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Abstract. We present an event alignment framework which en-
ables change detection in non-stationary signals. change detection.
Classical condition monitoring frameworks have been restrained to
laboratory settings with stationary operating conditions, which are
not resembling real world operation. In this paper we apply the
technique for non-stationary condition monitoring of large diesel
engines based on acoustical emission sensor signals. The perfor-
mance of the event alignment is analyzed in an unsupervised prob-
abilistic detection framework based on outlier detection with either
Principal Component Analysis or Gaussian Processes modeling.
We are especially interested in the true performance of the con-
dition monitoring performance with mixed aligned and unaligned
data, e.g. detection of fault condition of unaligned examples versus
false alarms of aligned normal condition data. Further, we expect
that the non-stationary model can be used for wear trending due
to longer and continuous monitoring across operating condition
changes.

INTRODUCTION

We pursue Condition Monitoring (CM) systems which are capable of detect-
ing faults in large diesel engines used for propulsion and power generation.
Such operation involves frequent changes in either load or speed. The cur-
rent problem is that those trivial changes result in false alarms that cannot
be separated from alarms originating from real faults.

MAN B&W Diesel has conducted experiments simulating realistic ma-
rine operation with multiple loads. Faults resembling scuffing was induced
by means of shutting the lubricating oil system off after the engine was started
Scuffing is a severe fault that with time evolves into damaging contact be-
tween cylinder piston and liner. In the acquired data set we have have identi-



Figure 1: System overview. The figure outlines the flow of information during the
experiments.

fied a stable functional dependency between signals from different operational
conditions. We propose a novel method that builds invariance into the Con-
dition Monitoring System (CMS) by inverting those functional changes prior
to outlier detection. The traditional approach of sampling of data in the
crank angular domain [1] is not enough to remove those changes. Further the
available Dynamic Time Warp algorithm [3, 9] was discarded since repeated
time frames produced fault-like signals.

We have previously cast unsupervised condition monitoring as an out-
lier detection problem with generative models [10]. The generative models
allows for localization of large deviations that indicates the origin of the
fault. With this setup we have successfully detected induced scuffing (piston
rubbing against the liner) and externally generated faults under stationary
conditions. However, we were not able to distinguish between alarms due to
faults or operational changes under non-stationary conditions. Also, other
recent monitoring applications [2, 5] have been limited to fixed operating
conditions.

MODELING

The following section presents the data setup and the describe the use of
Principal Component Analysis and Gaussian Processes for modeling in a
condition monitoring framework.

Data setup. Data was acquired on MAN B&W Diesel’s two-stroke test bed
engine, under controlled varying conditions. The acquired ultrasonic acous-
tic emission signals were preprocessed by short time root mean square and
converted from time domain into the crank angular domain using a crank



Figure 2: Data partitioning for Event alignment and Change detection. Different
sizes of partions are allowed. We use different sets of data to learn the warping
parameters (µ and σ2-signals), rejection threshold. Further we also learn the model
parameters from a set of data from the reference condition. Finally we use unused
examples for validation of the performance.

angle tachometer. Further the signals were downsampled to enable Gaussian
Process modeling. The properties of each RMS AE signal, x, is: d non-
negative elements sampled at specific angular positions at constant angular
sample rate regardless of engine operating conditions. Figure 1 show the sys-
tem overview explained in this section. We center data (denoted x̃) before
modeling by subtracting the mean obtained across a subset of Normal Con-
dition (NC) examples. Throughout the experiments we estimate parameters
in a step-wise manner using resampling. As shown in Figure 2 a specific
data subset used to learn a parameter is only used one time. Two modeling
schemes for the analysis of the performance of the event alignment are de-
ployed. The approach is a mixture of supervised and unsupervised learning.
Unsupervised modeling is used to model NC data by training a set of param-
eters θ in Principal Component Analysis (PCA) and Gaussian Process (GP)
models described below. The log-likelihood of the NC model is used as a
measure of how much an example belongs to a model, and the log-likelihood
density of NC and Faulty Condition (FC) examples in general separates. A
rejection threshold is obtained in a supervised manner by finding selecting
an optimal point on the Receiver Operator Characteristics Curve from a set
of labeled NC and FC examples.

Principal Component Analysis Model. From a set of N centered
normal examples x̃ (size d× 1) we build the training matrix XT by stacking
(size d×N). XT = [x̃1, x̃2, · · · , x̃N ]. From this training matrix we estimate
a principal component matrix PC (size N ×N), and a projection matrix U
(size d×N) through the Singular Value Decomposition (SVD) XT = UΛV >.
The number of principal components k is controlled by using the first k
columns of U and (k) rows of PC.

PC = ΛV >



Figure 3: Application of the event alignment. The normal condition signal is
displayed with negative sign. Normal and faulty condition 75% load data were
event aligned using the warp for normal condition 75% load data. Since the faulty
condition 75% load does not comply with this model, the aligned faulty condition
examples display deviation around 100-150 degrees.

When applying the PCA model to new examples we multiply with the first
k transposed columns of U from the left and obtain sk plus the noise ε, as
the remaining d − k components that span a Gaussian noise space [8, 10].

sk = U>
k x̃ (1)

x̃ = Uksk + ε (2)

It follows directly from the properties of the SVD and (2) that the principal
components of NC examples follow a multivariate zero mean Gaussian with
covariance Λk (using the first k columns and rows of Λ). Let θ denote all
estimated parameters [8, 10], then p(x|θ, k) = p(sk|θ)p(ε|θ) and the log-
likelihood is L = log p(sk|θ) + log p(ε|θ)

Gaussian Process Model. As an alternative to the PCA subspace model
we can perform modeling directly in the observed domain. Through Gaussian
Process (GP) modeling we obtain a measure of how much an example deviates
from the reference condition. From Gibbs and MacKay [7] we have (with
interchanged t and x relative to Gibbs MacKay notation)

Q(ti, tj) = θ2
2 exp

(
− (ti − tj)2

2θ2
1

)
+ θ2

3δ(ti, tj) (3)

p(x̃|Q, t) =
1
Z

exp
{
−1

2
x̃>Q−1x̃

}
, (4)



Figure 4: Examples and landmarks during injection period. The upper figure dis-
plays the mean signals and landmarks for the two conditions. The middle figure
display the landmarks. In the beginning they are almost equal and the warp condi-
tion evolves slower than the reference condition. The lower figure display the mean
signal before amplitude warp, and the mean signal of the fully event aligned. The
mean signals are shown before, during and after event alignment. Notice that the
event alignment results in equal mean signals.

where t is the vector of crank positions, and x̃ is the corresponding observed
centered values. The covariance matrix Q is a function of the index vector
t and the parameters θ. The last term of Equation 3 is the noise part. The
negative log-likelihood for the example x̃ given the parameters theta defining
the covariance matrix Q is

L =
1
2

log |Q| + 1
2
x̃>Q−1x̃ (5)

For each training examples x̃nθ
, nθ ∈ Nθ we train an independent GP with

parameters {θnθ
} through minimization of L using minimize.m [11]. Finally

we perform average over the parameters obtained from different training ex-
amples to obtain the final model parameters.

θ̂nθ
= arg min

θ

{
1
2

log |Q| + 1
2
x̃>nθ

Q−1x̃nθ

}
(6)

θ̂ = log

(
1

card(Nθ)

∑
nθ∈Nθ

exp
(
θ̂nθ

))
(7)

In order to ensure positive parameters without enforcing constraints minimize.m
uses reparameterization, hence, the averaging takes place in the natural pa-
rameter space and explains the exp and log in (7). The original implementa-
tion of the Gaussian Processes was due to Carl Rasmussen [11], but the we



have customized the input/output structure to fulfill our needs, e.g., allowing
the training and use of the Q matrix.

DETECTION

Outlier detection with log-likelihood is based that NC and FC examples sep-
arate in log-likelihood space. For instance we expect that the number and/or
characteristics of the underlying hidden sources are changed when entering
the FC, thus examples acquired from a FC are poorly described by a model
trained on NC examples. We expect that combinations of increased noise
or increased strength of certain acoustical sources results in a lowver log-
likelihood value. ¿From a set of labeled preprocessed examples we build the
accumulated densities for the features p(LNC ≤ τ) and p(LFC ≤ τ). Each
value of τ corresponds to a true detection / false alarm ratio, and we choose
the optimal rejection threshold τ̂ that is closest in distance to 100% detection
and 0% false alarms. The threshold can also be obtained in other manners,
e.g., selecting the threshold that detects most faults with a constant false
alarm rate.

EVENT ALIGNMENT (WARPING)

We present event alignment as a novel tool for non-stationary Condition
Monitoring (CM) of large marine diesel engines. The tool is necessary since
the current CMSs are not invariant to certain known operational changes -
in particular load/speed changes. Given two different NC, the event align-
ment transforms examples from one condition into the other condition, thus
facilitating a CMS trained on the reference system to correctly detect devia-
tions under both conditions. The result is that the CMS becomes invariant
to changes between the two NC’s. With more NC’s we expect that interpo-
lation between a few warps is possible. Non-stationary condition monitoring
is important when considering diesel engines since the operating conditions
change frequently. Under normal marine conditions Frances et al. [6] have
observed large variability. In our data sets we have found that such vari-
ability is largely described by the changing operation conditions, indicating
that unwanted false alarms could be suppressed by adopting to the changes
invoked by the operating conditions. It should also be noted that application
of the same model on a continuous flow of data could allow for trending of
wear, that is not necessarily possible with multiple models, as models might
focus on different properties of the condition modes.

Obviously one should take care that examples which do not originate
from the warp condition are not transformed into the reference condition.
For instance the event alignment should try to preserve the same variations
as in the reference condition, as this prevents the event aligned examples
of becoming super-normal. Furthermore it prevents examples from other



conditions of being transformed into the reference condition. Overfitting
with event alignment is still an open issue which needs further research.

Dynamic Time Warp based on phase vocoder techniques [4] described by
Ellis [3] and Keough [9] performs the time-warp while keeping the frequency
content unchanged. The phase vocoder is based on short time Fourier trans-
formation and accomplishes the time-warp by interchanging the number of
samples between overlapping time frames at playback time, e.g., moving the
overlapping windows further apart in order to stretch the signal. Dynamic
Time Warping is uninteresting for CM in the time domain, as it repeats or
drops time frames if necessary, possible duplicating peaks or removing fault
signatures. Instead we decide on time-warps that keep the waveform struc-
ture or envelope unaltered, e.g. spline interpolation. Also piece-wise linear
interpolation was tried, but in the present case the cubic splines provided
better results.

Event alignment model

The event alignment consists of two non-linear warps, the first performs time-
alignment and the second performs amplitude mapping. Definitions (also see
Figure 2)

L The landmark vector defines the angular position of the important events.
Most events are described by three landmarks: begin, peak and end.

µ the vector containing the mean signal (across examples for each angular
position)

σ2 the vector containing the variation around µ.

The landmarks were picked by hand, and are very specific for the applica-
tion. Even changing a sensor position would change the landmarks. Thus,
automatic identification of landmarks is to be addressed in future studies.
The event alignment transforms warp condition examples xW described by
µW ,σ2

W and landmarks LW into aligned examples xA resembling the refer-
ence condition µR,σ2

R and LR. f(·) is an interpolating function that per-
forms the time alignment of events based on the two set of landmarks. The
vector g is a sample-wise constrained re-scaling factor that accounts for com-
pression of variance when the variance in the warp condition is larger than
in the reference condition.

xA = (f(xW ,LR,LW ) − µW ) . ∗ g + µR, (8)
µW = 〈f(xW ,LR,LW )〉 (9)

gi =
{

1 , σiR > σWi

σRi/σWi , σRi > σWi
, i = 1, 2, . . . , d (10)

where .∗ denoting Hadamard matrix multiplication. The constraint prevents
amplification of measurement noise. Unconstrained re-scaling can lead to
negative values that do not correspond to the non-negative RMS signals.



In some cases this constraint leads to overfitting, as the aligned examples
become “more” normal that the un-aligned examples. In the following section
we encounter this problem in experiment 5 for Gaussian Process modeling.

EXPERIMENTS AND RESULTS

We create pseudo-realistic data sets in order to compensate for lack of data
by resampling of examples within periods of stable conditions. Examples are
resampled by drawing random examples from pools of data and only used
once. That is, examples used to learn the model, warp or threshold are
not used during performance evaluation. Resampling of examples facilitates
evaluation and analysis of the models at the expense that condition changes
become more abrupt, thus analysis of alarm time and trending is not possible.

We measure the performance of event alignment on its ability to correctly
separate FC and NC examples during changing operational conditions.

All experiments (see Table 1) where conducted using a model trained
on random examples drawn from the 25% load NC. Table 2 reports the
obtained detection rates using the two different modeling schemes. For PCA
only the performance with the optimal number of components is reported.
Experiment 1 shows the performance of the stationary system on stationary
data. Applying the stationary system to non-stationary data would label
all normal conditions as faulty since the CMS cannot discriminate between
normal variations and true faults, thus the resembling the non-stationary
conditions is indeed promising.

Experiment 2 and 3 demonstrate the ability to align other NC with the
reference condition while the event alignment of FC examples using the same
model are correctly labeled as faulty. In experiment 2 we obtain the same
performance as the stationary system, but in experiment 3 the performance
is degraded. This is due to the downsampling of examples. The original AE
RMS vectors had d = 2048 samples per revolution, and since the training
of the Gaussian Process model involves inversion of d × d square matrix, all
examples have been downsampled with a factor 8. The fault leads to unstable
timing of events and the downsampling smears out these changes. We notice
that the PCA preprocessing suffers more from downsampling than the GP
model, however, without any downsampling, PCA also yields 80-90% detec-
tion rate and 15-20% false alarm rate (similar to the GP with downsampled
data). As expected, the overall performance is reduced in comparison with
the stationary experiment.

Experiment 4 demonstrates how the non-stationary system is able to dis-
criminate between aligned NC data and un-aligned FC data. The result is
similar to that of the stationary system.

In experiment 5 we test the CMS w.r.t. overfitting. We cheat the system
and take examples warped into the normal condition as normal and un-
warped NC data as “faulty”. The overfitting in the event alignment, i.e.,
the examples are warped into being super-normal, is detected with the GP



Exp Normal data Faulty data
1 25 % load, lube oil on 25 % load, lube oil off
2 75 % load, lube oil on 75 % load, lube oil off
3 50 % load, lube oil “on” 50% load, unstable speed
4 75 % load, lube oil on 25 % load, lube oil off
5 50 % load, lube oil “on” 25 % load, lube oil on
6 Mixed loads, lube oil on Mixed loads, lube oil off

Table 1: List of experiments. During experiment 3 and 5 examples acquired
without lube oil was warped into the reference condition with lube oil.

Exp PCA Detec/False # Comp GP Detec/False
1 95/ 5 2 95/ 5
2 95/ 5 2 95/ 5
3 60-65/20-30 3 80-90/15-20
4 95/ 5 2 95/ 5
5 50-60/65-80 36 80-95/ 0-15
6 95/ 5 2 95/ 5

Table 2: Condition Monitoring Performance. Detec/False denotes detection versus
false alarms rate in percentage.

modeling, that incorrectly label 80-95% of the NC examples as FC. However,
using PCA modeling the overfitting disappears, even though the PCA uses
much more components than usually, indicating that it is looking for very
small changes.

In experiment 6 we collect both aligned and un-aligned examples from
experiment 1,2 and 4 in order to demonstrate that the system is capable of
performing non-stationary condition monitoring with the same performance
as in the individual experiments. This demonstrates that the obtained opti-
mal rejection thresholds are stable in the three experiments 1,2, and 4.

CONCLUSION

The experiments show that non-stationary condition monitoring is indeed
possible. It is important to notice that the event alignment does not de-
crease the overall condition monitoring performance as the results obtained
in experiment 2 and 4 are equal to the stationary results in experiment 1. Fur-
thermore, the performance obtained using both mixed aligned and original
data in experiment 6 is the same as in the individual experiments, indicating
that the optimal rejection thresholds are fairly constant even with several
warp conditions each having its own set of event alignment parameters. The
conclusion is that non-stationary CM indeed can be obtained by extending a
stationary CMS with event alignment.

Future work will concentrate on refining the method to handle a larger
range operation conditions, automatic detection of landmarks, and further



investigations related to overfitting. In addition, we will evaluate whether the
framework will allow for wear trending, which of course calls for new exper-
iments involving much larger time scales. We will also pursue fast Gaussian
Processes in order to avoid signal downsampling.
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