
Kgs. Lyngby 2004 

IMM-THESIS-2004-20 

Per Slotsbo 

3D Interactive and View 

Dependent Stereo Rendering 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Technical University of Denmark 

Informatics and Mathematical Modelling 

Building 321, DK-2800 Lyngby, Denmark 

Phone +45 45253351, Fax +45 45882673 

reception@imm.dtu.dk 

www.imm.dtu.dk 

 

 

 

 

 

IMM-THESIS: ISSN 1601-233X 



Preface 

 1

Preface 

This M.Sc. thesis is the final requirement for obtaining the degree: Master 
of Science in Engineering. This work has been carried out at the Image 
Group at Informatics and Mathematical Modelling, IMM, at the Technical 
University of Denmark, DTU, and supervised by associate professor Niels 
Jørgen Christensen and M.Sc., Ph.D. Andreas Bærentzen. 
 
It is assumed that the reader is familiar with basic computer graphics. It is 
an advantage to have knowledge in the areas of virtual reality, 
photogrammetry and image analysis, but it is not a requirement. 

Acknowledgements 

I would like to thank Niels Jørgen Christensen and Andreas Bærentzen, for 
believing in the project at its beginning, for giving me free hands within 
reasonable limits and giving helpful feedback and advice during the project. 
I would also like to thank Mikkel Gjøl, Thomas Krog, Kristian Kjems and 
Bjarne K. Ersbøll for good inspiring dialogs on various subjects related to 
the project. These people and Birgitte Maribo Larsen should also be 
thanked for response on text and language in the report. Thanks to Henrik 
Aanæs, Mikkel B. Stegman, Keld Dueholm and Allan Aasbjerg Nielsen 
who through literature and dialogs has provided ideas, knowledge and 
software used in the project. I would furthermore thank Thomas Rued and 
Søren B. Svendsen for the dialogs regarding Color Code. 
 
 
 
 
 
 
 
 
 

Kgs. Lyngby 2004 
IMM-THESIS-2004-20 

 
 
 

Per Slotsbo 
 



Preface 

 2

 

Resumé 

Udviklingen inden for hardware og software er accelererende. Web-kamera 
er blevet almindelige og billige, algoritmer inden for billedanalyse bliver 
mere avancerede og computere er blevet så kraftfulde, at mere avancerede 
billedanalyse algoritmer kan køre i realtid. 
Denne udvikling åbner op for nye muligheder indenfor interaktion vha. 
web-kamera og er grundlaget for konceptet, som foreslås og implementeres 
i dette thesis. 
Konceptet er baseret på realtids computer grafik, anaglyph stereoskopi, 
objekt detektion vha. billede analyse, 2D til 3D rekonstruktion, kamera 
kalibrering og standard hardware i form af almindelige web-kameraer og en 
personlig computer. 
Gennem implementeringen er det vist at det med disse elementer er muligt 
at bygge systemet på en personlig computer for prisen af to web-kameraer. 
Implementeringen kan skabe en synspunktsafhængig 2D stereo projektion 
af 3D-data på skærmen med korrekt bevægelses parallakse, idet brugeren 
følges optisk. Det er muligt at interagere med disse 3D-data (fx flytte, 
rotere, editere eller tegne grove skitser i 3D) på en intuitiv måde vha. et 
pegeredskab, som systemet følger optisk.  
 
Nøgleord: (3D-)interaktion, synspunktsafhængig, web-kamera, realtid, 
meanshift, farve-tracking, kamerakalibrering, tekstur volumen. 
 
 



Preface 

 3

Abstract 

The development of hardware and software is accelerating. Web cameras 
have become common and cheap, algorithms in image analysis are getting 
more advanced, and computer’s processing power has increased so that 
more advanced image analyses can run real-time. 
These advances open new possibilities of interaction via web cameras, and 
are the foundation for a concept which is proposed and implemented in this 
thesis. 
The concept is based on real-time computer graphics, anaglyph 
stereoscopics, image analysis object tracking, 2D to 3D reconstruction, 
camera calibration and off-the-shelf hardware in form of webcams and a 
desktop computer. 
It is shown through the implementation that it is possible, with these 
components, to build the system on a desktop computer setup for the cost 
of two off-the-shelf webcams. 
The implementation can produce a view dependent 2D stereo projection of 
the 3D-data onto the screen enabling true moving parallax using viewer 
tracking. It is possible to interact with the 3D-data (E.g. moving, rotating, 
editing or drawing coarse sketches in 3D.) in an intuitive way using a 
tracked pointing device. 
 
 
Keywords: (3D-)interaction, view-dependent, web-camera, real-time, 
meanshift, color-tracking, camera-calibration, texture-volume. 
 
 

 



Table of Contents 

 4

Table of Contents 
CHAPTER 1 INTRODUCTION...........................................................................................................6 

1.1 THESIS OVERVIEW.......................................................................................................................6 
1.2 NOMENCLATURE .........................................................................................................................6 
1.3 BACKGROUND .............................................................................................................................7 
1.4 OBJECTIVE .................................................................................................................................11 

1.4.1 Applications..........................................................................................................................12 
CHAPTER 2 HYPOTHESIS...............................................................................................................14 

2.1 THE HYPOTHESIS.......................................................................................................................14 
CHAPTER 3 LITERATURE ..............................................................................................................15 

3.1 THEORY .....................................................................................................................................15 
3.1.1 Perspective ...........................................................................................................................15 
3.1.2 Stereo Measurement.............................................................................................................16 
3.1.3 Direct Linear Transformation (DLT) ..................................................................................16 
3.1.4 3D Reconstruction ...............................................................................................................16 
3.1.5 Linear Camera Calibration .................................................................................................18 
3.1.6 Linear Least Squares Adjustment ........................................................................................20 
3.1.7 Non-linear Relative Camera Calibration............................................................................21 
3.1.8 2D Tracking .........................................................................................................................22 

3.1.8.1 Mean Shift Algorithm ...............................................................................................................22 
3.1.8.2 CAMSHIFT...............................................................................................................................23 

3.1.9 Anaglyph Stereo ...................................................................................................................24 
3.1.10 Texture Volume ...............................................................................................................25 

3.2 EXISTING CONCEPTS ..................................................................................................................25 
3.2.1 Virtual Reality ......................................................................................................................26 
3.2.2 Augmented Reality ...............................................................................................................27 
3.2.3 3D Interaction ......................................................................................................................27 
3.2.4 View dependent rendering ...................................................................................................29 
3.2.5 3D Screens ...........................................................................................................................30 

CHAPTER 4 ANALYSIS.....................................................................................................................33 
4.1 DATAFLOW ................................................................................................................................33 
4.2 DATA ACQUISITION ...................................................................................................................34 

4.2.1 Choosing an Approach ........................................................................................................35 
4.2.2 Discussion on the choice of Web Camera-Based Optical Tracking...................................38 
4.2.3 Object Tracking....................................................................................................................41 
4.2.4 Color Tracking.....................................................................................................................42 
4.2.5 Adjusted CAMSHIFT ...........................................................................................................45 
4.2.6 3D Reconstruction ...............................................................................................................49 
4.2.7 Camera Calibration .............................................................................................................50 
4.2.8 Camera placement ...............................................................................................................50 
4.2.9 Monitor and Viewer Calibration .........................................................................................52 

4.2.9.1 Approach 1: Simple Viewer Calibration ..................................................................................53 
4.2.9.2 Approach 2: Monitor calibration in a calibrated camera system .............................................54 
4.2.9.3 Approach 3: Combined monitor and viewer calibration in a calibrated camera system.........55 
4.2.9.4 Approach 4: Combined camera and monitor calibration .........................................................56 
4.2.9.5 Approach 5: Combined camera, monitor and viewer calibration ............................................57 
4.2.9.6 The Choice of calibration approach..........................................................................................57 

4.2.10 Summery on data acquisition..........................................................................................57 
4.3 VISUALIZATION & 3D INTERACTION.........................................................................................58 

4.3.1 Viewer Alignment.................................................................................................................58 
4.3.2 Hierarchical Structure of Monitor, Camera and Eye .........................................................62 
4.3.3 Drawing and Point-Transformation in a Hierarchical Scene ............................................63 
4.3.4 Stereo....................................................................................................................................63 
4.3.5 Line Stroke ...........................................................................................................................64 



Table of Contents 

 5

4.3.6 Texture volume .................................................................................................................... 65 
CHAPTER 5 IMPLEMENTATION.................................................................................................. 67 

5.1 EXTERNAL LIBRARIES............................................................................................................... 67 
5.1.1 MFC..................................................................................................................................... 67 
5.1.2 Vision SDK .......................................................................................................................... 67 
5.1.3 OpenGL................................................................................................................................ 68 
5.1.4 LinAlg .................................................................................................................................. 68 

5.2 THREADS AND DATAFLOW ....................................................................................................... 69 
5.3 PROGRAM STRUCTURE – CLASSES ............................................................................................ 71 

5.3.1 Overview.............................................................................................................................. 71 
5.3.2 Inheritance........................................................................................................................... 71 

5.4 HARDWARE ............................................................................................................................... 73 
5.4.1 System .................................................................................................................................. 73 
5.4.2 Tracking-Objects ................................................................................................................. 73 
5.4.3 Camera Setup ...................................................................................................................... 74 

5.5 STATE OF IMPLEMENTATION..................................................................................................... 74 
CHAPTER 6 RESULTS ...................................................................................................................... 75 

6.1.1 Image Grabbing................................................................................................................... 75 
6.1.2 Color Tracking, 3D-Reconstruction and Calibration ........................................................ 75 
6.1.3 Visualization and interaction timing................................................................................... 77 

CHAPTER 7 DISCUSSION................................................................................................................ 79 
7.1 THE INDIVIDUAL PARTS............................................................................................................ 79 

7.1.1 Data Acquisition.................................................................................................................. 79 
7.1.2 Visualization ........................................................................................................................ 81 
7.1.3 Interaction ........................................................................................................................... 82 

7.2 FUTURE WORK........................................................................................................................... 85 
CHAPTER 8 CONCLUSION ............................................................................................................. 87 
CHAPTER 9 BIBLIOGRAPHY......................................................................................................... 89 
CHAPTER 10 APPENDIX............................................................................................................... 91 

10.1 TRANSFORMATION AND PROJECTION........................................................................................ 91 
10.2 MAP OF CHOICES....................................................................................................................... 94 

 
 
 
 



Chapter 1 Introduction 

 6

Chapter 1 Introduction 

1.1 Thesis Overview 
This report starts with the background of the project explaining why it is 
relevant. This is followed by a walkthrough of some related and relevant 
literature. We will then make a theory and a hypothesis we are about to 
prove in the implementation and then analyze how to implement the theory 
including some considerations of the user interface. Finally in the last three 
chapters, results will be presented and discussed before the conclusion. In 
the discussion we will furthermore look at the future work still to be done. 
 
 

1.2 Nomenclature 
Scalars 

Scalars are typeset in italic and non-boldface: s  

Vectors & Matrixes 
Vectors and Matrixes are typeset in non-italic and boldface. Matrixes are 
always upper-case, and vectors are not case sensitive: 
 

 
[ ]

11 12

21 22

a b c

m m
m m

=

 
=  
 

v

M

 

2D-point 
By 2D-point is meant a point in a given 2D plane: 
 

 [ ]x y Τ=x  

3D-point 
By a 3D-point is meant the spatial location in a given 3D space: 
 

 [ ]x y z Τ=x  
 



Chapter 1 Introduction 

 7

Direction 
By direction is meant the way to go from one 3D-point, to hit another given 
3D-point. The direction can explicitly be given e.g. by a single 3D-vector 
or two rotational angels. 

Rotational Orientation 
A rotational orientation is similar to a direction but additionally the rotation 
around the axis of direction is known. It can explicitly be given by e.g. 
three rotation angels, a quaternion or a rotation matrix. 

Orientation 
By orientation is meant a position and a rotational orientation. The 
transformation of an object from one orientation to another can be given 
explicitly by e.g. a 3D-point and a rotational orientation or a single 
transformation matrix. 

Camera Orientation 
Camera orientation is divided into two orientations:  
 

• Outer orientation: Represent the spatial orientation of the camera 
relative to a given coordinate system (i.e. the same as the 
orientation described above) 

• Inner orientation: Represents all manufacturing attributes (usually 
considered constant) which usually are: the camera constant, the 
principal point, the lens distortion and the affine deformation [8]. 

DOF 
The number of degrees of freedom (DOF) is given by the minimum number 
of scalars that is needed to explicitly determine a given representation. 
 
 

1.3 Background 
The World Is 3D 

Although we are living in a 3D world, much information is better presented 
in 2D (like maps and diagrams) due to the ease with which we can make an 
overview in 2D. This is mostly because of the nature of the human eye, 
which works by making a very precise perspective projection of the real 3D 
world into a 2D image. In spite of of this fact some types of information is 
still better presented in 3D because of their 3D nature. 

Depth Cues 
The human brain is able to perceive 3D information via the eyes using a 
range of visual depth cues such as: perspective, lighting, occlusion, moving 
parallax, stereoscopic parallax, depth focus etc. [1]. All these blend in such 
a way that they individually add more depth information to the perception 



Chapter 1 Introduction 

 8

filling out each others holes, and the stronger ones ruling out the weaker 
ones when ambiguous. (E.g. surface lighting can give a perception of 
detailed continuously depth variation, but if some part of an object is in 
front of another part occlusion is stronger (but much less detailed) and you 
are sure that the occluded part is behind the other, independent of what the 
weaker lighting is telling you.) 
An example of depth cues is normal photos, where we usually get a good 
impression of the depth although important depth cues like moving parallax 
and stereo parallax are missing. In Figure 1 we see how the depth cues even 
can be used to create an illusion of depth that is not there. 
 

 
Figure 1 : Optical Illusion in Street Painting. Does his foot get wet? The 
illusion of a pool filled with water in the middle of the street is strong; 
although we are aware it is not the truth. It is well suited for pictures, 
because cameras have a single lens and photographs do of course not 
move. If we were on the street, our stereo vision and possible movement 
would dissolve the illusion immediately. I.e. the painting can be viewed 
only from a single position with one eye closed to be as convincing as at 
the snap shot. Augmented Reality seeks to let such an illusion be intact 
by producing the proper stereo image according to the user’s position. 

Hardware Accelerated 3D 
As we have just seen, a lot of the depth cues can be utilized through 
different visualization techniques. Especially computers have made it 
possible to make real time 3D graphics using hardware acceleration (which 
produces perspective projected 2D images including lighting) and is one of 
the most used today in science, games and movies. The fact that it is real-
time enables the moving parallax depth cue resulting in good depth 
perception, when for instance rotating an object, which often gives real-
time graphics an extra feel of reality compared to the same images in still 
version. But as soon as the motion stops, the effect is gone. Stereoscopic 
parallax is very similar to motion parallax, because they both work by 
comparing the parallax between images seen from slightly moved positions. 
(see Figure 2 and Figure 3) 



Chapter 1 Introduction 

 9

 

A

B

 
Figure 2 : Moving parallax. The depth cue, moving parallax, enables 
the brain to extract depth information from the movement of an object 
in relation to the viewer’s movement from A to B. Rotation of an object 
utilizes this and enhances the effect on the rotating object. The brackets 
to the left indicate the amount of parallax for two objects in a projected 
image as a result of the movement. 

 
 

 
Figure 3 : Stereoscopic parallax. The depth cue stereoscopic parallax is 
very similar to moving parallax enabling the brain to extract depth 
information from the parallax of an object due to the eyes’ separation. 
This also works in still images or with moving objects contrary to 
moving parallax. 

Stereo vs. Mono 
Systems that display the depth cue stereoscopic parallax, has not yet been 
developed to a level where they are commonly used every day, though they 
are widely spread. This might be caused by the ratio between how useful it 
is and what kind of effort the user has to put into it to make it work 
(including price). The precision of depth in stereo vision falls with distance 
[8]. Therefore, it is obviously most useful in close range, like hand-eye 3D 
coordination. With mono vision it can be difficult to poor water into a glass 
without spilling or to thread a needle, but daily life orientation and tasks are 
done with no big difference by people with mono or stereo vision 
respectively, because of other depth cues presented to a person. The unique 
quality of stereo parallax is that the depth information can be given in a still 
image from a single point. Other cues rely on other visual information like 
shadows, relative brightness, light reflections, perspective of shape, 
occlusion etc. The depth being independent of the rest of the image also 
means that stereo is good for presenting complex structures in still images. 



Chapter 1 Introduction 

 10

“But why isn’t it popular then?” one might ask. Glasses etc. that have been 
necessary to enable stereo for a long time, are just not as easy as rotating a 
3D model. 

Stereo without Moving Parallax 
There is another drawback using stereo. When viewing a still stereo image 
the mind has got the depth information from stereo parallax. When the user 
moves his or her head relatively to the virtual object, there are no moving 
parallax, resulting in one perceptional solution in the mind: the object is 
rotated and skewed, to face the user the same way as before the movement  
[1] (see Figure 4). 
 

 

Still stereo image

False object
movement

A

B
 

Figure 4 : Trouble with stereo without moving parallax. Moving your 
head from A to B watching a still stereo image gives a false (usually 
unwanted) impression that the object moves, because this is what has 
happened according to what is seen and moving parallax. The effect is 
proportional with the object-image distance, which also results in 
skewing of the object. (Solving this problem by changing the stereo 
image depending on the view, is in this thesis referred to as viewer 
alignment) 

 

Automatic Stereo 
During the past decades a lot of effort has been made to develope an auto-
stereoscopic screen. Now there seems to be a break through, and the first 
commercial productions are starting up [9][10][11][12][13]. 
Systems for one or few viewers often rely on the viewer’s eye position to 
continuously project the correct picture to each eye [11][14]. Some 
applications for these systems use the eye position to align the projection of 
the virtual 3D data with the viewer, enabling correct moving parallax [21]. 
This means that the viewer feels that the virtual objects are in the same 
world as himself, his hands, the screen etc, and could (if forgetting that the 
objects are in fact virtual) try to grab them in thin air. At this point, a 3D 



Chapter 1 Introduction 

 11

pointing device seems to be an obvious tool for interacting with the 3D data, 
which we will look into later. But why do we need interaction? 

The Need for Interaction 
With the computers and their format of information, the need for an easy 
way of interaction with this information exists. Today the keyboard and the 
mouse are the most common interfaces to computers. The mouse working 
in pseudo analog 2D is an ideal interface for interacting in the 2D world of 
today’s computer monitors. But when it comes to 3D, it has got its 
limitations. 

Mouse vs. 3D Interaction 
Although there are many techniques for interacting with a 3D world using 
the 2D mouse, a simple task like moving or rotating an object in 3D to a 
given orientation is never as trivial or fast as for a human moving a 
handheld object in the real world. 
This is the reason why many new suggestions for 3D interaction are 
continuously developed. 

One Ideal Goal 
Ivan Sutherland proposed in 1965 the “ultimate display” as one that produce 
images and other sensory input with such a fidelity that the observer could 
not tell the simulated objects from real ones. He showed a prototype of such 
a virtual reality display in 1968 [1]. 

Virtual Reality 
Virtual Reality pursue the idea of the ultimate display, by artificially 
produce sufficiently 3D cues of a virtual world to convince a viewer, that 
what is presented is real, enabling him or her to be submerged into this 
world (seeing nothing but this world), and to interact with it. Usually this is 
done by using movement tracking real-time computer graphics and view 
dependent stereoscopics. This has fascinated many people and a lot of 
money has been invested in creating hardware and software to make the 
feeling of realism most natural [1]. 

1.4 Objective 
The main goal of this thesis is to build a prototype of a relatively 
inexpensive augmented reality system including a 3D pointing device 
based on a common desktop computer. It should enable fast and intuitive 
interaction with 3D data. The degree of intuitivity should be strengthened 
by viewer’s and tool’s alignment with the virtual world’s positions. It is 
furthermore a goal along with the work to produce a demo application, 
which utilizes and demonstrates some of the abilities and benefits of the 
system. In Chapter 2 a hypothesis is setup describing the concept, and 
claiming that the system can work. This report is build up with the goal of 
proving the hypothesis by developing and implementing the concept. 



Chapter 1 Introduction 

 12

1.4.1 Applications 
In the following a few examples will be given of where the system might 
be applied with advantage. 

Examples of use 
Currently much work is in progress to automate registration and 
visualization of medical 3D-data (e.g. obtained via MR or CT scanning), to 
be used for instance in diagnostics, and surgery planning (see Figure 5). In 
this case augmented reality provides an interface, which makes interaction 
faster and more intuitive. The user can move around the data. A 3D 
pointing device in augmented reality can be used as input for direct 
orientation or editing of the data. Surgery planning and surgery training are 
also subjects of development. 
 
Most industries working with 3D-data would benefit from a desktop 3D 
interface, as alternative to the mouse. Especially in 3D modeling used in 
game and movie industry more and more people work with 3D models 
every day moving and editing objects and points in the 3D space. Using 
augmented reality would make the tasks faster and make it easier to interact 
with the model directly. 

 
Figure 5: 3D visualization of MR and CT scanned medical data. 

Other Applications 
The anaglyph stereo technique by the Danish company ColorCode[15] 
allows for affordable color stereo. The remote viewer alignment system 
could be used i combination with their so called phantom model. 
 
Furthermore, the remote sensing part of the project is related to eye-gaze-
controlled applications for use by disabled people. 
 



Chapter 1 Introduction 

 13

Should future systems developed from or inspired by this or other projects, 
become as effortless to use as purchasing and using a mouse, it would be 
beneficial in many areas: (education), medicine (MR scanning, CT-
scanning, ultrasound scanning, surgery planning and surgery training tools), 
oil industry (underground analysis), city planning (coarse element 
placement), mechanical design 
Furthermore in research areas like chemistry (macro molecule structures), 
medical (cognitive understanding and segmentation) 
In principle it is also applicable in all software where real-time 3D graphics 
are present today enhancing the feeling of 3D and entertainment value. 
Novel applications, not considered today because of limitations in today’s 
monitors and interaction, might also evolve. 
 
 



Chapter 2 Hypothesis 

 14

Chapter 2 Hypothesis 

Introduction 
In this chapter we will setup a hypothesis suggesting that it is possible to 
make a 3D system following a concept that fulfills specific properties. In 
the thesis an implementation is produced to prove this concept. 
 

2.1 The Hypothesis 
The development of hardware and software is accelerating. 
Web cameras have become common and cheap, opening for the 
possibilities of using it for more than its original communication purpose. 
Algorithms in image analysis are getting more and more advanced, and 
computers processing power have increased so that some image analyses 
can run real time. 
These advances opens for new possibilities of interaction via web cameras, 
and is the foundation for the hypothesis that now will be presented, and is 
the focus of this thesis. 

The hypothesis claims: 
It is possible to make a 3D pointing device and viewer alignment 
augmented reality system using cheap off-the-shelf web cameras fulfilling 
the following abilities: 

Abilities: 
The system should be able to: 

• Run real-time on a desktop computer. 
• Use cheap off-the-shelf webcam hardware. 
• Track a pointing device in 3D (e.g. hands, fingers, colored spheres, 

a pair of tweezers etc.). 
• Track a viewer’s position in 3D. 
• Produce a 2D projection of 3D data on a computer monitor. 
• Align the virtual 3D objects with the viewer so that the projected 

image is similar to what the viewer would see if the objects were 
real, although the viewer is moving. 

• Let the user interact with the 3D objects via the pointing device. 
(For instance drawing, moving, rotating, editing etc.). 

• The user is able to make rough drawings in 3D. 
 
With the goal setup, we are ready to go on with the thesis. 
 
 



Chapter 3 Literature 

 15

Chapter 3 Literature 

3.1 Theory 
3.1.1 Perspective 

Our eyes see the world through perspective projection (i.e. the world within 
the line-of-sight in front of our eyes is projected to 2D images on our 
retinas). It has the special property of scaling objects with distance, so the 
projected scale of the object px  becomes: 
 

 w
p

xx c
z

=  (1) 

 
, where c  is a constant (e.g. the camera constant), wx  is the scale of the 
object in the world, z  is the distance to the object. A consequence of the 
feature is, that if we would like to see an object in greater detail we just 
have to get closer. 

Homogeneous Coordinates 
Homogeneous coordinates allow us to make a linear perspective projection. 
The nonlinearity of equation (1) is performed in the transformation from 
homogeneous coordinates into image-coordinates. In homogeneous 
coordinates a point in the projected image is represented as: 
 

 
x
y

ω
ω
ω

 
 =  
  

x  (2) 

 

, where ω  (equal to z
c

in (1)) is the factor with which xω  and yω  should 

be divided according to  perspective. 
In computer graphics the perspective projection is usually given by the 
formulas seen in appendix 10.1 including the total perspective projection 
that, given a set of coordinates X , a scale matrix S , translation matrix T , 
rotation matrix R and projection matrix P , is: 
 

 = ⋅ ⋅ ⋅ ⋅x P R T S X  (3) 
 
The transformation matrixes, S , T and R , should be multiplied in order and 
number according to the set of wished transformations starting from the 
right with the first transformation. 



Chapter 3 Literature 

 16

3.1.2 Stereo Measurement 
As in the human stereo vision, one can reconstruct depth from two or more 
images. This is a well known method in photogrammetry e.g. using air-
photos [4]. In the reconstruction one can use either a direct linear 
transformation model (DLT), ignoring lens distortions, or a more precise 
nonlinear model [3]. We will now go through the linear method. 

3.1.3 Direct Linear Transformation (DLT) 
All transformations in the perspective projection (3) can be represented in a 
single projection matrix, A , which is the product of any matrices that form 
the transformation and projection:  

= ⋅ ⋅ ⋅ ⋅
A

x P R T S X  
 
 = ⋅ ⋅ ⋅A P R T S  (4) 

 
If A is known for a camera, the image point x  projected from a given 3D 
point X , can be found by a single multiplication with this matrix:  

11 12 13 14

21 22 23 24

31 32 33 34 1

X
x a a a a

Y
y a a a a

Z
a a a a

ω
ω
ω

 
     
     =     
        

 

 

 
 = ⋅x A X  (5) 
 

This is exploited in all modern graphics hardware.  

3.1.4 3D Reconstruction 
When an objects position in 2D is known in images from more than one 
camera, these positions can be used to reconstruct the objects 3D position, 
just like the human stereo vision provides depth perception. 
2D positions from two or more cameras provide four or more equations to 
solve for the three unknowns of the 3D position. This indicates redundancy. 
Redundancy is in some cases exploited by reducing the system and makes 
the 2D search algorithms faster by first finding the object or feature in one 
image and then search for it only on one line in the other, the so called 
epipolar line. The redundancy can also be used to give us a better estimate 
of the point. Then the residuals tell us something about the reliability of the 
tracked 3D position, which could be used to determine whether we want to 
accept the given result. Here we will only look into one method using over 
determination.  

The equations 
Let p  be the number of cameras. Let the first camera have the projection 
matrix 1A  and image point 1x , then its projection of the unknown X  is: 
 



Chapter 3 Literature 

 17

 1 1= ⋅x A X  (6) 
 
, which according to (5) leads to the two following equations: 
 

 11 12 13 14

31 32 33 34

1 1 1 1
1

1 1 1 1

a X a Y a Z a
x

a X a Y a Z a
+ + +

=
+ + +

 (7) 

 

 21 22 23 24

31 32 33 34

1 1 1 1
1

1 1 1 1

a X a Y a Z a
y

a X a Y a Z a
+ + +

=
+ + +

 (8) 

 
By isolating X, Y and Z we obtain: 
 

( ) ( ) ( ) ( )11 31 12 32 13 33 14 341 1 1 1 1 1 1 1 1 1 1 10 a x a X a x a Y a x a Z a x a= − + − + − + −  

( ) ( ) ( ) ( )21 31 22 32 23 33 24 341 1 1 1 1 1 1 1 1 1 1 10 a y a X a y a Y a y a Z a x a= − + − + − + −  

 
, forming the equation system: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 31 12 32 13 33 14 34 14 34

24 3421 31 22 32 23 33 24 34

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 11 1 1 1 1 1 1 1 1 1 1 1

1

X
a x a a x a a x a a x a a x aY

Z a y aa y a a y a a y a a y a

 
  − − − − −    = −     −− − − −      
 

 (9) 
 
 
Same principle applies for camera p  for px  and py  using pA  leading us 
to a system of 2 p  equations and 3 unknowns. 
 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 31 12 32 13 33 14 34

21 31 22 32 23 33 24 34

11 31 12 32 13 33 14 34

21 31 22 32 23 33 24 34

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1p p p p p p p p p p p

p p p p p p p p p p p p

a x a a x a a x a a x a

a y a a y a a y a a y a

a x a a x a a x a a x a

a y a a y a a y a a y a

 − − − −
 
 − − − −
 
 
 

− − − − 
 
 − − − − 

14 34

24 34

14 34

24 34

1 1 1

1 1 1

1 p p p

p p p

a x a
X a y a
Y
Z

a x a

a y a

− 
   −  
   = −   

−  
  

−  

 (10) 
 
, or: 

 ⋅ =B X k  (11) 
 



Chapter 3 Literature 

 18

At least 2 cameras are needed to estimate X . An estimate of X  is found 
using Least Squares Adjustment (see section 3.1.6 after the following 
section). 

3.1.5 Linear Camera Calibration 
To avoid unnecessary confusion we will now recall the camera orientation 
mentioned in section 1.2. 
By camera calibration is meant finding the camera orientation which is 
divided into two orientations:  
 

• Outer orientation: Represent the spatial orientation of the camera 
relative to a given coordinate system 

• Inner orientation: Represents all manufacturing attributes (usually 
considered constant) which usually are: the camera constant, the 
principal point, the lens distortion and the affine deformation [8]. 

 
In the linear case we only deal with the camera constant and the outer 
orientation, ignoring lens distortions. The orientation can be found directly 
in means of the perspective projection matrix (4), from which 
representation in rotation angels and translations can be found directly. The 
projection matrix is sufficient for reconstructing 3D points, like we saw in 
the previous section. 

Finding the perspective projection 
Let A be the unknown matrix we wish to find: 

 

 
1 11 12 13 14

2 21 22 23 24

3 31 32 33 34

a a a a
a a a a
a a a a

   
   = =   
      

a
A a

a
 (12) 

 
The linear calibration is carried out by measuring a number of point pairs 
( x , X ) in camera and world coordinate systems respectively.  
 
Known point X  in the world: 
 

 [ ]1X Y Z= TX  (13) 
 
In the image only x  and y  are known. 
 

 [ ]x yω ω ω= Tx  (14) 
 

As in the 3D reconstruction we use the projection equation (5) (written 
using one row vector at a time): 

 



Chapter 3 Literature 

 19

 
1

2

3

x
y

ω
ω
ω

⋅   
   = ⋅   
   ⋅   

a X
a X
a X

 (15) 

 
, which again leads to the equations (7) and (8), or shorter: 
 

 1

3

x ⋅
=

⋅
a X
a X

 (16) 

 2

3

y ⋅
=

⋅
a X
a X

 (17) 

⇒  
 1 30 ( )x= − ⋅a a X  (18) 
 2 30 ( )y= − ⋅a a X  (19) 

 
Equations (18) and (19) forms a homogeneous system, but fortunately we 
can scale the matrix setting 34 1a =  which leaves us with eleven unknown 

a ’s . We now reshape A  into the vector Â : 
 

 

1

2

10

11

ˆ
ˆ

ˆ

ˆ
ˆ

a
a

a
a

 
 
 
 =
 
 
  

A    , where    

1 11

2 12

9 31

10 32

11 33

ˆ
ˆ

ˆ
ˆ
ˆ

a a
a a

a a
a a
a a

=
=

=
=
=

  or   

1

2

3431

32

33

ˆ , 1aa
a
a

Τ

Τ

 
 
 
 = =
 
 
  

a
a

A  (20) 

   
Using (18) and (19) we can now setup the following inhomogeneous 
system for the point pair ( x , X ): 
 

 
1 0 0 0 0 ˆ

0 0 0 0 1
X Y Z x X xY x Z x

X Y Z y X yY y Z y
− − −   

=   − − −   
A  (21) 

 ˆ⋅ =B A c  (22) 
 

, where 34 1a =  ⇒  the right hand side: 
x
y
 
 
 

 

The linear system to be solved 
Every point pair registered, adds two equations to the system. Thus for 6 
point pairs B becomes a 12x11 matrix and for p points (2 ) 11p × : 
 



Chapter 3 Literature 

 20

 
11

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 0 0 0 0
0 0 0 0 1

ˆ2 2
1 0 0 0 0

0 0 0 0 1
p p p p p p p p p p

p p p p p p p p p p

X Y Z x X x Y x Z x
X Y Z y X y Y y Z y

p
X Y Z x X x Y x Z x

X Y Z y X y Y y Z y

− − −    
    − − −        =     − − −       − − −    

A p

  (23) 
 

, or shorter: 
 
 ˆ⋅ =B A c  (24) 

 
We would now like to estimate Â , which requires (2 ) 11p >  - fulfilling 
this requirement an estimate can be found linearly using Least Squares 
Adjustment (see following section 3.1.6) 
 

3.1.6 Linear Least Squares Adjustment 
Least squares adjustment is a method that is widely used where a result is 
to be found from observations with redundancies, i.e. the number of 
observations n  is larger than the number of unknown variables p [16]. In 
this thesis it is used in cameras calibration and 3D reconstruction. 
Given some measurements without error, a 3D point can be understood as 
the intersection of lines each going through a center of a camera and the 
object positions on its image plane respectively. If error is introduced the 
lines might not intersect, and the 3D point can be chosen to be the point 
with the smallest sum of squared distances to the lines i.e. exactly between 
the lines (see Figure 6). 
 

A
B

C

D

E
F

G

 
Figure 6: 3D Reconstruction: Given two image planes A and B and two 
image points C and D, an estimate of the 3D position, G, can be defined 
to be the place where the squared sum of distances to the lines F and E 
through the image points are smallest. 

 



Chapter 3 Literature 

 21

This is what is done when solving equation (11) in section 3.1.4. The 
squared error to be minimized is: 
 

 2ˆ
n

E x x= −∑  (25) 

, where ˆx x−  is the error between the observation and the result predicted 
by the system. 
The system is redundant and linear of the form: 

 
 ˆ⋅ =B A c  (26) 

 
, where B  is an n p×  matrix, Â  is an 1p×  vector to be found, and c is an 

1n×  vector. 
The solution Â  (e.g. the point) can be found directly (i.e. not iteratively) 
by applying least squares minimization: 

 
 ( ) 1ˆ −

= T TA B B B b  (27) 
 
, which should not be solved by inverting TB B  but rather by means of SVD 
(single value decomposition), QR or Cholesky decomposition [16]. These 
routines are standard in most linear algebra packages. 

3.1.7 Non-linear Relative Camera Calibration 
In relative camera calibration, one cameras outer orientation (i.e. spatial 
position and rotation) in relation to a second camera is determined only 
using observation of 5 or more points of unknown 3D coordinates. 
The relative camera calibration is non-linear because the transformation 
depends non-linearly on the camera rotation angels. 
 

 
 
The relative orientation can be described by the transformation matrix B : 

 
 = ⋅B R T  (28) 

 
, where R  and T  are the rotation and translation matrix respectively. The 
relation between the cameras projection matrixes is then given by: 

 
 = ⋅2 1A A B  (29) 



Chapter 3 Literature 

 22

Because the system is nonlinear, solving 1A and 2A involves rewriting it to 
an appropriate system that can be solved by iterative nonlinear least squares 
methods. Finding the solution to this system, has shown to be out of the 
scope of this thesis, restricting us to the linear case. 

3.1.8 2D Tracking 
Finding and tracking an object in 2D is done seamlessly by our brain 
constantly, but is in fact a rather complicated process. Tracking is a very 
broad research-area which continuously advances in complexity and quality. 
In this subsection two simple algorithms are mentioned. 
 

3.1.8.1 Mean Shift Algorithm 
The mean shift uses a search window, which limits the search to a small 
rectangular portion of the image. The algorithm is used to find local 
maxima iteratively, by finding a mean value in the search window and 
shifting the window to this position. 
By using a search window, the mean shift algorithm limits its 
computational load compared to making a search in the total image. 
 
Given a discrete 2D probability distribution and a search window, the mean 
location of the window can be found using the zeroth moment (or summed 
probability): 
 

 00
,

( , )
x y

M w x y=∑  (30) 

 
, and first moment for x  and y : 

 
 10

,

( , )
x y

M x w x y=∑  (31) 

 01
,

( , )
x y

M y w x y=∑  (32) 

 
, where ( , )w x y is the probability at a point ( , )x y . 
 
The mean location of the window (or center of gravity) is then:  
 

 10

00
x

Mx
M

=  and  01

00
x

My
M

=  (33) 

 
By iteratively shifting the window to the mean location, and recalculating, 
the mean shift algorithm climbs the distribution gradient through the image 
to a local maximum as seen in Figure 7. 
 



Chapter 3 Literature 

 23

 
Figure 7: Iterations of the mean shift algorithm in 1D (e.g. finding 
maximum value on a line). It is seen how the center of the window is 
shifted to the mean location of the probability within it. Note also that 
only a local maximum is found. 

 
The mean shift algorithm is fast and seems to stay in local maxima (which 
is good in some cases), but it has problems with scaling of the searched 
peak in the distribution e.g. if the peak gets too narrow, it has too little 
weight at the mean value calculation. This problem is addressed in the 
following section. 

3.1.8.2 CAMSHIFT 
A team at Intel [7] has introduced a fast algorithm called CAMSHIFT that, 
based on the mean shift algorithm, can track a colored object in a live 
image, especially with face tracking in mind. 

Mean Shift Based 
The CAMSHIFT model works like the mean shift algorithm by climbing a 
distribution gradient through the image to a local maximum, and 
furthermore adapts the size of the search window using the zero momentum 
in the window to overcome problems of perspective size change in a 
dynamic tracking environment. 
 

Histogram Table 
CAMSHIFT calculates the probability via a lookup table that is a histogram 
for the given color object. That way all colors represented in the object will 
attribute to the weight according to their value in the object histogram [7].  



Chapter 3 Literature 

 24

The basic steps 
The basic steps of the CAMSHIFT algorithm is in short terms: defining a 
search window within the picture, finding the mean position intensity of the 
summed pixels weighted using the color probability. This process is 
repeated till stabilization and position and intensity is stored for starting 
conditions in the next frame. 
 

1. Defining a search window. 
2. Finding the mean location and size through histogram lookup. 
3. Move search windows position and size according to 2. 
4. Repeat step 2 and 3 till convergence. 
5. Store location and size, and go to next frame. 

Properties 
The algorithm is fast, noise robust and easy to implement. 
 
Now we want to remember, that we might want to track more objects with 
the same color, and as we just saw in the outlining, the algorithm is not able 
to do this directly, although it provides separation or abstraction from 
objects that get outside the tracked objects’ search area.  
 

3.1.9 Anaglyph Stereo 
The principle of stereo in general is that our two eyes have slightly 
different positions and therefore they see slightly different images. Creating 
artificial stereo is done presenting two different images for the eyes. 
Through history this has been done in countless ways, but here we will now 
look at the anaglyph approach. 
Placing different color filters in a pair of glasses, has the effect of only 
letting a specific spectrum of light pass through to each eye. By encoding 
our stereo image so each image has the color that is passed by one filter, 
and blocked by the other, it is possible to let the eyes receive two different 
images. Stereo is finally achieved by letting these images be slightly 
different according to the stereo parallax of the eyes. 

Computer Graphics 
In real-time computer graphics the two images required are usually easy to 
produce. To encode these in the right colors can be done in several ways in 
hardware. Here two ways will shortly be outlined. 
 
The first step is very simple and can be implement even on elderly graphics 
hardware. It is outlined in the following steps: 
 

1. Render the scene into two different texture maps (or pixel-buffers) 
only storing the intensity of each pixel. 

2. Enable the texturing mode: “Modulate”. 
3. Draw the first texture while modulating with the first filter color 

(e.g. red). 



Chapter 3 Literature 

 25

4. Enable the blend mode and set the blend function to mix 1:1. 
5. Set the color to the second filter color (e.g. blue). 
6. Draw the second texture. 

 
The other method make use of a shader-program, that can lookup a pixel 
value in a texture using the pixel colors from the to textures as input. 
 

1. Generate the constant lookup texture. 
2. Render the scene into two different texture maps (or pixel-buffers) 

only storing the full color at each pixel. 
3. Render to the screen making a per pixel lookup in the predefined 

texture map, using the two rendered textures values (found also by 
texture lookup) as argument. 

 
Using a lookup table allows for more advanced color coding enabling more 
colors than the two used in the filters. This is done in the patented solution 
by [15] called “ColorCode” that gives a nearly full color picture in one eye 
and an intensity picture in the other. The brain uses only intensity to resolve 
the depth information, and is able to extract the color from the one eye 
watching the stereo. 

3.1.10 Texture Volume 
A texture volume enables visualization of a volumetric intensity field. 
Often this is done holding the data in a discreet voxel representation, where 
a voxel is the analogous to a pixel in 2D. 
By having a stack of 2D textures (or even one 3D texture) the volume can 
be rendered by drawing the stack back to front. Letting the alpha channel 
hold the intensity it can be compared to a threshold determining whether a 
voxel is to be drawn or not. Transparency can be obtained by using the 
alpha channel as a blend factor [23]. 

3.2 Existing concepts 
 
In this section we will look at existing techniques and hardware in a row of 
applications related to the concept proposed in this thesis. This way we try 
to draw a picture of what is the foundation and inspiration of the proposed 
concept, and in what way it can offer an alternative to the galleria of 
concepts already being used. 
Whether one technique is better than another depends on many factors 
beside the concept itself. Price, precision, speed is a few to mention. 
However in this section we will try to focus on presenting the concept itself 
and what it is capable of as concept rather than comparing all of them. 
 



Chapter 3 Literature 

 26

3.2.1 Virtual Reality 
As mentioned a lot of effort is put into development of systems capable of 
virtual reality and augmented reality, including human tracking, device 
tracking and 3D interaction.  
Virtual reality (VR) was introduced in the 60s, and the concept of the first 
prototype is well known due to a growing market of applications, and 
several science fiction novels and movies on the subject. 
 
Traditionally the equipment of VR includes some sort of head-mounted 
display (see Figure 8) and also motion tracking equipment like gloves.  
The users are tracked without noticeable lack through magnetic, inertial or 
optical technology or combinations of these. 
The user sees the virtual world in stereo through the display in the proper 
view to his or her head posture and movement. 
 

 
Figure 8: Head-mounted display for virtual reality. 

 
Displays exist at low resolution for a reasonable price, but also at higher 
resolutions. 

Large Room VR 
VR that uses magnetic field orientation techniques are limited in space. 
Large room VR uses optical markers placed in the ceiling and a head-
mounted camera to track a user’s placement in a large room. Combined 
with a wearable computer, initial trackers and the standard VR equipment 
VR in large rooms are enabled [26]. 

Caves 
By projecting the virtual world on walls surrounding the viewer an illusion 
of being in this world can also be achieved. Unless the head position is 
tracked perspective distortion will be present when the users head gets too 
close to a wall. If the head is tracked there can be only one user at a time. 



Chapter 3 Literature 

 27

3.2.2 Augmented Reality 
The goal of augmented reality is to blend the virtual and real world in such 
a way that the virtual world is optically percepted as a part of the real world. 
It is usually done by recording a view of the real world, finding its 
orientation via image analysis and add the virtual world in correct 
orientation and occlusions [30]. 
Coded markers or known objects can be used to represent different virtual 
objects. By moving the marker or known object in the real world the virtual 
object is moved in the augmented scene. 
 

  
Figure 9 : Augmented reality. After registering a known objects 
orientation in the image, 3D graphics of virtual objects including some 
occlusions can be overlaid. 

3.2.3 3D Interaction 
Here we see a few devices addressing the problem of interaction indirectly 
or directly with virtual 3D-data. 

Stationary devices 
The SpaceBall, seen in Figure 10, is a typical stationary desktop device 
handling 6 DOF input. 

 
Figure 10: The stationary SpaceBall from Logitech has 6 DOF. 

 



Chapter 3 Literature 

 28

VR-Gloves 
VR-Gloves have been used in VR since its beginning, measuring the 
position and gesture of hands. In some cases it even can provide force 
feedback, when the user touches a virtual object. 
 

 
Figure 11: Virtual Reality-Glove by InterSense. 

Workbench 
A system using a more or less horizontal large screen capable of stereo are 
sometimes referred to as a virtual workbench. Via tracked devices, model 
creation and painting directly in 3D is enabled. The tracking method is 
typically magnetic. 

Reach-In 
One setup that in its properties is very similar to the proposed concept 
(although much more precise) is the setup adopted by Reach-In. Stereo is 
produced via flicker glasses and time interleaved stereo images shown on a 
standard monitor. The monitor is placed so that the screen is best seen 
reflected in a semi transparent mirror (the image shown have to be upside 
down) producing the impression of the virtual world being behind the 
mirror (with nearly correct accommodation). A force feedback mechanical 
arm is placed behind the mirror to interact with the virtual world (see 
Figure 12).  
 
 



Chapter 3 Literature 

 29

 
Figure 12: 3D interactive stereo rendered setup by Reach-In. 

3.2.4 View dependent rendering 
To obtain viewer alignment the view of the viewer (eye positions of the 
viewer in relation to the screen and the virtual world) has to be known. In 
standard VR the eyes’ positions are constant in relation to the display, so 
only the position in the virtual world has to be taken care of. 
To produce view dependent rendering at a monitor the relation between the 
eyes and the monitor has to be considered as well. 
This means that head-tracking is needed. 

Head-Tracking 
Tests have been made to find the effect of viewer alignment at a desktop 
computer (also called virtual-holography or light-field rendering) with 
special focus on the involved latency. In this case a mechanical tracking 
arm was used for the head-tracking (see Figure 13), but only horizontal 
movement was compensated for in the rendering. 



Chapter 3 Literature 

 30

 
Figure 13: Head-tracking in view dependent rendering or virtual 
holography. 

 
The limit for noticeable latency was found to be 15 ms, with standard 
deviation of 3.1ms (ca 55-85 fps). It is worth mentioning that latency 
threshold was increased during repeated sessions meaning that the test 
person was getting more tolerant [24]. 

3.2.5  3D Screens 
The 3D screens or auto stereoscopic screens have good potential as future 
3D representation media. They use many different techniques   with 
different properties. Here a few of them will be mentioned. 

Viewing zone 
The auto stereoscopic screen from sharp is integrated in a laptop computer 
as principally depict in Figure 14. The stereo effect can be switched off, so 
the screen can function as a standard 2D screen. The head has to be placed 
in a viewing zone in front of the screen to make the stereo effect work; 
otherwise the pictures to each eye will be mixed [13]. 
 

 
Figure 14: Principal illustration of Sharp’s laptop with integrated auto 
stereoscopic screen. 



Chapter 3 Literature 

 31

Multiple views 
To enlarge the viewing zone some screens uses multiple views. Images of 
more than two views are sent in multiple directions, so that the eye sees 
two proper images where ever they are in the enlarged viewing zone. The 
zone is usually repeated to cover all the views around the screen. However 
there will still be a mix of images when going from one image group to the 
next. In these screens the horizontal moving parallax is working correct, 
but only one of the image groups has the correct viewer alignment. 
These screens have the unique auto stereoscopic ability to be viewed by 
multiple viewers at a time, but also need a constant generation of typically 
eight images (one for each view). 

Eye-tracking 
Alternatively to the multiple view systems some screens use the approach 
of directing the two images towards the eyes although moving. This 
obviously requires the eyes position to be known. In the monitor of 
SeeReal, hardware is implemented to continuously track the eyes of the 
viewer. The beam splitter, that splits the images to the eyes, is then moved 
according to the eye positions as seen in Figure 15. The eye position can be 
read back from the monitor to be used in the generation of the proper views, 
so that viewer alignment and correct moving parallax is achieved.  
 

 
Figure 15: Hardware head-tracking and a movable beam splitter 
enables stereo at a large view zone in SeeReal’s auto stereoscopic screen. 

Hand tracking 
At the Fraunhofer Institute they have extended the concept of the screen 
with hand tracking and eye-gaze tracking [14]. Two cameras under the 
screen tracks the hands of the user, and thus direct interaction with the 3D-
data is possible as seen in the principle illustration in Figure 16. 
 



Chapter 3 Literature 

 32

 
Figure 16:  Hand tracking makes direct interaction with the 3D-data possible. 

 
 



Chapter 4 Analysis 

 33

Chapter 4 Analysis 

Intro 
In this analysis the goal is to sort out how a system can be made fulfilling 
the given requirements (see Objective in section 1.4 and Hypothesis in 
Chapter 2). 
 
To do this, we first make an overview of the dataflow, allowing us to 
consider the system as a group of smaller segments, with specific input and 
output. Secondly we will analyze each segment separately. 

4.1 Dataflow 
The system can be divided into segments that in theory work independently 
of each other. Each segment takes a specific type of input and produces a 
specific type of output. Even now before the details of the approach are 
clear, we can make an estimate of what the main segments will be. 
 

Data Acquisition

3D key-Data3D key-Data

Simulation & Interaction

Visualisation

3D Scene

Updated 3D SceneUpdated 3D Scene

Screen image

Segment:

Data:

 
Figure 17: Outline of the systems segments and dataflow. Each segment 
can be analyzed separately when the input and output format is known. 

 
As seen in Figure 17 the system can be divided into the following segments: 
 

• Data Acquisition 
• Simulation and Interaction 
• Visualization 

 
In the following sections we will look into the details of each of these 
segments. 



Chapter 4 Analysis 

 34

4.2 Data Acquisition 
In order to have a functioning pointing device and to produce viewer 
alignment, a few key-data (e.g. pointing device orientation and eye 
positions) from the real world have to be acquired in real-time. It can 
involve acquiring of great amounts of data, which is processed to extract 
the key data. A predicted process is outlined in Figure 18.  
 

2D tracking

3D Reconstruction

2D position2D position

Camera Handler

ImageImage

3D key-Data3D key-Data

Camera ImageImage

Stored Calibration DLTDLT

Pointing Device
&

Viewer

LightLight

 
Figure 18: The sub-segments and dataflow of data acquisition segment. 

Key-Data 
The key-data should be thought of as the output from a given tracking 
algorithm. In our case, the key-data needed depends on how many degrees 
of freedom our pointing device is to have, and which kinds of viewer 
movements we should be able to handle (i.e. the viewer DOF). 
By assuming that the key-data is a number of 3D points, we can determine 
the exact number needed for a given purpose. In Table 1 the DOF and the 
number of 3D-points needed for the same representation, is given for basic 
spatial representations. 
  



Chapter 4 Analysis 

 35

 
Spartial representation DOF 3D-Points 
position on a line (1D) 1 
position in a plane (2D) 2 

3D-point 3 
1 

direction * 2 
position and direction 5 
position, direction and 

scale 6 
2 

rotational orientation ** 3 
rotation orientation and 

scale 4 

orientation 6 
orientation and scale 7 

3 

Table 1: DOF and the number of 3D points needed to determine 
different spatial representations. 
 * The direction can be found using only one 3D-point, but usually it is 
needed to be independent of the origin of the coordinate system, so a 
base point has to be provided. 
** Rotational orientation is also added an extra 3D-point as base to be 
independent of system origin. 

Example Setups 
To get an idea of the representation needed, two short examples of 
imagined setups are here given: 
 
In the simplest setup only two 3D-points are needed; one for the viewer 
alignment and one for the 3D pointing device, each of which have 3 DOF. 
 
In a second setup the pointing device is also meant to give the orientation 
of the object (6 DOF). In addition the viewer can tilt the head, which there 
has to be compensated for (2 DOF found using two 3D-points), ending up 
with the need of five 3D-points (8 DOF). 

4.2.1 Choosing an Approach 
So we need a number of 3D points (2-6 presumably) extracted from the real 
world, and the question is how to get them. This is a question of what kind 
of properties we want the system to have. A lot of methods have already 
been produced and many can be assumed yet to be developed [14][17]. To 
limit the analysis the decision of an approach can be done in a long row of 
steps, where each step involves an analysis. What to analyze depends the 
prior choice. Each analysis and choice narrows down the specifics of the 
method and gets us closer to a final approach. This also indicates that lots 
of deeper branches are not considered.  To keep track of the most important 
choices made through this project a “map of choices” has been made (see 
appendix 10.1. A single choice is shown in Figure 19.  
 



Chapter 4 Analysis 

 36

Magnetic

Ultrasonic

Mechanical

Optical

Method choice

Initial

Choice:

Alternative:

 
Figure 19: Sub Decision path. An optical position aqusition method 
among 4 alternatives was chosen. 

 
The first choice to make is the main method. It has been indicated, that a 
webcam based method is chosen, but to understand what special properties 
and consequences this implies, we will compare this approach to other 
alternatives. 
As a little reminder to the objective of the object tracking, two lists about 
virtual reality components according to [6] are presented: 
 
Tracking devices: 

• Tracking devices are usually used to measure the motion of the 
user’s head, hands and eyes  

• 6 degrees of freedom are required to describe the orientation of the 
object in 3-D space  

• Tracking are currently: electromagnetic, mechanical, optical, 
acoustic (ultrasound), or inertial  

• Tracking device quality depends on resolution, accuracy, and 
system responsiveness (sample rate, data rate, update rate) 

 
Virtual displays: 

• A VR visual display must provide a stereoscopic view of the virtual 
environment 

• Head-tracking must enable continuous updating of the stereoscopic 
view 

• The factors that affect the quality of a display are: 
o resolution 
o color vs. black and white 
o brightness 
o motion representation 
o ergonomic and health concerns 

 
Each type of tracking device has its pros and cons (see Table 2). For VR, 
the magnetic type has been the most popular for a long time. For desktop 
use mechanical robot arms with force feedback are very popular. Optical 



Chapter 4 Analysis 

 37

solutions are the most popular character motion tracking in the movie and 
game industry (sometimes in combination with mechanical cloves), due to 
the possibility of recording very large numbers of points using post 
calculation if not real-time. 
 

 Magnetic Ultrasound Inertial Mechanical Optical Webcam 
-based 

Pros:       
Low latency + + + + +  
High update 
rate + + + + +  

Precision +  + + +  
6DOF + + + + + + 
Force 
feedback    +   

Relative 
Price   +   + 

Cons:       
Wear 
equipment  ! ! ! (!) (!) 

Drift   !    
Wired (!) ! (!) !   
Range 
limited (!) (!)  !   

line-of-sight 
requirements  (!)   ! ! 

Light 
sensitive     (!) ! 

Metal 
sensitive !      

Sound 
sensitive  !     

difficult 
calibration !    (!) (!) 

Price ! !  ! !  
Table 2 : Superficial table of tracking methods pros and cons. Here “+” 
markes the pros and “!” marks the cons. “(!)” marks when a con is 
partly or can be avoided in special cases. Many pros and cons also vary 
within the same product group.  

Magnetic Field Orientation Registration 
A very common way of tracking in 3D is magnetic field registration. Since 
1975 AC and DC active source systems have been used [6]. It is especially 
popular because no line-of-sight is required. 

Ultrasound 
Ultrasound tracking works by measuring the time-of-flight of sound from 
typically three transmitters to three microphones. Knowing the position of 



Chapter 4 Analysis 

 38

the transmitters, the speakers’ spatial location and orientation can be found 
using triangulation.  

Inertial 
Inertial trackers continuously measure the acceleration, which is used in the 
calculation of the position.  
Inertial trackers have become superior to other trackers in many areas, 
because of their low latency high update rates and precision and the fact 
that they are the only interference free tracking tool. Their big drawback is 
that they work by updating the position and the orientation by adding 
measured change to the old position (compensating for the gravitational 
field at all times). This means accumulation of errors and results in 
unacceptable drift in very short time (from a few seconds to 15 minutes 
depending on quality and price).  
The inertial trackers have become of greater interest through combination 
with other trackers in hybrids, where the inertial tracker gives real-time 
position and orientation. The other tracker updates the inertial tracker as 
often as possible, so the drift does not reach a critical level.  

Mechanical 
By using some kind of exterior skeleton and measuring angels in every 
joint it is possible to track the position of every bone including the last 
endpoint, which usually is the point we are interested in. They possess the 
very exciting possibility of force-feedback, but are in some cases also tiring 
the user. 

Optical 
The growing market of fast or cheap optical sensors has increased the 
interest for equipment free remote sensing possible with optics [14][20], 
but still the typical way is tracking some sort of markers where high 
precision (0.2 mm [18]) in large area ( 400-500 square foot [18] [19]) and 
at high speeds ( 1500Hz [18] ) has been reached. 
In the movie and game industry optical tracking is used for character 
tracking. A person wear a suit with a number of reflectors, and several 
cameras records the motion in a studio with the proper lighting. In post 
processing the 3D position of all reflectors are reconstructed. 
In virtual live TV-shows, infrared reflectors are placed on the cameras to 
register their position. The camera position is used in the generation of the 
virtual scene set. 

Web Camera-Based 
Naturally, web cameras of very low quality are the cheapest optical sensors 
on the market. 

4.2.2 Discussion on the choice of Web Camera-Based Optical 
Tracking 

As seen in Table 2 (p. 37), other methods are superior to the webcam-based 
tracker in many ways, speed being the most important. The web camera 



Chapter 4 Analysis 

 39

wins on price though (especially since many people have one already) and 
good prospects of avoidance of troublesome worn equipment. As we will 
see next, it has got good future potential too. 

Latency 
When tracking a position and using it for view generation two latencies are 
involved. One is the time it takes to generate the image and present it for 
the viewer. Here the important latency is the time it takes from a position 
movement happens in the real world to it is tracked and accessible for the 
visualization part. 
We have to remember the application, when discussing the choice. The 
speed is important to “keep the illusion”. If the latency gets too high, the 
user notices that the world and the virtual world are not aligned during 
movements. In VR this can cause seasickness. At the desktop it seems like 
the virtual world is swimming around trying to keep up with the real world. 
The limit where the effect stops being detectable at all is 55-85 fps but can 
vary individually as much as from 30-140 fps [24]. 
For the pointing device, latency is not as serious. But it is a problem for the 
feel of real-time interaction and alignment of the tool in hand and the 
virtual tool seen on the screen. 

Predictors 
Tracking the head at a desktop does not necessarily mean a lot of fast head 
movement or big accelerations. With a predictor like a Kallman-filter, 
much of the swimming can be prevented at slow head accelerations. But 
overshoots will still appear at quick jags with the head, like head shaking. 
A predictor for a pointing device though could turn out to be a problem 
because people tend to have very fast and abrupt movements, and the 
predictor would consequently cause annoying overshoots. 

Line-of-sight 
The line-of-sight requirement is not a big issue for head-tracking at the 
desktop. Unless the user waves the arms around a lot, the head will usually 
be visible at all times. But for tracking a pointing device, it could easily 
turn out to be a problem. The user’s hands could occlude the pointing 
device, so the cameras have to be carefully placed with thought on right or 
left handed use. 

Precision 
Regarding precision it is again of much greater importance for the pointing 
device than for head-tracking. It is important that the movement is smooth 
more than precise in head-tracking, though the precision is responsible for 
the virtual tool alignment.  

Quality vs. Price 
We have accepted low quality in many areas in trade for low price. In this 
choice it is of importance that it is possible to restore much of the quality 
within the camera-based tracker (assuming the software problem is solved) 



Chapter 4 Analysis 

 40

by using better, and more expensive, cameras. Better here means faster, 
more light sensitive or with higher resolution. Cameras come in frame rates 
of 24-1000 fps (webcams 12-60 fps) (2004) and with several mega pixels 
(webcams up to one) so we still have the possibility of making high end 
solutions with our choice. Additionally cameras would heighten precision 
and reduce the risk of pointing device occlusion. 

The Ultimate Solution of Today’s Technology 
Considering what would be the best alternative solution if price didn’t 
matter can also tell us a little about the quality of the choice. For very high 
precision on tracking, a hybrid of inertial trackers and optical or ultra sound 
trackers could be used. The inertial tracker would provide smooth real-time 
updates as fast as asked for, and the second tracker would prevent drift. 
Now we would like to have equipment free head-tracking, so we replace 
the head tracker with an infrared camera, which enables the tracker to work 
in almost any light condition. We would also like force feedback on the 
object interaction, so we choose a pen attached to a mechanical arm 
(phantom). Could it be better with an equipment free direct hand interaction? 
Possibly in some cases, but the fact is that you can turn and move a tool in 
your hand faster and more precise than your hand or fingers themselves, so 
let us stick to the force feedback tool. 
Compared to our choice, the “ultimate” solution is not that far away, 
though the force-feedback part of course cannot be solved with the cameras.  

Future Prospects 
If the optical sensors keep getting less expensive, it is possible that 
webcams will soon be high quality cameras and maybe faster than now. 
That would solve the problems on precision and speed (assuming perfect 
tracking algorithms), leaving us with a high quality system at low price.   

Light vs. Infrared 
It could be considered to use infrared cameras that work in the dark as well, 
by applying some infrared diodes on the pointing device. Using webcams it 
is given that we have to stay in the visible range of light. Hence it is harder 
to segment out the tracked object from the surroundings than for instance is 
the case with infrared where only the infrared reflection of the tracker is 
visible. On the other hand visible light sensors might have an advantage in 
image tracking. Visible light sensors separate colors, which can be used to 
distinguish objects of different colors. In the infrared case all tracked 
objects are identical “white blobs” in the image, and some sort of 
arrangement has to be applied to separate each point unambiguously. 

Next Step 
Having chosen visible light image based tracking, we are still left with the 
choice of the tracking algorithms. We would like to track some points in 
space representing a tool and track the eyes of the user. We would like to 
be able to do it in real-time and with low latency. 
 



Chapter 4 Analysis 

 41

4.2.3 Object Tracking 
We are looking for a fast and somewhat precise method to track one or 
more points in a 2D image. 

The Human Analog 
When the human brain interprets an image pair it is done in a complex 
combination of several parts of the brain specialized in different low level 
and high level processing starting with the simplest processing already on 
the retina of the eye [22]. When one tries to make a tracking system (or 
image understanding in general) one usually starts out by imitating one or 
more of the low level techniques. A high level technique might then be 
applied also using some sort of prior knowledge. 

Low Level Techniques 
Here is a non exhaustive list of some of the low level abilities of the brain. 

• Color field 
• Edge detection 
• Field of angular orientation 
• Curvature field 
• Corner detection  
• Depth field 
• Motion field (using background subtraction) 
• Element separation 

Some Higher Level Abilities 
Among the higher abilities of the imaging system of the brain can be 
named: 

• Object separation in 3D 
• Object orientation and movement in 3D 
• Object shape in 3D 
• Object recognition 
• Object categorization 
• Face recognition 
• Simple face expression interpretation 

 
We don’t need the unmatched abilities of the brain to track a known object, 
but we sure can be inspired by them in our search for general, robust and 
fast tracking algorithms.  
A lot of development is going on at the moment in image analysis, and 
many very advanced methods have been presented in literature. 
Because of its speed and ability to separate objects, a color tracking method 
is chosen. Here some of the alternatives will briefly be mentioned. 

Feature Tracking 
Feature tracking is based on prior knowledge of the shape of the tracked 
object and is very common in visual tracking. It can be done using outline 



Chapter 4 Analysis 

 42

tracking, comparison with 3D models or be based on simpler shapes like 
circles and squares. 

Motion Tracking 
Motion Tracking was one of the early tracking methods used, because of it 
simplicity. An image sequence is analyzed for changes and their direction. 
This way the moving part in an image is easily identified. Some animals 
(like frogs) are said to have vision based purely on motion. 

Background Subtraction 
Background subtraction is similar to motion tracking. It works by first 
registering the background. Afterwards any object can easily be tracked by 
background subtraction, which only leaves the object that changed the 
image. 
 
 
 

Stereo Images Based

Color Tracking

Feature Tracking

Motion Tracking

Background subtraction

 

4.2.4 Color Tracking 
Color tracking is simple and fast. To track colors one has to find a suitable 
color space to track in. A common color representation is RGB, but it is not 
easy to recognize a color only using its RGB values unless the color 
matches exactly. During tracking one would like to be independent of 
lighting conditions. Also one would like to tell, when testing a color, how 
far from the matched color it is. For this purpose the HSV (hue, saturation 
and value) color-space is well suited.  
 



Chapter 4 Analysis 

 43

Color Tracking

RGB color-space

HSV color-space

Y-Cr-Cb color-space

Other color-space

 

HSV Color Space 
Hue is a periodic color representation, which through a rotation of 360° 
degrees goes through the visible light spectra and connects the highest 
frequencies (blue and violet) and the lowest frequencies (red) smoothly 
through magenta and purple (as seen in Figure 20). Two complement colors 
are shifted 180°. The higher saturation, the more precise the Hue can be 
calculated. Value or brightness is the component that we would like to be 
independent of (although it indirectly dependent on the saturation), and 
therefore we can ignore it. 
 

 
Figure 20: The hue, varied through all 360° degrees round the circle.  

 



Chapter 4 Analysis 

 44

Saturation

Hue

Value/
Brightness

 
Figure 21: HSV Color space 

 
Converting from RGB to HSV is not a cost free procedure, and it should be 
considered how to do it. 

Converting from RGB to HSV 
For each pixel to be color matched a RGB to HSV conversion has to take 
place. Some of the costs can be reduced by making criterions for early 
rejection (e.g. the color is too dark, or have too low saturation). This way 
none or only a part of the conversion has to find place.  
 
Several different variations of HSV color spaces exist. Here we use a 
conversion to HSV as defined in (34) - (37): 
 
 

 1

2

1 1 1
3 3 3
1 1 1
2 2
3 3 0

2 2

I R
v G
v B

 
 

    
    = − −    
       

 −  

 (34) 

, where 
 2 2 2

1 2S v v= +  (35) 
 
 2 2

1 2S v v= +  (36) 
, and 

 2

1

arctan vH
v

 
=  

 
 (37) 

Using saturation as a threshold implies that it should be calculated. The 
calculation of (36) is much more expensive than (35). By squaring the 



Chapter 4 Analysis 

 45

saturation threshold and compare it to 2S in (35) instead of S we reduce the 
computational load. 
 

4.2.5 Adjusted CAMSHIFT 
Making an exhaustive search through the total area of the image seems like 
a waste of time if the object only takes up a fraction of the image. To speed 
up things one can limit the search area, but one should be sure to have a 
way of fast reinitializing, if the object is lost (e.g. due to occlusion). 
To limit the searched area, one can use a strategy where only a search 
window around the object’s old position is used (see also Figure 7 in 
section 3.1.8.1). For this purpose, the face tracking algorithm CAMSHIFT, 
based on the mean shift algorithm, is well suited (see section 3.1.8.2). 
It suffers from the limitation of not being able to track more objects with 
the same color, but by combining it with another algorithm (i.e. connected 
component analysis or feature recognition), could possibly enable tracking 
of multiple color objects. This would also reduce the tendency to get 
distracted by nearby objects with the same color. 

Histogram vs. single color 
Using a hue-histogram as lookup table is a good solution in face tracking, 
where the face can have colors in different parts of the spectra, but in single 
color tracking it is not a good idea, in spite of its speed.  
One has to generate the histogram. This can be a clever way of selecting 
one’s target object, but could also lead to errors or a non optimized result. 
Also if the histogram has - let us say - two evenly high peaks of different 
hue, the colors in each of these peaks will be weighted evenly. This is good 
when you want an even weight of the two parts of the object, but has a 
drawback. A single color surface of any of the peak colors would have at 
least the same weight as any part of the tracked object, which would lead to 
the tracking of the surface instead of the object. When tracking a single 
color we are better off with less distracters achieved by calculating the 
weight based on a single color. 
 
 

Weight from hue calculation

HSV color-space

Histogram lookup

 
 
 
 



Chapter 4 Analysis 

 46

Color weight 
 
Calculating a weight ( , )w x y  from a single color comparison ,

ˆ
x yH∆  can be 

done in several ways. First of all providing a width widthH  in hue-space 
within which the color should be to have a weight at all, simplifies things a 
lot. 
 

 , ,
ˆ ˆ( )

( , )
0 ,

x y width x y widthk H for H H H
w x y

else where

 ∆ − < ∆ <= 


 (38) 

  
, where 

 
 , ,

ˆ
x y x y objectH H H∆ = −  (39) 

 
 

and ( )k H∆  is some kernel function with the output interval zero to one. 
The simplest way is now to linearly calculate the distance to the matched 
color in hue space Ĥ∆ , and see it relative to the width. 
 
Figure 22 (a) shows the following formula: 
 

,
,

ˆ
ˆ( ) 1

x y
x y

width

H
w H

H

∆
∆ = −  

 
For simpler notation in the following we define: 
 

 
2

,2
2

ˆ
x y

width

H
H

H
∆

∆ =  (40) 

, where 
 

,
ˆ

width x y widthH H H− < ∆ <  
⇒  

 [ ]2 0,1H∆ ∈  (41) 
 
 

Gaussian Distribution  
 A Gaussian distribution would on the other hand be what one would 
expect, but is more expensive, and might not necessarily produce the best 
results in all situations anyway. The Gaussian distribution also has the 
property of being non zero in the entire search spectra, which removes the 



Chapter 4 Analysis 

 47

possibility of early rejection, unless one truncates it at the search 
width widthH . 
 

 

2

2

,( , )
0 ,

H
a

width widthe H H Hw x y
else where

 −∆
  
 


 − < ∆ <= 


 (42) 

 
 
 
 

, where a is the width of the Gaussian distribution (shown in Figure 22 (c) 
for 1 1

2 31, ,a a a= = = ). 
 

The fast and Simple 
Taylor expanding the Gaussian distribution to second order gives the 
following computationally fast weight distribution (see figure ? b)): 

 
 2( , ) 1w x y H= −∆  (43) 

 
The interesting thing about (43), is that when raising it to a higher order,  
(44), it becomes very similar to the Gaussian distribution. Although it does 
not have all its properties, it has one essential advantage; it (like (43)) goes 
through ( , ( ))H w H∆ ∆ = (-1,0) and (1,0) as seen in Figure 22 (d) for 

1, 4, 9a a a= = = . 

 ( )2( , ) 1
a

w x y H= −∆  (44) 
 
 

 
 



Chapter 4 Analysis 

 48

(a)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

(c) 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 e
xp

((-
∆

H
ue

2 )/a
2 ) ,

 a
=1

, a
=1

/2
, a

=1
/3

(d) 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆Hue

 (1
- ∆

H
ue

2 )a  , 
a=

1,
 a

=3
, a

=9

 

(e)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Figure 22: Weight distribution as function of H∆ (a) Liniar weight 
( Hue∆−1 ) is the fastest to calculate (b) Square version ( 21 Hue∆− ) is 
nearly as fast but nicer (c) Gausian weight distribution 
for 1 1

2 31, ,a a a= = = (d) Taylor of Gausian (e) Comparison of Gausion 
1
2a =  (circles) and the faster (44) a=4.  

 
The fast weight function (44) with 4a =  seems to be well suited for the 
purpose. 
In Figure 23 it is seen how the colors of an orange sphere is weighted using 
the chosen function. Any of the functions could easily create a lookup table 
to use for even faster processing like the histogram. 



Chapter 4 Analysis 

 49

 
Figure 23: Color weight. The orange colors of a sphere are changed to 
gray scale representing its weighted value with light as highest weight 
and dark as low weight. The sphere is close to the camera, to make the 
weight distribution more clear. 

Choose Saturated Colors 
Although choosing a fast method for calculating the weight is important 
one should remember, that a far more important factor is avoiding the 
calculation by using the saturation threshold. This also means that the more 
saturated objects we track, the higher threshold we can use, resulting in 
more robust tracking and less computations. 

Multiple Colors 
Having found some alternatives to the original histogram of the original 
CAMSHIFT algorithm we now seem to have a single color tracking 
algorithm. We would like to apply it on several objects with different 
colors at the same time, where as the CAMSHIFT model was designed to 
track one person at a time. 
We can do this remembering to save the found location and size of each 
color respectively. We don’t have to take care of all colors at once when 
receiving an image, because each color’s search window probably is 
located in different parts of the image. 

4.2.6 3D Reconstruction 
When the 2D positions of the object are found the reconstruction of the 3D 
position can begin. More than one method exists to do this..... 
 
Reconstruction 3D data from obtained 2D positions, from 2 or more 
cameras, is a well known problem in photogrammetry [4]. 2D positions 
from 2 cameras provide 4 equations to solve getting the three unknowns of 
the 3D position. This indicates redundancy. 

Redundancy 
Redundancy is in some cases avoided by reducing the system and makes 
the search algorithms faster by first finding the object in one image and 
only search for it on one line in the other, the so called epipolar line. The 
redundancy can instead be used to tell us something about the reliability of 
the tracked 3D position, and determine whether we want to use the given 
point. 
 
Using the adjusted CAMSHIFT algorithm (see Section 4.2.5) the search 
area is already reduced, and direct use of epipolar lines would not speed 



Chapter 4 Analysis 

 50

things up much. Instead the residuals are nice to have, also because they 
apply to any number of cameras. 
 

3D reconstruction

Epipolar lines

Redundancy
 

 
We choose to use the 3D reconstruction method described in section 3.1.4. 

4.2.7 Camera Calibration 
3D reconstruction heavily relies on camera calibration, according to (11). 

Reference coordinate system 
As we will look further into in section 4.3.1 on page 58, it is important to 
know the reconstructed 3D points in relation to the monitors position and 
orientation. We use a 3D-monitor-coordinatesystem for all real world 
positions. Hence we have to know the monitor orientation in the coordinate 
system of the cameras, or even better let the projection matrix be obtained 
via camera calibration be described in the coordinate system of the monitor.  

Fixed cameras 
If the system is factory produced, and the cameras are fixed on the monitor 
(see Figure 15) it simplifies the problem, since it can be calibrated from 
factory. And the user does not have to worry about calibration at all. 

Non-fixed Cameras 
Unfortunately it becomes a little inconvenient for the user if the cameras 
are not fixed. Then each time the cameras or the monitor are moved, he or 
she has to recalibrate. We see that it is important that the calibration is easy, 
fast and precise. 

4.2.8 Camera placement 
Using optical calibration makes the camera setup much easier than if their 
position and direction were to be measured. The cameras can be placed at 
any position that is sure to be fixed during calibration and use, or even on 
the monitor, which then is free to be moved around. 

Creating a suitable measuring volume 
This all sounds very good but we still have a factor to take care of; the 
placement of the measuring volume. The measuring volume we define to 
be where at least two cameras views overlap and 3D reconstruction can 
take place. 
 



Chapter 4 Analysis 

 51

We should make sure that the following things are within the measuring 
volume: 
 

1. The viewer or the object on the viewer that should be tracked. 
2. The interaction tool in front of the screen. 

 
Tracking the viewer could be done placing the cameras on top of the 
monitor because the measuring volume would then extend from the 
cameras toward the viewer as seen in Figure 24.  
 
 

A B

Viewer

Monitor

 
Figure 24: Camera setup with focus on viewer tracking. The 
overlapping views of cameras A and B define the measuring volume. 
 

On the other hand - when tracking an interaction tool, it can be assumed 
that the user wants to interact as close to the screen as nearly touching it 
because the user interacts with a virtual world that extends through the 
screen. If this is made possible by placing the cameras on each side of the 
viewer, pointing towards the screen, it should be noted that it heightens the 
requirements to the tracking algorithm, because what is shown on the 
screen is seen by the cameras, and gives rise to major distraction. 
Furthermore occlusion e.g. by user or the monitor has to be considered as 
well (especially when tracking colors). 
 

Optimal Precision at Right Angels 
It should also be taken into account that the precision of the 3D 
reconstruction increase when the lines going from the cameras and 
intersecting through the tracked object, are near orthogonal. 

The choice 
A solution is chosen, where the cameras are placed close to the plane of the 
screen making a nearly right angle towards the axis going through the 



Chapter 4 Analysis 

 52

center of the screen and monitor. Depending on their field of views, the 
cameras should be placed in a distance great enough to place the viewer 
inside the viewing volume as depict in Figure 25. The setup additionally 
avoids problems of user occlusions by right handed users (of course, by 
mirroring it would suit a left handed person). A disadvantage is that placing 
the cameras fixed in these positions is more difficult than just placing them 
on the monitor or the office table. Furthermore the setup is not well suited 
for tracking algorithms that rely on seeing the user’s face from the front. 
 

A

B

Viewer

Monitor

A

B

Viewer

Monitor

Tool

 
Figure 25: Front-view and top-view of the camera setup. The angle 
between the cameras gives good conditions for 3D reconstruction and 
both the viewer and the interaction tool is inside the measuring volume 
that even allows tracking objects very close to the screen of the monitor. 

More Cameras 
By adding more cameras, the task of setting up the system fulfilling the 
requirements, becomes less restricted, because each camera adds to the 
measuring volume. 

4.2.9 Monitor and Viewer Calibration 
Given calibrated cameras, we still need to know the position of the monitor. 
Furthermore, if the eyes of the viewer are not directly tracked, we need to 



Chapter 4 Analysis 

 53

find the eyes’ position relative to the coordinate system of the tracked 
viewer object. 
 
The monitor placement could be found by hand in relation to the points 
used in the camera calibration, but it would be easier and probably more 
precise if it could be done using the already calibrated camera 3D position 
measuring system, or even better by combining it with the calibration itself. 
Here we will outline a few approaches dealing with monitor calibration, 
viewer calibration, or a combination of these and camera calibration. 
 
Following approaches are outlined: 
 

1. Simple viewer calibration 
2. Monitor calibration in a calibrated camera system 
3. Combined monitor and viewer calibration in a calibrated camera 

system 
4. Combined camera and monitor calibration 
5. Combined camera, monitor and viewer calibration 

 

4.2.9.1 Approach 1: Simple Viewer Calibration 
A very simple way of setting up the viewer-eye relation is by combining 
simple hand measurement and knowledge of human anatomy. 
For example the tracking object registering the viewer can be a number of 
colored spheres on for example a hat worn by the viewer. The number of 
points used influences on how well head rotations are handled. With three 
points the full head orientation can be found, and therefore also the eye 
positions regardless of head rotation. The fewer tracking points used the 
relatively smaller will a hand measured error be.  
If two points are used and placed on a line parallel to the line on which the 
eyes are placed then rotation around the vertical axis and head tilt will be 
found and used in calculation of the eye positions. Head nodding will not 
be registered and causes uncertainty in the eye position. 
If only one point is used the rotation is not registered at all. This leads to 
errors in the plane of rotation proportional to the distance B seen in Figure 
26 depending on the error in the angel, θ ,  of rotation: 
 

 
sin( )
cos( )

error

error

x
B

y
θ
θ

   
=   

  
 (45) 

 
This implies that it is an advantage to place the center of the tracking object 
close to the midpoint between the eyes. It should also be noted that any 
error in the angles of tracking objects orientation gives rise to the same 
error (although θ  here is much smaller). 
 



Chapter 4 Analysis 

 54

 
Figure 26: Viewer calibration; placing the eye relative to the tracked 
viewer object. The distances A, B and the eye separation C can be 
measured by hand. 

 

4.2.9.2 Approach 2: Monitor calibration in a calibrated camera system 
 
Given a calibrated measuring volume we in principle only need three points 
related to the screen to determine its position. But as mentioned in the 
previous section (section 4.2.8) we are not ensured that the screen is inside 
the measuring volume. This means that we somehow have to measure 
points remote from the screen and reconstruct the screens placement from 
known constraints. A stable but tedious solution would be to construct a 
frame fitting the screen and extending it into the measuring volume, and 
measure points on that. Instead it is proposed to use a simple stick 
including two tracking objects. By placing the stick in one corner of the 
screen at a time registering a few point pairs at each position, the position 
of the corner can be derived to the point where the lines of the point pairs 
intersect. If also the distances between the tracked objects to the end of the 
stick is known the position is even more constrained and can be found even 
more precisely. 

 
 



Chapter 4 Analysis 

 55

A

B

Monitor

Tool

C

 
 
Figure 27: Top-view of monitor calibration. A tool or stick with two 
tracking objects, A and B, are placed at one corner, C, of the monitor 
at a time. To reconstruct the corner position, C, one can use the known 
distance from A to B to C. Furthermore when more positions are 
registered, as depict on the right hand corner, the intersection of lines 
going through the tracking objects gives the corner position if the stick 
distances between A, B and C are not known. 

 
Usually monitors project the picture on the inside of the glass screen. The 
thickness of this glass has to be found in factory data, or simply by 
guessing! The image shift caused by the refraction of the glass screen is 
considered negligible. 

Finding a good estimate 
Finding a good estimate of the over determined corner positions can be 
done using least square adjustments (see section 3.1.6). Requirements on a 
rectangular screen can be included. 

4.2.9.3 Approach 3: Combined monitor and viewer calibration in a 
calibrated camera system 

This approach is in a way better than the two prior ones because it takes 
care of two calibrations at once, but also has high requirements, to the user. 
Assuming we are capable of stereo vision, a set of stereo points can be 
shown on the screen. For each stereo point the user (wearing the viewer 
tracking object) points out the point in space with the interaction tool, 
keeping his or hers head still.  
Choosing the stereo point distances to be respectively half the distance of 
the eye separation and the double of the eye separation makes it easy to 
calculate the eye point and the stereo midpoint. As seen in Figure 28 the 
distances called A, B and C in the figure are equal. In principle it now takes 
one set of such stereo point pairs to determine the eye position and three 
gives three points on the screen, which is enough to determine the screen 
position and orientation. More points could be measured to reduce errors.  
 



Chapter 4 Analysis 

 56

 
Figure 28: Calibrating monitor and viewer using stereo points. The 
stereo points can be arranged so that the distances A, B and C are 
equal. 

 
As implied this approach heavily relies on the precision in the users’ depth 
perception, which is also its disadvantage. Furthermore, the close points in 
the calibration process are so close to the user, that it is hard to focus on the 
object (the stereo image and interaction tool will have different focus 
lengths). The advantage is that for the user with good depth perception 
there is a good probability that the precision of the viewer calibration is so 
good that he is not able to see an error in alignment between the interaction 
tool and the virtual object on the screen (at least when having his head near 
the place it were under calibration). 

4.2.9.4 Approach 4: Combined camera and monitor calibration 
 
 
This approach is actually two different approaches, but for the user they are 
the same. It is based on approach 2, in that the procedure of finding the four 
corners of the screen is also nearly the same (see Figure 27). 
 
It is based on three steps: 
 

1. Find a rough estimate of camera calibration and monitor calibration. 
2. Use the rough estimate as starting guess in a non linear iterative 

camera calibration finding a precise estimate. 
3. Recalculate the monitor calibration. 

 
The simple version is to stop after the first step. 
To calibrate the cameras, a known calibration object with at least six non-
coplanar points is needed. The idea here is to use the points obtained in the 
monitor calibration as calibration object. This is not a stable object, in that 
the stick is not surely perpendicular to the screen. Now we have a 
calibration that is only a rough estimate (which still is of same level of 



Chapter 4 Analysis 

 57

quality as any other unstable calibration object), but a calibration of both 
the cameras and the screen at once. 
A method of camera calibration called “Relative Camera Calibration” [8] 
depends only on at least 5 unknown 3D points coherently registered by 
both cameras. The relative camera calibration is non-linear because of 
transformations that depend non-linearly on rotation angels, as mentioned 
in section 3.1.7. It can therefore not be solved directly using least squares 
adjustments but in an iteratively process. Doing this is out of the scope of 
this thesis, but it can be done according to [8] and therefore this approach 
has good prospects in the future. 

4.2.9.5 Approach 5: Combined camera, monitor and viewer calibration 
By combining approach 3 and 4 it should be possible to make a combined 
calibration of camera, monitor and viewer at once using a calibration object 
defined using stereo points on the screen. As for the later half of approach 4 
this approach is also out of the scope of this thesis. 

4.2.9.6 The Choice of calibration approach 
Approach 1 is chosen to be used, but also the simple combined camera-
monitor calibration in approach 4 is used. 

4.2.10 Summery on data acquisition 
Through analysis we have chosen one of many ways to acquire the data 
needed in the system. 
First optical data is recorded by at least two web-cameras. Colored objects 
are tracked in these images using an adjusted CAMSHIFT algorithm giving 
2D positions. The 2D positions are reconstructed into 3D positions using 
camera data. The camera data is obtained prior to the operation in a camera 
calibration, which uses the monitor as a base calibration object. 

Eye Tracking – A simple start 
Here we have chosen eye tracking done by head mounted trackers. This 
doesn’t limit later use of other methods, because it could be a good first 
guess to use in initial development of other methods like direct eye tracking. 
Tracking eyes are not a new problem and has been subject of interest not 
only in VR but also in gaze tracking for user interface analysis and 
interface alternative for disabled people. Real-time eye tracking is not an 
easy task though.  
 



Chapter 4 Analysis 

 58

4.3 Visualization & 3D Interaction 
In this section we will look into the visualization and 3D interaction within 
the system. The system is a prototype to prove a concept and therefore does 
not have a specific application oriented visualization purpose, but rather a 
demonstrational purpose. 

Specifying  
We will first look into the necessary abilities to produce the view 
dependent stereo rendering. Furthermore we will look into the 
visualizations that to some extend will be able to demonstrate what the use 
of the system in a final application could be like. 
It is the power of viewer alignment and the 3D interaction which are the 
essential aspects. The 3D interaction enables editing methods not possible 
with e.g. the mouse. 
The visualization of editable scene objects should also demonstrate and 
validate the functionality of the system. Among others the scene object 
types “Line Stroke” and “Texture Volume” are introduced to do this. 

4.3.1 Viewer Alignment 
Viewer alignment or view dependent rendering basically means to render 
the picture of the virtual scene, so that it forms the same image on the eyes 
retina as if the object were real. It is simply done by placing the virtual eye-
point aligned with the viewer’s real eye position and render the scene by 
projecting it on to a virtual plane placed at the same position as the screen 
or monitor in the real world (see Figure 29).  
 

 
Figure 29: Top-view of viewer aligned projection. The projection of the 
virtual scene onto the virtual screen using a viewer aligned virtual eye 
position produces an image that seen from the viewer is identical to 
what would have been seen if the scene was real. 

 
It should be noted that this is not the same result as if the projection had 
been to a plane perpendicular to the view-direction ( e.g. if a virtual camera 
had been rotated to the viewers of-axis position ) as seen in Figure 30, 
which in comparison would cause the virtual objects to change shape, size 
and place. 



Chapter 4 Analysis 

 59

 

 
Figure 30: Top-view of traditional camera projection. A projection 
onto a plane perpendicular to the view direction is shown, and the 
projected image rotated to the plane of the screen. Note that it is not the 
same result as if projection directly to the plane of the screen. It is seen 
that objects changes in size and placement.  

 

Frustum Volume 

Near

Far

y

x

z

Right
Top

Left
Bottom

 
Figure 31: Frustum Volume 

 
Most modern graphic cards use a frustum volume to determine what part of 
a scene is visible and should be rendered. Usually it is defined by a near 
and a far clipping plane and a x-y-axis aligned rectangle on the near 
clipping plane. The volume is the projective extrusion of the rectangle from 
the near plane to the far plane. 
If using near and far clipping planes parallel to the virtual screen plane, the 
frustum is ideal for setting up viewer aligned projection. See appendix 10.1 
for a formal definition of the associated projection matrix [2]. 



Chapter 4 Analysis 

 60

Setting up Viewer Alignment 
If given the eye position in the virtual screen coordinate system, the setup 
can be done in a few simple steps: 
 

1. Scale the rectangle of the virtual screen to the near clipping plane 
using the eye position as scaling center. 

2. Transform to the coordinate system of the virtual screen. 
3. Translate to the eye position 
4. Render the scene. 

 
A

B

C

E

D

F

X

Z

 
Figure 32: Top-view of viewer aligned frustum. The far cliping-plane, 
A, the virtual screen, B, which when scaled (with the virtual eye-point, 
F, as center) to the near clipping-plane, C, defines the corners, D and E.  

 

Window in Screen 
It should be noted, that if the rendered image is to be shown in a window 
on the screen, the corresponding positions of the window corners in the 
virtual world should be used instead of the screens corners. Consequently it 
is necessary to be able to tell were on the screen the window is placed. 

Stereo 
For stereo rendering or multi-viewer rendering the procedure is repeated for 
each eye. 

Depth impression break down 
Each image of stereo rendering obviously has different frustum volumes. 
For objects behind the image plane there will be a natural occlusion when 
leaving the volume. The object is visible for one eye a little longer than for 
the other as if looking through a window (see Figure 33). 
Unfortunately when an object in front of the image plane leaves the frustum 
volume it also disappears which has no equivalent in the real world. 
Because the object is still visible for one eye longer than the other it also 



Chapter 4 Analysis 

 61

seems like an occlusion behind the frame of the image plane (e.g. the 
monitor frame). This causes contradictions in the depth cues and as 
mentioned in section 1.3 occlusion is a very strong depth cue that overrules 
the stereo effect and moving parallax and therefore the depth impression 
breaks down and the objects is thought to be behind the image plane (The 
same effect is seen if you move your hand in front of a still stereo image 
behind the virtual object). This effect can not be avoided completely, but 
can be reduced, by removing the object earlier. 
 

Screen

Viewer

Object wrongly appears occluded
by screen edge..

Natural occlusion
by screen edge.

 
Figure 33: The frustum volumes of the stereo view causes natural 
occlusion behind the image plane, but also fatal unnatural occlusion in 
front of the image plane. 

Inner Frustum 
An inner frustum is produced by adding clipping planes, so that the frustum 
volumes in front of the image plane become identical in both views. Now 
objects disappear before hitting the frame of the image plane, one eye 
might even see the inside of the object as it is clipped. 

 
Screen

Viewer

Inner Frustum

 
Figure 34: The inner frustum of the stereo view. 

 
Using the inner frustum is not perfect but better than not to. To improve 
further one could make the frustum volume even smaller (e.g. converging 
to two thirds of the distance to the viewer), so it is clear that the objects 



Chapter 4 Analysis 

 62

disappear rather than getting occluded, although this also seems strange 
compared to the real world. 

4.3.2 Hierarchical Structure of Monitor, Camera and Eye 
It is clear that viewer alignment requires that the eye position is known. It 
is also clear that it is the position relative to the monitor that is important. 
The absolute position of the system is irrelevant, although the individual 
absolute positions can be used to derive the relative position. 

Move-ability 
When working with 3D-data it is important to be able to move relative to 
the virtual world. To do this we have to find a way to move the eye, 
monitor and tool positions at the same time, so the relation between them is 
preserved. This is easily done by making a hierarchical system. 
 

Viewer

Object World

Screen

Cameras

Viewer

Eye

Cameras

ScreenObject World
Eye

 
Figure 35:  Hierarchical system of real world’s positions in virtual 
setup. With the screen as base it is free to be moved around without 
other relative positions deeper within the tree change. 

Screen as base object 
Although the cameras are the base for all our position observations in the 
real world it is simpler to let it be a child to the screen in the virtual world. 
In that it is presumed, that the screen or monitor in the real world is 
stationary, and their positions does not have to be updated after calibration. 
Having this setup with the virtual screen as base in the virtual world the 
screen can be moved freely around with all its object children preserving 
their relative positions. 

The Eye Position 
The eye position is to be determined. As mentioned in previous sections the 
eye might not be tracked directly. It could be the users’ head that is tracked, 
and the eye positions are calculated by adding its position relative to the 



Chapter 4 Analysis 

 63

head. To freely setup any relative eye positions an individual viewer object 
is needed. If the eyes are tracked directly the viewer object can be left out. 

The Cameras 
Finally the camera’s coordinate system in the real worlds relative to the 
monitor has to be determined. This can be done in several ways e.g. 
measuring by hand or as a part of the camera calibration. The relative 
position and orientation between the cameras and the monitor can be 
incorporated in the camera projection matrixes (see equation (6)), so that 
the positions found would be described directly in the screens coordinate 
system, so the camera object in the hierarchical tree can be left out. 

 

4.3.3 Drawing and Point-Transformation in a Hierarchical 
Scene 

Push-pop 
Drawing objects in a hierarchical system is easy on modern graphic cards, 
because of the push-pop matrix system. A child object is simply drawn by 
first applying its own transformation to the transformation to the 
transformation matrix produced by its parent. After drawing, the changes 
can be removed by popping the changed matrix. 
Transformation of points between objects coordinate system does not come 
automatically. The problem is that the object does not know where in the 
tree it is placed relative to another. 

Arbitrary Transformations 
It is necessary to transform a point from one coordinate system to another 
in the hierarchical tree that can be changed at any time. A simple way to do 
this is making a recursive function that be called on any object in the tree. 
The function calls its parent object until the root of the tree is reached. 
Transforming from one object to another can then be done by transforming 
to the root coordinate system and then back into the wished objects 
coordinate system. Although some unnecessary calculations will be made 
converting between objects in the same branch of the tree, the function is 
general and works in all cases. To transform to the root the transformation 
should be applied before calling the parent object. To transform back to the 
object the transformation should be called after the call to the parent object.  

4.3.4 Stereo 
To fulfill the requirement of stereo the simple anaglyph method is chosen 
(outlined in section 3.1.9 ). 
Many alternatives stereo devices have been developed through time. Here 
we will mention a few real-time alternative, and compare their advantages 
and disadvantages. 



Chapter 4 Analysis 

 64

 
Method 
name: Technique: Main advantage: Main disadvantage: 

Anaglyph 
stereo 

color filters, color 
encoding easy, cheap 

no color, 1/3 light 
intensity, or crosstalk 
in the common collor 

Color Code color filters, advanced 
color encoding 

easy, cheap for user, 
full color 

patented, minor 
crosstalk 

Shutter 
glasses 

liquid crystal shuts 
each eye subsequently. 

Monitor frequency 
locked, show 

alternating left and 
right image 

full color, relatively 
cheap 

halves the refresh rate 
of monitor, require 
special hardware, 
minor crosstalk 

Polarization 
glasses 

polarize light from left 
and right image 

differently, polarized 
glasses 

full color Special screen, minor 
crosstalk 

Auto 
stereoscopic 

display 

lenticular, barrier, 
directional interleaved 

color filter 

glasses free, full 
color * very expensive 

Table 3: Different stereo producing techniques and their main 
advantages and disadvantages. * 2004. 

 
As seen in Table 3 the anaglyph method is one of the easiest and most 
affordable, but is restricted to monochromatic stereo imaging and only a 
third of the intensity of a non stereo image is achieved (because only one of 
three color channels passes through the filters). It is chosen because of ease 
and prize, but any other method could in principle have been chosen. The 
system of this thesis should work with any stereo method where the user is 
free to move the head (some methods though require fixed head position 
and can not be used). 

4.3.5 Line Stroke 
A line stroke is described by a row of 3D-points. Between each point a line 
is drawn. 
 
To improve this, a mesh forming a tube can be drawn instead to add 
thickness to the line. By storing the lines as a midpoint, orientation and a 
length, the stroke can be drawn using simple transformation and scaling of 
a predefined tube that can be stored in a display-list. 
To make the connection at the joints look nice (i.e. no overlapping parts), it 
is possible to store two vectors describing a plane at each point in which the 
points of the tube cross-section should be drawn. A custom build cross-
section can be defined before drawing and its coordinates only have to be 
transformed by multiplying its 2D coordinates with the vectors defining the 
plane. The two vectors orientation at the point can be determined using the 
second derivative of the line at the point, which always is a normal to the 
line pointing towards the line’s center of rotation at the point. For a straight 
line it is zero and a specific value has to be chosen (e.g. the same as the 
first point on the straight part).  



Chapter 4 Analysis 

 65

 

 
Figure 36: Simple and thick line. 

 
 

4.3.6 Texture volume 
 
Using a texture volume method as outlined in section 3.1.10, a volume 
representation can be achieved. Due to the bi-linear filtering of texture 
lookups implemented on most hardware, the edges of a texture volume are 
round and smooth. It is able to visualize transparent materials, and although 
no shading is applied, will the low values near the edge of a visible volume 
sum up to be dark, giving the volume a fuzzy sort of shaded look. 

Keep it Simple 
There has been much development in texture-volume techniques enabling 
very advanced visualizations in real-time. In this project we only need a 
simple method to demonstrate the concept. Therefore a simple visualization 
that is relatively easy to implement is chosen. 
Although simple, it is possible to visualize the inverted volume or a semi-
iso-surface (as seen in Figure 37), by changing the drawing mode for alpha 
threshold and blending (e.g. using the functions; glAphaFunc() and 
glBlendFunc() in OpenGL). 



Chapter 4 Analysis 

 66

 

(a)  (b)  
 

(c)  
Figure 37: Three texture volume visualizations using three different 
drawing modes. In (a) alpha-blending and alpha-testing is used. In (b) 
there is no blending, and alpha-testing is inverted to accept values 
below the alpha threshold. In (c) a combination of (a) and (b) is seen, 
where alpha blending is used with the inverted alpha-test, so only a 
shell or semi iso-surface is seen. 

 
Texture volumes are well suited to be edited using the enabled 3D 
interaction, because of its data format. Voxels near the curser can easily be 
accessed and changed. 
The properties of the editing task can be thought of much like painting in 
2D but now expanded to 3D. A voxel representation is the equivalent to 
pixel representation in 2D images. Most 2D image editing operations can 
be expanded to 3D, providing vast amount of possibly manipulation tools. 
Furthermore, a range of specific methods for editing voxels exists. 
 
 
  



Chapter 5 Implementation 

 67

Chapter 5 Implementation 

In this chapter the basics of an implementation of the system will be 
outlined starting with the external libraries, mentioning threads, dataflow 
and structure and finally looking at the hardware. 

5.1 External Libraries 
The implementation is written in the programming languish C++ using 
Visual Studio v.6.0 and is build upon following libraries and classes: 
 

• MFC: Microsoft Foundation Classes 
• Vision SDK: Microsoft Vision Software Development Kit 
• OpenGL: Open Graphics Library by Silicon Graphics 
• LinAlg: Linear algebra interface to LAPACK by Henrik Aanæs 

 
Their main functions are to provide user interface, handling of image 
capturing, hardware accelerated 3D visualization and fast linear algebra 
computation. 

5.1.1 MFC 
MFC provides a programming frame work with standard interface 
functionalities such as: Menus, toolbars, dialogs and serialization. 
Furthermore it provides a tactic for separation of data classes and user 
interface classes, which makes the program more flexible. 

Strategy 
Using MFC it is typical to structure you program into a document 
containing data and views (including dialogs) to present data to the user 
and interact with the user. This strategy was followed in the 
implementation.  

Not portable 
MFC is not portable to non-windows platforms. 

5.1.2 Vision SDK 
The Vision SDK provides the functions to get contact to the image 
recording capable resources on the computer which in this case is the web 
cameras. Furthermore it provides the image formats used by the tracking 
algorithms in the implementation. 



Chapter 5 Implementation 

 68

Camera Handler 
In the implementation one class (CCameraHandler) is made to take care of 
all function calls of vision SDK regarding the connection to web-cameras. 

Threads 
When an image-grabbing process is initialized a separate thread is started 
by the Vision SDK library to perform the image grabbing continuously 
independent of the status of the rest of the program. This way there is 
always access to the newest image provided by the image source delay. 

Alternative 
As alternative for instance DirectX could be used in image grabbing as well 
as for the hardware accelerated 3D visualization. Probably it would make a 
better interface for the image grabbing, because it is better at handling and 
initializing more cameras at once. Using Vision SDK each camera after the 
first has to be selected manually making automatic initializing at program 
startup very difficult. 

5.1.3 OpenGL 
OpenGL is a well tested graphics library used in a vide range of 3D 
visualization programs. Most OpenGL calls that draws graphics are 
restricted to the classes “CScene”, “CSceneObjects”, and a class called 
“PersGF” only containing static functions for drawing 3D objects using 
OpenGL. The view-classes use OpenGL calls mainly to setup the content 
device and frustum of the view. 

5.1.4 LinAlg 
The LinAlg packet, written by Henrik Aanæs [25], supports vectors and 
matrices of all standard types via templates. It has special implementation 
of vectors of low dimensions (two and three), with better performance than 
using the general functions. It does not contain an exhaustive list of matrix 
and vector operations, but produce an interface to the fast LAPACK 
(Linear Algebra PACKage) by linking to the precompiled library 
“clapack.lib”. 
Most important is the function “SVD” (Singular value decomposition), 
which is used to decompose the matrix in linear least squares adjustment 
described in section 3.1.6. 



Chapter 5 Implementation 

 69

5.2 Threads and Dataflow 
The implementation is multithreaded as mentioned in section 5.1.2. The 
main thread takes care of object-tracking, interaction (and simulation), and 
visualization. The secondary threads are run by vision SDK and take care 
of grabbing images from the webcams (see Figure 38). 

 
 

Primary Thread: Secondary Threads:

Visualization Object Tracking

Simulation

3D Pos

3D Object

Image Grabbing

Image

 
Figure 38: Outlining of threads in the implementation. 

 
The rate of which the objects are tracked compared to the visualization can 
be varied but is set to every second frame as default. 
No predictor, but a very simple smoothing algorithm is implemented in the 
simulation step (averaging the old position with the last tracked, evenly 
weighted). An advanced predictor (e.g. kallman filter) could be 
implemented to take its place without any further adjustments.  

Alternative 
An alternative threading strategy is to include the total 3D tracking in 
secondary threads, so that the simulation and the visualization could run 
smoothly independent of the rate of 3D-tracking. 
 



Chapter 5 Implementation 

 70

Visualization 3D Tracking

Simulation

3D Pos

3D Object

Primary Thread: Secondary Threads:

 
Figure 39: Alternative threading. 

Dataflow 
The entire dataflow of the implementation is outlined in Figure 40. 
 

2D tracking

3D Reconstruction

2D position2D position

Camera Handler

ImageImage

3D key-Data3D key-Data

Camera ImageImage

Stored Calibration DLTDLT

Simulation & Interaction

Visualisation

3D Scene

Updated 3D SceneUpdated 3D Scene

Screen image

Pointing Device
&

Viewer

LightLight

Data Acquisition

 
Figure 40: Dataflow. 

 
Each segments functionality is in most cases spread over several classes, 
which will be outlined in following section. 



Chapter 5 Implementation 

 71

5.3 Program structure – Classes 
5.3.1 Overview 

This overview is a listing of the classes categorized by purpose. 

The Framework 
The main classes of the implementation classes (inherit from MFC) are: 
CMainFrame, CSimple3DApp and CSimple3DDoc and the view classes 
COpenGLView and CAnaglyphView. 

Image Aquisition 
For image acquisition we have the essential classes CCameraHandler, 
CameraData and CCameraOrientation. 

Tracking 
The class CTracker is the main class of the object tracking providing 
functionality, whereas classes like CColor, CTraked2DSet, 
CTracked3DData and CMonitorCalibration contains the needed data. 

3D Scene 
The class CSceneObject is the root of all scene classes. The 3D Scene is 
build upon the classes CScene and CGLObject (see Figure 42). 
Additionally the classes CBall, CGLCheckerboard, CLineobject, 
CTestOriObject, CTextureObject, CViewTransformerObject  and 
CVolumeTexture specifies the individuel object types. 
 
Furthermore the class PersGF provide a few static drawing functions and 
the class CGLColor contains color suited for openGL format. 

Orientation and Transformation 
The class COrientation contains data of a spatial objects orientation, mass, 
speed and scale. Furthermore it provides functionality of 3D-point 
transformations and transformation matrix generation. 

Dialogs 
The modal and modeless dialogs based on the MFC dialog of the system 
are based on the MFC dialog implemented in the dialog classes CAboutDlg, 
CCameraModelessDialog, CModelessTreeDialog and 
CTrackObjPropDialog. 
 

5.3.2 Inheritance 
 
In the implementation, code is reused and through inheritance. The trees of 
inheritance are seen in Figure 41, Figure 42, Figure 43 and Figure 44. 
 



Chapter 5 Implementation 

 72

MFC: CView

COpenGLView

CAnaglyphView
 

Figure 41: The view classes all inherit from the MFC class CView. 
  
 

MFC: CObject

CSceneObject

CSceneObject

CGLObject

CViewTransformerObject

CBall CLineObject CTestOriObject CTextureObject CVolumeTextureCGLCheckBoard  
Figure 42: All Scene objects inherit from CSceneObject and 
CGLObject, which provide the hierarchical structure for drawing and 
transformation. 

 
MFC: CObject

COrientation

CCameraOrientation

CCameraData CColor CGLColor CTrack2DSetCTrack3DData

 
Figure 43: Objects that are stored or serialized at some point inherits 
from the MFC Class: CObject. 

 
MFC: CDialog

CTrackObjPropDialog CCAboutDlg CModelessTreeDialogCCameraModelessDialog  
Figure 44: All Dialogs inherit from the MFC class CDialog. 

 
The class CObject is base for many classes because of the serialization 
methods of MFC. 
 



Chapter 5 Implementation 

 73

5.4 Hardware 
The software developed is meant to be general. However it is out of the 
scope of this thesis to test it on a range of hardware. Therefore it has so far 
only been run on a few PC’s with one kind of web camera. 
 

5.4.1 System 
The implementation was done using: 
 

• PC: a Pentium III, 700 MHz 
• Graphics hardware: G-Force 4 
• Web cameras: Philips ToUCam Pro (PCVC740K) with a CCD 

sensor, capable of 60 fps at 320x240. Maximum video resolution: 
640x480 (30fps) 

• Connection: USB 1.0 
 
The web cameras used are unusual fast though cheap capable of 60 fps 
compared to the normal 20-30 fps. Unfortunately only up to 30 fps are 
performed by Vision SDK, which implies a benefit of changing to another 
image grabber interface (e.g. DirectX as mentioned in section 5.1.2). The 
speed of a single USB 1 controller in the present system is not sufficient to 
transfer images from two cameras at full frame rate unless the resolution is 
reduced to 160x120. Systems with more than one USB controller (which 
are standard), can run with at least two cameras at higher resolution (e.g. 
640x480). 

5.4.2 Tracking-Objects 
As tracking objects colored spheres are used as seen in Figure 45. They are 
made by painting cotton spheres with a felt-tip pen and finally put on 
wooden sticks. The production took 5 minutes and is very low in price. 
Only the most saturated colors are used. 
 
Sphere Diameter: 15mm 
Stick length: 240mm 
 

 
Figure 45: Hand made tracking-objects. 

 



Chapter 5 Implementation 

 74

5.4.3 Camera Setup 
The cameras have been setup similar to the proposed setup in section 4.2.8. 
One camera was placed to the left of the monitor and one straight above the 
monitor in a distance of approximately one meter creating a measuring 
volume in front of the screen at approximately 50cm x 50cm x 50cm 
stopping few centimeters from the screen. 
 

5.5 State of Implementation  
The implementation in the scope of this thesis is not meant as a ready-for-
use library, but rather a state of research program for demonstrational use, 
with many remaining performance and structural improvements to be done. 
However, the possibility of a transformation into useful libraries in the 
future was not ignored during implementation. 
 
Performance and quality of the system depends on both the software and 
the hardware parts of the implementation. This has to be considered when 
evaluating, which we will look into in the following chapter.



Chapter 6 Results 

 75

Chapter 6 Results 

The proposed concept has been implemented. Simple tests have been made 
to give a hint of the speed and the precision of the system. To get a precise 
knowledge of the speed and precision of the algorithms and system more 
thorough tests have to be made. In this chapter the results are presented. 
The results and the system will be discussed in the following chapter. 
 

6.1.1 Image Grabbing 
The speed test was done by registering the rates of the main loop of the 
system, while enabling and disabling different processes. 
 
The image grabbing part of the program use vision SDK and runs in 
separate threads for each camera. The loop rate was measured for the 
system with most processes disabled (e.g. visualization). Starting the 
camera threads causes the loop rate of the main process to drop, which 
indicates the workload of the image grabbing threads. 
 
The loop rate drops 27% from 2090 Hz to 1540 Hz on the 700 MHz 
processor for two live 160x120 pixel images. The first thread grabs 30 fps 
the second a little lower; 26 fps. Taking the workload into account, the total 
processor time to grab an image is about 4.7 ms. 

6.1.2 Color Tracking, 3D-Reconstruction and Calibration 

Color Tracking 
The quality and the speed of the color tracker are dependent on many 
factors and should therefore be treated special. The tracker can track a color, 
by setting up the hue, the width and the threshold. These values depend on 
lighting conditions, the background colors and the color of the object to be 
tracked. In bad conditions it is not possible to track the color. The cameras 
used in the setup can automatically adjust for the shift in lighting from 
indoor to outdoor, including adjusting the shutter speed. However indoor 
lighting tends to flicker at 50 or 60 Hz. This is clearly seen on images taken 
at high shutter speeds causing higher requirements to the saturation contrast 
between the tracked object and the background. 
 



Chapter 6 Results 

 76

 
Figure 46: Color tracking of three spheres in close up. 

 

Number of Colors 
Through empirical tests it seems that three colors can be reliably separated 
and tracked simultaneously. By adding more colors the colors are easily 
mixed up or hard to separate from background colors. In perfect light 
conditions or at higher resolutions the number is expected to be higher. 

Tracking Speed 
Color tracking processor time (ms) 

3 objects in two images found 12-14 
3 objects in two images not found 25-27 

Table 4: Processor time for implemented color tracking on a 700 MHz 
Pentium III. Image size is 160x120. Object size in picture < 8x8 pixel. 

 
The total processing time for tracking 3 objects in two images is 12 - 14 ms. 
This was measured when all three objects were found and did not move fast. 
When the objects are not found or have to be found again due to e.g. 
occlusion the whole image is scanned at first and the processing time 
increase to about the double; 25-27 ms. For larger image size the factor will 
be larger, due to the larger factor between the start search window and the 
whole window.  

3D reconstruction 
The timing for the reconstruction is quite small because only few points 
have to be reconstructed per frame, and only when sufficient 2D positions 
are found. Reconstruction of the three points takes 0.3-0.5 ms. 
The quality of the reconstructed 3D-points depends on precision in the 2D 
color tracking and the camera calibration, which also depends on the 
tracking precision (because the color tracking is used in the calibration). In 
the reconstruction the remaining error can be calculated. The error E  is 
defined by: 
 

 

2
n

n
e

E
n

=
∑

 

 
, where n  is the total number of 2D position coordinates for all images 
used and e  is the error in the coordinate between the pixel found by the 2D 
color tracker and the pixel found by projecting the estimated 3D-point. 



Chapter 6 Results 

 77

Precision hint 
One test on one calibration in two live 160x120 images has been performed, 
to give a hint about the precision. The remaining error associated with a 
reconstructed 3D-point was typically 0.0-3.0 pixels when the real points 
were found.  Occasionally the error exceeded 20.0 pixels, which implies 
that two different objects were tracked as the same object in the two images. 

Calibration 
When calibrating, an error similar to that in 3D reconstruction can be 
calculated, to estimate the precision of the calibration. Unfortunately this 
has not been implemented, but the above error hint also gives a hint of the 
calibration error, because of the dependencies. 

3D precision  
No precise values of the systems 3D precision can be given due to lack of 
tests. However, a rough estimate of the current setup is a relative precision 
better than 1.5 cm and a 3D resolution around 0.5 cm 
 

6.1.3 Visualization and interaction timing 

Scene 
The frame rate of the system is important for interaction with the virtual 
world. The timing for non stereo visualization depends heavily on what is 
drawn in the scene. The scene tested was rather simple, visualizing the 
cursor, a checkerboard, few registration points shown as spheres and a 
texture volume with a resolution of 64x64x64. The volume reach the fill 
rate limit of the graphics hardware, which is seen as a variation in frame 
rate depending on the screen area occupied by the volume (being inside it 
causing the lowest frame rates). 

Interaction 
Interaction involves calculations (e.g. transformation), that has not been 
optimized for speed. This causes the frame rates to drop when rotating, 
moving or editing an object. Editing large numbers of voxels in the texture 
volume simultaneously also has a high computational cost. 

Stereo 
Stereo is implemented, using the anaglyph technique. Due to multiple 
whole screen renderings (while blending), the stereo mode is much slower 
on this system than without stereo. 



Chapter 6 Results 

 78

 
Processor time for the individual processes is seen in Table 5. 
 
Visualization or action type: Processor time (ms): 

Non stereo visualization 11-22 
Stereo visualization 30-35 

Moving object 4-5 
Rotating object 4.5-5.5 
Editing object 5-15 

Table 5: Processor time for visualization and interaction with a 3D 
scene. 

 
These timings plus the rest of the system adds up and gives the frame rates 
measured on the fly as seen in Table 6. 
 
Operation: Frame rate (fps): 

Passive stereo 25-32 
Passive 40-100 

Passive head tracking with stereo 12-15 
Passive head tracking 32-37 

Orientation tracking (object rotation) 26-29 
Tracked interaction (volume editing) 29-31 

Volume editing with large curser 
(radius = 15 voxels) 10-20 

Table 6: Run time frame rates during different operations of the 
implementation. 

 
Viewer alignment and interaction will be discussed in the following chapter. 
 
 
 
 



Chapter 7 Discussion 

 79

Chapter 7 Discussion 

In this chapter we will discuss the results of the thesis in relation to the 
concept setup in the hypothesis. Furthermore we will discuss what could be 
done in future work, and which alternatives could improve single parts or 
the concept as a whole.  

7.1 The Individual Parts 
7.1.1 Data Acquisition 

Image Grabbing 
The image grabbing is functioning as planned fulfilling its purpose, 
although the resolution is low (160x120). This is not the first limiting factor 
of the project in the used setup, but with faster processing hardware or 
speed optimizations on other parts of the system it could be a limiting 
factor. 
To get image resolution and speed up several factors have to be considered.  
First of all the transfer rate have to be higher. That means that more than 
one USB bus, or a faster transfer method, has to be used. Higher speed first 
of all requires cameras capable of higher frame rates than normal web-
cameras. The web-cameras used in the system are capable of higher frame 
rates (60 fps), but attempts to grab more then 30 fps using Vision SDK has 
failed, even for a single camera. Hence, higher image speed requires 
another grabbing interface. E.g. a DirectX grabber implementations has 
shown to run 60 fps with one of the system cameras, and seems to be an 
obvious alternative for future improvements of the system. 

Color Tracking 
To prove the concept a fast and simple tracking algorithm was needed. The 
color tracker chosen has proved to fulfill these requirements. It is able to 
track 3 colors in 2 images at real-time frame rates providing sufficient 
precision to test the concept, but with too high latency to generate seamless 
viewer alignment. Its speed could be improved by optimizing the per-pixel 
RGB to probability conversion e.g. by using lookup tables in one or more 
steps. 
Although suited for testing the current color tracker seems much too 
unstable to use in an every day tool. The high dependency of lighting and 
background colors makes it hard to setup and can cause it to loose track of 
the objects during operation. 
The color tracker in combination with calibration also seems to be the main 
error source in the 3D point registration. 



Chapter 7 Discussion 

 80

Improving color tracking 
A way of improving the robustness of the color tracker that would not 
involve large changes to the basic idea is to introduce a variable threshold. 
By analyzing the rate of changes in the color probability within the search 
window a better threshold might be found. This way the algorithm might be 
less sensitive to light conditions, where the contrast between the 
background and tracked object is very small. It has to be considered how to 
determine the size of the window since the sum of accepted pixels will vary. 
 
As mentioned in the analysis in Chapter 4 an important step to improve the 
color tracker would be, to be able to separate different tracking candidates 
and identify the most likely by other means than color (e.g. shape or 
placement relative to other objects). To separate the candidates a first step 
could be to use connected component analysis directly on the image or on a 
down sampled version. The down sampling would remove noise, but also 
blend the color of an object with the background color at the edges. The 
blending has a crucial effect if the tracked object is very small (few pixels 
in image) and should be considered in a choice of implementation. 

Alternative to color tracking 
To track an object can be done other ways than color tracking. As an 
alternative feature tracking can be implemented searching for a given 2D or 
3D shape. 2D shapes could be circles (suited for the spheres), ellipses, 
squares or other simple shapes that can be recognized fast and stable. A 
simple box could be the 3D shape recognition object, making determination 
of the orientation of the object possible [30]. A combination with the color 
tracker could possibly add speed or stability if e.g. a cube were used with 
different colors on each side a start guess of the cubes orientation could be 
determined by color tracking. A more precise orientation could be found 
using other algorithms. 

Only one camera 
The full orientation of a known 3D object can be found from a single 2D 
image [30]. By incorporating this into the system in future work would 
mean that only one camera is needed. If this combination could work at 
sufficient speed the costs and complexity of the system and its setup would 
be improved significantly. 

3D-Reconstruction 
As mentioned above there are alternatives to find the orientation using 
multi image 3D reconstruction. However in this implementation the 3D 
reconstruction we used is well suited, because it is very fast and estimates 
3D positions using 2D positions from multiple images (which is what we 
have). If very precise 2D positions were available the 3D-reconstruction 
would also be more precise. 
If the color tracker had sub-pixel precision the 2D position could be made 
more precise by including camera parameters like lens distortions in the 
model. This would furthermore require a more thorough camera calibration. 



Chapter 7 Discussion 

 81

 

Camera Calibration 
The camera calibration proposed and used in the system includes 
calibration of the monitor. This is done by using the monitor as a base 
calibration object, which insures that the relation between the cameras and 
the monitor is determined precisely. Only a linear model has been 
implemented which means that the precision of the calibration is dependent 
on the users ability to place the tracked pointing device in right angels to 
the screen of the monitor. 
The calibration could be improved by implementing a nonlinear calibration 
model, which is independent of known coordinates. It could easily have a 
much higher number of calibration points providing higher precision by 
statistically canceling out errors in the 2D registration. Furthermore it 
would open up for the possibility of calibrating the cameras inner 
orientations (lens distortion parameters) as well. 

Viewer alignment calibration 
In the implementation, the viewer is tracked by tracking an object with a 
position known relative to the viewer’s eye-position. This “known” 
position is actually not known but have to be found through a viewer 
alignment calibration. 
No viewer alignment calibration is implemented. Instead the coordinates of 
the viewer’s eye-positions relative to the tracked viewer object have to be 
measured by hand. This has simplified the implementation of the system, 
but is not a very precise method. An alternative method using stereo points 
has been proposed, but is not implemented or tested. 

Eye tracking 
The viewer calibration could be avoided by tracking the eyes of the viewer 
directly. Eye tracking algorithms exist in literature and applications, but 
none has been implemented in this system. If such an algorithm was 
implemented it would most likely be dependent of the viewer-camera angle, 
which would give an extra restriction to the camera placement. The used 
method, where the viewer position is found, could be used as a first guess 
in an eye-tracking algorithm to limit its search area, number of candidates 
and processor time. It is most likely that an eye-tracking algorithm would 
take up more computer resources than the implemented viewer tracker, and 
therefore it would only be suited for systems with more computer power, 
than the test system used here. 

7.1.2 Visualization 

Stereo 
The real-time stereo rendering is important to perceive the depth when 
working with the 3D-data. It enables a higher level of coordination between 
the tool and the 3D-data in the viewer aligned setup than what can be 



Chapter 7 Discussion 

 82

obtained without stereo. Thus it is a significant loss using mono mode, 
though not crucial because all operations are still possible. 
Contrast, clarity and color resolution is still at a much higher level in mono 
mode and is crucial for other depth cues, so these factors should be 
considered as well as the speed, when choosing mono or stereo mode. 

Faster stereo 
Since the stereo rendering requires two images of the scene the frame rate 
is not expected to exceed half of the non-stereo frame rate. The speed of the 
stereo rendering can increased by several means. Naturally more computer 
power would speed up the rendering (e.g. faster graphics hardware), but 
also adjustments to the method can help. In the current implementation, the 
scene is rendered to the frame buffer and copied to a texture. A faster 
method would be to use an OpenGL extension enabling pixel-buffers, so 
that the scene can be rendered directly to the textures (or buffers). Also 
rendering the textures in a single pass using an extension enabling multi-
texture rendering, would speed up the stereo rendering. 
 

Viewer Alignment 
Viewer alignment is implemented in the system, but its precision has not 
been tested. A test suited could be done in stereo mode by letting a test 
person point out stereo points without seeing the cursor on the screen. This 
way the difference in the perceived 3D position and the virtual 3D position 
is estimated. 
 
Although no precision test has been carried out the viewer alignment can be 
subjectively estimated. The basic principle works. When the head is moved 
objects behind the screen moves and gets occluded by the frame of the 
screen like it would if it were real. The viewer can move around objects in 
front of the screen and inspect them from different views e.g. look through 
holes on the side or virtually stick the head inside the object and observe it 
from the inside. 
By holding a tracked 3D tool in front of the head the tool can be seen on 
the screen approximately behind the real world tool. A virtual extension of 
the tool has been made, so that one can see the tool cursor without 
occluding the view. 

7.1.3 Interaction 
Objects can be moved, orientated and edited with the 3D tool. Special 
objects have been implemented to demonstrate this. 

Modeling 
 A simple line object enables drawing making it possible to make coarse 
sketches in 3D. 
A texture volume can be edited with the tool, adding or removing material. 
Especially organic shapes seem to be unusually fast and easy to sketch in 
few minutes like the heads seen in Figure 47. 



Chapter 7 Discussion 

 83

 
 

(a)  

(b)  
 

(c)  
Figure 47: (a) Abstract organic cave-like shape and (b-c) sketches of a 
head and a mask, created in a few minutes during test of the 
implemented 3D tool on a texture volume with mirror.  



Chapter 7 Discussion 

 84

 

Medical inspection 
Volumetric medical data obtained through CT and MR scanning was 
inspected using the system. The data could be moved and rotated, and by 
moving the head inside the data, inner structures and details were revealed 
at close up. No preprocessing has been implemented. 
 

 
Figure 48: Close up on a MR-head-scan. The nose is seen from the 
outside in the bottom left corner.  The near clipping plane allows us to 
look under the scull revealing the curly brain of the forehead (top-
middle) and a cross section of the eye (top-right).  

 
 



Chapter 7 Discussion 

 85

 

7.2 Future work 
In this section we will present and discuss further improvements of the 
system that has yet not been implemented. Additionally improvements of 
more philosophical origin will be presented. 

Object Picking 
In common object based drawing programs it is standard to select an object 
by clicking on it with the mouse. No such selection method has been 
implemented, but it could easily be done in similar ways of the 2D mouse 
selection. 
The user places the pointing device in the scene, and pushes the select 
button, causing the scene to be drawn at a resolution of a single pixel in 
index mode using a small frustum surrounding the cursor. The index of the 
drawn object are read back from the graphics hardware, and selected. 
Similar many standard operations from 2D input drawing programs could 
be converted to be used in the 3D input system. 

Tool Stability Improvements 
Kalman filters are used in many applications also in object tracking to 
smooth or predict object’s position at a given time. Such a filter can predict 
positions based on the old position of tracked objects, giving a good 
prediction of where the object is, when the next frame is shown on the 
screen. It obviously works best at low accelerations, because of 
overshooting at high accelerations.  It also has the ability to smooth out 
jitter. 
The implementation of such a filter in the system would provide obvious 
benefits to the system compensating for low update rates and latency. 

Accessibility Improvements 
If the system should be of any use beside inspiration, a range of practical 
improvements have to be done addressing accessibility. 
As a standalone system it should be able to load and save files, in one or 
more standard formats (currently it is only possible to load and save texture 
volumes in a simple raw format). 
 
If the concept should be more general providing a 3D interface for a range 
of applications, it would need a driver. For a simple 3D input standard 
driver, formats like mouse and joystick drivers, might be sufficient. 
To provide functionality like viewer alignment or stereo, special software 
or plug-ins for the given application would most likely be necessary. 

Flexibility Improvements 
At its current state the implementation has a fixed configuration of the 
tracked viewer objects and the pointing device. Only calibration and colors 
tracked can be adjusted and saved. 



Chapter 7 Discussion 

 86

To make the system useful it would be necessary to make this setup 
completely customizable. 
 
The number of cameras can be chosen freely but in the current 
implementation only the positions found in the first two will be used in the 
3D reconstruction. The system can function without cameras, but some 
functionality (and the whole point of the concept) will be missing. 
It should be possible to custom choose the number of cameras. This 
extension of the implementation would be trivial due to the similarity to the 
current implementation. 

Interface Improvements 
To improve the 3D interactivity it could be considered to use virtual 3D 
buttons as interface on the screen. The buttons should be placed virtually 
outside the screen, so they were accessible with the pointing device. Menu 
systems like in 2D could be adapted. 
 

Tool Improvements 
Finally the interaction tools of the implementation could be improved in 
different ways. Custom shaped interaction shapes would be interesting. E.g. 
in the editing of the texture volume, shape of the cursor could be varied to 
form a box, a line, a plane, a scalpel or any desired form for a specific 
purpose. 



Chapter 8 Conclusion 

 87

Chapter 8 Conclusion 

The goal of the thesis has been reached. The work has involved a number 
of parts that have to function individually and in combination with each 
other. All of these parts have been put together in the implementation. 
 
The proposed concept is implemented on a system using two inexpensive 
off-the-shelf web-cameras and a low-end desktop computer (700MHz). The 
developed system shows the following abilities: 
 

• Runs real-time (more than 25 fps) non stereo. 
• Runs near real-time (more than 12 fps) in stereo. 
• Track two colored spheres as pointing device in 3D (5 DOF). 
• Track a viewer’s position indirectly (3 DOF). 
• Produce a viewer aligned 2D projection of the 3D-data on the 

screen enabling true moving parallax as if the objects were real. 
• Enables the user to interact with the 3D-data using a pointing device, 

with a precision estimated to 1.5 cm and resolution of 0.5 cm. E.g. 
moving, rotating or editing objects. Even drawing coarse sketches 
in 3D is possible. 

 
 
The main parts of the implementation are the data acquisition, visualization 
and interaction. 

Data Acquisition 
Data acquisition, in itself, is composed by several parts. First of all Image 
grabbing. Image grabbing functionality has been implemented capable of 
grabbing 25-30 fps from two web cameras simultaneously at 160x120 
pixels of resolution. 
Up to three colored spheres can be tracked, in each image with a common 
office environment as background, though it is not very robust to shifting 
lighting conditions. 
The obtained stereo 2D coordinate pairs can efficiently (in less than 0.5 ms) 
be reconstructed into 3D coordinates in the coordinate system of the 
monitor. The camera data used has been obtained via camera calibration. 
The camera calibration setup, proposed and applied in the system, relies on 
the 2D tracking and uses the monitor as a base object in calibration of the 
cameras. 

Visualization 
A visualization part has been implemented that handle and render a scene 
(virtual world). In stereo mode frame rates are low (12-15 fps). This is due 
to the lack of graphical processor power and lacking optimization on stereo 



Chapter 8 Conclusion 

 88

drawing methods. An optimization that solves this problem has been 
proposed. 
A method for viewer alignment has been implemented. Viewer alignment 
sets up the appropriate frustum for one eye (or two eyes in stereo mode). 
This way the scene is rendered so the image on the screen gives the correct 
projection of the virtual world onto the retina of the viewer’s eye (assuming 
the correct position of the viewer’s eye is given). 

Interactivity 
A 3D pointing device has been implemented, with which it is possible to 
rotate and move objects and interact with them in an intuitive way 
compared to the use of mouse in traditional 3D applications. 
Interactive objects have been implemented. E.g. a texture volume 
demonstrates how it is possible to model and draw freehand in 3D by 
adding or removing material. Especially organic shapes seem unusually fast 
and easy to create using this method. The method of 3D interaction could in 
principle be adapted to other 3D representations. 

Final conclusion 
Through the implementation it has been shown that it is possible to use the 
system as intended, proving the concept. Only the stereo visualization lacks 
in speed and clarity, which is temporary solvable problems. 
 
The concept is proven by fulfilling the setup conditions. Many 
improvements can be done on each single part, leaving much future work 
still to be done. The system could be improved and specialized in a lot of 
different ways, using different approaches. In future development 
particularly stability, accessibility and flexibility would be important issues. 
 



Chapter 9 Bibliography 

 89

Chapter 9 Bibliography 
[1] J. D. Foley, A. van Dam, A. K. Feiner, J. F. Hughes: ”Computer Graphics - Principles and 

Practice”, Addison-Wesley Publishing Company. 

[2] M. Woo, J. Neider, T. Davis, D. Shreiner: ”OpenGL - Programming Guide”, Addison-
Wesley. 

[3] D. A. Forsyth, J. Ponce: ”Computer Vision. A Modern Approach”, Prentice Hall. 

[4] B. Jähne, H. Haussecker: “Computer Vision and Application”, Academic Press. 

[5] Kay Stanney: “Handbook of Virtual Reality”, Ed., Lawrence Erlbaum associates, 2002. 

[6] Eric Foxlin: “Motion tracking requirements and Technologies”, chapter 8 in “Handbook of 
Virtual Reality”[5] 

[7] Gary R. Bradski: ”Computer Vision Face Tracking For Use in a Perceptual User Interface”, 
Microcomputer Research Lab, Santa Clare, CA, Intel Corporation. 

[8] J. M. Carstensen: “Image Analysis, Vision and Computer Graphics”, Technical University 
of Denmark, Lyngby 2001. 

[9] 4D-vision, www.4d-vision.de (per 2004-04-01) 

[10] Dimension Technolegies, www.dti3d.com (per 2004-04-01) 

[11] SeeReal GmbH, www.seereal.com (per 2004-04-01) 

[12] StereoGraphics, SynthaGram, www.stereographics.com (per 2004-04-01) 

[13] Sharp, www.sharpsystems.com/products/pc_notebooks/actius/rd/3d/# (per 2004-04-01) 

[14] Jin Liu, Siegmund Pastoor, Katharina Seifert, Jörn Hurtienne: “Three dimensional PC: 
toward novel forms of Human-Computer interaction”, Three Dimensional Video and 
Displays: Devices and Systems SPIE CR76, 5-8 Nov. 2000 Boston, MA USA. Three-
Dimensional Video and Display: Devices and Systems SPIE CR76 (2000).  

[15] ColorCode, www.colorcode3D.com 

[16] Allan Aasbjerg Nielsen: “Least Squares Adjustment”, Technical University of Denmark. 

[17] V. Lepetit, L Vacchetti, D. Thalmann, Pascal Fua: “Fully Automated and Stable 
Registration for Augmented Reality Applications” Swiss Federal Institute of Technolegy, 
Switzerland. 

[18] Vicon, www.vicon.com (per 2004-04-01) 

[19] UNC HiBall Tracker, www.worldviz.com (per 2004-04-01) 

[20] Teófilo Emídio de Campos: “Hand Tracking for Intention Recognition”, Robot Research 
Group Department of Engineering Science University of Oxford (2003). 

[21] N. A. Dodgson: “Autostereo Displays: 3D without glasses”, Computer Laboratory, 
University of Cambridge, UK. 

[22] Rodney Cotterill: “Enchanted Looms – Consciuos Networks in Brains and Computers”, 
Cambridge University Press. 

[23] C. Rezk.salama K. Engel et al. : “Interactive Volume Rendering on Standard PC Graphics 
Hardware Using Multi-Textures and Multi-Stage Rasterization” 

[24] Matthew J. P. Regan, G. S. P. Miller et al. : ”A Real-Time Low-Latency Hardware Light-
Field Renderer”, SIGGRAPH99, Interval Research Corporation (1999). 



Chapter 9 Bibliography 

 90

[25] Henrik Aanæs IMM/DTU, www.imm.dtu.dk/~haa/ (per 2004-04-01). 

[26] L. Naimark and E. Foxlin: “Circular Data Matrix Fiducial system and Robust Image 
Processing for Wearable Vision-Inertial Self Tracker”, Intersense Inc., ISMAR2002. 

[ 27] ReachIn, www.reachin.se (per 2004-04-01). 

[ 28] SeeReal GmbH, www.seereal.com (per 2004-04-01). 

[ 29] InterSense, www.isense.com (per 2004-04-01). 

[30] Vincent Lepetit, Luca Vacchetti, Daniel Thalmann, Pascal Fua: “Fully Automated and 
Stable Registration for Augmented Reality Applications”,  Swiss Federal Institute of 
Technology, Lausanne, Switzerland, http://cvlab.epfl.ch/research/augm/augmented.html 

 

 



Chapter 10 Appendix 

 91

Chapter 10 Appendix 

10.1 Transformation and projection 
The translation, rotation and perspective projection in homogeneous 
coordinates for a given point X into x are: 
 

1

X
Y
Z

 
 
 =
 
 
 

X  , 
x
y

ω
ω
ω

 
 =  
  

x  

, where 1
ω

 is the factor with which xω  and yω  should be scaled according 

to perspective. Could also be understood as the depth coordinate z  in the 
camera coordinate system. 

Perspective projection matrix 
 

1 0 0 0
0 1 0 0

10 0 0 1

X
x

Y
y

Z
c

ω
ω
ω

          =      −        

 ; = ⋅x P X  

 
, where c  is the camera constant (i.e. distance from camera center to image 
plane). 

Frustum 
The perspective projection matrix can also be defined using the so called 
frustum: 



Chapter 10 Appendix 

 92

Near

Far

y

x

z

Right
Top

Left
Bottom

 
 

2

2

Left, Right, Bottom, Top, Near, Far
2( )

0 0

0 0
( )

0 0
0 0 0 1

Rigth LeftNear
Right Left Right Left

Top BottomNear
Top Bottom Top Bottom

Far NearFar Near
Far Near Far Near

+
− −

+
− −

−− +
− −

 
 
 =  
 
  

P  

 
The scale, translation and rotation matrix in homogeneous coordinates for a 
given point X ’s transformation into tX are: 
 

Scale 
0 0 0

0 0 0
0 0 0
0 0 0 1 1

t x

t y

t x

X s X
Y s Y
Z s Z

ω
ω
ω
ω

     
     
     =
     
     
     

; = ⋅tX S X  

 

Translation: 

0

0

0

1 0 0
0 1 0
0 0 1
0 0 0 1 1

t

t

t

X X X
Y Y Y
Z Z Z

ω
ω
ω
ω

−     
     −     =
     −
     
     

; = ⋅tX T X  

 



Chapter 10 Appendix 

 93

Rotation around X 
1 0 0 0
0 ( ) sin( ) 0
0 sin( ) ( ) 0
0 0 0 1 1

t

t

t

X X
Y cos Y
Z cos Z

ω
ω
ω
ω

     
     Ω Ω     =
     − Ω Ω
     
     

; t Ω= ⋅X R X  

Rotation around Y 
( ) 0 sin( ) 0
0 1 0 0

sin( ) 0 ( ) 0
0 0 0 1 1

t

t

t

X cos X
Y Y
Z cos Z

ω
ω
ω
ω

Φ − Φ     
     
     =
     Φ Φ
     
     

 ; t Φ= ⋅X R X  

 

Rotation around Z 
( ) sin( ) 0 0

sin( ) ( ) 0 0
0 0 1 0
0 0 0 1 1

t

t

t

X cos K K X
Y K cos K Y
Z Z

ω
ω
ω
ω

     
     −     =
     
     
     

 ; t K= ⋅X R X  

 

Total rotation 

11 21 31

12 22 32

13 23 33

0
0
0

0 0 0 1 1

x r r r X
y r r r Y
z r r r Z

ω
ω
ω
ω

     
     
     =
     
     
     

 ; t = ⋅X R X  

 

Total perspective projection 
 

= ⋅ ⋅ ⋅x P R T X  
= ⋅ ⋅ ⋅ ⋅x P R T S X  

 
 
 
 



Chapter 10 Appendix 

 94

10.2 Map of choices  
 
 

Magnetic

Ultrasonic

Mechanical

Optical

Stereo Images Based

Method choice

Initial

Color Tracking

Weight from hue calculation

Feature Tracking

Motion Tracking

RGB color-space

HSV color-space

Single Image based

Background subtraction

Choice:

Alternative:

Histogram lookup

Y-Cr-Cb color-space

Other color-space

 
 




