OpenGL Performer by SGI (which is running on IRIX, Intel and Linux) is a toolkit that uses
OpenGL as a low-level interface. Performer creates a non-distributed 3D space (virtual environment),
and is often used at universities, in research and commercial software. It supports multi-threading,
has no event model, and stores data in a binary format (.PBF). Application language is C/C++.

The VRML/X3D specification on the other hand has no low-level graphics API, but provides event
routes between nodes, and stores data in XML and binary formats.

Both frameworks support SG with nested transformations and SG persistence. Other local 3D spaces
include Open Inventor and VR Juggler (see appendix IX).

2.1.3.Game Engines

2.1.3.1.Game Engines

At the core of high-end 3D games lies the game engine. This term has only existed a few years, but
defines the essential attributes of a game. A 'game engine' is an extensible and modularized design
concept, which allows developers to create new or modify existing game models, scenery, and
sounds.

"The engine can be defined as all the non-game specific technology. The game part would be all the
content (models, animations, sounds, AI, and physics) which are called 'assets', and the code
required specifically to make that game work" [GE02]. A modern game is composed of many
elements; see the following Table 2.2. Game Engine Structure.

Component Description

Renderer Visualizes the scene for the player, requires extensive processing, and implements the 3D
Pipeline, culling methods (remove not visible polygons), BSP trees, lighting, etc.

Bump mapping Remodeling of surface to create light effects.

Fogging Fading out distant parts of the scene (visual range crossing the far clipping plane). Volumetric
fogging involves enclosed areas.

Anti-aliasing Smoothing edges.

Inverse Kinematics (IK) Implicit repositioning of the joints of a model. Forward Kinematics works in reverse to IK (among
other issues, knowledge about the motion-range that a joint can go through is important).

BSP trees and PVS Visibility and occlusion methods.

Game Physics Simulating physical properties in the world environment.

Effects Systems Special effects embedded in the scene.

Sound Systems Background music and spatial sounds. OpenAL is an API that supports sound (a software
interface to audio hardware, providing high-quality multi-channel output).

Game Networking Multiple clients

Game Control Mechanisms and
Scripting Systems

Special methods embedded in the scene to manipulate certain objects or otherwise control the
environment.

Entities and Cameras User view.

Artificial Intelligence (AI) Game non-player characters (NPC) and rules that the computer controls in an intelligent manner.

World Navigation Navigation functionality.

Game Rules Besides normal rules, there is so-called emergent game play (no coded rule for every possible
board play scenario; Chess).

Front-End User interface on top of the scene for visual control and feedback (HUD).

Table 2.2. Game Engine Structure

Henrik Gehrmann Master Thesis Page 29 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

2.1.3.2.Rendering

Graphical triangle calculations is the most basic level in scene rendering, and the number of triangles
generated (the "tris count" is often cited in relation with a game's framerate) is an important
taxonomy. Triangles and polygons describe 3D surfaces. 'Patches' are higher-order surfaces describe
geometry with a mathematical expression, which are used to generate a mesh of polygons from the
equation 'on the fly'. Triangles and polygons, combined with textures, and manipulated through filters
or shaders, are fundamentals of the graphical rendering process.

To counter hardware and pipeline limitations, the rendering process has to be optimized. Texture
compression, for example, reduces the memory footprint and bandwidth demands of textures. "The
technique of MIP mapping involves preprocessing a texture to create multiple copies, where each
successive copy is one-half the size of the prior copy" [GE02]. Modern multi-piped 3D accelerators
allow a single rendering pass when applying multiple textures. Texture caching is another tool to
increase performance.

Another common method is depth testing, where occluded pixels are discarded. This involves
'overdrawing' - the number of times one pixel location is drawn, which is based on the number of
elements existing in the Z (depth) dimension.

Vertex shaders are used to calculate and perform effects on vertexes before submitting them for
rendering. Pixel shaders are used for each pixel when the texture is rendered to create special effects
(out of focus, haze, internal reflection, etc.).

The 'Mod' communities are growing. Most of the game engines enable gamers to modify the original
game by supplying modules to the original core, and thereby in effect creating new games. The
Quake 3 engine, for example, is used by Quake III Arena, Quake III: Team Arena, Return To Castle
Wolfenstein, Enemy Territory, Jedi Knight II: Jedi Outcast, Soldier Of Fortune II, and Star Trek
Voyager: Elite Force. The Half-life engine is used by Counter-Strike and Ricochet among others.

2.1.4.Games and Worlds

3D games and worlds do hardly require an introduction. The popularity of both is asserted by millions
of users spending hours of their time inside these virtual environments, and though the study of social
interaction comes into mind, the focus here is placed on the technological aspects.

Virtual worlds are usually created differently from games, which is attributable to different target
audiences. Whereas a world typically implements chat, emphasizes large groups, and is build upon
text-based, VRML-like protocols [VRML97], online games emphasize smaller groups, and use high-
performance 3D engines that use binary protocols [Quake-BSP]. The intention of a world is to
socialize, that of a game to entertain.

A merger of these intentions and supporting technologies in the near future, is quite realistic.

Many 'worlds' that exist on the internet today, are based on different engines that commonly are
available as plug-ins to a browser. In contrast, games usually require separate installations that are by
far larger in size (and demand).

The following sections describe a few of the current solutions.

2.1.4.1.Quake, Half-life, EverQuest, and OpenWorlds

The usual setting for games like Quake and Half-life are seperately running game-servers for clients
to join. Each game server maintains a unique game state, which is not shared among the servers.
These client–server systems are not real multi-server systems in that each game-server is
represented by their own unique environment.

Page 30 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

In contrast, the game EverQuest divides the entire DVE into distinct zones, and maintains these
zones by individual game servers [DVE-PERF02]. This setting enables a continuous space that all
participants share, and could be considered a 'real' DVE system. Whereas the games mentioned
above represent a shared environment, the scale of such systems is narrow both in terms of number
of clients (in a scale 5-20), and spatial extension (relatively contained space).

OpenWorlds is a X3D-compatible system that provides immersive Web 3D graphics, multimedia,
animation, and VR capabilities [OW].

OpenWorlds is a toolkit that supports standards Web 3D, and is used to develop applications or as a
browser plug-in. The toolkit provides script interfaces to add any scripting language to VRML script
(C++ and JavaScript API's), and allows custom extensions. Further, it has a built-in node interface
that is not based on any particular rendering system, i.e. OpenWorlds features a platform-specific
rendering system (supported are Perfomer [OpenGL-Perf], OpenGL, and Optimizer for the SGI and
OpenGL and Optimizer for the Windows platforms). It is also possible to select a GUI toolkit (MFC,
Console, or Tcl/Tk based).

2.1.4.2.Crystal Space

The open source project "Crystal Space" is a 3D graphics engine with a large, extensible API. "The
framework features approximately 700 files of C++ source code and 1,000 header files containing
more than 500,000 lines of code. The basic framework design is centered around an external object
model called Shared Class Facility (SCF). A typical Crystal Space application instantiates and uses
several SCF objects providing services like 3D rendering, physics, collision detection, mesh creation,
etc." [CRYSTAL].

The architecture of Crystal Space offers a 6DOF engine with arbitrary sloped convex polygons, a
large plug in system (modules include scripting languages, Python, Perl, and Java), the SCF for
communication between layers, true-color and multi-resolution support, and command line
arguments.

The interesting part about Crystal Space is it's open source code, which as with many other projects
allow free usage and development on the software, as well as being constructed by a broad base of
contributers from around the world.

2.1.4.3.CryEngine

One of the most recent advances in game engine technology is currently displayed by the so-called
CryEngine (a preview of the game 'FarCry' is astonishing to watch, and seems to leave competing
engines a generation behind). "Real-time editing, bump-mapping, static lights, network system,
integrated physics system, shaders, shadows and a dynamic music system are just some of the state
of-the-art features that the CryENGINE offers" [FARCRY].

This game engine implements the following parts (from the FarCry website): A renderer, a physics
system, Character Inverse Kinematics & Animation Blending, Network Client and Server System,
Shaders, Terrain, Lightening and Shadow mechanisms, Fogging mechanism, Polybump (rendering
quality), and other features to increase performance.

2.1.5.Networks

2.1.5.1.Overview

The web-platform not only enables creation of personal, organizational and business sites in a
dynamic matter, but also provides a platform that is based on certain rules and protocols (such as
HTTP and HTML).

Henrik Gehrmann Master Thesis Page 31 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

This is quite important to acknowledge, as it creates a
common standard and narrows the users options, thereby
simplifying authoring, which in turn promotes the standard
further.

New hardware, network devices, and software emerges in a
constant pace. Examples of recent developments include
gigahertz processors, mobile devices using Java, Beowolf
clusters, large-scale multi-tier applications, and very capable
client/server 3D game engines. The recent distributed peer-
to-peer (P2P) platform has shown very interesting capabilities
(Kazaa, SETI). 3D gaming and online virtual worlds, mostly
rooted in social interaction have become increasingly popular
(Ultima, Worlds, etc.).

At the core of this evolution is the network; it enables people to interact in seemingly inexhaustible
ways, most of them not conceivable or practical in the 'real world'. Interaction is now possible via e-
mail, peer-to-peer messaging, IRC, forums and newsgroups, blogs, VoIP, MUD's and online games,
web-based collaboration and management tools, and many more.

The technical core of a network are the layered protocols (OSI model; see Table 2.3. Typical OSI
Network Layers). Typically, the layers to be considered when designing a DVE system are above the
IP-layer. Mainly two options are available on layer 4: the TCP over IP and the UDP over IP protocols.

OSI Layer Protocols

7: Application SMTP, FTP DNS, SNMP, NFS

6: Presentation MPEG, GIF, JPEG

5: Session

4: Transport TCP UDP

3: Network IP

2: Data Link

1: Physical
Ethernet

Table 2.3. Typical OSI Network Layers

The Transmission Control Protocol (TCP) allows communication between systems with the following
features:

• reliable transmission (connection-oriented, end-to-end reliable packet delivery through an
internetwork)

• stream data transfer (unstructured stream of bytes identified by sequence numbers)
• efficient flow control (avoid internal buffer overflow)
• full-duplex operation (both send and receive at the same time)
• multiplexing (numerous simultaneous upper-layer conversations can be multiplexed over

a single connection)

The User Datagram Protocol (UDP) is connectionless, and provides no reliability, flow-control, or
error-recovery, but also consumes less network overhead than TCP.

2.1.5.2.Client/Server

Multi-user virtual environments are often built on simple client/server architecture (see Illustration 2.1.
Typical Client/Server network). There exist several such applications that both provide navigation,
modeling, data representation, and user interaction functionality. When multiple users model on the
same scene, or shoot at the same monsters in a game, each node would connect to the server, and

Page 32 of 200 Master Thesis Henrik Gehrmann

Illustration 2.1. Typical Client/Server network

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

all information would be calculated centrally. Though, this isn't an easy task by far, and many
optimization routines and design patterns have evolved to enhance these networks, the centralized
architecture still simplifies the multi-user environment.

In a totally distributed P2P network, the architecture is decentralized (an example is Illustration 2.2.
 Typical P2P network with distributed processes). These networks have no central entity, and each
node – or peer – thus has to maintain it's own state of the current environment. It should be noted,
that the distinction between network architectures is not always clear, and though P2P became
popular in recent years, it is not a 'new' technology per se. A peer can be seen as a server and a
client combined. Some P2P networks rely on central servers as well.

Several advantages and disadvantages exist between a client/server and peer-to-peer network
architecture. While the former obviously retains information and control at a single place, the latter
often can ease network traffic and does not depend on a single server. P2P has proved most
successful in resource-sharing, file-sharing, and messaging applications, whereas the relative
common client/server and multi-tier network is used in almost all database, web, business, and
communication applications.

2.1.5.3.Peer-to-Peer

Peer-to-peer (P2P) networking is a technology, that by itself is not much different from Client/Server
(C/S) networks. P2P is more a label than a definition. Simply put, a peer (node) acts as both server
and client, thus enabling a decentralized distributed network.

The definition of peer-to-peer networks is often vague. Taken literally, servers talking to one another
are peer-to-peer. The game Doom is peer-to-peer. Napster is not peer-to-peer in the strictest sense,
because it uses a centralized server to store pointers and resolve addresses.

A common example for a C/S system is the well-known Web-server/Browser setting. Similarly, a
typical 3-tier system usually consists of a backend database, a middle-tier application server, and a
thin front-end GUI. Compared to these systems, P2P differs in the sense of where the workload is
located. Whereas servers process and store the bulk of data in C/S networks, such central location
does not exist in P2P networks. A peer has to manage, process, and store all relevant data locally.

The disadvantage of this setting is that data and functionality cannot be managed at one central
location, which makes it difficult to maintain a concurrent state between peers or easily control the
distribution of data. The advantage of P2P networks is the ability to heavily distribute processing,

Henrik Gehrmann Master Thesis Page 33 of 200

Illustration 2.2. Typical P2P network with distributed processes

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

replicate data, and promote 'edge-computing'. Common examples include distributed calculation
(SETI), file-sharing (Kazaa, eMule), and collaboration applications (ICQ, Groove).

What makes P2P distinctive? Applications using P2P take advantage of resources -- storage, cycles,
content, human presence -- available at the edges of the Internet. Because accessing these
decentralized resources means operating in an environment of unstable connectivity and
unpredictable IP addresses, P2P nodes must operate outside the DNS system and have significant or
total autonomy from central servers. P2P is a way of decentralizing features, costs and administration
[P2P-Shirky].

Asking “What is P2P...” a few years ago (in 2000), Clay Shirky described the evolution of networks
as following [P2P-Shirky]:
The launch of ICQ in 1996 marked the first time those intermittently connected PCs became directly
addressable by average users. Faced with the challenge of establishing portable presence, ICQ
bypassed DNS in favor of creating its own directory of protocol-specific addresses that could update
IP addresses in real time, a trick followed by Groove, Napster, and NetMeeting as well. (Not all P2P
systems use this trick. Gnutella and Freenet, for example, bypass DNS the old-fashioned way, by
relying on numeric IP addresses. Popular Power and SETI@Home bypass it by giving the nodes
scheduled times to contact fixed addresses, thus delivering their current IP address at the time of the
connection.)
Whois counts 23 million domain names, built up in the 16 years since the inception of IP addresses
in 1984. Napster alone has created more than 23 million non-DNS addresses in 16 months, and
when you add in all the non-DNS Instant Messaging addresses, the number of P2P addresses
designed to reach dynamic IPs tops 200 million. Even if you assume that the average DNS host has
10 additional addresses of the form foo.host.com, the total number of P2P addresses now equals the
total number of DNS addresses after only 4 years, and is growing faster than the DNS universe
today.

As can be abstracted from the box above, one of the primary features of P2P is evidently it's
distributed and decentralized nature, which makes it possible to create networks that are truly
independent of any central (controlling) entity.

This sometimes political question of where to place control becomes imperative for the designer of
the system as well. In his book 'Code', the author Lawrence Lessig analyzes this very important topic
to a great detail.

2.1.5.4.Distributed Networks

Distributed applications and infrastructure research is currently examining several issues. The
contrast between tradition client/server versus peer-to-peer networks, as well as challenges in P2P
designs is shortly outlined below.

While centralized systems are evolving toward decentralization, decentralized systems are evolving
toward centralization. Both in a response to growth and the need to scale upward [P2P-ACAD]. For
example the hosts file on the internet evolved towards the DNS, while Gnutella evolved towards a
system with superpeers, Freenet provides gateways, and JXTA search creates a hierarchy of servers.

Naming and resource discovery is an essential part of any networked system, unless anonymity is
important, to find particular individuals or repositories for information. Many P2P systems, for
example IM services, achieve this with identities stored in a strictly centralized repository. Although
IPv6 might resolve some of the related problems in identification and resource discovery, there will
still be open questions about how to balance centralization and decentralization.

One of the strengths of P2P networks, such as Gnutella and Freenet, is that they are able to provide
content independent of its location. This stands in contrast to the client/server approach, which

Page 34 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

fluctuates less in terms of networking dynamics, but requires clients to be dependent on a single
entity.

Delivering services is usually focused on web-based services (HTTP, XML-RPC, SOAP, etc.) as most
services today are offered through the web layers (avoiding firewalls). This is not very efficient for
P2P communication, though. Specific protocols exists to take advantage of lower network layers,
including JXTA, the SCTP transport-level protocol, and the BEEP application-level protocol.

"By decentralizing data and therefore redirecting users so they download data directly from other
users' computers, Napster reduced the load on its servers to the point where it could cheaply support
tens of millions of users" [P2P-ACAD]. P2P can take advantage of this principle; it can distribute the
burden of supporting network connections, and bottlenecks are eliminated at central sites, though
overall bandwidth will be similar.

2.1.5.5.P2P Socket

The Peer-to-Peer (P2P) Sockets Project [P2PS03] reimplements Java's standard Socket,
ServerSocket, and InetAddress classes to work on the JXTA peer-to-peer network, rather than on the
standard TCP/IP network.

According to their website, the P2P Sockets project is designed for developers interested in:

• Returning the end-to-end principle to the Internet.
• An alternative peer-to-peer domain name system that bypasses ICANN and Verisign, is

completely decentralized, and responds to updates much quicker than standard DNS.
• An Internet where everyone can create and consume network services, even if they have

a dynamic IP address or no IP address, are behind a Network Address Translation (NAT)
device, or blocked by an ISP's firewall.

• A Web where every peer can automatically start a web server, host an XML-RPC service,
and more, and quickly make these available to other peers.

• Easily adding peer-to-peer functionality to Java socket and server socket applications.
• Having servlets and Java Server Pages work on a peer-to-peer network for increased

reliability, easier maintenance, and exciting new end-user functionality.

P2P Socket is a new project that has been included here to highlight the on-going development of
network protocols that might be of interest for DVE system designs.

2.1.6.Virtual Environments for Multiple Users

A generally used term for virtual worlds or 3D
spaces is 'Virtual Environment' (VE). The
history of virtual worlds began with the first
MUD's (Multi-User Dungeons), which enables
participants to meet in a virtual, though text-
based, environment where they could
communicate with each other. Since these
days, VE technologies have evolved
dramatically, especially considering 3D
rendering techniques and the performance of
underlaying hardware.

The step from VE to DVE is ambiguous.
Research has not strictly enforced boundaries
on the distinction, and though single- versus
(networked) multi-user systems are easily set apart, the latter is most often discussed. Literally
speaking, VE's should represent single-user 3D spaces that are not shared. Distributed virtual worlds
are engineered on a networked architecture.

Henrik Gehrmann Master Thesis Page 35 of 200

Illustration 2.3. MUD Client/Server Architecture

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

DVE design is naturally complex as it is comprised of many sub-systems, with each their individual
problems and interfaces. Creating and optimizing the 3D environment is one issue, the user interface
interaction and feedback mechanism a second, the network synchronization and efficiency another.
Robustness and scalability extend the complexity further. An interesting taxonomy of the problems
one may encounter when dealing with large networked virtual environments can be found in [DVE-
TAX97].

2.1.6.1.3D multi-user Virtual Space systems

DVE's have been implemented using a range of frameworks that simplify the work of creating a
necessary distributed infrastructure from scratch. Relative standardized technologies include J2EE,
DCOM, CORBA, VRML/X3D, VRTP, and a long list of specific research-related DVE platforms (will
be described later). Other implementations are middleware systems [FLEXI99], mobile services
[VOY02], agent or mobile scripting [AGLETS02] systems.

Studies on 3D multiuser virtual space systems have focused on a large collection of areas: 3D
graphics (culling, spatial representations) and VR technologies (user interfaces, 3D representations),
game engines, communication and collaboration between users in VE, methods to interact with
avatars and virtual objects, network efficiency, massive distribution (scalability) and synchronization,
etc.

A couple of interesting research papers are summarized in the following sections, and a more
comprehensive listing of VE/DVE related projects will be given.

2.1.6.2.The Porta Susa Project

In a large-scale project in Italy, a virtual information system was implemented. A 2001 paper
describes the "Porta Susa Project" [PORTA01] and the implementation of their Shared Virtual Reality
(SVR) system.

The main purpose of the SVR was to support the design and construction of a large (300M Euro in
investments) central urban area, namely the railway junction of Porta Susa and the surrounding urban
area in the city centre of Turin, Italy (see Illustration 2.4. Screenshot of Porta Susa Urban Map).

The project also targeted "to renew the overall system of communications of the city towards an
integrated system of exchange between different means of transport" [PORTA01, pp.218].

Page 36 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

The SVR system was distributed to be accessible location-independent, and was designed to be
flexible, scalable and simple. Further, the aim of SVG was to allow users to enter and explore
complex data through a spatial representation through computer interactivity (the paper refers to
[VRBC]). A client/server approach, as well as the employment of plug-ins for web-browsers created
the basic structure of SVG. In 1996–1997, hardware and software put an upper limit to the complexity
of the models, as only one third of the PCs offered state of the art CPUs and more than 32MB of
RAM; 3D graphics accelerator cards were limited.

Architectured CAD 3D models were converted to VR models using VRML, which enabled participants
to view spatial representation directly. The SVR made it possible to "enhance the understanding of
interference between flows of different transport systems", and integrated vocal messages, Java
scripts, avatars with limited capabilities, and a taxonomy of VRML.

The system distinguished between a construction model to store documents, with meta-data, position,
classification, and decomposition information, and a document model to present connecting
documents, directories and servers through links, as can be seen in Illustration 2.5. Screenshot of
SVR Document Linking.

Henrik Gehrmann Master Thesis Page 37 of 200

Illustration 2.4. Screenshot of Porta Susa Urban Map

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

The virtual environment of SVR was build up by 'Stands' (sites by participating contractors,
subcontractors, firms, suppliers and other trading partners), 'Resources' (documents or drawings
explicitly represented by 3D icons), and 'Broadcasts' (to communicate with visiting citizens). This VE
could solve the problems of accessing massive information (some 20.000 documents, reports, specs,
and drawings) and multi-user collaboration simply by creating distributed places: "SVR opens virtual
places in Internet, cyberspaces" [PORTA01, pp.220].

All taken into consideration, the Porta Susa implementation seemed quite successful. Interviews to
users reported a satisfaction rate between 68% and 76%, depending on previous experience
[PORTA01, pp.226].

2.1.6.3.Scene Graph Distribution

A project called SOFT is used as a basis for a study about distributed scene graphs [DISTR-SG99].
The paper examines network architectures to solve the complexity of sharing a common view in
distributed virtual realities. Most interestingly, the authors were using a different approach for the
distribution of graphical data where scene graphs are applied as a bus.

Primarily, though, they tested two settings: A centralized Java server with serialization mechanisms,
and the Dial-a-Behavior (DaBP) protocol. The result of this study was that DaBP in comparison
reduces the server’s overhead, and provides implementation flexibility [DISTR-SG99, pp.89].

2.1.6.4.Avatars

Avatars are 3D representations of users that are engaged in a virtual environment (see Appendix II).

In recent years, avatar-based communication has attracted a great deal of attention. Several
methodologies for avatar motion and interaction have been examined:

• methods to create human body motion in real time by using motion-capture systems
[Kalra98]

Page 38 of 200 Master Thesis Henrik Gehrmann

Illustration 2.5. Screenshot of SVR Document Linking

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

• to reuse generated motion through combinations [AOHA00]
• techniques for storing acquired motions [ADHA99]
• methods for realizing interaction between virtual humans [Capin99, Toshiya97, and

Moser99]
• methods for realizing interaction between a virtual human and its surrounding objects

[Joslin01 and Honda95]

Information about specified motions is often stored in advance on the client side, which restricts
performable movements and makes it difficult to introduce new motions. A different approach is taken
in [DMVSS]; see next section.

Commonly, users select avatars from a limited palette to represent themselves in VE's. As more
users use the same avatar, it becomes difficult to distinguish between users. Nakao and Ogawa
[AVAT02] propose an Open Avatar Architecture (OAA), which enables users to utilize various virtual
spaces using their own avatar.

2.1.6.5.Avatars, the HORB, and Quality-of-Service

In an IEEE article from 2003 [DMVSS], Endo,
Yasuda, and Yokoi from Nagoya University in
Japan write about a distributed multiuser
virtual space system. They describe the usual
avatar interaction between users, and
examine techniques to express emotions
across a network. Their main idea of their
paper is to present a method of transferring
avatar gestures, such as movements, in a
direct matter, contrary to the usual approach
of using locally stored action libraries that get
triggered when only coded names are
transmitted. Although the latter is more
efficient for network communication, it limits
the users actions.

Existing 3D virtual spaces are most often
based on single servers that manages all
client activity. The problem with this
architecture, though, occurs when a growing number of users connect to the space. Their
environment is based on HORB [HORB], which allows much greater scalability. HORB consists of
'numerous clients and a set of two network-independent servers' [DMVSS pp.50], provides security as
well as communication quality features, and is more flexible than CORBA or RMI.

Through several approaches, and testing of the
Quality-of-Service (QoS), they where able to
create a system, that was comparably faster
(see Illustration 2.6. QoS of a DVE).
Optimization techniques included prioritized
connections, timeout methods, the HORB's
dynamic remote object creation technique, and
asynchronous remote methods.

One of the two servers in the system - the
action database server - is unique in that it
contains a library of avatars and motion
information, which is build on the H-Anim
specification (a Web 3D Consortium project),
and specifies a Level-of-Articulation (LOA) to
determine the level of detail of avatars. The

Henrik Gehrmann Master Thesis Page 39 of 200

Illustration 2.7. Dual-server DVE System

Illustration 2.6. QoS of a DVE

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

system is accessible through any VRML client due to independent library. See Illustration 2.7. Dual-
server DVE System.

In large multiuser virtual spaces, the massive volume of information often causes a decrease in client
performance [DMVSS pp.52]. With optimized action command information multicasting, motion can
be processed in real-time over the network. By controlling the QoS, and applying movement
interpolation, network latency and client fluctuations can be avoided. QoS and performance was
tested extensively experimenting on a VE with a range of avatars [see graphs on DMVSS pp.55], and
the overall conclusion was that their system proved quite efficient.

2.1.6.6.Avatar Navigation, Zones, and Performance

Avatar navigation is discussed in a document by
Sung and Park, "The Avatar Navigation of
Distributed Virtual Environment By Using Multiview
Client" [DVE-AVAT]. They introduce a multi-user
virtual environment (see Illustration 2.8. AOI DVE
Network) that implements a network structure
composed of heterogeneous multi-servers, and
multiview clients. The protocols VSTP, which runs
on top of TCP/IP, guarantees the connection, and
together with HTTP enables navigation in the VE
and the web. VSTP is the Virtual Space Transfer
Protocol.

A very interesting part of their DVE network
structure are 'Zones'. The network architecture
defines a mechanism to reduce network traffic
among VE users by dividing the VE space into
Zones. Zones are also called "Area of Interest"
(AOI), and can effectively be administrated by several servers [DVE97]. The network design restricts
the VE to a virtual "room" that corresponds to an AOI; i.e. the VE is partitioned into several rooms,
and thus makes the system more efficient (it allows occlusion filtering). Each room could provide
different purposes.

The network follows an approach
where AOI's are distributed on multiple
servers and multiple clients. Both the
virtual world and avatar are
represented by scripting files, and are
rendered client-side thus significantly
reducing the server-load.

The VSTP protocol allows user
representations - avatars - to interact in
virtual spaces. In this system, avatars
have nine behaviors that are build up
by a forward kinematics technique. An
avatar server is charge of packet
routing and avatar position.

For simplified navigation for the user, the application GUI (see Illustration 2.10. A DVE GUI using 3D
and Web Viewer) is split up into views that enable to view both 3D world and web-pages at the same
time (this princip is also used in the OpenWorlds project). The render viewer and the web viewer can
cooperate with each other to support the better understanding the virtual space.

Page 40 of 200 Master Thesis Henrik Gehrmann

Illustration 2.8. AOI DVE Network

Illustration 2.9. Multi-Server Avatar Statistic

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

The paper also describes how the application setting was tested for performance by comparing the
average number of packet transmitted between server and clients with an increasing number of
participants. The result is shown in Illustration 2.9. Multi-Server Avatar Statistic.

2.1.7.Cooperative Work

Computer supported cooperative work (CSCW or Groupware) is an area of research, where recent
studies have worked towards an integration with virtual environments. Although collaboration can
occur on several levels, such as text-based messaging or shared whiteboards, the combination of 3D
spaces with the option to increase visualization of users as well as objects would overall enhance the
collaborative experience.

In CSCW session management is essential. Session management allows group members to be
aware of who is in, who is doing what with whom, how to coordinate interactions, etc. Using an an
algorithm for automatic session management, it is possible to enhance the dynamics of cooperation,
i.e. members are not constrained, and can easily access shared objects.

So-called 'rule driven' sessions are important to users of a CSCW environment, in that they need
clear awareness of group activity in order to collaborate efficiently [Rodden96].

In "Automatic Management of Sessions in Shared Spaces", G. Texier describes a session model
suited for cooperative work in shared virtual 3D spaces [AMSSS03]. The session model structures
interactions on shared objects, without requiring explicit session preparation.

As cooperative applications are distributed by essence, maintaining data consistency is a difficult
issue, this session model and its rules defines groups of objects which then can be used by a
distributed consistency management service.

2.1.8.Distributed Computing

The SETI screen saver was (and still is) one of the widest used applications that harnesses idle
computer processing power. By distributing the enormous amount of calculations to thousands of
desktops connected to the internet, it is possible to gain computational power equivalent to modern
super computers (or dedicated 'cluster' computing).

Henrik Gehrmann Master Thesis Page 41 of 200

Illustration 2.10. A DVE GUI using 3D and Web Viewer

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

Since then, many organizations have created similar 'render farms' to plow through bulks of data.
Finding the human genome, searching for medical compositions, or predicting weather are a few
examples of where this processor-sharing model is very effective.

Philip K. Dick's novel "Do Androids Dream of Electric Sheep?", which the movie Blade Runner was
based on, describes almost-human androids..

A distributed screen saver with the name “Electric Sheep” has the purpose of animating and evolving
artificial life forms. “The project is an attention vortex. It illustrates the process by which the longer
and closer one studies something, the more detail and structure appears” [Sheep03].

A shared visual space is rendered on each node, and frames uploaded to a central server, which in
turn creates an animation of fractal flames. This 'phenotype of an artificial organism' is called an
"electric sheep", and its shape is specified by a string of 120 real numbers — a 'genetic code'.

The client node downloads the electric sheep, and displays it as a continuous sequence on the
screen. Distribution occurs every 5 minutes, and a sheep's life is finite dependent on disk quota.
Popular sheep - selected by user votes - live longer, and are more likely to reproduce. "Users'
preferences provide the fitness function for an aesthetic evolutionary algorithm (an idea first realized
by Karl Sims)" [Sheep03].

2.2.Distributed Virtual Environments

2.2.1.Introduction

Distributed Virtual Environments (DVE's) strive to create a realistic, semi-immersive "virtual world"
experience for users by incorporating 3D graphics and stereo sound [DVE-CS03]. DVE's act as a
base for interactively sharing information and manipulating objects by a network of users.

They can potentially be used in a variety of areas, including entertainment, education, engineering,
design, and commerce. In recent years, research of large-scale DVE's has been growing significantly.

DVE research actually diverts quite broadly, as the following loosely-ordered listing illustrates:

• Architectures
• Projects [DIVE98][NPSNET94][DVE-P98][PARADISE][NVE-D&I99][Singal99][MASSIVE95][OW][LSVR99]
• C/S System [RING95][NPSNET94][MASSIVE]
• Frameworks [DVE-Frame02][DVE-MNG00][MSVW02][DVE-VJC01]
• Object Description Language [NPSOFF94]
• Interactivity VE's [DIVE96]
• Performance [DVE-PERF02][DVE-PLIM]

• Large-scale
• Projects [SPLINE][DVE-SA95][NPSNET94][HIVE][MASSIVE-3]
• Multicast Groups [MCG95]
• Mobile Objects [MOBJ95]
• Massive Distribution [MASSIVE99][MaDViSPE][MaDVi02]

• Networking
• Protocols [Kawakami98][DWTP98][DVE-VRML][NOMAD01][JXTA-P03][P2P-ACAD][Sheep03][ARA00][X3D]
• Active Services [SRM00]
• Active Networks [AN-Survey97]
• Handling Heterogeneity [HET03]
• Interacting [CVE95]
• Taxonomy [DVE-TAX97]
• Perception Filter [DVE-Filter02]
• Fidelity Optimization [DVE-Fid00]

Page 42 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

• Communication
• Communication System [DVE-CS03]
• Multicast Framework [SRM97]
• Message Filtering [3DDMF01]
• Direct Conversation [Kawakami98][Lea97]
• Multimedia Communication [DVE-MM99]
• Session Management [AMSSS03]
• Interest Management [EIM-SDVE99]
• Sharing Attractions [Joslin01]

• Building and Visualization
• Navigation [CITY94][NavISpace]
• Environment Manager For Building DVE [EM95]
• Virtual Bodies [VBVS01]
• Virtual Object Interaction [Singal99]
• Urban Planning [PORTA01]
• Virtual Construction and Manufacturing [VRBC][VSVM01]

• Social and Entertainment
• Virtual Society [VSCollab96][Honda95]
• Education and Learning [DVE-E00][Learn99]
• VE games [DEE98][Game98]
• Social Aspects [Lea97]
• Collaborative Sculpting [COLVS01]

• Graphics
• Animation [Kalra98][AOHA00][Toshiya97][Moser99]
• Distributed Scene Graphs [DISTR-SG99]

• Avatars
• Studies [Capin99][AVAT02][DVE-AVAT]
• Gestures [DMVSS]
• Action Database [ADHA99]
• Awareness [Rodden96]

This list of research papers is not extensive. An overview of these and other resources is available in
appendix I and on this project's website.

Research of DVE shows that the evolutionary stage of such systems has moved quite far; many
rather explicit subjects are being illuminated by scientists and engineers.

A DVE system has four basic components [NVE-D&I99]:

• Graphics engines and displays
• Communication and control devices
• Processing systems
• A data network

Each of them can be composed of of specific techniques, platforms, or sub-systems. This complexity
is inherent in most designs of distributed environments, as it requires a somehow wide range of
underlying mechanisms.

Henrik Gehrmann Master Thesis Page 43 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

2.2.2.Challenges

The challenges raised by DVE's [DVE-Future02]:

• How to provide network support for the mixed traffic types demanded by DVEs, typically
voice, video and data, with their very different characteristics with regard to network
properties such as delay, jitter and loss rate?

• How to manage group participation in a DVE? Not all data are relevant to all participants
in a DVE.

• How to manage persistent state within a and manage state updates?

One of the main difficulties of implementing DVE systems, besides overcoming the complexity, lies in
its lack of efficiency, especially when scaling to a large number of nodes. Limitations to be considered
are network-implicit data losses, limited bandwidth, and delay.

As numbers of users grow, a number of factors will increase [DIVE98]:

• Geographical distance between participants
• Network distance between participants
• Total user population
• Number of simultaneous participants
• Scope of participant awareness, i.e. the fraction of the total environment to which a single

participant has access at any moment
• Complexity of the virtual environment
• Richness of communication, e.g. number of media, level of detail or fidelity
• Variability of delivery platforms

Each user or participant in a DVE is usually represented graphically by an avatar, which logical state
has to be updated to prevent inconsistent representations of the VE among different hosts. The same
is true for object interaction.

This constant state exchange results in a large network traffic volume, and requires optimization to
employ bandwidth most efficiently. Filtering data using a participant's interaction scope (i.e. not all
participants need to receive all updates) is one approach to optimize traffic.

The necessity to update the display at reasonable rates is a major bottleneck in graphical
applications. Thus, research has been devoted to solve the problems, i.e. by building networked
rendering clusters.

For example, Illustration 2.11. Parallel graphics systems shows a classification according to the point
in the processing pipeline at which data is redistributed to multiple subsystems. N is a node, and I-S-
R-D represents the processing pipeline. The four examples to the right show normal distributed input
data, a replicated application state, parallel renderers, and parallel renderers with image composition
[AVOCADO, pp.27].

Page 44 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

Other difficulties concern the spatial design, user interaction and navigation, synchronization, and
communication inside virtual environments. Comparing a DVE system to a car metaphor, it requires
both the underlying infrastructure, such as highways (network protocols), traffic (scalability and
performance), and traffic-lights (latency), as well as an engine (3D visualization), wheels
(communication platform), steering and screen (a usable interface), road-signs (navigation), and of
course a purpose to drive somewhere in the first place.

The car metaphor primarily highlights the networking aspects. The two main approaches in network
architectures for DVE's are client/server and peer-to-peer, but hybrid systems that take the best from
both worlds are emerging, especially considering that both extremes are characterized by increasing
difficulties.

But this is merely half the story, as a car's only purpose usually is to transport someone from A to B.
The metaphor is not adequate to describe the entire level of user interaction and collaboration, the
visualization of information, the user interface, access control and sharing, or building virtual world's.
A different metaphor might be useful here: that of a city [see also CITY94, NavISpace, PORTA01,
and Rodden96].

2.2.3.Client/Server Architecture

A single server manages the state of the virtual environment. A client sends an update to the server
which is then propagated to other clients. All communication goes through the server, which becomes
both a bottleneck and a single point of failure.

As in Web applications, client caching strategies also cause difficulties and require sophisticated
protocols to maintain consistency and freshness of state. However, the client/server approach is
relatively simple to implement and provides a perfectly satisfactory solution for DVE's up to some
size limit.

This approach is also taken in internet game servers such as Kali, TEN and Mplayer [DVE-Future02,
pp.2].

2.2.4.Peer-to-Peer Architecture

The P2P network distributes the state amongst all clients. Each client has a partial copy of the state.
When a change occurs, a client has to send the changes to all other clients. If a client fails or leaves
the environment, its data are lost, but other clients can continue without it (under some assumptions

Henrik Gehrmann Master Thesis Page 45 of 200

Illustration 2.11. Parallel graphics systems

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

about how data are distributed). Thus, peer-to-peer communication is a more promising approach to
large scale DVE's than the client-server approach.

The key idea in making such an architecture scalable is the use of multicast groups [CN96]. Multicast
protocols enable a sender to send data to a set of hosts in a multicast group, avoiding unnecessary
duplication of transmission by sending only one copy of the data along each arc in the routing tree
between sender and receivers [DVE-Future02, pp.2].

The DIVE - Distributed Interaction Virtual Environment [DIVE98], and the MASSIVE [MASSIVE99]
systems are both based on P2P architectures. Multicast delivery systems were first used for the
delivery of time critical data such as video and audio streams, where it is pointless to retransmit lost
packets.

2.2.5.Hybrids

There are hybrid architectures constructed from both extremes, which for example focuses on servers
communicating in a peer-to-peer manner [RING95]. The server bottleneck that occurs when the
number of clients increase can thus be eliminated.

A different approach, the 'Peer/Server' architecture, focuses on communicating using peer-to-peer
with some nodes and through a server with some other nodes. An example of this system is the
"Distributed World's Transfer and Communication Protocol" (DWTP) [DWTP98].

The "Virtual Reality Transfer Protocol" (VRTP) is a project by the Web3D consortium, which aims to
enhance the networking of shared 3D worlds, and to keep pace with the subsequent explosion of
network demand by large-scale DVEs [VRTP].

VRML supports large-scale web-based virtual environments, but since it runs on top of HTTP, it is
insufficient for large-scale DVE's [VRML97]. To this extend, VRTP was created to support interlinked
VRML worlds in the same manner as HTTP was designed to support interlinked HTML pages. This
architecture aims to provide functionality that exists between client-server and peer-to-peer
approaches.

The DIS-Java-VRML composition [DJV] has been created to establish conventions for building
multicast-capable large-scale VE's, and is another Web3D working group. DIS is essentially a
behavior protocol tuned for many-to-many interactions. Java is the programming language used to
implement the DIS protocol, perform mathematical calculations, communicate with the network and
communicate with the VRML scene. VRML 3D graphics are used to model and render both local and
remote entities. Using DIS, Java and VRML can provide all necessary capabilities needed to
implement VE systems.

2.2.6.Research

One of the pioneering distributed virtual environments was the SimNet (Simulator Networking)
System by the Institute for Defense Analysis in 1990 of the American Department of Defense (DoD).
SimNet is a military training DVE, and a formalized Distributed Interactive Simulation (DIS) protocol
(IEEE 1278 standard) was a result of that research [IEEE1278]. This system, however, is not ideal for
large-scale multi-player VE's [MCG95].

The Naval Postgraduate School created NPSNET-IV [see DVE-SA95, DVE-TAX97, and MCG95],
which builds on DIS. This system managed to optimize data load (filtering) for nodes and network by
partitioning the virtual world into classes [DVE-CS03].

DIVE - The Distributed Interactive Virtual Environment [see DIVE96 and DIVE98] is a network
software architecture of a DVE platform designed to scale by using a group communication system,
and a reliable multicast protocol (with NACK).

Page 46 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

DIVE partitions the virtual world into smaller regions, avoids data filtering within a world, and
implements a multicast group for each. All objects in the scene graph are replicated. A joining
program receives a complete copy of the current world state (via TCP/IP). Update messages
propagate changes (a fixed set of events).

The C/C++/TCL system (multi-threading) toolkit runs on SGI IRIX and Linux. The object model
consists of objects, attributes, and scene graphs. The event model consists of global events and
callback subscription. Persistence by saving environment state. The distributed event model
implements state change and attachable notification handlers. Network transport goes via UDP (IRIS
group communication), and the approach is process-grouping.

HIVE – A large-scale kernel system. "This project focuses on the development of a unified kernel,
based on an underlying time parameterized environment model incorporating time based reasoning,
which reduces latency by anticipation and advance communication of events" [HIVE]. See also
[MASSIVE-3] and [MASSIVE95].

MASSIVE - The Model, Architecture and System for Spatial Interaction in Virtual Environments
system [MASSIVE95], uses a spatial model for interaction among clients. The Massive project is
distinguished by three versions.

Multiple users communicating via a combination of 3D graphics and real-time packet audio are
supported in [MASSIVE-3]. The system provides scalability, world-composition, locales (originated in
SPLINE), and message handling with integrated causality and advance communication of events
(originated in HIVE).

Each object has an aura that determines the space within which interactions are possible. Two
participants exchange state updates when their auras collide [DVE-CS03, pp260].

The original Massive is a single-threaded C system toolkit that runs on SGI IRIX. The (distributed)
object model consists of objects and attributes. The event model consists of global events and
callback subscription. There is no persistence. The distributed event model implements dedicated
point-to-point connections between objects. Network transport goes via TCP/IP, and builds on a
Client/Server architecture.

The distributed object model in CVE (MASSIVE-2) uses flat object sets and replicated objects. The
distributed event model uses dedicated point-to-point connections between objects. The distributed
object model in HIVEK (MASSIVE-3) uses an object hierarchy and replicated scene graphs. There is
no distributed event model.

Network transport in both CVE and HIVEK goes via TCP/IP point-to-point and UDP multicast, and
builds on both C/S and P2P architectures.

RING is a client-server system. The distributed object model uses flat object sets and replicated
object positions. There is no distributed event model. Network transport goes via TCP/IP point-to-
point, and builds on a C/S architecture. In RING, the partitioning criterion is not based on spatial
position (as in SPLINE, CVE, HIVEK, and NPSNET), but on visibility.

PARADISE - The Performance Architecture for Advanced Distributed Interactive Simulation
Environments at Stanford is a large-scale multi-user simulation environment over a wide-area
network [PARADISE].

SPLINE - The Scalable Platform for Large Interactive Networked Environment [SPLINE96] splits the
world into locales, which can be processed separately [DVE-CS03, pp.260]. Spline provides the
following key capabilities [SPLINE]: Multiple users, Spoken interaction, Computer simulations, 3D
graphics and sound, Run-time modifiability, and Open Interfaces.

Henrik Gehrmann Master Thesis Page 47 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

The distributed object model uses flat object sets and replicated objects. The distributed event model
uses dedicated point-to-point connections between objects. Network transport goes via TCP/IP point-
to-point and UDP multicast, and builds on both C/S and P2P architecture.

MR Toolkit (no longer available) - This single-threaded C toolkit runs on SGI IRIX. The object model
consists of tagged vertex lists and state variables. The distributed object model uses selected
memory locations. The event model consists of global events and callback subscription. There is no
persistence. The distributed event model uses event broadcast. Network transport goes via TCP/IP,
and builds on a P2P architecture.

Other examples of DVE related projects are V-Worlds, a group at Microsoft [MSVW02], URBI ET
ORBI [DVE-MNG00], the NOMAD framework [NOMAD01], Java middleware system, like FlexiNet
[FLEXI99], mobile services like Voyager [VOY02], and agent technologies such as Aglets
[AGLETS02].

It is apparent, that research projects in virtual environments and distributed virtual environments are
aggregating. For a nice overview, see Appendix IX for a comparison table on VE and DVE projects by
[AVOCADO].

2.2.7.Event Driven DVE

An Event-based Architecture is presented on an online paper [DVE-VRML]. This event-based
notification system is a DVE being constructed of zones, i.e the DVE represents a network of zones.
The authors define a zone, as a representation of a collection of information of interest to participants
in the DVE [DVE-VRML]. Zones can be defined spatially, as in the SPLINE system [SPLINE].

An Event Distributor (ED) acts as the coordination point for a zones events, and runs a zone server
extension to implement the zone-specific functionality. A zone server implements a generic state-
sharing protocol using events. Events exist for object creation and deletion, state updates, and
operations on objects among others. Events are not interpreted by the ED mechanism, but by the
object receiving an event, and state update content can be defined independently.

The DVE system is based on the 'Keryx Notification System' (KNS), which employs a
publish/subscribe distribution mechanism to optimize bandwidth. Participating nodes can apply filters
via the ED to limit their event flows to the zones they are interested in. The mechanism is described
in detail at [DVE-VRML].

2.2.8.Division of the Environment

The "impact of the communication system on distributed virtual environments" is described in a paper
by Teixeira and Duarte [DVE-CS03].

Their platform model the communication requirements. Performance was evaluated via simulation,
which included factors such as number of nodes, partition of the virtual environment, network node
latency, number of messages exchanged, and the size of the virtual world. Their results show that the
division of the environment improves overall performance.

The platform used an event driven approach, and reduces reliable communication by dividing virtual
world operations into critical operations (require reliability), and non-critical operations (delivered in
real time). In their simulations, the VE was divided into fixed areas, while model behavior was
captured to evaluate their communication performance.

Simulation results showed, that this division of the VE proved vital for system scalability. The trade-
off between interactivity gain versus interruptions generated by hand-offs were not significant [DVE-
CS03, pp.276].

Page 48 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

2.2.9.MaDViWorld

The MaDViWorld framework is a "software architecture supporting massively distributed virtual world
systems" [MaDViSPE], which goal is to distribute its virtual subspaces on an arbitrarily large amount
of machines without making concessions to the single server architecture. The system avoids the
limitation of a few centralized servers, and instead supports a distribution model.

In their papers about the
"Massively Distributed Virtual
Worlds" system [see
MaDViSPE and MaDVi02],
Patrik Fuhrer, Ghita Kouadri
Mostefaoui and Jacques
Pasquier-Rocha explain: "We
want to support a World Wide
Web type of organization,
where each individual server
only maintains a very partial
portion of the whole system"
[MaDViSPE, pp.656].

Fuhrer et al. describe two basic paradigms that describe networked applications: The document
paradigm, where documents (often active ones) are able to react to various user actions, and are
made available on one or several servers and client applications (e.g.Web browsers). And the the
virtual world paradigm, where multiple users and active objects interact in the same space and
therefore have a direct impact on each other [MaDViSPE, pp.646].

The first paradigm is "a metaphor of a large cross-referenced book", while the second displays much
more complexity in that events have to be synchronized and forwarded in order to maintain
consistency of the world. Most of the latter systems are based on architectures that implement central
servers containing all data related to the VE, handling consistency and persistence for all attached
clients. The paper argues that this approach has two main weaknesses: First, the whole system
depends completely on the central server robustness, and secondly, it does not scale well.

The MaDViWorld layered structure [MaDViSPE, pp.660]:
• Specification layer - Avatars and Rooms, RoomFactory
• System Implementation layer
• Object Implementation layer

Subspaces are called 'rooms', which are essential to divide the world into subspaces to make it
scalable. Each room can have 'doors' that work as gateways to different rooms [MaDViSPE, pp.648].
Rooms can be reached directly by a specific address. End-users avatars can explore the world
transparently, without knowing on which machine the virtual room runs on (see Illustration 2.12.
 MaDViWorld Abstraction).

Henrik Gehrmann Master Thesis Page 49 of 200

Illustration 2.12. MaDViWorld Abstraction

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

MaDViWorld can be seen from the perspectives of a user and a developer, people either purely using
the DVE for their own amusement, or people further extending its functionality. The user level
perspective needs to take several aspects into account: The World topology, Interactions,
Active/mobile objects, World creation and extension, Persistence and recovery, and Security
[MaDViSPE, pp.650]. The world developer level has to focus on aspects such as new types of
objects, creating new avatars, and new types of rooms [MaDViSPE, pp.651].

Objects are distinguished into
Passive objects, Reactive
objects, and Active objects
[MaDViSPE, pp.648]. This
devision is based on how objects
interact with avatars or each
other.

Object mobility is the central
mechanism of MaDViWorld, and
is illustrated by the following
virtual activity: After playing a
virtual game with Sylvia inside
Room 1, the user Hans "selects
the game object and clicks on
‘take’. The object is automatically
put into his avatar’s bag. Then
he enters Room 2 and clicks on
‘put’. Sylvia joins Room 2 and
both users replay the game"
[MaDViSPE, pp.654].

Page 50 of 200 Master Thesis Henrik Gehrmann

Illustration 2.13. MaDViWorld Physical Layout

Illustration 2.14. MaDViWorld Architecture

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

The physical model (see Illustration 2.13. MaDViWorld Physical Layout) behind the scene is build up
by:

• 2 room server applications
• 3 avatar applications running together on different machines
• a naming service for the virtual rooms and the avatars on each machine
• relations (events etc. managed by the room) between the objects within a room and the

avatars connected to it

A room or the naming service might
become bottlenecks, if one either
populates a room with too many
objects and avatars or puts too many
rooms on a single server. This should
be averted by the MaDViWorld
design, though.

MaDViWorld's main strengths and
benefits is its 'massive distribution' of
virtual world resources. According to
the authors, its framework shows the
following achievements, while
resisting to be a new Java middleware
system, a mobile service, or an agent
system [MaDViSPE, pp.665]:

• pure Java, RMI-based, and
distributed

• persistence mechanism
• framework is extensible
• class and object mobility facilities
• avatars in room can share the same objects

The MaDViWorld architecture is quite interesting in the context of this project, as it focuses on the
'zoning' mechanism as well as a Java-based, object-oriented, extensible approach.

2.2.10.Active Networks

Balikhina, Ball and Duce ask the question "Distributed Virtual Environments - An Active Future?"
[DVE-Future02], and contemplate whether active networks might offer potential solutions to scalability
issues for large scale Distributed Virtual Environments (DVE's).

Examining architectures of DVE systems and recent work in Active Network research, the authors
suggests “potentially beneficial synergies” between the two fields.

Usually, computational resources only exist outside the core of conventional networks, as the primary
function of the network is end-to-end routing of traffic. Challenging this assumption is the recent
research of Active Networks [AN-Survey97].

Active Networks assume an unconventional approach by placing “computational resources directly
within the network specifically to support end-user processing requirements, higher performance will
be achievable than by conventional means, service deployment will be improved and new classes of
service will become possible” [DVE-Future02, pp.3].

See Illustration 2.16. Processing with the nodes of an active network, for an example of how an event
is forwarded through an active network.

Henrik Gehrmann Master Thesis Page 51 of 200

Illustration 2.15. MadViWorld UI

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

Harvesting the benefits by deploying Active Networks naturally requires the addressing of potential
problems such as management, reliability and security. Scalable Reliable Multicast (SRM) is one
class of protocol that has been shown to benefit from the presence of small amounts of session
specific computation at key routing nodes, increasing throughput, decreasing latency and reducing
congestion [SRM00].

The difficulty in designing scalable multicast protocols that supports reliable delivery has been met by
the Scalable Reliable Multicast framework [SRM97]. The SRM framework provides basic functionality
for scalable application level reliability in multicast environments. SRM is fully decentralized and
handles arbitrarily large groups of participants. To achieve reliability, receivers multicast a so-called
"repair request" (NACK) to ask for missing data.

Another approach, besides SRM, was suggested by Keller et al. in their "Active Router Architecture"
[ARA00], which provides transcoding (digital-to-digital encoding) services within a network to address
issues of bandwidth heterogeneity amongst destinations in a multicast group [DVE-Future02, pp.3]. In
this approach the application selects certain transcoding processes, while the network is able to apply
them.

2.2.11.DVE performance

2.2.11.1.Multi-server DVE performance

Multi-server DVE performance is tested in a document by Ng, Li, Lau, Si, and Siu [DVE-PERF01].The
question they ask is, how large scale DVE's manage the workload, and how an implementation of a
multi-server based DVE system could be accomplished best.

In their study, multi-server DVE systems are tested for performance by experiments under various
conditions. The resulting data showed that both latency time and response time decreases
exponentially with a larger number of servers, but increases with the number of objects (see fig.1 and
fig.2 on Illustration 2.17. DVE Performance Study).

Further, "observe that when there is a large number of objects (>4000 objects) and a large number of
clients (>64 clients), the latency time and response time start increasing super-linearly" [DVE-
PERF01, pp.91].

Incrementing the number of objects does not necessarily require more bandwidth, and thus has less
effect on performance. "In contrast, increasing the number of clients will contribute to a greater
amount of data transmitted from the server" [DVE-PERF01, pp.91]. The bottom line is that, compared
to a single-server architecture, there is a clear performance gain in applying a multi-server system.

Page 52 of 200 Master Thesis Henrik Gehrmann

Illustration 2.16. Processing with the nodes of an active network

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

2.2.11.2.3D Sub-Spaces to Increase Performance

How performance limitations affect DVE is also examined in a paper by Enser, Carraro and Edmark
[DVE-PLIM]. The authors primarily describe systems that represent a VE as multiple regions in order
to compensate processing limitations. Further, the paper presents a method where the view of a world
scene can be 'extended' (similar to interpolation) to avoid hick-ups when delayed scene updates
occur.

In a simulator called Peloton, multiple users compete within a VE. The system's display is a
composition of multiple 3D sub-spaces (called regions) that each can be made up of graphical
objects, still images, or video streams (see Illustration 2.18. DVE Subspaces).

The idea is that limited computation and communication resources in DVE systems can be solved by
altering the visual representation. Depending on the computing and communication resources
available during a simulation, the 3D spaces could be adjusted to available performance. DVE
system components could be modified through both static and dynamic settings. Hence, the
"graphical complexity of the regions of a virtual world can be tailored" to current performance
limitations [DVE-PLIM, pp.199].

Henrik Gehrmann Master Thesis Page 53 of 200

Illustration 2.17. DVE Performance Study

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

In essence, Ensor et.al. suggest that the technique of configuring
different VE regions to match their performance characteristics of
underlying computing and communication systems, yields better
advantage of available resources.

A peculiar side-effect of their research was, that "Pyramidic
panels are useful not only in multi-region virtual worlds; they can
also support changing viewpoints in the more common image-
based virtual worlds" [DVE-PLIM, pp.203].

2.3.3D Technologies

2.3.1.Java3D API

Java3D is based on Java technology, and as such both scalable and platform-independent. "The
Java 3D API provides a set of object-oriented interfaces that support a ... model to build, render, and
control the behavior of 3D objects and visual environments" [Java3D].

Shortly outlining the capabilities, Java3D offers a range of 3D-features. The high-level API avoids
tedious implementations such as rendering pipelines, supports a wide variety of formats and run-time
loaders (VRML, CAD, interchange formats, etc.), is network-centric, portable, and scalable. Further,
"the viewing model scales from a flat screen to stereo, to a tesselated wall of monitors, to fully
immersive portals and caves - all without rewriting code" [Java3D].

The API can utilize OpenGL or DirectX, and strives to prioritize performance. Certain aspects that
have been optimized, and issues that influence performance include:

• The ability to set capability bits to determine which objects may change at run time.
• The support of two different compiling methods to "compile" the data into a more efficient

rendering format.
• Bounds to limit the spatial scope of a specific object (Lights, Behaviors, Fogs, Clips, Backgrounds,

BoundingLeafs, Sounds, and Soundscapes). It is possible to disregard the processing of any
objects that are out of the spatial scope of a target object.

• Unordered rendering of leaf nodes, which have no effect on other leaf nodes, and therefore may
be rendered efficiently in any order. Usually, state required to render a specific object is defined by
the direct path from the root node to the given leaf.

Page 54 of 200 Master Thesis Henrik Gehrmann

Illustration 2.18. DVE Subspaces

Illustration 2.19. A sample Java3D Scene Graph

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

• Using appearance bundles. Appearance being a collection of references allows the
implementation to minimize state changes in the low level rendering API. A node has a reference
to a Geometry and an Appearance.

Java3D is a viable choice to implement specific 3D-based user interfaces that require the flexibility
and compatibility of Java. It was therefor chosen as the basic 3D environment platform for this
project's application.

Java3D uses a scene graph (SG). SG's are hierarchical structured objects, which shows their
relationship to each other. A local coordinate system describes the information relative to the parent
object. Descending on each level, there is a grouping structure, containing objects of similar
characteristics, inherited properties from parents, and the ability to move the object relative to the
parent. Illustration 2.19. A sample Java3D Scene Graph shows a typical structure.

2.3.2.J3D-UI Framework

The Java3D User Interface Framework (J3DUI) is a set of packages, which utilizes the Java3D API
and mainly supports manipulation of in-scene objects [J3DUI00].

J3DUI essentially provides an upper layer for intuitive user interaction that is limited to the input
devices mouse and keyboard, and the 2D screen output device (in contrast, the Java3D API as J2SE
itself has few restrictions on its usage and offers formidable extensions).

The framework contains a collection of classes and methods that are convenient when implementing
3D environments. They bundle commonly used event-chaining, input/output interfaces, vector
coordinate conversions, and SG branching organization. Aiming at small-sized Java applications that
want to implement a 3D user interface (i.e. to show furniture), the framework tries to simplify the
programmer's task by providing those methods repetitively used.

Henrik Gehrmann Master Thesis Page 55 of 200

Illustration 2.20. J3DUI Framework - Object Picking

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

One of the core features of the J3DUI are object picking operations (located in the sub-package
j3dui.control.mappers). The class map for this feature is shown in Illustration 2.20. J3DUI
Framework - Object Picking.

Further, J3DUI supports discrete and continuous picking, as well as bounds and geometric picking,
and can be used for target control enabling, or for feedback and selection [J3DUI00].

Due to several interesting features that generally addressed the interface between the user and the
3D scene, and in particular supported object visualization, control and manipulation, as well as the
conversion methods that are necessary and implicit in a desktop 2D to a world 3D translation, the
framework was chosen as a major supplement in the application architecture.

2.3.3.X3D

Extensible 3D (X3D) is a software standard for “defining interactive web- and broadcast-based 3D
content integrated with multimedia" [X3D].

X3D is a format for integrated 3D graphics and multimedia, and succeeds VRML with new features,
additional data encoding formats, and a componentized (modular) architecture. Among other areas,
the interchange format X3D was modeled to support shared virtual worlds.

The X3D feature set includes (from the web3d.org website; ISO/IEC FDIS 19775-1:200x):

3D graphics - Polygonal geometry, parametric geometry, hierarchical transformations, lighting,
materials and multi-pass/multi-stage texture mapping
2D graphics - Text, 2D vector and planar shapes displayed within the 3D transformation hierarchy
Animation - Timers and interpolators to drive continuous animations; humanoid animation and
morphing
Spatialized audio and video - Audiovisual sources mapped onto geometry in the scene
User interaction - Mouse-based picking and dragging; keyboard input
Navigation - Cameras; user movement within the 3D scene; collision, proximity and visibility
detection
User-defined objects - Ability to extend built-in browser functionality by creating user-defined data
types
Scripting - Ability to dynamically change the scene via programming and scripting languages
Networking - Ability to compose a single X3D scene out of assets located on a network;
hyperlinking of objects to other scenes or assets located on the World Wide Web
Physical simulation - Humanoid animation; geospatial datasets; integration with Distributed
Interactive Simulation (DIS) protocols

The X3D standard is usually implemented and used through the XML file format, which is an ideal
standard for 3D SG rendering and authoring, routes, scripting, and event passing.

X3D was chosen in this project primarily due to it's large range of features and networking
capabilities. Since the standard builds on previous technologies and with the above aspects in mind, it
seems appropriate to assume that the Web3D consortium has created it both comprehensive and
effective.

Using X3D in this architecture has several beneficial advantages. The application settles on an a
priori established standard that is easily extended, build upon, and communicated. Further, X3D
covers all application needs, including scene-graph handling, hierarchical node-structures that can be
parsed, basic 3D geometries and text, and networking (scene hyperlinking).

Page 56 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

As described, X3D allows a large range of 3D description and SG manipulation features that, though
immediately only would be used sparsely in the initial architecture, might prove valuable when
extended.

2.4.Network Technologies

2.4.1.Peer-to-Peer Network

2.4.1.1.Advantages and Disadvantages

Advantages of a P2P architecture is that the rendering operation for the environment is mostly local,
which decreases network traffic. Since all necessary information about the virtual world has to be
stored locally, it is relatively simple to create an initial view. The world is then build up dynamically as
more peers are visible and connected.

Disadvantages of P2P are mainly synchronization, resource replication, and bandwidth management
difficulties, but they are common on Client/Server networks as well.

Events have to be propagated across the network, and as more peers are involved the effort
becomes more complex. These scaling problems can be avoided using optimized broadcasting
techniques, such as hierarchical multicasting [Gre97].

Another issue is the utilization of peer resources (in terms of processing power). In “homogeneous
networks, there is no scope for utilizing spare capacity... Increasing the complexity of the environment
impacts equally on all users’ resources, and introducing a single new processor into the system would
be of no benefit from this point of view” [LSVR99, pp. 93].

Maintaining 'unoccupied' environments “is peculiar to the peer-to-peer configuration... The ‘reality’ of
an environment is somehow associated with and dependent upon... participants. [If] there is no world
engine [to] process it... reality ceases [to] exist” [LSVR99, pp.95]. This issue, though, could arguably
be a feature of the architecture rather than a problem. A VE would emerge only when users utilize it.

Client/Server architectures provides a single location for processing the environment for multiple
users. This eases the overall maintenance of the VE. On the other hand, distribution of information is
controlled centrally, and theoretically the autonomy might be restricted by the server.

A DVE system often is required to handle several tasks, for example client request processing,
synchronization, object transmission and interaction handling. On a large scale, as multiple
participants are involved in the DVE, this concurrent workload becomes significant.

"A single server based DVE system may not have enough processing power to maintain the system
interactivity. To address this problem, a number of multi-server based DVE systems have been
developed" [DVE-PERF01]. In a study, described in an earlier section (2.2.10. DVE Performance), the
performance of multi-server DVE systems is clearly in advantage.

2.4.1.2.Requirements

There are several requirements attached to a DVE network, especially if it is P2P based. Each peer
has to be both discoverable and uniquely identifiable by other peers, as there is no central place that
handles these tasks.

In the 'total distribution' scenario, connections are established ad-hoc. The underlying network
protocol must be able to find, connect, and send messages between peers. Further, it must be
possible to publish and propagate peer data, including individual information, 3D representations, and
services.

Henrik Gehrmann Master Thesis Page 57 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

Persistence of the VE might be important for certain representations or services. In the ad-hoc
network, this simulations concurrent state can seem rather difficult to maintain, but it can be argued
that persistence is accomplished locally by each peer depending on the provider's preferences. This
would in effect be similar to hosted websites running on servers in a stable environment with almost
no 'down-time'. Persistent DVE's are defined as DVE's that are 'always on' [EIM-SDVE99].

Finally, the P2P network needs a security system that supports authentication, integrity, and
confidentiality.

As this document will show shortly, the JXTA platform is a very flexible specification that cater most
of these requirements.

2.4.2.JXTA

2.4.2.1.What is JXTA?

"JXTA is Sun-led project to develop an open source peer-to-peer (P2P) framework in the context of
distributed computing and services" [JXTA-HELLO].

Juxtapose (or short JXTA) is a set of protocols for inter-peer communication, and offers various
functionality, such as group management, content sharing and service provision.

Each protocol of the framework is modular, and provides different tasks:

• Endpoint Routing Protocol (ERP)
• Rendezvous Protocol (RVP)
• Peer Resolver Protocol (PRP)
• Peer Discovery Protocol (PDP)
• Peer Information Protocol (PIP)
• Pipe Binding Protocol (PBP)

The basic operation of JXTA is quite simple to understand, though the actual framework certainly has
a higher learning-curve. The following sections cover all aspects necessary to understand the P2P
platform.

2.4.2.2.JXTA Framework Overview

In JXTA, each peer is assigned a unique identifier (peer ID), and belongs to one or more peer groups.
By publishing 'advertisements' that are encoded in XML format, the communication between peers is
established and messages can be exchanged. Peers communicate with each other using 'pipes'.

An example JXTA Peer ID:

urn:jxta:uuid-59616261646162614A78746150325033F3BC76FF13C2414CBC0AB663666DA53903

A peer has three abstract layers. The Applications Layer contains the logic and GUI of individual
applications. The Services Layer provides common library-like functionality, such as a CMS service.
The Core Layer is responsible for managing the JXTA protocol. It creates an addressing space
separate from IP addresses by providing each peer its own unique peer ID.

The Core Layer also provides boot-strapping mechanism for peer grouping, can locate peers in a
secure/authenticated manner, if desired, and can open a pipe (simple one-way message queue) to
another peer or group of peer.

Page 58 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

This structure is also shown in Illustration 2.21. JXTA Layered Architecture below:

The JXTA incorporates these protocols [specified in JXTA-P02, pp.8, and JXTA-P03, pp.19]:

• The Endpoint Routing Protocol (ERP)
Protocol by which a peer can discover a route (sequence of hops) used to send a message
to another peer. If there is no direct route between two peers, intermediary relay peer(s)
are needed to route the message. ERP is used to determine the routing information. If the
network topology has changed, ERP can find routes known by other peers to construct a
new route.

• The Rendezvous Protocol (RVP)
Protocol by which peers can subscribe or be a subscriber to a propagation service. Within
a peergroup, peers can be rendezvous peers, or peers that are listening to rendezvous
peers. RVP allows messages to be sent to all of the listeners of the service. RVP is used
by the Peer Resolver Protocol in order to propagate messages.

• The Peer Resolver Protocol (PRP)
Enables peers to send a generic query to one or more peers and receive a response (or
multiple responses) to the query. Unlike PDP and PIP, which are used to query specific
predefined information, this protocol allows peer services to define and exchange any
arbitrary information they need.

• The Peer Discovery Protocol (PDP)
Protocol by which a peer publishes its own advertisements, and discovers advertisements
from other peers (peer, peergroup, module, pipe and content). PDP uses the Peer
Resolver Protocol for sending and propagating discovery advertisement requests.

• The Peer Information Protocol (PIP)
Protocol by a which a peer may obtain status information about other peers, such as state,
uptime, traffic load, capabilities, etc. PIP uses the PRP for sending and propagating peer
information requests.

• The Pipe Binding Protocol (PBP)
Protocol by which a peer can establish a virtual communication channel or pipe between
one or more peers. The PBP is used by a peer to bind the two or more pipe ends of the
connection (input and output pipe) to a physical peer endpoint. PBP uses the PRP for
sending and propagating pipe binding requests.

Henrik Gehrmann Master Thesis Page 59 of 200

Illustration 2.21. JXTA Layered Architecture

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

The JXTA specification is described in the next sections, and further material can be found at [JXTA-
START] and [JXTA-P03].

The JXTA framework offers several network communication protocols, and defines specific abstract
notions that delimit contextual and functional aspects. The notions 'peergroups', 'advertisements',
'services', 'rendezvous' and 'resources' are a few examples.

2.4.2.3.JXTA Peers and Peergroups

A peer is defined in the JXTA specification as “a device that implements one or more JXTA protocols”
[JXTA-P03]. The central idea is that the protocols can be implemented on a device, which is not
necessarily a machine. Further, a single machine can host multiple JXTA programs, where each
program corresponds to a 'virtual' device.

JXTA peers use their protocols to communicate and exchange data with each other over a network,
and the overall architecture of this P2P platform allows a very flexible approach to how the protocols
can be used. For example, peers could be tightly grouped together to perform certain tasks, or the
network could be build with peers acting as super-nodes. A single peer could even be a distributed
application running across multiple machines.

JXTA Peergroups is a core property of the platform, and provides a mechanism for peers to self-
organize into groups. These groups have no particular functionality besides being able to provide a
closed boundary when certain environments are requested, e.g. security or collaboration. The
platform supports the creation of groups and the definition of group membership, but it is up to
cooperating peers to define, join, and leave groups.

2.4.2.4.Peer Discovery

In a distributed network, especially a decentralized peer-to-peer based network, finding each other, as
well as finding each other's offers and demands is a non-trivial activity. Luckily, the JXTA framework
implements this feature.

The process of finding other peers is called discovery, and can be put forth on any JXTA resource.
Discovery occurs within the context of a peergroup, that is, a peer can discover resources within a
specific peergroup. Resources are made available through a ' pipe advertisement' mechanism.

Peers can discover these resources:
• Other peers
• Peergroups
• Pipes
• Advertisements
• Other resources

Page 60 of 200 Master Thesis Henrik Gehrmann

Illustration 2.22. JXTA Protocols

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

Resources can be discovered using two methods:
• Peers discover resources dynamically
• Peers use statically configured peers to discover resources

Dynamic discovery utilizes the JXTA Peer Discovery Protocol (PDP). “The PDP defines the lowest-
level technique that is available for peers to discover resources” [JXTA-START].

Hence, PDP over IP would send a multicast message on the local network and use so-called
'rendezvous' peers to discover peers beyond the scope of the local network.

A normal discovery on PDP would look like this:

1. Resources are advertised
2. A peer sends a request message
3. Resources that hear the request respond directly to the peer
4. Resources that are known by the peer's rendezvous peers will be sent directly to the peer
5. The peer will discover all available JXTA resources on the local network

The peer discovery protocol is one of several JXTA protocols.

2.4.2.5.Pipes and Peer Endpoints

The JXTA pipe service is similar to the Unix system pipe, which is used to connect the output from
one command to the input of another command. The JXTA notion of a pipe are the endpoints
available to a peer. These peer endpoints are a “logical abstraction of an address on a network
transport that is capable of sending and receiving network messages” [JXTA-START].

When two peers communicate with each other, one peer's input pipe (receiving endpoint) would be
linked to the other peer's output pipe (sending endpoint), and establish a unidirectional, virtual
connection. Pipe connections are created independently of the pipe endpoints peer location.

Due to the 'virtual' connection of
pipes, it is possible to fully abstract
the connection layer of the
network (see Illustration 2.23.
JXTA Peer Pipe Abstraction), and
intermediary routing peers might
be used in the communication (i.e.
knowledge that end-nodes may
disregard).

In summary, pipes virtualize peer
connections, 'homogenize' and
provide an abstraction of the
connection layer, can send
messages in different ways, and
may provide different quality of
service.

And pipe communication can be...

• Unidirectional, asynchronous (uncertain message delivery)
• RPC – Synchronous request/response (messages get acknowledged)
• Publish/subscribe (pipe endpoints subscribe to messages from publishers)
• Bulk data transfer (reliable data transfer of binary data)
• Streaming (efficient data transfer over a flow-controlled channel)

Henrik Gehrmann Master Thesis Page 61 of 200

Illustration 2.23. JXTA Peer Pipe Abstraction

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

There exist two modes of communication, see Illustration 2.24. JXTA Peer Pipes (modes) [JXTA-
START]. A point-to-point pipe connects exactly two pipe endpoints. A propagate pipe connects one
output pipe (the propagation source) to multiple input pipes.

Point-to-point
• Input pipe receives messages sent from an output pipe
• No acknowledgment
• Information in the message payload is required to determine the sequence of

messages
• Payload may also contain

a pipe advertisement that
can be used to open a
pipe to reply to the sender

Propagate pipe
• Messages flow into the

input pipes from the output
pipe

• Messages sent over a
propagate pipe are sent to
all listening input pipes

• On a TCP/IP network, IP
multicasting is used as an
implementation for
propagate pipes when the propagate scope maps to an underlying physical subnet in a
one-to-one fashion

• Propagate pipes can also be implemented using point-to-point communication on
transports that do not support multicasting

An example of pipe communication: “...the input pipe endpoint can be located behind a firewall or
NAT while the output endpoint can be located on a peer on the Internet. The endpoints may even be
on physically different networks: the input pipe endpoint could be on a TCP network while the output
pipe endpoint is on a token ring network. As long as there are available JXTA relay peers between the
two endpoints, a logical pipe between them may be defined." [JXTA-START].

The following sections shortly describes fault-tolerant constructs, pipe endpoint binding, Pipes and
Peergroups, and Messages from the JXTA specification.

2.4.2.6.Fault-Tolerant Constructs

Pipes allow applications to bind to the more appropriate instance of a service, depending on
preference. Reliability in JXTA is possible through the proliferation of interchangeable services on
peers, which allow adaption to unreliable network environments. The most available or efficient
services can be exchanged on the fly and regardless of location.

Pipes are an essential tool to build such services and applications. JXTA pipes introduce a
fundamental network programming shift in which developers should not write applications that
connect to a specific peer to access a unique service, but should write applications that discover the
closest available service regardless of which peer is running the service. [JXTA-P03]

2.4.2.7.Pipe Endpoint Binding

Pipe endpoints are dynamically bounded to a peer endpoint at runtime via the Pipe Binding Protocol
(PBP). A binding is created by searching for and connecting two or more endpoints. Messages are
then transferred from the local output pipe to the destination input pipe (the listener). The location of
listeners is resolved through the PBP.

Page 62 of 200 Master Thesis Henrik Gehrmann

Illustration 2.24. JXTA Peer Pipes (modes)

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

Pipe advertisements uniquely identify pipes, contain certain meta-data, and represent a JXTA
resource that may be discovered similar to peers and groups. Each advertisement is associated with
a unique pipe.

Applications use a pipe service to create pipe endpoints (both input and output) associated with a
particular pipe advertisement. The pipe service uses pipe advertisements to identify the pipe and
resolve the input pipe and output pipe endpoints. [JXTA-P03]

2.4.2.8.Pipes and Peergroups

Peergroups are essential boundaries for pipe connectivity. Each group provides their own pipe
service. Endpoints have to be located within peergroups in order to be mutually resolved, and hence
peers have to have joined the same group to establish a connection.

Since all peers are natural part of the standard NetPeerGroup, though, any pipe connection is
possible. The selected group determines which pipe service is used to resolve the pipe, and this
context might define certain security properties. Authentication of peers within peergroups can
thereby be enabled.

A peer can maintain different pipe connections to the same peer, holding each of them in a different
peergroup context for security reasons. Messages can be sent to the peer with different security levels
depending on the pipe used. [JXTA-P03]

2.4.2.9.Messages

All information exchanged between peers are formatted into messages, that represent an envelope
for data of any type. A message may contain a variable amount of sections that are uniquely named
(namespaces). Using MIME types, Base64 encoding scheme, or CDATA, the body can hold files,
binary data, XML documents, and so on.

A peer application can communicate with other peers by constructing and sending messages over
their respective input and output pipe endpoints.

JXTA messages use a binary format to enable the efficient transfer of binary and XML data. A JXTA
binary message format is composed of a sequence of elements. Each element has a name and a
MIME type and can contain either binary or XML data. In order to send data over a pipe (or to any
JXTA peer), the data must be encapsulated in a message. [JXTA-P03]

Illustration 2.25. JXTA Message depicts the structure of a message. The envelope contains generic
field such as source and destination addresses, as well as the payload body of variable length.

Henrik Gehrmann Master Thesis Page 63 of 200

Illustration 2.25. JXTA Message

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

2.4.2.10.Advertisements

Advertisements are essential parts of the framework. This notion works in concert with the discovery
process, and is used to advertise and locate peers, groups, services, or content. Peers publish
advertisements, and consequently respond to requests for it.

JXTA advertisements are represented by 6 specific XML documents, depending on the advertisement
context:

Peer advertisement

Peergroup advertisement

Pipe advertisement

Service advertisement

Content advertisement

Endpoint advertisement

Example of a Peergroup Advertisement:

<?xml version="1.0"?>
<!DOCTYPE jxta:PGA>
<jxta:PGA xmlns:jxta="http://jxta.org">
<GID> urn:jxta:jxta-NetGroup</GID>
<MSID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010206</MSID>
<Name>NetPeerGroup</Name>
<Desc>NetPeerGroup by default</Desc>
</jxta:PGA>

Advertisements could be seen as a “platform-independent representation of objects that can be
exchanged between different implementations”.

Page 64 of 200 Master Thesis Henrik Gehrmann

Illustration 2.26. JXTA Example Network

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

2.5.GUI Design

2.5.1.HCI

A comprehensive resource by Gary Perlman outlines the central issues of Human-Computer Interface
(HCI) design [SIGCHI]. Illustration 2.27. Human-Computer Interaction by SIGCHI summarizes the
topics quite well.

Especially the 'Computer System and Interface Architecture' section (C) defines the corner-stones of
GUI techniques: Dialogue Techniques (C2), Dialogue Genre (C3), Computer Graphics (C4), and
Dialogue Architecture (C5).

The central issues in this section surround dialog input, output and interaction (menus, mouse-
picking, gestures, navigation and orientation, etc.), the conceptual uses of an application (illuminated
through interaction or content metaphors, point of view, workspace, etc.), graphics primitives,
attributes, and representations, as well as layered models, multi-user interfaces, and interoperability
[SIGCHI, s.2.3.4].

2.5.2.Application User interface

Most issues are highly relevant to any application GUI design. Dialog interaction, for example, differs
substantially in an online web-shop and an office spreadsheet. As user interface design has evolved
and become essential in most software, collections of reusable patterns and guidelines have been
produced.

Henrik Gehrmann Master Thesis Page 65 of 200

Illustration 2.27. Human-Computer Interaction by SIGCHI

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

The Apple paper on usability is quite a good read [APPLE]. It summarizes these important human
interface design principles:

• Metaphors
• See-and-Point
• Direct Manipulation
• User Control
• Feedback and Communication
• Consistency
• WYSIWYG (What You See Is What You Get)
• Forgiveness
• Perceived Stability
• Aesthetic Integrity
• Modelessness

For the TerraPeer application, these guidelines and principles are of importance when VE viewer,
P2P network, action controls, space world interaction, information feedback and status all have to be
integrated into the GUI layout.

To promote usability, not only does the overall interface design need to adhere to the principles, but
each of the sub-systems are required to do as well. It will agitate users, if the initial window screen
has a friendly layout, but functionality is complicated and unintuitive. Usability questions will be
examined further in the implementation chapter (4.3).

2.5.3.DVE User interface

User interface designers need to convey information and functionality of an application. Metaphors
are an integral part of human understanding, and represent a vital approach in the design to provide a
clear mental model to the user of what to expect.

Basic GUI principles are metaphors, the ability to directly manipulate objects, “see-and-point”,
feedback and dialog, and “modelessness” (not to restrict available operations).

In a section called "The Participant's Model", Bricken [VR-Interface] describes four questions that the
user of a DVE might ask:

• "Where am I?" Is the understanding of the VE. Possibility to create own new worlds, or
travel through existing ones.

• "Who am I?" - The 'look' of virtual self, such as a floating point of view, or an embodiment.
Ability to switch point of view to any object, a process, another person's viewpoint, or
simultaneous multiple perspectives.

• "What can I do?" - Behaviors are relocation, manipulation, construction, and navigation.
Relocation is the behavior to change position in the VE: walking and turning, reaching,
flying, using a gesture, move smoothly with variable speed in any direction, instantly
transferring to a new location, etc. "In cyberspace, the concept of "distance" is optional;
relocation is independent of time and space" [VR-Interface]. Manipulation involves
movement of virtual objects. Construction behavior is the ability to build and alter VE
worlds interactively, and the tools needed. Navigation behavior surrounds methods for
searching and locating places and objects. It involves way finding and guiding, and UI
tools to support these (maps, artificial horizon, etc.). Basic definitions and rules, such as
distance and time need to be designed.

• "Who is with me?" - Sharing the DVE requires user representations (appearance), social,
cultural, and other common conventions (mutual control, world 'laws' and weighted
restrictions).

Page 66 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 2.Theoretical Scope

In TerraPeer these questions are addressed through the design of navigational rules and aids. Typical
navigational problems in these virtual spaces are both controlling the view and moving around to
reach a particular target. Tunneling through space, when the metaphor is a flat (metric) space, for
instance, might be confusing. But the UI has to be as convenient for the user as possible, or the
application might quickly become an annoyance.

Walking, a ground-level, directions, and a 'jumping' (tunneling) mechanisms are placed to create a
usable VE. Searching and linking inside the space are also important features that have to be
included.

VE's imply a directionality that can enhance the user's mental representation of a structure. In many
OS desktops it is difficult to get a quick overview of all folders available except on the highest
hierarchical level. A lot of navigation is required only to locate folders that contain for instance project
names. The virtual zone is a user interface metaphor based on a restricted area. Its aim is to help
navigating large collections of information.

The zone metaphor could be extended with a 'city' metaphor as a basis “because people seldom get
really lost in a real city even when they are in this city for the first time. Cities provide people with lots
of informational and navigational infrastructure. Besides in all cities there are always other people
around to help in navigation. It seems reasonable to make use of the city navigation skills most
people have to navigate a complex computer generated information city” [CITY94 pp.76].

Henrik Gehrmann Master Thesis Page 67 of 200

2.Theoretical Scope TerraPeer • DVE Architecture and Implementation

Page 68 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 3.Analysis

3.Analysis

3.1.Extracting the theory

Examining the original thoughts, as well as the research and technologies discussed in the previous
chapter, an overall strategy of how to implement the DVE system emerges. Further, there are now
several choices that need to be addressed.

The basic ingredient of this platform would be the inherent rules, i.e. what properties and restrictions
the environment is build upon. This includes features to create, publish, share, and use information
and functionality. Then, essential questions about scalability, performance, independence, openness,
and usability need to be addressed.

Finally, the technological choices are determined, i.e. which toolkits, frameworks and languages suit
the requirements.

3.1.1.Projects and Technologies

The table below (Table 3.1. Networking and DVE) shows a summary of the projects and technologies
taken from the theoretical scope of this document.

Network Projects Technologies Single-user Multi-user

Local Computer Large amount of 3D Design
Applications and Games,
Performer

• OpenGL • 3D Visualization
• Virtual

Environments
(VE)

• 3D Games

Client/Server Web, Crystal Space, Half-life,
Quake, Unreal, CryEngine, Porta
Susa, Peloton, OpenWorlds,
MUDs, Kali, TEN and Mplayer

• HTTP
• VRML, X3D
• Java3D
• Game Engines

• Virtual
Environments
(VE)

• VR Spaces

Multi-Server,
Distributed or
Hybrid

Gnutella, Napster, Kazaa,
EverQuest, Aglets, HORB,
Electric Sheep, AVOCADO, DIVE,
MASSIVE, NPSNET-IV, SPLINE
PARADISE, HIVE, SPLINE,
MaDViWorld, V-Worlds, Urbi Et
Orbi, NOMAD, Voyager

• CORBA
• J2EE
• JXTA
• X3D, VRTP,

VSTP
• DWTP

• IM
• CSCW
• Distributed

Virtual
Environments
(DVE)

• VR Spaces
• 3D Online

Games
• Avatars

Table 3.1. Networking and DVE

Splitting the table into 'Local' , 'Client/Server' and 'Distributed' networks makes it possible to relate
different projects and technologies to each other, depending on where they operate. The
technological borders are blurred, since protocols often can be reused. So are single- and multi-user
environments, since some applications support both.

The table allows a focus on those projects and technologies, that are relevant. The multi-user,
decentralized network requirements lead to the projects Gnutella, HORB, DIVE, AVOCADO, and
MaDViWorld, and to the technologies CORBA, J2EE, JXTA, VRTP, and DWTP. Considering the
graphical aspect, projects such as CryEngine and OpenWorlds are valuable. The essential
technologies to mark are OpenGL, VRML/X3D, Java3D, and Game Engines.

Henrik Gehrmann Master Thesis Page 69 of 200

3.Analysis TerraPeer • DVE Architecture and Implementation

3.1.2.Design Experience

Looking deeper into each of the projects that have been examined, the distinctive approaches and
implementations provide valuable information on the aspects of networking architectures, scalability,
performance, zoning, visualization, and communication in DVE systems. Table 3.2. DVE
Experiences, extracts the experiences that previous research has demonstrated.

Subject
Applications,

Projects,
Frameworks, and

Protocols

Design & Experience

Large-scale
DVE

SimNet
SPLINE
MASSIVE
NPSNET
HIVE
HORB
DIVE
PARADISE
MaDViWorld
AVOCADO

Massive distribution of a virtual environment can be implemented using
multicasting. Solutions involve multiple users, and can provide 3D graphics
and sound, spoken interaction, computer simulations, run-time modifiability, or
multicast groups with mobile objects. One project created an unified kernel
with a time parameterized environment model. The approach is often to
reduce latency by anticipation and advance communication of events.

Large-scale worlds with locales, composition of the environment, and services
make up this type of DVE.

SPLINE splits the world into locales that are processed separately. HIVE
implements a model of anticipation and advance communication of events.
MASSIVE provides world-composition, locales, and message handling. Each
object has an aura which allows state exchange. DIVE partitions the virtual
world, and implements multicasting. Scene objects are replicated.

C/S DVE
Networks

RING
Quake 3
Half-life
Unreal
CryEngine
OpenWorlds

Clients connecting to game servers is a typical setting. Several servers exist,
but don't interact, i.e. each game server maintains a unique game state, not
shared among the servers.

Quake, Half-life, Unreal, and CryEngine are typical 3D games with multiple
clients sharing the same environment (map) that is downloaded to each (from
one central server). OpenWorlds is a toolkit using X3D to build worlds.

P2P DVE
Networks

MASSIVE
JXTA
Freenet
Gnutella

Networks are able to reduced the load of servers, provide content independent
of their location, and are not dependent on a single entity.

In MASSIVE, each processor runs an agents, communication works as
sockets, and environments are replicated. Freenet and Gnutella are
information publishing and file-sharing applications that run fully
decentralized.

JXTA is a pure P2P protocol that provides all essential functionality.

Hybrid DVE
Networks

DWTP
SETI
Electric Sheep

Further information on DWTP could not be made available. SETI and Electric
Sheep are P2P applications that have central servers to gather data.

Active DVE
Networks

ARA
SRM

In the Active Router Architecture, the application selects certain transcoding
processes, while the network is able to apply them.

Scalable Reliable Multicast implements small amounts of session specific
computation at key routing nodes. This reduces congestion. It is fully
decentralized and handles arbitrarily large groups of participants. Reliability is
supported by multicasting repair requests.

Event Driven
DVE

ED Architecture using event-based notification system implies a DVE being
constructed of zones, i.e the DVE represents a network of zones. A zone is
here a representation of a collection of information of interest to participants in
the DVE. There exist event flows.

Game Engines EverQuest
Quake 3
Half-life
Unreal
CryEngine
DEE

Most game engines use modularized build-up that focuses on mechanisms,
such as rendering, user control and interface, and networking. Engines act
each as separated client–server systems, and are
not real multi-server systems.

Performance Peloton
CyberWalk
'Platform Model' by
[DVE-CS03]

One approach is to dynamically adjust the DVE to resources available.
Different VE regions match their performance characteristics of underlying
computing and communication systems by altering the visual representation
depending on the computing and communication resources available.

Page 70 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 3.Analysis

Subject
Applications,

Projects,
Frameworks, and

Protocols

Design & Experience

Zoning /
Locales /

Aura

DVE-VRML
SPLINE
EverQuest

Zones can be defined spatially. The virtual world can be split into locales,
which can be processed separately. In the spatial model for interaction among
clients, objects can have an aura that determines the space within which
interactions are possible. Two participants exchange state updates when their
auras collide.

Communication X3D
VRML
CORBA
JXTA
NPSNET-IV
NOMAD
SRM

Communication can occure via a combination of 3D graphics and real-time
packet audio, or multimedia. Message Filtering, Direct Conversation, and
Interest Management can be employed. Session Management structures
interactions on shared objects, without requiring explicit session preparation.

Multicast Framework provides a scalable platform. There exist application
level reliability in multicast environments (stable delivery). Can use CORBA
middleware as network platform. Main problem is to optimize data load.

Methods are required for realizing interaction between a virtual human and its
surrounding objects (sharing attractions).

Scene Graphs SOFT Distributed Scene Graphs is a typical setting. An approach for the distribution
of graphical data is to apply SG's as a bus.

Building and
Visualization

EM
SVR

Navigation in VE can be enhanced using metaphors (e.g. a city).

Subjects to be considered are Environment Managers, Virtual Bodies, Virtual
Object Interaction, and Object Description Languages.

Applications can support Urban Planning, Construction and Manufacturing,
with communicative tools to improve collaboration and the distributed
environment to process information across the networks (CSCW).

Avatars OAA Vital are methods for realizing interaction (and awareness) between virtual
humans. There is a method to transfer avatar gestures in a direct matter
(involving HORB and QoS). The Open Avatar Architecture is composed of
heterogeneous multi-servers, and multiview clients. The protocols VSTP,
which runs on top of TCP/IP, guarantees the connection, and together with
HTTP enables navigation in the VE and the web. An Action Database with
techniques for storing acquired motions can be deployed.

Table 3.2. DVE Experiences

Experiences listed in this table supply fundamental knowledge about both design approaches and
current state of research. Large-scale DVE's aim to be scalable, provide environment models and
composition of worlds, and try to reduce latency.

Projects use multicasting, time parameterizing, locales for zoning and aura for state exchanges,
message handling, and SG replication. C/S-, P2P-, Hybrid-, Active-, or Event Driven DVE Networks
are all different approaches on how to optimize traffic, and create a feasible multi-user environment.

Game engines lead the way in graphical and network performance on a smaller scale.

Zoning, communication, visualization, scene graphs, and avatars are all specific areas in DVE
systems that require a high degree of detail when designed.

3.2.Outline of a solution

3.2.1.Software attributes

A DVE software should aim to support the following standard system attributes:

• Scalability - ability to support many users, nodes, and large-volume content
• Dependability - general availability and reliability of the system

Henrik Gehrmann Master Thesis Page 71 of 200

3.Analysis TerraPeer • DVE Architecture and Implementation

• Interoperability - possibility for heterogeneous DVE implementations to inter-work
• Extensibility - possibility to add or modify an existing system
• Openness - possibility to interface a DVE to other applications
• Content independence - ability to support all forms of data besides graphics and geometry
• Communication - ability for users to communicate with several means, including audio
• Usability - DVE should be easy to learn and use
• Performance - general response time, throughput, and resource utilization

Applying these software principles require considerable efforts, a viable architecture, as well as
coherent choices of programming language, tools, libraries, and interfaces, i.e. to achieve these
design goals, it is usually necessary to follow extensive development cycles, to identify and take
advantage of relevant design patterns, and to run extensive quality assurance throughout the entire
process.

The TerraPeer application aims to be scalable, extensible, open, content independent,
communication supportive, and usable. Especially the usability factor is a primary focus of this thesis.
Several scetches are provided (see Appendix VIII. Drawings) to illustrate how the application design
has evolved.

3.2.2.Selection of solutions

The problems associated with DVE are addressed in the table below. The solutions were extracted
from the previously examined systems that often focused on certain problems in particular.

Problem Description Solution

Large-scale Large amount of clients simultaniously
connected, and interacting in a shared
environment

Client/server architecture is not feasible

Multiple servers, where each maintains a
unique state is not feasible

P2P (distributing the load), multicasting

Zones (splitting the world into locales that are
processed separately)

Performance To reduce latency, avoid bottlenecks, and be
scalable

Pure C/S is not feasible

Total replication of world on each peer is not
feasible

Multi-server, Hybrid or P2P networks

Anticipation and advance communication of
events

Dynamically adjust the DVE to resources
available

Zones (locales processed separately)

Independence Being not dependent on a single central entity

Pure C/S is not feasible

True P2P (absolute decentralized)

Shared 3D Environment To view a common virtual space

To update local state changes throughout the
world

Sharing attractions

Environments or scene objects are replicated

Apply SG's as a bus

Zones (representation of information of interest to
participants)

Building, Information publishing
and sharing

Personal composition of the environment

To create a common virtual space

Interaction between a virtual human and its
surrounding objects

Visualizing services

Services (virtual representations)

Environment Managers

Virtual Object Interaction

Object Description Languages

Enhancement through metaphors

Page 72 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 3.Analysis

Problem Description Solution

Modification To access and modify distributed objects Object has an aura which allows state exchange

Event-based notification system (event flows)

Session Management (interactions on shared
objects)

Zones (defined spatially; an aura as spatial model
for interaction among clients; determines the
space within which interactions are possible)

Communication Interaction (and awareness) between virtual
humans

Message handling

To provide stable delivery

To optimize data load

Message Filtering and Interest Management

Multicast

Transfer avatar gestures in a direct matter

Multiview clients

Action Database (storing acquired motions)

Table 3.3. Problem-Solution Listing

Distilling the solutions, the following picture emerges:

• Absolute decentralized P2P can be used to distribute the load, and to support multicasting.
• To increase performance, dynamically adjust the DVE to resources available, anticipate and

advance communication of events, and use message filtering.
• Zones can be used to split the world into locales that are processed separately, can represent

information of interest to participants, can be an aura as a spatial model for interaction among
clients, and can determine the space within which interactions are possible.

• To distribute graphics, environments or scene objects are replicated, and scene-graphs might be
applied as a bus.

• An event-based notification system, interest management, and an action database can support
distributed interaction.

• Virtual object interaction can be implemented with an aura that allows state exchange, and support
through session management.

• Object description languages, graphical metaphors, and abstract services can be used to virtually
represent entities.

The experience from previous projects has shown some valid solutions. Most of these assessments
will be used in the DVE architecture.

3.3.Approach

3.3.1.Primary implementation goals

Considering the previous thoughts about user perspective, application features, and the virtual space,
the design of the TerraPeer application considers certain criteria.

The VE design has to make sure the application is able to dynamically display connected peers, and
their resources. It needs to create a user interface which simplifies navigation through the space,
logical interaction methods that eases object manipulation, and easy accessible functionality menus.

On the backend side, all virtually represented (and hidden) data has to be stored locally. Any virtual
peer homer-zone and attached resources (documents, etc.) is made available through a simple
standard format that can be stored and transferred over the net.

As briefly described in the last chapter, there are several DVE-related technologies that have to be
integrated in the TerraPeer architecture. The choices of technologies and frameworks that have been

Henrik Gehrmann Master Thesis Page 73 of 200

3.Analysis TerraPeer • DVE Architecture and Implementation

applied are shown in a layered structure below (Table 3.4. TerraPeer Component Layers). These
layers cover the four basic components required in DVE systems.

Basic Component Application Layer Technology

Graphics engines and displays 3D Data VRML/X3D

3D Graphics Java3D (J3DUI)

Processing systems Application J2SE (Java, Swing)

Communication and control devices Protocol/Repository XML

A data network P2P Network JXTA

Table 3.4. TerraPeer Component Layers

The JXTA platform is able to handle most P2P issues, including unique peer ID, discovery and
propagation, ad-hoc connections, peer communication, peer-groups, authentication, integrity, and
confidentiality.

The Java3D API can be thought of as a thorough platform for most required 3D functionality.
Designing the 3D environment, a coordinate and a spatial system, functionality for object control and
building blocks, as well as visualizing peers and objects in 3D is relatively straight forward. There are
implications in the design of the VE specification, rather than the VE technicality.

By now, some of the originally raised challenges have been clarified, i.e. network support for mixed
traffic, network properties, group participation, persistent state, etc. Each of the applied technologies,
and remaining open questions will be addressed in the following sections.

3.3.2.Specification and Technologies

The TerraPeer application is specified in section 3.6. Prior to laying out the detailed structure, though,
each of the fundamental technologies will be examined, namely the Java3D and X3D technologies,
the J3DUI Framework, the JXTA network technology, the Object-Orientated Programming Method,
GUI and Java Swing. Consecutive to that, application-related terminology will be established.

The specification will be an extension of the layered structure introduced in Table 3.4. TerraPeer
Component Layers, and describe the responsibility and functionality of each component.

Following the basic composition, the aspects of virtualization capabilities and functionality of the 3D
viewer, 3D multi-user environment interface structure, model-view-control modeling, virtual space
design, users, content, and the abstraction of network peers will be analyzed.

Disorientation in a P2P environment is among the issues that need to be resolved through certain
navigation and interaction functionality. How should the user be able to control the environment?
Which movement restrictions should exist? What kind of feedback should the application provide to
enhance usability?

Objects created by users have to be constructed adhering to rules, so that the virtual expansion of a
large number of participants doesn't become an anarchistic exercise. Virtual building blocks should
also enhance the virtualization of the underlaying data or tool.

In one particular project, an interesting idea was to create entities that would inherit attributes from
each other, and specifically allot environment entities. These could contain other entities and
environments, impose laws and forces upon its contents, and define attributes that are true of its
contents (coherently applied laws). This idea provides a flexible structure, and inheritance of
properties has been integrated in the TerraPeer service object design.

Other features to be examined closer include the creation and destruction of virtual entities, their
methods or behavior, and naming schemes.

Page 74 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 3.Analysis

Approaching the TerraPeer architecture, a disposition of key attributes of virtual space and distributed
platform is shaped:

• Users can start a 3D viewer that displays the VE space with basic properties, navigate through it,
and create objects that might publicize information or represent services.

• Restricted areas, 'zones', for enclosed environments that contain virtual building blocks, and might
adhere to certain rules are provided for each peer. These zones implicitly represent a peer, and
each peer should only be allowed to create one.

• User interaction and collaboration should naturally augment both VE and GUI by avatars,
gestures, and 3D connotations, but also by simple (effective) text-based chat or similar.

• Users are able to build virtual representations of services, such as URL links to web sites, that can
be invoked or applied either internally or through external applications.

• The peer application is able to reside independently on any machine, and connect to other peers
using a discovery mechanism and a messaging protocol.

• The P2P network embraces full decentralization, but also offer a hybrid version by clustering
specialized server-peers.

Quite a few of these attributes can be integrated fairly elegantly, as the exposition of Java3D and
JXTA will show next.

The next sections address three aspects of the software that should form the basis for the
architecture: the user perspective, application features, and the virtual space. Emphasis is put on the
user perspective rather than technical cases, such as performance or optimization issues.

3.3.3.User Perspective

From an individual's point of view, the application could be defined as a user interface to a 3D
environment, which enables her to intuitively navigate and interact with virtual representations of
services and other users. From a group's point of view, the application can organize people, and
create a distributed platform for collaboration. By being pluggable or using standard interfaces, the
application could be used with other service tools, such as publishing (web), file-sharing, peer trading,
and roaming agents.

One of the initial thoughts surrounding this project is depicted in these short paragraphs:

“A virtual 3D environment, which enables the user to represent his peer with a number of
building blocks, and to move between other peers, that are connected through a network.

The building blocks could be a website, a service, or information that are visualized through
icons or graphical pieces, or in a final version as a X3D or similar technology based scene
(i.e. a 'virtual home').

The VE should be founded on certain basic rules: a coordinate system, a zoning mechanism
that enables virtual areas for each peer, access-, ownership- and sharing- rules for objects,
and spatial navigation. A user could thus move around in this world, use a service, or build
his own.”

The application would represent a dynamic, navigational 3D space that allows free control and
interaction of objects while providing a basic network platform that ensures scalability.

The space is created dynamically by it's peers, which does not allow any central entity. Its platform,
though, implements certain rules and rights for users, i.e. 'virtual free speech' and 'virtual property'
laws. Thus, the space promotes equality and freedom. The objects could be an environment, a
resource, a function, bots, a service, or a link to other existing (or legacy) infrastructures, such as the
web, X3D or VRML.

Henrik Gehrmann Master Thesis Page 75 of 200

3.Analysis TerraPeer • DVE Architecture and Implementation

The user perspective to TerraPeer is an intuitive 3D VE UI that virtually represents services with
interface to external tools, and avatars with support for group activities. Virtual services are created
by building blocks. The DVE implements a basic environment setting, zoning, and access control. It
also aims to be scalable, and absolute decentralized to promote 'political' equality and freedom.

3.3.4.Application features

By focusing on the balance of keeping the space free, while not anarchistic, the main purpose of an
implementation is to create a dynamic distributed infrastructure where user's could roam, build private
or public places, provide services, meet people, and search resources.

TerraPeer application features classified by network, space and user:

• Network
1. Ad-hoc connection to a decentralized peer-network
2. Secure network that support authentication, integrity, and confidentiality
3. Visualization of peer-network in 3D (virtual sites)
4. Scalable and extendable (standard plug-ins)
5. Application support for HTTP services (web browser window)
6. Search functionality (peers, services)

• World Space
1. Basic 3D environment setting (coordinate system, spatial restrictions, filtering)
2. Building blocks to create a virtual home-sites that provides resources and services (documents, file-sharing,

web shops, data streams etc.)
3. Storage of peer and service related information (meta-data)
4. Object control, sharing and interaction mechanisms
5. Access control for objects, zones, and users
6. Navigation aids (landmarks, etc.)

• Users
1. Navigation interface (user avatar roaming)
2. Management of user-groups
3. User collaboration and messaging mechanisms
4. Trust management (peer policies, feedback system)
5. Customizable (personalization)

Features listed above are prioritized.

3.3.5.Space

The space could be build up using a static 3D
grid that spawns in a x/y-direction with a
specific detail, and maybe several layers in the
z-direction (they could provide different levels
of virtual transportation). A center “origo”
landmark could provide as a starting point and
navigational 'well-known-location'.
Navigational aids, such as static directions and
coordinates could be provided by certain
conventions (North/South directions, IPv6
addresses, etc.).

The current view would depend on the peers
knowledge of the space, the connectivity with
other peers, spatial and visibility limitations,
and the current position of the user's avatar.

Visualization aids, such as area coloring, the
unlimited origo axis, a horizon, and visual details (or lack thereof) could enhance usability. Space,
navigational aids, avatars, bots, sites and objects could thus be displayed dynamically and by choice.

Page 76 of 200 Master Thesis Henrik Gehrmann

Illustration 3.1. Possible topological grid view of Zones

TerraPeer • DVE Architecture and Implementation 3.Analysis

Global space rights and restrictions could enable open creation, secure individual freedom, privacy,
and trust, while preventing anarchy. Object control would support this as well. Virtual property could
be established, reserved, traded, and connected. Restrictions on each peer's virtual space (borders)
could enable full personalization, including access control, interplay with connecting land, 'physical'
laws, and functionality inside that space.

Using 'zones' as virtual boundaries between peers could create a dynamic world that is traversable for
a user. A grid-based spatial system (see Illustration 3.1. Possible topological grid view of Zones)
could be implemented to provide some kind of zone-reservation, and zone 'filtering' might increase
performance.

Henrik Gehrmann Master Thesis Page 77 of 200

3.Analysis TerraPeer • DVE Architecture and Implementation

Page 78 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 4.Architecture

4.Architecture

The approach of the TerraPeer architecture design follows a conceptual thread that begins with an
overview of the application specification, and those technologies that have been chosen to play
central roles. The thread continues with the actual platform system architecture, and each sub-system
of which it is comprised of. The sections throughout this chapter adhere to this flow. Further details
are laid out in the next paragraphs.

Most of the application terminology has already been introduced in previous sections, but it would be
nice to get an overview. Appendices II and III list abbreviations and definitions of most words. During
the remaining sections of this chapter, the structure and functionality of the VE will be explained by
accompanying diagrams.

4.1.Architecture Overview

This section outlines the architecture specification of the TerraPeer application, and its layered
structure. Integral layers are elaborated; the user interfaces in 2D (GUI Layer) and 3D (VUI Layer)
respectively.

4.1.1.Application Features

It is time to answer the questions stated in Chapter 1. Most of the defining implementation guidelines
can be accomplished.

Performance and resource utilization is a continuous issue for both 3D world representation and
network latency. Optimization of TerraPeer should be fruitful, though, as JXTA is an extremely low-
cost protocol. The overhead of the 3D rendering presents more difficulties, as Java3D performance
cannot compare to technologies employed by game engines for instance (read the conclusion for
more on this).

Scalability is immediately not an issue. The distributed nature of the network removes single-server
bottlenecks. But problems might occur in a large-scale multi-user environment when scene updates
could suffocate network traffic. This could be avoided by using spatial as well as logical filtering
techniques.

Availability is granted similar to the web; the provider of a service can choose to run a persistent site.
Also, groups of peers could agree on sharing on offering services. Content or services are available
according to their interest.

The ability to support all forms of data - 'content independence' - is an essential feature of TerraPeer.
Using both standard and user-defined virtual representations of content or services, the architecture
should allow peers to present any kind of resource in the VE.

Communication between avatars can and should be implemented on more than one level. Different
formats might be supported: Text-based messaging or chat, a forum or discussion groups, VoIP,
Avatar gesturing, etc.

A DVE system user interface should aim to be easy to learn and use. Usability is the last, but not
least, important guideline that makes an application successful. This includes designing the system to
be cross-platform compatible.

Henrik Gehrmann Master Thesis Page 79 of 200

4.Architecture TerraPeer • DVE Architecture and Implementation

4.1.2.Layered Structure

Application designs today need to adhere to many software principles (see for example previous
sections 2.5.2. and 3.2.1.). The object-oriented approach converges with the usually layered network
approach. Scalability, extensibility, openness, performance, usability all have to be build into the final
system. This requires an abstraction of the application with the architecture on one end, and binary
code on the other. Networked applications especially add complexity.

A P2P-based TerraPeer network looks like Illustration 4.1. P2P Communication.

In this example, a single service provider and two other participants are connected to each other. The
P2P protocol enables discovery (initial knowledge of at least one peer in the network is necessary,
though), and communication – here shown with the JXTA label. Each user has a world view to
visualize the network in a VE.

Shown in Illustration 4.2. P2P Zone Visibility are the optional zones each peer user could have
created, and would be visible to the other peers.

The user of peer A 'sees' the virtual peers – Zones – of both B and C. Similar, peer B can see zone A
and C. Peer C on the other hand can only see zone A, but not B. The visibility of each peer can
depend on whether it has been discovered (is 'known'), or it is filtered out. Hence, peers might have
different views on the current VE, especially if located far from each other on the network.

It might seem strange to have a 'dynamic' environment, and object persistence seems to be
compromised. The design, though, allows a static environment simply by creating stable peers.
Object persistence will always be granted through the availability of peers, their and agreements with
others to maintain state, i.e. based on 'trust', influence, or popularity. The environment – in a sense –
is 'free'. This design is reflected in the (semantic) web which is constantly changing but has static
peers as well.

Page 80 of 200 Master Thesis Henrik Gehrmann

Illustration 4.1. P2P Communication

TerraPeer • DVE Architecture and Implementation 4.Architecture

Zooming into the application implementation itself, Illustration 4.3. TerraPeer Layered Architecture
shows how the user interacts with the GUI layer, that in turn provides a viewer for the VUI construct
on one hand and interfaces to the application core on the other. The 'helpers' and 'vars' blocks are
supportive. The 'repository' is external storage (a missing arrow should really point to the core on this
illustration). At the bottom, the network layer interfaces to the network.

4.1.3.VUI Design

The virtual user interface (VUI) sub-system should contain the methods and fields necessary to create
and manage the VE space, peer zones, and zone services.

The TerraPeer architecture defines this in the terrapeer.vui package, as will be discussed in the
next chapter. The overall concept of the VUI, though is shown in Illustration 4.4. TerraPeer Virtual
User Interface (VUI) Package.

Henrik Gehrmann Master Thesis Page 81 of 200

Illustration 4.3. TerraPeer Layered Architecture

Illustration 4.2. P2P Zone Visibility

4.Architecture TerraPeer • DVE Architecture and Implementation

Each entity handles different aspects of the VE, and is totally abstracted from networking or GUI
related issues. The J3dui block mainly is responsible for navigation and object interaction while
relying heavily on the Java3D API (not visible here). The space block acts as a common container for
environment properties. Similarly the zone block encapsulates all functionality associated to the
construction, manipulation, and storing of zones. The service block, finally allows specific definitions
of virtual building shapes that can represent certain services.

The packaged structure in the illustration above does not reflect the object-relationship among these
blocks, which is better depicted in the UML graphs (see also Appendix V).

4.1.4.User

User representation in the VE is through selectable avatars. The representation can be restricted by
some spatial constraints, and is able to 'hide'. An advanced feature might be an algorithm that would
automatically allocate space for avatars in confined areas, or rather transform the avatars
accordingly. Initially, all avatars are invisible in TerraPeer.

User attention is focused, and should not be distracted too much. If designed well, a user interface
can take advantage of user attention, for example by placing information at locations and with certain
attributes depending on their content and probable priority to the user. Read also [Attention]. The
subject of attention is quite fascinating, but will not be elaborated further here.

Access control, forced visibility, or forced restrictions all are features the designer of a system can
decide upon. The weighting is crucial, as it not only controls object sharing or user visibility.

Personal information management and trust and policy management are important to the user, and
have direct impact. The distinction between a user's personal information, his access rights, and the
information and services available at other sites, becomes blurred in DVE's. Hence, some kind of
trust management system should be considered in the future.

The Microsoft 'Passport' for example implements such a system for the web. Many sites and portals
today have personal accounts that allow individual content, and convenience i.e. when ordering a
service. The last section of this chapter will summarize an idea for how a distributed trust model could
look like. This subject is again fascinating, but will not be elaborated either.

4.2.Virtual Space Architecture

4.2.1.A 3D Interface to Cyberspace

There is an aggregation of techniques that have to be implemented to visualize a VE. The virtual
world is presented through the view-display-screen chain. Internal and external view geometries, as
well as spatial coordinates for the world system on one side and the user interface on the other have
to be aligned.

Page 82 of 200 Master Thesis Henrik Gehrmann

Illustration 4.4. TerraPeer Virtual User Interface (VUI) Package

TerraPeer • DVE Architecture and Implementation 4.Architecture

GUI design should attempt to incorporate as much functionality and feedback mechanisms into the
3D environment, as this is the main space the user will move through. There are instances, though,
where the traditional 2D interface provides superior capabilities in terms of usability, e.g. navigational
maps, setting of attributes, or information display. Especially position-independent information and
functionality should be available at all times, as the user roams around the VE.

3D techniques, an overlay display (HUD) for example, can be applied to create a pseudo 2D
interface. These require considerations about display facing, constant sizing, overlapping, and
visibility characteristics. Constructing the world space itself requires these considerations. The space
should accommodate features such as a view layout (occlusion, object arrangement, billboarding,
etc.) and restrictions such as visibility radius or filtering.

It is assumed that a user navigates through spaces with two input devices; mouse and keyboard. The
2D mouse movement across the screen in particular has to be translated into spatial 3D vectors. The
relationship is further complicated through different usage of the mouse-pointer, such as navigation or
object picking.

Hence, the DVE space must consider basic navigation techniques, including first- or second-person
viewing, object selection, mouse dragging, data filtering, and data traversal.

3D navigation usually implies a space similar to reality, which is prominent especially in games. The
embodiment of human-like avatars and real world objects represents an analogue that is easy to
recognize, thus easy to manipulate and navigate.

Alternatively, conceptual navigation, such as browsing through the web, might be appropriate in
circumstances where information is associated to each other, or when the context stream has to be
traveled forth and back.

Data visualization is the process by which data is presented by the application to the user. From a
user interface designer's point of view, this process can be achieved through various means,
including icons, graphs, spatial or color alteration. Visualizing peers in a VE is best accomplished by
dynamic zoning, where spatial navigation and visibility attributes create the view. Each peer is
represented by a zone. Each zone can contain customized objects that visualize (similar to icons)
certain resources or services.

Viewers to the VE display a basic virtual world environment on each peer, including grid-lines or a
background horizon to easy orientation.

Control
Application support of positioning and navigation in the VE world

• Visual Feedback in 3D
• A visual static 'origo' landmark, i.e. a vertical z-axis that can be used as a homing-pointer, and other landmarks to

distinguish locality
• A visual static grid, i.e. checkerboard-like lines stretching across the ground x-y plane
• Visualization of each peer though zoning and meta data on objects and zones
• A multi-layered space, i.e. static x-y levels in different heights for purpose-specific navigation. This optional feature

could offer three levels, 0-ground for 'virtual land', under-ground for virtual bots-only, and sky-level for a navigation
space only (providing a free path with no zones that might have obstacles or restrict passage)

• GUI Dashboard
• Compass rose navigation that associate directions with the North-East-South-West metaphor
• Virtual x-y-z coordinates (metric) to help orientation
• Maps with orientation cues, routes and path, etc.

• Control
• Unrestricted movement for avatars, limited by access control of zones
• Direct control of view by Keyboard/Mouse (input processing, clamping, etc.)
• Manual navigation and direct porting to locations
• Navigation through semantic links (using services)
• Avatar visibility control

Henrik Gehrmann Master Thesis Page 83 of 200

4.Architecture TerraPeer • DVE Architecture and Implementation

Objects
Application enables peers to create and share instances in the VE world

• Peers can build virtual 'home-zones', i.e. enclosed areas at certain locations with meta-data
• Include standard 3D building blocks (based on VRML/X3D)
• Virtual objects have attached certain meta data (name, description, links, etc.) and functionality
• Peers can publish resources or services at their home in the form of virtual objects
• Enable creation of basic resource/service types, such as a document, multimedia, URL links, a visible (interactive) 3D

representation, a web-site, a forum, group messaging, file-sharing, etc.
• Share objects, resources, and services using access control properties (viewable, executable, modifiable) that can be

set to certain users or groups

Filtering
Application implements a basic allowance-set to align usage within the DVE, and to optimize
rendering, processing and communication load (bandwidth)

• Allow individual filtering of peers, avatars, groups, zones
• Allow setting a visual radius (aura) to limit 3D processing (rendering)
• Visualize peer zones by simplified planar-areas (and colors), instead of showing all associated collections of 3D

objects
• Attach meta-information to peer-homes, services, public spaces to ease identification (text-based labels, visual aids,

etc.) and use color-coding/attention mechanisms to easy user overview and navigation
• Allow setting of space and object sharing, i.e. space and object permission control to set ownership, read/view, create,

modify, and delete permissions.

TerraPeer allows dynamic allocation of peer-space and location by restricting spatial size of home for
each peer, and creating a reservation-system. It also allows individual peers to create own rules and
restrictions in their space through specific laws that apply only in their home-zone, and restrictions on
entries (i.e. by groups).

As soon as objects can be 'shared', or multiple users can interact on the same scene, problems
regarding permission as well as 3D techniques have to be accounted for. This is achieved by only
allowing a single participant to modify an object. The object modification 'flag' is handed over (relay
mechanism). Note that using or executing an object can happen simultaneously without lockups in the
semaphore.

4.2.2.Environment and Zones

Three dimensional space for user navigation and interaction require spatial management. With the
definition of a position (x-y-z coordinates) an initial rule for the space is set. Positions are constant
across the network. Every peer that connects to it would 'see' the same objects within the
environment. Objects placed or moved in the space would be 'final'

This is an advantage in terms of navigability and consistency, but of course also a disadvantage
especially considering alignment and traffic. To address these problems, the notion of a zone is
introduced.

The 'Zone', 'Visibility Radius', 'Aura', or 'Area of Interest' (AOI) are all wordings for a similar
appearance. The confusion might occur because of two different problems, namely the problem to
optimize network traffic, and the problem to control multi-user access attributes.

Optimizing spatial content in DVE's is a central aspect, as large scale systems have to cope with
increased load of traffic. This leads to designs implementing separated areas, or 'aura' in order to
reduce the overhead, and let each participant (peer) only send and receive the information within a
certain virtual boundary.

Page 84 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 4.Architecture

This technique is similar to filtering. There could theoretically be unlimited ways of filtering out parts
of the environment, as it simply means removing some entities. Designers have to decide which
information is unnecessary noise, and which the user could decide to be unwanted. Examples in 3D
graphics are occlusion and mipmapping techniques.

The other problem – to control access attributes – is rooted further up in the system and could be
considered to be integral only to the VE space itself (though this isn't the case in reality, as access
settings on virtual entities often would be dispatched to non-virtual parts).

Inside the VE, when more than one user can create or transform an entity, access and sharing
attributes suddenly become important. Virtual areas could be used to delimit the access rights of
objects (and/or avatars) within their boundaries.

Alas, the 'zones' in TerraPeer context consider both problems. By allowing zone filtering mechanisms
it is possible to only render those zones within a certain vicinity or those selected by the user (see
Illustration 4.5. TerraPeer VE Zone Filtering). By leaving ownership of the zone to each peer who
creates it, access rights of objects that can be build on top of it are implicitly build into the system.
Zones will be described in further detail in section 3.9.

Time is of essence when maintaining appropriate frame-rates and reducing input lag. The real-time
constraints in DVE's require techniques such as rendering with a level of detail
[Wil83], or the use of predictive algorithms to reduce apparent input device lag [FSP93].

There are other issues that must be considered, such as temporal consistency and the ‘local’ time.
Causality – cause and effect – affects synchronization (VE events triggered from different sources)
and the processing of events [CITY94]. Thus, the time dimension needs to be considered for the
processing of behaviors.

This is often realized using distributed event models such as event broadcasting, state change
notification handlers, dedicated point-to-point connections between objects, or object-to-object
messaging. A specific event mechanism will not be implemented in this architecture, but the basis for
synchronization, multicasting, and processing of events and messages will be conceived.

Henrik Gehrmann Master Thesis Page 85 of 200

Illustration 4.5. TerraPeer VE Zone Filtering

4.Architecture TerraPeer • DVE Architecture and Implementation

4.2.3.Object Structure

Illustration 4.6. TerraPeer VE Architecture shows how the software blocks responsible for the abstract
virtual space look like. The core 'MySpace' object is the central reference point for the other parts of
the application.

Below, 'SpaceView' (the 3D viewer), 'Log' (the application logger), 'ZoneTree' (SG and GUI widget),
and 'ZoneBuilder' (creating zones, and zone objects, loading, etc.) are interfacing other parts as well.

The 'SpaceCore', 'MyZone', and 'ZoneWorld' objects, though are encapsulated within 'MySpace'.
SpaceCore is responsible for the basic VE without any content from peers, and contains environment,
navigation, and grid objects. MyZone and ZoneWorld both use the Zone object, which defines a range
of properties that are not shown here. The Zone inherits a Geometry (as any virtual entity), and
encapsulates Basic Objects and Service Objects.

ZoneWold represents the collection of zones that the particular peer is aware of.

Page 86 of 200 Master Thesis Henrik Gehrmann

Illustration 4.6. TerraPeer VE Architecture

TerraPeer • DVE Architecture and Implementation 4.Architecture

4.2.4.Space

The 3D virtual user interface space is shown in Illustration 4.7. TerraPeer Virtual Space View.

Henrik Gehrmann Master Thesis Page 87 of 200

Illustration 4.7. TerraPeer Virtual Space View

4.Architecture TerraPeer • DVE Architecture and Implementation

4.2.4.1.Position

A position is based on three spatial coordinates. A static origo landmark is present to represent the
center (0,0,0) coordinates (see Illustration 4.8. TerraPeer VE Coordinate System). The 3D world
displays an endless line through the z-axis, while the GUI can adjust line-visibility and has a 1-D
origo-homing-pointer as navigational aid.

A static grid (matrix or raster) with endless x-y coordinates runs +/- along x-/y-axis from the origo
point. The grid is based on the metric system, and the 3D world displays a grid-size depending on the
POV (e.g. 10^distance meters). Further, the GUI presents a 2-D compass rose (N-E-S-W) for
orientation.

In a future version, the space could be multi-layered, for example with a ground-level for navigation
and building virtual land, and a navigation-only level. The GUI should allow instant jumping between
levels.

VE background might be adjustable and allow individual settings. It could provide a real-time GMT-
based sunrise/sunset circle.

4.2.4.2.Navigation

All navigation is done through the peer-avatar in real-time. Avatars can be visible or not to certain
peers or groups. The 3D world is always seen from the avatar's POV. The VUI can display over-
layered grid-coordinates, and landmarks (as orientation cues) can be placed at certain public places
to distinguish locality. The GUI could show a 2D map of landmarks, and distance and path to nearest
landmark (including origo).

Page 88 of 200 Master Thesis Henrik Gehrmann

Illustration 4.8. TerraPeer VE Coordinate System

TerraPeer • DVE Architecture and Implementation 4.Architecture

Pathways could be made viewable in 3D world as lines-of-sight to show routes from A to B, to show a
"service-trail" (maybe a shopping-passage), or to indicate web-rings. The GUI could show a 2D map
of the pathways.

Zoning allows special settings for private and public areas, such as which peer-groups are allowed to
enter. Permissions to pass, modify, vote, etc. could be set. The GUI could show a 2D maps of zones.
Special entry points could be provided for zones to enhance the experience of instant tunneling
through space, i.e. arriving at familiar or decorated pre-defined 'doors' (see Illustration 4.9. Possible
topological grid view of Entry-points).

4.2.4.3.Create and Share Instances

The effect of multiple users sharing an
acting in the same scene is shortly
examined in a paper “Security in Co-
authored Virtual Environments” by Larsen
and Christensen. Some considerations
have to be made when establishing security
based on location. Collision detection, and
mechanisms how objects are created and
destructed have to be established.

This is addressed in this project through
permission-settings. Permissions define
which user has access to which resource,
and where. A user can only create and
modify objects on her own home zone. If a
user has permission, he might be able to
enter the zone, move objects, or use services of other user's.

4.2.4.4.Basic Rule-set

The common rules let user-avatars move around freely. They let let peers build virtual homes in
closed areas at certain locations that cannot overlap. They let user's build the virtual world using
standard 3D interfaces (VRML/X3D). A set of rules is required to ease rendering efforts on 3D world
visualization of peer avatars, homes, and zones.

The visualization mechanism is based on the rule that while basic space environment is always
visible, objects and avatars are not. The application allows filtering of any peers, avatars, groups, and
zones, and should provide default-settings to filter everything but the peer's own zone and those of
groups it is a member of.

A filtering mechanism to allow the setting of visual radius should by default paint all out-of-radius
known zones to simplified colored planar-areas. Avatars could by default be visualized as a standard
form.

With regards to creation, each peer is allowed to create only a single avatar and zone. The zone –
virtual 'land' – should ideally be of any shape, but has to be enclosed (connected polygon), and
should have a maximal border-length. The placement (zone position) is established over time, using
a reservation-system. Conflicting areas are resolved by first-come-first-serve.

This reservation-system is structured as:

1. “reserve location” iff “no other peer located”
2. “send out reservation to other peers”
3. “wait to see if another peer claims the zone emerges”
4. “settle” or ”move” (go back to 1)
5. “if another peer that claims the zone emerges” then “zone is shared (new group) until one peer moves; a peer moving

after settlement is granted higher priority when settlement is in conflict again”

Henrik Gehrmann Master Thesis Page 89 of 200

Illustration 4.9. Possible topological grid view of Entry-points

4.Architecture TerraPeer • DVE Architecture and Implementation

4.2.4.5.Sharing

Sharing rules apply to all instances in the virtual hierarchy:
• ownership to space cannot be taken
• ownership to a peer-home is by default the peer that created it
• ownership to a shared/public zone is shared by all peers that create it
• ownership to an object is by default the peer that created it
• ownership of any object can be transferred
• ownership of zone can only be transferred to a group it is member of
• ownership of avatars cannot be transferred

For the asset control, a peer can set zone and object permissions to other peers that it owns.
Permissions can be:

• create (objects in land)
• read (data attached to land/objects, but not meta-data to land)
• view (land or objects)
• pass (land or objects)
• use (service)
• modify (objects in land)
• delete (objects in land)

4.2.4.6.Interface Feedback

The feedback from the VE to the user should use filtering mechanisms by removing or simplifying
entities to ease user orientation. Identifying and attention-related mechanisms, such as color-coding
and meta-data could also improve the interface (see Illustration 4.10. TerraPeer VE Visual
Feedback). The GUI should be able to adjust the display of meta-data; the types could be zone
information, peer-group zones, location or service category related. For instance, labels hovering
above zones could be set visible or hidden.

Page 90 of 200 Master Thesis Henrik Gehrmann

Illustration 4.10. TerraPeer VE Visual Feedback

TerraPeer • DVE Architecture and Implementation 4.Architecture

4.2.5.Navigation

The paper “Designing for a clear city image” lists very good design guidelines that have been
included here (with references to K.Lynch removed) [CITY94, pp.39]:

10 Guidelines

1."Singularity or figure-background clarity and sharpness of boundaries". The contrast may be to the
immediate surroundings or to the observer's experience. This guideline aims at the qualities of
elements which make them identifiable.

2."Form simplicity". Elements should strive for clarity and simplicity of visible form in the
geometrical sense as these forms are more easily incorporated into the overall image.

3."Continuity" in edges or surfaces, nearness of parts, repetition of rhythmic intervals. These
qualities ease the perception of a complex physical reality as one or as interrelated.

4.“Dominance of one element in an ensemble” translates to a cluster of elements grouped around one
major element. This quality, like continuity, allows simplification of the image (abstraction).

5."Clarity of joint" means high visibility of joints and seams, for example at major intersections.
Such joints are the strategic moments of structure and should be highly perceptible.

6."Directional differentiation" means that elements should exhibit directional qualities. These
qualities differentiate one end from the other and are very useful in structuring on a larger scale.

7."Visual scope" are qualities of the environment which influence the range of vision - be it actually
or symbolically. Examples for such constellations are transparencies, overlaps, vistas, panoramas
and several others. These qualities help grasping of larger complex wholes by increasing the
efficiency of vision.

8."Motion awareness" argues that actual and potential motion shall be made explicit to the observer
and that the quality of motion shall be made perceivable to the observer by visual or kinesthetic
means.

9."Time series", for instance sequences of landmarks, are series of elements which are sensed over
time. An example is a series of landmarks to be encountered on a route.

10."Names and meanings" are non-physical characteristics which may enhance the imaginability of
elements. They sometimes give clues about the location (like in "North Station") or trigger
historical, functional or economical associations. Such non-physical characteristics facilitate
structuring of elements in the environment.

The Problem of Poorly Navigable Spaces is also addressed in [NavISpace].

Henrik Gehrmann Master Thesis Page 91 of 200

4.Architecture TerraPeer • DVE Architecture and Implementation

Illustration 4.11. TerraPeer VE Input and Feedback shows how the navigation input and output
system of TerraPeer is created.

4.2.6.Object Control and Clamping

Avatars, objects, zones, and services are all virtual representations that can be manipulated. As
discussed earlier, it is often necessary to restrict movements or abilities in order to realize a better
and easier navigable environment.

Limiting object and visual control by the user in the design is shown in Illustration 4.12. Object control
in VE and Illustration 4.13. Visual control in VE:

These illustrations show the method of clamping. The idea is simply to adjust the range of movement
according to the current environment. A user-avatar might be able to move rapidly across the world,

Page 92 of 200 Master Thesis Henrik Gehrmann

Illustration 4.12. Object control in VE

Illustration 4.11. TerraPeer VE Input and Feedback

TerraPeer • DVE Architecture and Implementation 4.Architecture

but not exceed a certain speed. Inside a zone border, movements might be relatively slower but gain
more control to create objects, for example.

4.2.7.Object Persistence

When peers connect and disconnect to each other, objects owned by each peer have to be handled.
Object persistence means that an object continues to exist after the original owner peer disconnects
(in one particular C/S-based DVE project, their 'zone server' would nominate a new owner).

Rendering techniques, such as vector-based interpolation (as often used in game engines) is often
applied in networked VE's to create the illusion of continuity. Usually, in an event-based architecture,
the position prediction is calculated by the last known position and velocity of an entity.

This persistence is implicitly handled by the TerraPeer architecture by leaving it up the each
participant to arrange persistence. If the peer's information has been distributed to other peers, the
essential content remains online. Whether certain services become unavailable depends on where
else the resource is located. A service might well point to a very different resource, such as a simple
HTTP web-page.

4.2.8.Object Sharing and Access

In TerraPeer, the access level of every virtual object can be adjusted. This mechanism is similar to
the Unix file system, where the access attributes of files can be set according to who should be
allowed to do what. The idea was to implement attributes for each virtual object (that also could be a
service) that the original owner can adjust. Attributes could be set to allow other users to view,
access, or modify the object or service. This reflects the 'xwr' (execute-write-read) attribute of a Unix
file. Further, the mechanism can be extended to be viable for certain specified groups.

This essential functionality should establish a just way of creating, placing, and sharing virtual objects.

Original owner of an object is the creator. As a user is restricted to create objects within his own zone,
he would usually not own any objects outside that virtual boundary. Whether object ownership can be
transferred depends on each object's access settings.

Henrik Gehrmann Master Thesis Page 93 of 200

Illustration 4.13. Visual control in VE

4.Architecture TerraPeer • DVE Architecture and Implementation

4.3.Distributed Platform Architecture

4.3.1.Connecting at the Edge

The application peer-to-peer network runs on the JXTA platform. JXTA itself is composed of several
layers and protocols that enable a variety of services (this was described in earlier sections). JXTA
provides the necessary functionality to discover other peers, connect to them through pipes, and
communicate data between them.

A specific TerraPeer Protocol would have very similar functionality, and though there exist several
choices of alternative solutions ranging from open source platforms to peculiar standardization
attempts, or even proprietary game engines, the JXTA choice seemed attractive solely by it's
pluggable design.

Combining JXTA with X3D as the fundamental layer for a DVE application that could provide services
for other protocols, including URL, HTTP, or FTP was a cornerstone of the original architecture.

The JXTA API was created by Sun Microsystems to be flexible to use, and one of its main capabilities
is to run on top of various OSI layers, such as TCP or HTTP. Using the pipe mechanism, which
enables peers to send and receive data, XML-based TerraPeer messages are exchanged.

Messages basically contain repository data, which in turn is a collection of zone-objects. Each zone
object contains all information for a particular peer zone.

The six JXTA protocols ERP, RVP, PRP, PDP, PIP, and PBP are employed through the API.
Advertisement-, discovery-, and pipe-service methods are called by the application.

Hence, each distributed peer is calling these JXTA-related operations throughout a life-cycle:

1. Advertises the peer itself on the network
2. Apply discovery service to find other peers in the network
3. Requests virtual space content from other peers, which includes both the zones of connected

peers, and zones that these peers have stored locally in their repository
4. Responds to other peer's requests, and sends repository data
5. Update of home zone leads to propagation of this peers own data

4.3.2.Data Exchange

Protocols for the data exchange are working in conjunction with the repository. The JXTA messaging
pipe service is a fundamental communication platform. On top of that runs the TerraPeer XML-based
protocol, which also embeds X3D data.

The general idea of the peer data exchange is that information is distributed on a if-needed basis. By
default the VE space is empty. A peer should be able to fully control the amount of content visible
locally. By roaming to other peers, their zones and zone content can become visible. Filtering
features, again, are important tools to control the space.

By abstracting objects to a minimal set of properties, it is further possible to optimize traffic. "Because
the field values of a compound object completely describes the objects state, the internal
representation does not need to be distributed, but can be reconstructed by each process. This can
significantly reduce the amount of bandwidth needed to replicate a complex geometric object as only
a few field values need to be transmitted instead of a completed geometric description of the object"
[AVOCADO].

Spatial filtering can save bandwidth. The method implies that only certain event updates (or any kind
of data) is allowed, e.g. traffic is restricted for positions outside some range (a radius). Zones should
restrict the event traffic to those peers connected to and within the particular zone.

Page 94 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 4.Architecture

Filters based on personal preferences or interest could limit traffic further, while not compromising on
the service. An anecdote in this context: The P2P network should also be able to provide one-to-one
channels (or group-based) to basically circumvent all other environment in certain situations.
Dynamic allocation of multicast groups based on location might be useful, too.

An example where data exchange is limited to the transfer of field values could be the URL of a
service object. The virtual object representation itself would be reconstructed by the peer locally.

4.3.3.Network Layer

The code package design for the network layer is quite plain
(see Illustration 4.14. TerraPeer Network Layers). It references
JXTA and XML API's for protocol and repository respectively.

The JXTA block establishes connections, creates
advertisements, performs discovery, sends and receives
messages, and so on. The XML block parses repository files,
and packages X3D into the TerraPeer protocol (see Illustration
4.15. XML Schema for TerraPeer).

4.4.Zones

4.4.1.Definition of a Zone

Zones represent peers, and thereby users. The zone metaphor allows users to virtualize their peer.
Since each peer is only allowed to create one single zone, the resulting network consists of a
maximum number of zones equal to the number of peers part of the network. As a peer not
necessarily has to create a zone, there might be less zones than peers.

Henrik Gehrmann Master Thesis Page 95 of 200

Illustration 4.14. TerraPeer Network Layers

Illustration 4.15. XML Schema for TerraPeer

4.Architecture TerraPeer • DVE Architecture and Implementation

A specific zone exactly reflects a peer's state, position, and services offered. A user can freely
administer his zone, but has to follow the rules of the common space, and is bound to the rules of
other zones.

4.4.2.Zone Properties

The XML Schema 'ZoneType' depicted below (Illustration 4.16. Zone Type XML) represents the
structure of a Zone, and included properties. In this implementation version, each zone has a UID, a
version, name, optional description, a time-stamp, a geometry, and a collection of objects attached.

Page 96 of 200 Master Thesis Henrik Gehrmann

Illustration 4.16. Zone Type XML

TerraPeer • DVE Architecture and Implementation 4.Architecture

4.4.3.Building a Zone

Illustration 4.17. TerraPeer VE Zone Building shows the 3D user interface techniques to build a zone
(or rather build on top of it). Through an object palette, similar to an IDE, basic objects and service
objects can be selected and placed in the zone. Adjusting attributes for each object allows the user to
control permission, transformations, and eventually interaction/response functionalities.

A service provided by a peer can be made publicly available and accessable. For example is peer B
linking to a service provided by peer A in Illustration 4.18. Zone Service Linking. The service can
either be a 'soft' link that just forwards requests, or be a direct copy (this also depends on permission
settings). Replicating resources is one of the strengths in P2P networking.

Henrik Gehrmann Master Thesis Page 97 of 200

Illustration 4.17. TerraPeer VE Zone Building

Illustration 4.18. Zone Service Linking

4.Architecture TerraPeer • DVE Architecture and Implementation

4.4.4.Reservation System

A possible solution for a reservation mechanism to avoid zone overlaps in the VE is shown on
Illustration 4.19. Reservation System.

4.5.Open feedback-based trust model

This section proposes a distributed trust-model service that might be included in future
implementations.

4.5.1.Trust Model

This model is network-based, where a peer is an application able to connect to other peers, and let
user's create categorized subjects and submit feedback on them. A peer represents that subject
specifically or commonly. A feedback is a value in a given range indicating a user's personal view on
the particular subject. Comments could be added to feedback-values.

Page 98 of 200 Master Thesis Henrik Gehrmann

Illustration 4.19. Reservation System

TerraPeer • DVE Architecture and Implementation 4.Architecture

A basic set of rules for this feedback-network could be:

• Each peer is unique (ID)
• Votes and rates are cast using authentication, integrity, and confidentiality
• Authentication mechanisms are person-to-person based
• Integrity and confidentiality is ensured using public key encryption
• One peer can rate and/or vote another peer
• Rates and votes may be authenticated or anonymous
• The authenticity of a peer is public
• A peer's rating/votes may be displayed public, in limited groups, or kept private
• A rate can be a value between 0 and 100 on any rate-subject
• A vote is always the value 1
• Rate-subjects and vote-subjects are categorized
• One peer can only rate another peer once on a rate-subject
• One peer can vote another peer once on a vote-subject
• Rate- and/or vote-groups can be created
• Groups are categorized, and include two or more subjects
• Group ratings and votes are balanced in that the total amount of rates/votes has to be

distributed among the group subjects
• Rates and votes may be updated at any time
• Automatic updating mechanisms may be in place (if-then)
• Update feedback-loops may be constructed between peers (if peer A votes X, then vote Y

on B)
• The source (peer) of a rate/vote may be tracked
• Auto-updating mechanisms of a rate/vote may be tracked

Examples of Peer-based Feedback follow in the next few paragraphs.

4.5.2.Rating

Illustration 4.20. Trust Feedback System : Peers A, B, and C submit their rating on a Subject S1 on
peer D. The average rating of all values (sum divided by count) is displayed at D. Since ratings are
between 0 and 100, the average value will be in the same span. Subject S1 could be “Delivery” in the
category “Business / Customers / Experience”, and it's value described as “% Satisfaction”.

Henrik Gehrmann Master Thesis Page 99 of 200

Illustration 4.20. Trust Feedback System

4.Architecture TerraPeer • DVE Architecture and Implementation

4.5.3.Votes

Similar to rating, votes can be counted: Illustration 4.21. Trusting Votes.

4.5.4.Private Feedback

Illustration 4.22. Trust Rating: A scenario where a peer E views at peer D's rating on a particular
range of subjects. Since D keeps S1 private, E can view S2, S3, and S4.

4.5.5.Automated Feedback

Illustration 4.23. Automated Feedback: This drawing illustrates an optional auto-feedback mechanism,
that lets a peer B rate a peer D based on peer A's rating. Before submitting it's rating on subject S4,
peer B first inquires A's rating on the same subject. Based on this value and the relationship to A,
peer B can adjust it's rating on D.

Page 100 of 200 Master Thesis Henrik Gehrmann

Illustration 4.21. Trusting Votes

Illustration 4.22. Trust Rating

TerraPeer • DVE Architecture and Implementation 4.Architecture

Subject S4 could in this situation be “Support of War in Iraq” in the category “Politics / Global
Diplomacy / Current Events”, where D could be a public discussion group, and A a political
representative (or an index of the Oil-price).

4.5.6.Auto-Feedback Formulas

Illustration 4.24. Trust System Formula: A closer look at the automated feedback-mechanism. Peer
D receives feedback from different peers (1) on subject S1. Internally, it can distinguish the feedback
(2) by differentiating between anonymous and authenticated feedback, feedback that was submitted
during a specific period of time, or feedback that was auto-created.

Peer D could ask other peers, such as peer E, to give their feedback on subject S1 (3). Or peer E
itself is interested in submitting feedback to peer D. If subject S1 is of a certain type, it might be
useful for E to automate it's feedback on that particular subject, no matter which peer is asking. Peer
E thus reads the existing feedback (4) from peer D, and possibly gathers information from interrelated
peers (not shown).

Peer E could create an auto-feedback formula (5) that determines it's rating on subject S1 by some
factors. In the case below, E would not rate at all on S1 for D if the total feedback D received (yellow)
was from less than 30 peers. If the last 10 feedback's were within 4 weeks (red), E would notify it's
user, maybe because the high activity requires special attention. Otherwise, E's rate on S1 (orange)
would depend on the sum of those peers that rated with authentication (green) and those peers that E
in particular trusts (pink). Excluding those feedbacks that themselves are based on formulas (light
blue), might provide a better result. In other words, peer E bases it's rate on it's trusted peers and all
those not anonymous, but none that use auto-feedback.

4.5.7.Personal Information & Trust System

As part of the application, the Personal Information & Trust System could manage and store user
information, terms, policies, certificates, and feedback. This sub-system could create a trusted
environment where peer users would be able to send feedback or recommendations to each other.

By applying JXTA's protocol security, a secure channel can easily be established. Peers can allow
feedback and recommendation to their services. Service users can send their feedback (ratings).
Each peer could then calculate the level of trust and risk based on recommendations of other trusted
peers. If this trust system is provided through a friendly user interface, a different kind of culture might
emerge.

Henrik Gehrmann Master Thesis Page 101 of 200

Illustration 4.23. Automated Feedback

4.Architecture TerraPeer • DVE Architecture and Implementation

Subject S1 could in this instance be “Network Uptime” in the category “Sun / Clusters”, i.e. monitor E
supports whatever other clusters and external customers think of cluster D, as long as their rating is
not automated. Or maybe “Food quality on Campus”, i.e. if you think the food is good and a lot of
people put their name under the same statement, I agree, too.

Page 102 of 200 Master Thesis Henrik Gehrmann

Illustration 4.24. Trust System Formula

TerraPeer • DVE Architecture and Implementation 5.Implementation

5.Implementation

The TerraPeer architecture dictates a rich pandect of code, but the intention of the application is to
demonstrate the viability of certain features, including P2P networking, discovery, peer virtualization,
zoning and abstract services, access control, and a 3D interface with navigation controls.

In addition to descriptions for each part of the assembly (and package) of the code-base, there are
code-snipplets and UML graphs in this chapter to show the implementation.

Implementation code, class-names, or -packages are marked with courier font.

5.1.Use Cases

A few hypothetical use-cases can illustrate how DVE applications could be applied in best-case
scenarios.

5.1.1.A Collaboration Space

The establishment of a usable collaborative space is a well-known problem that CSCW in particular
focuses on. Collaboration between users is an essential paradigm of networked computer systems,
and has many applicable areas: Learning, modeling and engineering of buildings (CAD) or urban
planning, project management, software development, art, etc.

The DVE offers a space in three dimensions that often is useful to project structures from reality that
otherwise would be too complex to present. VR has been used to model city traffic and chemical
molecules.

TerraPeer by it's distributed nature offers the ability to collaborate by sharing objects and services
(virtual or representations), and by enabling communication while collectively gather around certain
settings using avatars supported by voice- or text-base messenging.

Each desk in Bob's company has it's own virtual zone, and are all connected to the corporate intranet.
Bob is looking at a representation of a building he is working on at his office. Through his personal
contact list, he contacts Alice, who jumps to his position. Together, they inspect various details of the
building by following each others avatars. Using the zone's website service, it's file sharing service,
and a simple text-based chat service, they are able to share resources and communicate.

5.1.2.Browsing the Virtual Streets of Cyberspace

A different scenario is social interaction that could occur similar to the virtual worlds, or online games
that already exist. A large number of users being 'immersed' in a single world, as in other common
spaces, share their environment and communities could emerge. A space that allows building
personal sites can foster individual proliferation, but sharing that space with other users and allowing
groups also promotes collective entities. Being able to link peers, services, and objects further
supports this.

The phenomena of virtual worlds where social interaction is combined with building personalized
areas or creating artificial personalities has been widely successful (see Appendices for more
resources).

TerraPeer could theoretically support the same kind of environment, as it enables a society based on
all connected peers. the creation and sharing of virtual objects, and communication between peer
users. The question whether this world could become a vigorous place due to the dynamics of P2P

Henrik Gehrmann Master Thesis Page 103 of 200

5.Implementation TerraPeer • DVE Architecture and Implementation

networks remains open, but it should be noted that a peer does not need to act as a hopping client per
se – permanent server peers could well be created to establish continuously settled areas.

5.1.3.Enhancing the Interface of Services

Using a virtual service sounds ambitious, but should be seen as a virtualization mechanism to
enhance the user experience. In the desktop metaphor of most operating systems today, the broadly
used icon that launches an application or connects to a service is nothing more than a technique to
ease usability.

In 3D worlds, other metaphors are being constructed. A balance between using familiar real-life
objects and not obstructing the users in their tasks has to be found.

TerraPeer might be used to serve as a common space where each user peer can create a virtual
platform that serves as a hub for resources and services. Abstracting a service makes sense, as it in
terms of networked computer systems really can represent a trumendous range of content and
functionality.

A simple use-case would be the user Alice, who would put a virtual service object on her peer zone.
The object looks like a phone. It has attributed that allow Alice to determine particular groups of users
to activate it. At home at Bob's zone there is a collection of services in a box, which is strictly private
and cannot be activated by others. When Bob clicks the box, several virtual representations of files
and links pop up above it, and he selects one saying 'Alice Home'.

After instantly jumping to Alice' zone, he finds her phone object and gives her a call by clicking on it,
which activates a VoIP service. Later, Bob creates a link to the phone for his own box.

5.1.4.The Ultimate Virtual Reality

Roaming alongside some of the more permanent zones around the center of the space, Alice notices
a virtual replicate of a bookstore. Entering the zone provides a collection of stacked books where
each stack has a topic. After browsing through several topics, Alice stands in a closed virtual room
with selectable bookshelves that enable her to quickly read abstracts, or open a browser to get more
information. Next to her is Bob. He's reading a book and Alice asks him what he's looking at by
clicking his avatar and speaking into her microphone.

After collecting references about this book from one of her bookmarked opinion-services, Alice
decides to purchase it by clicking the price-tag placed on the books cover. Confirming to her virtual
credit card that she wants to transfer an amount to the bookstore, she waves goodbye to Bob, and
jumps to the Google News zone.

Page 104 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 5.Implementation

5.2.Class Structure

The structure and packages of TerraPeer is shown in Illustration 5.1. TerraPeer Class Package
Overview (UML) that is based on a UML object model.

The main functionality and properties of classes in each of these packages have already been
anticipated in the previous chapter, and will be explained in more details in the next sections.

5.3.User Interface

5.3.1.Application Functionality and Interaction

The GUI layout tries to accommodate controls, information feedback, and viewers in a
comprehensive structure. The application features are presented in a logical, functional, and
convenient way that also underlines the flow of events. Knowledge about HCI design guidelines
[SIGCHI and HCI], as examined in the previous chapter, dictate several usability techniques.

Due to the broad functionality available to the user, the layout has to be created in a way that allows
some kind of 'drilling' technique to avoid showing all controls, views and labels at once and clutter the
display.

Controls change depending on the current focus of the user, i.e. user attention and display interface
are aligned to optimize usability. That is, if a user is currently navigating through the virtual space, a
navigational panel with control buttons and status feedback is made available. And if a user is

Henrik Gehrmann Master Thesis Page 105 of 200

Illustration 5.1. TerraPeer Class Package Overview (UML)

5.Implementation TerraPeer • DVE Architecture and Implementation

currently building a virtual service inside his home zone, a panel with dragable building blocks is in
the visibility center.

Hence, the GUI layout has been designed to accommodate...

1. Always-available controls, menus, and status
2. Dynamic controls and information feedback, depending on current user focus
3. Ability to show or hide all panels, and resize certain content-containers (personalization)
4. Easy to learn GUI layout structure

The derived GUI layout is depicted below (Illustration 5.2. Original TerraPeer GUI Layout).

Menu bar

Toolbar

primary controls

Left Sidebar

Control and
Functions

Main Viewer

VE display

South Panel

Flipable Panels for Control and Information

Right Sidebar

Information and
Feedback

Status bar (Status Information)

Illustration 5.2. Original TerraPeer GUI Layout

The menu and toolbar on top provide always-available controls to manage network connection or
space environment, to edit preferences, or to control the repository (there is room for future features
and services, such as security and trust management).

The left and right sidebars respectively are collections of control and feedback panels that can be
expanded or collapsed depending on the current activity. The controls, for instance, are divided into
headlines (network control, space management, personal information, etc.) that when clicked upon
display action-buttons related to the topic.

See also Illustration 5.3. Screenshot - TerraPeer Main Window to see the latest version layout.

Similarly, the so-called 'south panel' that is placed below the main viewer, shows interaction panels
depending on activity. Together, these panels provide all functionality and information needed to use
all features of the application.

5.3.2.Application GUI

The main GUI class is TerraPeerGUI, which extends JFrame, and is called originally by the
TerraPeer Manager when launched. This frame displays all essential functionality and menus, as well
as integrated viewers (see Illustration 5.3. Screenshot - TerraPeer Main Window). The GUI layout
was designed to be both flexible and easy to overview. Though, personalization functionality was not
implemented in this version, it is possible to blend in or hide many parts of the GUI.

Page 106 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 5.Implementation

Several flags are typically set to indicate certain states of the application, such as whether the peer is
connected to network:

static public PeerCore TERRA_NetPeer = null;
static boolean peerIsConfigured = false;
static boolean connectionOK = false;
static boolean currentViewPointPersonal = true;
static boolean currentViewPointGrid = true;
static boolean zonegridAutomoveOn = false;
static boolean isCyberspaceRunning = false;

The main GUI class encapsulates the terrapeer.vui.space.MySpace, and the
jPanelSpaceNavAvatView objects. The former could be seen as the data model of the VE, while
the latter corresponds to the data view.

Secondary initialization procedures of the GUI set space navigation panels:

private void initSecondary()
{
 jPanelSpaceNavCompass.setPreferredSize(new Dimension(120, 140));
 jPanelSpaceNavAltitude.initAltitude();
 jPanelSpaceNavHeading.initHeading();
 jPanelSpaceNavCompass.initCompass();
 jPanelSpaceNavCtrl_Dir.initControl();
 initSideThread();

 //...

Methods are named according to their function. A startX method, where X stands for a name,
usually starts a particular service, and a showX method usually opens a dialog or external frame
window. Examples of the latter are showLog(), showLogin(), showHelp().

Related to the network are startPeer(), connectJXTA(), disconnectJXTA(), and
startDiscovery() methods. The virtual environment methods include startCyberspace(),
startRepository(), zoneAddBuildingBlock(), manualSpaceControl(), and

Henrik Gehrmann Master Thesis Page 107 of 200

Illustration 5.3. Screenshot - TerraPeer Main Window

5.Implementation TerraPeer • DVE Architecture and Implementation

moveZoneGrid(). The names should suggest their purpose, but the implementation should describe
them in further details (as the produced JavaDoc will show).

A side-thread running parallel to the main application to update various information in real-time:
class TerraSideThread extends Thread

,which mainly calls updateStatus(). On each update cycle, relevant information is displayed on
the status-bar, or the space map is updated, for instance.

Much of the TerraPeerGUI contains interface-related Java Swing code. There are many methods to
show and flip panels or components, and widget action event listeners and handlers.

5.3.3.3D Viewer, Widgets, Menus and Toolbars

As other special GUI widgets, ZoneGrid extends a Java Swing component and overwrites the
paintComponent() method in order to customize the visual interface. This class was created to
visualize the VE grid, and known peer zones in a 2D panel.

Good data visualization does not necessarily imply more dimensions, or complex graphics. On a
contrary, the more simple the data can be represented and conveyed to the user, the better. In case
of the grid, presenting a 2D map of the environment is an obvious advantage. The UI should also be
able to offer certain functionality, i.e. by clicking on the individual zones to obtain more detailed
information.

Other special widgets to enhance navigation are Compass, Altitude, and Heading.

The 3D viewer of the VE is the center panel, which is resized alongside the application window.
Illustration 5.4. Screenshot - TerraPeer 3D World shows the GUI.

Page 108 of 200 Master Thesis Henrik Gehrmann

Illustration 5.4. Screenshot - TerraPeer 3D World

TerraPeer • DVE Architecture and Implementation 5.Implementation

5.3.4.Status, Feedback, and the South Panel

Status messages are feedback from the application to the user that are of shorter length (e.g. notes),
and are usually given through the status-bar at the bottom of the application GUI. This layout has
become a de-facto standard.

Other feedback, mostly of 'heavier' content, such as zone-related information or peer network status,
requires more display real-estate. As feedback changes depending on the current focus of the user,
similar to the controls mentioned earlier, the layout has been designed to reflect that of the control
panels.

Three major displays are provided: JXTA Network, Space Navigation, and Zones. As their titles
indicate, they contain all information related to the specific focus. The network panel would show
information such as the currently connected peers, the space panel information about current position
coordinates and mapping, and the zone panel information related to currently selected zones.

Navigation, 2D map, and Zone building panels are available on the 'south panel'. Later additions
could include panels to manage privacy and feedback, or personal information.

5.3.5.Web Browser Window

The browser window (see Illustration 5.5. TerraPeer Web Browser) implements a simple HTML v.4
compatible web-viewer. The main purpose is to provide an internal client that can be called directly
from the VE when an appropriate service is invoked. Additional features include usual URL navigation
and bookmarking functionality.

Henrik Gehrmann Master Thesis Page 109 of 200

Illustration 5.5. TerraPeer Web Browser

5.Implementation TerraPeer • DVE Architecture and Implementation

5.3.6.Repository and Log Viewer

A screenshot of the repository viewer is shown below; Illustration 5.6. Screenshot - TerraPeer
Repository Window. This viewer can read the TerraPeer XML protocol. It displays zone-related
attributes and properties, and creates a DOM-like tree structure. The purpose of this tool is purely
informational, but could be extended to provide other related functionality to manage the repository,
edit zones, or services.

Page 110 of 200 Master Thesis Henrik Gehrmann

Illustration 5.6. Screenshot - TerraPeer Repository Window

TerraPeer • DVE Architecture and Implementation 5.Implementation

The last screenshot represents the log window, which displays all status feedback from the
application; Illustration 5.7. TerraPeer Log:

5.4.3D World Code

5.4.1.Basic Settings

Much of the 3D code implementation uses Java3D API classes in the javax.media.j3d.* and
javax.vecmath.* packages.

The following code is extracted from the MySpace class, and shows the objects, properties and
methods that are encapsulated.

//...

public class MySpace //extends JPanel
{
 private boolean spaceInitialized = false;
 private boolean currentVPP = true;
 private static AppWorld spaceWorld = null;
 private static AppView spaceView_avat = null;
 private static UISceneTree zone_tree = null;
 public static SpaceCore spaceCore = null;
 public static ZoneBuilder zoneBuilder = null;
 public static ZoneWorld myZoneWorld = null;
 public static Zone myZone = null;

//...

 public void initSpace(...)
 {
 spaceWorld = new AppWorld();
 spaceView_grid = new AppView();
 spaceView_avat = new AppView();
 spaceView_orbitAvat = new AppView();
 spaceCore = new SpaceCore(...);
 myZoneWorld = new ZoneWorld();
 zoneBuilder = new ZoneBuilder(...);
 spaceInitialized = true;

//...

 public boolean startSpace()
 {
 if(spaceInitialized)
 {
 setupMyZone();
 setupMyZoneWorld();
 zoneBuilder.buildAllZones();
 spaceCore.spaceNav.setupNavigation(...);

Henrik Gehrmann Master Thesis Page 111 of 200

Illustration 5.7. TerraPeer Log

5.Implementation TerraPeer • DVE Architecture and Implementation

 spaceCore.spaceEnvio.buildEnvironment();\
 finalizeWorld();

//...

The AppWorld and AppView classes represent the “world space” (extends VirtualUniverse) and
“view space” (extends BranchGroup) of the application. The former contains a single scene graph
(BranchGroup) and controls the scene attributes when modifications are required, and an ambient
light. The latter is a viewer object that is added to the SG in order to provide a view of its virtual
world. It also encapsulates internal geometry associated with the view.

5.4.2.View and Navigation

Packaged into terrapeer.vui.space are the classes SpaceEnvio, SpaceGrid, and SpaceNav.

SpaceEnvio is responsible for the basic environment settings, and it's main method is
buildEnvironment().Part of this environment is the SpaceGrid class (extends the
BranchGroup object) that creates an axis and grid system for the VE (to enhance navigation).

The coordinates are based on a standardized metric system, but could theoretically be extended to
feature more spatial freedom in certain contained sub-spaces (zones).

SpaceNav is responsible for user (avatar) navigation, which requires controlling the 'camera' scene-
viewer from the instructions received from the input devices. It's method setupAvatarNav(), among
other things, limits the movement of the avatar to the volume over the ground-level through
clamping:
 avatCamera.getThrustActuator().getPlugin().setTargetClamp(...)

The class also implements navigating control methods, such as moveAvatarForward(),
stopAvatar(), and alignAvatar(), as well as feedback methods, such as getAvatarHeadingX,
where X could be Yaw, Roll, Pitch, or Speed.

Control of avatar movement, for example thrust, is usually triggered by a call similar to:
 avatCamera.getThrustActuator().initActuation(...)

The user's view is a virtual camera that moves through the VE. Initial implementation does not
provide a visible avatar attached to the view node, but this should be fairly simple to add in later
versions (especially user-to-user communication requires this feature). The camera is actuated
(translated) through methods that convert user input vectors to 3D space vectors.

This view-component and -control is located in the classes AvatarCamera (extending
ActuatorGroup), and AvatarCameraControl.

AvatarCamera creates an actuator group chain that serves as a camera simulation with thrust
translation and spherical attitude (roll, pitch, yaw). The controller creates draggers, filters, and
mappers for the camera. Thrust is directly controlled through an acceleration filter, and attitude-roll,
-yaw and -pitch are controlled through a rate filter.

As mentioned in the last chapter, the J3DUI framework offers some convenience methods that in this
case supports interaction conventions. For example, dragging the mouse across the view after
selecting an object for rotation should result in the rotational translation of the object around its own
axis. The conversion from the x-y coordinates of the mouse-pointer to the transformation vector is a
common catechism to accommodate intuitive user actions.

An example for intuitive mapping conversion is the class DrmRotationMapper (implements
InputDragTarget), which applies an InputDragTarget input and an axis-angle Actuator target.

Page 112 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 5.Implementation

Here, the target position is relative to the position of the drag on the source display. Mouse
movement is mapped on the target object, i.e. a drag to the right would rotate the target to the right.
The event chain uses an IntuitiveDragMapper connected to a source mapper (with a rotation
plugin) that again is connected to the target actuator.

5.4.3.User Interaction

5.4.3.1.Input and Triggers

J3DUI input classes are placed in the terrapeer.vui.j3dui.control.inputs package, and
provide input sensors (keyboard, mouse), filtering, trigger, and clamping chaining mechanisms. As
mentioned earlier, the utility classes are usually utilized through source-target chaining. An input
source, such as a drag can thus be chained together with a special filter or function to transform the
target according to some design.

One example for an input drag filter plugin that limits or clamps the the drag position value is the
ClampInputDragPlugin class (extends InputDragFilterPlugin). An example for input event
classes is the InputButtonTrigger (extends EnableTrigger, and implements
InputButtonTarget), which is a trigger that monitors button events.

5.4.3.2.Geometry and Transformation

There exist several TransformGroupPlugin classes that implement single-user matrix, single-user
vector, and multi-user matrix plug-ins. A transform group actuator plugin that assumes exclusive or
non-exclusive control of the target node. The actuation state is maintained by a matrix
(Transform3D) or vector (Vector4d).

TGGeometryPlugin of the package terrapeer.vui.j3dui.control.actuators is an abstract
base class for plug-ins used by TransformGroupPlugins to define the transform geometry. It also
defines the format of the input actuation value.

Geometry plugins that perform geometric translation or rotation are for instance the
TranslationPlugin, ScalePlugin, RotationPlugin, and AxisAnglePlugin classes (all
extending the TGGeometryPlugin class). Translation, in this case, occurs in 3D relative to the
target transform along its major axis, while axis-angle-rotation occurs in 3D about an arbitrary axis
defined relative to the target transform. ScalePlugin and RotationPlugin perform geometric
scaling and rotation.

5.4.3.3.Feedback

Trigger-based feedback interaction for targets (that are attached) are managed by descendants of the
abstract FeedbackManager class that is located inside the terrapeer.vui.j3dui.feedback
package. Feedback types for the managers are 'status', 'select', or 'action' that for instance can be
triggered when the mouse hovers, clicks, or drags an object.

5.4.4.Visualization and Visibility

Visualization and visibility are very interesting subjects as they define many attributes of what the
user actually will be able to see and perceive.

5.4.4.1.Principles

It is at the designers discretion to implement a view that has certain visual properties enabled, and
certain others limited or hidden. As Apple's GUI design principles (section 3.4.4.) implied, the user
experience is critical. What information and controls should be visible, where, when, and how?

Henrik Gehrmann Master Thesis Page 113 of 200

5.Implementation TerraPeer • DVE Architecture and Implementation

As much possible, the TerraPeer application was committed to adhere to user interface design
principles.

Metaphors have been used to create the space environment, navigation controls, visualize service
objects, and icons.

See-and-point functionality, as well as direct manipulation has been integrated in the 3D space, where
objects can be picked up and dragged, the zone map, and navigation controls.

User control is enhanced through the GUI layout, which allows focusing on specific tools, and 'drilling'
of controls and information. Similarly the feedback and communication flow has been implemented to
correspond to the current focus of the user rather than that of the application.

Consistency is preserved throughout the design, which can be observed in the windows and dialogs,
font types, icons, frame and panel sizes and alignments, topic selections in menus and toolbars,
visibility options and personalization.

The WYSIWYG (What You See Is What You Get) principle has been applied to some extend (i.e. 3D
zone building and navigation), but could be developed further (i.e. a 'pure' 3D interface for the zone
builder).

Forgiveness and perceived stability principles have not been implemented demonstrably (unless
exception catching and open modification on zone attributes can be considered as such).

Aesthetic integrity and modelessness are present to some extend as well. The former is debatable,
the latter true in the sense that the user is not 'locked up' at any time (inside a 'mode') throughout the
application life.

5.4.4.2.Classes

Several parts of the program code include visibility and virtualization decisions that effect the GUI as
well as the VUI. For example, the J3DUI framework has been helpful in this regard by offering certain
visualization classes. These utilities mostly control the behavior of 3D objects.

Examples of the utility classes residing in the terrapeer.vui.j3dui.visualize package are:

DisplayFaceGroup class - An actuator group that supports "display facing" visualization behavior,
where this group is oriented to always face towards the view display (not the view eyepoint).

ConstantSizeGroup class - An actuator group that supports "constant size" visualization behavior,
where this group is scaled to always appear at the same size on the display screen (not display
window).

WorldOverlayGroup class - An actuator group that supports "world overlay" visualization behavior,
where this group will appear to overlay or underlay other objects in the world (no parallel projection).

DisplayOverlayGroup class - This class is an actuator group that helps supports "display overlay"
visualization behavior. Together with a DisplayOverlayRoot, it defines a 2D space parallel to the view
display plane where objects are positioned in X-Y in units of pixels relative to this groups origin.
Objects are placed in separate "overlay planes" that define their Z overlay order, with "0" as the base
plane, +Z in front towards the eye, and -Z in back away from the eye.

PerfectOverlayGroup class - An actuator group that supports "perfect overlay" visualization
behavior by selectively combining the other world visualization groups. The order in which the groups
are combined, from head to tail, are: world overlay, constant size, display facing.

Page 114 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 5.Implementation

DisplayFaceGroup, ConstantSizeGroup, and WorldOverlayGroup all extend the
ActuatorTransformGroup class. DisplayOverlayGroup and PerfectOverlayGroup extend
the ActuatorGroup class.

Code in the terrapeer.gui package contains other examples on visualization, though in a 2D
environment.

5.4.5.Zones

5.4.5.1.Zone and Zone World

The DVE contains a zone for each peer. Not connected, A peer initially is not being able to see other
zones than those already stored from prior sessions. When the peer connects to the network, it
discovers other peers and their zones. These will be gathered, displayed in the particular peer's VE
viewer, and stored locally in the repository. Every visible zone, besides the peer's own, is managed
by the ZoneWorld class. Typical methods are addZone(), getZone(), removeZone(), and
findZone().

The Zone class contains all relevant information, state, and functionality for a virtual zone object. A
Zone is a virtual area placed on the ground level, which can have different geometrical 2D shapes. It
contains attributes, such as Zone_ID, Zone_Name, Zone_Description, and GlobalState, and
other objects, such as AccessRights, ZoneGeometry, Settlement, ZoneServices, and
ZoneObjects.

5.4.5.2.Zone Builder

ZoneBuilder class is responsible for keeping and building the peer's own zone ('MyZone'). It
provides the methods createNewZone(), generateZoneID(), and getMyZone() to manage
'MyZone'. ZoneBuilder also provides the methods buildAllZones(), initZoneObjects(), and
addTarget() to build all known zones as 3D entities, and initialize and add virtual objects that are
attached to a given zone.

The generated ID for a zone, currently has the following format:

"TerraPeer.ZID" + ":T-"
+ YEAR + "." + MONTH + "." + DAY_OF_MONTH + "."
+ HOUR_OF_DAY + "." + MINUTE + "." + SECOND
+ ":PID-" + JXTA PEER ID + "." + JXTA PEER NAME

The generated ID for a virtual object has the following format:

"TERRA-Z" + Zone ID + "-”
+ Service Type + ”-"
+ Object Type + "-"
+ Object Counter

This method creates a visual base plane 'room' that represents the virtual Zone:

private BasePlane buildZone(...)

This method adds a Service of the URL type to the Zone:

public String addURLServiceToZone(..., String urlStr)

5.4.5.3.Repository

Henrik Gehrmann Master Thesis Page 115 of 200

5.Implementation TerraPeer • DVE Architecture and Implementation

All Zone storage I/O with the local file-system is handled by the ZoneRepository class. Some of
the important methods are:

createXMLRepository()
saveZone()
addZoneToRepository()
loadMyZoneFromFile()
convertZoneObj2XML()
convertZoneXML2Obj()
loadObject()

The class ZoneServices contains the service objects that a zone can have attached. These are
plain virtual objects of some form that have extended attributes depending on their particular type,
and represent a certain service that can be called by users. The service would invoke internal or
external functionality or applications. Services types available include URL (any links), HTTP (a
website), FTP (a file server), etc.

5.5.P2P Network Code

The most important class in the terrapeer.net package is PeerCore. It includes methods to
configure, start, and run the JXTA protocol. Core methods handle discovery, peergroups,
advertisements, and message communication:

startJxta()
configureJxta()
runDiscovery()
runBidirectionalAcceptPipe()
createPeerGroup()
createPeerAd()

The class itself contains several JXTA-related properties, which can be seen in the code snipplet
below.

public class PeerCore implements Runnable, DiscoveryListener
{
 private static TerraPeerLog myLog = TerraPeerLog.getLogger();

 private static final Logger LOG = Logger.getLogger(PeerCore.class.getName());

 private static PeerGroup peerGroup = null;
 private static PeerGroupAdvertisement groupAd = null;
 private static DiscoveryService discoveryService = null;
 private static PipeService pipeService = null;
 private static RendezVousService rendezvousService = null;
 private static InputPipe inputPipe = null; // input pipe for the service
 private static OutputPipe outputPipe = null; // output pipe for the service
 private static Message msg = null;
 private static ID gid = null; // group id
 private static BidirectionalPipeService bps = null;
 public boolean JXTASTATUS_IS_ON = true;

 //...

The terrapeer.net path handles the XML repository classes and methods that load, save, and
modify file information. It is often necessary to convert between flat XML style content and Java
objects. TerraPeer uses objects internally to quickly access and run different data-types. The XML
format is used for storing and transmitting data.

Conversion, parsing and object creation methods are located in the schema and xml sub-packages.
XType classes reside inside the terrapeer.net.schema package, where X stands for a name. For
example, the class ZoneType (extends terrapeer.net.xml.Node), and implements get, set,
and add procedures to create or modify the XML representation of the Zone object type.

Page 116 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 5.Implementation

5.6.Utility Code

Libraries included in the project:

C:\JBuilder9\lib\jbcl.jar;
C:\JBuilder9\lib\dx.jar;
C:\JBuilder9\lib\beandt.jar;
C:_dev\jxta\jxta2.1.1\jxta.jar;
C:_dev\jxta\jxta2.1.1\jxtacms.jar;
C:_dev\jxta\jxta2.1.1\jxtasecurity.jar;
C:_dev\jxta\jxta2.1.1\pjxta.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\j3dcore.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\j3daudio.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\j3dutils.jar;
C:_dev\xj3d\jars\gnu-regexp-1.0.8.jar;
C:_dev\xj3d\jars\httpclient.jar;
C:_dev\xj3d\jars\j3d-org.jar;
C:_dev\xj3d\jars\j3d-org-images.jar;
C:_dev\xj3d\jars\js.jar;
C:_dev\xj3d\jars\uri.jar;
C:_dev\xj3d\jars\vlc_uri.jar;
C:_dev_libs\vrml97.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\vecmath.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\mail.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\mysql-connector-java-3.0.8-bin.jar;
C:\Java\lookandfeel\skinlf-1.2.3-20020729\skinlf-1.2.3\lib\skinlf.jar;
C:\JBuilder9\jdk1.4\jre\lib\charsets.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\3DLF.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\dnsns.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\ldapsec.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\localedata.jar;
C:\JBuilder9\jdk1.4\jre\lib\ext\sunjce_provider.jar;
C:\JBuilder9\jdk1.4\jre\lib\im\indicim.jar;
C:\JBuilder9\jdk1.4\jre\lib\jaws.jar;
C:\JBuilder9\jdk1.4\jre\lib\jce.jar;
C:\JBuilder9\jdk1.4\jre\lib\jsse.jar;
C:\JBuilder9\jdk1.4\jre\lib\rt.jar;
C:\JBuilder9\jdk1.4\jre\lib\sunrsasign.jar;
C:\JBuilder9\jdk1.4\lib\dt.jar;
C:\JBuilder9\jdk1.4\lib\htmlconverter.jar;
C:\JBuilder9\jdk1.4\lib\tools.jar

An entire collection of global variables and properties was gathered in the public class vars. It
contains a long list of static objects that are used throughout the application code. Among these are:

• GUI properties
• JXTA properties and Pipe names
• Timing properties
• Application States
• Generic Colors
• Zone States
• VUI, Space, and Grid properties
• All icon images and static objects

Another class implemented in most of the code is the log (TerraPeerLog class), which only purpose
is to aggregate the messages, errors, and exceptions that occur. The log is easily included with on
line:

private static TerraPeerLog myLog = TerraPeerLog.getLogger();

There exist several helping classes that usually perform mundane jobs or store some sort of collected
data.

Henrik Gehrmann Master Thesis Page 117 of 200

5.Implementation TerraPeer • DVE Architecture and Implementation

A simple helper class for instance is terrapeer.vui.helpers.VGeometry, which has these
properties:

private Transform3D transform3D;
private Vector3d position;
private Vector3d translation;
private double scale;
private Vector3d rotation;
private long alphaCoords;

5.7.Data Repositories

Any application storing some kind of user information or data to be processed needs some form of
data storage repository. In many instances, this is simply solved by using flat files. In other cases,
light- or heavy-weight database servers might be chosen. In a networked system, storage placement
becomes ambiguous.

TerraPeer uses an XML-based format to store data as files, and provide easy conversation to for
example tree-structured or binary format.

Traditional three-tier client/server settings most often employ a backend database that is connected
to a business middleware tier, which handles all interaction with the database storage on one hand,
and solely communicates to the client user on the other. This model allows a layer of abstraction,
similar to the object-oriented encapsulation design pattern, i.e. make access to data only available
through certain predefined methods so the user cannot foobar the system.

In a DVE context, the C/S setting allows data to be
placed on a central shared database. As was the case
with the original MUD system, this procedure simplifies
the client (see Illustration 5.8. C/S Centralized
Repository).

Using a server-less network, the DVE data is
distributed across each peer client (see Illustration 5.9.
P2P Repository Distribution). Replication and
synchronization have to be considered.

This mechanism is build into TerraPeer using
advertisements to present data to peers in the vicinity.
Peers can control the amount of data they are willing to
receive (using filtering), and the frequency of updates.
As each peer corresponds to a zone, the essential idea is to let each client manage its own local
environment, as well as store other peer's local environments if it chooses to.

By creating a flexible, open XML protocol
that can include X3D scene-data, it is
possible to optimize the distributed peer-
network. The XML data contains the
appropriate format depending on the usage,
i.e. whether only zone meta-data or entire
sets of object attributes are transmitted.

5.7.1.Information Storage

TerraPeer is a P2P-based DVE and as such requires all implicit and explicit data – core application
libraries, user data, and common environment data – to be located locally. The distributed-peer

Page 118 of 200 Master Thesis Henrik Gehrmann

Illustration 5.9. P2P Repository Distribution

Illustration 5.8. C/S Centralized Repository

TerraPeer • DVE Architecture and Implementation 5.Implementation

model obviously does not rely on any central server to handle all common or individual data, and
hence has to place the data on each participating peer.

While this location issue is easily resolved by for example creating a file on each peer, it is much
more difficult to manage the distribution of data among multiple peers.

In this implementation, a simple data model was chosen to represent the accumulating data, including
virtual space objects, user and identification information. Based on the XML standard, the essential
idea was to integrate the X3D schema into the repository. X3D is the successor of VRML, and
specifically tuned for multi-user networks.

The TerraPeer storage repository is represented by a XML Schema that was created to dynamically
capture peer- and worl-related information, while being able to be easily transmitted over the network.

Each part of the virtual environment is not represented by a scene-tree structure and attached
objects, but rather by carefully picked meta-data that can be used to recreate the VE. In other words,
a given 3D scene would not be saved as a VRML-style file with detailed node-listings and
transformation data, but instead be abstracted to its functionality.

An example of how this works: Peer A creates a service object that represents a link to his
homepage. The object is placed on his zone, and saved in the repository. When another Peer B visits
A's zone, she would have downloaded the corresponding data, and recreated the scene on her local
interface. Instead of saving and transferring all specific object-data, such as form, transformation or
coordinates, the only information stored is that the service exists and what it does (i.e. it contains a
link).

Limiting the workload in exchange for virtual extravaganza might not seem attractive; actually
counter-productive considering the original purpose of VE's to enhance the user experience. The
immediate limits of this meta-data approach can be overcome, though, as will be shown below.

5.7.2.Distribution and Integrity

Since communication between peers is an essential operation, and repository data has to be shipped
forth and back between entities, it is necessary to choose a dynamic protocol. As XML has gained
popularity due to it's easy parsing capabilities and readable structure, a distribution format based on
XML also makes sense from a network perspective.

On a side note, this decision reveals bandwidth
problems. XML is a pretty heavy load to send
through the ether. Transforming the XML to
binary format will decrease network traffic
substantially.

One of the essential problems in distributed
spaces is integrity. Integrity has to be preserved
across a dispersed network of peers, each
randomly logging on and off each other. This
architectural hurdle is usually overcome in
server-centric systems by exactly letting only a
single entity handle all information.

Each peer can choose to replicate certain data,
such as entire zones and objects, or selected attributes (see Illustration 5.10. Object Replication).
Replicated data have timestamps, and are thus always dependent on the actual peer that 'owns' the
data, i.e. using the access/ownership settings all zones and objects 'belong' to a certain peer. Other
peers might re-distribute data and thus maintain the VE even though the original peer is not present
or nearby, but the timestamp remains. If a peer should disappear from the network for a longer period
of time, the other peers simply can let the data expire.

Henrik Gehrmann Master Thesis Page 119 of 200

Illustration 5.10. Object Replication

5.Implementation TerraPeer • DVE Architecture and Implementation

The earlier mentioned meta-data is not constrained. It is possible using X3D, VRML, or other object
formats, or extending the information of particular objects within the application.

5.7.3.Data Formats

As most of the visible 3D zone- and object-structure is assembled on-the-fly by instantiation, the data
load can be minimized. In many instances it is not necessary to transfer 3D-specific information.

Transferring a virtual representation of a service for example would not actually transfer data about a
sphere-object, position, and transformation, but merely service attributes such as an URL. The local
peer would be able to reconstruct the virtual object by assuming standard settings.

Depicting the entire specification of the data formats applied would exceed this scope. To retain the
overview, it should only be noted that the structure is hierachical, and allows easy extension.

The TerraPeer data format is written in XML Schema, and the base structure looks like depicted
below (Illustration 5.11. TerraPeer Repository XML Schema).

Appendix VII shows more illustrations of the XML Repository Schema design.

5.8.Unresolved Issues

There are dozens of unresolved issues that unfortunately are only partially documented. As of this
writing, there exists a number of class methods in the code that have not been implemented (fully or
partly). Depending on the continuous development (debugging) of the application, as well as tracking
missing bits (by indicative '//todo' markings), the project website might display a more extensive
listing of issues in the future.

Nevertheless, there are a few issues listed here:

User Interface
implement and simplify visibility filtering

Page 120 of 200 Master Thesis Henrik Gehrmann

Illustration 5.11. TerraPeer Repository XML Schema

TerraPeer • DVE Architecture and Implementation 5.Implementation

enable better map navigation
Navigation

implement zone-teleporting (linking) functionality
implement additional navigational aids (landmark mapping, etc.)
simplify (restrict) available user movements for accessing service, modeling (building), and interaction with other
avatars, i.e. 'guide' the user to the visible objects by leading the viewer (alignment, zoom translation, etc.)
implement 3D levels (an upper navigation-only layer) and 'jump' functionality

Services
basic URL service link should open an integrated web-browser window
implementation of chat to send messages between 2 peers
implementation of access control of virtual models

Scene data repository
import entire scene for a zone directly from X3D

Performance
real-time/threading of multiple zones in aura
optimize scene request for speed
optimize scene propagating
create XML/X3D protocol buffer

5.9.Installation and Documentation

System requirements:

• Java SDK v.1.4

All other required libraries are included in the software package. The Application Tutorial is attached
in Appendix IV. A generated JavaDoc can be found on the software CD.

All resources are available online as well (see on this project's website for more information).

5.10.Testing

There are many testing scenarios that could be envisioned, such as testing the scalability of the
distributed network peers by deploying hundreds or more instances, or testing the user interaction
when sharing or transferring objects in the virtual space. It would require a thorough test-plan and
some QA routines to be able to debug the code.

While implementing TerraPeer, debugging and testing were natural parts of the development effort.
Resolving coding issues was usually accomplished by using techniques such as simple code dumps,
more advanced logging or writing test classes.

TerraPeer's Log window currently shows all major events of the application process, and should also
display relevant information in the event of an exception. Some helper classes might have survived
several code cleanups, and still show a few test functions.

The scope of this project cannot provide the execution of an entire test phase, and would suggest that
the current implementation rather might be viewed as an on-going development cycle, where testing
is an important part of the course.

A useful distinction for test-cases, based on classifying different scenarios:

• Connection based
• Single User
• Establish connection of >3 peers
• Large-scale Testbed (>100 Peers)
• Test system on different operating systems

• Virtual Environment
• Zones - Creation (building) and destruction; Test zone reservation system cycle

Henrik Gehrmann Master Thesis Page 121 of 200

5.Implementation TerraPeer • DVE Architecture and Implementation

• Objects and Services - Creation, destruction, and transformation; Access control and sharing; Service search and
usage; Visibility and filtering

• Avatars and User interaction
• Navigation issues
• Test object sharing and control for multiple users
• Avatar communication, interaction and collaboration

On this page, Illustration 5.12. Testing Scenarios, shows a variety of situations that the application
tester should use to approach the test systematically.

Page 122 of 200 Master Thesis Henrik Gehrmann

Illustration 5.12. Testing Scenarios

TerraPeer • DVE Architecture and Implementation 6.Discussion

6.Discussion

This chapter examines the results and discusses their implications. Further, it illuminates some of the
difficulties that where encountered throughout the project.

6.1.Results

The result of this thesis is represented by a prototype application that is able to establish a distributed
virtual environment.

6.1.1.Architecture and Implementation

Following the approach outlined in the beginning of this document, the project was created by means
of analyzing and applying tools to accomplish it's goals.

The objective of this project was "to construct an application for a distributed virtual environment that
is based on a server-independent network". This goal has more or less been reached. Contemplating
about an accumulation of aspects that need to be considered, it could be said that a 'basic'
architecture and a running application are the result of this project.

The initial question of "how a peer-to-peer based multi-user 3D environment can be build" has been
answered by example. The question of how to visualize the distributed activity in 3D space has been
shown by the definition of peer-zones and services.

All together the concept of the distributed application was demonstrated, and works as expected. An
intuitive user interface, 3D building and the zoning technique of multiple virtual areas, ad-hoc
connectivity of peers has been realized.

As stated, this projects did not aim to study particular properties of 3D techniques, VE's or distributed
peer networking technologies.

6.1.2.Results Overview

This project suggests a DVE architecture that focuses mainly on creating a fully decentralized multi-
user environment.

The design and prototype implementation have the following features:

• An underlying, fully decentralized P2P network based on JXTA technology, that can be
used for any data and communication format, supporting multicasting.

• Performance through load distribution, zoning, and the possibility for filtering at several
application layers (messaging, graphical and functional aura)

• Zones to split the world into locales that are stored separately, processed by selection as a
spatial model for interaction

• Scene objects are replicated
• An event and state exchange notification system is possible through ad-hoc subscription

between peers (event caster and listeners model)
• Virtual object interaction, including access control based on Zones, with the possibility to

implement automatic state exchange directly between interacting peers
• Abstract services are used to virtually represent information, functionality, or other

published service types
• Viewers to the VE display a basic virtual world environment on each peer, including grid-

lines or a background horizon to easy orientation.
• TerraPeer supports positioning and navigation in the VE world

Henrik Gehrmann Master Thesis Page 123 of 200

6.Discussion TerraPeer • DVE Architecture and Implementation

• TerraPeer enables peers to create and share instances
• Sharing rules apply to all instances in the virtual hierarchy
• Data visualization through abstract services (information publishing)
• Zone and object permissions to other peers can be set
• Object Persistence and Sharing
• The zone metaphor allows users to virtualize their peer, and reflects a peer's state,

position, and services offered
• Spatial reservation-system based on zones

6.1.3.Results Discussed

In retro perspective, what are the results of this thesis, and which issues were valuable in this
experience?

The result is a survey of existing DVE projects, and an architecture and implementation of a totally
distributed VE with a user interface and some functionality.

While not a complete solution nor a framework, the prototype application is displaying the overall
'case' of this thesis: How to implement DVE operations to support a decentralized network, visualize
peers, provide a platform to build and publish services, and to package everything in a GUI with
navigation and feedback components.

The working features that have been implemented allow the following usage:

• Functionality for ad-hoc peer discovery and connection, requiring only some other initial
peer address.

• Automatic VE persistence through zone replication across peers.
• Performance advantage by sending meta-data and recreating 3D representations on-the-

fly, avoiding transferring more heavy 3D data.
• User navigation in the 3D world.
• Building virtual objects that can represent a service on virtual zones that represent a peer.
• Viewing and filtering peer zones in the world.
• Using a basic service.

The discovery and virtualization of peers and the interface to create and publish services are primary
advantages the TerraPeer application has above other DVE systems.

With the choices of network and graphical technologies, both advantages and disadvantages have
been observed. Clearly, the JXTA API provides a rich peer-to-peer framework that integrates
essential routines, including peer discovery and message piping.

It is questionable how effective the framework is compared to other projects, such as Gnutella, but
considering that protocols are written with performance in mind, as well as their flexibility, there might
not be better alternatives.

The graphical framework on the other hand - Java3D - shows considerable performance issues,
though it is based on OpenGL. This is partly due to the JVM, as well as general tuning for 3D
environments. Further explanations of the performance limitation are given in a subsequent section.

A better graphical engine would enhance the user experience, and allow more complex creations in
the virtual world. The survey provides some helpful hints of how to address this problem. Game
engines have proved to be highly effective for multi-user environments. Though they lack the ability
for massive distribution, the engines are tuned for performance and graphical content. Other projects
and studies suggest approaches to circumvent some of the obstacles associated with handling events
and communication in massive distribution.

Page 124 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 6.Discussion

If the core of game engines would be integrated as a graphical layer on top of a P2P network,
combined with specific mechanisms to filter or multicast events, the result could enhance the 3D
display significantly.

Performance has also been addressed through different solutions, including multi-server networks,
multicasting and zoning. This application's architecture theoretically allows any kind of messaging and
event model. And multi-server networking can easily be emulated, as a peer can act as an
independent server with as much power as required. Inherently, the processing of 3D data and
services is distributed throughout the network, both avoiding bottlenecks and server-dependence.

Compared to other DVE systems, this project examined specifically the feasibility of creating a user-
centric application that in essence can be installed anywhere, and connect ad-hoc to the virtual world,
which in turn is persistent 'within the network'. This means that the world only 'exists' to the extend of
how many peers are connected.

As has been discussed earlier, this might occur as a weakness, since a few peers connecting on-and-
off would produce a very 'fluid' environment. But the dynamic is actually quite similar to the web or a
file-sharing network, which has obvious advantages. Again, nothing hinders peers to be permanently
running, thereby acting as more stable entities.

The outcome of this thesis is not a framework, and might prove of less value for further development
unless the graphical performance is enhanced. The benefits of the result, though, are useful for
further research and development of DVE systems. It is the experience of designing a P2P-based
DVE combined with the abstract definition of virtual services on a user-centric interface, which can
provide helpful insights. The initial survey also asserts an overview of most of the systems related to
DVE research.

Looking at the usage of this application as a user, the following cases are possible:

A Java-based application that is build to run arbitrary services on any JVM
system with a flexible GUI.

The user can connect to the distributed virtual world, and automatically
discover peers and their services.

Zones can be created to virtually represent a peer in the world. They are
distributed ambiguously to the user, depending on personal filtering settings.

Users can create a few 3D objects, as well as a basic web 'service', i.e. a
URL link.

These can be made public, i.e. allow access to other peer users.

Users can roam the virtual space with the help of navigational aids.

A web service object that is placed on a zone can be selected and viewed in
a browser window.

At this stage, several scenarios with possible impact on the overall design have not been tested:

Running more than 10 peers simultaneously to test zone discovery

Connecting multiple peers and test service publishing and usage, i.e. event
and message latency

Zone filtering mechanism to limit replication and visibility radius

Object creation, destruction, and transformation, access control and sharing,
search and usage

A comprehensive study of these scenarios would produce valuable information on how scalability,
performance, and general feasibility of massive distribution affect this solution. Section 5.10 lists a
few test-cases. Ideally, an entire test plan should be devised.

Henrik Gehrmann Master Thesis Page 125 of 200

6.Discussion TerraPeer • DVE Architecture and Implementation

In conclusion, this thesis could demonstrate:

• Total distribution of a 3D environment using P2P
• Virtual representation of peers in a 3D environment using Zoning
• Visualization of services as 3D objects
• Openness to any service, including a simple website

Unresolved problems and absent investigations of this thesis:

• Extensive testing of performance and functionality
• Lack of performance for 3D graphics
• Zone visibility filtering
• Simplified navigation through zone tele-porting, aids, movements for accessing services,

etc.
• Broader range of services
• Better event casting and listening management
• Avatar visibility
• User-to-user grouping and communication, such as chat

There are good possibilities to continue the work from here. Especially by testing the different
performance aspects, and by addressing the 3D graphics that should be based on a tuned game
engine, this DVE system could prove beneficial for both future P2P-DVE studies, and actual
communities.

A good extension would be to build advanced services, such as a chat function or business-to-
business (B2B) communications. This could for example be a XML-based service that aggregates a
news-feed, or maybe streams warehouse data to shops. In VE, the service can be represented
accordingly, using metaphors.

An interesting thought could be the visualization of connecting lines between zone-services. This
could depict how peers communicate, or use (subscribe and push) each other's services. Lines could
be public or only visible to certain groups. The 3D environment would allow members to follow the
routes, and gain insight into how the chain is set up. Ultimately the activity might be monitored and
adjusted directly within the VE, i.e. by virtually connecting pipes of data.

6.2.Experience and Difficulties

6.2.1.3D and Java Performance Limitations

One of the fundamental problems encountered in the implementation of the virtual environment, was
the observed effectiveness of 3D graphics, or rather it's lack of. While testing VRML based virtual
worlds did not seem to behave particularly faster, other 3D spaces, namely most current online game
engines could far outrun this application.

As previously described, online game engines provide a large array of specific 3D functionality, and
are able to highly optimize network traffic as well as scene rendering. Many engines are also
exercising underlaying hardware to a full extend, which tunes performance quite effectively.

A research paper by Jacob Marner examined the Java performance, specifically in relation to game
design. Though his results should be taken cautiously, as numbers depend on many assumptions, the
usual assumption of Java performance compared to those of C++ seems true: Benchmarks show that
even 'tweaked' Java code is typically 20-50% slower than C++, while 'untweaked' code is much
slower, often by a factor of three or four [JAVAGAME02 pp.87].

Page 126 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 6.Discussion

This finding should be noted when implementing 3D applications, even if performance generally
depends on 3D hardware and not on the programming language used. On the other hand, the paper
asserts that Java enhances overall productivity in software development by 30% or more. In its
conclusion, Marner writes that Java provides a good platform for low-profile games due to lower cost,
or in combination with C++ code for low level 3D engine functionality.

This project aimed to implement several design goals, including performance, but must concede in its
conclusion that the Java3D API would not pose a valid platform for DVE applications.

Hence, though one of the initial goals of creating a platform-independent, object-based, scalable
application was realized, performance is a major drawback.

6.2.2.J3DUI Framework Problems

Though initial assertion of the J3DUI framework seemed promising, the actual usage throughout the
project development was tedious. Not using true object-oriented design, the assembled packages
provided a VRML-like source-connects-to-target methodology, which makes sense in 3D context, but
is rather difficult in programming terms. The filter-like pattern required certain modifications to
existing objects and sometimes lengthy re-routes to solve a particular task.

In a future implementation, it is recommended to directly use the Java API, or even submerge to the
OpenGL level. Whether this results in more efficient processing of 3D scenes is questionable, but not
unlikely.

Henrik Gehrmann Master Thesis Page 127 of 200

6.Discussion TerraPeer • DVE Architecture and Implementation

Page 128 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation 7.Conclusion

7.Conclusion

7.1.Reaching the Objectives

By researching the existing DVE systems to learn about the implication of design, technical obstacles,
as well as existing systems and frameworks, it was possible to gain an overview of how to approach a
design. Issues that are integrate in multi-user environments, such as network topologies and
performance, graphical engines, event mechanisms, zoning, object sharing and access control, as
well as 3D user interfaces have been examined.

An analysis of the various studies, revealed a couple of interesting points. It revealed the
decentralized role of P2P to distribute the load when replicating scene objects, that performance can
be enhanced by dynamically adjusting the DVE to resources and by applying zoning and message
filtering.

Beyond the underlaying mechanisms, it also revealed that zones can be used as a spatial model for
interaction among clients, and can determine the space within which interactions are possible, that an
event-based notification system, as well as aura are vital for state exchange and interaction, and that
graphical metaphors and abstract services can be used to virtually represent entities.

The result of this thesis project is the creation of an architecture that ensembles several technologies
and design principles, and can be used to produce a DVE software that is based on a P2P network.
The design reflects a peer GUI that displays a 3D world interface in combination with navigational and
building components. The object-oriented, layered structure allows open and extensible code.

Further, through a detailed specification and an actual prototype implementation of a peer application
- TerraPeer - the different aspects of the architecture were highlighted.

Topics related to DVE design that have been modeled are creation, virtualization, and usage of
services as virtual objects, the virtualization of distributed peer-network, total decentralization and
discovery, usability, 3D world interaction, and feedback and navigation.

The application has a technological consistent foundation by having applied the API's Java3D and
JXTA, and the X3D standard.

In particular, it was possible to demonstrate the use case, where the application would be able to
display the 3D space, discover other peers, and connect to a shared virtual environment. The user
could create a zone representing his peer, build a simple web service on top with a link to his
homepage, and publish it. Another peer could then navigate through space, find the service, and run
it, which would open a web browser and display the page.

The complexity of DVE systems was thus ambiguous to the user. The possibility to connect ad-hoc to
a space that has no central entity awards him with control. The openness of abstract services, and the
XML-based protocol allow any kind of extensions.

There are numerous subjects that, though mentioned in the context, have not been addressed to a
greater extend in the implementation. Performance optimization, shared space access control, and
multi-server (super server) network models are among them.

7.2.The Future

The extensive amount of components that comprise a DVE system are currently being studied, and
several viable solutions have been suggested.

Henrik Gehrmann Master Thesis Page 129 of 200

7.Conclusion TerraPeer • DVE Architecture and Implementation

A range of problems remain, though. Among other issues, primarily the 3D rendering process and
networking communication are expensive tasks that have to be optimized in an implementation. The
distribution of data requires network support for mixed traffic types. Management is necessary for
user collaboration, state updates, and access control.

However, DVE research is at an stage where the accelerating performance of graphical and
networking hardware combined with advances in optimization will develop this field rapidly. As a
platform for commercial applications, corporations such as Fujitsu, IBM, Intel, Mitsubishi, Softbank,
and Sony, as well as ventures such as Black Sun Interactive, Chaco Communications, OnLive!,
ParaGraph International, OZ Virtual, and Worlds are already developing distributed virtual
environments for the mass market.

How would it be possible to enhance a DVE system? Using primarily game engines in combination
with hybrid P2P networks and open standards, an interface to the virtual world could be build that
would be able to reach proportions of that of a world-wide-web browser today.

Game engines have specialized in enhancing the rendering process. Zoning, scene graph
manipulation techniques, algorithms to optimize rendering, and filtering techniques can produce
similar performance for large-scale environments. Hybrids of distributed network models can avoid
the communication bottlenecks that accumulate in multi-user environments. GUI design principles
can create intuitive controls to navigate and interact inside the VE.

Certainly, we are at the beginning of a genuinely intriguing and interesting future of distributed virtual
networks.

Page 130 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix I.Resources

References

[3DDMF01] "A Dynamic Message Filerting Technique for 3D cyberspaces", S.J. Yu and Y.c. Choy,
Yonsei University, South Korea, April 2001

dve_msg01.pdf

[ADHA99] M. Endo, T. Yasuda, and S. Yokoi, “A Method for Constructing Action Database for VRML
Humanoid Animation,” 4th Annual Conf. Proc., The Virtual Reality Society of Japan, 1999, pp.109-
112.

[AGLETS02] IBM. "IBM Aglets Software Development Kit".[4 February 2002].

 http://www.trl.ibm.com/aglets/

[AMSSS03] "Automatic Management of Sessions in Shared Spaces", Géraldine Texier
geraldine.texier@rennes.enst-bretagne.fr École Nationale Supérieure des Télécommunications de
Bretagne, BP 78, 2 rue de la Châtaigneraie, France; Noël Plouzeau noel.plouzeau@irisa.fr, Irisa,
Campus de Beaulieu, France, 2003

Automatic Management of Sessions in Shared Spaces.pdf

[AN-Survey97] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall and G. Minden, "A Survey of
Active Network Research", IEEE Communications Magazine, 35(1), pp. 80-86, 1997.

ieeecomms97.ps

[AOHA00] M. Endo, T. Yasuda, and S. Yokoi, “An Application Oriented Humanoid Animation System
Based on VRML,” Proc. 7th Int’l Conf. Parallel and Distributed Systems: Workshops (MMNS2000),
IEEE CS Press, 2000, pp. 213-218.

[APPLE] Apple Human Interface Guidelines > Human Interface Design; Human Interface Design
Principles

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/

[ARA00] R. Keller, S.Choi, M.Dasen, D.Decasper, G.Fankhauser, B.Plattner, "An Active Router
Architecture for Multicast Video Distribution", Infocom 2000, March 2000.

[Attention] Mark A Folz, Randall Davis, "Query by Attention: Visually Searchable Information Maps".
MIT AI Lab.

[AVAT02] "Realizing external avatars Action Control on WWW-based pseudo 3D space", Taro Nakao
and Takerumi Ogawa, Osaka Univerity, Japan; 2001 IEEE

Realizing external avatar.pdf

[AVOCADO] "Avocado: A Distributed Virtual Environment Framework", 2003, Henrik Tramberend

tramberend03avocado.pdf

Henrik Gehrmann Master Thesis Page 131 of 200

Appendix TerraPeer • DVE Architecture and Implementation

[Capin99] T.K. Capin, I.S. Pandzic, and N. Magnenat-Thalmann, Avatars in Networked Virtual
Environments, John Wiley and Sons, 1999.

[CITY94] "Navigation in Textual Virtual Environments using a City Metaphor", by Andreas Dieberger,
Vienna University of Technology, Faculty of Technology and Sciences, November, 1994

dieberger00_Navigation in Textual Virtual Environments using a City Metaphor.pdf

[CN96] A.S. Tanenbaum, "Computer Networks", Prentice-Hall, 1996.

[COLVS01] "Collaborative Distributed Virtual Sculptin" by F.W.B.Li, R.W.H.Lau, and F.F.C.Ng, Dept.
of Computer Science, City University of Hong Kong, 2001 IEEE.

Collab_distr_v_sculpting01.pdf

[CRYSTAL] Crystal Space

http://www.cs.lth.se/Education/Courses/EDA045/assignments/assignment1/assignment1.html
http://crystal.sourceforge.net

[CVE95] ”Interacting in Distributed Collaborative Virtual Environments”, W.Broll, IEEE VRAIS’95,
pp148~155, 1995

[DEE98] "DEE An architecture for distributed VE gaming", Powers et.al, 1998

dee_game98.pdf

[DISTR-SG99] "A Network Design Architecture For Distribution Of Generic Scene Graphs",
Panagiotis Fiambolis, Master’s Thesis, September 1999; Naval Postgraduate School, Monterey, CA,
USA.

[DIVE96] O. Hagsand, “Interactive multiuser VE's in the DIVE system,” IEEE Multimedia, Vol. 3,
No.1, pp. 30–39, 1996.

[DIVE98] E. Frecon and M. Stenius, "DIVE: A Scalable Network Architecture for Distributed Virtual
Environments", Distributed Systems Engineering Journal, Special Issue on Distributed Virtual
Environments, 5(3), 1998. Emmanuel Frconyand Marten Steniusz, Swedish Institute of Computer
Science, Box 1263, SE-164 28 Kista, Sweden, Received 6 March 1998

scaleable network architecture for distributed VE dive98.pdf

[DJV] Web3D Distributed Interactive Simulation DIS-Java-VRML Working Group;

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml

[DVE97] "Distributed Virtual Reality for Everyone - a Framework for Networked VR on the Internet",
W.Broll, Proc. IEEE VRAIS’97, pp121, 1997

[DVE-AVAT] "The Avatar Navigation of Distributed Virtual Environment By Using Multiview Client" by
Man Kyu Sung, Chan Jong Park; VR Lab., Human Computer Interaction Department, Systems
Engineering Research Institute (305-666 Eoueun-dong Yusung-ku Taejun Korea, {mksung, cjpark}
@seri.re.kr.

avatar navigation.pdf

Page 132 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

[DVE-CS03] "Evaluating the Impact of the Communication System on Distributed Virtual
Environments". Renata Cruz Teixeira, teixeira@cs.ucsd.edu; http://www-cse.ucsd.edu/~teixeira;
Computer Science and Engineering Department, University of California, San Diego, CA, USA. and
Otto Carlos M.B. Duarte, Otto@gta.ufrj.br; http://www.gta.ufrj.br/~otto; Grupo de Teleinform´atica e
Automac¸ ˜ao (GTA), COPPE/EE, Programa de Engenharia El´etrica, Universidade Federal do Rio de
Janeiro, Brazil. Multimedia Tools and Applications, 19, 259–278, 2003.

dve_com03.pdf

[DVE-E00] "Enhancing Engineering Education through Distributed Virtual Environments" by
T.Sulbaran and N.C.Baker, Georgia Institute of Technology, Atlanta, USA, IEEE 2000.

edu_distr_vr.pdf

[DVE-Fid00] "Fidelity Optimization in Distributed Virtual Environments", Michael V. Capps, Naval
Postgraduate School, Monterey, California, June 2000

Fidelity Optimization In Distributed Virtual Environments - Michael.Capps.pdf

[DVE-Filter02] "A Generalized Perception FIlter for DVE's", Jiang Du et.al., Singapore, IEEE 2002

perc_filt02.pdf

[DVE-Frame02] "A Framework for Multiuser Distributed Virtual Environments", Maja Matijasevic,
Denis Gracanin, Kimon P. Valavanis, and Ignac Lovrek, 2002

frame_distr_vr02.pdf

[DVE-Future02] "Distributed Virtual Environments - An Active Future?", Tatiana Balikhina, Frank
Ball, David Duce; School of Computing and Mathematical Sciences, Oxford Brookes University ;
{tbalikhina, fball,daduce}@brookes.ac.uk ; Proceedings of the 20th Eurographics UK Conference
(EGUK.02)

dve_eu_futu02.pdf

[DVE-MM99] "Study on DVE with multimedia communication: Introduction for flexible method for
DVE expansion", D.Iwata et.al., Kyoto University, IEEE 1999

exdve_mm99.pdf

[DVE-MNG00] Fabre Y, Pitel G, Soubrevilla L, Marchand E, G´eraud T, Demaille A. "A framework to
dynamically manage distributed virtual environments". Virtual Worlds, Proceedings of the Second
International Conference, VW 2000, Paris, France, 5–7, July. Springer: Berlin, 2000; 54–64.

[DVE-P98] "A VEplatform system: A system for distributed virtual reality", Demuynck et.al., University
Antwerp, Belgium, 1998

VEplatform.pdf

[DVE-PERF02] "A performance study on multi-server DVE systems" by Beatrice Ng, Frederick W.B.
Li, Rynson W.H. Lau, Antonio Si, Angus Siu, Department of Computer Science, City University of
Hong Kong, and Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065, USA;

Henrik Gehrmann Master Thesis Page 133 of 200

Appendix TerraPeer • DVE Architecture and Implementation

accepted 30 December 2002. As part of their study, a DVE system called 'CyberWalk' was used; a
web-based distributed virtual walkthrough environment.

dve_perf03.pdf

[DVE-PLIM] "Accommodating performance limitations in distributed virtual reality systems" by J.R.
Ensor, G.U. Carraro, J.T. Edmark. Bell Laboratories, 101 Crawfords Corner Road #4F607 Holmdel,
NJ 07733, USA. 2000 Published by Elsevier Science B.V.

distr_vr_res.pdf

[DVE-TAX97] M.R. Macedonia and M.J. Zyda, “A taxonomy for networked virtual environment,” IEEE
Multimedia, Vol. 4, No. 1, 1997. And Macedonia MR, Zyda MJ. "A taxonomy for networked virtual
environments." IEEE Multimedia 1997; 4(1):48–56.

[DVE-SA95] M.R. Macedonia, “A network software architecture for large scale virtual environments,”
Ph.D. Thesis, Naval Postgraduate School, Monterey, California, June 1995.

[DVE-VJC01] Diehl S. "Distributed Virtual Worlds: Foundations and Implementation Techniques
Using VRML, Java and CORBA". Springer: New York, 2001.

[DVE-VRML] "Distributed Virtual Environments and VRML: an Event-based Architecture"; Mike Wray
(mjw@hplb.hpl.hp.com) & Rycharde Hawkes (rjh@hplb.hpl.hp.com); HP Labs (Bristol), Filton Road,
Bristol, BS12 6QZ, UK, 1998

http://keryxsoft.hpl.hp.com/documents/dve/vrml.htm

dve_vrml.htm and vrml_event98.pdf

[DWTP98] W. Broll, "DWTP - An Internet Protocol for Shared Virtual Environments". Proceedings of
the Virtual Reality Modeling Language Symposium 1998 (VRML'98), ACM pp. 49-56, 1997.

[EIM-SDVE99] H.H. Abrams, "Extensible Interest Management for Scalable Persistent Distributed
Virtual Environments", PhD Thesis, Naval Postgraduate School, Monterey CA USA, 1999.

[EM95] ”EM-An Environment Manager For Building Networked Virtual Environments ”, Q. Wang, M.
Green, C. Shaw, IEEE VRAIS’95, pp11, 1995

[FARCRY] CryENGINE

http://www.farcry-thegame.com

[FLEXI99] Herbert AJ, Hayton RJ, Bursell M. "Mobile Java objects". BT Technology Journal 1999; 17
(2). Networked distributed systems

http://www.bt.com/bttj/

[Game98] "Games on the ‘Net!", Michael Zyda, Naval Postgraduate School, 1998

GamesNet_ZydaMunich98.pdf

[GE02] "Game Engine Anatomy 101", 2002, Jake Simpson

http://www.extremetech.com/print_article/0,3998,a=29517,00.asp

Page 134 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

[HCI] HCI Bibliography : Human-Computer Interaction Resources; Gary Perlman

http://www.hcibib.org/

[HET03] "Handling Heterogeneity in Networked Virtual Environments", Helmuth Trefftz, Ivan Marsic,
Michael Zyda, 2003 by the Massachusetts Institute of Technology

Handling Heterogeneity in Networked Virtual Environments Presence12.1-2003.pdf

[HIVE] Large Scale Real Time Multi-User Virtual Reality Research (HIVE); Dave Snowdon
(dns@cs.nott.ac.uk); Department of Computer Science. MASSIVE-3 represents the ongoing
development of the HIVE Project Kernel (HIVEK).

http://www.crg.cs.nott.ac.uk/research/projects/HIVE/

[Honda95] Y. Honda et al., “Virtual Society: Extending the WWW to Support a Multiuser Interactive
Shared 3D Environment,” Proc. 1st Symposium Virtual Reality Modeling Language, ACM Press,
1995, pp.109-116.

[HORB] is a lightweight Java Object Request Broker (ORB) developed by H.Satoshi.

http://www.horb.org

[IEEE1278] Standard Commitee on Interactive Simulation, IEEE Computer Society. IEEE Standard
for Distributed Interactive Simulation. IEEE Std 1278.1-1995, 1995.

[J3DUI00] "3D User Interfaces with Java 3D", Jon Barrilleaux, August 2000, Softbound, 520 pages,
ISBN 1884777902. From the book description: “3D User Interfaces with Java 3D is a practical guide
for providing next-generation applications with 3D user interfaces for manipulation of in-scene
objects. Emphasis is on standalone and web-based business applications, such as for online sales
and mass customization, but much of what this book offers has broad applicability to 3D user
interfaces in other pursuits such as scientific visualization and gaming.”

[Java3D] The Java 3D API

http://java.sun.com/products/java-media/3D/
http://java.sun.com/products/java-media/3D/collateral/j3d_api/j3d_api_3.html

[JAVAGAME02] "Evaluating Java for Game Development" By Jacob Marner, B.Sc., Department of
Computer Science, University of Copenhagen, Denmark (jacob@marner.dk), March 4th, 2002

Evaluating Java for Game Development.pdf

[Joslin01] C. Joslin et al., “Sharing Attractions on the Net with VPARK,” IEEE Computer Graphics
and Applications, vol. 21, no. 1, Jan./Feb. 2001, pp. 61-71.

[JXTA-HELLO] "Hello JXTA!" by Raffi Krikorian, 04/25/2001

http://www.onjava.com/pub/a/onjava/2001/04/25/jxta.html

[JXTA-START] "Getting Started with JXTA, Part 1-5", O'Reilly Book Excerpts: JXTA in a Nutshell.
Scott Oaks is a Java Technologist at Sun Microsystems. Bernard Traversat is a well-known developer
in the Java Community and an active member of the Project JXTA. Bernard is the Engineering

Henrik Gehrmann Master Thesis Page 135 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Manager for the JXTA CORE. Li Gong is a well-known developer in the Java Community and an
active member of the Project JXTA. Li is the JXTA Engineering Director for the JXTA CORE.

http://www.onjava.com/pub/a/onjava/excerpt/jxtaian_2/index4.html

[JXTA-P02] "Project JXTA Virtual Network", Bernard Traversat, Mohamed Abdelaziz, Mike Duigou,
Jean-Christophe Hugly, Eric Pouyoul and Bill Yeager, Sun Microsystems, Inc., October 28, 2002

JXTAprotocols_01nov02.pdf

[JXTA-P03] ”JXTA v2.0 Protocols Specification”, Project JXTA http://www.jxta.org, Published 2003,
Copyright © 2001, 2002 Sun Microsystems Inc.

http://spec.jxta.org/v1.0/docbook/JXTAProtocols.pdf

jxtaprogguide_final.pdf

[Kalra98] P. Kalra et al., “Real-Time Animation of Realistic Virtual Humans,” IEEE Computer
Graphics and Applications, vol. 18, no. 5, Sept./Oct. 1998, pp.42-55.

[Kawakami98] Y. Kawakami, T. Yasuda, and S. Yokoi, “A Study on Multiuser 3D Virtual Space
Based on VRML,”, Technical Report of the Institute of Electronics Information and Information
Engineers, Oct. 1998, pp.7-14.

[Lea97] R. Lea et al., “Community Place: Architecture and Performance,” Proc. VRML97, ACM
Press, 1997, p.41-49.

[Learn99] "Learning and Building Together in an Immersive Virtual World"; Maria Roussos, Andrew
Johnson, Thomas Moher, Jason Leigh, Christina Vasilakis, Craig Barnes; University of Illinois at
Chicago; 1999 by the Massachusetts Institute of Technology

roussos99_Learning and Building ImmersiveVE.pdf

[LSVR99] "An Operating Environment For Large Scale Virtual Reality"; A Thesis Submitted To The
University Of Manchester For The Degree Of Doctor Of Philosophy In The Faculty Of Science And
Engineering April 1999; By Stephen Robert Pettifer, Department of Computer Science

An Operating Environment For Large Scale Virtual Reality srp-phd.pdf

[MaDVi02] "MaDViWorld: a software framework for massively distributed virtual worlds"; Patrik
Fuhrer*,†, Ghita Kouadri Most´efaoui and Jacques Pasquier-Rocha; Softw. Pract. Exper. 2002;
32:645–668 (DOI: 10.1002/spe.453)

[MaDViSPE] "Massively Distributed Virtual Worlds a Framework Approach MaDViWorld: a Java
Software Framework for Massively Distributed Virtual Worlds"; Patrik Fuhrer and Jacques Pasquier-
Rocha, University of Fribourg, Department of Informatics, Rue P.-A. de Faucigny 2, CH-1700
Fribourg, Switzerland, patrik.fuhrer@unifr.ch

http://diuf.unifr.ch/~fuhrer/

[MASSIVE-3] An ongoing development at the University of Nottingham of the HIVE project
distributed VR Kernel, HIVEK. MASSIVE-3 is a distributed multi-user virtual reality system, current
features of which include multiple users communicating via a combination of 3D graphics and real-
time packet audio.

Page 136 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

http://www.crg.cs.nott.ac.uk/research/systems/MASSIVE-3/

[MASSIVE95] C. Greenhalgh and S. Benford, “MASSIVE: A collaborative virtual environment for
teleconferencing,” ACM Transactions on Computer-Human Interaction, Vol. 2, No. 3, pp. 239–261,
1995. And “MASSIVE: A distributed virtual reality system incorporating spatial trading,” in
Proceedings IEEE DCS’95, Vancouver, Canada, 1995.

[MASSIVE99] C. Greenhalgh, "Large Scale Collaborative Virtual Environments", Springer 1999.

[MCG95] M.R. Macedonia, M.J. Zyda, D.R. Pratt, D.P. Brutzman, and P.T. Barham, “Exploiting
reality with multicast groups,” IEEE Computer Graphics and Applications, pp. 38–50, 1995. and
”Exploiting Reality with Multicast Groups : A Network Architecture for Largescale Virtual
Environments”, M.Macedonia, M.zyda, D. Pratt et al, IEEE VRAIS’95, pp2~10, 1995

[MOBJ95] "Architectural Support for Mobile Objects in Large Scale Systems", Caughey et.al, 1995

arch_agent_distr_vr.pdf

[MOSAIC] Mosaic was the name of the first web browser capable of understanding the HTTP
protocol. 1994.

[Moser99] H. Moser and D. Thalmann, “A Rule-Based Interactive Behavioral Animation System for
Humanoids,” IEEE Trans. Visualization and Computer Graphics, IEEE CS Press, vol. 5, no. 4, 1999,
pp. 281-307.

[MSVW02] Microsoft Corporation. Virtual Worlds Group. [4 February 2002].

http://www.vworlds.org

[NavISpace] Mark A. Foltz, "Designing Navigable Information Spaces". Washington University in St.
Louis. 1998.

Designing Navigable Information Spaces mfoltz-thesis.pdf

[NOMAD01] Wilson S, Sayers H, McNeill MDJ. "Using CORBA middleware to support the
development of distributed virtual environment applications". Proceedings of the 9th International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2001
(WSCG’2001), Plzen, Czech Republic, February 5–9, 2001.

[NPSNET94] M.R. Macedonia, M.J. Zyda, D.R. Pratt, P.T. Barham, and S. Zeswitz, “NPSNET: A
network software architecture for large scale virtual environments,” Presence: Teleoperators and
Virtual Environments, Vol. 3, No. 4, pp. 265–287. Naval Postgraduate School, Department of
Computer Science, Monterey, 1994.

Network Software Architecture For Large Scale Virtual Environments Presence.3.4.pdf

[NPSOFF94] "NPSOFF: An Object Description Language for Supporting Virtual World Construction",
Michael J. Zyda*, Kalin P. Wilson, David R. Pratt,
James G. Monahan and John S. Falby, 1994

NPSOFF Language Virtual World Construction CG.17.4.pdf

[NVE-D&I99] S. Singhal and M. Zyda, "Networked Virtual Environments. Design and
Implementation", Addison-Wesley, New York, 1999.

Henrik Gehrmann Master Thesis Page 137 of 200

Appendix TerraPeer • DVE Architecture and Implementation

 Mamoru Endo, Takami Yasuda, and Shigeki Yokoi Nagoya University, Japan, "A Distributed
Multiuser Virtual Space System", 2003, Published by the IEEE Computer Society

distr_vspace03.pdf

[OpenGL-Perf] "OpenGL Performer Getting Started Guide". SGI. Tutorial

[OW] OpenWorlds

http://www.openworlds.com/

[P2P-ACAD] "Peer-to-Peer for Academia", Andy Oram is an editor at O'Reilly & Associates;
10/29/2001;

http://www.openp2p.com/pub/a/p2p/2001/10/29/oram_speech.html

[P2PS03] “Introduction to the Peer-to-Peer Sockets Project” by Brad Neuberg, 12/03/2003

http://www.onjava.com/pub/a/onjava/2003/12/03/p2psockets.html

[P2P-Shirky] “What is P2P... and What Isn't?” Clay Shirky, 2000

http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html?page=2

[PARADISE] Project at the Stanford Distributed Systems Group led by Professor David Cheriton.

http://www.dsg.stanford.edu/paradise.html

[PORTA01] "Shared virtual reality for design and management: the Porta Susa project", Luca
Caneparo, Design Network Lab, Dipartimento di Progettazione architettonica, Politecnico di Torino,
Õ.le Mattioli 39, I 10125 Turin, Italy; 2001 Elsevier Science B.V.
Porta Susa project.pdf

[VRBC] R.A. Issa Ed., State of the Art Report: "Virtual Reality in Construction, International Council for Research
and Innovation in Building and Construction" CIB : http://www.bcn.ufl.edurtg24.

[Quake-BSP] Ben Humphrey, "Unofficial Quake 3 BSP Format".

www.gametutorials.com

[RING95] The Distributed Systems Research Group has T.A. Funkhouser, "RING:A client-server
system for multi-user virtual environments". In Proceedings of the 1995 Symposium on Interactive 3D
Graphics, 85-92. ACM SIGGRAPH, March 1995. And ”RING:A Client-Server System for Multiuser
Virtual Environment, Symposium on Interactive 3D Graphics”, pp85~92, T. Funkhouser, 1995

[Rodden96] Tom Rodden. Populating the application: a model of awareness for cooperative
applications. In Proceedings of the Conference on Computer Supported Cooperative Work, pp. 87–
96, Cambridge, MA, USA, 1996.

[SDL-MM] Marco Kraus, "Multimedia Entwicklung mit SDL".

www.pl-berichte.de/work/sdl

Page 138 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

[Sheep03] “The Interpretation of Dreams: An Explanation of the Electric Sheep Distributed Screen
Saver” by Scott Draves, 12/22/2003

http://www.openp2p.com/pub/a/p2p/2003/12/22/sheep.html

[SIGCHI] ACM SIGCHI; Curricula for Human-Computer Interaction; Copyright © 1996 by the
Association for Computing Machinery, Inc.

http://sigchi.org/cdg/

[Singal99] S.Singhal and M.Zyda, "Networked Virtual Environments Design and Implementation",
ACM Press, Siggraph Series, vol23, 1999.

[SPLINE] Scalable Platform for Large Interactive Networked Environments (SPLINE) research
project at Mitsubishi Electric Research Laboratories (MERL) led by Richard Waters and David
Anderson.

http://www.merl.com/projects/spline/

[SPLINE96] J.W. Barrus, R.C. Waters, and D.B. Anderson, “Locales: Supporting large multiuser
virtual environments,” IEEE Computer Graphics and Applications, Vol. 16, No. 6, pp. 50–57, 1996.

[SRM97] S. Floyd, V. Jacobson, Ching-gung Lin, S.McCanne and Lixia Zhang. "A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing", IEEE/ACM Transactions on
Networking, December 1997.

[SRM00] S. Kasera, et al, "Scalable Fair Reliable Multicast Using Active Services", IEEE Network
Magazine, 14(1), 2000.

[Toshiya97] N. Toshiya and M. Yoshiyuki, “Wonder Space: Interactive 3D Animation Browser,” Proc.
Siggraph 97, ACM Press, 1997, p. 111.

[VBVS01] "Virtual bodies and virtual spaces", J.M. Bishop, Department of Cybernetics, University of
Reading, UK, 2001

Virtual bodies and virtual spaces.pdf

[VOY02] Recursion Software. "Recursion Software: Products – Voyager 4.5.",[4 February 2002].

http://www.objectspace.com/products/voyager/

[VR-Interface] Meredith Bricken, "Virtual Worlds: No Interface to Design". Human Interface
Technology Laboratory (HITL), Washington Technology CenterUniversity of Washington. Tech
Report HITL

http://www.hitl.washington.edu/publications/papers/interface.html

[VRML97] VRML Consortium, "VRML 97 - The Virtual Reality Modeling Language", ISO/IEC, 1997.

[VRTP] Web3D Consortium Web site, VRTP Working Group

http://www.web3d.org/WorkingGroups/vrtp

Henrik Gehrmann Master Thesis Page 139 of 200

Appendix TerraPeer • DVE Architecture and Implementation

[VSCollab96] "Virtual Society: Collaboration in 3D Spaces on the Internet", RODGER LEA, Yasuaki
Honda And Kouichi Matsuda, Sony Computer Science Laboratory Tokyo, Japan and Sony
Architecture Labs, Tokyo, Japan, in final form 29 November 1996

v_soc97.pdf

[VSVM01] "Virtual Spaces and Virtual Manufacturing", Kraiem, Tunisia, IEEE 2001

Virtual spaces and virtual manufacturing.pdf

[X3D] Extensible 3D (X3D)

http://www.web3d.org/x3d/spec/ISO-IEC-19775/index.html

Page 140 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Bibliography and other Resources

Security in Co-authored Virtual Environments
Larsen, Christensen, DTU

Octree Tutorial; Ben Humphrey

www.gametutorials.com

Multimedia Entwicklung mit SDL; Marco Kraus

www.pl-berichte.de/work/sdl

Getting Started with the Java3D API
Sun Microsystems Tutorial

Real Time 3D Graphics with OpenGL
Chris Halsall, O'Reilly Network, 2000

Extending a Collaborative Architecture to Support Emotional Awareness
Garcia, Favela, Licea, Machorro, CICESE, Mexico

W3C Platform for Privacy Preferences Project (P3P)
Introduction Paper and v1.0 Deployment Guide

www.w3c.org/p3p

JXTA in a Nutshell
O'Reilly

Project JXTA: Java Programmer's Guide
Sun Microsystems, Inc., 2001

3D User Interfaces with Java3D
Jon Barrilleaux, Manning Publications, 2001

Java Network Programming
O'Reilly, 2nd Edition, Elliotte Rusty Harold, 2000

Database Nation - The death of privacy in the 21st century
O'Reilly, Simson Garfinkel, 2001

CODE - and other laws of cyberspace
Lawrence Lessig, Basic Books, 1999

Trust Economies in the Free Haven Project
Brian T. Sniffen, MIT, June 2000

PKI Security for JXTA Overlay Networks
Jeffrey E. Altman, IAM Consulting, February 2003

Peer-to-Peer Distributed Business Process
Atui Saini, Fiorano Software Inc, 2001

Peer-to-Peer Sharing of Web Applications
Robert J. Bayardo, Adina Costea, Rakesh Agrawal, IBM Research Report, Nov 2002

Henrik Gehrmann Master Thesis Page 141 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Escrow Services and Incentives in Peer-to-Peer Networks
Bill Horne, Benny Pinkas, Tomas Sander, Intertrust Tech, 2000

Reputation Systems
Communications of the ACM, Dec 2000

The value of reputation on eBay: A Controlled Experiment
Paul Resnick, Richard Zeckhauser, John Swanson, and Kate Lcokwood, June 2002

Poblano - A distributed trust model for peer-to-peer networks
Rita Chen and William Yeager, Sun Microsystems

A Distributed Trust Model
Alfarez Abdul-Rahman, Stephen Hailes, University College London

Supporting Structured Credentials and Sensitive Policies through Interoperable Strategies for
Automated Trust Negotiation
Ting Yu, Marianne Winslett, University of Illinois, Kent E. Seamons, Brigham Young University, Feb
2003

A Trust Model for Peer-to-Peer Content Distribution Networks
Guillaume Pierre, Maarten van Steen, Vrije Universiteit, Amsterdam

Building Trust in Decentralized Peer-to-Peer Electronic Communities
Li Xiong, Ling Liu, Georgia Inst. of Tech., ICECR-5

Privacy and Security in Location-based Systems with Spatial Models
Christian Hauser, University of Stuttgart, 2001

Supporting Trust in Virtual Communitites
Alfarez Abdul-Rahman, Stephen Hailes, University College London

Dynamic Trust Models for Ubiquitous Computing Environments
Coling English, Paddy Nixon, Sotirios Terzis, University of Strathclyde, Glasgow

A survey of Trust in Internet Applications
Tyrone Grandison, Morris Sloman, IEEE, 2000

Merging and Extending the PGP and PEM Trust Models - The ICE-TEL Trust Model
Chadwick, Young, Cicovic

Trust Model - Defining and Applying Generic Trust Relationship in a Networked Computing
Environment
Dr. Jack Stinson, Stephen V. Pellissier, Archie D. Andrews, ATI IPT, May 2000

Autonomous Cooperating Web Crawlers
Gregory Louis McLearn, Thesis, University of Waterloo, 2002

Booch, G. and Rumbaugh, J. and Jacobson, I. 1999. The Unified Modeling Language User Guide.
Addison Wesley.

Flanagan, D. 1997. JAVA in a Nutshell, Second Edition. O’Reilly.

Larman, G. 1998. Applying UML and Patterns. Prentice Hall.

Lea, R. and Matsuda, K. and Miyashita, K. 1996. Java for 3D and VRML Worlds. New Riders.

Oaks, S. and Wong, H. 1999. JAVA Threads, Second Edition. O’Reilly.

Page 142 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Rumbaugh, J. and Jacobson, I. and Booch, G. 1999. The Unified Modeling Language Reference
Manual. Addison Wesley.

Schach, S. 1999. Classical and Object-Oriented Software Engineering with UML and JAVA, Fourth
Edition. McGraw-Hill.

Stroustrup, B. 1997. The C++ Programming Language, Third Edition. Addison Wesley.

DIVE - Distributed Interaction Virtual Environment

http://www.sics.se/dive/

Distributed Virtual Environments Bibliography

http://www.hitl.washington.edu/kb/distvr/

"Project JXTA: Technical Shell Overview", Sun Microsystems, Inc., April 25, 2001

TechShellOverview.pdf

PowerPoint presentation about Networked Virtual Environments

Networked Virtual Environments presentat.pdf

"Multicast Grouping For Data Distribution Management", Katherine L. Morse, Michael Zyda, 2001

Multicast Grouping For Data Distribution Management MorseSIMPRA2001.pdf

O'Reilly P2P Directory What's New – The O'Reilly P2P directory lists companies, projects and
initiatives related to peer-to-peer technologies.

http://www.openp2p.com/pub/q/p2p_category

"The Graphical User Interface. Time for a Paradigm Shift?", Christine Zmoelnig, MA Hypermedia
Studies.

http://www.sensomatic.com/chz/gui/index.html

"Hot Virtual Reality Sites"

http://www.itl.nist.gov/iaui/ovrt/hotvr.html#Academia

"Graphical User Interface Timeline" by Nathan Lineback

http://toastytech.com/guis/guitimeline.html

Google directory Computers > Virtual Reality > Multi-User Systems

http://directory.google.com/Top/Computers/Virtual_Reality/Multi-User_Systems/?il=1

Jakob Nielsen's useit.com on usability

Henrik Gehrmann Master Thesis Page 143 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Web Resources for Java

http://www.javootoo.com
http://backend.userland.com/directory/167/howtosarticles

Web Resources for XML, SAX Parser, and XML Schema

http://www.xmlhack.com/read.php?item=2023
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPSAX3.html
http://java.sun.com/xml/jaxp/index.html
http://www.saxproject.org

Web Resources for Java Swing

http://www.jguru.com/faq/Swing
http://java.sun.com/products/jfc/tsc/
http://java.sun.com/products/jfc/tsc/articles/mixing/index.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.htm
http://www.oyoaha.com/lookandfeel/help.html

Computer Graphics Group, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology

http://graphics.lcs.mit.edu/publications.html

"Optimization of Motion Transmission for Virtual Actors", Bernhard Spanlang 9356122; GUP
University Linz, Austria, Last update: 07.05.1999; This work focuses on optimization methods for
information transmission of animated virtual objects.

1997, Robert Rockwell, Black Sun Interactive

http://www11.informatik.tu-muenchen.de/lehre/seminare/seminarWS9798/rockwell/spectrum/

"A Peer-To-Peer Message Exchange Scheme For Large Scale Networked Virtual Environments",
2002, Yoshihiro Kawahara, Hiroyuki Morikawa, Tomonori Aoyama

kawahara02peertopeer.pdf

"Distributed Applications for Collaborative Augmented Reality", Dieter Schmalstieg, Gerd Hesina;
This paper focuses on the distributed architecture of the collaborative augmented reality system
Studierstube.

distributed-applications-for-collaborative.pdf

Internet2
A consortium being led by 205 universities working in partnership with industry and government to
develop and deploy network applications and technologies.

http://www.internet2.edu

Page 144 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

ExtremeTech 3D Pipeline Tutorial, June 13, 2001

http://www.extremetech.com/article2/0,1558,9722,00.asp

Cisco technology highlights

http://www.cisco.com/en/US/tech/

Game Server Statistics

http://www.serverspy.net/site/

"Entertainment R&D for Defense"; Michael Zyda, John Hiles, Alex Mayberry, Casey Wardynski,
Michael Capps, Brian Osborn, Russell, Shilling, Martin Robaszewski, and Margaret Davis, The Moves
Institute, IEEE February 2003

Entertainment R&D for Defense MOVES-IEEE-CGA-2003.pdf

Henrik Gehrmann Master Thesis Page 145 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Page 146 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix II.Glossary

Abbreviations and Acronyms

ACK Acknowledgment
ADU Abstract Data Unit
AI Artificial Intelligence
AO Application Object
AOI Area of Interest; see Zones
API Application Programming Interface
AR Augmented Reality
Blog Weblog - a web-based diary generally focused on specific subject area
BSP Binary Space Partitioning
CAD Computer Aided Design
CORBA Common Object Request Broker
CP Community Place
C/S Client/Server model
CSCW Computer Supported Cooperative Work (sometimes Collaborative)
DaBP Dial-a-Behavior Protocol
DCOM Distributed Component Object Model
DIS Distributed Interactive Simulation
DIVE Distributed Interaction Virtual Environment
DNS Domain Name System
DOM Document Object Model - platform and language neutral interface that allows

programs to dynamically access and modify content, structure and
style of documents

DNS Domain Name Service; translates internet site names to their numeric
addresses

DR Designated Receiver
DRM Display Relative Mapping
DS Designated Server
DSM Distributed Shared Memory
DVE Distributed Virtual Environment
DWTP Distributed World's Transfer and Communication Protocol
FOV Field of View
GPU Graphical Processing Unit - similar to a CPU, but with specific support for

graphical algorithms
GUI Graphical User Interface
HCI Human Computer Interaction
HIVE Large Scale Real Time Multi-User Virtual Reality Research
HORB Lightweight Java Object Request Broker
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
HUD Heads-Up Displays are usually placed in front of the 3D scene (used for

feedback and control in VE's and games)
ICQ 'I seek you' application for internet chat based on messaging (others include

Yahoo and MSN Instant Messengers, and Trillian)
IDE Integrated Development Environment
IIOP Internet Inter-ORB Protocol - communication for distributed objects based

around the CORBA architecture; language/platform independent
IM Instant Messaging
IK Inverse Kinematics
IP Internet Protocol (Layer 3)
IPv6 Internet Protocol version 6 - reserves larger addressing space and includes

new options; successor of current IPv4
IRC Internet Relay Chat

Henrik Gehrmann Master Thesis Page 147 of 200

Appendix TerraPeer • DVE Architecture and Implementation

J2EE Java 2 Enterprise Edition
J3DUI Java3D user interface framework that provides convenience classes
Java3D The Java 3D API
JDBC Java Data-Base Connectivity
JVM Java Virtual Machine
LAD Look-at Direction
LOA Level-of-Articulation
LOD Level of Detail
MaDViWorld Massively Distributed Virtual World
MASSIVE Model, Architecture and System for Spatial Interaction in

Virtual Environments system
ML Mapping Layer
ms milliseconds
MUD Multi-user dungeon; text-based virtual adventure games played on the

internet, mostly based on the Telnet protocol
MVC Model-View-Control
NACK Negative acknowledgment or "repair request", i.e. when a packet was

received in a corrupted state
Net-VE Networked Virtual Environments
NFS Network File System
NPC Non-player characters (in games)
NSG Network Scene Graph
OAA Open Avatar Architecture
OMG Object Management Group
ORB Object Request Broker
OSI Open System Interconnection - communications framework model that

includes 7 layers of communication organized according to events
and occurrences

P2P Peer-to-Peer
PARADISE Performance Architecture for Advanced Distributed Interactive

Simulation Environments
PARIS Personal Augmented Reality Immersive System
POV Point of view
PVS Potentially Visible Sets (similar to BSP; method for determining surfaces of

objects actually in view at any given time and location)
RMTP Reliable Multicast Transport Protocol
SETI Search for Extraterrestrial Intelligence; global scientific project aimed at

discovering life elsewhere in the universe through the detection of
signals; through a screen saver application, remote processing

power is used to distribute the workload
SG Scene Graph
SGML Standard Generalized Markup Language
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol; enables object communication over the

internet, relies on XML and runs on top of HTTP to avoid firewalls
SOFT Software Framework for Tele-immersion
SPLINE Scalable Platform for Large Interactive Networked Environments
SRM Scalable Reliable Multicast
SSG Standard Scene Graph
SSS Simple Shared Script
SVR Shared Virtual Reality
TAWS Totally Active Workspace
TCP Transmission Control Protocol
UDP User Datagram Protocol; lost packets and out of order packets are not

handled
UI User Interface
UID Unique Identifier
VE Virtual Environment
VoIP Voice of IP

Page 148 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

VRML Virtual Reality Modeling Language [VRML97]
VSCP Virtual Space Client Protocol or Virtual Society Client Protocol
VSTP Application protocol for shared VE's based on top of standard

Internet protocols such as TCP/IP
VUI Virtual User Interface
X3D Extensible 3D; International Draft Standard using XML file format
XML Extensible Markup Language
XML-RPC A very simple remote procedure call protocol encoded in XML.

Definitions and Connotations

Illustration 7.1. TerraPeer Terminology and Conventions on page 152 is a collection of conventions
used, and acts as a reference.

3D Space or 3D World are often used interchangeable (also with VE), but the 'space' focuses more
on the VE as a whole (including the graphics), while the 'world' is more a perspective from the user's
(as a tool; in social context) point-of-view.

Advertisements are JXTA's language-neutral meta data structures that describe peer resources such
as peers, peer groups, pipes, and services. Advertisements are represented as XML documents.

Avatar - In Hinduism an avatar is the Terrestrial incarnation of a god or goddess. In SVR an avatar is
the user ‘‘incarnation’’ in cyberspace. Avatars can be defined as the "virtual representations of the
users" [DVE-VJC01].

Aura - The aura is the pre-definable radius of visibility and interaction among avatars.

Cyberspace - According to the definition of William Gibson, cyberspace is the total digital network, a
place of meeting and communication.

Binding is an implementation of the Project JXTA protocols for a particular environment (e.g., the
J2SE platform binding).

Codat – Containers objects that are used to hold any kinds of objects or data content (commonly a
document or file).

DVE – The Distributed Virtual Environment is a multi-user VE extended with a common network
infrastructure.

The environment has some basic settings that are equal for all peers, but otherwise consists of
zones and objects. A view of the environment is presented to the user. The Virtual Environment
(VE) represents the pure (single-user) 3D space, and usually all technical aspects required to run it as
well. The Distributed Virtual Environment (DVE) is a multi-user VE extended with a common
network infrastructure.

JXTA ID – Credential or a token used to uniquely identify the sender of a message; can be
used to provide message authorization.

JXTA - JXTA is not an acronym, and in particular the “J” does not refer to Java. JXTA is a made up
word coined by the project's original sponsor, Bill Joy. JXTA is derived from the word Juxtapose, as in
side by side. It is a recognition that peer-to-peer is juxtaposed to client/server or Web based
computing -- what is considered today's traditional computing model.

jux·ta·pose tr. v. To place side by side, especially for comparison or contrast.

Henrik Gehrmann Master Thesis Page 149 of 200

Appendix TerraPeer • DVE Architecture and Implementation

JXTA Core Specification - The JXTA Core Specification consists of the required components and
behaviors which are present in all conforming JXTA implementations. This includes the Peer
Endpoint Protocol (PEP) and the Peer Resolver Protocol (PRP).

JXTA ID Format - A JXTA ID Format is a scheme for representing it IDs of JXTA entities. Each ID
Format is identified by as sub-namespace of the URN namespace "jxta".

JXTA ID Type - A JXTA ID Type is describes the characteristics of JXTA IDs which refer to a
particular sort of JXTA entity. Currently this includes peer groups, peers, codats, pipes, module
classes, module specifications and module implementations, but may be extended to refer to other
types of entities in the future or in specific implementations.

JXTA Standard Services - The JXTA Standard Services are optional JXTA components and
behaviors. Implementations are not required to provide these services, but are strongly
RECOMMENDED to do so. This includes Peer Discovery Protocol (PDP), Peer Information Protocol
(PIP), Pipe Binding Protocol (PBP) and Rendezvous Protocol (RVP).

Mosaic was the name of the first web browser capable of understanding the HTTP protocol.

Multi-user worlds are "several users working on different machines can move through the world and
interact with one another or with the objects at the same time" [DVE-VJC01]

Module - An abstraction used to represent any piece of "code" used to implement a behavior in the
JXTA world. Network services are the mode common example of behavior that can be instantiated on
a peer.

Module Class - Represents an expected behavior and an expected binding to support the module; is
used primarily to advertise the existence of a behavior.

Module Implementation - The implementation of a given module specification; there may be
multiple module implementations for a given module specification.

Module Specification - Describes a specification of a given module class; it is one approach to
providing the functionality that a module class implies. There can be multiple module specifications
for a given module class. The module specification is primarily used to access a module.

Objects populate the environment. The state of an object is completely described by its attributes. A
Virtual Object is sometimes called an 'entity', and could be any geometric shape placed within the
VE. An object can represent a Service, and as such has additional properties. Basic Objects are
simply graphical nodes (or collections of) in a Scene Graph (SG). Service Objects extend the basic
ones, and add properties, such as a URL.

P2P or Peer-to-Peer - A decentralized networking paradigm in which distributed nodes, or peers,
communicate and work collaboratively to provide services.

Peers are applications that communicate to each other on a distributed (P2P) network using some
protocol. A peer can also be used as a notion for 'nodes' in a network model, or for 'homes' in a virtual
world context (i.e. a “peer zone” could be equivalent to a “homepage”). A peer process does not need
a server. All peers are created equal and communicate directly with other peer processes.

Peer Group - A collection of peers that have a common set of interests and have agreed upon a
common set of services.

Page 150 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

A process runs on one machine and handles the computational resources used to generate a view
for one user. A process corresponds to a peer.

Service – can be any kind of resource, for example a link, a chat-room, a file-sharing container, a
photo-album, or e-mail. The Virtual Service (a.k.a. Service Object) does not necessarily be
functional in the VE, but might launch external applications.

Space or World are often used interchangable, but the 'space' focuses more on the VE as a whole
(including the graphics), while the 'world' is more a perspective from the user's (as a tool; in social
context) point-of-view. Virtual worlds in general are defined as "computer-based models of three-
dimensional spaces of objects with restricted interaction" [DVE-VJC01].

System, as in VE or DVE system, means the entire software setup, and might include the hardware
as well.

SVR or Shared Virtual Reality - "SVR differs from Virtual Reality VR in that the experience of virtual
spaces is no longer individual, but rather shared across the Internet with other users simultaneously
connected. SVR offers an effective approach to Construction Data Model and Computer Supported
Collaborative Work, because it integrates both the communicative tools to improve collaboration and
the distributed environment to process information across the networks" [PORTA01].

User – an entity (not necessarily human) whom a view of the environment is presented to.

View – a view of the environment is generated under the control of one process on one machine.

Henrik Gehrmann Master Thesis Page 151 of 200

Illustration 7.1. TerraPeer Terminology and Conventions

Appendix TerraPeer • DVE Architecture and Implementation

Visibility Radius – see Zone and 'Aura'.

Virtual Environment - VE's are distributed "if active parts of it are spread throughout different
computers in a network" [DVE-VJC01]. The Virtual Environment represents the pure (single-user) 3D
space, and usually all technical aspects required to run it as well.

A Virtual Object is sometimes called an 'entity', and could be any geometric shape placed within the
VE.

Virtual Worlds are defined as "computer-based models of three-dimensional spaces of objects with
restricted interaction" [DVE-VJC01].

VRML is the Virtual Reality Markup or Modeling Language. At the end of 1997 a revised version
VRML97 became an official ISO-standard for web-based 3D graphics (ISO/IEC 14772). [VRML97]

X3D is the successor to the VRML. X3D improves upon VRML with new features, advanced
application programmer interfaces, additional data encoding formats, stricter conformance, and a
'componentized' architecture that allows for a modular approach to supporting the standard.

Zones – a bound virtual space representing a peer (sometimes a group of peers); zones in TerraPeer
represent the metaphor of a 'home' and are leveled planes restricted in size and located at specific
coordinates in the VE. In a different context, a zone can be a network architecture that defines a
mechanism to reduce network traffic among DVE users by dividing the VE space into areas, or zones

Page 152 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix III.Screenshots

Main application screenshot with all available controls and feedback, and the zone builder south
panel; objects in the VE are selected and display feedback on current operation (lifting, sliding)

Henrik Gehrmann Master Thesis Page 153 of 200

Illustration 7.2. Application screenshot 0

Appendix TerraPeer • DVE Architecture and Implementation

Main application screenshot with space navigation south panel

Page 154 of 200 Master Thesis Henrik Gehrmann

Illustration 7.3. Application screenshot 1

TerraPeer • DVE Architecture and Implementation Appendix

Main application screenshot with hidden side panels

Henrik Gehrmann Master Thesis Page 155 of 200

Illustration 7.4. Application screenshot 2

Appendix TerraPeer • DVE Architecture and Implementation

Main application screenshot with 'MyZone' in VE display foreground

Page 156 of 200 Master Thesis Henrik Gehrmann

Illustration 7.5. Application screenshot 3

TerraPeer • DVE Architecture and Implementation Appendix

Main application screenshot

Henrik Gehrmann Master Thesis Page 157 of 200

Illustration 7.6. Application screenshot 4

Appendix TerraPeer • DVE Architecture and Implementation

Page 158 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix IV.Application Tutorial

Please go to the project website for a tutorial.

Appendix V.UML Design

Package overview

Henrik Gehrmann Master Thesis Page 159 of 200

Appendix TerraPeer • DVE Architecture and Implementation

3D UI – package: terrapeer.vui.j3dui

Page 160 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Network – package: terrapeer.net

Henrik Gehrmann Master Thesis Page 161 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Space – package: terrapeer.vui.space

Page 162 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

VUI – package: terrapeer.vui

Henrik Gehrmann Master Thesis Page 163 of 200

Appendix TerraPeer • DVE Architecture and Implementation

XML – package: terrapeer.net.xml

Page 164 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Service – package: terrapeer.vui.service

Henrik Gehrmann Master Thesis Page 165 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Schema 1 – package: terrapeer.net.schema

Page 166 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Schema 2 – package: terrapeer.net.schema

Henrik Gehrmann Master Thesis Page 167 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Schema 3 – package: terrapeer.net.schema

Page 168 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Zone 1 – package: terrapeer.vui.zone

Henrik Gehrmann Master Thesis Page 169 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Zone 2 – package: terrapeer.vui.zone

Page 170 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Zone 3 – package: terrapeer.vui.zone

Henrik Gehrmann Master Thesis Page 171 of 200

Appendix TerraPeer • DVE Architecture and Implementation

Page 172 of 200 Master Thesis Henrik Gehrmann

Illustration 7.7. UML Layout (draft version - depricated)

TerraPeer • DVE Architecture and Implementation Appendix

Appendix VI.Use Cases

The three diagrams illustrate different aspects of the application: The P2P network, space navigation,
and the trust sub-system.

The last one was included merely for convenience as it is not implemented in the current version, but
was one of the consideration of this author during the early stage of this project. This stage
emphasized primarily the trust aspect of a P2P system. Similarly, the other drawings might not reflect
the true state of the application due to many changes in the specification since they were envisioned.
The abbreviations also reflect different wording: The 'Gyro' is now 'TerraPeer', PI stands for Personal
Information, and TLC for 'Trust Level Control'.

Thus, the reader is encouraged to view the attached use-cases purely with the purpose of abstracting
the essential concepts.

Henrik Gehrmann Master Thesis Page 173 of 200

Appendix TerraPeer • DVE Architecture and Implementation

P2P Network

Page 174 of 200 Master Thesis Henrik Gehrmann

Illustration 7.8. Use Case - Network

TerraPeer • DVE Architecture and Implementation Appendix

Space Navigation

Henrik Gehrmann Master Thesis Page 175 of 200

Illustration 7.9. Use Case - Space and Navigation

Appendix TerraPeer • DVE Architecture and Implementation

Trust System

Page 176 of 200 Master Thesis Henrik Gehrmann

Illustration 7.10. Use Case - Trust System

TerraPeer • DVE Architecture and Implementation Appendix

Appendix VII.TerraPeer Repository

Repository XML Schema Design

Henrik Gehrmann Master Thesis Page 177 of 200

Illustration 7.11. Structure of TerraPeer Repository with collection of zones

Appendix TerraPeer • DVE Architecture and Implementation

Page 178 of 200 Master Thesis Henrik Gehrmann

Illustration 7.12. Structure of ZoneType

TerraPeer • DVE Architecture and Implementation Appendix

Henrik Gehrmann Master Thesis Page 179 of 200

Illustration 7.13. Structure of a Zone

Appendix TerraPeer • DVE Architecture and Implementation

Repository XML Schema Code

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by TEAM (RENEGADE)
-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="TerraPeer">
<xs:annotation>

<xs:documentation>The TerraPeer XML Schema for P2P-based 3D
Worlds</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element ref="ID"/>
<xs:element ref="Version"/>
<xs:element ref="LastUpdated"/>
<xs:element ref="Name" minOccurs="0"/>
<xs:element ref="Zone"/>
<xs:element name="ZoneWorld" minOccurs="0">

<xs:complexType>
<xs:group ref="Repository"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Version">

<xs:annotation>
<xs:documentation>1.0</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="LastUpdated" type="xs:dateTime">

<xs:annotation>
<xs:documentation>Date and Timestamp of last

update</xs:documentation>
</xs:annotation>

</xs:element>
<xs:complexType name="ZoneType">

<xs:annotation>
<xs:documentation>Basic Zone Type</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="ID" type="xs:string"/>
<xs:element ref="Version"/>
<xs:element ref="LastUpdated"/>
<xs:element name="Name" type="xs:string"/>
<xs:element ref="Description" minOccurs="0"/>
<xs:element ref="Geometry"/>
<xs:group ref="Objects"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Vector3dType">

<xs:annotation>
<xs:documentation>3D Vector Type</xs:documentation>

</xs:annotation>
<xs:attribute name="X" type="xs:double"/>
<xs:attribute name="Y" type="xs:double"/>
<xs:attribute name="Z" type="xs:double"/>

</xs:complexType>
<xs:complexType name="SizeType">

<xs:annotation>
<xs:documentation>Size Type</xs:documentation>

</xs:annotation>
<xs:attribute name="width" type="xs:double"/>
<xs:attribute name="height" type="xs:double"/>

</xs:complexType>
<xs:complexType name="BaseObjectType">

<xs:annotation>
<xs:documentation>Basic Object Type</xs:documentation>

</xs:annotation>
<xs:all>

<xs:element ref="ObjectID"/>

Page 180 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

<xs:element ref="BBTYPE"/>
<xs:element ref="Name" minOccurs="0"/>
<xs:element ref="Description" minOccurs="0"/>
<xs:element ref="Position" minOccurs="0"/>
<xs:element name="LocalFileName" type="xs:string"

minOccurs="0"/>
</xs:all>

</xs:complexType>
<xs:complexType name="ServiceObjectType">

<xs:annotation>
<xs:documentation>Service Object Type</xs:documentation>

</xs:annotation>
<xs:all>

<xs:element ref="ID"/>
<xs:element ref="BBTYPE"/>
<xs:element ref="Name" minOccurs="0"/>
<xs:element ref="Description" minOccurs="0"/>
<xs:element ref="Position" minOccurs="0"/>
<xs:element name="LocalFileName" type="xs:string"

minOccurs="0"/>
<xs:element name="Web_URL" type="xs:string" minOccurs="0"/>
<xs:element name="FTP_URL" type="xs:string" minOccurs="0"/>
<xs:element name="BinaryContent" type="xs:base64Binary"

minOccurs="0"/>
</xs:all>

</xs:complexType>
<xs:group name="Repository">

<xs:annotation>
<xs:documentation>Repository of known

Zones</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element ref="Zone" maxOccurs="unbounded"/>
</xs:sequence>

</xs:group>
<xs:group name="Objects">

<xs:annotation>
<xs:documentation>All Objects within a

Zone</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element ref="BaseObject" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="ServiceObject" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:group>
<xs:element name="Position" type="Vector3dType">

<xs:annotation>
<xs:documentation>3D Position

Coordinates</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="Spatial" type="SizeType">

<xs:annotation>
<xs:documentation>2D Spatial Values</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="Zone" type="ZoneType">

<xs:annotation>
<xs:documentation>A single Zone</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="ID" type="xs:string">

<xs:annotation>
<xs:documentation>Unique Identifier</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="Name" type="xs:string">

<xs:annotation>
<xs:documentation>Descriptive Name</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="Description" type="xs:string">

<xs:annotation>

Henrik Gehrmann Master Thesis Page 181 of 200

Appendix TerraPeer • DVE Architecture and Implementation

<xs:documentation>A Text string describing the zone or
object</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="Geometry">

<xs:annotation>
<xs:documentation>Geometric Data</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:all>
<xs:element ref="Position"/>
<xs:element ref="Spatial"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:element name="ServiceObject" type="ServiceObjectType">

<xs:annotation>
<xs:documentation>Objects within a Zone that perfom a

Service</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="BaseObject" type="BaseObjectType">

<xs:annotation>
<xs:documentation>Simple 3D Objects within a

Zone</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="BBTYPE" type="xs:int">

<xs:annotation>
<xs:documentation>Building Block Type recognized by

TerraPeer</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="ObjectID" type="xs:string">

<xs:annotation>
<xs:documentation>Unique Object ID</xs:documentation>

</xs:annotation>
</xs:element>

</xs:schema>

Page 182 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Example XML Repository Document

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSPY v5 rel. 4 U (http://www.xmlspy.com)-->
<TerraPeer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\liu_g\projects\TerraPeer\project\terrapeer_v1
.xsd">

<ID>String</ID>
<Version>Text</Version>
<LastUpdated>2001-12-17T09:30:47-05:00</LastUpdated>
<Name>String</Name>
<Zone>

<ID>MZ</ID>
<Version>Text</Version>
<LastUpdated>2001-12-17T09:30:47-05:00</LastUpdated>
<Name>My Zone</Name>
<Description>String</Description>
<Geometry>

<Position X="3.1415" Y="3.1415" Z="3.1415"/>
<Spatial width="3.1415" height="3.1415"/>

</Geometry>
<BaseObject>

<ObjectID>String</ObjectID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="3.1415"/>
<LocalFileName>String</LocalFileName>

</BaseObject>
<ServiceObject>

<ID>String</ID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="3.1415"/>
<LocalFileName>String</LocalFileName>
<Web_URL>String</Web_URL>
<FTP_URL>String</FTP_URL>

<BinaryContent>R0lGODlhcgGSALMAAAQCAEMmCZtuMFQxDS8b</BinaryContent>
</ServiceObject>

</Zone>
<ZoneWorld>

<Zone>
<ID>Z1</ID>
<Version>Text</Version>
<LastUpdated>2001-12-17T09:30:47-05:00</LastUpdated>
<Name>Zone 1</Name>
<Description>String</Description>
<Geometry>

<Position X="3.1415" Y="3.1415" Z="2"/>
<Spatial width="3.1415" height="3.1415"/>

</Geometry>
<BaseObject>

<ObjectID>String</ObjectID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="1"/>
<LocalFileName>String</LocalFileName>

</BaseObject>
<ServiceObject>

<ID>String</ID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="3"/>
<LocalFileName>String</LocalFileName>
<Web_URL>String</Web_URL>
<FTP_URL>String</FTP_URL>

<BinaryContent>R0lGODlhcgGSALMAAAQCAEMmCZtuMFQxDS8b</BinaryContent>
</ServiceObject>

Henrik Gehrmann Master Thesis Page 183 of 200

Appendix TerraPeer • DVE Architecture and Implementation

</Zone>
<Zone>

<ID>Z2</ID>
<Version>Text</Version>
<LastUpdated>2001-12-17T09:30:47-05:00</LastUpdated>
<Name>Zone 2</Name>
<Description>String</Description>
<Geometry>

<Position X="3.1415" Y="3.1415" Z="6"/>
<Spatial width="3.1415" height="3.1415"/>

</Geometry>
<BaseObject>

<ObjectID>String</ObjectID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="5"/>
<LocalFileName>String</LocalFileName>

</BaseObject>
<ServiceObject>

<ID>String</ID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="4"/>
<LocalFileName>String</LocalFileName>
<Web_URL>String</Web_URL>
<FTP_URL>String</FTP_URL>

<BinaryContent>R0lGODlhcgGSALMAAAQCAEMmCZtuMFQxDS8b</BinaryContent>
</ServiceObject>

</Zone>
<Zone>

<ID>Z3</ID>
<Version>Text</Version>
<LastUpdated>2001-12-17T09:30:47-05:00</LastUpdated>
<Name>Zone 3</Name>
<Description>String</Description>
<Geometry>

<Position X="3.1415" Y="3.1415" Z="7"/>
<Spatial width="3.1415" height="3.1415"/>

</Geometry>
<BaseObject>

<ObjectID>String</ObjectID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="4"/>
<LocalFileName>String</LocalFileName>

</BaseObject>
<ServiceObject>

<ID>String</ID>
<BBTYPE>0</BBTYPE>
<Name>String</Name>
<Description>String</Description>
<Position X="3.1415" Y="3.1415" Z="5"/>
<LocalFileName>String</LocalFileName>
<Web_URL>String</Web_URL>
<FTP_URL>String</FTP_URL>

<BinaryContent>R0lGODlhcgGSALMAAAQCAEMmCZtuMFQxDS8b</BinaryContent>
</ServiceObject>

</Zone>
</ZoneWorld>

</TerraPeer>

Page 184 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix VIII.Drawings

Henrik Gehrmann Master Thesis Page 185 of 200

Illustration 7.14. Notes on virtual space representations and zoning

Appendix TerraPeer • DVE Architecture and Implementation

Page 186 of 200 Master Thesis Henrik Gehrmann

Illustration 7.15. Notes on the application and world design

TerraPeer • DVE Architecture and Implementation Appendix

Henrik Gehrmann Master Thesis Page 187 of 200

Illustration 7.16. Hand drawing of class and object structures

Appendix TerraPeer • DVE Architecture and Implementation

Page 188 of 200 Master Thesis Henrik Gehrmann

Illustration 7.17. Hand drawing of zone-peer-service relationships

TerraPeer • DVE Architecture and Implementation Appendix

Henrik Gehrmann Master Thesis Page 189 of 200

Illustration 7.18. Hand drawing of 3D environment specs

Appendix TerraPeer • DVE Architecture and Implementation

Page 190 of 200 Master Thesis Henrik Gehrmann

Illustration 7.19. Hand drawing of navigation interface, builder interface, and controls

TerraPeer • DVE Architecture and Implementation Appendix

Henrik Gehrmann Master Thesis Page 191 of 200

Illustration 7.20. Hand drawing of user interface layers

Appendix TerraPeer • DVE Architecture and Implementation

Page 192 of 200 Master Thesis Henrik Gehrmann

Illustration 7.21. Hand drawing of visibility properties

Illustration 7.22. Hand drawing of user input and feedback

TerraPeer • DVE Architecture and Implementation Appendix

Henrik Gehrmann Master Thesis Page 193 of 200

Illustration 7.23. Hand drawing of object sharing and zone repository updates

Appendix TerraPeer • DVE Architecture and Implementation

Page 194 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix IX.VE and DVE Comparison Tables

A comparative feature summary of non-distributed VE frameworks, toolkits and technologies.

Henrik Gehrmann Master Thesis Page 195 of 200

Illustration 7.24. DVE Comparison Table [AVOCADO, pp.31]

Appendix TerraPeer • DVE Architecture and Implementation

A comparative summary of DVE frameworks and toolkits.

Page 196 of 200 Master Thesis Henrik Gehrmann

Illustration 7.25. DVE Comparison Table [AVOCADO, pp.32]

TerraPeer • DVE Architecture and Implementation Appendix

A comparative summary of large-scale DVE systems. Because the presented systems are primarily
research prototypes, little is known about platforms, object model, data formats, supported input
devices and such. Therefore, this table only lists aspects relevant to scalability.

Henrik Gehrmann Master Thesis Page 197 of 200

Illustration 7.26. DVE Comparison Table [AVOCADO, pp.33]

Appendix TerraPeer • DVE Architecture and Implementation

Page 198 of 200 Master Thesis Henrik Gehrmann

TerraPeer • DVE Architecture and Implementation Appendix

Appendix X.Game Servers

The screenshot below shows a listing with running game severs on an arbitrary day. The game
selected in this statistic is Half-life with the 'Counter Strike' module.

Henrik Gehrmann Master Thesis Page 199 of 200

Illustration 7.27. Counter Strike Game Servers

Appendix TerraPeer • DVE Architecture and Implementation

Page 200 of 200 Master Thesis Henrik Gehrmann

