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Abstract

Statistical region-based segmentation methods such as the Active Appearance Model
(AAM) are used for establishing dense correspondences in images based on learn-
ing the variation in shape and pixel intensities in a training set. For low resolution
2D images this can be done reliably at close to real-time speeds. However, as
resolution increases this becomes infeasible due to excessive storage and computa-
tional requirements. In this thesis it is proposed to reduce the textural components
by modeling the coefficients of a wedgelet based regression tree instead of the
original pixel intensities. The wedgelet regression trees employed are based on the
triangular domains and estimated using cross validation. The wedgelet regression
trees serves to 1) reduce noise and 2) produce a compact textural description. The
wedgelet enhanced appearance model is applied to a case study of human faces.
Compression rates of the texture information of 1:40 is obtained without sacri-
ficing segmentation accuracy noticeably, even at compression rates of 1:115 fair
segmentation is achieved. For regularization of geometric property of the wedgelet
decomposition a Markov Random Field method is introduced which improves the
performance of the segmentation on the wedgelet enhanced appearance model.

Keywords: Wedgelets, appearance model, CART, markov random field, compres-
sion, cross validation, trees, graph mathching, wavelets
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Resumé

Statistiske metoder til segmentering så som Active Appearance modeller, bliver
brugt til at skabe en tæt sammenhæng imellem billeder ved at undersøge variatio-
nen i pixel intensiteter og form i et trænings sæt. Dette kan gres i realtid for billeder
med lav opløsning i 2D. Men med sigende opløsning bliver dette uoverkommeligt
pga. stort forbrug af hukommelse og lange beregnings tider. Denne afhandling
foreslår en metode til at reducere tekstur komponenterne af modellen ved at mod-
ellere teksturen i et wedgelet baseret regressions træ i stedet for de originale pixel
intensiteter. Det wedgelet baserede regressions træ er baseret p trekanter og bliver
estimeret ved hjælp af krydsvalidering. Regressions træet tjener to formål: 1. At
reducere støj og 2. at skabe en kompakt beskrivelse af teksturen. Den wedgelet
forbedrede appearance model bliver benyttet p et studie bestende af ansigter. Kom-
pressions rater optil 1:40 bliver opnet uden at kompromittere segmenterings nøjagtig-
heden i modellen. Kompressions rater helt op til 1:115 opnås med en rimelig seg-
mentering. For at regularisere de geometriske egenskaber ved wedgelet dekom-
positionen introduceres en metode baseret p markov random fields, som forbedre
segmenteringen opnået med den wedgelet forbedrede appearance model.

Nøgleord: Wedgelets, appearance model, CART, markov random field, kompres-
sion, kryds validering, træer, graf mathching, wavelets
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Introduction

The Active Appearance Model (AAM) framework [1] has since its introduction
been applied successfully to segmentation of many types of deformable objects
in images (e.g. faces, cardiac ventricles, brain structures [1, 2, 3, 4]). It is based
on the estimation of linear models of shape and texture variation by the use of
principal components analysis of landmarks coordinates and pixel intensities and
subsequent inference of model parameters from unseen images by a tangent plane
approximation of the image manifold.

Modeling every pixel intensity is manageable for low-resolution 2D images.
But moving to high-resolution 2D and 3D images, even 3D time-series, this ap-
proach is rendered at best very slow and at worst infeasible due to excessive storage
and computational requirements.

In order to overcome this problem various alternatives to modeling the raw
pixel intensities have been considered. Cootes et al. [5] used a sub-sampling
scheme to reduce the texture model by a ratio of 1:4. The scheme selected a sub-
set of the pixel intensities based on the ability of each pixel to predict corrections
of the model parameters. When exploring different multi-band appearance repre-
sentations Stegmann and Larsen [4] studied the segmentation accuracy of facial
AAMs at different scales in the range 103 − 105 pixels obtained by pixel averag-
ing. Wolstenholme and Taylor [6] incorporated a truncated Haar wavelet basis into
the AAM framework and evaluated on a brain MRI data set at a compression ratio
of 1:20. Later, Stegmann and Forchhammer [7] further evaluated the use of the
Haar wavelet as well as the Cohen-Daubechies-Feauveau [8] wavelet family in the
AAM framework. Compression rates of 1:40 without compromising segmentation
accuracy were obtained.

Donoho [9] suggested a wedgelet representation for the texture as a means of
edge detection and image compression. An image is represented by a collection
of dyadically organized indicator functions with a variety of locations, scales and
orientations. The classification and regression tree (CART) algorithm [10] uses
sequential binary splitting of the spatial domain parallel to the coordinate axes, with
splits allowed at every data point. In contrast to this the wedgelet regression tree
obey special constraints. Only dyadic partitioning (i.e. recursive midpoint splitting)
is allowed, with the added feature that at each terminal node a set of affine splits are
also applicable. The wedgelet tree is a quad tree [11] with terminal nodes being
either a dyadic (degenerate wedgelet) or a affinely split dyadic (non-degenerate
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viii INTRODUCTION

wedgelet). The constrained splitting leads to fast algorithms. Within each resulting
image terminal node (wedge or square) the pixel values are regressed to their mean
value.

In this thesis we generalize the wedgelet transform to triangulated domains
(cf. triangulated quad trees [12]). This has the major advantages of rendering the
wedgelet representation independent of piece-wise affine warps of the triangulated
domain. Such piece-wise affine warps is customarily chosen in AAM for their
speed [4] and the triangulated wedgelet representation thus embraces this choice.
The wedgelet transform results in a truncated change of basis for the texture and is
represented by a regression tree. The regression tree is estimated using the mini-
mization of the cross validation prediction error across the training set.

The segmentation accuracy in a wedgelet based AAM is evaluated for a case
of human face segmentation using cross validation.

To regularize the orientation of the resulting wedgelet representation with re-
spect to continuous edges Markov Random Field (MRF) [13][14][15] methods are
tested. MRF is a frequently used method for estimations of global properties such
as edges. MRF has been used for edge enhancing smoothing and improvements
of classification results such as in the Potts model [16]. A MRF that fits into a
regression tree based on wedgelets enforcing a geometric property of connecting
edges is introduced and the results are evaluated as a visual and compared to the
unregularized wedgelet based AAM.

0.1 The data

The data set used in this thesis is restricted to faces. The set consists of 37 faces
of people, 7 females and 30 males. It’s mostly young people between 20 and 30
years of age. Each face has been annotated with 58 landmarks by an expert. The
resolution of the individual images is 640×480 and are in color. The data set could
as well have been gray level, but since they were available in color, the data has
been processed as color images as the results show.



Outline

First we introduce Appearance Model (AM) and AAM to clarify the domain we are
working on. Then we introduce CART in chapter 2, primarily regression trees and
cross validation since this is an important part of wedgelets which is the primary
area of this thesis. Before we introduce wedgelets, we shortly present wavelets
in chapter 3 since wavelets are closely related to wedgelets. Chapter 4 intruduces
the original wedgelet formulation. Chapter 5 introduces barycentric coordinates, a
very useful basis which makes it easy to define wedgelets on triangles. This lead
us on to the the generalization of wedgelet decomposition to triangles in chapter
6. The results of the wedgelet decomposition in conjunction with the AAM is pre-
sented in chapter 7. Chapter 8 introduces Markov Random Fields and a recursive
implementation on the wedgelet decomposition will be discussed in chapter 9. The
results of the implementation is show and discussed in chapter 10 and finally in
chapter 11 the conclusion and future work is presented. Appendix A contains the
key algorithms used in this thesis and appendix B a paper written over the results of
this thesis submitted for GMBV and appendix C contains some additional results.
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Chapter 1

Active Appearance Models

We start by introducing the Active Appearance Model (AAM). This is the model
that we want to improve the performance of. To understand the novelty and per-
formance improvements this thesis describes, it is important to understand how the
AAM works.

The AAM is a statistical model, highly efficient in recognizing objects belong-
ing to a certain class. The AAM was first introduced in 1998 by Cootes et al in
the award winning paper [17] and has since then been investigated and improved
by numerous people including Mikkel B Stegmann [18]. The AAM has been used
for e.g. face recognition, eye tracking, face tracking and for measurements of the
blood circulation in MR scans of the human heart [19] with great success. But
most of the tasks has been conducted off-line or on very low-resolution images due
to the lack of efficiency of the AAM. When dealing with large data sets, such as
high resolution images in 2D and 3D, problems emerge. Due to the amount of data
the AAM becomes slow, hence there is a need to optimize the AAM in a way that
will make it feasible to employ the model on e.g. high resolution medical images.

1.1 Introduction to the AAM

We Start with the observations. The object we are looking at, is considered an
observation. There are a lot of ways of defining an observation when working
with images. For a lot of classification problems each individual pixel is viewed
as an observation, but for purposes such as this, the entire image might seem more
suitable to perceive as an observation. Since we are making a highly specialized
model we are only interested in objects belonging to this particular class. There
is a small problem though, the perception of an object may vary from object to
object or observer to observer, so we need to set some standard measurements
when classifying an object. Since we are working with objects in images, the most
straight forward measurements are the texture and the shape of the object, which
is referred to as the appearance form here on. Based on these features we need to
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2 CHAPTER 1. ACTIVE APPEARANCE MODELS

Figure 1.1: An annotated facial image .

derive an observation vector to use in a statistical model. This observation vector
can be viewed as a point in a hyper dimensional feature space.

1.2 AAM Observations

The texture observation is at first glance quite simple. Working with sampled im-
ages it’s simply the pixels of the image, be it gray-level or color. However, these
are often highly dependent on their position in the image i.e. they depend on the
shape. The other part of our observation, the shape, is another matter. We define
the shape as follows.

Definition 1 Shape is what geometrical information you have left when you re-
move scale, rotation and translation [20].

First we need to define this ”shape-perturbation” to do this to. Working with faces
,which is the data set of this thesis, we define some anatomical landmarks in a cer-
tain order to make out the shape. Fig. 1.1 shows a annotated face. The outline of
the face has been marked as well as the eyes, the nose and the mouth. Basically
all the distinct features of the face are included in the shape. These now make up
the feature vector containing the shape. Each face has to be annotated the same
way, meaning that the same features have to be found in all images and ordered in
the same way in the vector to ensure that the shapes span the same space. Having
annotated a training set, the images have to be aligned shape wise, which can be
achieved through Procrustes alignment (for details see [20]). From this, the mean
shape is easily derived. All image texture are warped into this mean-shape. To de-
cide which pixels goes where, a piece wise linear warp is performed. The outline
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Figure 1.2: The mean shape.

of the individual areas are derived from the reference-shape which is triangulated
using Delauney triangulation [21] which has the nice property of making the angles
as wide as possible, avoiding some numerical problems. The triangulated mean-
shape is shown in Fig. 1.2. The warp into the mean-shape makes it possible to
sample all textures the same way and with the same number of samples ensuring
that the texture vectors also span the same feature space. This results in the texture
vectors as well as the shape vectors having the same length for all images mak-
ing it possible to build a statistical model of the object class. It is computational
infeasible to work with the data as they are i.e. each observation being a vector
of 10000+ observations, so a very sparse model is needed. The next section will
present a way to create such a sparse model.

1.3 Appearance Model

Let xns denote the shape vector and let xnt denote the texture vector for the n′th
observation xn so that

xn =

(
xns

xnt

)
(1.1)

These vectors are quite large, especially the texture vector, so it is desirable to
reduce these vector-sizes. Let the training set, consisting of N observations, be
denoted X = {x1, x2, . . . , xn}, n = 1, . . . , N which is then normalized. Having
normalized the training set X , we then apply principal component analysis (PCA)
giving the following orthogonal model for the shape variations.

s = s̄+ Psbs (1.2)

where s̄ is the mean shape, Ps is the modes of variation and bs the shape param-
eters. A similar process is done to the normalized gray level components i.e. the
texture vector giving t = t̄ + Ptbt for the texture variations. Having done this the
appearance can be summarized by the two vectors bs and bt. Further correlation
between the two vectors can be eliminated by performing another PCA on the set
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of concatenated vectors b given by

b =

(
Wbs
bt

)
(1.3)

where W is a diagonal weight matrix which accounts for the unit differences be-
tween shapes and textures. From this we write b as follows

b =

(
WP t

s(s− s̄)
P t

t (t− t̄)

)
(1.4)

which is then subjected to PCA giving the appearance model

b = Qc (1.5)

b bas zero mean since the shape and the texture model both have zero mean. The
shape and texture can be expressed directly as a function of c.

s = s̄+ PsWQsc, t = t̄+ P t
tQtc (1.6)

where

Q =

(
Qs

Qt

)
(1.7)

The appearance model for normal images has now been established. By varying c
it is possible to create an artificial shape and an artificial texture to warp into the
shape. Fig 1.3 shows the artificial mean-face and the first three modes of variation
from an appearance model changed individually +-2 standard deviations. Fig. 1.3

Figure 1.3: The three first modes of variation +− 2 std.

shows the appearance model does exactly what it’s supposed to do, namely it gives
a low-dimensional representation of the appearance of the human faces. The use



1.4. AAM 5

of the weight matrix in (1.3) is not essential but is as mentioned a compensation
for the difference in units of measurements of the shape part of the model and the
texture part of the model. For further information on how to calculate the weights
extend beyond the scope of this thesis, the interested reader is referred to [17][22]
for more information.

1.4 AAM

Having established the appearance model we want to make it active, in other terms
we have to find a search algorithm. In his original paper [17] Cootes et al suggests a
regression based method. However, since the first publication of the paper another
method has been developed namely the Jacobian method [1]. This method is based
on gradients which are pre-calculated in the texture-frame giving a change in the
parameters directly. Let’s just briefly go over this method. We define a vector that
contains the differences i.e. a difference vector δI defined as follows

δI = Ii − Im (1.8)

where Ii is the pixel values of the image, and Im is the pixel values of the current
model. Have in mind that this is a fitting of the model and the parameters are to
be adjusted to make the model fit to the actual image as good as possible. To find
the best match we define the magnitude as the measure ∆ = |δI|2 which we wish
to minimize by varying the model parameters c. Cootes states that even though
this seems to be a high-dimensional optimization problem, each attempt to match a
model to an image is actually a similar optimization problem. The spatial pattern of
δI holds information about how the model parameters should be changed to achieve
a better fit. Hence an iterative algorithm can be developed to minimize ∆ by using
the knowledge of the relationship between δI and δc. Given the appearance model

s = ŝ + Qsc

t = t̂ + Qtc
(1.9)

a synthesized shape can be projected on to the image and used for sampling the
pixels into the shape free space. By projecting the model on the shape free space
the difference between the texture and the model can be created

r(p) = ts − tm (1.10)

where p are the parameters of the model. A simple and commonly used measure of
difference is the sum of squares of elements of r, E(r) = rT r. A taylor expansion
of (1.10) yields

r(p + δp) = r(p) +
∂r

∂p
δp (1.11)
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Assuming our current residual is r, we wish to calculate δp in such a way that we
minimize |r(p + δp)|2. By equating (1.11) to zero, the RMS solution gives

δp = −Rr(p) where R = (
∂r

∂p

T ∂r

∂p
)−1 ∂r

∂p

T

(1.12)

A fit made using the algorithm described above can be seen in Fig. 1.4 A thorough
description of the fitting algorithm can be found in Cootes technical report [22].

Figure 1.4: A fit if the AAM using the Jacobian method.



Chapter 2

CART

Classification And Regression Trees (CART) are an integrated part of the wedgelet
decomposition we therefor shortly introduce them along cross validation which
will prove very useful when combining wedgelets with the AAM

CART are a simple yet powerful tool to do both regression and classification.
CART is thoroughly described in [10] by Friedman, Breiman, Olshen and Stone,
furthermore CART is discussed briefly in [23]. Since CART is an integrated part
of wedgelets we introduce them to help understand wedgelets little bit better. Lets
start with an image which is basically a response Y i.e. the pixel value in images,
to the pixel coordinate X1 and X2 taken on values between 0 and 1. Hence we
now have some image function Y = f(X1, X2) which we want to model by par-
tition the space into sub parts with lines parallel to the boarders of the image. Fig
2.1 show such a split. Even though it seems easy describing the lines separating

Figure 2.1: A split of feature space by partitioning with rectangles.

7



8 CHAPTER 2. CART

the partitions is quite simple, some of the partitions are actually quite difficult to
describe. However, if we turn to binary trees [24] and restrict our selves to binary
splits, the problem becomes easy to deal with. By using binary trees we split the
feature into two regions and model the response in each partition by some function.
One of the most common models for this function, is the case where the function
is a constant c, often the mean value of the partition in question. Each partition is
then split into two and so on until some stopping criteria is fulfilled. Fig 2.1 shows
how a possible fit to the image could be. First a split of the image along X2 = t1

Figure 2.2: A split of feature space by partitioning with binary orthogonal splits.

then the right part is split into two along X1 = t3 and the left along X1 = t2. Fi-
nally the left lower part is split into two along X2 = t4 leaving us with five regions
R1, R2, . . . , R5 as shown in 2.2. The resulting binary tree can be seen in Fig. 2.3
where the labels at the branches indicate the splits and the labels at the leaves tells
which area. The regression model that predicts Y with a constant cm in a region
Rm is given in (2.1).

f̂(X) =

5∑

m=1

cmI{(X1, X2) ∈ Rm} (2.1)
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Figure 2.3: The underlying binary tree from Fig.2.2 .

2.1 Regression trees

A regression tree is a tree structure where the leaves are an approximation of the
underlying data. The normal model used at the leaves is a constant, however, other
functions is just as usable i.e. splines etc. Lets formalize the regression tree. For
N observations (xi, yi), i = 1 . . . N with p inputs xi = {xi1, xi2, . . . , xip} and a
response yi, an algorithm is needed that can decide on the splitting variables and
points and the shape of the tree. Let us use the previous explanation as a starting
point and use the residual sum of squares (RSS) (2.2) as the minimization criteria.

∑
(yi − f(xi))

2 (2.2)

Partitioning into M regions R1, R2, . . . , RM and modeling the response as a con-
stant as in (2.3) it is straight forward to see that the optimal cm in Rm is given by
(2.4).

f̂(x) =

M∑

m=1

cmI{x ∈ Rm} (2.3)

ĉm = average(yi|xi ∈ Rm) (2.4)

However trying all possible splitting variables and all possible split points quickly
becomes infeasible. To solve this problem several algorithms are available [10][23].
Greedy top down methods where you grow the tree to some criteria and then the
bottom-up approach where you start with growing a tree until a certain size of the
end-nodes and then start collapsing internal nodes to create the optimal regression
tree.
Searching for a sub tree T ⊂ T0 by pruning T0 is done by collapsing internal
nodes having m regions with terminal node m representing region Rm. Letting
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|T | denote the number of leaves in T leads to the following.

ĉm =
1

Nm

∑

xi∈Rm

yi,

Qm(T ) =
1

Nm

∑

xi∈Rm

(yi − ĉm)2

Cα(T ) =

|T |∑

m=1

NmQm(T ) + α|T |

(2.5)

In this bottom-up method a cost complexity criterion like (2.5) is used instead of
(2.2) to help avoid over fitting. The basic idea of (2.5) is to find Tα ⊆ T0 to
minimize Cα(T ). The parameter α is then the tuning parameter that determine the
tradeoff between goodness of fit and the complexity of the tree. This results in
(2.5) can be generalized and written as

PRSS =
∑

(yi − f(xi))
2 + λ ·#P (2.6)

where #P is some complexity term and λ = const · σ. σ is the standard deviation
of the data. It is important to keep in mind that the tree need not be binary but can
be of any desired complexity.
The regression tree has it’s history from social science, however, CART has also
been used in i.e. medicine. Here doctors use it e.g. to predict the mortality rate
among patients within a certain time frame from the time that they are admitted to
a hospital after having suffered a heart attack. The binary nature makes the result
quite easy to interpret especially to questions with a true/false answer, something
that is not easy with higher complexity of the underlying tree.

2.2 Cross Validation

It is often difficult to estimate general parameters such as those used in (2.6) and
they often vary greatly between different data sets. However if there is sufficient
data present, methods exists that can estimate the necessary parameters. Due to
the nature of the data used by CART an often chosen way of estimating these pa-
rameters indirectly is cross validation. This method is one of the most widely used
methods for estimating the prediction error. The general idea of cross validation is
to divide the data into K groups hence the name K-fold cross validation. For the k
part of the data fit the model on the remaining K−1 parts. Calculate the prediction
error on the kth part. Repeat this for k = 1, . . . ,K and combine the K estimates
of prediction error. Given a function that maps our observations as follows: Let
κ:{1, . . . , N} → {1, . . . ,K} i.e. map our observations into K groups, the cross
validation can the be written as

CV E =
1

N

N∑

i=1

L(yi, f̂
k(i)(xi)) (2.7)
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using the l2 norm i.e. RSS (2.2) as penalty function, L((yi, f̂
k(i)(xi))) = ‖yi −

f̂k(i)(xi)‖2 gives the following expression

CV E =
1

N

N∑

i=1

‖yi − f̂k(i)(xi)‖2 (2.8)

Where f̂k(x) is the function fitted with the k’th part of the data removed. The
assignment function κ should assign data randomly to theK sets, and ifN = K we
call this n-fold cross validation or leave-one-out cross validation. The parameter
that needs to be estimated in (2.5) is α since we already know the complexity at the
given level. So in this case we would calculate the PRSS with the proposed split
and without the proposed split, then using our validation set, i.e. the set we have
set aside to validate our result on, we would impose the two solutions found and
calculate the PRSS for both. Having done this we select the best possible solution
based on the results produced by the validation set.



Chapter 3

Wavelets

The purpose of introducing wavelets is primarily because they are the point of ori-
gin for the wedgelets. Donoho has long been a very respected researcher within the
wavelet community and it is obvious that wedgelets have much in common with
wavelets.

The following is primarily derived from [25] and [26] The wavelet is as it’s name
implies based on a wave. The idea is basically the same as with the Fourier trans-
form (FT) namely frequency decomposition to a set of basis function hence making
wavelets an image base, as the cosine and sine are when using FT. The idea is to
have what we call a mother wavelet ψ(t), which can be stretched, squeezed and
translated to form different wavelets to make a set of basis functions which is used
to decompose the signal. In image analysis the wavelet decomposition has been
used in the JPEG2000 standard and Wolstenholme and Taylor [6] and Stegmann
and Forchhammer [7] has used wavelets in the AAM as a mean of compression.
We shortly introduce wavelets because wedgelets have a strong analogy to them.
We start out with the continuous wavelet transform (CWT)

3.1 The Continuous Wavelet Transform

A wavelet ψ(t) is a continuous, real or complex, function having the following
properties.

- The function integrates to 0, this is also known as the admissibility condition
∫ ∞

−∞
ψ(t)dt = 0 (3.1)

- The function has finite energy i.e.
∫ ∞

−∞
|ψ(t)|2dt <∞ (3.2)

12
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The CWT of a function f(t) is given by

W (a, b) =

∫ ∞

−∞
f(t)

1√
a
ψ∗

(
t− b
a

)
dt (3.3)

where a is the scaling or dilation factor, b the time shift factor and 1√
a

the energy
normalizing factor. Let us set

ψ(t)a,b ≡
1√
a
ψ∗

(
t− b
a

)
dt (3.4)

yielding

W (a, b) =

∫ ∞

−∞
f(t)ψ(t)∗a,bdt (3.5)

The normalizing factor 1√
a

ensures the following property always is true for all
possible a and b ∫ ∞

−∞
|ψ(t)a,b|2dt =

∫ ∞

−∞
|ψ(t)|2dt (3.6)

Fig. 3.1 shows a Haar wavelet, which is just one type, among other we men-
tion the mexican hat, morlet etc. The signal which we desire to make a wavelet
transform of is convolved with the desired wavelet yielding a response in scale and
time. However the continuous wavelet transform is difficult to use due to the in-
finite number of scales and translations and hence have little practical use in the
processing of images. For processing images we turn to the discrete wavelet trans-
form (DWT).

Figure 3.1: A Haar wavelet.
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3.2 Discrete Wavelet Transform

Let V j be some space spanned by 2j orthogonal unit vectors, we call these basis
functions scaling functions and denote them Φ. As an example Φ2

0 = [1, 0, 0, 0],Φ2
1 =

[0, 1, 0, 0],Φ2
2 = [0, 0, 1, 0] and Φ2

3 = [0, 0, 0, 1] the basis of V 2. A simple set of
these can be generated from the following

Φj
i (x) = Φ(2jx− i), i = 0, 1, . . . , 2j − 1 (3.7)

where Φ(x) =

{
1 for0 ≤ x ≤ 1
0 otherwise

Definition 2 W j is the space of all functions in V j+1 that are orthogonal to all
functions in V j under the chosen inner product.

Definition 3 Wavelets is a collection of linear independent functions Ψj
i (x) span-

ning W j

These wavelets have three nice properties

• The basis functions Ψj
i ofW j together with Φj

i of V j form the basis of V j+1

• Every basis function Ψj
i of W j is orthogonal to every basis function Φj

i of
V j under the chosen inner product

• All wavelets Ψj
i (x) are orthogonal to one another

Lets start out with the Haar wavelets, which is a box basis. Fig 3.2 shows three
orthogonal basis functions of the Haar wavelet basis, and is defined as follows

Ψj
i (x) = Ψ(2jx− i) i = 0, 1, . . . 2j−1 (3.8)

where Ψ(x) =





1 for 0 ≤ x ≤ 1/2
−1 for1/2 ≤ x < 1
0 otherwise

All the above can of course be extended to signal of n dimensions but we continue
this section with a small example on a 1D signal. Let I = [6, 8, 4, 6] be a signal
we want to wavelet transform. This is done by convolving the image with our
basis functions, where we in this case choose the Haar wavelets as basis. This
gives us the [c0, d

0
0, d

1
0, d

1
1] = [6, 1,−1,−1] with the Haar basis function f̂(x) =

c0Φ
0
0 + d0

0Ψ
0
0 + d1

0Ψ
1
0 + d1

1Ψ
1
1 . We can then totally reconstruct the signal the

following way: We can now write the wavelet decomposition of a given signal
f(t) to a given coefficient wavelet d or scale c as

cji =
1

N

N∑

t=1

f(t)Φj
i (t)

dj
i =

1

N

N∑

t=1

f(t)Ψj
i (t)

(3.9)
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(a) (b) (c)

Figure 3.2: Haar wavelets basis function (a) Ψ1
0(x) (b) Ψ1

1(x) (c) Ψ0
0(x)

Figure 3.3: The reconstruction of the decomposed signal

and hence we write the reconstruction of f as

f̂(t) =
J∑

j=0

j∑

i=0

cjiΦ
j
i +

J∑

j=0

j∑

i=0

dj
iΨ

j
i (3.10)

We will not get into details about compression, but just mention that this is done
by truncating the coefficients hence giving a sparser basis than the original. The
reconstruction of images from a wavelet compression is very good and the com-
pressed images looks very alike the uncompressed image.



Chapter 4

Wedgelet Decomposition

Having established the background and context of the wedgelets, the following will
introduce the wedgelets in their original form on a dyadic domain.

Wedgelets was first presented in [9] by D. Donoho in (1999) and are closely re-
lated to wavelets. D. Donoho has long been a very respected researcher within
the wavelet community with numerous publication within this field. The use of
wedgelets becomes very interesting in conjunction with appearance models, but
they need a little modification to work on the AM. Before we do this, we start by
introducing wedgelets and how they work.

4.1 Wedgelet

The basic idea of wedgelets is to represent changes in the texture of an underlying
image with wedges. When dealing with images one of the most distinct features is
edges, these are represented as steep changes in the pixel values and thus becomes
visible as edges. To get a better perception of what wedgelets are, we start out
with binary images. Fig 4.1 shows a binary image with some edge between the
white and the black part of the image. The question is how we approximate the
edge in a reasonable fashion. The most obvious way would be simply to draw
a line across the image from the intersection of the edge on the right side to the
intersection on the left side as shown in fig 4.2(a). This however, is not a good
solution for contours with higher curvature than the one presented in Fig. 4.1 and
hence the approximation presented by the line is not satisfying. This is, however,
a good starting point. If we, instead of representing the curve as a straight line,
represent the curve as a piecewise straight line, the result would easily become
much better. Fig 4.2(b) shows the piecewise linear approximation to Fig. 4.1. It
shows that the deviation from the real image becomes significantly smaller. The
problem is to find and describe these points where the piecewise linear function
changes i.e. the discontinuities in the first order derivative. This is where the
wedgelet decomposition comes into the picture. We start by defining a wedgelet

16
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Figure 4.1: A binary image with some edge dividing the image into a black part
and a white part.

(a) (b)

Figure 4.2: (a) A Line single approximation (b) A piecewise linear approximation.

Definition 4 A wedgelet w is a function on a dyadic d that is piecewise constant
split in two by some edge e, having the intersection points v1 and v2 with the
perimeter of d , dividing the dyadic in to two areas with different values ca and cb.

Hence we write a wedgelets as

w = {ca, cb, e} = {ca, cb, v1, v2} (4.1)

The edge e i.e. v1 and v2 determine the orientation of the wedgelet and the con-
stants ca and cb determines the profile, as in Fig.4.3 which shows the profile and
the gray level wedgelet.

Definition 5 A degenerate wedgelet w is a function on dyadic d that is constant on
all of d taking on the value c.

We can think of the degenerate wedgelet as a wedgelet where the edge e does not
pass through d. This leaves us with two types of wedgelets, degenerate wedgelets
and nondegenerate wedgelets.
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Figure 4.3: A wedgelet represented in two ways. The upper basically shows the
profile of the wedgelet on an image. The lower shows the same just as gray level
values.

4.2 The Wedgelet Decomposition

The wedgelet decomposition can be formalized the following way. Let I be an
image on [0, 1]2 andAj,k ⊂ [0, 1]2, k = {k1, k2} be a dyadic at scale j ∈ Z+∪{0},
A = [[k1/2

j , (k1 + 1)/2j ] × [k2/2
j , (k2 + 1)/2j ]] where 0 < k1, k2 < 2j for an

integer j ≥ 0
Each A can be divided arbitrarily into two by an edge e from v1 to v2, where v1

and v2 is the intersection of the perimeter of A and e. This is what we call a wedge.
It takes on two different values ĉa above e and ĉb below, which are the respective
mean values. A wedgelet is therefore denoted w = {v1, v2, ĉa, ĉa}
ĉa and ĉb is found for each orientation of the wedgelet w by averaging over the
region Ra above e and over Rb the region below e, hence we write

ĉa = Average(I(Aj,k)|Ra)

ĉb = Average(I(Aj,k)|Rb)
(4.2)

RSS =‖ y − µ ‖2 (4.3)

We are now able to formulate the wedgelet decomposition. The wedgelet decom-
position W (I(Aj,k)) is a collection of projections of I(Aj,k) onto a finite set of
wedgelets. For each wedgelet w(A) we select the one that minimizes (4.3) over
Aj,k. The nondegenerate wedgelet is found through an exhaustive search where
we, at the given scale for all points on the perimeter, try all possible combinations,
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thus making it possible to find the optimal solution. Fig. 4.4 shows all possible
combinations from one point on the perimeter. For an example of a wedgelet

Figure 4.4: All possible configurations from a single point on the perimeter of a
dyadic at a given scale.

Figure 4.5: The dyadic split used in wedgelet decomposition.

decomposition se fig 4.6(b). This however, haven’t brought us any further than the
situation in fig 4.2(a), but if we worked at a finer scale this could solve some of
the problems in the decomposition and bring us closer to our goal. To do so we
make the wedgelet decomposition multi scale by splitting the dyadic into 4 new
dyadic by splitting at the middle of each side as shown in 4.5. This leaves us with
three templates for the wedgelet decomposition at each scale as fig. 4.7 shows. By
going into multi scale and by embedding this into a quad tree-structure this vir-
tually becomes a regression tree with orthogonal splits except at the leaves. Here
the splits are affine and non-orthogonal but still explicitly defined and actually the
basis function at this given site at this given scale like a wavelet would be. The
resulting tree-form and wedgelet scales could look like fig. 4.2. This obviously
leads us to use the penalty associated with this as explained in sec. 2. (4.4) shows
the complexity penalized residual sum of squares (CPRSS) in a simplified form
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(a) (b)

Figure 4.6: (a) Aj,k (b) w = {v1, v2, ĉa, ĉa}.

(a) (b) (c)

Figure 4.7: (a) Wedgelet (b) Degenerate wedgelet (c) Step through scale space.

which we will use for the wedgelets.

CPRSS =‖ y − µ ‖2 +λ ·#P (4.4)

where λ = const · σ2 and #P is the complexity

Having put the wedgelets into this tree structure and shown that in fact the wedgelet
decomposition is a regression tree, we now state the multi scale wedgelet decom-
position
The optimal multi scale decomposition W j(I) is the collection of W (I(Aj,k)) for
all Aj,k that minimizes (4.4). We write the decomposition as

W j(I) = {W (I(Aj,k)) : j = 0..J, k1..kn = 0..2j} (4.5)

It can be shown that the optimal complexity penalty for a wedgelet decomposition
based on CART is given by

λ = (ξ · σ(1 +
√

2loge(#W )))2 (4.6)
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(a) (b)

Figure 4.8: (a) A wedgelet decomposition in which the wedgelets can be degener-
ate or non-degenerate. (b) The regression tree associated with the decomposition
in 4.8(a).

where ξ < 8 is a fixed constant, #W is the total number of wedgelets as |T | in
(2.6) and σ denotes the variance of the image. A thorough discussion and a proof
can be found in [9]. Fig. 4.9 shows how a possible decomposition in the dyadic
domain might look.

Figure 4.9: A possible wedgelet decomposition of a given image.

4.2.1 The Wedgelet Decomposition Algorithm

If we just went head on and used a top down approach, we would run into some
computational difficulties. Say we have an image I on a dyadic d and each side
can be split into two n times, we would easily end up with an algorithm having
a complexity in the proximity of O(n4) since n4 is the number of possible edges.
However, if we look at the approach used in regression trees where the entire tree is
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grown first. The resulting regression tree is then created by collapsing inner nodes.
Using this approach we have an algorithm that suits our purpose and has a more
acceptable performance, namely a complexity in the proximity of O(n2). This is
due to the fact that the number of possible edges are reduced to approximately
log(n)n2 by employing the dyadic split and only allowing edges from boarder to
boarder of the dyadic at all scales.
We will now draw the outline of the decomposition algorithm for multi scale
wedgelets

1. On the Image I grow the entire regression tree so the each leaf has size 1
J

n
,

where n is the dimensionality of the space the image lives in.

2. Set the level l = log2(n)

3. At level l for all wedgelets calculate the a ← CPRSS for each wedgelets
without split, and the b← argmin(CPRSS) with a split

4. At level (l − 1) calculate the CPRSS c

5. d←Select min(a, b, c)

6. If d = a or d = b mark this wedgelet terminal and leave branch

7. Else if no children of a wedgelet at level (l − 1) is terminal, collapse them

8. set l = l − 1

9. Repeat from 3 until finished

This can be stated as a recursive algorithm which can be found in app.A

4.3 The Origin of Wedgelets

As stated in the beginning of this chapter, the wedgelet has a lot in common with
some other interesting methods. Donoho has a great interest in both statistics and
in harmonic analysis and this is reflected in the wedgelets. The following sections
briefly describe the relations between wedgelets and to two other methods, one
from statistics and one from harmonic analysis.

4.3.1 The Wedgelet Decomposition and CART

The wedgelet decomposition have a lot in common with the regression tree pre-
sented in chapter 2. First of all they are both trees, and secondly they are both com-
posed by orthogonal splits at the internal nodes. Finally the decomposition sug-
gested in [9] uses the CPRSS (2.6) (complexity penalized residual sum of squares).
Further more the algorithm suggested to use in the wedgelet decomposition is very
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similar to the one of the standard algorithms used in CART as explained in chapter
2 . This let us state that the wedgelet decomposition is basically a regression tree,
with affine splits at the leafs.

4.3.2 Wavelets and Wedgelets

The wedgelet decomposition consists of basis functions at multiple scales in the
same way as the wavelets. But there is a significant difference between the two.
The wedgelet decomposition borrows some properties from regression trees, namely
an ability to locally adapt the basis function to the image. Furthermore the re-
construction of the image from a wedgelet decomposition only rely on one basis
function for the reconstruction of a given site or pixel whereas the wavelet depends
on multiple basis functions to reconstruct the same site. However wavelets tend to
give a result more pleasing to the eye than wedgelets, which is due to the wedgelets
step function like basis which produces an image that is more visually displeasing.
Wedgelets, however, are very good at reconstructing edges as to wavelets that can
produce ringing, a phenomenon know from Fourier-analysis, and it is not given
that even though we have a more displeasing image using wedgelets, the loss of
information is higher.

4.4 Connecting Edges

Donoho mention in his paper [9] that having a function f ∈ [0; 1]2 the lattice
created by splitting the dyadic can be used a an ’espalier’ where it is possible to
’string’ the function to the frame. Then by examining the intersections of the curve
and the lattice a method of connecting the approximation to the function f i.e. the
edgelets across the boundaries can be coupled into chains, but a real geometric
constraint is not introduced. Another method for improving the edge structure can
be found in [27]. This method, however, is not based on CART but on a Markov
model which is solved through dynamic programming yielding good results at least
for binary images. This model incorporates geometric constraints. We will return
to this in chapter 9



Chapter 5

Barycentric coordinates

Before we modify the wedgelets a new coordinate system has to be introduced.
This will make the triangle based wedgelet decomposition much easier to formu-
late.

Most images used today in image processing are represented by pixels which have
the well known quadratic form. The pixels are a standard mostly adopted from the
way that the image is sampled on CCD’s etc. However, as we have seen in the
appearance model, the mean shape has been triangulated and the texture is warped
into a shape free environment piecewise linearly. This inspires to the thought of
changing the basis of the image to something which directly fits into the triangles
of the mean shape used in the AM. Instead of the rectangular coordinate system
used with square pixels we want to use triangles and thus find a suitable coordinate
system for these. As fig. 5.1 shows, triangles is just as good a basis for images
as squares. The lower right part of the image is a normally sampled image with
square pixels, and the top left part of the image is with triangular pixels. A coarser
sampling of the upper left part of the same image is shown in fig. 5.2. It should be
noted that these images are of cause computer generated and the basic sample unit
is therefore still quadratic pixels, but the images still gives the impression intended,
that triangles are as good as squares. This of cause also changes the shape of the
image as the figure shows, but this can be compensated for with two triangles. In
fig. 5.1 there is no visible difference between the two parts with different base and
in right the difference is due to differences in sample density. To formalize this we
state that in an image I[0, 1]2 with n × n pixels, a given pixel o ∈ I at position
p = (p1, p2), 0 ≤ p1, p2 < 1 can be thought of as a function f that is constant
over the interval [p1, p1 + 1/n]x[p2, p2 + 1/n]. The pixels based on triangles can
be defined in the same way, however to do this we need a more suitable coordinate
system that support this.

24
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Figure 5.1: An image where the upper left part is based on triangles instead of
normal square pixels.

Figure 5.2: The same as fig. 5.1 just with triangles on a coarser scale.
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Figure 5.3: Barycentric coordinates.

5.1 Homogeneous Barycentric Coordinates

To help solve our problem homogeneous barycentric coordinates known from com-
puter graphics and e.g. convex analysis are introduced. Original barycentric co-
ordinates was introduced by Mobius [28] in 1827. A barycentric coordinate sys-
tem is a local coordinate system for triangles in two dimensions, but can easily
be extended to tetrahedrons of higher dimensionality. Barycentric coordinates are
triples of numbers (t1, t2, t3) corresponding to masses placed at the vertices of a
reference triangle 4A1A2A3. These masses determine a point P , which is the
geometric centroid of the three masses Fig. 5.3. The vertices of the triangle are
given by A1 = (1, 0, 0),A2 = (0, 1, 0) and A3 = (0, 0, 1) since they are homoge-
neous. For such a homogeneous coordinate system within a triangle the areas of
4A2PA3,4A1PA3 and4A1PA2 are proportional to t1, t2 and t3. For homoge-
neous barycentric coordinates the following applies:

Definition 6
∑

i ti = 1, hence every point P with coordinate c = (t1, t2, . . . , ti)
where 0 ≤ t1, t2, . . . , ti ≤ 1 lie within4A1A2 . . . Ai, i ∈ N+.

We restrict ourselves to i = 1, 2, 3 i.e. 3-dimensional barycentric coordinates,
namely triangles in 2D. Moving from image coordinates to barycentric coordinates
constitutes a shift of basis. We simply project our image coordinates onto a plane,
here in 3 dimensions as shown in Fig. 5.4. It can be shown that this is a basis and
it is obvious that it is orthogonal since the three base vector are linear independent.
So now we have established a new image base, which will fit the triangulation used
in the AAM and we formalize these pixels the following way. In an image I[0, 1]3

with n2 pixels, a given pixel x ∈ I at position p = (p1, p2, p3), 0 ≤ p1, p2, p3 < 1
can be thought of as a function f that is constant over the interval [p1, p1 + 1/n]×
[p2, p2 + 1/n] × [p3, p3 + 1/n]. The barycentric coordinate system is a warp-free
space for tetrahedrons where we have a unique transfer function, giving point to
point correspondence among tetrahedrons of the same dimensionality. Assuming
that we know the position of the triangles vertices v1, v2 and v3 in the image the
area A of the triangle can be calculated. The projection px,y y pa,b,c from the
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Figure 5.4: Barycentric coordinates in 3D space.

quadratic pixel domain to the barycentric is then given by

f(px,y) = (
(v3 − v2)× (p− v2)

2A
,
(v1 − v3)× (p− v3)

2A
,
(v2 − v1)× (p− v1)

2A
)

= (pa, pb, pc) = pa,b,c

(5.1)

where× denotes the cross product and pa,b,c = (pa, pb, pc) is the result in homoge-
neous barycentric coordinates. The inverse projection pa,b,c y px,y is hence given
by

f(pa,b,c) = (pav1 + pbv2 + pcv3) = px,y (5.2)

where pav1 is the vector (paxv1, payv1)



Chapter 6

Triangle Based Wedgelets

We have now established how the wedgelet decomposition originally was formu-
lated. This chapter will generalize the wedgelet decomposition to a triangular do-
main.

The original formulation of wedgelets cannot be used in conjunction with the
AM, since the shape of the model has been triangulated. However, this does not
mean that the wedgelet decomposition becomes unusable. Instead of using dyadic
wedgelets we want to use triangular wedgelets. Since there is no formulation for
these one must be made. However, to save a lot of work we want to preserve as
much of the original formulation as possible. Donoho states that this is just straight
forward for any geometry and since our proposed changes are minute we proceed
without hesitation. First we have to define our new geometric settings.

6.1 Geometric Settings

We want to have a similar setting to the one we have with dyadic, meaning we
have to make a degenerate wedgelet, a non-degenerate and a step through scale
space i.e. some consistent subdivision scheme. We start with the last problem,
hence how do we consistently subdivide a triangle. A way is to find the center of
the triangle and draw a line from each vertices to the center, splitting the triangle
into 3 new triangles see Fig. 6.1(a). However, this approach will make two of
the angles smaller and smaller for each subdivision which is not desirable since it
would lead to numerical inaccuracy. It would be far better to split each triangle
into new triangles similar to their ancestor with the same angels but half the side
length i.e. an angle preserving split. This can be achieved by placing a point on
exactly the middle of each side, and then connect each point to the two other points
on the middle of the sides of triangle as shown in Fig. 6.1(b). By using barycentric
coordinates as described in chapter 5 this becomes a very simple task. The points
are given by [0.5, 0.5, 0], [0.5, 0, 0.5] and [0, 0.5, 0.5] all that has to be done is to
connect them. To get a better understanding of what is happening, we project the
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(a) (b)

Figure 6.1: (a) A consistent subdivision of a triangle where the angels are not
preserved but split in half (b) A consistent subdivision of a triangle where the angels
are preserved.

triangle onto the barycentric space as shown in fig. 6.1. Here we can see that these
subdivision lines, from the middle of each sid to the middle of one of the other
sides, is the intersection of a plane parallel to the planes spanned by the axis at 0.5
on each of the axis. The intersection of these planes and the triangle represents
exactly the solution we are looking for. Fig. 6.1 shows two of the planes, a triangle
in the barycentric coordinate system and the intersection between them. The plane
parallel to the yz-plane an hence the intersection of the plane and the triangle is
given by

plane f(x = 0.5, y, z) = 0.5 + x+ y
intersection line f(x = 0.5, y, z) = 0.5 + x+ y = 1

(6.1)

The last intersection can be made as the intersection of the plane parallel to the xy-
plane and the triangle. The expression for the line is derived using the knowledge
that the barycentric coordinates always sum to one. A similar expression can of
cause be derived for the other lines used in the subdividing the triangle. Note that
this sub-division is totally independent of the original shape and size of the trian-
gle. Another property of the barycentric coordinates is the easy indexing along the
sides of the triangle. This comes in handy when constructing the non-degenerate
wedgelets. Fig. 6.3 shows a possible scheme on a given triangle for finding the
optimal non-degenerate wedgelet as described in chapter 4. The formulation for
the nondegenerate and degenerate wedgelets on the triangulated domain is almost
the same as the formulations given in chapter 4 Def. 4 and 5.

Definition 7 A nondegenerate wedgelet w is a function on triangle t that is piece-
wise constant split in two by some edge e, having the intersection points v1 and v2
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Figure 6.2: The intersection of two of the tree planes that are parallel to the planes
spanned by the basis vectors of the coordinate system, and a triangle projected into
the barycentric coordinate system.

with the perimeter of t , dividing the triangle in to two areas with different values
ca and cb.

Hence writing a wedgelets on a triangulated domain as

w = {ca, cb, e} = {ca, cb, v1, v2} (6.2)

4.9

Definition 8 A degenerate wedgelet w is a function on triangle d that is constant
on all of t taking on the value c.

We now have a way of splitting each triangle consistently and we have defined our
three templates or wedgelets in correspondence with the formulation in chapter 4.
Lets us have a look on the resulting wedgelet templates and their dyadic counter-
part. Fig. 6.1 shows these figures and the correspondence is clear. Fig. 6.5(b) and
6.5(e) corresponds, Fig. 6.5(a) and 6.5(d) corresponds, and Fig. 6.5(c) and 6.5(f)
corresponds, giving us a complete set of wedgelets on this triangular form.
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(a) (b)

Figure 6.3: (a) The nondegenerate wedgelet with triangular basis as profile (b)The
nondegenerate wedgelet with triangular basis as gray level image.

Figure 6.4: All possible edges in a triangle from a single point.

6.2 Triangle Based Wedgelet Decomposition

Having established the geometric foundation we can move along to the wedgelet-
decomposition. We will now formulate the Wedgelet decomposition for triangu-
lated domains in barycentric coordinates.

Let I be an image on [0, 1]3 and Aj,k ⊂ [0, 1]3, k = {k1, k2, k3} be a trian-
gle at scale j ∈ Z+ ∪ {0}, A = [k1/2

j , (k1 + 1)/2j ]] × [k2/2
j , (k2 + 1)/2j ]] ×

[k3/2
j , (k3 + 1)/2j ]] where 0 < k1, k2, k3 < 2j for an integer j ≥ 0. Each A

can be divided arbitrarily into two by a line l from v1 to v2, where v1 and v2 is the
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: (a) degenerate dyadic wedgelet (b) nondegenerate dyadic wedgelet
(c) scale dyadic wedgelet (d) degenerate triangular wedgelet (e) nondegenerate
triangular wedgelet (f) scale triangular wedgelet.

intersection of the perimeter of A and l. This is what we call a wedge. It takes on
two different values ĉa above l and ĉb below, which are the respective mean values.
A wedgelet is therefore denoted w = {v1, v2, ĉa, ĉa}.
We are now able to formulate the wedgelet decomposition. The wedgelet decom-
position W (I(Aj,k)) is a collection of projection of I(Aj,k) onto a finite set of
wedgelets. For each wedgelet w(A) we select the one that minimizes (4.3) over
Aj,k. The wedgelet decomposition W (I(Aj,k)) is w = {v1, v2, ĉa, ĉa} that min-
imizes (4.3) over Aj,k ∈ I . The optimal multi scale decomposition W j(I) is the
collection of W (I(Aj,k)) for all Aj,k that minimizes (4.4).

W j(I) = {W (I(Aj,k)) : j = 0..J, k1..kn = 0..2j} (6.3)

This is as can be seen almost the exact same formulation as in chapter 4, and the
example shown in fig. 6.6(a) shows a great resemblance with 4.9

6.3 Results From a Wedgelet Decomposition

Having formulated this decomposition, we have to test the algorithm. There is one
slight disadvantage with this method, we have to do an initial triangulation to start
this algorithm. Given an image we simply draw a diagonal from one corner to the
opposite, and thus dividing the image into two triangles. The wedgelet decomposi-
tion has been used in two setting. First an ordinary image which has been divided
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(a)

(b)

Figure 6.6: (a) Example of a wedgelet decomposition based on triangles (b) The
corresponding regression-tree.

as described above. Due to the practical use in the AAM of this wedgelet decom-
position, it has also be tested on this geometry to show that it can be used in these
settings. We have chosen a single image for starters which can be seen in Fig. 6.7
. Fig. 6.8(a) and 6.8(b) shows a normal image decomposed by the triangle base
wedgelet decomposition at different compression ratios. As can be seen from the
images it seems to work yielding results that corresponds to the underlying image.
This can be observed at the edges which are reconstructed quite well. However
there are some artifacts which have their origin in the implementation (numerical
inaccuracy) and not the actual wedgelet decomposition algorithm. We now turn
to the mean shape of the AAM or more correctly the AM. These geometry set-
tings are a little bit different from normal images since they come with an initial
triangulation. This is the reason for adopting the wedgelet formulation to triangles.
However there is one small obstacle which we have to overcome. The root of the
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Figure 6.7: The original image.
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Figure 6.8: (a) A high compression ratio on a normal image (b) A high compression
ratio on a normal image.

tree cannot be a normal node as the other nodes in the quad tree. We have to choose
between either having lots of individual trees or a tree containing a lot of branches
at the root and 4 at every other internal node. For obvious reasons we choose the
last, since we then have the decomposition in a single tree. The initial triangulation
sets a maximum limit to the compression ratios that can be achieved, but still this
would be a rather hard compression. Fig. 6.3 and 6.10 show the skeleton of the
wedgelet decomposition ,the super imposed skeleton and finally the result. This
also produces the expected results, however, there are still some artifacts created by
the implementation (numerical inaccuracy). Aside from these artifacts, the results
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(a) (b) (c)

Figure 6.9: 2846 triangles and 1007 wedges

(a) (b) (c)

Figure 6.10: 494 triangles and 295 wedges

are very pleasing. To take the wavelets into the comparison here, it is obvious that
the wavelets produce a result much more pleasing to the eye than the wedgelets but
there is still more to come.
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6.4 Wedgelets Enhanced Appearance Model

There are still some problems that need to be solved. Even though we have shown
that wedgelets can be used in conjunction with basic shape of the AM, we still
need to modify the decomposition to fit the demands imposed by the construction
of the training set, the appearance model is build from. As explained in chapter 1
the AM consists of shape landmarks, which are selected by an expert and ideally
should be exactly the same for each face. Then the texture is warped into a shape
free space or a reference shape to sample the texture from the same space. The
same constraints applies for the wedgelet decomposition. The shape issue is taken
care of by the AM, however since we are transforming the texture the resulting
texture or decomposition has to meet the demands the texture meets in the shape
free space. The problem lies within the tree structure. If we compress each image
individually, we would then end up with just as many different trees as there are
images in the training set. Fig. 6.11 show the dissimilarity in the tree structure. It
is not only the tree it self but also the end nodes that are very likely to be different
since theses are not orthogonal splits but just affine and therefor have many possible
configurations. If we just decomposed each image individually we would end up
with images living in different feature spaces. It is actually possible to end up with
similar tree structures but different leaves since it is actually these that make up
the basis for the image. This dissimilarity results in a problem when we create the
statistical model, the model need totally isomorphic trees as shown in Fig. 6.12
otherwise it is not possible to create a statistical model. Obviously this is due to
the fact that the observations need to live in the same space, if they did not live in
the same space then a model would not make any sense whatsoever. So this has
to be solved or the wedgelet decomposition in conjunction with the AM becomes
more or less useless and the wavelets would be a better decomposition since they
produce a more pleasing result visually. There are several ways to ensure the

Figure 6.11: 3 nonisomrphic trees.

isomorphic sub trees. One way is to employ graph matching however the wedgelet
decomposition almost gives us the instant answer to how to go about this. Since a
very well known way of making parameter estimation in regression trees is cross
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Figure 6.12: 3 isomorphic trees.

validation, why not use it in these settings. The easiest way to ensure that the trees
in the decomposition, is simply to make a joint wedgelet decomposition of all the
images at the same time. This leads to the use of cross validation as explained in
section 2.2, to ensure that we get the best possible solution taking all the images
into consideration.

6.5 Cross Validation in the Wedgelet Decomposition

Lets formulate how cross validation is used in the construction of the wedgelet tree.
Let the regression model that predicts the pixel intensity at the ith image coordinate
xi in the kth image, yki, with a constant ckm in each region Rm be given by

f̂k(x) =
∑

m

ckmI{xi ∈ Rm} (6.4)

For the sum of squared error loss criterion
∑

i ‖(yki − fk(xi)‖2 we see that opti-
mal ĉkm is just the average of yki in region Rm, ĉkm = ave(yki|xi ∈ Rm).The
optimal partitioning is found by a bottom-up approach as explained in chapter
4. For each triangle at each level we seek the model that minimizes the K-fold
cross-validation estimate of the prediction error across all affine splits/no split. Let
κ : {1, . . . , n} 7→ {1, . . . ,K} be an indexing function that indicates the partition
to which training object (image) k = 1, . . . , n is allocated by randomization, and
denote by ŝ(−κ(k)) the split estimated with the κ(k)’th part removed. Ra(s) and
Rb(s) are the regions resulting from splitting a triangle by an affine split s, andRc is
the entire triangle. Furthermore, let the regression parameters from the kth image
resulting from applying the split s be

ĉkm = average(yki|xi ∈ Rm), m ∈ {a(s), b(s), c}
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Then the cross validation errors become

CVEsplit =

n∑

k=1

∑

xi∈Ra(ŝ(−κ(k)))

‖yi − ĉk,a(ŝ(−κ(k)))‖2

+
∑

xi∈Rb(ŝ(−κ(k)))

‖yi − ĉk,b(ŝ(−κ(k)))‖2

CVEno split =

n∑

k=1

∑

xi∈Rc

‖yi − ĉk,c‖2

The crossvalidation is computational demanding, however there is a shortcut. Since
the model is linear, that is across the regression trees i.e. a leaf can be written as
y=ax+b the Generalized Cross Validation (GCV) which is an approximation to the
leave one out cross validation should be able to improve the performance of the
algorithm significantly. The GCV is written as

GCV =
1

N

N∑

i=1

[
yi − f̂(xi)

1− Si,i

]2

(6.5)

where S is the hat-matrix in the regression.

6.5.1 Complexity Penalty

Next we focus on the complexity term. The entire algorithm is designed to be
recursive, this means that we do not know the total number of leaves, however, we
know the local area and we know the area of the root. We can also calculate the
variance over the data set i.e. image, a normal factor to include in CPRSS, hence
we get the following penalty for complexity

#P =
Aroot

Atriangle

giving

CP = const · σ ·#P
(6.6)

We can now use the wedgelet decomposition on a training set for an appearance
model. Fig. 6.13 show the algorithm at work and we are able to decompose the
images using the same decomposition for all images. There are of cause other
methods for ensuring isomorphic trees, as mentioned they come from the field of
graph theory. Methods such as tree multiplication could be used, which would
produce the largest common isomorphic subtree. But also a method that grow and
collapses branches can be used to modify the trees so that they become isomorphic.
As can be seen from fig. 6.13 the triangulation is exactly the same for all images,
this means that their wedgelet trees are isomorphic. Further more if we move them
into the same reference shape then the mean value within each subdivision would
be the only way of distinguishing between the faces. We now have the desired
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building blocks for creating a appearance model. The wedgelets now becomes
our observations where the degenerate are one observation an the nondegenerate
are two, one for each value. Fig. C.10(a), C.10(b), C.7(c) and 6.14(d) shows the
resulting wedgelet based AM. For further examples see app. C. So now we have
shown that it is possible to use wedgelet decomposition for creating AM, and that
the models are informative. What happens is that in the AM the shape model is
unchanged but the texture vector which often reaches sizes of 10000+ and 30000+
for color images as here are reduced considerably. Hence the real reduction in the
model comes from the compression of the texture which has actually been changed
to a wedgelet vector. This reduction of transforming the texture to wedgelets is the
actual optimization of the AAM as will be explained in the next chapter.
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Figure 6.13: 4 Isomorphic faces decomposed at the same time
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(a) (b) (c) (d)

Figure 6.14: (a),(b),(c) and (d) shows the first two combined principal components
+- 3 std. and the mean shape. (a) and (b) with ratio 1 : 3 (c) and (d) with 1 : 40.



Chapter 7

Results of the Wedgelet Enhanced
AM

Having made all the building blocks for the wedgelet enhanced appearance model,
it’s time to view and discuss the results. First we mention that the work presented
so far has been used to write an article submitted GBMV(Generative-Model Based
Vision) in conjunction with CVPR, the article can be found in app. B.

7.1 Compression Ratios

We seek to improve the performance of the AAM through compression so let us
briefly discuss this. In this discussion there are two types of compression ratios.
There is the actual, as used normally as a measure in image compression i.e. the ra-
tio, which is not as straight forward to determine for wedgelets since they do have
some built in geometric property. Secondly there is the effective which depends
on the context in which the compressed data is used, in this thesis for increasing
the performance of the AAM. For normal image compression a wedgelet decom-
position strictly rely on the roots position, but given this we can reconstruct the
image. Still for each nondegenerate wedgelets we need to store two extra param-
eters, hence the two intersections of the splitting edge v1, v2 furthermore the two
mean values ca and cb. Due to these facts the actual compression ratio is approxi-
mately

ratio =
md + 4mn

ni

(7.1)

where ni is the number of pixels in the original image I , md is the number of
degenerate wedgelets and mn is the number of nondegenerate wedgelets. The ac-
tual placement of each triangle or dyadic is given in the tree structure relative to
the root. Therefor no parameters for this has to be stored within the decomposi-
tion tree. For the use of wedgelets in conjunction with the AAM there is a lot of
considerations so the compression ratios are not directly comparable in the normal
sense. The following section will elaborate on this.

42
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7.2 Performance Improvements in the AAM

The idea in this thesis to improve the performance of the appearance model by
reducing the amount of data in the calculations. The performance gain however is
not something we have been able to measure directly due to the implementation
task. In order to measure the exact improvement in performance, a totally new
AAM would have to be implemented. However, we can give some understanding
as to where the improvement lies. We have stated that the compression ratio is
no directly comparable to normal ratios, and the true gain of using wedgelets does
not come from the actual compression ratio, but rather the way that the wedgelets
are represented. As we know from chapter 1 the AM consists of a texture part
and of a shape part. This is where the optimization lies i.e. the performance gain.
The shape is unchanged but the texture is replaced by wedgelets and since the
texture is dependent on the shape some of the geometrical overhead in wedgelets
can be ignored. The AM is now based on shape and wedgelets which is a much
sparser representation of the image. How does this then reduce the computational
complexity of the AAM?. The optimization lies within the core of the AAM i.e.
the fitting described in chapter 1. If we go back to the fitting of the model on to
a new image we know that first a shape is projected onto the image we want to
sample from. Having projected the shape onto the image we are able to sample the
texture into the reference shape. These two steps remains the same for the AAM,
however, the next step where we project the texture on to the reference shape is
change or improved. We recall (1.9)

t = t̂ + Qtc

which is the projection of the texture onto the reference shape. For each iteration
this projection has to be made in order to estimate the changes in the parameters
c. Lets say that the texture consists of 10000 samples and the sparse model of the
AM consists of 23 parameters, then we have a projection matrix Qt of 10000× 23.
But using a wedgelet decomposition with a pseudo compression ratio of 1:10 we
have a texture vector or wedgelet vector of only a 1000× 23 which makes the ratio
count as saved calculations in each iteration of the appearance model regarding the
texture. This is a huge improvement of the AAM since this enables us to use it on
images with much higher resolution. Actually having the wedgelet in the AAM it
would be possible to directly use (1.10) repeated here for convenience

r(p) = ts − tm

where tm is the model texture in this case the wedgelet value and ts is the texture
sampled from the image. This reduces the computational power needed signifi-
cantly in the inner loop. There is however still some calculation that cannot be re-
duced. The sampling of the texture from the image after having projected the shape
on to the image is hard to optimize since the original image is not wedgelet decom-
posed. Other methods has been used for applying compression to the AAM, Wol-
stenholme, Taylor [6] and Forchhammer and Stegmann [7] has both used wavelets
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for compressing the texture model with great success with respect to the fit. How-
ever, performance wise the wavelet decomposition has proven to slow the calcu-
lations considerably. The explanation for this lies in the basis shift that has to be
performed to move the data from the pixel basis to the wavelet basis and vice versa.
To compare pixel intensities as in (1.10) the basis has to be the same and since the
model is build on wavelets, the data has to be transformed in order to make the
comparison needed to calculate the perturbation for the next iteration. Wedgelets
compared to wavelets are directly transferable to the pixel domain i.e. the operation
needed for the basis shift is much simpler than the ones needed for the wavelets,
hence with wedgelets we will get a faster algorithm. Having this in mind, it seems
all though the wavelet decomposition offers some compression this reduction in
information cannot be used in the AAM at present. For optimizing the AAM wrt.
speed wedgelets would be an obvious choice.

7.3 Results of Fitting

We now turn to asses the quality of the performance achieved with the wedgelet
enhanced appearance model. Using a AAM the goodness of the fit is more vital
than the speed, so if the wedgelets enhanced AAM has an unacceptable goodness
of fit this way of optimizing the AAM has to be abandoned. The experiments for
evaluating the performance of the wedgelet based AAM has been carried out using
N-fold cross-validation in the construction of both the wedgelet decomposition of
the training set and the construction of the AAM. A total of 37 × 8 training sets
has been decomposed and 37 × 9 AAMs has been created. The average landmark
distance from model to ground truth is used to measure the performance. The
models are initialized using a displacement of 10% of the width and the height
from the optimal position in the x and y direction. First lets see the results of some
of the fittings achieved by the wedgelet enhanced AAM. The two models shown in
fig 6.14 has been used for fitting and the results can be seen in fig. C.12 and 7.2.
Both of the models perform quite good and there is not a huge difference in the fit
of the models even though they have a significant difference in compression ratios.
The model with the lowest compression (1 : 3) could be expected to have a better
performance, this is also the case but it is quite difficult to see the difference with
the naked eye. So To get a better idea of the performance lets take a look at the
results for all 8 compression ratios shown in fig. 7.3. To left we have the original
appearance model without compression and as can be seen from the plot there is
a sleight increase in the inaccuracy along with the increase compression ratio. As
could be expected none of the wedgelet based models out perform the original
model. On the other hand the results are quite good and a deviation from the
original model of approximately a pixel or less is considered as a very good result
and hence lead us to state that wedgelet enhanced appearance model is success
full. Experiments on compression of the texture using wavelets [7] has shown that
the images can be compressed to a ratio of 1 : 44 without significant reduction



7.3. RESULTS OF FITTING 45

Figure 7.1: The fit of the AAM at 1 : 3 ratio.
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Figure 7.2: The fit of the AAM at 1 : 44 ratio.
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in segmentation performance. However, these experiments were carried out on
gray scale images and therefore the results are not directly comparable with the
experiments conducted in this thesis. The slight decrease in performance seen
as the compression ratio increases is limited to approximately a pixel over the
increase from 1 : 3 to 1 : 44 see Fig 7.3
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Figure 7.3: The average landmark distance from model to ground truth, a n-fold
cross-validation test of the performance of the AAM.

7.3.1 Compression Limit

There is an upper limit for the compression ratio that can be achieved with a
wedgelet decomposition in these settings, due to the fact that we have a reference
shape consisting of 95 triangles. This ratio is approximately 1 : 300, and the same
goes for wavelet. To take the wedgelet model to the limit additional experiments
has been conducted. Due to the excessive amount of calculations, i.e. a time con-
suming task, the results here are only based on 6 models Fig 7.4. Anyway they
show with conviction that the model performs well with compression ratios up to
1:115 results, ratios unreachable with wavelets. The results in Fig 7.4 are leave-one
out using 37 images, but only on 6 first images. Even though the figure shows that
the performance increases at higher ratios, there is some uncertainty that makes the
results for the ratio of 1 : 152 questionable.
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Figure 7.4: The average landmark distance from model to ground truth, a cross-
validation test of the performance of the AAM at high ratio.

7.4 Implementation Issues

The algorithms used for doing this implementation has primarily been held in a
recursive nature. This of course has some disadvantages but they are far exceeded
by the benefits. The choice of recursive algorithms has obviously been inspired
by the tree structure, since most algorithms for tree structures are recursive. All
the formulations of the algorithms cam be found in appendix A. The choice of
language has been Java, but a more appropriate language would have been c or
c++ because of the computational demanding algorithms, however, there is a small
benefit, the implementation runs on all platforms supporting Java. Some of the
decomposition have taken up to 8 hours to complete on a high performance PC, so
future implementations should be optimized. It is important to mention that these
algorithms developed for the wedgelet decomposition are very easy to implement
using parallel programming techniques. We would therefor advice people that wish
to implement this to pay a lot of attention to optimizing of the calculations and
execution structure of the code.
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Markov Random Fields

Markov Random Fields (MRF) is now introduced . The purpose of the introduction
is to use MRF for regularization on the geometry of the wedgelet decomposition.

MRF has its origin in Markov chains described in the literature by the Russian
mathematician A. A. Markov (1856-1922) who was one of the first to venture into
this field. The subject has since then been studied and applied in various fields and
is closely associated with Gibbs Random Fields (GRF). However MRF is merely
the means to get to the goal. The problem that MRF is the solution to has its ori-
gin in Bayesian estimation theory, and therefore a good start is here with a short
introduction.

8.1 Bayesian Estimation Theory

The basic idea is that we have some observation I say an image which is a glimpse
of some underlying model W . Let us call this the world where I is some observa-
tion with occlusions and noise. A very good example is an image I of a forest W .
Here the image taken is first of all discretized which gives a loss of information.
Since the image is of a forest we know that the trees probably obscure the sight so
that some other trees, animals etc. are occluded. The camera might add some noise
to the image and we than end up with a observation which lacks some information.
What we really want is to find the most likely estimate of the world W given the
observation I called maximum a posterior. So to formalize this a little bit we write.

P (W |I) =
P (W )P (I|W )

P (I)
(8.1)

This is the basically Bayes theorem for conditional probability, however, this is
also the model we want to use. So what we are looking for is

argmaxWP (W |I) = argmaxW
P (W )P (I|W )

P (I)
(8.2)

49
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But since I is our observation P (I) becomes a constant c then (8.1) yielding

cP (W |I) = P (W )P (I|W )

Hence

P (W |I) ∝P (W )P (I|W )

(8.3)

So to explain a little better what this model really expresses we say that P (W |I)
is the conditional probability for a world W given the image I . P(W) is what we
call the prior probability, this tells us something about the world. In the framework
here we primarily want to use this for regularization. And finally we have the
likelihood which tells us how much our observation resembles a given world W .
We are working with finite spaces so in theory it would be possible for a given
image I to calculate the probability of all possible worlds, however in practice
this is computational infeasible. For a simple classification task on a 50 by 50
pixel image with two classes to discriminate between it would be 22500 possible
configuration that would have to be estimated. However MRF proves very useful
for solving this kind of problem as the following will show.

8.2 The Origin of Markov Random Fields

Going back to the origin of the MRF we start with the Markov chain. The Markov
chain is Markov property + positivity (i.e. positive probability of all outcomes at all
locations). The Markov chain states that you have the same amount of information
looking at the previous state that you would have if you knew of all previous states.
Therefore a process is called a Markov chain iff

P{X(n) = kn|X(n− 1) = kn−1 ∧ · · · ∧X(0) = k0}
= P{X(n) = kn||X(n− 1) = kn−1}

for all 1 ≤k0, k1, k2 . . . , kn ≤ m, all n ∈ N.

(8.4)

So how does this extend to images

8.3 Cliques and Neighborhood

To understand MRF and GRF a bit better lets have a look at the neighborhood
definition def. 8.1. From (8.4) it is obvious that the neighborhood can be stated the
following way

Definition 9 Let S={s0, s1 . . . , s2} be a set of sites. A neighborhood system N={Ns, s ∈
S} is a collection of subsets of S for which s /∈ Ns and r ∈ Ns ⇔ s ∈ Nr. Ns are
the neighbors of s.

In most cases when working with images we have a quadratic grid of pixels. This
means that each pixel or site in the grid have 4 neighbors if they are not at the border
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of the image. Pixels have 3 neighbors if they are at the boarder but not in a corner
of the image and the corner pixels have 2 neighbors. Other types of neighborhoods
apart from square are triangular and hexagonal see Fig. 8.1. The neighborhood

Figure 8.1: Neighborhoods: Square, triangular and hexagonal grid.

however is not limited to 2 dimensions and it is easy to imagine the voxel (pixel in
3d) version of the neighborhood. The neighborhood can include more than just the
sites that have a common boarder with the site see Fig. 8.2. We talk about n-order
neighborhood. Fig. 8.2 shows up till 5th order neighborhood, the lower-order are
derived by excluding the sites with higher value than the desired order.

Figure 8.2: Up til 5th order neighborhood.

Cliques are have a slightly different definition (def. 10) and they are used to
measure the sites similarity with its neighborhood.

Definition 10 A Clique C is a subset of S for which every pair of sites are neigh-
bors. Note that a single site is also viewed as cliques.

If site i and j are neighbors we write i ∼ j The set of all possible configuration
on S is called Ω.

8.4 Gibbs Random Fields

Gibbs used in 1901 the distribution in (8.5) to express the probability of a sys-
tem being in a state with a certain energy. However he was not the first, Boltz-
mann came up with the similar distribution while investigating the probability of a
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Figure 8.3: Up til second order cliques used on a rectangular grid.

molecule being in a state with a certain energy ε in 1877 (8.6).

let x denote a state in state space Ω and U : Ω→ R be the energy function

P (X =x) =
1

Z
e−

1
T

U(x)

where

Z =
∑

x∈Ω

e−
1
T

U(x)

(8.5)

P (ε) =
1

Z
e−

1
Tk

ε (8.6)

In both (8.5) and (8.6) the Z is called the partitioning function and is a normaliza-
tion that makes the probabilities sum to one. The most famous application of GRF
is the original Ising model. In 1925 Ising [29] used this distribution in a binary
version to describe the properties of ferrite material as a magnetic dipole. This
model has also been used in image analysis along with the natural extension to the
multi label version namely the Potts [16] model which is well suited for improving
Bayesian classification etc.

8.5 Markov Random Fields

Now we extend (8.4) to an n-dimensional grid, then to estimate the local value we
only have to look at the local neighbors. This is a very nice property when dealing
with images, and other scenarios with a huge amount of data. Now we don’t have
to take all data into account when estimating the probability of the local label or
value we simply just include a certain limited neighborhood suiting for the task.
So we define a Markov random field as follows.

Definition 11 A random field X is a Markov random field with respect to the
neighborhood system N={Ns, s ∈ S} iff

1. P (X = x) > 0 for all x ∈ Ω
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2. P (Xs = xs|Xr = xr, r 6= s)=P (Xs = xs|Xr = xr, r ∈ Ns) for all s ∈ S
and x ∈ Ω

Def. 11 and 8.4 are very alike. In (8.4) the neighborhood is obviously the
previous observation and the cliques are also very simple. Basically a Markov
Random Field is just a Markov chain with dimensions added to the neighborhood
system. We now set n = 2 i.e. the number of dimensions to two because we do not
need to go into higher dimensions in this thesis, however, Markov random fields
can be applied any n-dimensional space where cliques and a neighborhood can be
defined. As it often is with images in practice we encounter a border problem as
with the Fourier transform. In this case the neighborhood size decreases at the
boundary of the image so depending on the application of the Markov Random
Field a solution to this problem has to be found. Most often the missing neighbors
are ignored adding more weight to the remaining or they are simply set to have
neutral influence hence yielding the same result. Now to show the connection
between MRF and GRF we introduce the Hammersley-Clifford theorem 1

Theorem 1 (Hammersley-Clifford)
F is an MRF on S with Respect to N iff F is a GRF on S with respect to N

A lot of proofs of Theorem 1 exists and one of them can be found in [13] p.14.

8.6 The Energy Function

Having established the correspondence between MRF and GRF we take brief a
look on the energy function. This is the function that measures the energy at a
given site. The energy function has to be constructed specially to fit the given sce-
nario e.g. the Ising model (8.8) basically measures 1 or 0, where α and the β’s
are weights that determines the influence of the individual cliques. This makes it
possible to control the influence of the neighboring sites proportional to the influ-
ence of the label it already has. A natural extension to the Ising model is the Potts
model. This is as mentioned a multi label version of the Ising model frequently
used for classification in conjunction with a Bayes classifier. The reason is that
when using a Bayes classifier the image and boarders between two groups tend to
be a little noisy. The Potts model offers some smoothing where the neighborhood
is taken into account and thus produces more homogeneous classification results.

U(x) = −α
∑

i

xi − β1

∑

i↔j

xixj − β2

∑

ilj
xixj (8.7)

yielding the following probability for a given configuration

P (x = X) =
1

Z
e−α

P

i xi−β1
P

i↔j xixj−β2
P

ilj xixj (8.8)

The energy function has to reflect the properties of the world you are modeling i.e.
a posteriori probability as the Ising model does. If it is edge enhancing perhaps
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some step function has to be included to trigger on large edges i.e. steep texture
changes. This influence on the neighboring sites causes the MRF-adjustments to
become iterative, we therefor need to update the sites in some order preferably
independent of the neighboring sites. A way of selecting a local configuration
among all local possibilities must also be found, both will be explained in the
following section.

8.7 Update Scheme

There are numerous update schemes i.e. selecting the site to update and how to
do this, however, to stay within the scope of this thesis we only describe the Gibbs
sampler or the heat bath algorithm and random selection or the ICM. For further
update schemes the reader i referred to [15]and [13] where this and other schemes
are described. Given a finite MRF we want to minimize the energy to find the
optimal global solution.

8.7.1 Gibbs Sampler

We start with Gibbs sampler which in general goes as follows.

1. Start with configuration x

2. Choose a site s

3. Replace xs by a value sampled from the conditional distribution of Xs given
the values of the neighborhood of s

4. If not stop the goto 2

Assuming that we have selected a site to update we calculate the possibility for
each local configuration in correspondence with configuration. Having assigned a
probability to a given configuration there are two obvious ways of selecting the lo-
cal configuration. The first method is to choose the configuration with the highest
probability in every sweep. This method is known as the ICM (Iterated Conditional
Modes) and is a greedy algorithm that maximizes the local conditional probabili-
ties. The other is the Gibbs sampler described above which is basically a random-
ization weighted by the probability for the given configuration. These schemes
gives a basic way of updating the image so the only thing left is to decide a way to
visit all sites.

8.7.2 Selecting the Visitation Scheme

We suggest two different visitation schemes. First a random visitation scheme
where we chose the site randomly that is simply assign equal probability for next
visit being a given site and then rolling a dice. This, however, is quite slow and is
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computational impractical. To optimize the speed and even enable parallel process-
ing a checkerboard visitation scheme is proposed for rectangular grids. This means
that the grids can be updated in two sweeps, first the black and then the white. This
makes sure that all sites are visited after two sweeps and that no neighboring sites
are visited in the same sweep.

8.7.3 Simulated Annealing

From the Gibbs distribution we still need to discuss the temperature, which can be
used to optimize the solution. Originally the temperature was used in simulations
of the motion of molecules in gases. From chemistry and thermo dynamics we
know that molecules moves faster and due to their impact with other molecules,
they move more randomly also with higher temperature. By increasing the tem-
perature the configuration of the molecules becomes more random. This causes
the probability of a given all possible configuration to become almost equal for
infinite high temperature. Having a system where f is any configuration in the
configuration space F then the configuration f will have the following probability

P (f)T = [P (f)]
1
T T > 0 (8.9)

where T is the temperature. From this it is easily seen that

for T →∞, P (f)t goes towards a uniform distribution

for T → 0, P (f)t will concentrate around peaks
(8.10)

This is exactly what we want to achieve by simulated annealing namely that all
configurations initially have the same or almost the same probability and then as
we cool down some states are emphasized, hereby hopefully helping the algorithm
avoiding local minima. Fig. 8.4 shows the energy of a system at two different tem-
peratures, T1 and T2,where T1 is high temperature and T2 is low. As can be seen
from the figure it is easier to move towards the global minima at the high temper-
ature than at the low temperature. After establishing what the temperature do, and
seeing on how (8.5) relates to the distribution, a way of changing the temperature
must be devised called a cooling scheme. The literature suggest several solution
but the cooling scheme often has to be devised for the given task, however, one fre-
quently used is which can be seen in (8.11) from [13] for other schemes the reader
is referred to [13]. It should be noted that the simulated annealing only makes
sense if used with the Gibbs sampler. The temperature will have no effect if it is
used with the ICM.

T =
C

log(t+ 1)
(8.11)
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Figure 8.4: Simulated annealing: This shows the energy at two different tempera-
tures, hence giving a more equal probability of the possible states



Chapter 9

Regularization of the Geometry

The previous chapter introduced MRF. This chapter will explain how they have
been implemented on the wedgelet decomposition i.e. a regression tree.

As mentioned earlier wedgelets are basically edge detectors. This poses some
problems in the wedgelet decomposition because edges are continuous even across
boundaries. The basic wedgelet decomposition do not offer any solution to this.
However, Donoho suggest in [9] chaining to keep the continuous property and a
Markov model is suggested in [27]. The problem is that we have some observation
and a model of how the wedges are placed at the leaves, but from the wedgelet
decomposition we know that this has been calculated without consideration of the
neighbors to the individual wedgelets. We therefor end up with the situation in fig.
9.1(a) but as we know the edges are not always local but often global. What we
are rally seeking is a result like the solution in Fig. 9.1(b). This property can be

(a) (b)

Figure 9.1: (a) The wedgelet decomposition normally (b)The desired Result of the
final decomposition.
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ensured during the decomposition as in [27] or as a post processing of the wedgelet
decomposition. Focusing on a post processing, the problem at hand fits perfectly
into the bayesian estimation theory, i.e. we have some observations of some images
on which we want to impose a model. However not just any model, the most likely
model considered all possible configurations. Having chapter 8 in memory it is ob-
vious that a globally satisfying solution can be achieved through the use of MRF, a
method for solving this type of problems. This however leaves us with some tough
problems at hand. We have a recursive tree-structure due to the implementation of
the wedgelet decomposition. We have a scale issue, hence moving away from the
root through the tree structure is viewed as steps through scale space, which then
leaves us with the problem of neighbors that exist on different levels in the scale
space. Furthermore because of the tree structure neighbors do not have any knowl-
edge of each others existence. So the first problem at hand is to come up with a
recursive neighborhood solution in a multi scale tree-structure. The next problem
is to figure out an update procedure which has to be designed this multi-scale tree
structure, where a highly irregular neighborhood exist. Finally an energy function
has to be designed to suit the purpose of connecting edges across boundaries in
order to make the model work. We start with the first problem at hand, defining the
neighborhood.

9.1 Neighborhood and Cliques

Though we are working with triangles and though a different definition of neigh-
borhood already relationships exists, it is not as straight forward as could be ex-
pected. Normally a triangle has three neighbors as shown in Fig. 9.2 where the
dark gray triangles tn are the neighbors of ts, however, this is almost never case
when dealing with the result of a wedgelet decomposition. The wedgelets are as
described stored in a tree at multiple scales which might or might not be the same
among neighbors, therefore we somehow need to keep track of the neighborhood
through scale space. Fig. 9.3 shows a common scenario where there are four levels
of detail or four scales. This figure clearly illustrates the problems involved in im-
plementing the MRF in a tree-structure so the first step is to find a way to handle
the neighborhood through scale space. The scale space makes the most unpre-

Figure 9.2: The neighborhood of ts is the 3 triangle tn.
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Figure 9.3: This wedgelet decomposition shows how the number of neighbors can
vary

dictable property of the wedgelet decomposition the number of neighbors for each
wedgelet. As Fig. 9.3 shows, the number of neighbors vary with the level of detail
of the neighboring wedgelets, hence the number of neighbors can in theory vary
from zero (at scale zero or the root) to infinity. In practice however, there is often
only a few levels of difference between the scale of neighboring wedgelets and
therefore seldom more than eight neighbors to a given wedgelet. This rather ad-
vanced neighborhood has an influence on the choice of cliques. Cliques are defined
from their neighborhood, but our neighborhood varies so this has to be taken into
account. First of all it’s very difficult to define a direction on the neighborhood, if
one has to be imposed it would be orientation from a global reference point. This is
however not especially important in our case as in [15] where the grid orientation
is a very important part of the MRF. We are concerned with edges so we want to
define the cliques to use, but without an orientation. The neighborhood makes it
difficult to make higher order cliques and it makes no sense with the purpose in
mind to define a larger neighborhood so we restrict ourselves to first order. This
leaves us with the cliques shown in Fig. 9.4. By adding the same weight to each
of the last three cliques we achieve rotational invariance. However we cannot say

Figure 9.4: The 1st. order cliques for a regular triangle grid.

that we only and up with these configurations in the first order neighborhood. We
may end up with a lot of cliques, but they will all be of the form in Fig. 9.4 with
simple rotation imposed.
Having discussed the cliques and decided on the order to use in our model we
move on. Since the wedgelets have no knowledge of it’s neighbors we have to find
a way to pass that information to it. The parent of a wedgelet, given the wedgelet
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is not the root, knows of at least one of the wedgelets neighbors since these are
siblings and hence children of the same parent. For the center wedgelet this is
sufficient and hence it can get all the needed information this way. But for the chil-
dren at the vertices of the parent this is far from sufficient information. If we do
this recursively then the parent of the parent might hold that information otherwise
continuing recursively until the root will eventually give the needed information
about the neighborhood. The solution derived from this can be formulated as a
recursive algorithm see app. A. Fig. 9.5 illustrates how the information is held.
The gray triangle need to know it’s neighbors, it’s parent hold information about
two of its neighbors. However to obtain the information about the last neighbor,
the parent of the parent has to be involved.

Figure 9.5: Information about neighborhood.

9.2 Boundaries and Penalties

Since we are only interested in optimizing the edges across boundaries we only
need to pass the point of intersection in a nondegenerate wedgelet, to the neighbors
and not the entire wedgelet. We need to somehow favor a configuration with con-
necting edges and penalize configurations with discontinuities. We want to empha-
size this property, but we don’t want to force connectivity to edges that do not exist
so this also has to be balanced somehow. There has been written a lot of material
about edge-enhancing MRF [13][14], and a lot of effort has been put into clari-
fying the properties of edges. First of all edges are continuous, but the wedgelet
approach makes the boarders piecewise linear and hereby discontinuous already in
the 1’st order derivative. What really is important in the configuration is the point
of intersection of the border and the edge in the wedgelet hence we approach an
espalier construction. It is these intersections we want to match in the neighboring
wedgelets, and hence make the edges connect across the boundary. The boarder of
a wedgelet is basically continuous and stretches across a finite number of pixels.
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Given a discrete image as here, the steps is chosen to be approximately the size of
a pixel since this is the resolution of the image. The penalty for misalignment for
edges across the boundary between two wedgelets should be regarded as continu-
ous, but will in reality be discretized by the chosen step size. Even though we in
theory could make the borders continuous, it would quickly become computational
infeasible since the number of configurations would increase exponential with the
number of steps along each side.
To find a soothing energy function U(x) we look at the wedges which we want
to modify. Since we want to emphasize continuous edges across boundaries, the
penalty should be a function of the distance between the intersections hereby fa-
voring continuity. We also want to include the original CPRSS (4.4) in the model
since it is this penalty the decomposition is built from. Several loss functions can
be chosen all with different properties, and having the Potts model in mind we can
make a similar energy function. We start with the discontinuity penalty hence we
introduce a delta function that penalizes discontinuity across the boundaries.

U(x)d = |a− x|+ δ(|a− x|) · p,
where x is an internal intersection point, a is an external intersection point and

p a number between 0 and 1

δ(|a− x|) =

{
if (|a− x| = 0) 0

else 1

(9.1)

Calculation of |a − x| is done using homogeneous barycentric coordinates which
makes 0 ≤ U(x)d ≤ 1 + p. Fig. 9.6 shows a boarder between two wedgelets with
misalignment, and how the misalignment penalty is calculated. This has somehow

x

a

|a−x|

Figure 9.6: The penalty function.

to be weighted against the measure used in the wedgelet decomposition and we
therefore take a look to the Potts or Ising model. We include the same penalty used
in the wedgelet decomposition formed by the texture using cross validation and to
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save computational power we store the results during the wedgelet decomposition.
This will of cause take up a lot of memory but will save the computational power
since the CPRSS is constant for each configuration. The PRSS (4.3) is added to
the energy function with a weight α hence the analogy to the Potts or Ising model.
The penalty for misalignment can then be adjusted by the parameter β also similar
to the Potts model. This yield a candidate for the energy function which is given
in the following. The CPRSS (4.4) is in the following denoted U(x)p and the
displacement penalty is denoted U(x)d.

U(x) = αU(x)p + βU(x)dw (9.2)

where α and β are some constants chosen appropriate and w is some weight
i.e. the actual area of the triangle. where α, β1 and β2 are some constants cho-
sen appropriate. This will add some weight to the energy and hence emphasize
continuities and disfavor discontinuities.

9.2.1 Simulated Annealing

To minimize the possibility of ending up in a local minima we employ simulated
annealing. The cooling scheme used is (9.3). From this we derive the following
probability function adapting to a Gibbs distribution.

T =
C

log(t+ 1)
(9.3)

P (X = x) =
1

Z
e−

1
T

(αU(x)p+βU(x)d) (9.4)

9.3 Visitation Scheme

We now have to define a visitation scheme. For the visitation scheme as with the
neighborhood it is not as simple as it might look due to the tree structure and the
recursive nature of the implementation. As explained in sec. 9.1 the number of
neighbors is not predicable, hence a scheme that works on such a scenario is must
be devised. We want to use a visitations scheme that is as similar as possible to
the checkerboard approach described in chapter 8. This mean that a sweep method
with multiple sweeps making sure all are updated more or less independently must
be constructed. Starting with a simple setup as shown in fig. 9.2, it’s straight
forward to update as intended. In first sweep the center ts and second sweep the
outer ones tn. This seems to work for this small grid, but it is not straight forward
for larger grids as Fig. 9.7 left, here a four step procedure must be employed as fig.
9.7 shows to ensure a proper update scheme. If we apply the two-step procedure
recursively, however, as shown if Fig 9.8 left, the results become much more like
the checkerboard. Compared to the update scheme to the right, which is the same
as in Fig. 9.7, there is in practice so small a difference that it can be ignored. It
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Figure 9.7: two different visitation schemes, one with two sweeps and one with
four.

is also worth having in mind that this done using parallel processing hence every
update sweep is actually ordered, this just adds to the confidence in the selected
update scheme. We have now devised a update procedure that fits our scenario, or
at least the core-update within the tree and the pseudo code can be found in app. A.
However, we still have to deal with the initial triangulation of the mean shape Fig.
1.2 which also displays an irregular behavior concerning the neighborhood but in a
different way. Even though each triangle at most has three triangles as neighbors,
they are not of the same size and do not have the same angles. This results in
some issues that has to dealt with i.e. two neighbors might share a neighbor etc.
A simple look at the mean shape just emphasizes the issues that needs to be dealt
with in comparison to the regular grids in Fig. 8.1. The problem however, is only
present at the root of the tree and not within the tree. Regarding each triangle as the

Figure 9.8: Two different visitationschemes for triangles.

root of a wedgelet decomposition tree, and having the recursive update algorithm
just presented in mind, we propose a very simple update algorithm with only two
sweeps. This will then be the update scheme for the wedgelet decomposition tree
for the AM. The scheme consist of two vectors S1 and S2, S1 containing all the
trees to be updated in the first sweep and S2 all the trees to be updated in the second
sweep. All we need now is to populate the two vectors. Letting W denote all
wedgelet-trees, p1 and p2 denoting two pointers each pointing at the 0′th element
of S1 and S2 respectively, the vectors are populated in the following way.

1. Put all trees wt ∈W in to the vector S.

2. Remove the first element in S and insert this into S1
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3. move the pointer p1 to the next element in S1

4. Trying with all elements in S, remove from S and inset into S2 all neighbors
to the element that p1 points to.

5. Move the pointer p2 to the next element in S2

6. Trying with all elements in S, remove from S and inset into S1 all neighbors
to the element that p2 points to.

7. Repeat from 3 until S is empty

Fig. 9.9 shows the result of this algorithm. As can be seen there are some neighbors
that are updated in the same sweep but due to the recursive update of the trees and
the fact that its the children that will be updated, this effect will be canceled out.

Figure 9.9: The visitation scheme at the root of the wedgelet decomposition.

9.3.1 Update Scheme

The update schemes presented in chapter 8 can used directly without modifications.
The experiments have therefor be conducted using the Gibbs sampler and the ICM.



Chapter 10

Results of the MRF
Implementation

We have implemented the MRF on wedgelets to help restore some geometric prop-
erties i.e. connection edges so our result must primarily be evaluated visually. This
mean that we prefer is something that look a bit like geodesic curves corresponding
to steep changes in the underlying texture. We assume that the initial configuration
of the wedges is not far from the desired solution since we incorporate some of the
measures used in the wedgelet decomposition. To verify this we start by taking a
look at one of the decomposed images (Fig. 10) to see how the initial configuration
of the edges look. From Fig. 10 it is obvious that the edges connect some places
and don’t at others. Since we are building our model from multiple images using
cross validation this comes as no surprise due to the fact that the images is not
the same and we therefor expect the edges in the individual images to be different.
This of cause have the effect that there is no underlying edge model some places
and therefor nothing to connect. However since the images have been annotated
identically we expect some of the edges to match across the collection of images
so it makes good sense to enforce the connecting edges property most places. This
is, as explained, a balance that has to be maintained. If the edges are not connect-
ing in the underlying model we will not enforce such a property, but if they are
connecting in the underlying image we want the edges to connect. The way this
balance in maintained is through experiments to determine the parameters α and β
from (9.4) repeated here for convenience.

P (X = x) =
1

Z
e−

1
T

(αU(x)p+βU(x)d) (10.1)

An obvious measure of the desired solution is the energy which we seek to min-
imize i.e. maximizing the probability. When seeking the optimal solution given
our energy function we should see a decrease in global energy as we approach the
optimal solution. Let us first take a look at some of the results. Fig. 10.2(a) is a
plot of the energy against the number of iterations using the gibbs sampler. For
assuring that we are in a local minima we finish off with the ICM for a couple of

65
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Figure 10.1: The original wedgelet decomposition without geometric constraints

iteration which removes flicker in the energy. As can be seen from the energy we
end up almost exactly at the same energy level whether we use 19000 or 59000 it-
erations. Fig. 10.5(a) and 10.5(b) shows that both the ICM and the Gibbs sampler
works and end up with almost the same solution. There are two plausible reasons
for this. First, it could be that the initial solution is very close to the optimal solu-
tion and therefore we end up in the same minima no matter which scheme we use.
Otherwise we are stuck in a local minima which we cannot escape from. However
the experiments has shown that even if we start at a very high temperature 106 the
solution still remains the same and we therefor discard the theory of being stuck
a local minima. What is left is a single global minima which makes the ICM so-
lution sufficient since the underlying function seems to be nice and smooth. As
Fig. 10.5(a) and 10.5(b) clearly show the intended geometric property is enforced,
hence the edges are connected. The balance between the connection of the edges
and the underlying image seems to be maintained in both images. To find out if
the ICM find the global minima several images are regularized using the ICM. The
results are shown in Fig. 10.3 As can be seen the results show that the ICM is the
obvious choice of update scheme when using MRF for regularizing the wedgelet
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Figure 10.2: (a) The Energy as a function of the number iterations (b) The result
after 19000 iterations (c) The result after 59000 iterations.

decomposition and is therefore the update scheme used in the remaining experi-
ments.
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(a) (b)

Figure 10.3: (a) Gibbs sampler and ICM to finish with (b) ICM.

10.0.2 The Energy Function

It remains to summarize the parameters used in the energy function. As described
in chapter 9 the energy function used consists of a δ-function for misalignment and
some displacement function based on the distance between misaligned intersec-
tions. We repeat (9.2) here for convenience

U(x)d = |a− x|+ δ(|a − x|) · p,
where x is an internal intersection point, a is an external intersection point and

p a number between 0 and 1

δ(|a− x|) =

{
if (|a− x| = 0) 0

else 1

(10.2)

given the following energy function used in these experiments

P (x = X) =
1

Z
= e−(αCPRSS+β1|a−x|+β2δ(|a−x|)) (10.3)

where α is set to 1, β1 between 0.01 and 100 mostly 5 and β2 fixed at 0.2.



10.1. SEGMENTATION IMPROVEMENT OF THE WEDGELET ENHANCED AM69

10.1 Segmentation Improvement of the wedgelet enhanced
AM

It seems that for higher compression ratios the MRF modified wedgelet enhanced
AM performs better. The reason could be that the general contour in the underly-
ing model enhances the performance of the wedgelet enhanced appearance model.
The results here are based on a very small test set due to lack of time to do a thor-
ough test. The indications however are quite clear since all values of the fit with
the MRF modified model are less or equal in pt. to pt distance compared to their
non-modified counter part. As could be expected the influence of the MRF regu-
larization decreases with compression ratio. Fig. 10.4 shows the results achieved
by the MRF modified wedgelet enhanced appearance model. Forchhammer and
Stegmann [7] has achvied results with wavelets that outperform the unmodified
AAM on the segmetation accuracy so this improvement comes as no supprise.
Another clear indication that there is an underlying image is that even though the
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Figure 10.4: The result of the comparison between wedgelet enhanced AM with
and without MRF.

models are built from slightly different set of images the model is the same as Fig.
10.5 shows. This also supports the thought of the global minima achieved by the
ICM.
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(a) (b)

Figure 10.5: (a) Without image 16, 1:11 ratio (b) Without image 17, 1:11 ratio



Chapter 11

Conclusion and Future Work

The results presented in this thesis are very promising and show that the speed of
the AAM can be increased without compromising the accuracy of the AAM. The
wedgelet enhanced AAM could potentially be used to initialize an AAM and then
use a full model for the last few iteration for improvement of the fit. The formu-
lation using triangles can easily be extended to higher dimensions, however one
should be aware that this also will significantly decrease the speed of the wedgelet
decomposition, but since this is done offline and only once, this disadvantage will
be disregarded in most cases. The Markov Random Field has proven successful
for improving the geometric properties of the model, it also seems that the MRF
does improve the performance of the AAM especially for high compression ratios
and makes the model more visually appealing. The MRF extension to the wedgelet
enhanced appearance model need however further testing to verify the results.

11.1 Conclusion

We have successfully described, implemented and tested a wedgelet decomposition
based on triangles derived from the original formulation proposed by Donoho [9].
We have shown that the derived triangular wedgelets can be used as a sparse im-
age base in the AAM without significantly reducing the performance of the AAM.
Furthermore it has been shown that in a true implementation of wedgelets with
triangular basis the AAM will due to the sparser basis be able to run much faster.
This makes it possible to apply the AAM to images with a much higher resolution
such as high resolution 2D images and the easy extension to 3D makes it possible
to apply the AAM to 3D images such as CT and MR images. A Markov Random
Field has been successfully applied to the wedgelet decomposition for regularizing
the geometric property of connecting edges across boundaries. Further more the
MRF has improved the segmentation accuracy of the wedgelet enhanced appear-
ance model
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11.2 Future Work

First of all an implementation of the AAM that takes full advantage of the wedgelet
basis should be implemented to measure the actual performance gain in terms of
speed. Furthermore the wedgelet decomposition of multiple images enforces a
rather rigid function upon the decomposition. If we instead allow a little displace-
ment of the edges through the images we would perhaps be able to build a better
AM. This would also cause some extra landmarks to be added to the training set
generated by the wedgelet decomposition. The implementation of the wedgelet
decomposition should be made for 3D to test if this is feasible at all. It should be
noted that Donoho discourages implementation in higher dimensions, but the use
of tetrahedrons should decrease the computational complexity for 3D calculations
from 12! to 4! i.e. the number of edges in a cube and a tetrahedron. Finally a thor-
ough test of the improvement the MRF enhancements offers should be conducted
to verify the results achieved in this thesis.



Appendix A

Pseudo Code

To ease further work the following section will describe all algorithms developed
for this thesis in pseudo code. The primary reason is that it is very difficult to get
into other peoples code, and secondly the code is better documented this way. The
following will be based on objects but with a couple of modifications this should
work in function based code as well. Lets shortly start with a brief overview of the
notation used in this section.

A.0.1 Notation

The notation is primarily Java-like i.e. object oriented hence
w.calc
mean the function calc executed on w.
this
mean the object the function belongs to. If the reader is familiar with classes, they
can be regarded as structs to which one can apply functions. A short example fol-
lows here:
Class Example

var : ex1 the definition of a variable belonging to the class Example

Classes can be embedded in other classes as follows

Class Example2

Example : ex1 the definition of class Example belonging to the class Example2

It should now be possible to read the following section
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A.1 Wedgelets

We start out with the wedgelet decomposition.We are primarily focussing on mak-
ing all algorithms recursive. This has of cause the disadvantage of huge memory
consumption but it makes the implementation much easier. We assume the image
data given and the interaction with the data is viewed as implicit where ever it
might be relevant. Since we work with triangles and in Barycentric coordinates 5
we need some classes first to hold the data.

A.1.1 Classes for the Wedgelets

Class Vertice
var : x the x coordinate if not used set to 0

var : y the y coordinate if not used set to 0

var : z the z coordinate if not used set to 0

The Vertice class is thought of as a vector, and hence we calculate the cross prod-
uct, inner product, sum and differences. Having defined a Vertice we define the
Edgelet class
Class Edgelet

vertice : v1 beginning Vertice
vertice : v2 ending Vertice

and hence the first wedgelet will look like this
Class Wedgelet

vertice : v1

vertice : v2

vertice : v3

edgelet : e if degenerate empty
var : ca if degenerate holds the mean value
var : cb if degenerate empty

We now expand the wedgelet so that it becomes a node in a tree and hereby useable
in the wedgelet decomposition described in chapter 6
Class Wedgelet

vertice : v1

vertice : v2

vertice : v3

edgelet : e if degenerate empty
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var : ca if degenerate holds the mean value
var : cb if degenerate empty
wedgelet : parent a pointer to the parent, if root then zero
wedgelet : childv1 a pointer to the child at v1 if leaf then zero
wedgelet : childv2 a pointer to the child at v2 if leaf then zero
wedgelet : childv3 a pointer to the child at v3 if leaf then zero
wedgelet : childCenter a pointer to the child at the center, if leaf then zero

A.1.2 Creating the Regression Tree

First we present the initialization algorithm. This procedure initializes the regres-
sion tree by subdividing a given number of times.

Algorithm Wedgelet.initialize(depth)
1. if depth<1
2. then return
3. else
4. depth-1;
5. p1← (0.5, 0.5, 0)
6. p2← (0, 0.5, 0.5)
7. p3← (0.5, 0, 0.5)
8. childv1←new Wedgelet(v1,p1 · v1+p1 · v2,p3 · v1+p3 · v3);
9. childv2←new Wedgelet(v2,p2 · v2+p2 · v3,p1 · v2+p1 · v1);
10. childv3←new Wedgelet(v3,p3 · v3+p3 · v1,p2 · v3+p2 · v2);
11. childCenter←new Wedgelet(p1 ·v1+p1 ·v2,p2 ·v2+p2 ·v3,p3 ·v3+p3 ·

v1);
12. childv1.initialize(depth);
13. childv2.initialize(depth);
14. childv3.initialize(depth);
15. childCenter.initialize(depth);
16. childv1.parent←this;
17. childv2.parent←this;
18. childv3.parent←this;
19. childCenter.parent←this;

where · denotes the inner product. We now define a function that calculates CPRSS
for a wedgelet

Algorithm Wedgelet.CPRSS(edge)
1. calculate ĉa
2. calculate ĉb
3. calculate CPRSS from (??)
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4. returnCPRSS

A function that calculates CPRSS without an edge is needed

Algorithm Wedgelet.CPRSSnoEdge
1. calculate CPRSSnoEdge

2. return CPRSSnoEdge

We now have the building blocks for the wedgelet decomposition for detailed
explanation go to page 31. We write the wedgelet decomposition the following
way

Algorithm Wedgelet.decompose()
1. childv1.decompose()
2. childv2.decompose()
3. childv3.decompose()
4. childCenter.decompose()
5. if collapsible
6. then
7. for all possible edges∈this
8. a← min(this.CPRSS) and e← Edge
9. b← min(this.CPRSSnoEdge)
10. if has children d←∑

allchildren cchild

11. c←min(a, b, d)
12. if a=min(a, b, d)
13. mark this terminal
14. if b=min(a, b, d)
15. this.edge← e mark this terminal
16. if this.terminal
17. set this.parrent.collapsible← false
18. else
19. set this.parrent.collapsible← false
20. return

A.2 MRF Algorithms

The algorithms needed for the MRF will be described in the following. First we
need an initialization that parses the information to the triangles about the external
intersection as well as the internal.

Algorithm MRFInitialize(intersections I)
1. all intersections I∈ Childv1→I1
2. all intersections I∈ Childv2→I2
3. all intersections I∈ Childv3→I3
4. I2+=Childv1.MRFInitialize(I1)
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5. I2+=Childv2.MRFInitialize(I2)
6. I2+=Childv3.MRFInitialize(I3)
7. all intersections I2∈ ChildCenter→Ic
8. I2+=Childv3.MRFInitialize(Ic)
9. return I2

we now move to the MRF iteration algorithm which is basically quite simple. To
simplify this further we introduce a function that calculates the possibility for a
given configuration. This as to be tailored for the given scenario i this case we use
the function given in chapter 9

Algorithm possibility(intersections I)
1. for all configurations∈ this
2. for all I ∈ this
3. P←calculate the probability wrt. I
4. return P

and a selection function which selects the configuration given some update scheme
i.e. the Gibbs sampler

Algorithm select(probability P)
1. C← the best configuration given some selection method
2. return C

It is now possible to formalize an algorithm for MRF on a wedgelet decomposition

Algorithm MRFIteration(intersections I)
1. if this is terminal node
2. then
3. P←possibility(I)
4. C←select(P)
5. return new intersections
6. else
7. all intersections I∈ Childv1→I1
8. all intersections I∈ Childv2→I2
9. all intersections I∈ Childv3→I3
10. I2+=Childv1.MRFIteration(I1)
11. I2+=Childv2.MRFIteration(I2)
12. I2+=Childv3.MRFIteration(I3)
13. all intersections I2∈ ChildCenter→Ic
14. I2+=Childv3.MRFIteration(Ic)
15. return I2

All we nee is the sorting at the root and the algorithm for the visitation scheme
here. The visitation scheme for the rest of the branches is already built-in in the
MRFIteration. Let l contain all wedgelets at the root i.e. the triangles in the mean
shape. Let l1 and l2 be vectors containing wedgelets to be updated in the 2 separate
sweeps.
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Algorithm MRFVisitation
1. l1← first element of l
2. while l is not empty
3. w ← next element in l1
4. l2← all neighbors to w in l
5. w ← next element in l2
6. l1← all neighbors to w in l
7. return l1 and l2

All we need is the MRF at the root i.e. to update the 95 branches. Since we allready
have the two sweeps in vector this is straigt forward which concludes the section
with algorithms.
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Paper

The paper presented on the following pages is in submission to GMBV at CVPR.
Co authors on this paper include Rasmus Larsen, Bjarne K. Ersøll and Mikkel B.
Stegmann.
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Appendix C

Additional Results

The following sections contain additional results to those presented in the chapters.

C.1 Additional Wedgelet Enhanced AM

This section contains a wedgelet enhanced AM for each compression ratio used to
generate the results in capter 7 except for the 1:3 ratio. These are the model where
the 39th image has been left out of the constrction.

C.2 Additional MRF Results

Here we present a few extra results from the MRF modified wedgelet decomposi-
tion.

C.3 Additional Fits

86



C.3. ADDITIONAL FITS 87

(a) (b) (c)

Figure C.1: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:44.
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(a) (b) (c)

Figure C.2: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:33.
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(a) (b) (c)

Figure C.3: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:20.
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(a) (b) (c)

Figure C.4: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:16.
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(a) (b) (c)

Figure C.5: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:11.
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(a) (b) (c)

Figure C.6: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:7.
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(a) (b) (c)

Figure C.7: (a),(b), (c) shows the first three combined principal components +- 3
std. and the mean shape ratio 1:5.
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(a) (b)

Figure C.8: Images at ratio 1:16(a) without the 17th image, (b) without the 16th
image

(a) (b)

Figure C.9: Images at ratio 1:11(a) without the 17th image, (b) without the 16th
image
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(a) (b)

Figure C.10: Images at ratio 1:5(a) without the 17th image, (b) without the 16th
image

Figure C.11: The fit of the AAM at 1 : 44 ratio.
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Figure C.12: The fit of the AAM at 1 : 11 ratio.
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4.6 (a) Aj,k (b) w = {v1, v2, ĉa, ĉa}. . . . . . . . . . . . . . . . . . . 20
4.7 (a) Wedgelet (b) Degenerate wedgelet (c) Step through scale space. 20
4.8 (a) A wedgelet decomposition in which the wedgelets can be de-

generate or non-degenerate. (b) The regression tree associated with
the decomposition in 4.8(a). . . . . . . . . . . . . . . . . . . . . 21

4.9 A possible wedgelet decomposition of a given image. . . . . . . . 21

5.1 An image where the upper left part is based on triangles instead of
normal square pixels. . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 The same as fig. 5.1 just with triangles on a coarser scale. . . . . . 25
5.3 Barycentric coordinates. . . . . . . . . . . . . . . . . . . . . . . 26

97



98 LIST OF FIGURES

5.4 Barycentric coordinates in 3D space. . . . . . . . . . . . . . . . . 27

6.1 (a) A consistent subdivision of a triangle where the angels are not
preserved but split in half (b) A consistent subdivision of a triangle
where the angels are preserved. . . . . . . . . . . . . . . . . . . . 29

6.2 The intersection of two of the tree planes that are parallel to the
planes spanned by the basis vectors of the coordinate system, and
a triangle projected into the barycentric coordinate system. . . . . 30

6.3 (a) The nondegenerate wedgelet with triangular basis as profile
(b)The nondegenerate wedgelet with triangular basis as gray level
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4 All possible edges in a triangle from a single point. . . . . . . . . 31
6.5 (a) degenerate dyadic wedgelet (b) nondegenerate dyadic wedgelet

(c) scale dyadic wedgelet (d) degenerate triangular wedgelet (e)
nondegenerate triangular wedgelet (f) scale triangular wedgelet. . 32

6.6 (a) Example of a wedgelet decomposition based on triangles (b)
The corresponding regression-tree. . . . . . . . . . . . . . . . . . 33

6.7 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.8 (a) A high compression ratio on a normal image (b) A high com-

pression ratio on a normal image. . . . . . . . . . . . . . . . . . 34
6.9 2846 triangles and 1007 wedges . . . . . . . . . . . . . . . . . . 35
6.10 494 triangles and 295 wedges . . . . . . . . . . . . . . . . . . . . 35
6.11 3 nonisomrphic trees. . . . . . . . . . . . . . . . . . . . . . . . . 36
6.12 3 isomorphic trees. . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.13 4 Isomorphic faces decomposed at the same time . . . . . . . . . 40
6.14 (a),(b),(c) and (d) shows the first two combined principal compo-

nents +- 3 std. and the mean shape. (a) and (b) with ratio 1 : 3 (c)
and (d) with 1 : 40. . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 The fit of the AAM at 1 : 3 ratio. . . . . . . . . . . . . . . . . . . 45
7.2 The fit of the AAM at 1 : 44 ratio. . . . . . . . . . . . . . . . . . 46
7.3 The average landmark distance from model to ground truth, a n-

fold cross-validation test of the performance of the AAM. . . . . 47
7.4 The average landmark distance from model to ground truth, a cross-

validation test of the performance of the AAM at high ratio. . . . 48

8.1 Neighborhoods: Square, triangular and hexagonal grid. . . . . . . 51
8.2 Up til 5th order neighborhood. . . . . . . . . . . . . . . . . . . . 51
8.3 Up til second order cliques used on a rectangular grid. . . . . . . . 52
8.4 Simulated annealing: This shows the energy at two different tem-

peratures, hence giving a more equal probability of the possible
states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.1 (a) The wedgelet decomposition normally (b)The desired Result of
the final decomposition. . . . . . . . . . . . . . . . . . . . . . . 57



LIST OF FIGURES 99

9.2 The neighborhood of ts is the 3 triangle tn. . . . . . . . . . . . . 58
9.3 This wedgelet decomposition shows how the number of neighbors

can vary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.4 The 1st. order cliques for a regular triangle grid. . . . . . . . . . . 59
9.5 Information about neighborhood. . . . . . . . . . . . . . . . . . . 60
9.6 The penalty function. . . . . . . . . . . . . . . . . . . . . . . . . 61
9.7 two different visitation schemes, one with two sweeps and one with

four. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.8 Two different visitationschemes for triangles. . . . . . . . . . . . 63
9.9 The visitation scheme at the root of the wedgelet decomposition. . 64

10.1 The original wedgelet decomposition without geometric constraints 66
10.2 (a) The Energy as a function of the number iterations (b) The result

after 19000 iterations (c) The result after 59000 iterations. . . . . 67
10.3 (a) Gibbs sampler and ICM to finish with (b) ICM. . . . . . . . . 68
10.4 The result of the comparison between wedgelet enhanced AM with

and without MRF. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.5 (a) Without image 16, 1:11 ratio (b) Without image 17, 1:11 ratio . 70

C.1 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:44. . . . . . . . . . . . . . . . . 87

C.2 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:33. . . . . . . . . . . . . . . . . 88

C.3 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:20. . . . . . . . . . . . . . . . . 89

C.4 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:16. . . . . . . . . . . . . . . . . 90

C.5 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:11. . . . . . . . . . . . . . . . . 91

C.6 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:7. . . . . . . . . . . . . . . . . . 92

C.7 (a),(b), (c) shows the first three combined principal components +-
3 std. and the mean shape ratio 1:5. . . . . . . . . . . . . . . . . . 93

C.8 Images at ratio 1:16(a) without the 17th image, (b) without the 16th
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.9 Images at ratio 1:11(a) without the 17th image, (b) without the 16th
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.10 Images at ratio 1:5(a) without the 17th image, (b) without the 16th
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.11 The fit of the AAM at 1 : 44 ratio. . . . . . . . . . . . . . . . . . 95
C.12 The fit of the AAM at 1 : 11 ratio. . . . . . . . . . . . . . . . . . 96



Bibliography

[1] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,”
IEEE Trans. on Pattern Recognition and Machine Intelligence, vol. 23, no. 6,
pp. 681–685, 2001.

[2] S. Mitchell, B. Lelieveldt, R. Geest, J. Schaap, J. Reiber, and M. Sonka, “Seg-
mentation of cardiac MR images: An active appearance model approach,” in
Medical Imaging 2000: Image Processing, San Diego CA, SPIE, vol. 1, SPIE,
2000.

[3] S. C. Mitchell, B. P. F. Lelieveldt, R. J. van der Geest, H. G. Bosch, J. H. C.
Reiber, and M. Sonka, “Multistage hybrid active appearance model match-
ing: Segmentation of left and right ventricles in cardiac MR images,” IEEE
Transactions on Medical Imaging, vol. 20, pp. 415–423, May 2001.

[4] M. B. Stegmann, B. K. Ersbøll, and R. Larsen, “FAME - a flexible appearance
modelling environment,” IEEE Transactions on Medical Imaging, vol. 22,
pp. 1319–1331, may 2003.

[5] T. F. Cootes, G. Edwards, and C. J. Taylor, “A comparative evaluation of
active appearance model algorithms,” in BMVC 98. Proc.of the Ninth British
Machine Vision Conf., vol. 2, pp. 680–689, Univ. Southampton, 1998.

[6] C. B. H. Wolstenholme and C. J. Taylor, “Wavelet compression of active ap-
pearance models,” in Medical Image Computing and Computer-Assisted In-
tervention, MICCAI, pp. 544–554, 1999.

[7] M. B. Stegmann, S. Forchhammer, and T. F. Cootes, “Wavelet enhanced ap-
pearance modelling,” in International Symposium on Medical Imaging 2004,
San Diego CA, SPIE (in press), SPIE, 2004.

[8] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of com-
pactly supported wavelets,” Comm. Pure and Applied Mathematics, vol. 45,
pp. 485–560, 1992.

[9] D. Donoho, “Wedgelets: Nearly minimax estimation of edges,” Annals of
Statistics, vol. 27, pp. 859–897, 1999.

100



BIBLIOGRAPHY 101

[10] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regres-
sion trees. Monterey, California: Wadsworth & Brooks/Cole advanced books
& software, 1984. 358 pp.

[11] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval on
composite keys,” Acta Informatica, vol. 4, pp. 1–9, 1974.

[12] M. W. Bern, D. Eppstein, and J. R. Gilbert, “Provably good mesh generation,”
in Proc. 31st Symp. Foundations of Computer Science, vol. I, pp. 231–241,
IEEE, Oct. 1990.

[13] S. Z. Li, Markov Random Field Modeling in Computer Vision. Computer
Science Workbench, Springer-Verlag, 1995. 264 pp.

[14] G. Winkler, Imige Analysis, Random Fields and Markov Chain Monte Carlo
Methods. Springer, 2003.

[15] J. M. Carstensen, Description and Simulation of Visual Texture. PhD the-
sis, Institute of Mathematical Statistics and Operations Research, Technical
University of Denmark, Lyngby, 1992. 234 pp.

[16] R. Potts, “Some generalized order-disorder transformations,” Proc. Camb.
Phil., vol. 48, pp. 106–109, 1952.

[17] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,”
in Proceedings of the European Conf. On Computer Vision, pp. 484–498,
Springer, 1998.

[18] M. B. Stegmann and R. Larsen, “Multi-band modelling of appearance,” in
First International Workshop on Generative-Model-Based Vision - GMBV
(A. Pece, ed.), (Copenhagen, Denmark), pp. 101–106, DIKU, jun 2002.

[19] M. B. Stegmann, “Analysis of 4D cardiac magnetic resonance images,” Jour-
nal of The Danish Optical Society, DOPS-NYT, pp. 38–39, dec 2001.

[20] I. L. Dryden and K. Mardia, Statistical Shape Analysis. Chichester: John
Wiley & Sons, 1998. xx + 347 pp.

[21] J. B. Lee, S. Woodyatt, and M. Berman, “Enhancement of high spectral
resolution remote sensing data by a noise-adjusted principal components
transform,” IEEE Transactions on Geoscience and Remote Sensing, vol. 28,
pp. 295–304, May 1990.

[22] T. Cootes and C. Taylor, “Statistical models of appearance for computer vi-
sion,” tech. rep., Univerity of Manchester, Manchester M13 9PT, UK, Oct.
2001.

[23] T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical Learning:
data mining, inference and prediction. Springer, 2001.



102 BIBLIOGRAPHY

[24] C. E. L. Thomas H. Cormen and R. L. Rivest, Introduction to Algorithms.
MIT Press, 1990. 435 pp.

[25] S. Mallat, A wavelet tour of signal processing. Academic Press, 1998.

[26] A. Graps, “An introduction to wavelets,” IEEE Computational Sciences and
Engineering, vol. 2, no. 2, pp. 50–61, 1995.

[27] J. Romberg, M. Wakin, and R. Baraniuk, “Multiscale wedgelet image analy-
sis: fast decompositions and modeling,” 2002.
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