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SUMMARY

We introduce an interactive segmentation method for a sea floor survey. The method is based on a deformable
template classifier and is developed to segment data from an echo sounder post-processor called RoxAnn.
RoxAnn collects two different measures for each observation point, and in this 2D feature space the ship-master

will be able to interactively define a segmentation map, which is refined and optimized by the deformable template
algorithms.
The deformable templates are defined as two-dimensional vector-cycles. Local random transformations are

applied to the vector-cycles, and stochastic relaxation in a Bayesian scheme is used. In the Bayesian likelihood a
class density function and its estimate hereof is introduced, which is designed to separate the feature space.
The method is verified on data collected in Øresund, Scandinavia. The data come from four geographically

different areas. Two areas, which are homogeneous with respect to bottom type, are used for training of the
deformable template classifier, and the classifier is applied to two areas, which are heterogeneous with respect to
bottom type.
The classification results are good with a correct classification percent above 94 per cent for the bottom type

classes, and show that the deformable template classifier can be used for interactive on-line sea floor segmentation
of RoxAnn echo sounder data. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An online sea floor survey on board a ship needs a segmentation procedure which can handle a couple

of challenges. One of the major challenges is the measuring equipment’s relative changes or drift in

value levels. Changes in measurement values may be caused by the instruments, exogenous variables

or local variations in the sea, and the corresponding transformations, in order to restore or normalize

data, may be unknown.
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We will introduce an interactive segmentation method based on a deformable template classifier.

The method is applied on sea floor data collected by an echo sounder instrument called RoxAnn. The

RoxAnn echo sounder gives two measures, which are the first and second echo sounder backscatter,

and displays them as a 2D feature space image. Today the ship-master has to rely on his own

experience and a predefined 2D feature space classification map, which do not take exogenous

variables, local variation or instrumental setup into account, when he has to explore the sea floor. A

reliable online sea floor classification would be an improvement of state of the art.

We introduce a classifier which is able to handle the changes and transformations in value levels

from a RoxAnn echo sounder measuring equipment. An online segmentation procedure could be as

follows. A classified map in feature space is manually defined by a specialist. It could be a 2D

predefined feature space map as today, or the ship-master could interactively define his own classes.

This map is a start classifier. Every time the ship starts logging new data, the first amount of data

should be logged on areas where the sea floor is well known. These data will be regarded as training

data, and used by the deformable template classifier to transform the start classifier onto a current

classifier. The current classifier can then be used for a reliable automatic classification.

The more training data from different types of sea floor, the better the transformation of the start

classifier will be. It is, however, not always possible to obtain training data representing the full feature

space. Therefore we need a method which will always give a classifier map almost similar to the start

classifier map when training data are missing, but which also changes properly according to the

apparent training data. We introduce a class density function in the deformable template framework so

a deformable template classifier is able to change or deform based on start classifier templates and

training data. A major strength is that, although the classifier is highly data-driven, the classifier

templates are able to stay very similar to the starting classifier templates even if the training data in the

feature space area are very sparse.

We apply and verify the deformable template classifier on RoxAnn echo sounder data collected in

Øresund, Scandinavia, under the European Union project ‘Sonar technology for monitoring and

assessment of benthic communities’ (BioSonar). Given data from four geographical areas, we use two

areas, which are homogeneous with respect to bottom type, as training areas. The other two areas,

which are heterogeneous with respect to bottom type, are classified by the new classifier.

2. THE RoxAnn ECHO SOUNDER

The RoxAnn device is an add-on to a conventional echo sounder. It is easy to install and not very

expensive. The device consists of a head amplifier, a parallel receiver and a software package. The

frequency range for the echo sounder is 20 to 250 kHz.

RoxAnn uses the first and second echo sounder backscatter. The first echo, E1, is considered as a

measure of the roughness of the sea bed, and the second echo, E2, is considered as a measure of the

hardness of the sea bed. E1 is defined as the integral over the tail of the first echo, and E2 is defined as

the integral over the second echo (see Figure 1).

A relationship between the sea floor and the sea bed’s morphology and the first and second echo

from an echo sounder backscatter was explored in Chivers et al. (1990), where a RoxAnn system was

described, and further discussed in Chivers and Burns (1992). In Heald and Pace (1996) the assumed

relationship between the first and second echo and the morphology and sea floor of the sea bed is

theoretically justified. A field evaluation of RoxAnn in Schlagintweit (1993) gave promising results

and showed that the choice of frequency is important. A low frequency causes a generalization of the
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sea bed. A high frequency is preferred when the sea floor in small areas is studied. The data described

and analysed in this article were obtained with a frequency of 200 kHz.

3. COLLECTION OF DATA

Data were obtained under a field campaign in Øresund in 1997. Øresund is the narrow straight between

Denmark and Sweden. A complete description of the field campaign can be seen in Conradsen (1999).

A map of the area is shown in Figure 2.

The data come from four geographical areas. Two areas are homogeneous in respect to bottom type,

which is either mussels or sand. They are called bottom type area mussels, respectively sand. The size

of each area is approximately 100� 100m2. The two other areas are heterogeneous in respect to

bottom type, and are called test areas 1 and 2. Each test area is approximately 2 km2. We do, however,

only have data from a sub-area of test area 2. This is because a previous field campaign showed that the

Figure 1. First and second echo sounder backscatter. The black areas illustrate the RoxAnn measures E1 and E2

Figure 2. A map of Øresund
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area was nearly homogeneous, the sea floor was covered by mussels all over, and therefore it was

decided only to cover a part of the area under the next campaign.

Different sampling strategies were applied to the two different types of areas in Øresund. For the

bottom type areas data were obtained by 5 sailing transects with an intended spacing of 20m in two

orthogonal directions. For the test areas the sampling strategy was as follows: In the centre of a test

area there were seven sailing transects spaced by 20m in two orthogonal directions. Around these

transects eight transects were placed, four on each side, spaced by 60m in two orthogonal directions.

Finally, around these transects the remaining transects were spaced by 120m in two orthogonal

directions.

Ground truthing in the test areas was performed as follows. Every fifth sailing transect was recorded

with a video camera mounted on a sledge moving just above the sea bottom. Inside the test areas 10

stations were randomly selected, under the constraint that they were placed on intersection nodes of

the actual sailing transects. From every station ground truth data were obtained by both video camera,

photo sampler and a divers description of the sea bed.

For each observation we have a position and the two RoxAnn measurements E1 and E2. E1 and E2

are in the range from 0.0 to 2.0V. The deformable template classifier is represented in a two-

dimensional image space. Therefore we will transform data to a 2D image, which is a limited 2D

discrete feature space set S, S(E1, E2), where rows represent E1 and columns represent E2 and the

pixel-value is the number of observations, in a given data set, having the specific values

ðE1 ¼ e1;E2 ¼ e2Þ.
In Figure 3 the 2D feature space for observations from bottom type area mussels and sand are

shown. The 2D feature space is here represented by an image of size 500� 500, where the rows

represent E1 and the columns represent E2, both in the range 0 to 0.5V. This corresponds to 0.001V

per pixel in the feature space image. If we compare the two feature spaces, we can see that mussel and

sand observations are well separated, although there is an overlap between the classes. We will use the

RoxAnn measurements from bottom type area mussels and sand as training data to the deformable

template classifier. The classifier will be used in the obtained RoxAnn measurements from test areas

1 and 2.

Figure 3. The left image is a 2D feature space for mussels. The right image is a 2D feature space for sand. Rows represent E1

and columns represent E2, both in the range 0–0.5V. Dark areas represent few observations and lighter areas represent many

observations
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4. THE DEFORMABLE TEMPLATE CLASSIFIER AND SEGMENTATION PROCEDURE

We could have used other types of classifiers, such as Bayesian discriminant analysis, classification

and regression trees, nearest neighbours and neural networks, but in order to properly fulfil the

following conditions for a good RoxAnn classifier:

* It has to be interactive, and easy to use for an operator with a primary knowledge and understanding
of the parameters E1 and E2, so that he can paint his own start template classes.

* We cannot assume that a class fits to a given statistical distribution.
* The classifier is not allowed to vary very much from the painted start class if the data are very

sparse.

We chose to develop a new 2D deformable template classifier which fulfils these conditions.

4.1. Deformable templates as a classifier

Deformable templates, originated in Grenander (1983), are normally used for segmentation of

biological objects. We will, however, use them in feature space, in order to achieve a classifier which

does not assume any distribution on the data and is able to handle few training data in feature space.

We define a template as a two-dimensional vector-cycle. The template is deformed by global and

local transformations applied to the vector-cycle. The global transformations apply Gaussian

distributed changes in overall scale, orientation and displacement. The local transformations apply

local changes of a given subset of connected vectors. A first order neighbourhood dependence is

imposed on the vector-cycle, which means that a given vector is dependent on its two neighbours. The

distribution induced by local random transformations converges weakly to a Gaussian distribution,

which makes the simulation procedure relatively quick. Only a part of the vector-cycle is changed for

each iteration, and stochastic relaxation in a Bayesian scheme is used. In Schultz and Conradsen

(1998) the theory is thoroughly described.

Given a k-class classification task, we have k templates each representing a class. The templates are

simultaneously simulated, i.e. they are deformed independent of one another. These simulated

templates are used in the segmentation of the feature space. The Metropolis algorithm (Metropolis

et al., 1953) and simulated annealing (Geman and Geman, 1984) are used to get a maximum a

posteriori estimate for segmentation. In the Bayesian likelihood we apply a class density function and

an estimate hereof, which is designed to segment the feature space. First a density function for each

class based on the data has to be estimated.

4.2. The class density function

We define the class density function as follows.

Definition 1. Let �i represent a class i for i 2 f1; . . . ; kg, and let �r represent the reject class. Then for

a point x in the two-dimensional discrete set S the class density is defined as

fxðcÞ ¼ pxfC ¼ cg ð1Þ

for c 2 f�1; . . . ; �k; �rg; iff

0 < fxðcÞ < 1 for c 2 f�1; . . . ; �k; �rg ð2Þ
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and
X

c¼f�1;...;�k ;�rg
fxðcÞ ¼ 1 ð3Þ

We will impose the following conditions to an estimate of a class density function:

* The estimate of a class density function gives equal probabilities for all classes in a point x if there
are no observations in this point.

* If there are observations from different classes at a point x, the largest class density function
estimate at point x will always belong to the class with the largest number of observations in x
relative to its spatial size.

The following theorem describes a class density function estimate f̂f xðcÞ which takes care of the

above-mentioned conditions.

Theorem 1. Given a training dataset D ¼ fd1; . . . ; dng, where dj ¼ ðx; cÞ; x belongs to the two-

dimensional discrete set S; c 2 f�1; . . . ; �kg and k > 0.

Then a class density function estimate f̂f xðcÞ can be

px; �i ¼
nobsx;�i

�i
þ 1

kþ1

1þ nobsx;�1
�1

�
þ nobsx;�2

�2
þ � � � þ nobsx;�k

�k

� � for i ¼ f1; . . . ; k; rg ð4Þ

Here, nobsx;�i
is the number of observations dj in point x belonging to class �i and

�i ¼
number of observations in S�i

area of S�i

for i ¼ f1; . . . ; kg ð5Þ

where S�i
is the two-dimensional discrete set enclosed by the start template vector cycle �i for class �i.

The templates are constrained to be non-overlapping.

Note that a kind of normalization is done by �i, i.e. if there are few observations in a large area in

one class and many in another small area.

We define

�r ¼ 1 ð6Þ

Note that nobsx;�r
¼ 0.

Proof:

We have

f̂f xðcÞ ¼ px;c for c ¼ f�1; . . . ; �k; �rg ð7Þ

Because nobsx;�i
� 0 and �i > 0 for i ¼ f1; . . . ; k; rg, we have

0 < f̂f xðcÞ < 1 for i ¼ f1; . . . ; k; rg ð8Þ
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Further, we have

X
c¼f�1;...;�k ;�rg

f̂f xðcÞ ¼
X

i¼f1;...;k;rg

nobsx;�i

�i
þ 1

kþ1

1þ nobsx;�1
�1

þ nobsx;�2
�2

þ � � � þ nobsx;�k

�k

� �� ð9Þ

¼
P

i¼f1;...;kg
nobsx;�i

�i
þ 1

kþ1

� �
þ 1

kþ1

1þ nobsx;�1
�1

þ � � � þ nobsx;�k

�k

� � ð10Þ

¼ 1 ð11Þ

QED.

When we have the estimated class density functions which are designed to separate the

feature space, we can maximize the joint probability for the data given the templates and an energy

function.

4.3. Likelihood function

Now assume that the density fxðcÞ for an occurrence x 2 S belonging to a class c 2 f�1; . . . ; �kg is

known, and that the densities for each of the classes �1; . . . ; �k are independent. Let the feature space

be a limited and discrete system in two dimensions. Assume that we have a classifier for each class �i

represented as a closed vector-cycle template zi, and let the vector-cycle be non-self-intersecting and

non-overlapping.

Then the joint probability for the data D given the templates z1; . . . ; zk is

p D j z1; . . . ; zk
� �

¼
Y
x2S1

px;�1 � � � � �
Y
x2Sk

px;�k
�

Y
x2SR

px;�R
ð12Þ

Si is the two-dimensional discrete set enclosed by zi. x is a point belonging to the limited set

S ¼ S1 [ . . . [ Sk [ SR. px;�i
is the probability that x belongs to the class �i, i.e. has probability fxðcÞ.

We can split the set Si into two subsets, Si ¼ SAi [ SBi, where SBi is the closed set bounded by the m

neighbouring vectors zi
m and the straight edge back to start (see Figure 4).

Figure 4. The limited two-dimensional discrete set S ¼ S1 [ . . . [ Sk [ SR. Si is enclosed by zi. Si ¼ SAi [ SBi, where SBi is

the closed set bounded by the m neighbouring vectors zi
m and the straight edge back to start
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Now assume that a vector segment zj
m changes, then we can write (12) as

p D j z1; . . . ; zj; . . . ; zk
� �

¼
Y
x2SA1

px;�1 � � � � �
Y
x2SAk

px;�k
�

Y
x2SnðSA1[...[SAkÞ

px;�R

�
Y

x2SB1\SnSA1

px;�1

px;�R

� � � � �
Y

x2SBj new\SnSAj

px;�j

px;�R

� � � � �
Y

x2SBk\SnSAk

px;�k

px;�R

�
Y

x2SB1\SA1

px;�R

px;�1

� � � � �
Y

x2SBj new\SAj

px;�R

px;�j

� � � � �
Y

x2SBk\SAk

px;�R

px;�k

ð13Þ

Note that SAi ¼ SinSBi for i 6¼ j and SAj ¼ SjnSBjold
.

The likelihood ratio given the new and old template vector segment for a template z j will then be

p D j z1; . . . ; z j
new; . . . ; z

k
� �

p Djz1; . . . ; z j
old; . . . ; z

k
� � ¼

Q
x2SBj new\SnSAj

px;�j

px;�R

�
Q

x2SBj new\SAj

px;�R

px;�jQ
x2SBj old

\SnSAj

px;�j

px;�R

�
Q

x2SBj old
\SAj

px;�R

px;�j

ð14Þ

The classifier optimization algorithm differs from the traditional deformable template algorithm

(Schultz and Conradsen, 1998) in the following ways:

* A class density function estimate (4) is calculated based on training data and painted start template
classes.

* The new classifiers likelihood ratio (14) is used as the chosen energy function in the stochastic
relaxation scheme.

4.4. Start templates and deformable template model parameters

In the actual case the start templates are painted manually on the RoxAnn feature space map as a

rough guess based on the training data. The curvatures of the start templates are further smoothed by

a median filter because small hand movements from the operator can induce unwanted sharp

edges. These start templates are, of course, very dependent on the painter. This means that the

operator–ship-master or predefined map–may influence the classification.

The deformable template model parameter choice can give a looser or harder constraint to the

template’s deformability, e.g. if some part of the template border is very well defined, then the

parameters in this area could be set to give a very little vector deformability at this border. The two

start templates can be seen in Figure 5.

The template parameters are as follows (for details see Schultz and Conradsen, 1998):

Global iterations, local iterations 0, 1000

Number of vectors, segment vector size 120 (mussels) 50 (sand), 3

Energy function Class density function, likelihood

Annealing constant �, temperature 0.98, 5

Local parameters (�vi
; �vi

; �ai
; �ai

) 200 200 0.01 0.01 (deformability parameters)

We have chosen not to use global iterations, because overall change in size and rotation is

unnecessary in the actual case. The number of local iterations is set to 1000. The mussel template is
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defined by 120 vectors and the sand template is defined by 50 vectors. The segment size for the

templates is 3, which means that 3 neighbouring vectors are deformed at a time. We use a class density

function, and the simulated annealing constant is 0.98 with the start temperature 5. The local

parameters determine the distribution parameters for the vector deformability. � is normally inducing

changes in vector length, and � is normally responsible for change in vector orientation. The local

parameters are set equal for all vectors, and are chosen in order to give stable deformable template

simulations.

In Figure 6 simulation iteration numbers 200, 400, 600 and 800 are shown. It is seen that the

simulated deformable templates are stable. This is important if we have areas in the feature space

where training data are missing.

Figure 5. The two start templates. The darker template represents mussels and the lighter template represents sand. Rows

represent E1 and columns represent E2, both in the range 0–0.5V

Figure 6. From top left, by rows, to bottom right the images show simulation results after 200, 400, 600 and 800 iterations. The

darker template represents mussels and the lighter template represents sand
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4.5. Deformable template segmentation

We can now apply the deformable templates on training data. Figure 7 shows how the templates are

deformed and become stable during the segmentation. After 1000 iterations the templates have

reached a stable state and are constant, especially where classes nearly overlap.

4.6. Classification procedure

The result from the deformable templates gives a segmented feature space which is the classifier.

In Figure 8 the feature space map is shown. The white area in the feature space map, which is not

covered by a template, is reject class. The sand class is represented by light grey, and the mussels class

is represented by dark grey. The classification procedure is as follows: given an observation with the

RoxAnn measurement values e1 and e2, then the observation belongs to the class which is on the

feature space map at point (e1,e2).

Note that in the feature space areas with few training data the template classifiers are very similar to

the start templates, and in the areas with many training data the templates have been deformed to fit the

data.

5. CLASSIFICATION RESULTS

Classification results for training data from the bottom type area mussels and sand are shown in

Tables 1 and 2. The classification results of training data are good. There are no observations which are

rejected, and misclassification rates of 0.5 per cent for mussels and 5.4 per cent for sand are low.

Figure 7. From top left to bottom right, by rows, the images show the segmentation results after 250, 500, 750 and 1000

iterations. Rows represent E1 and columns represent E2, both in the range 0–0.5V. The darker template represents mussels and

the lighter template represents sand
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If we inspect the classifier templates in Figure 8, we can see that the start templates have been

deformed according to the previously described conditions, namely that the templates should be

deformed to minimize the classification error in the feature space areas where training data are present.

In the areas without training data the templates should be stable and very similar to the start templates.

Figure 9 shows the classified sailing transects for the two bottom type areas. The geographic

allocation of the misclassified observations seems reasonable from a biological point of view.

We will now validate the classifier by classifying test areas 1 and 2. Figure 10 shows the classified

sailing transects for test areas 1 and 2.

As expected, the classified maps are very homogeneous, with only small areas of other classes than

the specific bottom type class. If we look at the right side at test area two, there are relatively many

observations classified as sand. This fits well to the fact that the depth is very low in this area, the upper

right corner has no observations because the boat could not sail closer to the coast, and therefore there

normally will be sand.

From ground truth we know (Conradsen, 1999) that the sea floor in test area 1 is mostly covered by

mussels with sand areas to the east and eelgrass spread over the middle of the area. The classification

Table 1. Classification results table for training data belonging to the mussel class

Mussel classification table

Reject class Mussel class Sand class Total

Number 0 3078 16 3094
Percentage 0.0000 99.4829 0.5171 100.0000

Table 2. Classification results table for training data belonging to the sand class

Sand classification table

Reject class Mussels class Sand class Total

Number 0 88 1536 1624
Percentage 0.0000 5.4187 94.5813 100.0000

Figure 8. The dark template area represents mussels and the light template area represents sand. Rows represent E1 and

columns represent E2, both in the range 0–0.5V
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result for test area 1 is similar, although we miss an eelgrass class. The classification could be

improved if we had had eelgrass training data; eelgrass is now classified as either mussels or rejected.

Ground truth (Conradsen, 1999) shows that the sea floor in test area two is covered by mussels. The

classification shows a similar result.

The classification results are in general good. One may argue that eelgrass observations, which are

present in test area one, should be rejected and not classified as mussels, which seems to happen. The

reason for this is the mussels start template, which is probably too big, i.e. the mussel observations

with high E1 values are probably outliers.

This kind of classifier is highly data-dependent and can also be operator-dependent, which induces

a bias/variance dilemma (see, for example, Geman et al., 1992), causing models that may be

improperly conditioned due to, for instance, too small data sets. However, the advantage of the

classifier is its flexibility and capability to handle different kinds of data.

6. CONCLUSION

In order to improve a sea floor survey on board a ship equipped with a RoxAnn echo sounder we have

introduced a deformable template classifier for sea floor segmentation. We have described how the

segmentation method enables the user to interactively define a segmentation map, which is then

refined and optimized by the deformable template classifier. We have defined and used a new class

density function and an estimate hereof in a Bayesian scheme, for segmentation of the deformable

templates in feature space. This enables us to maximize the global joint probability for the training

data given the classifier templates.

Figure 9. Classified sailing transects for the bottom type areas mussels, first row, and sand, second row. The first column shows

all the classified observations and the second column shows only the misclassified observations. Dark areas represent mussels

and lighter areas represent sand
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The deformable template classifier has been trained on training data from two different homo-

geneous areas—a mussels area and a sand area. The correct classification percent for mussels is

99.5 per cent and that for sand is 94.6 per cent. The final classifier templates have deformed properly in

the feature space areas where the training data are present, and have properly stayed similar to the start

templates in the areas where no training data were present. The classifier has been applied to two test

areas, where the classified areas have been compared to ground truth, and the classification results are

in general good. Therefore, we conclude that the deformable template classifier applied on RoxAnn

echo sounder data can be used to segment the sea floor.

Figure 10. Classified sailing transects for test area one, top image, and test area two, bottom image. Dark grey represents

mussels and light grey represents sand
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