
Bio-CONCUR 2003 Preliminary Version

Control Flow Analysis for BioAmbients1

Flemming Nielson and Hanne Riis Nielson2

Technical University of Denmark

Corrado Priami and Debora Schuch da Rosa3

University of Trento

Abstract

This paper presents a static analysis for investigating properties of biological sys-
tems specified in BioAmbients. We exploit the control flow analysis to decode the
bindings of variables induced by communications and to build a relation of the am-
bients that can interact with each other. We eventually apply our analysis to an
example of gene regulation by positive feedback taken from the literature.

1 Introduction and Motivation

Modelling of biological systems is a challenge for computer science [27]. In
fact the complexity of these systems is some order of magnitude larger than
the computer systems ever built. Furthermore, the modelling of dynamical
behaviour of biological systems is becoming an urgent need for biologists that
are trying to coherently organize the huge amount of data available in the
post-genomic era. This paper is a step towards the definition of modelling
environments for biologists that can assist them in the definition and analysis
of complex systems.

Promising approaches based on process algebras allow to model and sim-
ulate the dynamic behaviour of molecular systems. The pioneering work on
modeling biochemical systems with a calculus is [10] where a version of the
λ-calculus is used. A better account of pathways descriptions is proposed
by [28] via a calculus for mobility where processes represent compounds and
communications represent interactions. Then, [24] enriched this model with

1 This research has been funded in part by the DEGAS project (number IST-2001-32072)
funded by the European Union and by the LoST project (number 21-02-0507) funded by
the Danish Natural Science Research Council.
2 Email: nielson@imm.dtu.dk, riis@imm.dtu.dk
3 Email: priami@dit.unitn.it, schuch@dit.unitn.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Nielson et al

quantitative aspects. Along the same line, we mention also the Bio-calculus
proposed in [16].

A process algebra called Core Formal Molecular Biology has been re-
cently proposed in [7]. The new calculus builds on the basic primitives of
the π-calculus. As in the other language-based models mentioned above, pro-
cesses represent compounds, sets of processes represent solutions, and their
behaviour is given by a set of rewrite rules, driven by suitable side-conditions.
The proposed rules are related to the biological realm and mimic typical reac-
tions that occur in biochemical networks, e.g. activation, synthesis, complex-
ation etc.

Recently, Regev proposed BioAmbients [25], a variant of the Ambient Cal-
culus [6] in which compartments are described as a hierarchy of boundary
ambients. This hierarchy can be modified by suitable operations that have
an immediate biological interpretation. For example, the enter primitive,
that moves an ambient into a (sibling) ambient, models a compartment entry.
Ambients contain compounds that interact via communications. A commu-
nication is only possible if the involved processes obey certain constraints,
e.g. either they are in the same compartment (local communications), or they
belong to two parallel compartments (sibling communication), or they be-
long to two ambients one within the other (parent-child communication). The
original presentation of BioAmbients has been refined in [26,5].

All the work mentioned above describe the behaviour of molecular systems
by relying on a transition system representation that can be explored to in-
vestigate the properties of interest. The main limitation of this approach is
the huge size of the representation. In fact the size of the transition system
is exponential in the size of the program representing the behaviour. In other
words all the proposals above implement a dynamic analysis of systems.

The classical alternative to dynamic analysis, when the size of the rep-
resentations is too large, is static analysis [17]. It only needs the text of the
program and can infer suitable properties of the behaviour of the system mod-
elled. The technique is much more efficient, but one has to pay a loss in the
precision of the properties checked. Historically, static analysis techniques
have been developed in the context of optimising compilers and only within
the last few years they have been successfully used for validating programs
in process calculi. In the classical application domains it is customary that
the complete program is available for analysis and hence the techniques have
focused on closed programs. Previous work have shown that static analysis
approaches can handle a variety of the necessary constructs including mobil-
ity and communication primitives as in the π-calculus [3], Mobile Ambients
[20,18] and Boxed Ambients [20].

We introduce here a static approach for analysing molecular processes spec-
ified in BioAmbients. To the best of our knowledge this is the first attempt at
exploiting static analysis in the biological application domain. The aim of the
analysis is to keep track of the contents of the ambients and the bindings of

2

Nielson et al

the names that may vary when communications occur. In BioAmbients, the
ambients are nameless and in order to talk about the contents of an ambient
we need a way of referring to it; we shall therefore annotate the program so
that we can distinguish between the various syntactic occurrences of ambients.
Using this information we build two relations describing the bindings of names
and the contents of ambients. The relations are updated while scanning the
specification and analysing the potential communications that may alter the
bindings of names and the potential execution of capabilities that may change
the contents of ambients. We show how the analysis works by modelling in
BioAmbients an example already published in [24] and specified there in the
π-calculus.

The exploitation of the results of our analysis in the biological setting is
immediate. For instance, we can use our analysis to establish whether two
ambients may interact (e.g., a protein with a degradation factor or with an-
other protein) or whether there exists a flow of information from one molecule
to another. Due to the efficiency of the solver of the constraints of the anal-
ysis we are able to handle larger molecular networks than dynamic analysis,
although our approach only suggests potential interaction. This could be a
breakthrough in the analysis of complex pathways: we can build models de-
scribing the dynamic behaviour of biological systems and using our analysis
technique we may (1) get faith in the models by validating their properties
in relation to those already recorded in public databases and (2) provide fur-
ther biological insights by establishing relations between elements that are
not directly related in the available representations on public databases (e.g.,
EcoCyc [12], WIT [30], KEGG [22], CSNDB [11], aMAZE [31], GeNet [13],
Transfac [32], INTERACT [9], DIP [33], BIND [2], SPAD [1], and Flynets
[29]).

The paper is organized as follows. In the next section we recall the basics
of BioAmbients. Section 3 introduces the analysis technique and Section 4
then applies it to an example taken from the literature. We eventually draw
some conclusions.

2 BioAmbients

BioAmbients [25,26,5] differ from Mobile Ambients [6] in two main respects:

• The ambients are nameless entities although their roles may be indicated
by comments. To distinguish between the various syntactic occurrences of
ambients we shall annotate the ambients as in [P]µ and we shall say that µ
is the identity of the ambient [P].

• The capabilities are based on pure names n with no internal structure.
Reactions are synchronous and both the object and the subject must agree
on the reaction in order for it to happen; the latter is accomplished by
having pairs of capabilities react with each other.

3

Nielson et al

P ::= 0 inactive process

| (n)P binding box for the name n

| [P]µ ambient P with identity µ

| M.P prefixing with capability M

| P | P ′ parallel processes

| P + P ′ non-deterministic choice

| rec X. P recursive process (X = P)

| X process variable

M ::= enter n | accept n enter movement

| exit n | expel n exit movement

| merge+ n | merge– n merge movement

| n!{m} | n?{p} local communication

| n !{m} | n ?̂{p} to child communication

| n !̂{m} | n ?{p} to parent communication

| n#!{m} | n#?{p} to sibling communication

Table 1
Syntax of BioAmbients.

Furthermore, the set of control structures for processes is slightly larger than
what is traditionally studied for Mobile Ambients in that it includes non-
deterministic choice as well as a general recursion construct in the manner of
CCS [15].

The syntax of the processes P and the capabilities M is given in Table 1.
The movement capabilities of BioAmbients are based on the subject and ob-
ject containing capabilities that share the same name; this is in contrast to
Mobile Ambients where movement capabilities are based on identities (called
ambient names) and is actually closer to the treatment of communication.
Ignoring this difference, the enter/accept and exit/expel capabilities are analo-
gous to the in/in and out/out capabilities of Mobile Ambients and its variants,
Safe Ambients [14] and Discretionary Ambients [20]. There is no analogue of
the open/open capabilities, rather there is a merge+/merge– construct that
disolves the boundary of one ambient and includes its contents in a sibling
ambient.

The communication primitives of BioAmbients are somewhat different
from those of Mobile Ambients in that they use names as channels and fur-
thermore only names can be exchanged as a result of the communication. As
for Mobile Ambients two processes can communicate if they run in parallel

4

Nielson et al

`s
wf 0

`p
wf P

`s
wf M.P

`s
wf P

`s
wf (n)P

`s
wf P `s

wf P ′

`s
wf P + P ′

`s
wf P

`s
wf rec X. P

`s
wf X

`s
wf P

`p
wf P

`p
wf P

`p
wf (n)P

`p
wf P `p

wf P ′

`p
wf P | P ′

`p
wf P

`p
wf [P]µ

Table 2
Well-formedness predicates: `p

wf P and `s
wf P .

within the same ambient; this is called local communication. However, two
processes may also communicate if they belong to ambients that are siblings.
Yet another kind of communication can happen when one ambient is the child
of another: a process in the child ambient may communicate with a process
in the parent ambient. As for Boxed Ambients [4] this really gives rise to
two kinds of communication depending on whether information flows from
the child to the parent or the other way. Compared to the π-calculus [15] the
names of channels are used in a localised manner.

The syntax is subject to a well-formedness condition that ensures that
a top-level process has no free process variables and that it basically is a
parallel composition of a number of processes that each is a sum of processes.
The latter condition is formalised by the predicate `p

wf P defined in Table
2; it makes use of the auxiliary predicate `s

wf P holding on sums of guarded
processes. The well-formedness conditions are somewhat more liberal than
the syntactic rules for sum and prefixing put forward in [26].

The semantics is given in the classical way using a congruence relation ≡
and a transition relation →. The congruence relation is defined in Table 3;
here we write fn(P) resp. fn(M) for the set of free names in P resp. M and we
write P [m/n] for the process that is as P except that all free occurrences of
n are replaced by m (subject to alpha-renaming of bound names). A similar
notation is used for free process variables, fv(P), and substitutions of free
process variables, P [Y/X]. The transition relation → is defined in Table 4.

The following result shows that well-formedness is preserved by the tran-
sition relation (up to structural congruence):

Proposition. If `p
wf P and P → Q then there exists Q′ such that `p

wf Q′

and Q′ ≡ Q.

3 Analysis

The aim of the analysis is to keep track of the contents of ambients and
the bindings of names; it amounts to an adaption of ideas presented in [20].
We shall refer to the ambients by their identity as specified by the syntactic
annotations of the process. In the examples we shall be careful and introduce
unique identities but this is not crusial for our approach: if two syntactically

5

Nielson et al

Alpha-renaming of bound names and bound variables:

(n)P ≡ (m)P [m/n]

n?{p}. P ≡ n?{q}. P [q/p]

n ?{p}. P ≡ n ?{q}. P [q/p]

n ?̂{p}. P ≡ n ?̂{q}. P [q/p]

n#?{p}. P ≡ n#?{q}. P [q/p]

rec X. P ≡ rec Y. P [Y/X]

if m /∈ fn(P)

if q /∈ fn(P)

if q /∈ fn(P)

if q /∈ fn(P)

if q /∈ fn(P)

if Y /∈ fv(P)

Reordering of parallel processes: Reordering of sum processes:

P | P ′ ≡ P ′ | P

(P | P ′) | P ′′ ≡ P | (P ′ | P ′′)

P | 0 ≡ P

P + P ′ ≡ P ′ + P

(P + P ′) + P ′′ ≡ P + (P ′ + P ′′)

P + 0 ≡ P

Scope rules for name bindings:

(n)0 ≡ 0

(n1)(n2)P ≡ (n2)(n1)P

(n)(P | P ′) ≡ ((n)P) | P ′ if n /∈ fn(P ′)

(n)([P]µ) ≡ [(n)P]µ

Table 3
Structural congruence relation: P ≡ P ′.

distinct ambients get the same identity it only means that the analysis will
not be able to distinguish between them and hence will not be as precise as it
could have been. In the rather simple analysis developed here we shall write
Ambient for the set of ambient identities and assume that it is finite.

As the names are subject to alpha-renaming they cannot be used to carry
information in the analysis. The usual way to circumvent this problem is
to assume that each name n has a canonical name written bnc, and then
assume that canonical names are preserved under alpha-renaming, i.e. that
bnc = bmc resp. bpc = bqc holds for the alpha-renaming clauses of Table 3.
We shall write Name for the set of canonical names and once more assume
that it is finite. Canonical capabilities are then capabilities using canonical
names rather than names; we write Cap for those.

The analysis keeps track of the following information:

• An approximation of the contents of ambients:

I ⊆ Ambient× (Ambient ∪Cap)

So u ∈ I(µ) (standing for (µ, u) ∈ I) means that µ may contain u. An
ambient may contain other ambients as well as capabilities. This part of

6

Nielson et al

Movement of ambients:

[(enter n. P + P ′) | P ′′]µ1 | [(accept n. Q + Q′) | Q′′]µ2 → [[P | P ′′]µ1 | Q | Q′′]µ2

[[(exit n. P + P ′) | P ′′]µ1 | (expel n. Q + Q′) | Q′′]µ2 → [P | P ′′]µ1 | [Q | Q′′]µ2

[(merge+ n. P + P ′) | P ′′]µ1 | [(merge– n. Q + Q′) | Q′′]µ2 → [P | P ′′ | Q | Q′′]µ1

Communication between ambients:

(n!{m}. P + P ′) | (n?{p}. Q + Q′)→P | Q[m/p]

(n !{m}. P + P ′) | [(n ?̂{p}. Q + Q′) | Q′′]µ→P | [Q[m/p] | Q′′]µ

[(n !̂{m}. P + P ′) | P ′′]µ | (n ?{p}. Q + Q′)→ [P | P ′′]µ | Q[m/p]

[(n#!{m}. P + P ′) | P ′′]µ1 | [(n#?{p}. Q + Q′) | Q′′]µ2 → [P | P ′′]µ1 | [Q[m/p] | Q′′]µ2

Execution in context:

P → Q

(n)P → (n)Q

P → Q

[P]µ → [Q]µ
P → Q

P | R → Q | R
P [rec X. P/X] → Q

rec X. P → Q

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Table 4
Transition relation: P → P ′.

the analysis is affected by the movement capabilities.

• An approximation to the relevant name bindings:

R ⊆ Name×Name

So ν ′ ∈ R(ν) (standing for (ν, ν ′) ∈ R) means that ν may take on the
value ν ′. Here ν ′ will typically be the canonical name of the name being
transmitted in the communication. This part of the analysis is affected by
the communication capabilities.

The judgements of the analysis have the form

(I,R) |=? P

and express that when P is enclosed within an ambient with the identity
? ∈ Ambient then I and R correctly capture the behaviour of P , this means
that if P evolves into P ′ in a number of steps, i.e. P → · · · → P ′, then also
(I,R) |=? P ′.

The analysis is specified in two stages. First we make sure that I and R
describe the initial process; this is done for processes in Table 5 and for capa-

7

Nielson et al

(I,R) |=? 0 iff true

(I,R) |=? (n)P iff bnc ∈ R(bnc) ∧ (I,R) |=? P

(I,R) |=? [P]µ iff µ ∈ I(?) ∧ (I,R) |=µ P

(I,R) |=? M.P iff (I,R) |=? M ∧ (I,R) |=? P

(I,R) |=? P | P ′ iff (I,R) |=? P ∧ (I,R) |=? P ′

(I,R) |=? P + P ′ iff (I,R) |=? P ∧ (I,R) |=? P ′

(I,R) |=? rec X. P iff (I,R) |=? P

(I,R) |=? X iff true

Table 5
Analysis of processes: (I,R) |=? P .

bilities in Table 6. The clauses of Table 5 simply amount to a straightforward
structural traversal of the processes; whenever a name is introduced it must be
reflected in the R component as expressed by the condition bnc ∈ R(bnc) and
whenever an ambient is introduced it must be reflected in the I component
as expressed by µ ∈ I(?) — note that when we inspect the contents of the
ambient we make sure to record that the enclosing ambient is µ as reflected by
the clause (I,R) |=µ P . For capabilities we use the judgement (I,R) |=? M
defined in Table 6 and explained below. The clauses for parallel processes and
sums of processes are equal thereby witnessing the simplicity of the analysis;
the same trend is followed in the analysis of recursion.

To understand the analysis of capabilities it is important to observe that
the names introduced by (n)P are constants whereas the names introduced in
input capabilities (called p above) are variables that may be bound to other
names (i.e. constants) as a result of communications. The clauses for processes
already ensure that constants stand for themselves in R; initially there will be
no requirements on the bindings of the variables of input capabilities, they will
be imposed when we study how to mimick the dynamics of the processes. The
clauses of Table 6 merely demand that for each possible binding of the names
occurring free in the capability (called n and m above), there is a record of
the corresponding instantiated capability in the I component of the analysis.

Finally we make sure that I and R also take the dynamics of the process
into account; this is formulated by the closure conditions in Table 7. The first
three clauses take care of the movement capabilities and the last four of the
communication capabilities. In each case the precondition expresses in terms
of I the potential presence of a redex in the semantics and the conclusion
then imposes the additional requirements on I and R necessary to mimick
the semantics.

Let us explain the clause for enter/accept; the clauses for the other move-

8

Nielson et al

(I,R) |=? enter n iff ∀νn : νn ∈ R(bnc) ⇒ enter νn ∈ I(?)

(I,R) |=? accept n iff ∀νn : νn ∈ R(bnc) ⇒ accept νn ∈ I(?)

(I,R) |=? exit n iff ∀νn : νn ∈ R(bnc) ⇒ exit νn ∈ I(?)

(I,R) |=? expel n iff ∀νn : νn ∈ R(bnc) ⇒ expel νn ∈ I(?)

(I,R) |=? merge+ n iff ∀νn : νn ∈ R(bnc) ⇒ merge+ νn ∈ I(?)

(I,R) |=? merge– n iff ∀νn : νn ∈ R(bnc) ⇒ merge– νn ∈ I(?)

(I,R) |=? n!{m} iff ∀νn, νm : νn ∈ R(bnc) ∧ νm ∈ R(bmc) ⇒ νn!{νm} ∈ I(?)

(I,R) |=? n?{p} iff ∀νn : νn ∈ R(bnc) ⇒ νn?{bpc} ∈ I(?)

(I,R) |=? n !{m} iff ∀νn, νm : νn ∈ R(bnc) ∧ νm ∈ R(bmc) ⇒ νn !{νm} ∈ I(?)

(I,R) |=? n ?̂{p} iff ∀νn : νn ∈ R(bnc) ⇒ νn ?̂{bpc} ∈ I(?)

(I,R) |=? n !̂{m} iff ∀νn, νm : νn ∈ R(bnc) ∧ νm ∈ R(bmc) ⇒ νn !̂{νm} ∈ I(?)

(I,R) |=? n ?{p} iff ∀νn : νn ∈ R(bnc) ⇒ νn ?{bpc} ∈ I(?)

(I,R) |=? n#!{m} iff ∀νn, νm : νn ∈ R(bnc) ∧ νm ∈ R(bmc) ⇒ νn#!{νm} ∈ I(?)

(I,R) |=? n#?{p} iff ∀νn : νn ∈ R(bnc) ⇒ νn#?{bpc} ∈ I(?)

Table 6
Analysis of capabilities: (I,R) |=? M .

ment capabilities follow the same pattern. From Table 4 it is clear that in
order for the transition to take place it must be the case that the enter and ac-
cept capabilities are inside ambients that are siblings and this is exactly what
is expressed by the precondition of the clause of Table 7: enter νn is inside µ1,
accept νn is inside µ2 and µ1 and µ2 are siblings since they both are inside µ.
From the semantics we see that as a result of the transition the ambient with
the enter capability will move into the ambient with the accept capability; in
our analysis this is expressed by the conclusion of the clause that says that µ1

is inside µ2.

Turning to the clauses for communication capabilities we shall explain the
one for local communication; the others follow the same overall pattern. The
precondition expresses that νn!{νm} and νn?{νp} must be within the same
ambient (µ) exactly as is required in the semantics of Table 4. The effect of
the communication is to perform a binding in the continuation of the input
capability; this is captured by including µm in R(νp). The information of R
is global so it is available everywhere and in particular in the continuation of
the input capability.

The semantic correctness of the analysis is expressed by:

9

Nielson et al

Enter/accept: ∀µ, µ1, µ2, νn : enter νn ∈ I(µ1) ∧ µ1 ∈ I(µ)∧

accept νn ∈ I(µ2) ∧ µ2 ∈ I(µ)

⇒ µ1 ∈ I(µ2)

Exit/expel : ∀µ, µ1, µ2, νn : exit νn ∈ I(µ1) ∧ µ1 ∈ I(µ2)∧

expel νn ∈ I(µ2) ∧ µ2 ∈ I(µ)

⇒ µ1 ∈ I(µ)

Merge: ∀µ, µ1, µ2, νn : merge+ νn ∈ I(µ1) ∧ µ1 ∈ I(µ)∧

merge– νn ∈ I(µ2) ∧ µ2 ∈ I(µ)

⇒ ∀µ′ : µ′ ∈ I(µ2) ⇒ µ′ ∈ I(µ1)

To local: ∀µ, νm, νp, νn : νn!{νm} ∈ I(µ)∧

νn?{νp} ∈ I(µ)

⇒ νm ∈ R(νp)

To child: ∀µ, µc, νm, νp, νn : νn !{νm} ∈ I(µ)∧

νn ?̂{νp} ∈ I(µc) ∧ µc ∈ I(µ)

⇒ νm ∈ R(νp)

To parent: ∀µ, µc, νm, νp, νn : νn !̂{νm} ∈ I(µc) ∧ µc ∈ I(µ)∧

νn ?{νp} ∈ I(µ)

⇒ νm ∈ R(νp)

To sibling: ∀µ, µ1, µ2, νm, νp, νn : νn#!{νm} ∈ I(µ1) ∧ µ1 ∈ I(µ)∧

νn#?{νp} ∈ I(µ2) ∧ µ2 ∈ I(µ)

⇒ νm ∈ R(νp)

Table 7
Closure condition on I and R.

Theorem. Assume P → Q, (I,R) |=? P and ∀n ∈ fn(P) : bnc ∈ R(bnc).
Then (I,R) |=? Q.

This says that the analysis result describes an over-approximation to the actual
behaviour of the process: it takes all the actual transition steps of the process
into account. However, due to the simplicity of the analysis there will also be
situations where the analysis information indicates that a transition may take
place but where it actually never will be so.

The proof of the theorem is by induction on P → Q and it uses the
following standard lemma that can be proved by induction on P ≡ Q:

Lemma. If P ≡ Q then (I,R) |=? P if and only if (I,R) |=? Q.

10

Nielson et al

The analysis is implemented using the Succinct Solver [19]. This solver
works over finite (but not necessarily bounded) universes and accepts as input
a static analysis specified as clauses in ALFP (Alternation-Free Least Fixed
Point Logic) and it will then compute their least solution. Actually, the clauses
of Tables 5, 6 and 7 are already written in ALFP so the implementation is
straightforward.

The Succinct Solver is implemented in Standard ML and exploits a number
of clever algorithms and data structures in order to obtain not only a good
performance but also a formally predictable time complexity. Compared with
other solvers, the Succinct Solver is optimised for handling sparse relations
as we believe they frequently appear in context dependent static analysis. In
the specification of the analysis above we have not been concerned with these
issues at all and our practical experiments have not indicated a need for doing
so; as an example when analysing the process to be presented in the next
section, the solver will operate over a universe with just 89 atoms and it will
construct an I relation with 75 elements and a R relation with 33 elements;
the computation of these relations takes less than a second.

However, for more complex examples it may be worthwhile to rewrite the
analysis to better exploit the representation of relations. As an illustration of
what can be done consider for example the analysis of the capability enter n
in Table 6: it will give rise to a pair (enter νn, ?) in I for each possible value
νn of bnc in R. An alternative specification would just include (enter bnc, ?)
in I and then inspect R as part of checking for the presence of a redex in the
closure condition of Table 7.

4 Example: Transcriptional Regulation by Positive Feed-
back

We shall now use BioAmbients to model the same example specified in [24] re-
lying on a variant of the stochastic π-calculus [23]. The system, illustrated in
Figure 1 and presented in Table 8, regulates gene expression by positive feed-
back. It includes two genes (ambients GeneA and GeneTF), their transcribed
mRNAs (ambients RNAA and RNATF), the corresponding translated proteins
(ambients ProteinA and ProteinTF) and the degradation of both RNA and
protein molecules. The events are mediated by interaction with cellular ma-
chineries for DNA transcription (ambient Transcr), RNA translation (ambient
Transl) and RNA and protein degradation (ambients RNAdeg and Proteindeg).
Each of these interactions involves different molecular motifs (names basal ,
utr , degm, and degp).

The main idea that drives the coding of the biological process in bioam-
bients is to use capabilities to move interacting molecules in position where
communications can occur. Furthermore, since we mimicked the π-calculus
specification of the same system we triggered capabilities execution by com-
munications.

11

Nielson et al

S$

XWU
GHJP

GHJS

7)

S$

XWU GHJP

GHJS

%LQG.LQDVH

7)%LQG.LQDVH
EDFNERQH

SWDLO

51$
'(*5$'$7,21

75$16/$7,21

3URWHLQ
'(*5$'$7,21

75$16&5,37,21

XQELQG

ELQG

D7)

Fig. 1. Graphical presentation of Transcriptional Regulation by Positive Feedback
[24].

After two sibling communications on the name basal between Transcr and
both GeneA and GeneTF and after the movement of ambients originated by
the capabilities expel a/exit a and expel c/exit c, the ambients RNAA and
RNATF are both at the top level.

Now the translation mechanism moves ProteinA and ProteinTF to the top
level through two sibling communications on the channel utr between Transl
and both RNAA and RNATF followed by the movements generated by the
capabilities expel b/exit b and expel e/exit e.

In the resulting configuration ProteinA binds ProteinTF by accepting ActiveTF

inside itself using the accept tf /enter tf capabilities. Then ProteinTF becomes
active by expelling the ambient BoundTF with the capabilities expel atf /exit atf .
For BoundTF there are now three alternatives:

(i) Using a sibling communication on the channel bb2 it first synchronises
with the Kinase of ProteinA, then it synchronises with the parent ProteinA

on the channel bb1 , and eventually it expels the ambient ActiveTF with
the capabilities expel f/exit f . The ambient ActiveTF is now expelled
from ProteinA by the capabilities expel g/exit g. Then ActiveTF can
interact either with the transcription factor Transcr by a sibling commu-
nication on the channel ptail or with the degradation factor Proteindeg by

12

Nielson et al

(a)(b)(c)(d)(e)(f)(g)(bb1)(bb2)(bb3)(basal)(pa)(utr)(degm)(degp)(tf)(atf)(ptail)

[rec X1. (basal#?{x2}. expel a. X1 + pa#?{x1}. expel a. X1)

| [rec X2. exit a. (utr#?{x4}. expel b. X2 + degm#?{x3}. 0)

| [exit b. rec X3. accept tf . (bb1 !{d}. (expel g. X3 + X3)

+degp#?{x6}. bb3 !{d}. bb3 !{d}. 0

+degp#?{x7}. bb3 !{d}. 0)

| [rec X4. (bb2#!{d}. X4 + bb3ˆ?{x5}. 0)]Kinase]ProteinA]RNAA]GeneA

| [rec X5. (basal#?{y2}. expel c. X5 + pa#?{y1}. expel c. X5)

| [rec X6. exit c. (utr#?{y4}. expel e. X6 + degm#?{y3}. 0)

| [exit e. enter tf . expel atf . accept atf . 0

| [exit atf . (bb1ˆ?{y9}. enter atf . 0

+bb3ˆ?{y8}. 0

+bb2#?{y7}. (bb1ˆ?{y6}. expel f . 0 + bb3ˆ?{y5}. 0))

| [exit f. exit g. rec X7. (ptail#!{d}. X7

+degp#?{y10}. 0)]ActiveTF]BoundTF]ProteinTF]RNATF]GeneTF

| [rec X8. basal#!{d}. X8 + ptail#?{z1}. pa#!{d}. X8]Transcr

| [rec X9. utr#!{d}. X9]Transl

| [rec X10. degm#!{d}. X10]RNAdeg

| [rec X11. degp#!{d}. X11]Proteindeg

Table 8
BioAmbient representation of Transcriptional Regulation by Positive Feedback.

a sibling communication on the channel degp. Note that BoundTF can be
dissolved at any time if ProteinA starts a degradation through a sibling
interaction along the channel degp with Proteindeg .

(ii) It can be dissolved after a communication from the parent ProteinA on
the channel bb3 because ProteinA has started a degradation step with a
sibling communication on the channel degp.

(iii) It can enter again ProteinTF after a communication from the parent along
the channel bb1 .

The specification of the system is reported in Table 8. Note that to avoid
a heavy use of parentheses, we write the summation as well as the parallel
composition operator immediately under the beginning of the first summand.
To aid the analysis we have alpha-renamed the bound variables apart and we
have made sure that the identities of the ambients are distinct.

The result of analysing the system is displayed in Table 9. Most of the
entries of the I component account for the syntactic structure of the process;

13

Nielson et al

I : (Proteindeg , degp#!{d}),

(RNAdeg , degm#!{d}),

(Transl , utr#!{d}),

(Transcr , pa#!{d}), (Transcr , ptail#?{z1}), (Transcr , basal#!{d}),

(ActiveTF , degp#?{y10}), (ActiveTF , ptail#!{d}), (ActiveTF , exit g), (ActiveTF , exit f),

(BoundTF ,ActiveTF), (BoundTF , bb3ˆ?{y5}), (BoundTF , expel f), (BoundTF , bb1ˆ?{y6}),
(BoundTF , bb2#?{y7}), (BoundTF , bb3ˆ?{y8}), (BoundTF , expel atf),
(BoundTF , bb1ˆ?{y9}), (BoundTF , exit atf),

(ProteinTF ,ActiveTF), (ProteinTF ,BoundTF), (ProteinTF , accept atf),
(ProteinTF , expel atf), (ProteinTF , enter tf), (ProteinTF , exit e),

(RNATF ,ActiveTF), (RNATF ,BoundTF), (RNATF ,ProteinTF),
(RNATF , degm#?{y3}), (RNATF , expel e), (RNATF , utr#?{y4}), (RNATF , exit c),

(GeneTF ,ActiveTF), (GeneTF ,BoundTF), (GeneTF ,ProteinTF), (GeneTF ,RNATF),
(GeneTF , pa#?{y1}), (GeneTF , expel c), (GeneTF , basal#?{y2}),

(Kinase, bb3ˆ?{x5}), (Kinase, bb2#!{d}),

(ProteinA,ActiveTF), (ProteinA,BoundTF), (ProteinA,ProteinTF), (ProteinA,Kinase),
(ProteinA, bb3 !{d}), (ProteinA, degp#?{x7}), (ProteinA, degp#?{x6}),
(ProteinA, expel g), (ProteinA, bb1 !{d}), (ProteinA, accept tf), (ProteinA, exit b),

(RNAA,ActiveTF), (RNAA,ProteinA), (RNAA, degm#?{x3}), (RNAA, expel b),
(RNAA, utr#?{x4}), (RNAA, exit a),

(GeneA,ActiveTF), (GeneA,ProteinA), (GeneA,RNAA), (GeneA, pa#?{x1}),
(GeneA, expel a), (GeneA, basal#?{x2}),

(?,ProteinA), (?,RNAA), (?,ActiveTF), (?,BoundTF), (?,ProteinTF), (?,RNATF),
(?,Proteindeg), (?,RNAdeg), (?,Transl), (?,Transcr), (?,GeneTF), (?,GeneA)

R : (x1, d), (x2, d), (x3, d), (x4, d), (x5, d), (x6, d), (x7, d),
(y1, d), (y2, d), (y3, d), (y4, d), (y5, d), (y6, d), (y7, d), (y8, d), (y9, d), (y10, d),
(z1, d),

(ptail , ptail), (atf , atf), (tf , tf), (degp, degp), (degm, degm), (utr , utr), (pa, pa),
(basal , basal),
(bb3 , bb3), (bb2 , bb2), (bb1 , bb1), (g , g), (f , f), (e, e), (d , d), (c, c), (b, b), (a, a)

Table 9
Analysis result.

the dynamics of the system causes the underlined pairs to be added. These
entries clearly confirm the behaviour of the system as described above:

• The pairs (GeneA,ProteinA), (?,ProteinA), (?,RNAA), (GeneTF ,ProteinTF),
(?,ProteinTF) and (?,RNATF) reflect the movement of the ambients ProteinA,
ProteinTF , RNAA and RNATF to the top level.

• The pair (ProteinA,ProteinTF) witnesses that ProteinTF enters ProteinA

14

Nielson et al

and the activation of BoundTF inside ProteinA is then reflected by the pres-
ence of the pair (ProteinA,BoundTF).

• The expelling of ActiveTF from ProteinA is reflected by the presence of the
pair (?,ActiveTF).

As the analysis specifies an over-approximation to the precise contents of the
ambients it is actually more interesting to observe the information that is
not included in I as this confirms what is definitely not happening. As an
example we can see that the ambient Kinase does not move at all — only the
pair (ProteinA,Kinase) is present in I — and hence even though there may be
several copies of ProteinA in the system they are guaranteed not to get their
Kinase components mixed up; the full arguments involve checking that there
are no (ProteinA,ProteinA), (ProteinA, merge+ · · ·) or (ProteinA, merge– · · ·)
in I.

The R component approximates the bindings of the names and since all
communications in the example amount to nothing but synchronisation we
observe that all variables may end up being bound to the dummy name d.
Also we see that all variables may eventually get bound to a value.

5 Conclusion and Further Work

The paper presented a new control flow analysis for BioAmbients, a calculus
based on Mobile Ambients and specifically tuned to model biological sys-
tems. Our proposal is the first attempt to adopt static analysis techniques
for analysing molecular interactions. We established the feasibility of the ap-
proach on a case study taken from [24], where a gene regulation by positive
feedback is modelled in π-calculus.

The analysis introduced here is a very simple one because it is both con-
text insensitive and flow insensitive. Nevertheless, it has proved very useful
for debugging the preliminary versions of our specification. In fact, the basic
mechanisms of ambient calculi and π-like calculi are quite different in mod-
elling dimers. In the BioAmbients we can simply decide that one component
enters another in the same ambient or that two ambients merge to generate a
new single ambient including the content of both the merging ones. In the π-
calculus we model this situation by letting the constituent of the dimer share
a new private channel through a scope extrusion and subsequent closing of the
enlarged scope. This difference prevents each π-calculus process in the specifi-
cation in [24] from being matched by a corresponding ambient, and hence the
overall behaviour of the two systems is not easily checked to be equivalent. We
used our analysis to check that the interacting entities are the same in both
specifications and that the flow of information represented by new bindings
is the same in both specification. We iterated the process of specifying the
system and analysing it several times before reaching a BioAmbient specifica-
tion with the same behaviour as the π-calculus specification. This practical

15

Nielson et al

experiment shows how important static analysis is in the modelling phase of
biological systems, when we have to write a specification that matches the
experimental knowledge available from biological data.

We are currently investigating a methodology to code biological systems
in BioAmbients to facilitate the usage of our machinery. Actually there are
classifications of the kind of biological reactions that can occur within cells
that could be compiled into ambients macros. Then the system specification
would be the composition of these macros.

Furthermore, a major problem in modelling biological systems is the se-
lection of parameters that can vary a lot from one publication to another and
even from one database to another for the same experiment. To be more ac-
curate in this direction, we are working to extend the semantics as well as
the analysis to take stochastic information into account. A suitable approach
could be to rely on the enhanced operational semantics [8] where stochas-
tic information is derived by a relabelling function and it is a parameter of
the semantic model [21]. This separation of concerns should allow an easy
extension of the analysis presented here and it should also allow to run the
analysis solver on the same specification many time with different quantitative
parameters thus comparing different experiments.

References

[1] Spad signaling pathway database. 2000.

[2] G. D. Bader, I. Donaldson, C. Wolting, B. F. Ouellette, T. Pawson, and C. W.
Hogue. Bind-the biomolecular interaction network database. Nucleic Acids
Research, 29(1):242–245, 2001.

[3] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the
π-calculus with applications to security. Information and Computation, 168:68–
92, 2001.

[4] M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambients. In Theoretical
Aspects in Computer Science (TACS 2001), volume 2215 of Lecture Notes in
Computer Science, pages 37–63. Springer, 2001.

[5] L. Cardelli. Bioware languages. In Computer Systems - Papers for Roger
Needham. 2003.

[6] L. Cardelli and A. D. Gordon. Mobile Ambients. In Foundations of Software
Science and Computation Structures (FoSSaCS 1998), volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer, 1998.

[7] V. Danos and C. Laneve. Core formal molecular biology. In European
Symposium on Programming (ESOP03), to appear, 2003.

[8] P. Degano and C. Priami. Enhanced operational semantics: A tool for
describing and analysing concurrent systems. ACM Computing Surveys,
33,2:135–176, 2001.

16

Nielson et al

[9] K. Eilbeck, A. Brass, N. Paton, and C. Hodgman. Interact: an object oriented
protein-protein interaction database. In Intelligent Systems for Molecular
Biology, volume 7, pages 87–94, Palo Alto, 1999. AAAI Press.

[10] W. Fontana and L. W. Buss. The arrival of the fittest: Toward a theory of
biological organization. Bull. Math. Biol., 56:1–64, 1994.

[11] T. Igarashi and T. Kaminuma. Development of a cell signalling networks
database. In R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein, editors,
Proccedings of the Pacific Symposium of Biocomputing ’97, pages 187–197,
Singapore, 1997. World Scientific Press.

[12] P. D. Karp, M. Krummenacker, S. Paley, and J. Wagg. Integrated
pathway/genome databases and their role in drug discovery. Trends in
Biotechnology, 17(7):275–281, 1999.

[13] F. A. Kolpakov, E. A. Ananko, G. B. Kolesov, and N. A. Kolchanov. Genenet:
a gene network database and its automated visualization. Bioinformatics,
14(8):529–537, 1998.

[14] F. Levi and D. Sangiorgi. Controlling interference in ambients. In
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2000), pages 352–364. ACM Press, 2000.

[15] R. Milner. Communicating and Mobile Systems: The pi-Calculus. Cambridge
University Press, 1999.

[16] M. Nagasaki, S. Onami, S. Miyano, and Kitano H. Bio-calculus: Its concept
and molecular interaction. Genome Informatics, 10:133–143, 1999.

[17] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis.
1999.

[18] F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating firewalls using flow
logics. Theoretical Computer Science, 283(2):381–418, 2002.

[19] F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP. Nordic
Journal of Computing, 9:335–372, 2002.

[20] H. Riis Nielson, F. Nielson, and M. Buchholtz. Security for mobility. Technical
Report WP6-IMM-I01-Int-001, DEGAS, 2002.

[21] C. Nottegar, C. Priami, and P. Degano. Performance evaluation of mobile
processes via abstract machines. IEEE Transactions on Software Engineering,
27(10), 2001.

[22] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. Kegg:
Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27(1):29–34,
2000.

[23] C. Priami. Language-based performance prediction for distributed and mobile
systems. INFCTRL: Information and Computation (formerly Information and
Control), 175, 2002.

17

Nielson et al

[24] C. Priami, A. Regev, W. Silverman, and E. Shapiro. Application of a stochastic
passing-name calculus to representation and simulation of molecular processes.
Information Processing Letters, 80:25–31, 2001.

[25] A. Regev. Computational system biology: A calculus for biomolecular
knowledge. PhD thesis, Tel Aviv University, 2003.

[26] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro.
BioAmbients: An abstraction for biological compartments. 2003. Manuscript
available from http://www.luca.demon.co.uk/.

[27] A. Regev and E. Shapiro. Cells as computations. Nature, 419:343, 2002.

[28] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation
of biochemical processes using the π-calculus process algebra. In Pacific
Symposium of Biocomputing (PSB2001), pages 459–470, 2001.

[29] C. Sanchez, C. Lachaize, F. Janody, B. Bellon, L. Roder, J. Euzenat,
F. Rechenmann F, and B. Jacq. Grasping at molecular interactions and
genetic networks in drosophila melanogaster using flynets, an internet database.
Nucleic Acids Research, 27(1):89–94, 1999.

[30] E. Selkov, Y. Grechkin, N. Mikhailova, and E. Selkov. Mpw: the metabolic
pathways database. Nucleic Acids Research, 26(1):43–45, 1998.

[31] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert D,
and S. J. Wodak. Representing and analysing molecular and cellular function
using the computer. Biological Chemistry, 381(9–10):921–935, 2000.

[32] E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull M,
V. Matys, H. Michael, R. Ohnhauser, M. Pruss, F. Schacherer, S. Thiele, and
S. Urbach. The transfac system on gene expression regulation. Nucleic Acids
Research, 29(1):281–283, 2001.

[33] I. Xenarios, E. Fernandez E, L. Salwinski, X. J. Duan, M. J. Thompson, E. M.
Marcotte, and D. Eisenberg. Dip: the database of interacting proteins: 2001
update. Nucleic Acids Research, 29(1):239–241, 2001.

18

