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Abstract

This thesis presents the registration and analysis of myocardial perfusion mag-
netic resonance images. Registration is carried out by a method based on Active
Appearance Models (AAM). Extensions to the basic AAM include clustering of
texture vectors in temporal dimension in addition to slice-coupled modelling.

A training set for the AAM is generated semi-automatically. This involves im-
plementation of a tool to allow manual marking of points on object outlines and
interpolation of the points by cubic splines to generate a full shape contour. Given
the shape contours, point correspondences are obtained by Minimum Description
Length (MDL) shape modelling. Requirements for the MDL approach imply that
the cardiac shape cannot be optimised directly. Consequently, it is splitted into
five contours at anatomical and pseudo landmarks and each contour set is opti-
mised with influence from the full shape.

After registration of the set of images, perfusion assessment is carried out by
providing pixel-wise signal intensity curves from the myocardium. Subsequently,
perfusion maps are generated for three parameters derived from the curves: Max-
imum upslope, peak and time-to-peak.

Qualitative and quantitative validation is carried out on the presented methods.
Data from 10 patients with acute myocardial infarction is provided for this pur-
pose. MDL optimisations resulted in 10–14% improvement in terms of the de-
scription length and 10–28% improvement in terms of the total model variance.
A leave-one-out cross validation was carried out for the registration method. This
resulted in mean point to curve distance of 1.25± 0.36 pixels. Perfusion maps for
maximum upslope and time-to-peak positioned ischemic segments in most of the
patients.

Keywords: Motion-compensation, registration, myocardial perfusion MRI, ac-
tive appearance models, minimum description length, cubic splines, contour ex-
traction tool, perfusion assessment, perfusion map
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Chapter 1

Introduction

1.1 Motivation and objectives

Cardiovascular diseases (CVD)1 are the leading cause of death in the world ac-
counting for almost every third death or 16.6 million annually [4]. Since the
population is aging, occurrences of CVD are increasing. Consequently this in-
creases the need for accurate examination techniques. The traditional methods
are echocardiography, X-ray angiography, nuclear medicine and ultrasound. Re-
cently, Magnetic Resonance Imaging (MRI) has proven to be a powerful method
for observing the heart because it does not have any side effects on the patient, it is
flexible, and it gives highly detailed images compared to the alternative methods.
In order to fully utilise this, accurate image analysis techniques are needed.

The subject of this study is myocardial perfusion MRI. In this type of MRI, a para-
magnetic contrast agent is injected to the patient and multi-slice, image sequences
over time are generated providing a 4D magnetic resonance (MR) myocardial per-
fusion data.

To allow the reader to become familiar with the data and its relation to regions
of the heart, a brief introduction will be given here. This is only intended to give
an overview, a more thorough discussion of the data and its properties is given in
Chapter 2.

The above mentioned 4D structure is shown in Figure 1.1. The data consists of
a 2D image frame in the x–y plane for each slice in the z plane. This type of slice
set is provided for each time frame in the series (t).

Each image frame of the data produces a cross-sectional view of the patients chest
wall. Figure 1.2 shows one multi-slice time frame including four consecutive slices

1CVDs are diseases which affect the proper functioning of the heart and blood vessels, the
most important ones are: Myocardial infarction (heart attack), cerebrovascular diseases (stroke),
coronary artery disease, transient ischemic attacks (TIA) and peripheral vascular diseases.
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Figure 1.1: Dimensional structure of myocardial perfusion data. Four slices of 2D image
frames shown in a time series.

in basal (upper end) to apex (lower tip of the heart) direction from left to right.

Figure 1.2: MR myocardial perfusion data: One four-slice time frame of the cardiac
data. In basal–apex direction from left to right: Slice 1–4. Ignore the digits on the images
at this point.

The regions of the heart which are of interest in this project are the right ventricle
(RV), left ventricle (LV) and myocardium (heart muscle). To relate those regions
to the data given in Figure 1.2, Figures 1.3 and 1.4 are provided.

Figure 1.3 shows two schematic views at the heart, the left one is a section through
the middle and the right one is at the front.

For comparison, Figure 1.4 shows one slice after zooming in on the heart including
labelling of the RV, LV and myocardium.
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Figure 1.3: Schematic figures of the heart. Left: Section through the middle, the four
chambers of the heart through which the blood flows. Right: Front view of the heart with
right and left ventricles labelled. By courtesy of All refer health [3].

RV 
LV 

Myocardium 

Figure 1.4: Myocardial MR data: An example image frame of the second slice zoomed
in at the heart. RV, LV and myocardium are labelled.

Now that a brief overview of the data has been given, the actual purpose of my-
ocardial perfusion MRI can be addressed. The contrast agent injected into the
patient passes through the different regions of the heart resulting in varying in-
tensities in the images across the time frames. From those intensity differences in
the image sequences, blood flow in the myocardium can be observed. This can
lead to diagnosis of e.g. coronary artery disease or ischemic heart disease. This
disease causes narrowing of the coronary arteries leading to reduced blood flow
to the heart. In serious cases this leads to myocardial infarction (heart attack).
Regions with reduced blood flow are known as ischemic regions and can be de-
tected in the images by regions darker than the surroundings, due to reduced flow
of the contrast agent. The ultimate goal of this type of examination is to provide
absolute quantification of the blood flow. This leads to a measure comparable
between different studies and patients and more accurate diagnosis. Before the
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perfusion assessment (quantification of blood flow) can be carried out, the se-
quence of images must be registered so that intensity in corresponding locations
in the myocardium can be assessed. This is typically a manual procedure which
consists of marking up points of correspondence in the myocardium.

In this study, a method based on Active Appearance Models (AAMs) is used to
replace this tedious and time consuming manual process by providing an automatic
registration of the image sequences. This is a learning-based method, in which
the learning phase consists of a statistical analysis of shape and intensities from
a training set of images. New, valid instances of the class of images can then be
synthesised by ”legal” deformations of the training set. Modifications from the
standard AAMs needed for the myocardial perfusion data consist of multi-slice
coupling and texture clustering in the temporal dimension.

Formation of a training set is a crucial step in the model building phase. A training
set consists of several images of the class being analysed. Each image in the train-
ing set is processed by annotating points on the desired object. The key property
of the annotation is that the points should be placed at corresponding locations
across the set of images. This is often carried out manually but recent develop-
ments have made this procedure semi-automatic. Here, a minimum description
length (MDL) shape modelling is applied. This method automatically estimates
the optimal point correspondences given the outline of the object extracted from
the images.

The part of extracting the object’s outline remains manual and for this purpose,
a contour extraction tool is implemented so that arbitrary points on the outline
can be defined. Subsequently the points are interpolated by a cubic spline to give
the full object contour.

The above mentioned methods are evaluated on four-slice MR myocardial perfu-
sion sequences from 10 patients suffering from myocardial infarction.

After registration of the image sequences, a semi-quantitative myocardial perfusion
assessment is carried out providing a basis for a full quantification of the blood
flow.
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To summarise, the main objectives of this project are to:

• Develop a tool for manual extraction of shape contours from myocardial
perfusion data.

• Use MDL shape modelling to automatically generate landmarks of optimal
correspondence on the extracted contours.

• Register the multi-slice image sequences using an AAM-based method.
• Perform semi-quantitative perfusion assessment on the registered image se-

quences.

1.2 Thesis overview

The thesis is structured as follows:

• Chapter 2 covers basic concepts of MRI, particularly myocardial perfusion
MRI along with the acquisition of data for this study.

• Chapter 3 gives an overview of reported automatic registration methods
for MR myocardial perfusion data.

• Chapter 4 gives preliminary definitions for statistical appearance mod-
elling, overview of principal components analysis (PCA) and Procrustes
analysis. This chapter can be skipped by the reader familiar with those
basic concepts.

• Chapter 5 describes the tool implemented to ease manual extraction of the
cardiac shape contours from the image frames.

• Chapter 6 covers automatic placement of points of correspondence (land-
marks) by MDL shape modelling along with modifications to the MDL
framework to fit the myocardial perfusion data.

• Chapter 7 gives a discussion of basic AAMs and the features added to
model the myocardial data along with techniques to fit the model to unseen
instances.

• Chapter 8 discusses perfusion assessment based on registered image se-
quences.

• Chapter 9 illustrates experimental results from MDL shape modelling, reg-
istration by the AAM based method along with example results for perfusion
assessment.

• Chapter 10 provides a summary, discussion and final conclusions.

• Chapter 11 gives proposals for future work.
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• Appendices include data file structure, instructions for the contour extrac-
tion tool and additional results not reported in Chapter 9.

To illustrate the procedure at hand, i.e. the development from contour extraction
from raw images to perfusion assessment, Figures 1.5–1.7 are provided.

As may be understood from above, the project involves many different advanced
techniques. Some of these techniques have been implemented by other researchers
and their code is applied here, directly or with modifications. The methods are
therefore not described in full detail in this thesis, but it is attempted to give the
relevant reference where it applies.
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a) b) c)

Figure 1.5: Step 1. Training set generation – placing of landmarks: a)An image
frame zoomed in at the myocardium. b) Outline of shape extracted by the contour extrac-
tion tool (Chapter 5). c) Automatically generated landmarks by MDL shape modelling
(Chapter 6).

Figure 1.6: Step 2. Registration: Myocardium and RV detected by the AAM based
registration method in an unseen four-slice image frame (Chapter 7).

Figure 1.7: Step 3. Perfusion assessment: Perfusion maps of the myocardium
generated from a registered sequence of four slices from one patient. (Chapter 8). The
maps are intended to locate areas with reduced blood flow.
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1.3 Publications during thesis work

Parts of this thesis have been reported in the following paper:

M. B. Stegmann, H. Olafsdottir and H. B.W. Larsson. Unsupervised motion-
compensation of multi-slice cardiac perfusion MRI. Invited contribution for the
FIMH special issue in Medical Image Analysis, 2004 (submitted).

Work on MDL shape modelling related to parts of this thesis was published in the
paper:

H.H. Thodberg, H. Olafsdottir. Adding Curvature to Minimum Description Length
Shape Models, Proceedings of the British Machine Vision Conference, 2003.

1.4 Terminology and synonyms

To ease reading and understanding, the terminology and possible synonyms used
in this thesis sorted into different areas are provided.

Data in general

Since the discussion of the 4D data can easily become confusing, the terminol-
ogy will be related to the dimensionality structure in Figure 1.1. The regions in
question are denoted by bold lines in the following.

Image frame, time frame, frame: One 2D frame of one slice, one patient.

Slice 1

2

3

4

Slice 1

2

3

44

Slice 1

2

3

Multi-slice frame, multi-slice time frame: 2D frames of all slices, one patient.

Slice 1

2

3

4

Slice 1

2

3

4

Slice 1

2

3

4
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Slice sequence, perfusion sequence, sequence: All time frames of one slice,
one patient.

Slice 1

2

3

4

Slice 1

2

3

4

Slice 1

2

3

4

Multi-slice image sequence, multi-slice sequence multi-slice perfusion
sequence: Full data for one patient, all slices, all time frames.

Slice 1

2

3

4

Slice 1

2

3

4

Slice 1

2

3

4

Landmarking

Cardiac shape, full cardiac shape The outlines of RV, epicardium and endo-
cardium extracted from an image frame.

Full set: The set of cardiac shapes extracted from the multi-slice sequence of all
patients.

Non-temporal set: The set of cardiac shapes extracted from one multi-slice
frame for all patients.

Sub-contour: A part of the cardiac shape, either RV, right epicardium, left epi-
cardium, right endocardium or right endocardium (explained in detail in
Chapter 6).

Sub-contour set, sub-contour type: Set of sub-contours.
Local sub-contour set: The sub-contour set being optimised.

1.5 List of Abbreviations

MR: Magnetic Resonance
MRI: Magnetic Resonance Imaging
PCA Principal Components Analysis
DL Description Length
MDL Minimum Description Length
AAM Active Appearance Model
CAAM Cluster-aware Active Appearance Model



22 Chapter 1. Introduction

1.6 Mathematical notation

The mathematical notation used in this thesis is listed below.

Vectors are formatted in columns and typeset in non-italic, lower-case, boldface
using spaces to separate elements: v = [ a b c ]T

Matrices are typeset in non-italic, boldface, capitals:

M =
[

a b
c d

]

Sets are typeset using curly braces: {α β γ} or {xi}N
i=1

Vectors of ones of length N are typeset as: 1N

Identity matrices are typeset as:

I =




1 · · · 0
...

. . .
...

0 · · · 1




p-th derivative of a function s(t) is denoted as: s(p)(t)

1.7 Nomenclature

A list of symbols used in the thesis, divided into different areas, follows.

MRI

ω0 Precession frequency
γ Gyromagnetic ratio of an atom
B0 Strength of external magnetic field
M Net magnetisation
α The angle at which net magnetisation turns by
T1, T2 Relaxation times
TI Inversion time

Landmarks, shape representation

sk A 2D shape vector for shape k
s A 2D mean shape vector
nl Number of landmarks in a shape vector
ns Number of shapes in a set
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Procrustes analysis

a, b Translation parameters
β Scaling parameter
θ Rotation parameter
ε Error vector
D2 Sum of squares errors
µ Full Procrustes mean shape
zk k-th standardised shape

Splines

s(t) Cubic spline
t Curve parameter
n Number of data points
dk, hk Parameters for data point k for moment representation of splines
f(t) Underlying function describing behaviour of data
εk Error in data point k
M(a, t) Model with parameters a describing data in t

Shape and texture modelling in general

Σs Shape covariance matrix
φk k-th eigenvector of Σs

Φs Matrix of shape eigenvectors
λk k-th eigenvalue of Σs

Λ Diagonal matrix of eigenvalues
bs Shape model parameters
t Texture vector
t Mean texture vector
Φt Matrix of texture eigenvectors
bt Texture model parameters
VT Total variance
fV Desired proportion of total variance to explain by a model
nm Number of modes
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MDL shape modelling

ψk Parameterisation function of shape k
Q Number of levels to base parameterisation function on
τij Fractional distance of j-th child node on level i to its

parents on level i− 1
Bm 1D data set, the m-th principal direction of all shape parameters
Lm Description length of principal direction m
Ltotal, DL Total description length
P Probability density function
∆, δ Accuracy in quantisation
r,R Range of original data, range of data in shape space respectively
σmin, σmax Minimum and maximum values of the standard deviation, σ
ng Number of principal directions where σ > σmin

nmin Number of principal directions where σ ≤ σmin

λcut The smallest significant eigenvalue, equivalent to σ2
min.

T Tolerance measure for stabilising MDL term
Nk Number of landmarks used to describe sub-contour set k
ALk Average arclength of sub-contour set k

AAMs

Ws Matrix of shape parameter weights
c Matrix of combined appearance model parameters
Φc Matrix of appearance eigenvectors
Φc,s Shape part of appearance eigenvectors
Φc,t Texture part of appearance eigenvectors
p Pose parameters warping object into image space
q Model parameters, a combination of appearance and pose parameters
r(q) Residual vector
R Parameter update matrix
nc Number of classes in texture clustering
C Number of slices
κ, γ, Dmax Constants controlling influence of priors
Σp Covariance matrix of sequence pose parameters
σ Standard deviations of sequence shape parameters
Ft t-th frame
S, P Number of first and last frame of stable period respectively
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Chapter 2

MRI concepts and data
material

This chapter provides a discussion of the basic concepts of MRI followed by the
special case of myocardial perfusion MRI. Moreover, acquisition of data particu-
larly for this study is described.

2.1 Basic concepts of MRI

Magnetic resonance imaging (MRI) has proven to be an invaluable tool for the
medical world. It provides detailed images of the human body and has shown
extreme flexibility with respect to different body parts, diseases, orientation, mo-
tion and so forth. Apart from these advantages, it is completely harmless for the
patient unlike many existing methods. For the last few years, it has become in-
creasingly widespread and in 2003 approximately 22.000 MRI scanners were used
in 60 million examinations around the world [67]. Furthermore, in 2003 the nobel
prize in physiology were awarded to the pioneers in development of MRI as it is
to day, Paul C. Lauterbur and Peter Mansfield.

The remainder of this section is mainly based on Hornak [38], Skoog et al. [58]
and Adeler [2].

The MRI technique is based on placing the patient inside a strong magnetic field
(most current scanners operate at 1–3 Tesla). Atoms with odd number of protons
or neutrons, for example hydrogen, sodium and phosphorus, possess a spin angular
momentum. Due to its high abundance the hydrogen atom (proton) is the most
widely used in MRI applications.

When the protons are placed in a strong external magnetic field as in the MR
scanner, they act like compass needles due to their spin properties. This means
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that some of them align themselves with the magnetic field, the lower energy level,
and some of them align opposite to the magnetic field, the higher energy level.

Two spins in opposite direction cancel each other out but the remaining spins at
the lower energy level, produce magnetic field along the direction of the external
field called longitudinal magnetisation. The protons way to spin around the lon-
gitudinal axis is called precession. Further, they have a precession frequency ω0,
which can be calculated by the Larmor equation given in Equation 2.1.

ω0 = γB0 (2.1)

Here B0 is the strength of the external magnetic field and γ is the gyromagnetic
ratio of the element being observed (here hydrogen).

The longitudinal magnetisation does not provide the signal needed to give informa-
tion about a certain body part. By sending a radio frequency (RF) pulse through
a coil of wire into the system, a second magnetic field is induced. This is referred
to as resonance and allows some of the protons to move from a lower to a higher
energy level, resulting in decrease in the longitudinal magnetisation. Other pro-
tons precess away from the longitudinal alignment into the transverse (x–y) plane,
resulting in transversal magnetisation, B1. This causes the net magnetisation, M
to turn by an angle α. After the RF pulse terminates, the protons relax, dephase
in the transversal plane and reach equilibrium again. Figure 2.1 illustrates this in
a rotating reference frame often useful when visualising the magnetisation.
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Figure 2.1: Behavior of magnetic moments of protons (each denoted by a vector in
the cone) in a rotating reference frame (a) Before RF pulse. Net magnetisation (M) is
along the longitudinal axis. (b)-(d) 90◦ RF pulse is sent in the x-direction inducing a
magnetic field, B1. Rotation of the net magnetisation vector during lifetime of the pulse
is illustrated. e) Relaxation after termination of the pulse. Net magnetisation turns back
to the longitudinal direction. Longitudinal and transversal components of M (Mz and
My) are shown. By courtesy of Skoog et al. [58]

The rate of relaxation is assessed by two constants:

• T1: Longitudinal relaxation time, determines the time it takes to attain the
previous longitudinal magnetisation.

• T2: Transversal relaxation time, determines the time it takes the transversal
magnetisation to die out.

Figures 2.2 and 2.3 illustrate the longitudinal and transversal relaxation respec-
tively.

Immediately after turning the RF pulse off, the protons emit a radio signal, the
MR signal, of the same frequency as was sent into the system. Gradually the
signal dies out as the system reaches equilibrium.
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Figure 2.2: Longitudinal relaxation. Longitudinal magnetisation, Mz (bold vector)
reaches previous strength in time determined by T1. By courtesy of Skoog et al. [58]

Figure 2.3: Transversal relaxation. Transversional magnetisation, My (bold vector) dies
out due to dephasing of magnetic moments in time determined by T2. By courtesy of
Skoog et al. [58]

Since the precession frequency of the protons is affected by the magnetic field
strength by Equation 2.1, spatial variation of precession frequencies can be cre-
ated by gradient fields which produce different strengths across the magnet and
therefore different signals. Since the short duration of the radio signals, a sequence
of RF pulses must be generated to obtain the sufficient information to generate
an image from the observed signals.

The received MR signals depend on several factors. A few of them are listed below.

• Proton density and frequency
• T1 and T2 relaxation times
• Metabolic properties
• Motion
• Flow and viscosity
• Contrast agents

In order to generate an image with good contrasts, the above mentioned factors are
utilised by designing the pulse sequence so as to weight those factors differently.
For example, water has shorter relaxation times than fat. This can be utilised by
sending two radio pulses with appropriate time gap which optimises the relaxation
difference between the tissues and thereby the image contrast. The resulting image
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is referred to as a T1–weighted or T2–weighted image depending on which of the
relaxation differences, longitudinal or transversal, are being optimised.

Paramagnetic contrast agents, for example gadolinium diethylenetriaminopen-
taacetic acid (Gd-DTPA) shorten the relaxation times for the tissue it is exposed
to, which given the appropriate pulse sequence can generate good contrasts in the
image.

Commonly used pulse sequences are for example Saturation recovery sequence,
which only uses 90◦ pulses (α = 90◦), inversion recovery sequence, which uses
180◦pulse followed by a 90◦ pulse to generate T1–weighted images and a spin echo
sequence, which uses a 90◦pulse followed by 180◦pulses.

Attempts have been made to make the imaging faster, for example FLASH (Fast
low angle shot), which decreases the flip (pulse) angle below 90◦ to reduce the
time between pulses.

As stated above, the MRI process needs to be designed to fit the function of
the tissue or organ being examined. As myocardial perfusion is the topic of this
project, a brief discussion of the techniques and tricks applied to acquire this
type of image sequences is given in the following section along with discussion of
variation sources present in the images.

2.2 Myocardial perfusion MRI

Developments in MR-technology during the past decade have made it possible to
acquire information about dynamic processes in the human body. As an exam-
ple of such, myocardial perfusion imaging encompasses assessment of myocardial
perfusion at rest and during stress (e.g. pharmacological). By injecting a bolus
of a paramagnetic contrast substance the myocardial perfusion mechanism can be
quantified. Thus, perfusion MR qualifies as an essential instrument in the assess-
ment of ischemic heart diseases. As the contrast agent tags the blood stream and
amplifies the MR signal by a shortening of the T1 relaxation time, areas of the
myocardium served by diseased arteries show a delayed and attenuated response.

Acquisition is carried out dynamically and registered to the heart cycle using
electrocardiogram (ECG)-triggering. This means that motion of the heart is cor-
rected by acquiring an image in the same position in each heart cycle. Figure 2.4
illustrates this. Imperfect ECG-triggering can give rise to depiction of erroneous
heart-phases, in which tissue correspondences can be partially shattered, due to
the long-axis movement of the left ventricle during the heart cycle.

Images are typically acquired from one or more short-axis slices every n-th heart-
beat, where through-plane resolution is traded for temporal resolution and vice
versa. If the acquisition time-window is sufficiently short (typically < 20 seconds),
breath-hold can be used to remove respiration artifacts.
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Figure 2.4: Simplified illustration of ECG triggering: Radio pulse is sent in the same
time/position in each heart cycle corresponding to the heart contraction phases. Diastole:
Both right and left ventricles are filled with blood. Systole: The blood leaves the right
and left ventricles (and is pumped to the body). By courtesy of Spreeuwers and Breeuwer
[60].

In summary, the most prominent sources of variation in shape and appearance
found in perfusion MRI (aside from general MR acquisition artifacts such as move-
ments of the patient) include:

• Biological inter-subject variation
• Scan planning
• Contrast passage
• Contrast uptake
• Respiration
• Inaccuracies in ECG-triggering

2.3 Data acquisition

The data material provided for this study comprises 2500 myocardial perfusion,
short-axis, magnetic resonance images (MRI) obtained from ten freely breathing
patients with acute myocardial infarction. Five slices of 50 sequential image frames
each were acquired before, during and after the bolus of contrast. The contrast
agent was Gd-DTPA. Registration relative to the heart-cycle (end-diastole) was
obtained using ECG-triggered acquisition from a whole-body Siemens Vision MR
unit. Slice acquisition was restarted at every third R-peak, thus providing an
approximate frame time of three seconds, depending on the heart rate. Further
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details about the scanning procedure are given in Table 2.1.

Table 2.1: Scanning parameters
Field strength, B0 1.5 Tesla
MR pulse sequence Inversion recovery turbo-FLASH
Matrix size 128×128
Field of view 300× 300 mm
Slice thickness 10 mm
Inter slice gap 0 mm
Storage bit depth 16 bit
Inversion times, TI 598 ms, 209 ms, 792 ms, 404 ms

To avoid magnetic effects from adjacent slices, slices are not scanned in anatomical
order as may be seen from the inversion times in Table 2.1. The relationship
between the spatial order of the slices and the acquisition order is clarified in
Figure 2.5.

Figure 2.5: Left: Anatomical order of slices. Right: Acquisition order of slices. Slices
are acquired in this order to avoid magnetic effects from consecutive slices. Basal and
apex are labelled to illustrate the hearts position.

Unfortunately, the first slice had to be discarded from the data set due to bad
signal-to-noise ratio. The remaining four slices used in the study will be referred
to in their anatomical order as slice 1–4 (equivalent to slice 2–5 in Figure 2.5 left).
An example multi-slice frame showing four slices in anatomical order (in basal–
apex direction from left to right) from the first patient is given in Figure 2.6.
The right digit marked on the images denotes the order of which the slices were
acquired (as seen in the right of Figure 2.5). The left digit denotes the time frame
number.

Figure 2.6 shows that there is not consistency in slice intensities, that is, the
first and third slice appear darker on average than the remaining slices. This
was observed for most of the data and can be explained by the inversion times,
i.e. slices with longer inversion times give less signal and therefore appear darker.
Those slices can be more difficult to register than the brighter ones due to poor
signal-to-noise ratio.
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Figure 2.6: Four slice images of patient 1 prior to bolus arrival (frame 1). Inversion
times: TI=598 ms, 209 ms, 792 ms, 404 ms. Left digit denotes frame number, right digit
denotes acquisition number of slice.

2.4 Summary and next steps

This chapter addressed the basic concepts of MRI, the special case of myocar-
dial perfusion MRI and the acquisition and structure of data used in this study.
Later in this thesis, details about how the multi-slice perfusion sequences are anal-
ysed and registered will be given. However, next chapter provides an overview of
alternative registration approaches on similar data.
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Related work

In this chapter, the current status of registration of MR cardiac perfusion images
as reported in the literature will be addressed.

Note that all the following approaches register a single slice sequence indepen-
dent of the remaining slices from the scan unlike the simultaneous registration of
multi-slice sequences presented in this project. Consequently, computation times
provided in this chapter apply to registration of a single slice sequence.

3.1 Reported methods for registration of myocardial
perfusion

Yang et al. [70] use phase difference between successive image frames to correct
for translational motion. After tracing one frame from the sequence manually,
the shape changes are compensated for by using a deformable model. They show
example results from one patient where they compare SI-curves1 before and after
registration but lack further validation of the method.

Behloul et al. [6] simplify the problem of myocardial boundary detection by adding
a slice from functional MRI to the perfusion sequence. They segment the func-
tional slice by fuzzy clustering and fuzzy inference systems and warp the result to
the perfusion sequence. The method requires manual definition of a rectangular
region of interest (ROI) on each image of the perfusion sequence. The authors
claim that their method can be applied in real-time but unfortunately it lacks
validation.

Bidaut and Vallee [9] use a multi resolution translation/rotation based registration

1A signal-intensity (SI) curve is a plot of intensities in a region of the myocardial vs. time
frame. From its properties, various parameters regarding myocardial perfusion can be calculated.
Refer to Chapter 8.
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minimising the mean squared differences (MSD) between each image frame and a
reference frame. They evaluate their method using 8 sequences of 90 frames from
8 patients with stable coronary artery disease (CAD). The validation is based on a
comparison of image correlation factors in addition to motion reduction measure-
ments for manual (ground truth) and automatic registration. Their computation
time is 5 minutes per 100 time frames. Dornier et al. [26] extend this work by
defining cardiac masks with no signal intensity changes throughout the perfusion
sequence. Computation time is reduced to 2.5 minutes per 100 time frames. More-
over, they improve the validation by calculating absolute myocardial perfusion and
compare to values derived from manually registered sequences (ground truth).

Breeuwer and Spreeuwers [15, 16, 60], also use a translation/rotation based reg-
istration but with normalised cross-correlation as a similarity measure. After the
registration, an exact detection of endocardial and RV boundaries is obtained by
region growing on feature images. The epicardial boundaries are detected by a
deformable snake model. In [15] and [16] the method is evaluated on 36 perfusion
sequences from 12 patients by comparing the calculated perfusion parameters to
estimated values from X-ray angiograms of same patients. They obtain good cor-
respondence for 11 of the patients. Their computation time is less than 4 minutes
per slice sequence. In [60] qualitative evaluation on 30 perfusion sequences from 14
scans is carried out. They succeed in 26 out of 30 sequences and the computation
time is 25 seconds per 70 time frames.

Gallippi and Gregg [34] present a statistics based registration method using de-
formable template matching. The similarity measure depends on local bright-
ness variations and edge directions. They evaluate their method on 12 patients
and measure its quality by means of motion reduction and comparison of signal-
intensity (SI) curves prior to and after registration.

Ablitt et al. [1] use tissue tagging to correct for through-plane distortion on a
multi-slice sequence. The in-plane motion in each slice is corrected for using free-
form image registration with partial least squares regression (PLSR) deformation
learning. They evaluate their method on a set of 8 patients with CAD and 5
healthy individuals in addition to a synthetic data set. The in-vivo data sets
include 3 slices with 50 frames per slice. The accuracy of the method is measured
relatively by comparing SI-curves before and after registration. Gao et al. [35] do
further studies on the PLSR deformation modelling. Intrinsic pattern at the chest
wall is used to correlate with deformation vectors at the myocardium, leading
to a motion prediction approach. The method is evaluated using dataset from 9
patients with CAD, where data for each patient includes 3 slices and 50 frames per
slice, as well as a synthetic dataset. The accuracy of the method is measured by
comparing motion reduction for a free-form image registration versus the proposed
method.
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Gupta et al. [36], Bansal and Funka-Lea [5] and Bracoud et al. [14] use a transla-
tion based registration method. Gupta et al. with cross-correlation and the latter
two with mutual information (MI) as a similarity measure. None of the methods
compensates for rotation or deformable shape changes. Gupta et al. validate on
10 patients, measuring motion reduction and comparing SI-curves. The compu-
tation time of 50 frames sequence is 5 seconds but 30 out of 433 frames needed
manual post processing. Bracoud et al. evaluate their method on 5 patients (3
slices, 30 frames per sequence) with stable CAD. They compare histograms before
and after registration, inspect SI-curves and perfusion maps and measure motion
reduction. Their method takes 8 minutes for a 30 frame sequence including a
manual definition of a rectangular ROI in each image of the sequence.

Spreeuwers et al. [61] present a refinement method to optimally place the myocar-
dial borders after manually (or automatically) tracing them. They investigate
the effect of displacements of the myocardial on perfusion analysis and use that
information to correct the boundaries. They apply their method on 9 image
sequences on which the myocardial has been traced, and compare perfusion pa-
rameters before and after correction. This method could be applied to improve
results obtained from any of the approaches discussed above.

Table 3.1 gives an overview of the registration methods stated above.

3.2 Summary and next steps

This chapter introduced different approaches for automatic registration of my-
ocardial perfusion data. The registration method used in this study is based on
statistical modelling of shape and texture of the images. The difference between
this method and the methods assessed in this chapter will be discussed in the end
of this thesis, in Chapter 10. Next chapter will provide the necessary definitions
and basic concepts for statistical shape and texture modelling.
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Chapter 4

Preliminaries for statistical
appearance modelling

This chapter provides a basis for statistical shape and texture modelling. Firstly,
definitions of shape, texture, landmarks and shape representation are given. Sec-
ondly, principal components analysis (PCA) for shape data is addressed and
thirdly, alignment of 2D shapes by planar Procrustes analysis is discussed. For
the reader familiar with statistical modelling of shape and texture this chapter
can be skipped.

4.1 Definitions of shape and texture

The appearance of an object is a combination of its shape and texture. This section
provides definitions of those.

One of the most common definitions of a shape is due to D.G. Kendall (1977) [27]:

Shape is all the geometrical information that remains when location,
scale and rotational effects are filtered out from an object.

This means that two objects are of same class of shapes if they can be rotated,
translated and scaled so that they exactly match each other.

In the framework of statistical models of appearance, texture is defined as follows
[20]:

Texture is the pattern of intensities or colours across an object.
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4.2 Landmarks

A shape can be defined by a finite number of points called landmarks. For a set of
shapes belonging to the same class or population, a landmark is defined as follows
[27]:

A landmark is a point of correspondence on each object that matches
between and within populations.

Landmarks can be classified into three types:

• Anatomical landmark : A point assigned by an expert that corresponds be-
tween objects in a biologically meaningful way.

• Mathematical landmark : A point located on an object according to some
mathematical or geometrical property, e.g. at a point of high curvature.

• Pseudo landmark : A point located either around the outline of an object or
in between anatomical or mathematical landmarks.

An example of anatomical and pseudo landmarks is given in Figure 4.1.

Figure 4.1: Anatomical landmarks (which in this case also apply as mathematical land-
marks) and pseudo landmarks placed equidistantly between the anatomical, illustrated
on a fish shape.

A shape s can be represented by the coordinates of its landmarks. Two types of
representations of two-dimensional shapes are applied in this project. One is to
arrange them in a column vector of size 2nl where nl is the number of landmarks.

s = [ x1 y1 x2 y2 . . . xnl
ynl

]T (4.1)

An alternative is to use complex representation

s = [ x1 + iy1 x2 + iy2 . . . xnl
+ iynl

]T, i =
√−1 (4.2)
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4.3 Principal component analysis

A Principal component analysis (PCA) was first introduced by Harold Hotelling
in 1930 based on work by Karl Pearson [17]. PCA is used to reduce dimensionality
of multivariate data. This is achieved by rotating the data set so that the variance
is maximised.

Continuing with the shape framework let the data consist of ns shapes represented
by column vectors of length 2nl as in Equation 4.1 with mean

s =
1
ns

ns∑

k=1

sk. (4.3)

The variance maximisation is done by an eigenanalysis of the data’s dispersion
matrix (covariance matrix) Σs estimated by

Σ̂s =
1

ns − 1

ns∑

k=1

(sk − s)(sk − s)T. (4.4)

Σ̂s is symmetric and it is possible to determine a set of eigenvectors,{φk}2nl
k=1 which

form an orthonormal basis,

Φs =




φ1 φ2 . . . φ2nl




. (4.5)

Now it holds that

Σ̂sΦs = ΛΦs, (4.6)

where Λ holds the eigenvalues ordered in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λ2nl
,

Λ =




λ1

. . .
λ2nl


 . (4.7)

The eigenvectors define the principal components or principal axes on which the
data is projected. All axes are orthogonal. The first principal axis φ1 is defined
so that it maximises the variance of the projected data. The second axis φ2 is
defined to maximise the remaining variance along that axis and so forth.



40 Chapter 4. Preliminaries for statistical appearance modelling

After performing PCA on a set of shapes, any of the shapes can be represented
by

s = s + Φsbs, (4.8)

where bs holds the shape model parameters which can be varied to generate
different shapes.

The k’th model parameter bk has variance λk and typically instances similar to the
ones modelled are assured by applying limits of ±3

√
λk, i.e. 3 standard deviations.

For a univariate normal distribution this accounts for 99.73% of probability mass.

The total model variance is defined by the sum of the eigenvalues,

VT =
∑

k

λk. (4.9)

Usually, the number of eigenvectors and corresponding eigenvalues to apply in the
model is reduced to contribute to a given proportion of the total variance. This
means that the nm largest eigenvalues can be chosen so that

nm∑

k=1

λk = fvVT , (4.10)

where fv denotes the desired proportion of the total variance for the model to
explain and nm is also referred to as the number of modes. bk is said to control
the k’th mode of variation.

4.4 Procrustes alignment

Referring to the definition of a shape, an essential step prior to shape PCA is to
align the set of objects so as to filter out location, scale and rotational effects.
This is typically done by Procrustes alignment.

Planar Procrustes alignment is discussed in [27]. In this 2D case, the complex
notation given in Equation 4.2 is adopted. Two scenarios will be addressed here,
the alignment of two shapes or full ordinary Procrustes analysis and the alignment
of a set of shapes or full general Procrustes analysis. The term full here refers
to that the shapes are aligned using the similarity transforms, i.e. translation,
rotation and scaling.
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4.4.1 Planar ordinary Procrustes analysis

Consider two shapes s1 and s2 with nl elements (landmarks) represented on the
complex form. The shapes are assumed to be centred so that s∗k1nl

= 0, k = 1, 2.
Here s∗k denotes the transpose of the complex conjugate of sk.

The goal is to align the two shapes by similarity transformations. This problem
can be defined by a regression equation,

s1 = (a + ib)1nl
+ βeiθs2 + ε,

a + ib ∈ C, β ∈ R+, θ ∈ [0, 2π[, ε ∈ Cnl .
(4.11)

The transformation parameters are a and b which account for the translation, the
scaling parameter β and the angle of rotation θ. ε denotes the error vector. The
optimal fit is obtained by a minimisation of the sum of square errors,

D2 = ε∗ε

= ||s1 − s2βeiθ − (a + ib)1nl
||2. (4.12)

It can be derived [27] that the parameters are estimated as

â + ib̂ = 0 (4.13)

θ̂ = arg(s∗2s1) (4.14)

β̂ =

√
s∗2s1s∗1s2

s∗2s2
. (4.15)

By inserting this into Equation 4.11, we arrive at the full Procrustes fit, sP
2 , of s2

onto s1,

sP
2 =

s∗2s1s2

s∗2s2
. (4.16)

4.4.2 Planar generalised Procrustes analysis

In the general case, the aim is to align a set of shapes s1, s2, . . . , sns . This is
done by aligning each shape to the full Procrustes mean shape, µ, that must be
estimated simultaneously. It can be shown that an estimate, µ̂, of the Procrustes
mean shape is given by the eigenvector corresponding to the largest eigenvalue of
the matrix
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S =
ns∑

k=1

zkz∗k, (4.17)

where zk is the standardised shape, zk = sk
||sk|| .

The full Procrustes fit of sk (k = 1, . . . , ns) onto µ̂ can be derived similarly to
Equation 4.16,

sP
k =

s∗kµ̂sk

s∗ksk
, k = 1, . . . , ns. (4.18)

After a full Procrustes alignment of all shapes, the mean shape µ̂ is equivalent to
s from Equation 4.3.

4.5 Summary and next steps

This concludes the preliminary discussion of statistical modelling of shape and
texture. The terms shape and texture have been defined and landmarks and repre-
sentation of shapes have been addressed. Additionally, statistical shape modelling
by PCA and the alignment of shapes by Procrustes analysis have been discussed.
The next three chapters are based on this discussion, where the first two deal with
semi-automatic placing of landmarks and the third with an AAM based registra-
tion method.
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Chapter 5

Tool for manual extraction of
shape contours from images

One step towards a robust shape model is to generate a training set of shapes with
good point correspondences. A semi-automatic training set formation is performed
in two steps. First, object outlines are extracted from the images and secondly,
landmark correspondences are optimised (by MDL shape modelling in our case).
The first step, i.e. manual extraction of shape contours is the topic of this chapter.
It deals with the implementation of a contour extraction tool intended to ease
the manual work. The tool is especially constructed for the cardiac data but can
easily be generalised for any kind of data.

The section is structured as follows: Firstly, the manual placing of marks to
define the shape contours is considered, involving general concepts of the contour
extraction tool. Secondly, theoretical discussion of cubic splines, used for the
interpolation of the marks, is provided and thirdly, example images from the
annotation tool are given. Finally, some conclusions are drawn. More information
on the annotation tool (given as a help-file) is provided in Appendix B.1.

5.1 Contour extraction tool and placing of marks

The implemented contour extraction tool enables the user to extract the desired
object by marking points on the contour by a mouse or a digitiser. Subsequently,
the dense contour is given by an interpolating cubic spline between the points as
discussed in section 5.2.

The program displays the image frames for one patient and one slice at a time by
increasing frame number. For each image frame, there are three contours to anno-
tate, i. e. the epicardial, endocardial and the right ventricle(RV) (see Figure 5.1).
The three contours extracted from one image frame of one slice will be referred
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to as the cardiac shape from this point forward. The cardiac shape includes two
anatomical landmarks, the points where the RV border meets the epicardium,
called inferior junction and anterior junction (see Figure 5.1). In order to sim-
plify later steps in the shape modelling procedure, the anatomical landmarks are
included in the annotation. With this in mind, the user is requested to annotate
according to the following:

• Annotate epicardium, start at anterior junction
• Annotate endocardium, no restrictions on starting point
• Annotate RV border, start at anterior junction, finish at inferior junction

Figure 5.1: The cardiac shape with anatomical landmarks labelled: Anterior junction
and inferior junction between right and left ventricle. The three contours annotated are
endocardium, epicardium and the RV border.

Some of the cardiac images are of poor quality, especially those that occur before
contrast injection (see comparison of poor quality versus average quality image
in Figure 5.2). In this case, it can be fairly difficult to determine the myocardial
borders. This problem can never be entirely overcome but to ease the detection
of borders, the ”resolution” of the images is increased by bilinear interpolation.
Further, a bounding box is defined after annotating the first frame in a sequence
and intensity-stretching is applied. The program then allows the user to fine-tune
the appearance of the image while annotating by adjusting contrast and bright-
ness. Moreover, the annotation of the latest frame is displayed as an assistance in
determination of the borders.

Additional and essential features of the tool are that the user is able to undo last
point or undo all points on the current contour. After annotating a shape, the
user can determine whether to keep the annotation or repeat it.
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Figure 5.2: Left: Image of poor quality where determination of myocardial boundaries
is problematic. Right: Image of quality above average.

5.2 Interpolation of marks by cubic splines

After placing points on one contour (epicardial, endocardial or RV), it is parame-
terised assuming equidistant marks. Given the two sets of data points,{tk, xk}n

k=1

and {tk, yk}n
k=1 where t is the curve parameter and n is the number of data points,

we want to define a function s(t), t ∈ [t1, tn] for each of the curves. To simplify, the
following discussion applies to the first mentioned set of data points (x-coordinate).

The function should interpolate through the data points,

s(tk) = xk, k = 1, . . . , n. (5.1)

This could be done by polynomial interpolation or by linear interpolation. The
first choice often generates ”overswings” in the data and is not stable in the end
points. The latter choice results in non-desirable kinks at the data points.

Instead, a smooth function, which has neither of the above mentioned disadvan-
tages is desirable. This is satisfied by a natural cubic spline. A cubic spline is
constructed of piecewise third-order polynomials across the set of knots, which
here are set equal to the abscissae (t). To obtain the smoothness property, the
piecewise polynomials and its first two derivatives vary continuosly across the set
of knots,

s(p)(tk−) = s(p)(tk+), p = 0, 1, 2 k = 1, . . . , n. (5.2)

Furthermore, for a natural cubic spline the second derivatives in the endpoints
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should be equal to zero, reducing the risk of ”overswings”,

s′′(t1) = s′′(tn) = 0. (5.3)

By using a moment representation of the spline1 and demanding Equations 5.1–5.3
to hold, a linear system of equations can be derived.




2(h2 + h3) h3

h3 2(h3 + h4) h4

· · ·
hn−1 2(hn−1 + hn)







s′′2
s′′3
·

s′′n−1


 =




d2

d3

·
dn−1


 (5.4)

where

hk = tk − tk−1, k = 2, . . . , n

dk = 6
(

xk+1 − xk

hk+1
− xk − xk−1

hk

)
, k = 2, . . . , n− 1

s′′k = s′′(tk).

(5.5)

For a definition and further discussion of the moment representation of splines,
refer to [51]. Writing the linear system in short gives

As′′2:n−1 = d2:n−1 (5.6)

For the two closed contours (epicardium and endocardium), a periodic property
is added to the spline,

s(p)(tn) = s(p)(t1), p = 0, 1, 2. (5.7)

1Alternative representations are B-spline representation and Hermite representation [51].
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Adding this to the linear system gives

Aperiodics′′2:n = d2:n , (5.8)

where

Aperiodic =




2(h2 + h3) h3 h2

h3 2(h3 + h4) h4

· · ·
hn−1 2(hn−1 + hn) hn

h2 hn 2(hn + h2)




(5.9)
and

dn = 6
(

x1 − xn

h1
− xn − xn−1

hn

)
. (5.10)

The built-in Matlab function csape is used to calculate the spline. The function
utilises Matlab’s ’\’ operator for solving the linear systems given in Equations 5.6
and 5.8. The operator solves a linear system Ax = b after checking the properties
of the A matrix to determine the appropriate solution algorithm.

For the system given in Equation 5.6, A is tridiagonal, symmetric and positive
definite (since it is obviously diagonal dominant). Consequently, the equation
system is solved by simple Gaussian elimination (without pivoting).

The equation system for a periodic spline given in Equation 5.8 can be solved via
LU factorisation as suggested in [51] or in a more general way using Cholesky
factorisation as Matlab’s ’\’ operator.

The csape function allows representing the data points on the complex form

xk + iyk, k = 1, . . . , n, i =
√−1. (5.11)

This gives simultaneous interpolation of the two sets of data points and results in
a complex representation of the spline

s(t) = sx(t) + isy(t). (5.12)

An alternative to interpolation of the data points is to use curve fitting. This
means that the data points are assumed to satisfy

xk = f(tk) + εk k = 1, . . . , n (5.13)

where f is the socalled underlying function and ε are the measurement errors. A
curve fitting aims at describing the data by a model M(a,t), so that the residuals
are minimised with respect to the parameters, a, of the model,
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a∗ = argmina

{
n∑

k=1

xk −M(a, t)

}
. (5.14)

As a model (M), one could e.g. use a fitting spline.

In this study, the data points were interpolated rather than fitted. Reasoning for
this choice will be given in Section 5.4.

In order to save calculations in the MDL algorithm, the number of evaluation
points for the splines was chosen carefully to represent the contour in approxi-
mately every second pixel.

5.3 Examples from the contour extraction tool

The contour extraction procedure is illustrated in Figures 5.3–5.5.

Figure 5.3: Annotation of epicardial. Left: Manual annotation. Right: Spline has been
interpolated to the points. Anterior junction denoted by a white mark.
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Figure 5.4: Annotation of endocardial. Left: Manual annotation. Right: Spline has
been interpolated to the points. Anterior junction denoted by a white mark.

Figure 5.5: Annotation of RV. Left: Manual annotation. Right: Spline has been inter-
polated to the points. Inferior and anterior junction denoted by a white mark

5.4 Conclusions

The contour extraction of 2000 shapes is a quite time consuming procedure, more
precisely, it took one week of normal working hours. However, getting rid of the
point correspondence requirement as when generating a full training set simplifies
matters considerably. Furthermore, using a digitiser (WACOM tablet) resulted
in a faster and more accurate annotation than when using a mouse as examined
(qualitatively) in preliminary testing of the program.
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As expected, the more images that were annotated, the faster the annotation
became (an example of a learning curve). The annotations were carried out pa-
tient by patient which could lead to biased results with respect to patients. This
could have been compensated for by randomising the appearance of image frames,
but to ease implementation and data storage, the annotations were performed as
mentioned above.

Even though the displaying of the previous annotation is only intended to give a
rough idea where to place the marks, especially for the bad quality images, the
annotations can become too dependent on the previous ones and possibly result
in a systematic error. Nevertheless this feature was considered an advantage of
the program rather than a disadvantage, but it is important to be aware of those
factors while annotating. Since the bad quality images mostly occur in early time
frames, this feature could have been better utilised by displaying the frames in
reverse order.

By using interpolation rather than curve fitting when generating a full contour
from the marked points, the manual annotation errors (measurement errors) are
accepted since the resulting contour goes through all manually placed points.
By using a fitting spline, a balancing of measurement errors and approximation
errors (

∑n
i=1 f(ti)−M(c, t)) is obtained but possibly it misses some details of the

annotation by considering them as errors.

Since a Matlab code for a periodic fitting spline was not available and would
have been a study in itself to implement properly, the built-in Matlab imple-
mentation for an interpolating spline was preferred. However, the main point is
that this decision is not considered crucial for the final goal of constructing a good
appearance model.

5.5 Summary and next steps

This chapter has described the implementation of a tool to ease manual extraction
of the cardiac shape from each frame of a multi-slice perfusion sequence. The tool
allows the user to mark arbitrary points on the outline of the shape and subse-
quently provides the shape contours by an interpolating cubic spline. Provided
the cardiac shape outlines, landmarks can automatically be placed by MDL shape
modelling. This is the subject of next chapter.



51

Chapter 6

Minimum description length
shape modelling

The placing of landmarks on a training set of shapes is crucial for every shape
model. This step is often a manual procedure which can be very tedious, give
erroneous results and a considerable variation dependent on the person placing
the landmarks. This section deals with the automatic placing of landmarks given
the manually extracted outline of the shape.

Firstly, a brief review of different approaches made to automate the landmarking
procedure is given. Secondly, the general theory of MDL shape modelling and
derivation of the description length of a shape model is addressed and finally,
the adjustments needed for the cardiac data to adapt to the MDL framework are
covered.

6.1 Review of automatic model building approaches

Several attempts have been made to make the landmarking procedure automatic
or semi-automatic.

A fully automatic placement of landmarks addresses the generation of a training
set directly from the set of images. Most attempts consider registration of the
set of images to a previously annotated reference image, optimising a similarity
measure between images [55], [31], [33].

A semi-automatic placing of landmarks means that given the desired object out-
lines from the images, landmarks are automatically placed.

Benayoun et al. [8], Kambhamettu and Goldgof [41] and Tagare [66] base their
approaches on shape features, where high-curvature points are matched. They all
provide pairwise correspondences and may therefore not lead to a global optimum.
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Many approaches consider establishment of point correspondences as an optimi-
sation problem [7, 10, 37, 54, 56, 24].

Rangarajan et al. [54] present the robust point matching algorithm, which extends
the alignment of a set of shapes to solve for correspondences by model variance
minimisation.

Bookstein [10] combines Procrustes analysis with thin-plate splines, minimising a
bending-energy term.

Hill and Taylor [37] apply a minimisation of the total model variance combined
with dissimilarities of shape features. This objective function results in many local
minima.

Kotcheff and Taylor [42] obtain, to some extent, compact shape models by min-
imising the determinant of the model covariance but a theoretical justification for
optimality is not given.

Sebastian et al. [56] use intrinsic properties of two curves to an energy minimisation
framework. They introduce an alignment curve allowing a symmetric treatment
of the two curves.

Belongie et al. [7] maximise similarity of so-called shape contexts to solve the
point correspondence problem between two shapes. The shape context descriptor
captures global properties of the shape relative to a single reference point.

The two last mentioned approaches suffer from the fact that they give pairwise
correspondences rather than a global solution.

The MDL approach first introduced by Davies et al. in 2001 [24] obtains point
correspondence for a set of shapes by minimising the description length, a term
adopted from information theory. The description length in this case is the cost
of transmitting the PCA coded model parameters in addition to the transmission
cost of the encoded data values. This means that MDL balances the complexity
of the model against how well the model fits the data. This approach will be used
for an automatic model building of the cardiac shape contours. Next sections will
explain the concepts of MDL shape modelling.

6.2 Basic concepts of MDL shape modelling

Now, we arrange the problem of obtaining point correspondences to a mathemat-
ical framework. Firstly, properties of a parameterisation function defined for each
shape are addressed. Secondly, a derivation of the objective function is given in
Section 6.2.2. Techniques for minimisation of the objective function are addressed
in Section 6.2.3 with special focus on the implementation by Thodberg [68]. Fi-
nally, a case study will be given in order to illustrate how powerful the method
can be.
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6.2.1 Parameterisation function

The set of shapes can be represented by parametric curves:

sk(t) = (sxk(t), syk(t)), t ∈ [0, 1], k = 1, . . . , ns (6.1)

where ns is the number of shapes. For each training shape sk, k = 1, . . . ns, a
parameterisation function ψk of the shape boundaries is defined. The aim is to
choose ψk so that the best possible statistical shape model is obtained from the
training set.

To preserve the initial point ordering, the parameterisation ψk(t) must be a mono-
tonically increasing function of t. That is:

sk(t) → sk(t′), t′ = ψk(t), ψk : [0, 1] → [0, 1] (6.2)

where ψk must be one-to-one, onto and invertible, i.e. a diffeomorphic mapping.

Davies et al. [24] suggest a piecewise linear parameterisation of each shape. It
is defined by recursively inserting nodes between those already present. This
hierarchical representation constrains the positions of the child nodes to lie in the
range [0, 1] of fractional distances where the values 0 and 1 indicate that the child
node is positioned on its left or right neighbour respectively. In this representation
an equidistant parameterisation of a shape would place every child node in the
center of its two parent nodes, i.e. every child node would have the value 0.5 with
respect to its parents and the parameterisation function would be a straight line.
The hierarchical property infers that the parameterisation must be based on 2Q+1
nodes, where Q ∈ Z+ is the number of levels of the hierarchy.

A parameterisation ψ, based on Q = 3 levels may be implicitly denoted as

ψ(τ11(τ21(τ31, τ32), τ22(τ33, τ34))) (6.3)

where τij is the fractional distance of the j-th child node on level i to its parents
from level i− 1.

The recursive formation of the parameterisation function is illustrated in Fig-
ure 6.1. After the formation of a parameterisation function for a shape, an arbi-
trary number of points can be sampled equidistantly from the function to represent
the given shape. This is shown for a circle in Figure 6.2.
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Figure 6.1: Recursive representation of reparameterisation. Squares denote parent nodes
and circles denote child nodes. Distance between parents, i.e. the interval [0,1] to place the
child node is also illustrated. The parameterisation for this example in terms of fractional
distances is ψ(0.65(0.65(0.8, 0.4), 0.7(0.2, 0.5))). By courtesy of Davies et al. [25].

Figure 6.2: An illustration of the sampling of a circle according to a given parameteri-
sation function, ψ. By courtesy of Davies et al. [25].

6.2.2 Objective function

Now that we have a representation of the parameterisation functions, we turn
back to the problem of selecting the parameterisation which results in the best
statistical shape model. Consider the philosophy of Ockham’s razor: The simplest
description is truer. In relation to the quality of a statistical shape model, this
means that the more compact the model is, the better it is. In this connection, bet-
ter means the model’s ability to generalise to unseen instances of the shape class,
still preserving the model’s specificity, i.e. the ability to stick to valid instances of
the class.

A compactness of a model can be quantified by applying the Minimum Description
Length (MDL) principle. This is a quantity from information theory and is based
on the cost of transmitting data coded with respect to a set of parametric statistical
models.

In the framework of statistical shape models, this means that the cost describes the
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information needed to transmit the PCA representation of all the nl-dimensional
shapes in the training set, given nm number of modes:

sk = s̄ +
nm∑

m=1

φmbm
k . (6.4)

The set of eigenvectors Φ define an nm dimensional shape space where the m-th
coordinate is given by

bm
k = (sk − s̄)Tφm. (6.5)

The description length of a set of shapes is derived in Davies [23] and the remainder
of this section addresses that derivation, except for the final objective function
given in Equation 6.28 which is an approximation by Thodberg [68].

The orthonormal property of the eigenvectors in Equation 6.5 gives that the total
description length Ltotal can be calculated as

Ltotal =
nm∑

m=1

Lm, (6.6)

where Lm is the description length of the 1D data set Bm = {bm
k : k = 1 . . . ns}.

This means that the description length can be calculated independently for each
principle direction m as derived in the following.

Calculation of the description length

Using Shannon’s codeword length [57], a value α̂ encoded with probability density
function P has the description length

L = log(P(α̂)). (6.7)

The logarithm is 2-based to obtain the description length in bits. In order to
utilise this definition, the data must be quantised to an accuracy ∆ by

bm
k → b̂m

k , b̂m
k = n∆, n ∈ Z, (6.8)

since a real number requires infinite amount of information to be described. Fur-
thermore, the range of the data must be known. The original shapes’ coordinates
must have a strict upper-bound r such that

−r

2
≤ skα ≤ r

2
, α = 1, . . . , nl, k = 1, . . . , ns. (6.9)
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This can be transformed to give an upper-bound, R of the data in shape space:

R = r
√

nl, bm
k ≤ R, k = 1, . . . , ns, m = 1, . . . , nm. (6.10)

Using the fact that our data has zero mean in each principal direction m, it can
be assumed to be encoded using a set of one-parameter Gaussian models,

f(bm;σm) =
1

σm
√

2π
exp(− (bm)2

2(σm)2
) (6.11)

The description length can be divided into the description length of the encoding
model and the description length of the data,

L = Lparameters + Ldata . (6.12)

Coding the parameters

The only encoding model parameter from the Gaussian model is σ, estimated from
the quantised data values,

σ =

√√√√ 1
ns

ns∑

i=1

b̂i
2

. (6.13)

σ is now quantised to some accuracy δ to be as close as possible to the estimate
in Equation 6.13:

σ̂ = nδ, n ∈ Z+. (6.14)

It can be assumed that σ̂ is uniformly distributed over [σmin, σmax]. Inserting the
uniform distribution to Equation 6.7 gives the description length of σ̂,

Lσ̂ = log
(

σmax − σmin

δ

)
. (6.15)

Now, for the receiver to decode the message, the description length of δ must be
known. Given that δ = 2k, k ∈ Z, its description length can be calculated as

Lδ̂ = 1 + |log δ| . (6.16)
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Combining Equations 6.15 and 6.16 now gives

Lparameters = Lσ̂ + Lδ̂

= log
(

σmax − σmin

δ

)
+ 1 + |log δ| .

(6.17)

Coding the data

The probability of a value lying in the range b̂± ∆
2 , using the Gaussian model in

Equation 6.11 can be approximated by

P(b̂) =
∫ b̂+∆

2

k=b̂−∆
2

f(k; σ̂)dk ≈ ∆
σ̂
√

2π
exp

(
− b̂2

2σ̂2

)
. (6.18)

By inserting this approximation to Equation 6.7, the description length of the
data for one shape mode summed over all shapes is obtained:

Ldata = −
ns∑

i=1

log(P(b̂i)) = −nslog∆ +
ns

2
log(2πσ̂2) +

1
2σ̂2

ns∑

i=1

b̂2
i (6.19)

An inspection of the errors due to the approximation in Equation 6.18 leads to
the choice of lower bound of σ̂, σmin = 2∆ (see [23]). With no prior knowledge,
σ̂ is assumed to have the same range as the data, leading to the upper bound of
σmax = R.

Now, one must consider the true values of σ and b, (i.e. not the quantised values)
in connection with Equation 6.19. Three cases will be addressed:

Case 1: σ > σmin: Explicitly code the data
Case 2: σ ≤ σmin: Estimate σ with σmin

Case 3: B ≤ ∆: All data has the same quantised value.

Case 1: Assuming a uniform distribution, the expected values of 1
σ̂2 and log(σ̂)

can be approximated by

E[
1
σ̂2

] ≈ 1
σ2

(
1 +

δ2

4σ2

)

E
[
log(σ̂2)

] ≈ log(σ2)− δ2

12σ2
.

(6.20)

Substituting this and Equation 6.13 into Equation 6.19 gives

L(1)
data = −nslog∆ +

ns

2
log(2πσ2) +

ns

2
+

nsδ
2

12σ2
. (6.21)
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The optimal accuracy of σ, δ∗ can be found by setting the derivative of Ltotal with
respect to δ to zero. This gives δ∗(σ, ns) = min(1, σ

√
12
ns

) and can be inserted
directly into Equation 6.21.

Case 2: In this case σ̂ takes value below σmin which has the effect that the
approximation in Equation 6.18 becomes inaccurate. Nevertheless, it results in
an overestimate of the description length and can therefore still be used. σ is
estimated by σmin and δ∗ is chosen by min(1, σmin

√
12
ns

). The substitution from

Equation 6.13,
∑ns

i=1 b̂i
2

= nsσ
2 is not valid in this case so we arrive at

L(2)
data = −nslog∆ +

ns

2
log(2πσ2

min) +
1

2σ2
min

ns∑

i=1

b̂2
i . (6.22)

Case 3: In this case, all the data, B has the same quantised value, i.e. B ≤ ∆
This means that only the position of the data, i.e. the mean needs to be sent.
Since the mean is always zero, this costs nothing to describe, i.e.

L(3)
data = 0 . (6.23)

The total description length

In order to simplify the final expression, it is noted that in the limit ∆ → 0,
the quantised values approach the original values, b̂ → b and σ̂2 → 1

ns

∑ns
i=1 b̂2

i .
Furthermore, given a sufficiently large number of shapes, ns > 12σ2, the optimal
accuracy becomes δ∗ = σ

√
12
ns

.

Given this and adding the parameter description length in Equation 6.17 to each
of the two non-zero cases for data description length we obtain for each direction
m

L(1)(σm, ns, R,∆) = L(1)
data + Lparameters

= log(σmax − σmin) + 1− 2log
(√

12
ns

)

− nslog∆ +
ns

2
log(2π) +

ns

2
− 2log(σm) + nslog(σm)

(6.24)
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and

L(2)(σm, ns, R,∆) = L(2)
data + Lparameters

= log(σmax − σmin) + 1− 2log
(√

12
ns

)

− nslog∆ +
ns

2
log(2π)− 2log(σmin)

+
ns

2
log(σ2

min) +
ns

2

(
σm

σmin

)2

.

(6.25)

The total description length can now be derived by inserting the two equations
above to Equation 6.6:

Ltotal = F (ns, R,∆) +
ng∑

p=1

(ns − 2)log(σp) +
ns

2

ng+1+nmin∑

q=ng+1

(ns − 2)log(σmin) +
ns

2

(
σq

σmin

)2

,

(6.26)

where ng is the number of directions for which the first case (σm > σmin) holds
and nmin is the number of directions where the second case (σm ≤ σmin) holds.
F (ns, R,∆) is constant for each training set

Final objective function

When optimising the objective function, one should focus on the terms which
change. This reduces Equation 6.26 to

Ltotal =
ns

2




ng∑

p=1

(log(σ2
p) + 1) +

ng+1+nmin∑

q=ng+1

log(σ2
min) +

(
σq

σmin

)2

 , (6.27)

where ns − 2 has been approximated by ns assuming sufficiently large number of
shapes.

By subtracting the constant (ng + 1 + nmin)ns
2 log(σ2

min) from Equation 6.27, sub-
stitute σ2

i by λi and the constant σ2
min by λcut, we arrive at the final expression

for the total description length as stated by Thodberg [68].

Ltotal =
ng∑

p=1

(
log

(
λp

λcut

)
+ 1

)
+

ng+1+nmin∑

q=ng+1

(
λq

λcut

)
(6.28)
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Here,ns
2 is ignored since this is constant during optimisation. The main advantages

of this objective function, compared to the previously stated ones, is that it has
continuous derivatives and it is easier to understand.

Having quantified compactness by the description length, its minimum gives the
most compact and thereby a model with good generalisation and specificity abil-
ities as discussed before.

6.2.3 Minimisation of the description length

The task of minimising the objective function given in Equation 6.28 is non-trivial.
Davies both tried genetic algorithms and a simplex-based local search algorithm
where the latter gave better results. Ericsson and Åström [30] showed that steepest
descent based optimisation gave more efficiency. In this study, the freely available
code from Thodberg [68] based on pattern search optimisation is applied. For
later discussion a description of his algorithm follows. In the following discussion,
Description Length, DL is equivalent to Ltotal.

The approach is to adjust the parameterisation function on one shape at a time
according to an adaptive step length. To ease computations, τij (see Equation 6.3)
is only adjusted for the marks on the first few levels. Those marks are referred to
as nodes and the notation τ(node) is adopted. The value of τ for the remaining
levels is kept constant (0.5).

After adjusting the parameterisation the corresponding shape marks are extracted,
the shapes in the set are aligned by Procrustes alignment, PCA is performed and
the description length is calculated. For each move, the description length is
compared to the current best one. Based on the comparison, this move is either
accepted or rejected. This is clarified in Table 6.1.

Additional remarks on Thodbergs algorithm

The stopping criteria of Thodbergs algorithm is only defined by the maximum
number of passes. Here, a convergence measure was added, i.e. the number of
times the objective value is allowed to be approximately the same as the value
from last pass.

The optimisation includes a mechanism to prevent the marks to pile up at some
regions and dilute at others. It is based on adding a stabilising term (see Equa-
tion 6.29) to the objective function. The term measures how far the average node
parameter value across the set of shapes moves from some target node parameter,
which typically represents equidistant parameterisation τ target

node = 0.5. The weight
of the term is controlled by varying the value of the tolerance measure, T .
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Table 6.1: Pseudo-code for Thodbergs MDL optimisation algorithm [68].
1: Loop over passes
2: Loop over nodes
3: Loop over 5 steps
4: Loop over shape examples
5: Loop over ± stepsize
6: Probe τ(node) = τ(node)± stepsize of example
7: Extract marks from parameterisation
8: Center and normalise set
9: Do Procrustes of set

10: Do PCA of set
11: Compute DL from PCA
12: If DL<MDL, set MDL ← DL and break loop
13: Undo τ(node) change
14: End of ± stepsize loop
15: End of example loop
16: Adjust stepsize
17: End of step loop
18: End of node loop
19: End of passes loop

#nodes∑

node=1

(
τmean
node − τ target

node

)2

T 2
(6.29)

After doing the MDL optimisation, the result is fine-tuned by adding a curvature
term to the cost function which measures deviations from mean curvature. This
has given good results for examples with high-curvature landmark positions as
head silhouettes [69].

6.2.4 Corpus callosum case

In order to show how powerful the MDL approach can be, a case study is intro-
duced. The corpus callosum is the area of the human brain which connects and
enables communication between the two cerebral hemispheres. Many neurological
studies indicate that the size and shape of the corpus callosum are related to gen-
der, age, neurodegenerative diseases et cetera [10, 28, 46]. The gold standard for
such studies is MRI, which allows acquisition of accurate images of the anatomy
and function of the human brain [64]. An example image is given in Figure 6.3.

For the analysis of the MR brain images, a segmentation of the corpus callosum is
crucial. In this relation, AAM has been applied with good results. However, the
results of the AAM are heavily dependent on the landmarking. In this context,
the MDL approach has given remarkable results [64]. To illustrate this, the first
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Figure 6.3: MR brain image with corpus callosum labelled.

three modes from PCA of shapes with manually placed landmarks is compared
to shapes with the optimised MDL landmarks in Figure 6.4. The figure shows
that the model is considerably better for the MDL optimised landmarks than for
the manually placed landmarks. Compared to the manual model, the first mode
for the MDL solution is much more specific on the shape variation itself, it lies
orthogonal to the mean shape, which indicates a good shape model.

A quantitative measure of the compactness of the model is given by the total
variance, VT (refer to Equation 4.10). For the corpus callosum example, the total
variance was calculated as:

Manual model: VT = 0.0087
MDL model: VT = 0.0038

This shows that the total variance has been reduced by 56% from the manual
model to the MDL model. This extreme improvement suggests that it is a good
idea to consider MDL in every shape model.
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Manual MDL 

Figure 6.4: Figure 6.4: First three principal modes (mode 1–3 from top to bottom).
The whiskers denote 3 standard deviations. Left: Manual model. Right: MDL model.

6.3 Adjustments of cardiac shape contours to the MDL
framework

Having seen the promising results from the corpus callosum case, the MDL tech-
nique now seems an ideal way to place landmarks on the previously defined car-
diac shapes. However, a few adjustments need to be made prior to applying the
method. Before describing the actual adjustments, a discussion on data modelling
is provided.

6.3.1 Modelling issues

The shape modelling approach used here is to pool inter-patient and inter-slice
variability of the set of shapes. This means that each cardiac shape is considered as
one observation and by MDL optimisation, correspondence is obtained across slices
and patients. This is different from what is done in the multi-slice AAM described
in next chapter where each multi-slice frame is considered as one observation.

The reason for this inconsistency is that the multi-slice part of the AAM was
added at the final stages of this project and modelling the MDL in this way was
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considered adequate for a single-slice as well as the resulting multi-slice AAM.

Now the adjustments of the cardiac shape data to the MDL framework will be
addressed.

6.3.2 Splitting up cardiac shape contours

As mentioned earlier, the cardiac shape consists of three contours (curves), two
closed (endocardial and epicardial) and one open (RV). The MDL method is not
designed to deal with more than one set of shape contours, since it requires each
shape contour in the set to be parameterised. Consequently the cardiac shape
should be split up.

However, splitting the cardiac shape into the three above mentioned contours gives
rise to some problems. This is due to the anatomical landmarks on the cardiac
shape where the RV meets the epicardial (refer to Figure 5.1). That is, if the
epicardial contour was to be optimised, those two landmarks would have to be
kept fixed throughout the optimisation process. Keeping a point, which is neither
a start nor an endpoint, fixed is problematic due to the hierarchical properties of
the parameterisation function discussed in Section 6.2.1.

The approach used here will therefore be to split the epicardial contour at the
two landmarks and obtain two open, fixed-end sub-contours. This approach is
extended to the endocardial contour by defining two pseudo-landmarks at mini-
mum distance to the epicardial landmarks and split the contour in a similar way.
It would be possible to optimise the endocardial given only one of the pseudo-
landmarks but the splitting is more convenient since it gives open fixed-end sub-
contours, similar to the other three and the contour parameters needed for the
optimisation can be kept constant throughout the whole procedure. Figure 6.5
shows the five different sub-contour types. We will refer to these sub-contour types
as:

• Right epicardial
• Left epicardial
• Right endocardial
• Left endocardial
• Right ventricle (RV)

To clarify, the names are also marked on the figure.
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Figure 6.5: Splitting of the cardiac shape to five contours.

6.3.3 Optimisation procedure

Before going into details about the optimisation procedure of the five sub-contour
sets, a few things must be clarified. The problem we are faced with is to obtain
a global point correspondence, i.e. for the set of full cardiac shapes. However,
due to the reasons mentioned in last section, the full cardiac shape had to be split
up into five sub-contours. Optimising each of the five sub-contour sets completely
independent of the others would give a local minimum, i.e. it would not be optimal
for the full cardiac shape. The aim is therefore to optimise each sub-contour set
individually, with influence from the full shape.

The actual optimisation process of sliding points until the description length is
minimised must be done separately for each sub-contour set due to the properties
of the parameterisation function. However, it is possible to affect the value of the
objective function (description length) by the full shape. The factors, which affect
the description length are the (Procrustes) alignment of the shapes and the PCA.
The solution closest to global optimum would therefore be obtained by aligning
globally and doing the PCA globally.

However, it gave better results to do a global alignment followed by local cen-
tering, (not local normalisation) and local PCA. For this reason along with less
computation time, this approach was the one used.
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The following section describes the need for balancing the point density of the
shapes when doing a Procrustes alignment on the full set of shapes during the
optimisation procedure.

6.3.4 Balanced alignment

The Procrustes alignment performed on the set of full cardiac shapes during op-
timisation must be balanced in the sense of number of points describing each
contour type.

The hierarchical parameterisation requires open contours to be described by 2Q+1
points, where Q ∈ Z+. This means that the individual (local) contour being
optimised has Nlocal = 2Q +1 points. In order to balance the alignment, weighting
with respect to arclength is carried out. This means that contour set i, (i 6= local)
will have Ni equidistant points, where:

Ni = round

(
Nlocal · ALi

ALlocal

)
(6.30)

where ALi is the mean arclength of contour set i and ALlocal is the mean arclength
of the local contour set. The mean arclength is approximated by

ALi =
1
ns

ns∑

k=1

nl−1∑

j=1

||sk(tj+1)− sk(tj)||, i = 1 . . . , 5. (6.31)

where sk(tj) denotes the j’th landmark of shape k. N is recalculated for each of
the five optimisations.

6.3.5 Computation time and implementation and issues

Now, a brief discussion of the implementation and computation times for the
optimisation is given. This is discussed here in order to explain the need for an
approximation to the full MDL solution.

The MDL adjustments for the cardiac data were implemented in Matlab as an
extension to Thodbergs MDL Matlab code [68]. The basic code had been tested
for only small data sets of up to 40 shapes.

With the large amount of data, 2000 examples for each of the five sets of sub-
contours, the code becomes considerably slow and impractical to run. In fact this
was tested and had been running for three weeks when it was stopped without
results.

Parallelisation could give a speed-up of the code but it is considerably complicated
(or impossible) in Matlab and was therefore not considered as an option.
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By noticing that the most shape variation occurs between patients and between
slices, the approach is to generate a non-temporal set by selecting the last frame
of each slice sequence for the MDL optimisation. This reduces each contour set
to 40 examples which leads to an acceptable computation time.

Attempts were made to feed this result to the full optimisation of 2000 shapes as
a good initial guess, but this did not give satisfactory improvement.

Consequently, the optimisation is performed on the non-temporal set and the
parameterisation functions obtained for each shape are assumed to be constant
throughout the corresponding slice sequence. This is one of the issues discussed
in the following section.

6.3.6 Post processing

The output from MDL optimisation on the non-temporal set is a set of parame-
terisation functions; one for each shape (one time frame from each slice sequence)
of each of the five sets. These parameterisation functions are applied to the re-
maining frames of the relevant slice sequence deriving landmarks for the examples
not included in the optimisation. This procedure is clarified in Table 6.2.

Table 6.2: Derivation of landmarks of full set from parameterisation functions of non-
temporal set

1. for all sub-contour sets
2. for all patients
3. for all slices
4. for all time frames
5. Derive shape landmarks by parameterising

shape spatient,slice,frame by ψpatient,slice

6. end frame loop
7. end slice loop
8. end patient loop
9. end sub-contour loop

Each of the full (temporal) sub-contour sets are now described by 2Q+1 landmarks.
Feeding this directly to AAM would give unequal weighting on different regions
(sub-contours) of the cardiac shape. Consequently, balancing similar to the one
described in Section 6.3.4 is performed. The estimation of the number of points
to describe each sub-contour type is similar to Equation 6.30, except that the
local number of points, Nlocal is not restricted to 2Q + 1. This only needs to be
calculated once, where the (local) reference contour and the corresponding number
of points, Nlocal are chosen freely.

The new solution is calculated by resampling the given number of points from
the relevant MDL parameterisation function. The actual shape points are then
extracted from the resampled parameterisation functions.
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To illustrate the need for this post processing, Figure 6.6 shows the combined
Procrustes mean shape before and after balancing.

Figure 6.6: Left: Procrustes mean shape, before resampling. Right: Procrustes mean
shape, after resampling with respect to the mean arclength of each sub-contour.

6.3.7 Summary of cardiac MDL adjustments

The procedure for applying MDL shape modelling on cardiac contours is given in
Table 6.3 as an extension to Thodbergs algorithm (Table 6.1). The adjustments
made for the cardiac contours are bold-lettered.
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Table 6.3: Pseudo-code for Thodbergs MDL optimisation algorithm [68] with adjust-
ments for cardiac shape contours added.

1. Reduce the temporal set to a non-temporal set
2. Split shapes into 5 sub-contour sets
3. Loop over 5 sub-contour sets
4. Determine #points for each sub-contour set by Eq. 6.30
5. Do equidistant resampling using #points from 4.
6. Loop over passes
7. Loop over nodes
8. Loop over 5 steps
9. Loop over shape examples

10. Loop over ± step
11. Probe τ(node) = τ(node)± stepsize of example
12. Extract marks from parameterisation
13. Center and normalise full set
14. Do Procrustes of full set
15. Center local set
16. Do PCA of local set
17. Compute DL from PCA
18. If DL<MDL, set MDL ← DL and break loop
19. Undo τ(node) change
20. End of ± step loop
21. End of example loop
22. Adjust stepsize
23. End of step loop
24. End of node loop
25. End of passes loop
26. Derive landmarks for remaining frames of each slice sequence

using optimal parameterisation functions.
27. End of sub-contour set loop
28. Redefine #landmarks for each sub-contour set solution by Eq. 6.30
29. Resample parameterisation functions using #landmarks from 28 and

obtain new shape landmarks
30. Combine solutions and obtain the full training set of cardiac shapes

6.4 Summary and next steps

This chapter has covered the issues of semi-automatic landmarking. MDL shape
modelling in general was presented followed by a discussion of the adjustments
made for the cardiac data to fit the MDL framework. Computation time and
implementation issues resulted in the approximation of reducing the full data
set to a non-temporal set. Nevertheless, a framework for automatically creating
landmarks on a set of cardiac shapes by MDL shape modelling has been provided.
This results in a training set of shapes required for the AAM based registration
method discussed in next chapter.
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Chapter 7

AAM based registration
method

Given the semi-automatically generated training set from last two chapters, shape
and texture deformations of the myocardial perfusion data can now be learned
by an Active Appearance Model (AAM) and unseen instances of the data can be
synthesised and registered. This section deals with these topics.

First, a general discussion of AAMs is provided. Secondly modelling of the MRI
perfusion data is discussed followed by the resulting modelling choice, cluster-
ing with respect to texture. Modelling of object interfaces and multi-slice shape
modelling are the subject of next two sections and finally, model constraints and
initialisation techniques are discussed.

7.1 Basic concepts of AAM

AAMs [18, 29] were introduced as a learning-based method for registration and
interpretation of face images. By being a generic approach for image registration
and image interpretation, medical applications were soon to follow (refer to [65]
for a summary of medical AAM applications). The AAMs are built on the basis
of a training set with the important property of landmark correspondences. From
this set, both shape and texture properties are learned. From these quantities
new images similar to the training set can be generated. Given a large enough
training set it should be possible to generate any image of normal anatomy. Here,
the term ”normal anatomy” refers to that the model is general enough to generate
any ”legal” (normal) example of the class of images and furthermore it is specific
enough not to generate any ”illegal” instances of the class. Consequently AAMs
can be fitted to unseen images, providing image registration and interpretation.

An appearance model is built by combining a model of texture variations and a
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model of shape variations. After applying Procrustes analysis to align the shapes
to a normalised mean shape, a statistical shape model is built by PCA. Subse-
quently each texture example is warped to match its landmarks to the landmarks
of the mean shape. This results in a shape free patch from which a texture vector
is sampled. After normalising the texture vector a statistical model of texture
variation is built using PCA. Let s and t denote a synthesised shape and texture
and let s and t denote the corresponding sample means. New instances of shape
and texture are now generated by adjusting the principal component scores, bs

and bt in
s = s + Φsbs , t = t + Φtbt, (7.1)

where Φs and Φt are eigenvectors of the shape and texture covariance matrices
estimated from the training set. To obtain a combined shape and texture param-
eterisation, c, the values of bs and bt over the training set are combined into

b =
[

Wsbs

bt

]
=

[
WsΦT

s (s− s)
ΦT

t (t− t)

]
. (7.2)

The shape and texture parameters have different units, i.e. bs is in units of pixel
distances and bt in units of intensity. This is corrected for by choosing appropriate
shape parameter weights stored in the diagonal matrix Ws (see e.g. [20]).

To recover any correlation between shape and texture the two eigenspaces are
usually coupled through a third PCA,

b = Φcc =
[

Φc,s

Φc,t

]
c, (7.3)

obtaining the combined appearance model parameters, c, that generate new object
instances (in the model space) by

s = s + ΦsW−1
s Φc,sc , t = t + ΦtΦc,tc. (7.4)

In order to generate new object instances in the image space, the pixel intensities
in the texture vector t are sampled into the geometry of the shape s and the object
is warped into the image space by pose parameters p = [ tx ty s θ ]T where tx, ty
and θ denote in-plane translation and rotation, and s denotes the shape size. The
image warping method requires a Delaunay triangulation to recover the texture
information between the landmarks of s.

The aim is now to minimise the residual vector, i.e. the difference between the
model and the true underlying image,

r(q) = timage − t , (7.5)

where q are the parameters of the model, qT = [cTpT]. A first order Taylor
expansion of Equation 7.5 gives
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r(q + δq) = r(q) +
δr
δq

δq . (7.6)

The goal is to find the parameter update δq which minimises the residuals in the
least-squares sense

argminδq||r(q + δq)||22 . (7.7)

Setting the right side of Equation 7.6 equal to zero, the following solution – the
Jacobian estimate is obtained.

δq = −Rr(q), R =

(
δr
δq

T δr
δq

)−1

δrTδq . (7.8)

This estimate forms the basis for an iterative parameter updating scheme which
should converge in the optimal image-to-model fit. The R matrix is approximated
initially from the training set and is kept fixed throughout the procedure.

For further details on AAMs refer to [18, 19, 20].

7.2 Modelling of perfusion MRI time-series

Since perfusion MRI sequences differ in structure from the single-image oriented
AAMs, this section will discuss the issues of data modelling.

First, one should recognise that the signal variation of the left ventricle (LV) and
the right ventricle (RV) is very small prior to contrast arrival. Due to this lack
of image contrast, the standardisation of texture vectors normally used in AAMs
would result in severe amplification of scanner noise. Hence, only the texture
mean is removed in the following pre-processing of image texture vectors.

Deviations from the assumptions in standard AAMs are not only encountered
with respect to texture normalisation. The relationship between shape and tex-
ture also differs. It is safe to assume that the process generating shape variation
remains stationary throughout a sequence, contrary to the highly non-stationary
texture process. Consequently, shape and texture are treated independently by
removing the combined PCA, i.e. Φc = I. Treating each perfusion sequence as
one observation (as done on cardiac cine MRI in [48]) is not feasible due to the
random fluctuations in pose and shape induced by the variation sources mentioned
in Section 2.2; whereof respiration dominates.

However, joint modelling of texture – decoupled from changes in shape and pose –
for a complete sequence is possible by introducing an annotation of the temporal
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relationship of each sequence frame. However, this may not be desirable, as only
a few proper temporal landmarks exists (during the actual bolus passage). Fur-
ther, building sequence models would require far more training examples to model
this behaviour properly, compared to a simpler and less constrained frame-based
model. Consequently, given the low number of subjects, each frame in a sequence
will be treated as an observation.

Circumventing the need for large training sets unfortunately violates a basic as-
sumption in AAMs, namely that the variation in texture is well modelled by a
single multivariate Gaussian model. Due to the radical changes in intensity dur-
ing contrast passage and uptake this is clearly not the case. On a coarse level we
can split the sequence into pre-contrast arrival, contrast agent entering the RV,
LV, and the myocardium.
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Figure 7.1: First, second and third principal component of 500 texture vectors from ten
perfusion sequences.

Since the texture parameters of the texture model shown in Equation 7.1 are
ranked by their variance over the training set, this alleged clustered behaviour
should be confirmed by visual inspection of a few highly-ranked parameters from
bt. Figure 7.1 shows the three most significant texture parameters, {bt,i}3

1, from
a texture model built from the ten available perfusion sequences. This figure
exhibits a pronounced clustering and thus verifies our concerns. Modelling this
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multimodal distribution with a multivariate Gaussian is clearly not justified and
gives rise to several problems. Most problematic is that since the resulting model
is not specific to the given problem it can easily generate textures that are not
plausible to occur during a perfusion bolus passage. This would in turn lead to
potential false positives during the model-to-image matching and will be dealt
with in the following section.

7.3 Adding cluster awareness

To model the distribution of textures we propose an unsupervised learning ap-
proach that models texture variation using an ensemble of linear subspaces in lieu
of the unimodal linear model employed in AAMs. Alternatively to clustering,
these subspaces could have been given by an operator, which identifies different
phases of each perfusion sequence. However, to reduce firstly the tedious burden
of training set generation and secondly inter-and intra-observer variability, super-
vised learning was rejected. Further, we like to leave the option open to evaluate
different ensemble sizes in the future when more training data becomes available.
This will obviously be very tedious in the case of manual labelling.

Although the machine learning literature offers an abundance of classification
methods, it is generally agreed upon that no silver bullet exists. The approach
used in this study is a k-means classification [32] combined with a Monte Carlo
simulation scheme where several classifications are carried out, based on different
initial random class centres. The final classification is chosen using a minimax
criterion, where the classification having the smallest maximum distance to the
nearest class centre is chosen.

From the resulting classification a set of linear texture subspaces, {Φt,i}nc
i=1, is

obtained directly by nc separate texture PCAs. A corresponding set of model
parameter update matrices, {Ri}nc

i=1, is obtained following the procedure in [19]
using a displacement scheme specified in [65].

As texture changes in a sequence are deemed to be unrelated to shape changes,
building a joint shape model, Φs, from all frames in all sequences will yield the
best estimate of inter- and intra-subject shape variability. This composition of a
single shape model and an ensemble of texture models with associated parameter
update matrices is noted as a Cluster-aware Active Appearance Model (CAAM).
A CAAM can thus be applied to any domain problem that justifies uncoupled
shape and texture eigenspaces and requires piecewise-linear modelling of texture
variability.

Fitting a CAAM to unseen images now involves choosing the appropriate texture
subspace. As a reasonable choice for nc is typically fairly limited, model selection
is here performed by exhaustively trying all models and selecting the model pro-
ducing the best model-to-image fit, subject to a set of constraints addressed in
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Section 7.6. To increase performance during model fitting, model selection could
be accomplished by a classification of the texture vector into the set of training
classes. However, this has not been tried in the current work.

To choose nc, prior knowledge can be employed. However, being an optimisation
problem in one positive integer variable, a data-driven method should be preferred
where nc is estimated using cross-validation on the training set. However, observe
that the number of available training examples for model estimation within a
single class is inversely proportional with nc. Due to this fact, we have fixed nc

to five classes for all experiments as a reasonable compromise, since conclusions
regarding the optimal number of classes would remain fragile, due to the limited
number of training subjects available.

7.4 Modelling object interfaces

To add notion about the interface between the heart and the surrounding tissue et
cetera, intensity samples in the proximity of the heart are included in the texture
model.

This is carried out by sampling landmark normals relative to the current shape
size, similar to the approach by Active Shape Models, [21]. These normals are
denoted whiskers. In our application, this will include the LV/lung interface and
LV-RV/abdomen interface into the texture models and thus require these to be
present in the unseen image to provide a good model-to-image fit. In all of the
subsequent experiments whisker samples are weighted so that they constitute one
third of the texture variation.

This approach has earlier been shown to have a positive, and significant, impact
on the registration accuracy, in the case study on corpus callosum registration in
brain MRI, [64].

7.5 Multi-slice shape modelling

Up to this point an observation has been associated to a single image. However,
cardiac perfusion MRI is typically acquired as multi-slice images in a spatial ar-
rangement. This enables regional assessment of the perfusion mechanism both in
plane as well as through plane. Modelling such slice images independently will
per se disregard any spatial and/or intensity coherence between slices. Conversely,
a joint modelling of each set of slices will provide a constrained basis, in which
slices with well-defined appearance will restrict slices with diffuse appearance from
diverging.

Coupled AAMs were first explored in [22] for interpretation of multi-view face
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images. Later, time-sequences of cardiac MRI were coupled [48], an approach
which was also pursued in [44, 59, 11, 12, 13]. Recently, long and short axis MRI,
and end-diastolic and end-systolic angiograms were fused by a similar approach
by [45] and [52], respectively.

How coupled AAMs should be constructed is application specific. Here, the fol-
lowing approach is taken: Let a shape consisting of N points in two dimensions
be defined by a 2N vector, as represented by Equation 4.1.

s = [ x1 y1 x2 y2 . . . xN yN ]T. (7.9)

A multi-slice observation consisting of a stack of C slices is then composed of the
set of shapes; {si}C

i=1 by simple concatenation of the unmodified slice image shape
coordinates prior to normalisation et cetera,

sframe =
[

sT
1 sT

2 . . . sT
C

]T
. (7.10)

Any subsequent shape analysis is left unchanged. Image sampling is carried out
using the appropriate slice for each related subpart of the combined shape vector.
This produces a model where inter-slice pose relations are modelled by the shape
changes, which is clearly desirable for the application in question. Should inter-
slice differences in pose not be constrained; then slice concatenation should be
applied to the Procrustes tangent space shape coordinates instead. This will thus
introduce the need for (C − 1) × 4 extra pose parameters into the model (in the
2D case).

7.6 Estimating and enforcing pose and shape priors

The fact that changes in pose and shape are unrelated to the change of texture
is highly useful for initialising and constraining the model fitting process in each
frame. Further, it can validate the final registration results as well as the interme-
diate results for each texture class. Consequently, if it is possible to obtain reliable
estimates of the shape and pose variation in a subpart of the sequence these can
be used as constraints in the remaining part of that sequence. This is the case in
the latter part of a bolus passage where the contrast agent has been washed out
of the RV and LV, only leaving the subtle changes stemming from the perfusion
mechanism in the myocardium. Hence, we propose to estimate prior distributions
of pose and shape from the latter part of a perfusion sequence of P frames.

Let κ, γ, Dmax denote a set of user-selectable, dimensionless, constants controlling
the influence of the priors. Then, let Σp denote the dispersion matrix of the
sequence pose parameters and let σ denote the standard deviations of the sequence
shape parameters. Further, let Ft denote the t-th frame. Let the set of frames
{Ft}S−1

t=1 denote the unstable period, and the frames {Ft}P
t=S denote the stable
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period. A formal scheme for exploiting these priors can then be formulated as
shown in Table 7.1.

Table 7.1: Sequence prior augmented CAAM search
Require: S, κ, γ, Dmax, Σp and σ

1. p = initialisation
2. bs = initialisation
3. for t = P down to S

4. {pt,bs,t} = CAAM search started at {p,bs} in Ft

5. p = 1
P−t+1

∑P
j=t pj

6. bs = 1
P−t+1

∑P
j=t bs,j

7. end for
8. for t = S − 1 down to 1
9. {pt,bs,t} = Constrained CAAM search started at {p,bs} in Ft

(constrain using κ, γ, Dmax, Σp, bs, σ)
10. end for

During CAAM search in the unstable period, pose and shape priors are used to
stabilise parameter updates by limiting the maximal update step. To simplify
notation, the time index t is omitted from this point on. Let Σp(ij) denote the
element in the i-th row and j-th column of Σp, and let pi denote the i-th element
of p. Pose parameter updates can now be constrained using the following simple
clamping approach:

δpi =
{

sign(δpi)κ
√

Σp(ii) if |δpi| > κ
√

Σp(ii)

δpj otherwise.
(7.11)

The constant κ acts thus as a clamping constant given in units of standard devia-
tions of pose variation as estimated from the training sequences. In all experiments
κ = 0.5 was used. As an alternative to this hyper cuboid constraint we could use
a projection onto the hyper ellipsoid given by an eigenanalysis of Σp.

Likewise, we also exploit the prior knowledge of sequence shape variation, σ, (as
obtained from the training set) in a similar clamping approach,

bs,i =
{

bs,i + sign(bs,i − bs,i)γσi if |bs,i − bs,i| > γσi

bs,i otherwise,
(7.12)

where γ denotes the maximally accepted distance from the mean in units of stan-
dard deviations. In all experiments γ = 3 was used.

After ended CAAM search in the unstable period, pose prior enforcement is de-
termined by testing the Mahalanobis distance to the pose distribution:

{p,bs} =
{ {p,bs} if D2

max < (p− p)TΣ−1
p (p− p)

{p,bs} otherwise
(7.13)
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Under the assumption of normally distributed pose parameters, it was decided to
use Dmax = 3. Hence, implausible pose solutions are discarded and replaced with
the maximum likelihood of the prior; the mean configuration. Such solutions are
flagged and the system operator can be prompted for manual assistance. This
pose prior enforcement is also employed during texture model selection so that
solutions failing the above condition are excluded from the competition of being
the selected for the current frame. This step is essential, since highly deviating
pose configurations easily can produce model-to-image fits that will outperform
the true positives.

7.7 Model initialisation

The initial pose, shape and texture parameter configuration of the CAAM, in
frame P , is determined by exploiting the convergence radius of the AAM search.
Within this radius the AAM will converge to a plausible fit. Parameters with vari-
ation outside this radius over the training set are semi-exhaustively searched, with
grid spacing less than twice the radius, by starting the AAM search at each grid
point. Each search result represents a potential initialisation candidate. To add
robustness this is implemented in a candidate scheme, where several candidates
compete in an evolutionary process to become the initial configuration. See [62]
for the details of this algorithm.

Similar to the normal CAAM search, initialisation is performed exhaustively for
all texture models and subsequently choosing the model providing the best fit.

7.8 Summary and next steps

This chapter has described a registration method based on AAM with extensions
mainly related to the myocardial perfusion data. To cover the intensity differ-
ences across the perfusion sequences, clustering of texture vectors was introduced.
Additionally, a coupled slice model was presented to utilise the relationship be-
tween slices. Now that per-pixel registered perfusion sequences can be obtained,
perfusion assessment is the next step.
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Chapter 8

Perfusion assessment

The actual goal of the image registration discussed in previous chapters is to assess
myocardial perfusion (blood flow to myocardium). Perfusion analysis of MR per-
fusion images can be carried out in three steps: Qualitatively, semi-quantitatively
and quantitatively [49].

The qualitative assessment can be done without image registration, since it is
based on inspections of contrast between myocardial regions in the original images.
For the other two types of perfusion study, fully registered image sequences must
be available.

The semi-quantitative analysis relies on the so called signal-intensity (SI) curves,
which are obtained by plotting intensity versus time frames in the myocardium at
corresponding locations, pixel-wise or region-wise. See e.g. [14, 16, 39, 47, 50, 53,
61].

The fully quantitative analysis, which results in an absolute measure of myocardial
perfusion in ml/g/min1, is based on treating the SI-curves as a response for the
injected contrast bolus, see e.g. [40, 43].

Table 8.1 summarises the three steps to cardiac perfusion analysis and gives the
clinical correlation to each of the steps [49].

An absolute quantitative perfusion analysis is a full study in itself and will not be
carried out here. Instead semi-quantitative analysis of the previously registered
images is performed providing a basis for a full quantification. This is usually done
independently for each slice sequence and will be the approach followed here.

1ml blood per gram of tissue per minute.
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Table 8.1: Three steps of analysis of cardiac MR perfusion images.

Step Assessment Clinical correlation

Qualitative Contrast between myocardial
regions in original images

Localisation and extent of is-
chemia or infarction.

Semi-quantitative Properties of SI-curves Relative differences between
myocardial regions.

Quantitative Absolute myocardial perfusion
in ml/g/min.

Absolute differences between
myocardial regions and be-
tween patients or studies.

8.1 Semi-quantitative perfusion assessment

Due to the inherent representation of texture vectors in AAMs, pose- and shape-
compensated images are directly obtained by projecting each texture vector into
the shape-free reference frame. Thereby a per-pixel correspondence over the com-
plete perfusion sequence can be obtained and SI-curves can easily be generated.

To clarify, Figure 8.1 gives the relationship between an SI-curve and the corre-
sponding positions within the myocardium image frames.

Figure 8.1: Relationship between the SI-curve of the myocardium and the corresponding
positions within image frames.

The parameters used for the semi-quantification are derived from the SI-curve.
The parameters calculated in this study and their relation to the SI-curve are the
following:
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• Maximum up-slope: Maximum intensity difference between two adjacent
time frames

• Peak : Maximum intensity value after reaching the maximum up-slope
• Time-to-peak : Time from maximum up-slope to peak2

To illustrate, Figure 8.2 gives the relation of the parameters to an ideal SI-curve
of the myocardium.

Figure 8.2: A theoretical SI-curve from a region or pixel of the myocardium. The relation
of perfusion parameters to the curve is also illustrated.

The SI-curve in Figure 8.2 illustrates the bolus passage. That is, it shows how the
contrast agent enters the myocardium, reaches a maximum intensity (the peak)
and then washes out again.

It has been shown that variations in the above mentioned parameters can be
correlated reasonably with the blood flow. Thereby they can be used to detect
ischemic segments of the myocardium.3

These regions can be assessed by so-called perfusion maps for each of the three
parameters. The maps are generated by displaying the value of the parameter in
each pixel position as intensity in a gray-scale image scaled with respect to the
remaining values. This reveals relative differences between normal and ischemic
segments. These differences may be small for the above mentioned parameters and
therefore a parameter often assessed is the perfusion reserve index. It is calculated
as the ratio of the maximum upslope for a stress scan and the maximum upslope for
a rest scan [50]. Since the data of this study only covers rest scans this parameter
could not be determined.

2Some approaches use the time from first intensity increase to peak.
3Refer to Chapter 1: Ischemic segments are regions of reduced blood flow.
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We conclude this section by showing a schematic figure of the cardiac shape with
regions of the myocardium labelled. This terminology will be used in the discussion
of registration and perfusion results.

RV LV

Anteroseptal
Anterior

Anterolateral

Inferolateral

InferiorInferoseptal

Figure 8.3: Regions of the myocardium.

8.2 Summary and next steps

This section has addressed the three different steps to absolute quantification of
blood flow. In particular, the second step, semi-quantitative perfusion assessment
performed in this project has been discussed. Now, the theoretical aspects of this
thesis have been covered. In the next chapter, evaluation of the methods on the
myocardial perfusion data will be carried out.
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Chapter 9

Results and evaluation

This chapter presents experimental results for the data described in Section 2.3.
This comprises results from MDL shape modelling, registration results from the
AAM based method and finally example results from the semi-quantitative perfu-
sion assessment.

9.1 Training set formation: Results from MDL

This section illustrates the automatic landmarking procedure on the extracted
cardiac shapes from Chapter 5. A brief review of the relevant adjustments made
for the myocardial perfusion data follows.

As addressed in Section 6.3.2, the cardiac shapes are split into five sub-contour
sets (refer to Figure 6.5). Section 6.3.5 concluded that the full data set must be
reduced due to poor computation time of the algorithm. As a result, five non-
temporal data sets are defined, each including 40 sub-contours obtained from the
last multi-slice frame of all patients. The MDL optimisation is carried out on each
of the five non-temporal data sets with influence from the other four sets. The
rough approximation used here is that the resulting parameterisation functions
(ψ) remain constant throughout each slice sequence. Landmarks can therefore be
derived for the remaining time frames of a slice sequence using the corresponding
optimal parameterisation function from the non-temporal set (refer to Table 6.2).
Subsequently, the derived landmarks for the five sub-contours are resampled and
merged to generate the full training set of cardiac shapes. To summarise, the
procedure is listed below.
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1. Split each cardiac shape into five sub-contours.
2. Reduce each sub-contour set to a non-temporal set using the last multi-slice

frame of each patient.
3. Do MDL optimisation of each of the five non-temporal sets with influence

from the remaining four sets.
4. Derive landmarks for each full sub-contour set by applying the optimal pa-

rameterisation functions from the non-temporal set to the remaining slice
sequences.

5. Balance the point density between sub-contour sets by resampling the land-
marks

6. Combine the sub-contour sets to generate a full training set.

The results presented here will predominantly concern step 3 of this procedure,
i.e. the MDL optimisation itself. Additionally, inspection of the final result, the
full training set generated in step 6 will be given.

9.1.1 MDL optimisation of the five sub-contour sets

For each of the five sub-contour optimisations, 33 equidistant landmarks were
placed on each example as a start point. Marks number 0 and 32 are the anatom-
ical or pseudo-landmarks which are kept fixed throughout the procedure. Nodes
were placed at the first three levels in the hierarchy, i.e. marks number 16 (level 0),
8,24 (level 1), 4,12,20,28 (level 2) were defined as nodes. Figure 9.1 shows this
labelling for the right endocardial sub-contour.

 0

32

 4

 8

12

16

20

2428

Figure 9.1: Equidistant landmarks on the right endocardial sub-contour. Points number
0 and 32 are fixed (anatomical landmarks). The remaining labelled points are nodes.

The tolerance parameter from Equation 6.29 was set to T = 0.05 and σcut =
√

λcut

was set to 0.003 in all optimisations. These are the default values in the code and
have given good results in general.
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Regarding the computation time, the optimisation of the five non-temporal sets
took approximately 2 hours (on a 2.4 GHz Pentium PC) in total.

The development of the MDL optimisation will now be illustrated in two figures.
Figure 9.2 shows the convergence of the MDL algorithm for the right endocardial
sub-contour set. The plot shows clearly that the algorithm converges in a familiar
way, that is, the value of the MDL decreases fast during the first few iterations
and then slowly reaches a minimum. Similar plots were obtained for the remaining
sub-contours.
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Figure 9.2: Convergence of MDL optimisation for the right endocardial sub-contour set.
Note that the iteration number is composed of #passes ·#nodes ·#steps ·#examples.

Figure 9.3 shows the development of node positions for nodes on the first two
levels in terms of τ(node) across the set of right endocardial sub-contours. The
approximately symmetric structure of the plots around τ(node) = 0.5 indicates
that the stabilising term (refer to Equation 6.29) is low. That is, the final average
of node parameters is quite close to 0.5 for all nodes indicating only small changes
from the equidistant parameterisation.

The development of the MDL optimisation for the right endocardial sub-contour
set has now been addressed. The remainder of this section will illustrate quanti-
tative and qualitative results from the MDL optimisations.

Figure 9.4 shows actual displacements of node positions on the right endocardial
for patients 2 and 3. The plots confirm the indication of Figure 9.3 that the
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Figure 9.3: Development of the positions of nodes on first two levels (nodes 16,8 and 24
from left to right) for optimisation of right endocardial sub-contour set. Each node plot
shows the value of τ(node) plotted versus #passes ·#steps for all examples (contours) in
the set (different colours correspond to different examples).

optimal solution is not far from the equidistant solution. This is quite reasonable
since neither anatomical nor mathematical landmarks are present on the right
endocardial (the same applies for the other four sub-contours). Consequently, the
equidistant solution is already a good initial guess.

To give an idea of how much improvement was accomplished in the five optimi-
sations, Tables 9.1 and 9.2 are provided. They both give a quantitative measure
of model compactness before and after optimisation. The first one by total model
variance and the second one by the description length itself. The tables reveal
that a considerable improvement is obtained for all contour sets.
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Figure 9.4: Fixed points and node positions for the right endocardial sub-contour set.
Equidistant (black) and MDL optimised (red) solution. First row: Patient 2, slice 1–4.
Second row: Patient 3, slice 1–4.

Table 9.1: Comparison of total model variance for equidistant landmarking and MDL
optimised landmarking. Percentage decrease is also shown.

Sub-contour set Equidistant×103 Optimised ×103 Decrease
Right epicardial 2.60 1.80 28%
Left epicardial 0.96 0.76 21%
Right endocardial 1.70 1.40 15%
Left endocardial 0.47 0.37 22%
RV 4.0 3.60 10%

Table 9.2: Comparison of objective function (DL) for equidistant landmarking and op-
timised landmarking. Percentage decrease is also shown.

Sub-contour set Equidistant Optimised Decrease
Right epicardial 24.3 22.1 10%
Left epicardial 14.7 13.4 10%
Right endocardial 19.3 17.0 14%
Left endocardial 11.0 9.80 11%
RV 31.0 27.9 11%

The results from Table 9.2 are now analysed in further details for the right endo-
cardial sub-contour by considering the different contribution of each eigenvalue to
the description length. Figure 9.5 gives the contribution of the first ten eigenvalues
before and after optimisation for the right endocardial set. Figure 9.5 indicates
that most improvement of the equidistant solution should be expected in modes
3,4 and 5. The reason that the improvement does not appear in earlier modes
in general is that the first two modes mostly account for scaling factors. Those
factors exist because normalisation was carried out with respect to the set of full
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shapes (all sub-contours) but not within the individual sub-contour sets (refer to
Section 6.3.3).
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Figure 9.5: Contribution of the first 10 eigenvalues to the objective function. Compar-
ison of equidistant landmarks and MDL optimised landmarks for the right endocardial
set.

Figure 9.6 illustrates modes 3–5 for both the equidistant and optimised solution.



9.1 Training set formation: Results from MDL 91

Equidistant MDL optimised

Figure 9.6: Comparison of principal modes 3, 4 and 5 (from top to bottom) before and
after optimisation of the right endocardial contour set. Left: Equidistant landmarks,
right: MDL optimised landmarks. The whiskers denote 5 standard deviations from mean.

Figure 9.6 reveals a clear improvement for mode 3. The whiskers for the MDL
optimised landmarks appear approximately orthogonal to the mean shape. This
property is an indicator of a good shape model which in turn must be based
on good point correspondence. This is not the case for mode 3 of the equidistant



92 Chapter 9. Results and evaluation

model. The improvement is not as obvious for mode 4 and 5. However, it is noticed
that modes 4 and 5 for the equidistant landmarks appear similar to (respectively)
modes 3 and 4 for the MDL optimised landmarks. This indicates that a larger
proportion of the total variance has been covered in the first four modes of the
MDL solution compared to the first four modes of the equidistant solution.

9.1.2 Full training set

By performing steps 4-6 in the landmarking procedure stated in the beginning of
this section a full training set is generated.

To give an example of how the derived landmarks appear on the image frames, we
plot the derived landmarks for a multi-slice frame not included in the non-temporal
set as seen in Figure 9.7.

Figure 9.7: Derived landmarks for the four slices of patient 1, frame 20.

Shape variation in this full training set was modelled by PCA. The resulting
deformations for the first three principal modes are shown in Figure 9.8. Note
that in this model, inter-slice variance is pooled (as discussed in Section 6.3.1). It
is only intended to examine the results from MDL but not to base the multi-slice
AAM model on. The figure reveals that the first mode describes variations in the
RV and the second mode accounts for myocardium thickness. The third mode
accounts for RV variations as well as variations in the myocardium shape.
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mean − 3std mean mean + 3std

Figure 9.8: First three principal modes (from top to bottom) illustrated as ±3 standard
deviations from mean shape of the full temporal set.

9.1.3 Discussion of MDL results

The MDL optimisation improved the landmarking of the non-temporal set sub-
stantially for all five sub-contour sets according to Tables 9.1 and 9.2. Still, the
improvement is not as extensive as for the corpus callosum case presented in Sec-
tion 6.2.4. This is quite reasonable since the cardiac sub-contour sets do not give
the MDL optimisation much to ”work with”, i.e. neither anatomical nor mathe-
matical landmarks are present as in the corpus callosum case. Consequently, an
extreme improvement could not be expected.

Although the MDL optimisation gives good improvement for the non-temporal set,
the derived landmarks on the full set are not much better than the initial equidis-
tant landmarks. The approximation used by assuming constant parameterisation
function throughout a slice sequence is quite crude and in fact it corresponds to
the assumption that no shape variation occurs in the temporal dimension (of the
full set).

Many attempts were made to avoid this approximation by making the optimisa-
tion run on the full set but without success. The largest factors which lead to
poor computation time are that the pattern search algorithm is generally slow.
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Additionally, it includes a lot of for-loops which implemented in Matlab gener-
ally results in poor computation time. It would be interesting to compare this
algorithm to the gradient based algorithm from [30]. These types of algorithms
have better computational complexity than pattern search in general.

At this point, a full training set of the 2000 shapes has been generated semi-
automatically. After concatenating images and shapes in the vertical direction to
generate multi-slice frames as explained in Section 7.5, the multi-slice perfusion
sequences can now be modelled by the AAM based method.

9.2 Image registration by AAM

Given the slice-concatenated training set from the MDL optimisation, a validation
of the AAM based registration method proposed in Chapter 7 was carried out.
An extended C++ implementation of the AAM framework by Stegmann et al.
[65] was executed on a 2.4 GHz Pentium PC. The total number of landmarks for
each multi-slice frame in the training set was 332, including pseudo landmarks at
the LV centre (explained later in this section).

Firstly, this section gives illustration of model training of the multi-slice set and
secondly, results from a leave-one-out cross validation are presented. Eventually,
a discussion of the registration results is provided.

9.2.1 Model training

Recall from Sections 7.2 and 7.3 that texture variation is divided into nc models
where nc is the number of classes used in clustering of texture vectors. However,
shape variation is modelled using all 500 (multi-slice) examples in the training set.

Figures 9.9–9.11 illustrate the properties of the joint shape model by showing
principal shape modes 1–3 as deformations from the multi-slice mean shape. Fig-
ure 9.9 reveals that the first principal mode describes variations in orientation
and size of the RV as well as the myocardium thickness for the first slice. The
second principal mode in Figure 9.10 mostly describes variations in RV size and
the third mode in Figure 9.11 accounts for variations in myocardium thickness
and RV orientation. Judged from the three figures, the joint shape model seems
very reasonable since most of the obvious variation in the RV and myocardium is
explained.
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Figure 9.9: First principal shape mode. From left to right: Slice 1–4.
Top row: Mean shape −3 std. dev. Middle row: Mean shape. Bottom row: Mean shape
+3 std. dev. Variations in orientation and size of the RV as well as myocardium thickness
for the first slice are explained.
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Figure 9.10: Second principal shape mode. From left to right: Slice 1–4.
Top row: Mean shape −3 std. dev. Middle row: Mean shape. Bottom row: Mean shape
+3 std. dev. Variations in size of RV are explained.
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Figure 9.11: Third principal shape mode. From left to right: Slice 1–4.
Top row: Meanshape −3 std. dev. Middle row: Meanshape. Bottom row: Meanshape +3
std. dev. Variations in myocardium thickness and RV orientation are explained.
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Now, the texture modelling is considered. The resulting texture classification of
the data using five classes (nc = 5) is shown in Figure 9.12 in terms of the first three
principal components. Judged from the figure, the clustering seems to be quite
reasonable. However, the clustering is based on the full set of principal directions.
Consequently, the plot is only an indicator of the clustering performance.
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Figure 9.12: First, second and third principal component of 500 texture vectors from
ten multi–slice perfusion sequences classified into five classes.

As described in Section 7.3 a model is built for each of the five classes. Figure 9.13
shows the first mode of texture variation for the model built from the training
examples in the fifth class. The figure reveals that the first texture mode of class
5 mainly describes variations in the RV. The variation is hardly detectable, which
is probably due to the fact that the clustering already accounts for a great deal of
the variation. Class 5 is based on only 27 (out of 500) training examples, which
inevitably have small texture variation.

As mentioned earlier, the pseudo-landmark in the centre of the LV was added to
improve the Delaunay triangulation. This was extremely successful as the result
displayed on the mean shape in Figure 9.14 indicates. The figure reveals that all
triangles are close to being regular, which is the ideal case.
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Figure 9.13: First principal texture mode. From left to right: Slice 1–4.
Top row: Mean −3 st. dev. Middle row: Mean. Bottom row: Mean +3 st. dev. Variations
in RV intensity are explained.

Figure 9.14: Delaunay triangulation of the meanshape. From left to right: Slice 1–4.

9.2.2 Cross validation of registration accuracy

The ideal way to evaluate the registration method would be to divide the data set
into a training set and a test set. However, due to the small training set of only
10 patients, a leave-one-out cross validation was used. This infers that 10 training
sets, excluding data from one patient at a time, were formed and registration was
carried out on the data for the remaining (unseen) patient.

The stable period was set manually to the last 25 multi-slice frames of each se-
quence, i.e. S = 26 except for patient 1. This patient had a delayed bolus passage
and S = 36 was used. This parameter could presumably easily be set auto-



9.2 Image registration by AAM 99

matically using the extremum of the temporal image derivative. The model was
automatically initialised in the P -th multi-slice frame using the approach from
Section 7.7.

The initialisation strategy successfully located the heart in all patients, except pa-
tient number nine. Consequently, the CAAM for this patient was hand-initialised.

Two performance benchmarks were calculated for each model landmark:

• Point to point (pt.pt. ): Euclidean distance between corresponding land-
marks of the model and the ground truth.

• Point to curve (pt.crv. ): Shortest distance to the ground truth curve.

These performance benchmarks are referred to as landmark errors in the following
discussion. When grouped into mean values for a (multi-slice) shape these are
referred to as shape errors.

Table 9.3 summarises the shape errors for all patients, while Table 9.4 expands
on these numbers to show errors for each patient. Computation times for the
initialisation and the image search are given in Table 9.5.

Table 9.3: Mean shape errors (shown in pixels).

Mean Std.dev. Median Min Max
Pt.pt. 2.81 0.71 2.68 1.51 6.69
Pt.crv 1.25 0.36 1.17 0.66 3.79

Table 9.4: Shape errors for each patient (shown in pixels).

Patient 1 2 3 4 5 6 7 8 9 10
Pt.pt.

Mean 2.50 2.81 3.45 3.23 2.68 2.53 2.62 3.26 2.75 2.26
Std.dev. 0.46 0.71 0.44 0.83 0.41 0.73 0.63 0.39 0.90 0.35
Median 2.45 2.74 3.45 2.99 2.62 2.40 2.52 3.28 2.59 2.21
Min 1.51 1.76 2.53 2.21 1.90 1.52 1.73 2.49 1.74 1.73
Max 3.50 4.56 4.39 5.13 3.72 5.34 5.14 4.06 6.69 3.72

Pt.crv.
Mean 1.29 1.07 1.62 1.31 1.03 1.18 1.35 1.21 1.35 1.10
Std.dev. 0.23 0.15 0.35 0.22 0.21 0.48 0.39 0.16 0.54 0.24
Median 1.27 1.03 1.68 1.26 0.97 1.05 1.27 1.18 1.21 1.06
Min 0.78 0.85 0.86 1.03 0.75 0.66 0.98 0.94 0.80 0.83
Max 1.82 1.50 2.20 1.83 1.69 2.98 3.26 1.67 3.79 2.21

The statistics in Table 9.3 indicate a good overall registration accuracy. In Ta-
ble 9.4 no patient sticks out with respect to shape errors and on average, good
registration accuracy is obtained for all patients.

The computation times from Table 9.5 show that the dominating factor is the
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Table 9.5: Computation times (shown in seconds).

Multi-slice sequence time Mean frame time
Initialisation 34.0 0.7
CAAM search 9.9 0.2
Total 43.9 0.9

initialisation procedure which accounts for almost 80% of the computation time.

In Figure 9.15 – 9.17, shape and landmark errors will be illustrated by the pt.crv.
measure. The pt.pt. measure is not shown since it gives very similar trends.

Shape errors versus frame number are depicted in Figure 9.15 and 9.16 as mean
values over all patients with error bars (revealing trends and variation) and as box
plots (detecting spread of data and outliers), respectively. Notice the large shape
errors during the unstable period (frame 1–25) in both plots.
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Figure 9.15: Pt.crv. shape errors for each multi-slice frame shown as mean over all
patients. Error bars are one std. dev. Notice the large shape errors during unstable
period (frame 1–25)
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Figure 9.16: Box plots of the pt.crv. shape errors over all patients for each multi-slice
frame (IQR=1.5). Notice the large shape errors during unstable period (frame 1–25)

Plotting pt.crv. shape errors versus patient number in Figure 9.17 shows approx-
imately 14 apparent search failures out of 500 multi-slice frames (14/500=2.8%).
This number is obtained by adding the seven outliers (defined by using the top-
most whisker of patient 3 as a reference) to the seven failures detected and flagged
by Equation 7.13, indicated by circle in the figure. For patients 1–3 the replaced
mean estimator was close to the ground truth shape, contrary to patient 9. From
Figure 9.16 it is seen that all other failures occurred during the unstable period
(since none of the errors in the stable period exceed 2 pixels.)
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Figure 9.17: Box plots of the pt.crv. shape errors in all time frames for each patient
(IQR=1.5). Pose prior enforcements are shown using circles. 14 apparent failures are
detected including the ones denoted by circles.

To give a qualitative impression of the registration accuracy Figures 9.18 and 9.19
show registration results before, during and after the bolus passage for patient
8 and 10, respectively. Notice the dark region showing a severe perfusion deficit
present in the anteroseptal and inferoseptal of patient 8 in Figure 9.18.
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Figure 9.18: Registration results for patient 8 before (multi-slice frame 1), during (multi-
slice frames 13,15 and 17) and after (multi-slice frame 50) bolus passage. Notice the severe
perfusion deficit present in the anteroseptal and inferoseptal regions seen in the last two
multi-slice frames (17 and 50).
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Figure 9.19: Registration results for patient 10 before (multi-slice frame 1), during
(multi-slice frames 13,15 and 17) and after (multi-slice frame 50) bolus passage.
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To complete the quantitative overview, Figure 9.20 shows the distribution of
pt.crv. landmark errors in addition to their cumulative frequency. It is seen that
approximately 80 percent of the landmark errors are below two pixels. Finally,
Figure 9.21 illustrates the spatial distribution of the landmark errors by showing
circles with radii proportional to the mean landmark error on the multi-slice mean
shape. Errors on RV dominate together with errors on the LV endocardial contour
in proximity of the papillary muscles, i.e. near the anterolateral and inferolateral
wall, of the first and third slice.
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Figure 9.20: Distribution of pt.crv. landmark errors for all multi-slice frames shown by
bars. Cumulative frequency denoted by a broken line indicates that 80% of the errors are
below two pixels.

Figure 9.21: Mean landmark errors plotted as circles on the multi-slice mean shape.

9.2.3 Discussion of registration results

The AAM based registration method produced acceptable results without manual
interaction in nine out of ten cases, due to the described initialisation method. This
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strategy failed for patient 9, for whom the heart was poorly centred in the slice
field-of-view. Further, and more importantly, slices were shifted heavily towards
the apex compared to the remaining nine patients, which obstructed a good fit of
the LV-RV model in the initialisation process. Patient 9 is therefore considered
an outlier and the observed limitations are accepted.

In general, less than three percent model fit failures were observed, judged from
Figure 9.17. All occurred prior to, or during the bolus passage (unstable period).
Half of these failures were not detected by Equation 7.13. This performance is
considered convincing, although it indicates that registrations based on this limited
training data should be reviewed by the operator, prior to making judgements
upon automatically generated perfusion maps. The operator workload involved
herein, corresponds approximately to performing manual annotation of a single
multi-slice frame.

Figure 9.21 reveals that a substantial part of the landmark error stems from im-
perfections in the localisation of the right ventricle. LV registration errors are con-
sequently smaller than the reported averages in the previous section. Although the
inclusion of the RV adds specificity to the model, a hierarchical approach using a
separate LV model initialised from the converged RV-LV model is straightforward
and should be well worth to pursue.
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9.3 Perfusion assessment

Now that the registered perfusion sequences are provided, a semi-quantitative
perfusion assessment can be carried out.

After extracting the myocardium from the registration results, smoothing over
time was performed by averaging over adjacent frames. Additionally, spatial
smoothing was performed by mean filtering inside the myocardium. Subsequently,
SI-curves were generated for each pixel position.

To get an idea of the appearance of the SI-curves, Figure 9.22 shows the mean SI-
curve for each patient. This mean curve is obtained by taking the mean intensity
over the whole myocardium from slice 3 in each time frame.

The SI-curves seem quite reasonable even though the wash-out of the contrast
agent is not reflected as in the theoretical SI-curve shown in Figure 8.2. This
behaviour can make the determination of the peak position problematic. For
patients 5 and 9 the wash-out does not appear at all. That is, the intensities are
still increasing when the last time frame is reached. For the other patients, one can
see a decrease (with good intension). The poor wash-out of the bolus is probably
due to the fact that all the patients have acute myocardial infarction which means
that more time is needed for the contrast to wash-out.
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Figure 9.22: Mean SI-curve for all patients. Note the poor wash-out of contrast agent
for patients 5 and 9 in particular.

The three perfusion parameters, maximum up-slope, peak and time-to-peak were
calculated for each position in the myocardium and perfusion maps were generated
for each of them. These are shown in Figures 9.23– 9.25 for all four slices of patients
3, 4 and 7. For the interested reader, refer to Appendix C.2 for perfusion maps
of the remaining patients. The maps are interpreted by examining areas which
appear darker than the surroundings. This indicates insufficient blood flow to the
particular regions (ischemic regions). Note that the maps only indicate relative
differences in blood flow and intensities can therefore neither be compared between
slices nor patients. In the following discussion of the perfusion maps, the different
regions of the myocardium will be referred to as labelled in Figure 8.3.

In Figure 9.23 ischemic regions are seen in the anteroseptal of slice 3 and 4 for all
three parameters.

Figure 9.24 shows that patient 4 has insufficient blood flow in the anteroseptal.
This is concluded from the perfusion maps of slice 3–4 for the maximum upslope,
slice 4 for the peak and slice 2–4 for the time-to-peak.

Figure 9.25 indicates that the ischemic regions for patient 7 appear at the inferior
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and inferoseptal. This can be seen from the maps for slices 1,3 and 4 of the
maximum upslope and peak and slices 3 and 4 for the time-to-peak parameter.

The bright intensities appearing at the endocardium border in some of the perfu-
sion maps (for example slice 1 in maximum upslope map for all three patients) are
probably due to minor registration failures, i.e. a small portion of the left ventricle
has been included in the myocardium registration. This is concluded from the fact
that the SI-curve for the LV is considerably steeper and with larger peak than the
myocardium curve. This results in greater intensities in the perfusion maps for
peak and maximum upslope.

Figure 9.23: Perfusion maps for patient 3 generated from automatic registration. From
top to bottom: Maximum upslope, peak and time-to-peak. From left to right: Slice 1–4.
Areas that appear darker than the surroundings indicate reduced blood flow (ischemic
segments).
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Figure 9.24: Perfusion maps for patient 4 generated from automatic registration. From
top to bottom: Maximum upslope, peak and time-to-peak. From left to right: Slice 1–4.
Areas that appear darker than the surroundings indicate reduced blood flow (ischemic
segments).

Figure 9.25: Perfusion maps for patient 7 generated from automatic registration. From
top to bottom: Maximum upslope, peak and time-to-peak. From left to right: Slice 1–4.
Areas that appear darker than the surroundings indicate reduced blood flow (ischemic
segments).

Perfusion maps were also generated for the ground-truth registered sequences.
These are shown for patient 7 in Figure 9.26. These ground-truth maps indicate
reduced blood flow in the inferior and inferoseptal regions. This is very similar
to what was concluded from the perfusion maps obtained from the automatic
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registration for same patient in Figure 9.25. In general, good consistency between
the ground-truth and automatic perfusion maps was obtained and this may be
verified by observing the remaining ground-truth perfusion maps in Appendix
C.3.

Figure 9.26: Perfusion maps for patient 7 generated from ground-truth registration.
From top to bottom: Maximum upslope, peak and time-to-peak. From left to right:
Slice 1–4. Areas that appear darker than the surroundings indicate reduced blood flow
(ischemic segments).

Discussion of perfusion assessment

The SI-curves in Figure 9.22 indicated for most patients that wash-out of contrast
agent had not occurred within the given time. As mentioned, this is probably
because the patients all have myocardial infarction. In this relation, additional
time frames in the sequences would be desirable. Furthermore, a comparison to
healthy individuals would be interesting in order to confirm those thoughts.

The perfusion maps from the automatic registration method were proven to be
able to detect ischemic areas of the myocardium in the three patients reported
here. Similar results were obtained for most of the remaining patients and good
consistency was obtained with respect to perfusion maps from the ground-truth
registration.

The bright areas appearing at the endocardium in the perfusion maps indicate
minor registration failures. These are quite difficult to avoid entirely and were
also detected in the ground-truth maps, see for example slice 1 and 3 in maximum
upslope map in Figure 9.26. As discussed in Chapter 3, Spreeuwers et al. [61]
have suggested sensitivity analysis on the perfusion parameters to overcome this
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problem.

The analysis provided in this section forms a basis for the absolute quantification
of blood flow. This is one of the future objectives of this study and in particular it
will be interesting to see a comparison of blood-flow in the automatically registered
perfusion sequences versus the ground-truth sequences.
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Chapter 10

Summary and conclusions

10.1 Summary

A registration method for four-dimensional myocardial perfusion MR images has
been presented. The method is based on Active Appearance Models, with two
main extensions for the perfusion data. This includes modelling of the multi-slice
sequences in addition to clustering of texture vectors in the temporal dimension.

To reduce manual work in generating a training set for the registration method,
point correspondences were obtained in a semi-automatic manner, accomplished
in two steps.

First, manual extraction of shape contours was carried out. In this purpose,
a Matlab tool was implemented. The tool enables the user to mark points
arbitrarily on the outline and subsequently, the points are interpolated by a cubic
spline to generate the dense shape contour.

Secondly, point correspondences on the extracted shape contours were obtained
automatically by Minimum Description Length shape modelling. Before applying
this method, the cardiac data needed a few adjustments. This included splitting
the cardiac shape into five shape contours at anatomical and pseudo-landmarks.
Due to impractical computation times, the method could not be applied to the
full shape data. Consequently, optimisation was carried out on a non-temporal set
and the optimal solution from this non-temporal set was applied to the remaining
shapes in the set.

After automatically registering the data in a leave-one-out examination, a semi-
quantitative perfusion assessment was carried out by providing perfusion maps for
three perfusion parameters.
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10.2 Conclusions

The objectives set forth in Chapter 1 were the following:

• To develop a tool for manual extraction of contours from myocardial perfu-
sion data.

• To place landmarks automatically on the extracted contours by MDL shape
modelling so that optimal point correspondence is obtained.

• To register the multi-slice image sequences using an AAM-based method.
• Perform semi-quantitative perfusion assessment on the registered image se-

quences.

These objectives have been achieved to a large extent as now discussed.

The contour extraction tool performed satisfactory for the manual marking of
points on the shape outlines and gave smooth shape contours by applying cubic
splines for interpolation. The annotation procedure naturally included the deter-
mination of anatomical landmarks. Consequently, a good shape model was already
provided after sampling points equidistantly along the interpolated contours.

To further improve the model, point-correspondences were optimised by MDL
shape modelling. The five non-temporal sub-contour optimisations resulted in
10–14% improvement in terms of description length and 10–28% improvement in
terms of the total model variance. This is quite acceptable considering the fact
that neither anatomical nor mathematical landmarks are present.

The crude approximation of assuming the parameterisation function (ψ) to be
constant throughout the slice sequence was applied to derive landmarks on the
remaining shapes. This resulted in a reasonable shape model even though the
overall improvement from the equidistant model was not considerable. However,
it would have been desirable to avoid this approximation and optimise point cor-
respondences on the full data set. The apparent obstacles for this to come true
are the optimisation method (pattern search) which has poor computational com-
plexity and the fact that the code is written in Matlab. Even though the code
is optimised with respect to Matlab’s matrix and vector routines, it includes a
considerable amount of for-loops which generally execute slowly in Matlab.

From the above, it is concluded that the objective set forth on obtaining optimal
point correspondences by MDL shape modelling was not achieved entirely even
though the approximation resulted in an acceptable shape model.

By training the AAM on the near optimal training set from MDL, good registra-
tion results were produced. This is concluded from the registration accuracy of
1.25 ± 0.36 pixels obtained in a leave-one-out cross validation. Since the largest
landmark errors appeared at the RV, the average registration accuracy for the my-
ocardium was even better than indicated by the overall average reported above.
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Generally, the obtained registration accuracy is considered promising, especially
since the data originates from patients diagnosed with acute myocardial infarction
leading to image quality below average. This poor image quality was also observed
at the training set formation stage, where it turned out that the manual extraction
of the shape outlines could be very problematic.

Compared to other approaches mentioned in Chapter 3, the registration method
is considered to have a noteworthy set of merits. These will be addressed in the
next few paragraphs.

In general, the method has the advantage that it is based upon a well-understood
and well-described framework; AAM, which also has a freely available implemen-
tation.

Some of the alternative approaches only correct for translational motion, disre-
garding rotation and deformable shape changes. By allowing complex deforma-
tions of the model, the AAM based registration method is not only suitable for
motion correction due to imperfect ECG triggering but it could as well be gen-
eralised to multi-slice perfusion sequences without ECG triggering (resulting in a
considerable shape variation across time). This type of scanning process is however
not yet available.

To let the method generalise to new data, very few assumptions concerning the
data content were made. Except for a few scalar parameters – which are di-
mensionless indices relating to the statistics of the actual data – all values are
estimated from training data, rather than being explicitly coded into the method.
This is considered a very fruitful approach, as the method easily adapts to new
expert knowledge given by medical doctors.

Since only weak assumptions regarding sequence length and bolus passage posi-
tion are present in the method, it is easily adapted to arbitrary-length perfusion
sequences. The method only requires a coarse indication of the bolus passage po-
sition and a stable period of a reasonable number of time frames after the bolus,
the latter being a standard requirement in perfusion MRI.

Contrary to the other approaches, the AAM based method provides simultaneous
registration of all slices. Furthermore, the computation times obtained are well
competitive to the other approaches, keeping in mind that they apply to modelling
of four slices instead of one.

Due to the inherent representation of texture vectors in AAMs, a per-pixel cor-
respondence over the complete perfusion sequence can be obtained by projecting
the vectors to the shape-free reference frame. This enables the direct formation
of SI-curves.

Regarding validation, both qualitative and quantitative validation of the AAM
based registration method has been given. This includes comparison with man-
ually defined (ground truth) shape boundaries. This validation methodology is a
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clear advantage to most of the other approaches, which rely on relative comparison
of parameters derived from the raw and the registered data. Consequently, these
measurements are heavily dependent on the quality of the raw data.

The main advantages of the AAM based registration method are summarised
below.

• It is based upon a well-understood and well-described framework; AAMs.
• Expert knowledge is provided in the learning-phase.
• Deformable modelling gives increased flexibility.
• It is easily adapted to arbitrary length perfusion sequences.
• All slices are modelled simultaneously.
• The registration provides per-pixel point-correspondence in a shape-free ref-

erence frame.
• Results are be produced within a reasonable time frame.
• Good validation has been carried out, including quantitative comparison of

automatic and ground-truth results.

The proposed registration method certainly has some limitations. The fact that
the method is learning based limits it to synthesise only plausible instances as
described by the training set. In some studies, papillary muscles, present on some
patients but not others, are detected as a part of the myocardium. Obviously, this
is not possible using the proposed method.

The semi-automatic formation of a training set was quite time consuming although
the manual labour was reduced considerably. However, forming the training set is
not considered a major disadvantage of the method. In fact, the need for ground-
truth registration is always present if a sufficient validation is to be carried out.

Given the resulting training set, the data set processed in this study could not
be registered fully automatically. However, manual interaction was minimal and
corresponded to annotation of a single multi-slice frame.

Semi-quantitative perfusion assessment was carried out and provided perfusion
maps for the three parameters: Maximum upslope, peak and time-to-peak. Is-
chemic regions were detected by the maps for most of the patients. Addition-
ally, good consistency was obtained with respect to perfusion maps acquired from
ground-truth registered data. Consequently, it is concluded that these results are
promising for the ultimate goal of the examination, a fully quantitative perfusion
assessment.

An invaluable property of MRI in general is that it is harmless for the patient
unlike some other examination methods. Additionally, high spatial resolution of
the images is a clear advantage. It is therefore desirable to utilise this technique
to its full extent. The use of Myocardial perfusion MRI is steadily increasing but
since it provides large numbers of images for each patient, (250 in this study),
the examination must be computer aided. The largest step towards diminution of
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manual labour in the examinations is to automate registration of the images.

Although automatic registration of perfusion MRI remains a challenge to medical
image analysis, it is believed that the results presented in this thesis hold promise
for the future.
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Chapter 11

Future work

This chapter provides a few ideas for future work as new applications or as im-
provements of existing methods.

First of all, to be able to draw valid conclusions from the methods introduced,
more data is needed for testing and validation.

The MDL implementation has given good results on small data sets but when the
number of examples is increased as drastically as in this work, the computation
time simply expands exponentially. To avoid the crude approximation of assuming
no shape variation in the temporal dimension, a C/C++ code and/or another
optimisation technique, such as a gradient based algorithm would be desirable.

The MDL shape modelling considered each shape extracted from one time-frame as
one observation and thereby provided point correspondences across slices as well
as patients. Given the multi-slice AAM based registration method, only point
correspondences across patients are needed. This would most easily be achieved
by optimising point correspondences across patients for one slice at a time.

Relating this to computational complexity, it was experienced that the computa-
tion times increased exponentially with increasing number of shapes. This indi-
cates that an optimisation of the correspondences slice by slice (4 times 500 shapes
for each sub-contour set) would not be as heavy as optimising the full set (2000
shapes at once for each sub-contour set). Consequently, this is the first step in
avoiding the approximation discussed earlier.

Regarding the computation time for the AAM based registration method, the
initialisation was a dominating factor as it accounted for almost 80% of the com-
putation time. The initialisation method is a general approach based on parameter
variations estimated from the training set. This method failed for one patient since
it differed too much from the training set in terms of these parameters. Although
general methods should be preferred, a possible alternative would be to use the
method from [60], which is more specific for the perfusion data. This is based on
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utilising the brightening effect of the contrast agent on the LV and RV. Initially,
a smoothing in spatial and temporal dimensions is performed. Subsequently, a
detection of the maximum intensity projection of the sequence followed by a local
maximum detection determines the LV and RV centres. This is presumably a
much faster approach than the general one used here.

Continuing with properties of the perfusion sequences, the determination of the
bolus passage position could be automated. As mentioned earlier, this could be
done by estimating the extremum of the temporal image derivative.

Further, regarding inspection of the perfusion sequences, the deformation property
of the model is considered an advantage with respect to intra-patient shape varia-
tion. However, the shape variation across a slice-sequence is fairly small due to the
ECG triggering. This a priori knowledge could be further utilised by putting less
weight on shape deformations in the temporal dimension and thereby add more
constraints to the search space.

Clustering of texture vectors was obtained by k-means classification. A more
sophisticated method for modelling the texture variance is to use a mixture of
Gaussian models. However, since, in practice the k-means clustering works quite
well, this is not considered a high priority task.

Regarding the perfusion maps, in some cases high intensities around the endo-
cardium indicated that a small part of the LV was included in the detected my-
ocardium. As mentioned earlier, this could be improved by a sensitivity analysis
of the perfusion parameters as introduced in [61].

The semi-quantitative perfusion assessment has room for improvements. This in-
cludes normalisation of the perfusion parameters with respect to the correspond-
ing parameters for the LV. This would allow better comparison between slices and
possibly patients. Additionally, this would presumably also enable overall color
coding of the perfusion maps.

The ultimate future goal of this study is to provide a full quantification of blood
flow from the automatic registration and compare to ground-truth registrations.
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Appendix A

Data file structure

The raw data from the MR scanner was received on the ”simple file format” (sf ).
The format consists of a header file (.sfh) and a data file (.sfd) for each image
frame of the perfusion sequence. The header file consists of basic fields, which
define the properties of the data, for example data format, resolution etc. The
data file holds the data values on the format specified by the header file. More
information on the sf format can be found at http://www.drcmr.dk/software/.

In order to visualise the data and reduce the amount of files, it was converted
to the time volume format (.tvi) which holds the four–dimensional data for each
patient in one file. The .tvi–files can be viewed in the 4D viewer [63] frame by
frame and slice by slice.

For multi slice modelling, the data was also stored on the .hif format, where each
file includes one multi–slice time frame where the slices are concatenated vertically.
None of the file conversions loses data information.
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Appendix B

Annotation tool – instructions

B.1 Help file for annotation tool

This script finds all tvi-files and executes the function
drawContours to annotate each frame in each ine of them. A spline is fitted to
each user annotated contour.

Annotation should be performed in the following way, using:
left mouse button for marking points
right mouse button to mark last point on the contour

Contrast: Press:
+ to increase contrast
- to decrease contrast

Brightness: Press:
Right-arrow to increase brightness
Left-arrow to decrease brightness

1. Annotate Epicardial (Outer contour of myocardial)
First point shoud be placed at the upper anatomical landmark where the RV and
epicardial meet. Annotate clockwise.

2. Annotate Endocardial (Inner contour of myocardial)
Annotate clockwise.

3. Annotate RV using 12-14 points. First point should be set at the
previously marked landmark and last point should be set at the lower
anatomical landmark where the epicardial and RV meet.

While annotating, the user can press
’u’ for undoing last point
’a’ for undoing all points currently marked on the contour in question.
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After annotating a contour, the spline is plotted. The user can press:
’ENTER’ or start annotating the next contour to accept the annotation
’r’ to repeat annotation on the same contour.

The script saves the stretchbox and n.o. evaluation points for the spline in
the workspace workspName1. Annotations, landmarks and a counter are saved in
the workspace workspName2. If the run is stopped for some reasons and
annotations proceeded later, the script checks the counter in the saved
workspace, determines last annotation and proceeds where it stopped last time.

NB!! All tvi-files must have same number of slices and frames
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Appendix C

Additional results

C.1 MDL results, non–temporal set

C.1.1 MDL Results for right epicardial contour set
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Figure C.1: Convergence of MDL optimisation for the right epicardial contour set. Note
that the iteration number accounts for #passes ·#nodes ·#steps ·#examples.
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Figure C.2: Development of the seven node positions for optimisation of right en-
docardial contour set. Each node plot shows the value of τ(node) plotted versus
#passes ·#steps for all shapes in the set.
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Figure C.3: Fixed points and node positions for the right epicardial contour set. Equidis-
tant (black) and MDL optimised (red) solution. Each column holds slice 1–4 for each
patient.
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Figure C.4: Contribution of the first 10 eigenvalues to the objective function. Com-
parison of equidistant landmarks and MDL optimised landmarks for the right epicardial
set.
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Figure C.5: Comparison of principal mode 3,4 and 5 (from top to bottom) before and
after optimisation of the right epicardial contour set. Left: Equidistant landmarks, right:
MDL optimised landmarks. The whiskers denote 5 standard deviations from mean.
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C.1.2 MDL results for left epicardial contour set
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Figure C.6: Convergence of MDL optimisation for the left epicardial contour set. Note
that the iteration number accounts for #passes ·#nodes ·#steps ·#examples.
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Figure C.7: Development of the seven node positions for optimisation of left epicardial
contour set. Each node plot shows the value of τ(node) plotted versus #passes ·#steps
for all shapes in the set.
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Figure C.8: Fixed points and node positions for the left epicardial contour set. Equidis-
tant (black) and MDL optimised (red) solution. Each column holds slice 1–4 for each
patient.
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Figure C.9: Contribution of the first 10 eigenvalues to the objective function. Com-
parison of equidistant landmarks and MDL optimised landmarks for the left epicardial
set.
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Figure C.10: Comparison of principal mode 3,4 and 5 (from top to bottom) before and
after optimisation of the left epicardial contour set. Left: Equidistant landmarks, right:
MDL optimised landmarks. The whiskers denote 5 standard deviations from mean.
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C.1.3 MDL results for left endocardial contour set
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Figure C.11: Convergence of MDL optimisation for the left endocardial contour set.
Note that the iteration number accounts for #passes ·#nodes ·#steps ·#examples.
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Figure C.12: Development of the seven node positions for optimisation of left en-
docardial contour set. Each node plot shows the value of τ(node) plotted versus
#passes ·#steps for all shapes in the set.
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Figure C.13: Fixed points and node positions for the left endocardial contour set.
Equidistant (black) and MDL optimised (red) solution. Each column holds slice 1–4 for
each patient.
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Figure C.14: Contribution of the first 10 eigenvalues to the objective function. Com-
parison of equidistant landmarks and MDL optimised landmarks for the left endocardial
set.
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Figure C.15: Comparison of principal mode 3,4 and 5 (from top to bottom) before and
after optimisation of the left endocardial contour set. Left: Equidistant landmarks, right:
MDL optimised landmarks. The whiskers denote 5 standard deviations from mean.
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C.1.4 MDL results for right ventricle (RV) contour set
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Figure C.16: Convergence of MDL optimisation for the RV contour set. Note that the
iteration number accounts for #passes ·#nodes ·#steps ·#examples.
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Figure C.17: Development of the seven node positions for optimisation of RV contour
set. Each node plot shows the value of τ(node) plotted versus #passes ·#steps for all
shapes in the set.
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Figure C.18: Fixed points and node positions for the RV contour set. Equidistant
(black) and MDL optimised (red) solution. Each column holds slice 1–4 for each patient.
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Figure C.19: Contribution of the first 10 eigenvalues to the objective function. Com-
parison of equidistant landmarks and MDL optimised landmarks for the RV set.
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Figure C.20: Comparison of principal mode 3,4 and 5 (from top to bottom) before
and after optimisation of the RV contour set. Left: Equidistant landmarks, right: MDL
optimised landmarks. The whiskers denote 5 standard deviations from mean.
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C.2 Perfusion maps – AAM automatic registration

C.2.1 Perfusion maps for patient 1

Figure C.21: Maximum upslope perfusion maps for patient 1, slice 1–4. Obtained from
automatically registered data.

Figure C.22: Peak perfusion maps for patient 1, slice 1–4. Obtained from automatically
registered data.

Figure C.23: Time–to–peak perfusion maps for patient 1, slice 1–4. Obtained from
automatically registered data.
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C.2.2 Perfusion maps for patient 2

Figure C.24: Maximum upslope perfusion maps for patient 2, slice 1–4. Obtained from
automatically registered data.

Figure C.25: Peak perfusion maps for patient 2, slice 1–4. Obtained from automatically
registered data.

Figure C.26: Time–to–peak perfusion maps for patient 2, slice 1–4. Obtained from
automatically registered data.
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C.2.3 Perfusion maps for patient 3

Figure C.27: Maximum upslope perfusion maps for patient 3, slice 1–4. Obtained from
automatically registered data.

Figure C.28: Peak perfusion maps for patient 3, slice 1–4. Obtained from automatically
registered data.

Figure C.29: Time–to–peak perfusion maps for patient 3, slice 1–4. Obtained from
automatically registered data.
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C.2.4 Perfusion maps for patient 4

Figure C.30: Maximum upslope perfusion maps for patient 4, slice 1–4. Obtained from
automatically registered data.

Figure C.31: Peak perfusion maps for patient 4, slice 1–4. Obtained from automatically
registered data.

Figure C.32: Time–to–peak perfusion maps for patient 4, slice 1–4. Obtained from
automatically registered data.
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C.2.5 Perfusion maps for patient 5

Figure C.33: Maximum upslope perfusion maps for patient 5, slice 1–4. Obtained from
automatically registered data.

Figure C.34: Peak perfusion maps for patient 5, slice 1–4. Obtained from automatically
registered data.

Figure C.35: Time–to–peak perfusion maps for patient 5, slice 1–4. Obtained from
automatically registered data.
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C.2.6 Perfusion maps for patient 6

Figure C.36: Maximum upslope perfusion maps for patient 6, slice 1–4. Obtained from
automatically registered data.

Figure C.37: Peak perfusion maps for patient 6, slice 1–4. Obtained from automatically
registered data.

Figure C.38: Time–to–peak perfusion maps for patient 4, slice 1–4. Obtained from
automatically registered data.
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C.2.7 Perfusion maps for patient 7

Figure C.39: Maximum upslope perfusion maps for patient 7, slice 1–4. Obtained from
automatically registered data.

Figure C.40: Peak perfusion maps for patient 7, slice 1–4. Obtained from automatically
registered data.

Figure C.41: Time–to–peak perfusion maps for patient 7, slice 1–4. Obtained from
automatically registered data.
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C.2.8 Perfusion maps for patient 8

Figure C.42: Maximum upslope perfusion maps for patient 8, slice 1–4. Obtained from
automatically registered data.

Figure C.43: Peak perfusion maps for patient 8, slice 1–4. Obtained from automatically
registered data.

Figure C.44: Time–to–peak perfusion maps for patient 8, slice 1–4. Obtained from
automatically registered data.
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C.2.9 Perfusion maps for patient 9

Figure C.45: Maximum upslope perfusion maps for patient 9, slice 1–4. Obtained from
automatically registered data.

Figure C.46: Peak perfusion maps for patient 9, slice 1–4. Obtained from automatically
registered data.

Figure C.47: Time–to–peak perfusion maps for patient 9, slice 1–4. Obtained from
automatically registered data.
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C.2.10 Perfusion maps for patient 10

Figure C.48: Maximum upslope perfusion maps for patient 10, slice 1–4. Obtained from
automatically registered data.

Figure C.49: Peak perfusion maps for patient 10, slice 1–4. Obtained from automatically
registered data.

Figure C.50: Time–to–peak perfusion maps for patient 10, slice 1–4. Obtained from
automatically registered data.
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C.3 Perfusion maps – Ground truth

C.3.1 Perfusion maps for patient 1

Figure C.51: Maximum upslope perfusion maps for patient 1, slice 1–4. Obtained from
ground truth data.

Figure C.52: Peak perfusion maps for patient 1, slice 1–4. Obtained from ground truth
data.

Figure C.53: Time–to–peak perfusion maps for patient 1, slice 1–4. Obtained from
ground truth data.
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C.3.2 Perfusion maps for patient 2

Figure C.54: Maximum upslope perfusion maps for patient 2, slice 1–4. Obtained from
ground truth data.

Figure C.55: Peak perfusion maps for patient 2, slice 1–4. Obtained from ground truth
data.

Figure C.56: Time–to–peak perfusion maps for patient 2, slice 1–4. Obtained from
ground truth data.
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C.3.3 Perfusion maps for patient 3

Figure C.57: Maximum upslope perfusion maps for patient 3, slice 1–4. Obtained from
ground truth data.

Figure C.58: Peak perfusion maps for patient 3, slice 1–4. Obtained from ground truth
data.

Figure C.59: Time–to–peak perfusion maps for patient 3, slice 1–4. Obtained from
ground truth data.
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C.3.4 Perfusion maps for patient 4

Figure C.60: Maximum upslope perfusion maps for patient 4, slice 1–4. Obtained from
ground truth data.

Figure C.61: Peak perfusion maps for patient 4, slice 1–4. Obtained from ground truth
data.

Figure C.62: Time–to–peak perfusion maps for patient 4, slice 1–4. Obtained from
ground truth data.
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C.3.5 Perfusion maps for patient 5

Figure C.63: Maximum upslope perfusion maps for patient 5, slice 1–4. Obtained from
ground truth data.

Figure C.64: Peak perfusion maps for patient 5, slice 1–4. Obtained from ground truth
data.

Figure C.65: Time–to–peak perfusion maps for patient 5, slice 1–4. Obtained from
ground truth data.
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C.3.6 Perfusion maps for patient 6

Figure C.66: Maximum upslope perfusion maps for patient 6, slice 1–4. Obtained from
ground truth data.

Figure C.67: Peak perfusion maps for patient 6, slice 1–4. Obtained from ground truth
data.

Figure C.68: Time–to–peak perfusion maps for patient 6, slice 1–4. Obtained from
ground truth data.
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C.3.7 Perfusion maps for patient 7

Figure C.69: Maximum upslope perfusion maps for patient 7, slice 1–4. Obtained from
ground truth data.

Figure C.70: Peak perfusion maps for patient 7, slice 1–4. Obtained from ground truth
data.

Figure C.71: Time–to–peak perfusion maps for patient 7, slice 1–4. Obtained from
ground truth data.
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C.3.8 Perfusion maps for patient 8

Figure C.72: Maximum upslope perfusion maps for patient 8, slice 1–4. Obtained from
ground truth data.

Figure C.73: Peak perfusion maps for patient 8, slice 1–4. Obtained from ground truth
data.

Figure C.74: Time–to–peak perfusion maps for patient 8, slice 1–4. Obtained from
ground truth data.
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C.3.9 Perfusion maps for patient 9

Figure C.75: Maximum upslope perfusion maps for patient 9, slice 1–4. Obtained from
ground truth data.

Figure C.76: Peak perfusion maps for patient 9, slice 1–4. Obtained from ground truth
data.

Figure C.77: Time–to–peak perfusion maps for patient 9, slice 1–4. Obtained from
ground truth data.



170 Appendix C. Additional results

C.3.10 Perfusion maps for patient 10

Figure C.78: Maximum upslope perfusion maps for patient 10, slice 1–4. Obtained from
ground truth data.

Figure C.79: Peak perfusion maps for patient 10, slice 1–4. Obtained from ground truth
data.

Figure C.80: Time–to–peak perfusion maps for patient 10, slice 1–4. Obtained from
ground truth data.


