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Abstract—This paper describes two- and multiset canonical
correlations analysis (CCA) for data fusion, multisource, multiset,
or multitemporal exploratory data analysis. These techniques
transform multivariate multiset data into new orthogonal vari-
ables called canonical variates (CVs) which, when applied in
remote sensing, exhibit ever-decreasing similarity (as expressed by
correlation measures) over sets consisting of 1) spectral variables
at fixed points in time (R-mode analysis), or 2) temporal variables
with fixed wavelengths (T-mode analysis). The CVs are invariant
to linear and affine transformations of the original variables
within sets which means, for example, that the R-mode CVs are
insensitive to changes over time in offset and gain in a measuring
device. In a case study, CVs are calculated from Landsat TM
data with six spectral bands over six consecutive years. Both R-
and T-mode CVs clearly exhibit the desired characteristic: they
show maximum similarity for the low-order canonical variates
and minimum similarity for the high-order canonical variates.
These characteristics are seen both visually and in objective
measures. The results from the multiset CCA R- and T-mode
analyses are very different. This difference is ascribed to the noise
structure in the data. The CCA methods are related to partial
least squares (PLS) methods. This paper very briefly describes
multiset CCA-based multiset PLS. Also, the CCA methods can
be applied as multivariate extensions to empirical orthogonal
functions (EOF) techniques. (Multiset) CCA is well-suited for
inclusion in geographical information systems (GIS).

Index Terms—Geographical information systems (GIS), min-
imum and maximum similarity variates, multiset partial least
squares (PLS), multisource data fusion, multivariate empirical
orthogonal functions (EOF).

I. INTRODUCTION

T HIS paper deals with multiset canonical correlations
analysis (MCCA) for data fusion, multisource, multiset,

or multitemporal exploratory data analysis. MCCA deals with
data that naturally splits up into more (than two) groups of
variables, e.g., multispectral satellite data covering the same
geographical region over several points in time.

In Section II, ordinary two-set canonical analysis is de-
scribed. Two-set canonical correlations analysis investigates
the relationship between two groups of variables. It finds
corresponding sets of linear combinations of the two groups
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of original variables with maximum correlation. Partial least
squares regression is mentioned in Section II also.

In Section III, this analysis is generalized to deal with more
than two sets of variables. The idea is to optimize characteris-
tics of the dispersion matrix of the transformed variables to ob-
tain high correlations between all new variables simultaneously.
These characteristics include

• maximization of the sum of the elements;
• maximization of the sum of the squared elements;
• maximization of the largest eigenvalue;
• minimization of the smallest eigenvalue;
• minimization of the determinant.

These measures are not confined and the optimizations take
place subject to different chosen constraints and orthogonality
criteria. The latter are briefly mentioned in Section IV, which
also describes computer implementations of the techniques.

Results from such analyses are linear combinations termed
canonical variates (CVs) that when used with remote sensing
data transform the original data into new orthogonal variables
that show decreasing similarity over sets consisting of

1) spectral variables at fixed points in time (R-mode
analysis);

2) temporal variables with fixed wavelengths (T-mode
analysis).

The higher order canonical variates exhibit minimum similarity
and they are therefore measures of differences in all variables
simultaneously.

Multiset partial least squares methods emerge from this type
of description with a special choice of optimization criteria, con-
straints, and orthogonality criteria leading to an optimization of
covariance rather than correlation measures.

If applied to several variables that change over time, this type
of analysis constitutes a multivariate extension to the technique
of empirical orthogonal functions (EOF) [1] often applied in
geophysical data analysis.

In Section V, a Landsat TM case with data from 1984 to 1989
covering a small forested region in northern Sweden is used
to illustrate the technique. The purpose of the case study is to
demonstrate the method and to suggest a possible way of inter-
preting the resulting transformed variables. It is not the purpose
to assess the similarity (or lack of similarity, i.e., change) over
time on the ground or in the atmosphere.

Multiset or multisource data analysis techniques such as the
application of the Mahalanobis distance in joint distributions
of multiset data to point out potential mineralization areas [2]
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or Markov random field methods to fuse image data with large
spatial resolution differences [3] are not dealt with here.

The methods described here are well suited for integration in
a geographical information system (GIS).

II. TWO-SET CANONICAL CORRELATIONS

Canonical correlations analysis was first introduced in [4] to
analyze linear relations between two sets of variables. The tech-
nique is described in most standard textbooks on multivariate
statistics, e.g., [5] and [6]. Work on nonlinear canonical corre-
lations analysis is dealt with in [7]–[11]. This type of analysis
will not be pursued here.

Two-set canonical correlations analysis investigates the rela-
tionship between two groups of variables. It finds corresponding
sets of linear combinations of the original two groups of vari-
ables. The first set of linear combinations are the ones with the
largest correlation. This correlation is called the first canonical
correlation and the two linear combinations are called the first
canonical variates. The second set of linear combinations are
the ones with the largest correlation subject to the condition that
they are orthogonal to the first canonical variates. This correla-
tion is called the second canonical correlation and the two linear
combinations are called the second canonical variates. Higher
order canonical correlations and canonical variates are defined
similarly.

We consider a -dimensional random variable ( )
ideally following a Gaussian distribution split into two groups
of dimensions and , respectively, (without loss of generality
we assume that , where denotes
expectation)

and we assume that the relevant dispersion matrices are nonsin-
gular. Of course .

We are searching for linear combinations ofand

V

V

(where V denotes variance) with maximum correlation

Corr
Cov

V V

Let Cov denote the covariance betweenand .
To maximize we set and get

Without loss of generality, we choose [ ] so that
which leads to

i.e., we find the desired projections for by considering the
conjugate eigenvectors corresponding to the eigen-
values of with respect to . Sim-
ilarly, we may find the desired projections forby considering
the conjugate eigenvectors of with re-
spect to corresponding to the same eigenvalues. If
this will be all the eigenvalues and -vectors of . If

the last eigenvalue will be 0 with multiplicity . (As
the solutions and are interrelated we only need to find one
of them.)

A. Partial Least Squares (PLS)

Canonical corelations analysis (CCA) is closely re-
lated to the method of partial least squares, PLS, in which

Cov (often with as a scalar
response variable) is maximized with another choice of con-
straints, namely leading to

(see [12]). We see that in this case matrix inversion is not needed
which is good if we have many variables and few observations.
Only the first pair of canonical variates (or latent variables) cor-
responding to the largest eigenvalue are calculated and the re-
sponse CV is regressed on the predictor CV

If more information is present in the residuals, their projec-
tions replace the original response variables (i.e., replaceby

), the predictor variables are projected into a subspace
orthogonal to the solution found (i.e., replaceby )
with ), and we iterate; see also [13]–[16].

B. The MAD Transformation

The above CCA technique is used in [17]–[22] to find linear
combinations that give maximal multivariate differences. The
name chosen for the transformation, multivariate alteration de-
tection (MAD), is due to the application to change detection
in remote sensing (and the acronym). Although it is presented
as a change detection technique in remote sensing, the tech-
nique applies to nonspatial multivariate differences also. The
MAD transformation has been used in an attempt to differen-
tiate between geogenic and anthropogenic influences on soils in
a mining processing area, see [23]. References [17] and [19] also
suggest the use of the maximum autocorrelation factor (MAF)
transformation, [24], to postprocess the MAD variates. Refer-
ence [25] uses MAF to process the simple differences. Refer-
ence [26] uses a hybrid canonical correlation/principal compo-
nents technique to enhance uncorrelated parts of Landsat TM
equivalents of ATM data in a gold exploration study. Change
detection techniques based on canonical variates are also de-
scribed in [27] and [28].
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III. M ULTISET CANONICAL CORRELATIONS

Multiset canonical correlations analysis (MCCA) is a tech-
nique for analyzing linear relations between more (than two)
sets of variables. Earlier work in this field comprise [29]–[32].
Reference [33] gives an interesting example using satellite data
and two types of geochemical data. Work on nonlinear MCCA
is reported in [48].

We consider an dimensional
random variable ideally following a Gaussian distribution
split into groups of dimensions , to

, respectively, (without loss of generality we assume
that )

...

...
...

...
. . .

...

and we assume that the relevant dispersion matrices are nonsin-
gular. Of course .

An obvious extension from the two-set case is to
search for linear combinations of

...

with dispersion matrix

...
...

.. .
...

or for short. As in the two-set case
there is one , and for each

, .
In the two-set case we obtain new variables with a

high measure of similarity by maximizing the scalar
Corr . Here, we must maximize all correla-
tions/covariances between the new variables simultaneously.
To do this, the following measures of can be optimized:

1) maximize sum of elements ( );
2) maximize sum of squared elements (

);
3) maximize largest eigenvalue ();
4) minimize smallest eigenvalue ();
5) minimize determinant (det ).

Reference [32] lists all these possibilities and names them

1) SUMCOR;
2) SSQCOR;

Fig. 1. Sketch of R-mode multiset canonical correlations analysis. Variables
indicated in top row are transformed into CVs in bottom row.

Fig. 2. Sketch of T-mode multiset canonical correlations analysis. Variables
indicated in top row are transformed into CVs in bottom row.

3) MAXVAR ;
4) MINVAR;
5) GENVAR.
These measures are not constrained, but several natural

choices for constraints under which to carry out the optimiza-
tions come to mind:

1) the projection vectors are unit vectors within each set
( );

2) the sum of the projection vectors is a unit vector
( );

3) the new variables have unit variance ( );
4) the sum of the variances of the new variables is unity

( tr );

where constraint 3 (causing to be correlations rather than
covariances) is the natural extension from the two-set case. If
the sets analyzed are different variables measured over time
this type of analysis constitutes a multivariate extension to the
technique of empirical orthogonal functions (EOF) [1].
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TABLE I
CORRELATIONSBETWEEN R-MODE CANONICAL VARIATES 1 FOR ALL

FIVE METHODS

In the two-set case all of these methods with constraints 3 and
4 reduce to the standard Hotelling case described in Section II
(except for a scaling factor for constraint 4).

Reference [31] examines the SUMCOR method and [32] ex-
amines all the above methods using constraint 3. Reference [17]
examines all the above methods using all constraints. As an il-
lustration, we consider the SUMCOR method with constraints 3
and 4 shown in the following.

A. Maximize Sum of Covariances

To maximize the sum of covariances under constraints we use
a Lagrange multiplier technique.

1) Constraint 3: : Introduce

TABLE II
CORRELATIONS BETWEEN T-MODE CANONICAL VARIATES 1 FOR ALL

FIVE METHODS

and maximize without constraints. By setting
we get

or

...
...

.. .
...

...

...
...

. . .
...

...
(1)

Setting merely reproduces the constraints. Be-
cause the s are not equal this system of equations is more gen-
eral than a generalized eigensystem. Invariance of the solution
to linear transformations within sets is easily shown (after the
transformation the s will be the same, the s will not).
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Fig. 3. Landsat TM data. Rows are years 1984 to 1989 and columns are TM bands 1 to 5 and 7.

2) Constraint 4: : Introduce

and maximize without constraints. By setting
we get

or

...
...

.. .
...

...

...
...

. . .
...

...

This is a (real, symmetric) generalized eigensystem, i.e., we
find the desired projections for by computing the conjugate
eigenvectors corresponding to the first
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Fig. 4. R-mode CVs. Rows are years 1984 to 1989 and columns are CV1–CV6.

eigenvalues of
the above eigensystem.

B. Multiset Canonical Variates

We are now able to define themultiset canonical variates

...

where the s come from either of the above solutions. With an
obvious choice of notation we get

...

where

is

is
...

is
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Fig. 5. T-mode CVs. Rows are TM bands 1 to 5 and 7 and columns are CV1–CV6.

C. Multiset Partial Least Squares

We can base a true multiset or multiblock partial least squares
(PLS) method on MCCA with modified optimization criteria 1
and 2 mentioned above if we use constraint 1, , with

replaced by the null matrix since in this case we do not
want to include the diagonal terms of . To see this, consider
for example the maximization of the sum of all nondiagonal
elements in

To maximize under constraint 1, again use Lagrange multi-
pliers and maximize

without constraints. By setting we get
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Fig. 6. Landsat TM bands 4, 5, and 3 as red, green, and blue (1984–1989).

Fig. 7. R-mode CVs 1, 2, and 3 as red, green, and blue (1984–1989).

Fig. 8. R-mode CVs 6, 5, and 4 as red, green, and blue (1984–1989).

Fig. 9. T-mode CVs 1, 2, and 3 as red, green, and blue (TM bands 1–5 and 7).

Fig. 10. T-mode CVs 6, 5, and 4 as red, green, and blue (TM bands 1–5 and 7).

or

...
...

. . .
...

...
...

Now, calculate all first sets of latent variables, i.e., the first
canonical variates , . Without loss of generality

we place the response variables in the first set and perform a
multiple regression analysis

If more information is present in the residuals their projections
replace the original response variables (i.e., replaceby

), the predictor variables are projected into a sub-
space orthogonal to the solution found (i.e., for
replace by with ) and we
iterate. For ordinary two-set PLS, see [13]–[16].
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IV. COMPUTERIMPLEMENTATIONS

Two-set canonical correlations analysis is implemented in a
computer program, , which is a general orthogonalization
program that also finds principal components, (rotated) prin-
cipal factors, maximum autocorrelation factors (MAF), [24],
scaled MAFs [34], minimum noise fractions (MNF), [35], [36],
multivariate alteration detection (MAD) variates, [17]–[19]
and canonical discriminant functions, etc. Also the multiset
canonical correlations analysis methods of maximizing the
sum of covariances under constraints 2 ( ) and
4 ( ) are implemented in .

All dispersion (variance–covariance) matrices are found by
the method of provisional means, [37]. The eigenvalue problems
associated with the analysis are solved by means of LAPACK
routines, [38]. Good general descriptions of the methods used
are given in, e.g., [39]–[41].

The remaining optimization problems concerning MCCA (in
fact, all of them, including the eigenvalue problems) are solved
by means of the general algebraic modeling system (GAMS),
[42], NLP solver CONOPT, [43]. A computer program
that calls GAMS to perform the analysis is implemented. As
a parallel to the solution of the eigensystem involved in the
two-set case the orthogonality criteria chosen in are
similar to the normalization criteria, for example for constraint
3 , where if and if not
is Kronecker’s delta.

V. CASE: LANDSAT TM DATA IN FORESTRY

The utility of multiset canonical correlations analysis to mul-
tivariate and truly multi-temporal data is demonstrated in a case
study using Landsat-5 Thematic Mapper (TM) data covering a
small forested area approximately 20 kilometers north of Umeå
in northern Sweden. The data consist of six by six spectral bands
with 512 512 20-m pixels from the summers 1984–1989 rec-
tified to the Swedish national grid. The acquisition dates are
1 August 1984, 26 June 1985, 6 June 1986, 12 August 1987,
27 June 1988, and 21 June 1989. These data are also analyzed
in [44]–[46].

As an illustration, all results reported here (except the correla-
tions in Tables I and II) relate to the SUMCOR method with con-
straint and orthogonality criterion 3, i.e., the CVs have unit vari-
ance. In R-mode analysis, we consider Landsat TM bands 1 to 5
and 7 for 1984 as one set of variables and similarly for 1985,
etc. In T-mode analysis we consider TM bands 1 for all years
1984–1989 as one set of variables, TM bands 2 for all years
1984–1989 as another set of variables, etc. [1]. For a sketch of
R- and T-mode analysis setup; see Figs. 1 and 2. In both figures
the six sets of variables indicated on the top are transformed into
six sets of new variables on the bottom. For example, in T-mode
analysis the variables 1984 TM1, 1985 TM1,, 1989 TM1 are
transformed into TM1 CVs and similarly for TM2, etc.

Fig. 3 shows the original TM data. Column one is TM1,
column two is TM2, etc. Row one is 1984, row two is 1985, etc.
Fig. 4 shows the R-mode CVs. Column one is CV1, column
two is CV2, etc. Row one is 1984, row two is 1985, etc. Fig. 5
shows the T-mode CVs. Column one is CV1, column two is
CV2, etc. Row one is TM1, row two is TM2, etc.

Fig. 11. Correlations between R-mode CVs 1 and original data.

Fig. 6 shows Landsat TM bands 4, 5, and 3 as red, green,
and blue, respectively. Fig. 7 shows R-mode canonical variates
1, 2, and 3 as red, green, and blue, respectively. We see that
we have indeed obtained a high degree of similarity over years.
Fig. 8 shows R-mode canonical variates 6, 5, and 4 as red, green,
and blue, respectively. This is the RGB combination that shows
minimum similarity over years. We see that noise (striping and
dropouts) is depicted well as is to be expected: if data from one
year is noisy and data from another year is not (or if the noise
patterns are different) then certainly the largest difference could
be that noise (or that difference). This observation inspires an
iterative use of the procedure: first identify noise, restore data
or exclude areas with noise from further analysis and carry out
the analysis once more. This iterative use is not illustrated here.

Fig. 9 shows T-mode canonical variates 1, 2, and 3 as red,
green, and blue, respectively. Again, we see that we have ob-
tained a high degree of similarity, this time over TM bands.
Fig. 10 shows T-mode canonical variates 6, 5, and 4 as red,
green, and blue, respectively. We see that striping is strongly
present in TM bands 1 and 2.

The transformation matrices containing the weights applied
to the original variables to obtain the CVs are not shown as these
weights are difficult to interpret because of inter-correlation be-
tween the original variables. Instead we show correlations be-
tween the original variables and the CVs. (It is often seen that
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Fig. 12. Correlations between R-mode CVs 6 and original data.

an original variable that has a, say, negative weight in the cal-
culation of some transformed variable has a positive correlation
with that transformed variable.) Correlations between R-mode
CVs 6 and the original data given in Fig. 12 show that dissimilar-
ities (differences between years) are associated with TM bands
1 especially from 1984 to 1987. This is probably because of dif-
ferences in atmospheric conditions. Therefore analysis of atmo-
spherically corrected data would be interesting. Correlations be-
tween T-mode CVs 6 and the original variables given in Fig. 14,
for TM bands 1, 2, 3, 5, and 7 reveal a pattern of positive cor-
relation with 1984, negative correlation with 1985 and again
positive correlation with 1986 (but not as high as with 1984)
combined with (nearly) no correlation with 1987–1989. T-mode
CV6 for TM4 is positively correlated with TM4 in 1984–1986,
uncorrelated with TM4 in 1987 and negatively correlated with
TM4 in 1988 and 1989. This could indicate that vegetation re-
lated changes occurred from 1986 to 1988. This finding is con-
firmed by an observation in [45]: “Several stands with Scots
Pine (Pinus Sylvestris) had been damaged by the snow-break
in the winter 1987/1988.” Correlations between T-mode CVs 1
and TM4 given in Fig. 13 are (except for TM4 CV1) lower than
correlations between T-mode CVs 1 and the other bands. Again,
this indicates changes that are related with TM4, possibly vege-
tation changes. For completeness Fig. 11 gives correlations be-
tween R-mode CVs 1 and the original data.

Fig. 13. Correlations between T-mode CVs 1 and original data.

Table I shows correlations between R-mode canonical vari-
ates 1 ( ) for all five methods investigated. The same correla-
tions for T-mode analysis are shown in Table II. Again, we see
a special behavior for TM4 indicating vegetation changes.

Table III shows the values of objective function, i.e., the
quantity which is maximized, namely the sum of the elements
in , under the constraint that

. We see that although R-mode analysis obtains
the highest objective function value (i.e., level for all correla-
tions simultaneously), T-mode analysis maintains a high level
for this measure for higher order CVs than does R-mode. Also,
for R-mode the highest difference between objective function
values occurs between CVs 3 and 4, whereas for T-mode it
occurs between CVs 5 and 6. Also, there is a big reduction in
the objective function values between T-mode CVs 1 and 2.
This difference is clearly visible in the imagery also (Fig. 5).

In the comparisons performed in Tables I and II, SUMCOR,
SSQCOR, and MAXVAR seem to perform similarly. MINVAR and
GENVAR seem to perform differently and not in the same fashion.
[47] observes a similar different behavior for MINVAR. This is
understandable when contemplating the design criteria behind
the individual methods. SUMCOR and SSQCORboth focus on all
correlations between CVs, i.e., all elements in . MAXVAR

maximizes the largest eigenvalue, again a focus onall elements in
. MINVAR relies heavily on the smallest eigenvalue, whereas
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Fig. 14. Correlations between T-mode CVs 6 and original data.

TABLE III
VALUE OF OBJECTIVE FUNCTION: SUM OF ELEMENTS IN�

GENVAR minimizes the determinant of and therefore relies
on several small eigenvalues. Due to lack of ground truth data,
it has not been possible to determine empirically which of the
five methods (if any) perform best in this context.

Tables IV and V show comparisons of the actual values of
the optimization criteria for the five methods discussed for R-
and T-mode canonical variates 1. The optimization criteria are
not contradicted, e.g., for MINVAR is smaller than for the
other methods. Also in this comparison, SUMCOR, SSQCOR, and
MAXVAR seem to perform similarly and MINVAR and GENVAR

seem to perform differently and not in the same fashion.
Fig. 15 shows for both R- and T-mode CV1–CV6 [see (1)].

Some differences within individual CVs are seen especially for
T-mode.

The difference between the results of the R- and T-mode
analyses is believed to be due to the expected correlation in noise
over bands in the same year and the expected lack of correlation
in noise over years in the same bands.

TABLE IV
VALUE OF OBJECTIVEFUNCTION FORALL FIVE METHODS, R-MODE CV1

TABLE V
VALUE OF OBJECTIVEFUNCTION FORALL FIVE METHODS, T-MODE CV1

Fig. 15. � for both R-mode (top) and T-mode (bottom) CV1 (indexes 1–6),
CV2 (indexes 7–12),. . ., CV6 (indexes 31–26) [see (1)].

If we assign variables to (Section III) in an appropriate
fashion the methods described can be used for simultaneous op-
timization of more objectives such as interset correlation and
spatial correlation.

VI. CONCLUSIONS

Two- and multiset canonical correlations analysis for data fu-
sion, multisource, multiset, or multitemporal exploratory data
analysis is described and applied to six spectral bands from
Landsat TM summer data from 1984 to 1989. The resulting
canonical variates are invariant to linear and affine transforma-
tions of the original data within sets. This means, for example,
that the R-mode CVs are insensitive to changes over time in
offset and gain in a measuring device. The CVs show the de-
sired characteristic, namely that they exhibit ever decreasing
similarity (as measured by correlation) with increasing order of
the CVs. There is a big (visual) difference between the results of
the R- and T-mode analyses. This difference is ascribed to the
noise structure of the data.

Choosing other optimization criteria and constraints than
the ones usually chosen for canonical correlation analysis, the
methods described also form a basis for true multiset PLS.

If the data analyzed are variables measured over time this type
of analysis constitutes a multivariate extension to the technique
of EOF.



304 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 3, MARCH 2002

Although applied to Landsat TM data here, the methods are
suitable to the analysis of any data that are naturally divided into
several multivariate groups.

The methods described are well suited for integration in a
GIS.
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