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Abstract

Large-scale air pollution models can successfully be used in different environmental studies. These models are
described mathematically by systems of partial differential equations. Splitting procedures followed by discretization
of the spatial derivatives lead to several large systems of ordinary differential equations of order up to 80 millions.
These systems have to be handled numerically at up to 250,000 time-steps. Furthermore, many scenarios are often
to be run in order to study the dependence of the model results on the variation of some key parameters (as, for
example, the emissions). Such huge computational tasks can successfully be treated only if: (i) fast and sufficiently
accurate numerical methods are used and (ii) the models can efficiently be run on parallel computers.

The mathematical description of a large-scale air pollution model will be discussed in this paper. The principles
used in the selection of numerical methods and in the development of parallel codes will be described. Numerical
results, which illustrate the ability of running the fine resolution versions of the model on Sun computers, will be
given. Applications of the model in the solution of some environmental tasks will be presented.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Description of the model

The control of the pollution levels in different highly polluted regions of Europe and North America
(as well as in other highly industrialized parts of the world) is an important task for the modern society.
Its relevance has been steadily increasing during the last two-three decades. The need to establish reliable
control strategies for the air pollution levels will become even more important in the future. Large-scale
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air pollution models can successfully be used to design reliable control strategies. Many different tasks
have to be solved before starting to run operationally an air pollution model. The following tasks are most
important:

• describe in an adequate way all important physical and chemical processes;
• apply fast and sufficiently accurate numerical methods in the different parts of the model;
• ensure that the model runs efficiently on modern high-speed computers (and, first and foremost, on

different types of parallel computers);
• use high quality input data (both meteorological data and emission data) in the runs;
• verify the model results by comparing them with reliable measurements taken in different parts of the

space domain of the model;
• carry out some sensitivity experiments to check the response of the model to changes of different key

parameters; and
• visualize and animate the output results to make them easily understandable also for non-specialists.

In this paper, we shall concentrate our attention on the solution of the first three tasks (however, some
visualizations will be used to present results from some real-life runs in the end of the paper). The air
pollution model, which is actually used here, is the Danish Eulerian Model (DEM); see[36,38]. However,
the principles are rather general, which means that most of the results are also valid for other air pollution
models.

1.1. Main physical and chemical processes

Five physical and chemical processes have to be described by mathematical terms in the beginning of
the development of an air pollution model. These processes are:

• horizontal transport (advection),
• horizontal diffusion,
• chemical transformations in the atmosphere combined with emissions from different sources,
• deposition of pollutants to the surface, and
• vertical exchange (containing both vertical transport and vertical diffusion).

It is important to describe in an adequate way all these processes. However, this is an extremely
difficult task; both because of the lack of knowledge for some of the processes (this is mainly true for
some chemical reactions and for some of the mechanisms describing the vertical diffusion) and because
a very rigorous description of some of the processes will lead to huge computational tasks which may
make the treatment of the model practically impossible. The main principles used in the mathematical
description of the main physical and chemical processes as well as the need to keep the balance between
the rigorous description of the processes and the necessity to be able to run the model on the available
computers are discussed in[36].

1.2. Mathematical formulation of a large air pollution model

The description of the physical and chemical processes by mathematical terms leads to a system of
partial differential equations (PDEs) of the following type:
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where (i) the concentrations of the chemical species are denoted bycs, (ii) u, v andw are wind velocities,
(iii) Kx,Ky andKz are diffusion coefficients, (iv) the emission sources are described byEs, (v) κ1s and
κ2s are deposition coefficients and (vi) the chemical reactions are denoted byQs(c1, c2, . . . , cq). The
CBM IV chemical scheme, which has been proposed in[14], is actually used in the version of DEM (the
Danish Eulerian Model;[36,38]) that will be considered in this paper. It should be mentioned here that
the CBM IV scheme is also used in other well-known air pollution models.

1.3. Space domain

The space domain of DEM is a 4800 km× 4800 km square, which contains the whole of Europe
together with parts of Africa, Asia, the Arctic area and the Atlantic Ocean. Two discretizations of this
domain, a coarse one and a fine one, will be used in this paper. The space domain is divided into 96×96
small, 50 km× 50 km, squares when the coarse discretization is applied. The space domain is divided
into 480× 480 small, 10 km× 10 km, squares when the fine discretization is applied. Thus, one of the
coarse grid-squares contains 25 small grid-squares.

1.4. Initial and boundary conditions

If initial conditions are available (for example from a previous run of the model), then these are read
from the file where they are stored. If initial conditions are not available, then a five day start-up period
is used to obtain initial conditions (i.e. the computations are started five days before the desired starting
date with some background concentrations and the concentrations found at the end of the fifth day are
actually used as starting concentrations).

The choice of lateral boundary conditions is in general very important. However, if the space domain
is very large, then the choice of lateral boundary conditions becomes less important; which is stated on
p. 2386 in[6]: “For large domains the importance of the boundary conditions may decline”. The lateral
boundary conditions are represented in the Danish Eulerian Model with typical background concentrations
which are varied, both seasonally and diurnally. It is better to use values of the concentrations at the lateral
boundaries that are calculated by a hemispheric or global model when such values are available.

For some chemical species, as for example ozone, it is necessary to introduce some exchange with the
free troposphere (on the top of the space domain).

The choice of initial and boundary conditions is discussed in[15,36,38–40].

1.5. Applying splitting procedures

It is difficult to treat the system of PDEs(1.1) directly. This is the reason for using different kinds
of splitting. A splitting procedure, which is based on ideas proposed in[23,24], and which leads to
five sub-models, has been proposed in[36] and used after that in many studies involving DEM (as, for
example, in[38]). Each of the five sub-models obtained by this splitting procedure is representing one
of the major physical and chemical processes discussed inSection 1.1; i.e. the horizontal advection, the
horizontal diffusion, the chemistry (together with the emission terms), the deposition and the vertical
exchange.

In the newest version of DEM, which is used here, the horizontal advection was merged with the
horizontal diffusion, while the chemical sub-model was combined with the deposition sub-model. This
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means that the number of sub-models is reduced from five to three:

∂c(1)s

∂t
= −∂(wc(3)

s )

∂z
+ ∂

∂z

(
Kz

∂c(3)s

∂z

)
(1.2)

∂c(2)s

∂t
= −∂(uc(2)s )

∂x
− ∂(vc(2)

s )

∂y
+ ∂

∂x

(
Kx

∂c(2)s

∂x

)
+ ∂

∂y

(
Ky

∂c(2)s

∂y

)
(1.3)

dc(3)s

dt
= Es + Qs(c

(3)
1 , c

(3)
2 , . . . , c(3)q ) − (κ1s + κ2s)c

(3)
s (1.4)

The first of these sub-models, (Section 1.2), describes the vertical exchange. The second sub-model,
(1.3), describes the combined horizontal transport (the advection) and the horizontal diffusion. The
last sub-model,(1.4), describes the chemical reactions together with emission sources and deposition
terms.

The boundary conditions can be treated in a natural way when the splitting procedure described by
(1.2)–(1.4)is used. The implementation of the boundary conditions is performed as follows:

• The boundary conditions on the top and the bottom of the space domain are treated in(1.2), where the
computations are carried out along the vertical grid-lines.

• The lateral boundary conditions are handled in(1.3), where the the computations are carried out in
each of the horizontal grid-planes.

• The computations related to(1.4) are carried out by performing the chemical reactions at each
grid-point. It is clear that the computations at any of the grid-points do not depend on the computations
at the remaining grid-points. Therefore, no boundary conditions are needed when(1.4) is handled.

The main principles used to treat the sub-models at a given time-step are the same as the principles
discussed in[23,24,36]; see also[41]. A thorough discussion of different types of splitting splitting
procedure can be found in the recently published book by Hundsdorfer and Verwer[19]. Some convergence
results are presented in Farago and Havasi[10].

Splitting allows us to apply different numerical methods in the different sub-models and, thus, to reduce
considerably the computational work and to exploit better the properties of each sub-model. These are
the main advantages of using splitting. Unfortunately, there are drawbacks also: the splitting procedure
is introducing errors, and it is difficult to control these errors. Some attempts to obtain some evaluation
of the splitting errors were recently carried out; see[21,9].

1.6. Space discretization

Assume that the space domain is discretized by using a grid withNx × Ny × Nz grid-points, where
Nx, Ny and Nz are the numbers of the grid-points along the grid-lines parallel to theOx, Oy and
Oz axes. Assume further that the number of chemical species involved in the model isq = Ns. Fi-
nally, assume that the spatial derivatives in(1.2) are discretized by some numerical algorithm. Then
the system of PDEs(1.2) will be transformed into a system of ODEs (ordinary differential
equations):

dg(1)

dt
= f (1)(t, g(1)), (1.5)
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In a similar way, the system of PDEs(1.3)can be transformed into the following system of ODEs when
the spatial derivatives in the right-hand-side of(1.3)are discretized:

dg(2)

dt
= f (2)(t, g(2)), (1.6)

There are in fact no spatial derivatives in the right-hand-side of(1.4), because the non-linear functions
Qs can be represented as

Qs(c1, c2, . . . , cq) = −
q∑
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αsici +
q∑
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q∑
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βsijcicj, s = 1,2, . . . , q. (1.7)

whereαsi andβsij are coefficients describing the rates of the chemical reactions (for the CBM IV schemes
these coefficients are listed in[36]). By using this observation, it is easy to represent(1.4)as a system of
ODEs:

dg(3)

dt
= f (3)(t, g(3)), (1.8)

The components of functionsg(i)(t) ∈ RNx×Ny×Nz×Ns , i = 1,2,3, are the approximations of the con-
centrations (at timet) at all grid-squares and for all species. The components of functionsf (i)(t, g) ∈
RNx×Ny×Nz×Ns , i = 1,2,3, depend on the numerical method used in the discretization of the spatial
derivatives.

A simple linear finite element method is used to discretize the spatial derivatives in(1.2) and (1.3).
This method is described in[28,29]. Its implementation in DEM is discussed in[12].

The spatial derivatives can also be discretized by using other numerical methods:

• Pseudospectral discretization (described in detail in[36]).
• Semi-Lagrangian discretization (can be used only to discretize the first-order derivatives, i.e. the ad-

vection part should not be combined with the diffusion part when this method is to be applied), see for
example[22].

• Methods producing non-negative values of the concentrations. The method proposed in[4] is often
used in air pollution modelling. The method from[18]is based on a solid theoretical foundation.

As mentioned above, there are no spatial derivatives in(1.4), which means that the system of ODEs(1.8)
is trivially obtained by(1.4).

Much more details about the methods, which can be used in the space discretization, can be found in
[36].

1.7. Time integration

It is necessary to couple the three ODE systems(1.5), (1.6) and (1.8). The coupling procedure is
connected with the time-integration of these systems. Assume that the values of the concentrations (for
all species and at all grid-points) have been found for somet = tn. According to the notation introduced
in the previous sub-section, these values can be considered as components of a vector-functiong(tn) ∈
RNx×Ny×Nz×Ns . The next time-step, time-stepn+1 (at which the concentrations are found attn+1 = tn+�t,
where�t is some increment), can be performed by integrating successively the three systems. The values
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of g(tn) are used as an initial condition in the solution of(1.5). The solution of(1.5) is used as an initial
condition of(1.6). Finally, the solution of(1.6)is used as an initial condition of(1.8). The solution of the
last system(1.8) is used as an approximation tog(tn+1). In this way, everything is prepared to start the
calculations in the next time-step, stepn + 2.

The first ODE system,(1.5), can be solved by using many classical time-integration methods. The
so-calledθ-method (see, for example,[20]) is currently used in DEM. The choice of numerical method is
not very critical in this part, because as it will be shown Section 4, it is normally not very
expensive.

Predictor-corrector methods with several different correctors are used in the solution of the ODE system
(1.6). The correctors are carefully chosen so that the stability properties of the method are enhanced; see
[35]. The reliability of the algorithms used in the advection part was verified by using the well-known
rotational test proposed simultaneously in 1968 by[7,25].

The solution of(1.8) is much more complicated, because this system is both time-consuming and
stiff. Very often the QSSA method is used in this part of the model. The QSSA (quasi-steady-state
approximation; see, for example,[16] or [17]) is simple and relatively stable but not very accurate
(therefore it has to be run with a small time-stepsize). The QSSA method can be viewed as an attempt to
transform dynamically, during the process of integration, the system of ODEs(1.8) into two systems: a
system of ODEs and a system of non-linear algebraic equations. These two systems, which have to be
treated simultaneously, can be written in the following generic form:

dg1

dt
= f1(t, g1, g2), (1.9)

0 = f2(t, g1, g2). (1.10)

In this way we arrive at a system of differential-algebraic equations (DAEs). There are special methods
for treating such systems as, for example, the code DASSL (see[5]). Problem-solving environments (such
as MATLAB or Simulink) can be used in the preparation stage (where a small chemical systems at one
grid-point only is used in the tests). More details about the use of such problem solving environments can
be found in[30]. A method based on the solution of DAE for air pollution models was recently proposed
in [11].

The classical numerical methods for stiff ODE systems (such as the Backward Euler Method, the Trape-
zoidal Rule and Runge-Kutta algorithms) lead to the solution of non-linear systems of algebraic equations
and, therefore, they are more expensive;[20]. On the other hand, these methods can be incorporated with
an error control and perhaps with larger time-steps. The extrapolation methods,[8], are also promising.
It is easy to calculate an error estimation and to carry out the integration with large time-steps when these
algorithms are used. However, it is difficult to implement such methods in an efficient way when all three
systems,(1.5), (1.6) and (1.8), are to be treated successively.

Partitioning can also be used[1]. Some convergence problems related to the implementation of parti-
tioning are studied in[37].

The experiments with different integration methods for the chemical sub-model are continuing. The
QSSA with some enhancements based on ideas from[31,32]will be used here. The method is de-
scribed in[1]. There are still very open questions related to the choice of method for the chemi-
cal part. The choice of the improved QSSA method was made in order to get well-balanced parallel
tasks.
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2. Need for high-performance computing in the treatment of large air pollution models

The computers are becoming more and more powerful. Many tasks, which several years ago had to be
handled on powerful supercomputers, can be handled at present on PCs or work-stations. However, there
are still many tasks that can only be run on parallel computers. This is especially true for the large air
pollution models. The size of the computational tasks in some versions of DEM is given in the following
two paragraphs in order demonstrate the fact that high-performance computing is needed when large air
pollution models are to be treated.

2.1. Size of the computational tasks when 2-D versions are used

Only the two systems of ODEs(1.6) and (1.8)have to be treated in this case. Assume first that the
coarse 96× 96 grid is used. Then the number of equations in each of the two systems of ODEs(1.6)
and (1.8)is equal to the product of the grid points (9216) and the number of chemical species (35), i.e.
322,560 equations have to be treated at each time-step when any of the systems(1.6) and (1.8)is handled.
The time-stepsize used in the transport sub-model(1.6)is 900 s. This stepsize is too big for the chemical
sub-model; the time-stepsize used in the latter model is 150 s. A typical run of this model covers a period
of one year (in fact, as mentioned above), very often a period of extra five days is needed to start up the
models. This means that 35,520 time-steps are needed in the transport sub-model, while six times more
time-steps, 213,120 time-steps, are needed in the chemical part. If the number of scenarios is not large,
then this version of the model can be run on PCs and work-stations. If the number of scenarios is large or
if runs over many years have to be performed (which is the case when effects of future climate changes
on the air pollution levels is studied), then high-performance computations are preferable (this may be
the only way to complete the study when either the number of scenarios is very large or the time period
is very long).

Assume now that the fine 480× 480 grid is used. Since the number of chemical species remains
unchanged (35), the number of equations in each of the systems(1.6) and (1.8)is increased by a factor
of 25 (compared with the previous case). This means that 8,064,000 equations are to be treated at each
time step when any of the systems(1.6) and (1.8)is handled. The time-stepsize remains 150 s when the
chemical part is treated. The time-stepsize has to be reduced from 900 to 150 s in the transport part. This
means that a typical run (one year+ 5 days to start up the model) will require 213,520 time-steps for
each of the systems(1.6) and (1.8). Consider the ratio of the computational work when the fine grid is
used and the computational work when the coarse grid is used. For the transport sub-model this ratio is
150, while the ratio is 25 for the chemical-sub-model. It is clear that this version of the model must be
treated on powerful parallel architectures.

2.2. Size of the computational tasks when 3-D versions are used

All three sub-models,(1.5)–(1.7), have to be treated in this case. Assume that the number of layers in
the vertical direction isn (n = 10 is used in this paper). Under this assumption the computational work
when both(1.6) and (1.8)is handled by the 3-D versions (either on a coarse grid or on a fine grid) isn

times bigger than the computational work for the corresponding 2-D version. The work needed to handle
(1.5) is extra, but this part of the total computational work is much smaller than the parts needed to treat
(1.6) and (1.8).
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The above analysis of the amount of the computational work shows that it is much more preferable to
run the 3-D version on high-speed parallel computers when the coarse grid is used. It will, furthermore,
be shown that the runs are very heavy when the 3-D version is to be run on a fine grid. In fact, more
powerful parallel computers than the computers available at present are needed if meaningful studies with
the 3-D version of DEM discretized on a fine grid are to be carried out.

2.3. Exploiting the cache memory of the computer

In the modern computers the time needed for performing arithmetic operations is reduced dramatically
(compared with computers which were available 10–15 years ago). However, the reductions of both the
time needed to bring the numbers which are participating in the arithmetic operations from the memory to
the place in the computer where the arithmetic operation is to be actually performed and the time needed
to store the results back in the memory are much smaller. This is why most of the nowadays computers
have different caches. It is much more efficient to use data which is in cache than to make references
to the memory. Unfortunately, it is very difficult for the user (if at all possible) to control directly the
utilization of the cache. Nevertheless, there are some common rules by the use of which the performance
can be improved considerably. The rules discussed in[26,27] will be outlined below. These rules have
been used in runs on several other computers in[26,27]. It will be shown inSection 4that these rules are
performing rather well also when Sun parallel computers are used.

Consider the 2-D versions of DEM. Assume that the concentrations are stored in an array CONS(Nx ×
Ny,Ns). Each column of this array is representing the concentrations of a given chemical species at all
grid-points, while each row is containing the concentrations of all chemical species at a given grid-point.
There are seven other arrays of the same dimension.

There are no big problems when the transport sub-model is run (because the computations are carried
out by columns). However, even here cache problems may appear, because the arrays are very long. This
will be further discussed inSection 4.

Great problems appear in the chemical part, because when the concentration of some species in a given
row is modified, some other species in the same row are participating in the computations, which becomes
clear from the pseudo Fortran code given below (withM = Nx × Ny and NSPECIES= Ns ).

DO J = 1,NSPECIES

DO I = 1,M

Perform the chemical reactions involving
speciesJ in grid-pointI

END DO

END DO

This code is perfect for some vector machines. However, if cache memory is available, then the com-
putations, as mentioned above, can be rather slow, because in stepI, I = 1,2, . . .M, of the inner loop
CONS(I, J) is updated, but the new value of the chemical speciesJ depends on some of the other species
K,K = 1,2, . . . , J −1, J +1, . . . ,NSPECIES. Thus, when we are performing theIth step of the second
loop, we have to refer to some addresses in rowI of array CONS(M,NSPECIES). The same is true for
the seven other arrays of the same dimension. It is intuitively clear that it is worthwhile to divide these
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arrays into chunks and to carry out the computations by chunks. Assume that we want to use NCHUNKS
chunks. IfM is a multiple of NCHUNKS, then the size of every chunks is NSIZE= M/NCHUNKS, and
the code given above can be modified in the following way.

DO ICHUNK = 1,NCHUNKS

Copy chunk ICHUNK from some of the eight large arrays into small two-dimensional arrays with
leading dimension NSIZE

DO J = 1,NSPECIES

DO I = 1,NSIZE
Perform the chemical reactions involving speciesJ for grid-pointI
END DO

END DO

Copy some of the small two-dimensional arrays with leading dimension NSIZE into chunk
ICHUNK of the corresponding large arrays

END DO

Both the operations that are performed in the beginning and in the end of the first loop in the second code
are extra. The extra work needed to perform these operations is fully compensated by savings during the
inner double loop, which is very time-consuming.

A straight-forward procedure will be to copy the current chunks of all eight arrays in the corresponding
small arrays. However, this is not necessary, because some of the arrays are only used as helping arrays
in the chemical module. In fact, copies from five arrays are needed in the beginning of the first loop. This
means that there is no need to declare the remaining three arrays as large arrays; these arrays can be
declared as arrays with dimensions (NSIZE, NSPCIES), which leads to a reduction of the storage needed.
The reduction is very considerable for the fine 480× 480 grid.

The situation in the end of the first loop is similar; it is necessary to copy back to the appropriate sections
of the large arrays only the contents of three small arrays. The number of copies made at the end of the
first loop has been reduced from five to three because some information (as, for example, the emissions)
is needed in the chemical module (and has to be copied from the large arrays to the small ones), but it is
not modified in the chemical module (and, thus, there is no need to copy it back to the large arrays in the
end of the first loop).

When the 3-D versions are used, the array CONS(Nx × Ny,Ns) must be replaced by CONS(Nx ×
Ny,Ns,Nz). However, the device described above can be applied, because the computations for each
layer can be carried out independently from the computations for the other layers when(1.6) and (1.8)
are treated.

It will be shown inSection 4that the use of chunks leads to considerable savings in computing time in
the chemical sub-model.

3. Achieving parallelism

It was explained in the previous section that the discretization of an air pollution model is as a rule
resulting in huge computational tasks. This is especially true in the case where the model is discretized
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on a fine grid. Therefore it is important to prepare parallel codes which run efficiently on modern parallel
computers. The preparation of such a code will be discussed in this section.

3.1. Basic principles used in the preparation of the parallel versions

The preparation of a parallel code is by no means an easy task. Moreover, it may happen that when the
code is ready the computing centre exchanges the computer which has been used in the preparation of the
code with another (hopefully, more powerful) computer. This is why it is desirable to use only standard
tools in the preparation of the code. This will facilitate the transition of the code from one computer to
another when this becomes necessary. Only standard OpenMP[33] and MPI[13]tools are used in the
parallel versions of DEM.

3.2. Development of OpenMP versions of DEM

The programming for shared memory machines is relatively easy. It is necessary to identify the parallel
tasks and to insert in the code appropriate OpenMP directives (which on ordinary sequential machines
will be viewed as comments). The parallel tasks in the three sub-models are discussed below.

3.2.1. Parallel tasks in the transport sub-model
This sub-model is mathematically described (after the discretization) by(1.6). It is easy to see that the

system of ODEs(1.6) is consisting ofq × Nz independent systems of ODEs, whereq is the number of
chemical species andNz is the number of grid-points in the vertical direction. This means that there are
q×Nz parallel tasks. Each parallel task is a system ofNx ×Ny ODEs. In the chemical scheme adopted in
DEM there are 35 chemical species, but three of them are linear combinations of other chemical species.
Nz is equal to 1 in the 2-D case and to 10 in the 3-D case. Therefore, the actual number of parallel tasks
is 32 in the 2-D case and 320 in the 3-D case. The tasks are large and the loading balance in the transport
sub-model is perfect. The use of this technique is, thus, very efficient when the number of processors
used is a divisor of 32 in the 2-D case and 320 in the 3-D case. Some problems may arise in the 2-D case.
If more than 32 processors are available, then it will be necessary to search for parallel tasks on a lower
level of the computational process when the 2-D versions are used.

3.2.2. Parallel tasks in the chemical sub-model
This sub-model is mathematically described (after the discretization) by(1.8). It is easy to see that

the system of ODEs(1.8) is consisting ofNx × Ny × Nz independent systems of ODEs, whereNx, Ny

andNz are the numbers of grid-points along the coordinate axes. The number of parallel tasks is very
large (2304000 when the 480× 480× 10 grid is used) and the loading balance is perfect. However, the
parallel tasks are very small (each parallel task is a system ofq ODEs). Therefore, it is necessary to group
them in clusters. Moreover, some arrays are handled by rows, which may lead to a large number of cache
misses, especially for the fine grid versions. Therefore, chunks are to be used in this part (see the end of
the previous version).

3.2.3. Parallel tasks in the vertical exchange sub-model
This sub-model is mathematically described (after the discretization) by(1.5). It is easy to see that the

system of ODEs(1.5) is consisting ofNx × Ny × Ns independent systems of ODEs.Nx andNy are the
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numbers of grid-points along the coordinate axesOx andOy. Ns = q is the number of chemical species.
The number of parallel tasks is very large (8,064,000 when the 480×480×10 grid is used with 35 chemical
species) and the loading balance is perfect. However, the parallel tasks are again small (each parallel task
is a system ofNz ODEs). Therefore, also in this sub-model it is necessary to group the parallel tasks in an
appropriate way. It should also be emphasized that a very long array (its leading dimension beingNx×Ny×
Ns) has to handled by rows. The vertical exchange is not very expensive computationally. Nevertheless, it is
desirable to use chunks in the efforts to avoid a large number of cache misses (this is especially true for the
fine resolution versions). No chunks are used at present, but there are plans to introduce chunks in the near
future.

It is seen from the above discussion that it is very easy to organize the computational process for parallel
runs when OpenMP tools are used. Moreover, it is clear that the parallel computations depend on the
splitting procedure, but not on the numerical methods that have been selected.

3.3. Development of MPI versions of DEM

The approach used when MPI tools are to be implemented is based in dividing the space domain of
the model intop sub-domains, wherep is the number of processors which are to be used in the run. Two
specific modules are needed in the MPI versions: (i) a pre-processing module and (ii) a post-processing
module.

3.3.1. The pre-processing module
The input data is divided intop portions corresponding to thep sub-domains obtained in the division

of the space domain. In this way, each processor will work during the whole computational process with
its own set of input data.

3.3.2. The post-processing module
Each processor prepares its own set of output data. During the post-processing thep sets of output data

corresponding to thep sub-domains are collected and common output files are prepared for future use.

3.3.3. Benefits of using the two modules
Excessive communications during the computational process are avoided when the two modules are

used. It should be stressed, however, that not all communications during the computational process are
avoided. Some communications along the inner boundaries of the sub-domains are still needed. However,
these communications are to be carried only once per step and only a few data are to be communicated.
Thus, the actual communications that are to be carried out during the computations are rather cheap when
the pre-processing and the post-processing modules are proper implemented.

It is important to emphasize here that the introduction ofp sub-domains leads to a reduction of the
main arrays by a factor ofp. Consider as an illustrations the major arrays used in the chemical sub-model.
The dimensions of these arrays are reduced from (Nx × Ny,Ns) to (Nx × Ny/p,Ns). It is clear that this
is equivalent to the use ofp chunks; seeSection 2.3. Chunks of lengthNx × Ny/p are still very large.
Therefore, the second algorithm given inSection 2.3has also to be used (in each sub-domain) when the
MPI versions are used. However, the reduction of the arrays leads to a reductions of the copies that are
to be made in the beginning and in the end of the second algorithm inSection 2.3. Thus, the reduction of
the arrays leads to a better utilization of the cache memory.
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The automatic reduction of the sizes of the involved arrays, and the resulting from this reduction better
utilization of the cache memory, make the MPI versions attractive also when shared memory machines
are available. It will be shown in the next section that on Sun computers the MPI versions of DEM are
often performing better than the corresponding OpenMP versions.

4. Numerical results

Some results will be presented in this sections to demonstrate (i) the efficiency of the better utilization
of the cache memory by using chunks and (ii) the good speed-ups (very often super-linear) that can be
achieved when the code is run in parallel. We start by presenting short information about the computers
used.

4.1. Description of the grid of Sun computers

Sun computers located at the Danish Centre for Scientific Computing (the Danish Technical University
in Lyngby) were used in the runs. The computers and the their characteristics are shown inTable 1. All
these computers were connected with a 1 Gbit/s switch.

The computers are united in a grid (consisting of 216 processors) so that a job sent without a special
demand will be assigned on the computer on which there are sufficiently many free processors. The
different computers have processors of different power (therefore, it is in principle possible to use the
grid as a heterogeneous architecture, but this option is not available yet).

We are in general allowed to use no more than 16 processors, but several runs on more that 16 processors
were performed with a special permission from the Danish Centre for Scientific Computing. In the runs in
this section we used only “Newton” (i.e. we had always a requirement specifying the particular computer
on which the job must be run)

More details about the high speed computers that are available at the Technical University of Denmark
can be found in[34].

4.2. Running the MPI versions of DEM

Four MPI versions of DEM have been tested: (i) the 2-D model on a coarse grid, (ii) the 3-D version
on a coarse grid, (iii) the 2-D version on a fine grid and (iv) the 3-D version on a fine grid.

Table 1
The computers available at the Sun grid

Computer Type Power RAM Processors

Bohr Sun Fire 6800 UltraSparc-III 750 MHz 48 GB 24
Erlang Sun Fire 6800 UltraSparc-III 750 MHz 48 GB 24
Hald Sun Fire 12k UltraSparc-III 750 MHz 144 GB 48
Euler Sun Fire 6800 UltraSparc-III 750 MHz 24 GB 24
Hilbert Sun Fire 6800 UltraSparc-III 750 MHz 36 GB 24
Newton Sun Fire 15k UltraSparc-IIIcu 900 MHz 404 GB 72
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The problems were run with three different sizes NSIZE of chunks: (a) the minimal size of the chunks,
NSIZE = 1 for all cases, (b) a medium size of the chunks, NSIZE= 24 for all cases and (c) the maximal
size of the chunks, which is NSIZE= 1152 for the coarse grid when eight processors are used and
NSIZE = 28800 for the fine grid (again when eight processors are used).

Finally, in most of the cases both 1 processor and eight processors were used. Some of the jobs were
also run on more than eight processors.

All runs of the versions discretized on the coarse grid were run for the typical period of one year (in
which case it is possible to study seasonal variations). The 2-D version of DEM discretized on the fine
grid was run over a period of one month. Finally, the 3-D version of DEM discretized on the fine grid was
run over a time period of 42 h. This is a rather short period, but it is still meaningful to a certain degree
because several changes from day to night and from night to day occur in this period, which is important
for the test of the photo-chemical reactions.

The computing times in all tables are given in seconds. The abbreviations used in the tables can be
explained as follows:

• ADV stands for the horizontal transport+ diffusion process,
• CHEM stands for the process uniting the chemical reactions, the treatment of the emissions and the

deposition part,
• COMM stands for the part needed to perform communications along the inner boundaries,
• VERT stands for the vertical exchange processes
• TOTAL stands for the total computing time (including the sum of the times given in the same

column above the last item+ the computing times needed for performing input-output operations,
pre-processing, post-processing, etc.)

The percentages of the computing times for the different processes related to the total computing
times are given in the columns under “Part”. The “Speed-up” is the ratio of the computing time on
one processor and the computing time onp processors (wherep is the number of processors that are
used in the run under considerations; as mentioned above, eight processors were as a rule used in our
experiments).

4.2.1. Running the 2-D MPI version discretized on the coarse grid
Results from the six runs with this code are shown inTable 2(runs on one processor performed by

using three values of NSIZE) andTable 3(runs on eight processors performed again with three values of
NSIZE).

Table 2
Running DEM discretized on a 96× 96× 1 grid on one processor

Process NSIZE= 1 NSIZE= 24 NSIZE= 1152

Time Part Time Part Time Part

ADV 17617 28.2% 16035 32.6% 16742 26.8%
CHEM 37353 59.8% 26671 54.2% 38828 62.1%
COMM 2 0.0% 2 0.0% 2 0.0%
TOTAL 62443 100.0% 49239 100.0% 62510 100.0%
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Table 3
Running DEM discretized on a 96× 96× 1 grid on eight processors

Process NSIZE= 1 NSIZE= 24 NSIZE= 1152

Time Part Speed-up Time Part Speed-up Time Part Speed-up

ADV 851 11.1% 20.7 893 13.2% 18.0 860 11.4% 19.5
CHEM 4186 54.4% 8.9 2936 43.4% 6.8 4362 57.6% 8.9
COMM 791 10.4% – 1110 16.4% – 452 6.0% –
TOTAL 7625 100.0% 8.2 6766 100.0% 7.3 7577 100.0% 8.2

Table 4
Running DEM discretized on a 96× 96× 10 grid on one processor

Process NSIZE= 1 NSIZE= 24 NSIZE= 1152

Time Part Time Part Time Part

ADV 169776 31.5% 159450 37.8% 169865 30.9%
CHEM 337791 62.7% 233471 55.3% 348769 63.4%
VERT 23221 4.3% 21473 5.1% 23014 4.2%
COMM 2 0.0% 2 0.0% 2 0.0%
TOTAL 538953 100.0% 421763 100.0% 549835 100.0%

4.2.2. Running the 3-D MPI version discretized on the coarse grid
Results from the six runs with this code are shown inTable 4(runs on one processor performed by using

three values of NSIZE) andTable 5(runs on eight processors performed again with three values of NSIZE).

4.2.3. Running the 2-D MPI version discretized on the fine grid
Results from the six runs with this code are shown inTable 6(runs on one processor performed by

using three values of NSIZE) andTable 7(runs on eight processors performed again with three values of
NSIZE).

4.2.4. Running the 3-D MPI version discretized on the fine grid
Results from the six runs with this code are shown inTable 8(runs on one processor performed by using

three values of NSIZE) andTable 9(runs on eight processors performed again with three values of NSIZE).

Table 5
Running DEM discretized on a 96× 96× 10 grid on eight processors

Process NSIZE= 1 NSIZE= 24 NSIZE= 1152

Time Part Speed-up Time Part Speed-up Time Part Speed-up

ADV 18968 27.4% 9.0 18498 33.3% 8.6 18641 26.3% 9.1
CHEM 41334 59.6% 8.2 29189 52.3% 8.0 43291 61.3% 8.1
VERT 1213 1.7% 19.1 1200 2.2% 17.9 1240 1.8% 18.6
COMM 911 1.3% – 878 1.6% – 973 1.4% –
TOTAL 69325 100.0% 7.8 55723 100.0% 7.6 70653 100.0% 7.8
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Table 6
Running DEM discretized on a 480× 480× 1 grid on one processor

Process NSIZE= 1 NSIZE= 24 NSIZE= 28800

Time Part Time Part Time Part

ADV 485062 63.9% 484923 70.3% 491704 41.7%
CHEM 224804 29.1% 143923 20.9% 611502 51.8%
COMM 1 0.0% 1 0.0% 2 0.0%
TOTAL 771261 100.0% 690027 100.0% 1179518 100.0%

Table 7
Running DEM discretized on a 480× 480× 1 grid on eight processors

Process NSIZE= 1 NSIZE= 24 NSIZE= 28800

Time Part Speed-up Time Part Speed-up Time Part Speed-up

ADV 34499 45.5% 14.1 34567 48.9% 14.0 33589 26.8% 14.6
CHEM 27159 35.8% 8.3 18816 26.6% 7.6 69168 55.2% 8.4
COMM 5937 7.8% – 8128 11.5% – 14474 11.6% –
TOTAL 75854 100.0% 10.2 70856 100.0% 9.7 125246 100.0% 9.4

Table 8
Running DEM discretized on a 480× 480× 10 grid on one processor

Process NSIZE= 1 NSIZE= 24 NSIZE= 28800

Time Part Time Part Time Part

ADV 261631 67.0% 271419 72.9% 268337 49.8%
CHEM 86317 22.1% 56797 15.3% 228216 42.3%
VERT 40721 10.4% 42320 11.4% 41223 7.6%
COMM 1 0.0% 1 0.0% 1 0.0%
TOTAL 390209 100.0% 372173 100.0% 539319 100.0%

Table 9
Running DEM discretized on a 480× 480× 10 grid on eight processors

Process NSIZE= 1 NSIZE= 24 NSIZE= 28800

Time Part Speed-up Time Part Speed-up Time Part Speed-up

ADV 13606 46.2% 19.2 13515 52.7% 20.1 13374 28.9% 20.1
CHEM 10398 35.3% 8.3 6681 26.0% 8.5 25888 56.0% 8.8
VERT 2830 9.6% 14.4 2802 10.9% 15.1 2709 5.9% 15.2
COMM 2316 7.9% – 2340 9.1% – 3925 8.5% –
TOTAL 29449 100.0% 13.3 25654 100.0% 14.5 46210 100.0% 11.7
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Table 10
Running DEM discretized on a 96× 96× 10 grid on 16 processors

Process Time Part Speed-up-8 Speed-up-1

ADV 8044 27.4% 2.3 19.8
CHEM 14261 48.5% 2.1 16.4
VERT 388 1.3% 3.1 55.3
COMM 4203 14.3% – –
TOTAL 29389 100.0% 1.9 14.6

The Speed-up-8 factors are calculated as ratios of the computing times obtained when eight processors are used (which are
given inTable 5) and the computing times when 16 processors are used. The Speed-up-1 factors are calculated as ratios of the
computing times obtained when 1 processor is used (which are given inTable 4) and the computing times when 16 processors
are used.

4.2.5. Major conclusions from the runs
It is seen that the exploitation of the cache memory is always giving good results (compare the results

for NSIZE = 24 with the results for NSIZE= 1 and NSIZE= 1152(28,800)). The speed-ups for
the physical processes are super-linear (greater for ADV and VERT than for CHEM, which should be
expected, because chunks are used in the chemical parts). The speed-ups for the total computing time are
lower, but anyway at least close to linear.

4.3. Scaling results for the MPI versions

It has been shown in the previous section that the computing times are reduced by a factor close to 8
(and in many cases by a factor greater than 8) when the number of the processors used is increased from
1 to 8. It is desirable that the same tendency holds when the number of processors is greater than 8 (i.e. it
is desirable that increasing the number of processors used by a factor ofk will results in decreasing the
computing times by a factor approximately equal tok). It is often said that the parallel algorithm scales
well when such a trend can be obtained.

Several runs were performed on 16 processors and the results were compared with those obtained on
eight processors. Some results, which are obtained when the 3-D version of DEM are run, are given
in Table 10for the coarse grid version. Super-linear speed-ups were registered for the main physical
processes, while nearly linear speed-ups were found for the total computing times.

With a special permission from the Danish Centre for Scientific Computing, several runs were performed
by using up to 60processors. The 3-D refined version, where high efficiency is most desirable, was used
in this runs. The results are given inTable 11. Comparing the results inTables 10 and 11, it is seen that

Table 11
Running DEM discretized on a 480× 480× 10 on different numbers of processors

Processors Time Speed-up

1 372173 –
15 12928 28.79
30 7165 51.94
60 4081 91.20
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Table 12
Running DEM discretized on a 480× 480× 1 grid on eight processors by using the MPI version and the OpenMP version

Process MPI version OpenMP version

ADV 822291 1663812
CHEM 393158 596920
COMM 255785 –
TOTAL 1782752 2614983

The time period for these two runs was one year.

the fact that very long arrays are split into many much shorter arrays is leading to higher efficiency when
the problem discretized on a 480× 480× 10 grid is treated. Indeed, the super-linear speed-up, which
was observed for this problem in the transition from one to eight processors (see Table 4.9), is also seen
in Table 11for up to 60 processors.

The results presented inTables 10 and 11indicate that the parallel algorithms applied in DEM scale
very well.

4.4. Comparing MPI versions with OpenMP versions

The Sun computers, which were used to calculate the results inSection 4.2are shared memory machines.
Therefore, one should expect the OpenMP versions of the code to be more efficient than the MPI versions.
In fact, the MPI versions are more efficient. In the previous section it was explained why this should be
expected (the arrays used in connections with the sub-domains are much smaller, which leads to a better
utilization of the cache memory of the computer). Some results are given inTable 12in order to illustrate
the fact that the leading dimension of of arrays is reduced when the MPI versions are used results also in
reduction of the computing times.

The question:is it possible to increase the efficiency of the OpenMP version?is interesting. Some
preliminary results obtained by Mohammed Abdi (a student from the Computer Science Department
of the University of Reading who visited the National Environmental Research institute of Denmark in
connection with his MSc thesis) indicate that this could be done. The data was divided into sub-domains
(the number of sub-domains being equal to the number of processors). Then loops over the sub-domains
are carried out in parallel by using OpenMP directives (mainly the directiveparallel do). However, in this
way we are trying to use, in a manual way, the same approach as in MPI. It is clear that this means that
one of the major advantages of the OpenMP technique (easy programming by inserting only directives at
appropriate places) is lost. Nevertheless, some savings can be achieved because (i) no MPI subroutines
are called and (ii) the communications can be performed (perhaps in parallel) by using simple FORTRAN
loops. The experiments in this direction are continued.

4.5. Plans for further improvements of the performance

The improvement of the fine resolution versions of DEM, especially the 3-D fine resolution version,
is an important task which must be resolved in the near future. It is necessary both to improve the
performance of the different versions of the model and to have access to more processors (and/or to more
powerful computers) in order to be able to run operationally fine resolution versions of DEM.
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Fig. 1. Danish NOx emissions in 1997. Fig. 3. NO2 pollution in Denmark—fine resolution.

Fig. 2. NO2 pollution in Europe—fine resolution. Fig. 4. NO2 pollution in Europe—fine resolution.
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5. Some practical applications of DEM

Some results obtained by running DEM with meteorological and emission data for 1997 will be pre-
sented in this section. These results will demonstrate the usefulness of using fine resolution version of
DEM.

The comparison of the concentration levels that are calculated by the model with the input levels of the
emissions used is important. For species like SO2, NO2 and NH3 the calculated by the model pollution
levels should reflect the pattern of the emissions used.

We choose to make some comparisons for NO2concentrations in an area containing Denmark. The
pattern of the corresponding NOx emissions is seen inFig. 1. It is seen that the largest emissions are in
the regions of the three largest Danish cities (Copenhagen, Århus and Odense). This is not a surprise,
because the traffic in cities is one of the major sources for the NOx emissions.

The calculated by the coarse resolution version of the model pattern for the NO2 concentrations is
shown inFig. 2. It is immediately seen that concentrations are smoothed very much when the coarse grid
is used (and the pattern calculated by the model is not very similar to the input pattern of the related
emissions).

The use of the fine resolution version of DEM calculates a pattern of the NO2 concentrations which is
clearly closer to the pattern of the NOx emissions. This can be seen by comparing the highest concentration
levels inFig. 3with the highest emission levels inFig. 1.

The distribution of the NO2 concentrations in the whole model space domain are shown inFig. 4. (note
that the scale used inFig. 4 is different from the scale used inFigs. 2 and 3). It is seen that Denmark
is located between highly polluted regions in Central and Western Europe and regions in Scandinavia,
which are not very polluted.

It should be mentioned here that the results inFigs. 2 and 3are obtained by zooming inFig. 4 to
the region containing Denmark (and, as already mentioned, by changing the scale). Zooming might
be used to get more details for the distribution of the NO2 concentrations (or the concentrations of
any other of the studied by the model chemical species) in any sub-domain of the space domain of
DEM.

The results presented inFig. 3 indicate that the fine resolution version is producing results which
are qualitatively better than the results produced by the coarse resolution version. Quantitative vali-
dation of the models results can be obtained by comparing concentrations calculated by the model
with measurements. Such comparisons were carried out in[2,3,15,42,43]for the coarse resolution
version. It is still very hard to carry out such extensive studies by using the fine resolution versions,
but the results presented in this paper indicate that this will become possible in the near
future.
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