
v

Preface

This master thesis is the result of work carried out in 2003 at the section of

Statistical Image Analysis at the department of Informatics and Mathematical

Modelling at the Technical University of Denmark (DTU).

The work has been supervised by assoc. prof. Bjarne Ersbøll from DTU and

senior scientist Thomas Martini Jørgensen from Risø National Laboratory, whom I

would like to thank for comments, feedback and generally being very supportive.

I would also like to thank M.Sci., Ph.D Birgit Sander, Head of Laboratory at

Herlev Hospital, for being very helpful during the process and for introducing me

to different areas in the field of optical coherence tomography.

January 31st, 2004

Lars Gunder Knudsen

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

v

Abstract

This report covers some of the processes involved in development of software

systems, with an emphasis put on quality, design, usability and the ability to

handle changes in the environment. The purpose of the project behind the report,

was to develop a flexible image processing system to be used in medical research in

the department of ophthalmology at Herlev Hospital (in Denmark) and in relation

to this, a graphically based system, possible to extend through development of

pluggable modules, has been constructed. The goals of the project, regarding a

high level of usability, usefulness and flexibility, have been met, which is confirmed

in a user survey.

(In Danish)

Denne rapport beskriver nogle af de processer, der indgår i udviklingen af

softwaresystemer, hvor der lægges vægt på kvalitet, design, brugervenlighed og

mulighed for at klare forandringer i omgivelserne. Formålet med projektet bag

rapporten, var at udvikle et fleksibelt billedbehandlingssystem til anvendelse i

medicinsk forskning på øjenafdelingen på Herlev Sygehus. Et grafisk baseret

system, med mulighed for udvidelse gennem tilkobling af udviklede moduler, er

konstrueret. Projektets mål m.h.t. høj brugervenlighed, brugbarhed og fleksibilitet,

ses som opnået, hvilket bekræftes ved brugerundersøgelse.

Keywords

Software architecture and design, image processing, Java, C++, XML, Optical

Coherence Tomography (OCT)

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

vii

Intended audience

This report aims at not only being the “traditional” result of a master thesis done

at the department of Informatics and Mathematical Modelling (IMM), where

project related developed software will not leave the lab, but also to function as a

set of guidelines for how software projects done for customers should be handled,

including areas less obvious to the novice developer. It is therefore essential that

the reader will take the time, to fully understand the processes necessary to go

through, prior to initiating coding.

As the goal of the project was to deliver a fully functional software system to be

used by researchers in medicine and further developed, possibly by informatics

students at the Technical University of Denmark (DTU), the majority of the report

has been constructed, keeping in mind that it should work as a reference manual

for those two groups of people as well.

The reader is assumed to have a fair knowledge in the world of software

development, with skills on an intermediate level in Java and C++ programming.

Experience with basic image processing and the algorithms behind it is not a

necessity but will make some parts of the thesis easier to comprehend.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

vii

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

ix

Table of Contents
1. Introduction...1

2. Imaging System Development...9

2.1 System requirements...11

2.1.1 MoSCoW prioritization...12

2.2 Market Analysis..13

2.3 Functional specification..18

2.4 Choice of platform...19

2.4.1 Considering all the options...19

2.5 Architecture and design..22

2.5.1 Using Design Patterns...22

2.5.2 Model-View-Controller...25

2.6 Framework..27

2.6.1 Pluggable modules..27

2.6.2 Message channels..28

2.7 GUI design and implementation..29

2.7.1 Overview of the user interface..30

2.7.2 Usability...31

2.8 XML for compatibility..31

2.8.1 Diagram file format...32

2.8.2 Module intercommunication...38

2.9 Tutorial on making pluggable modules...40

2.9.1 Identifying the problem..40

2.9.2 Prerequisites..40

2.9.3 Beginning development..42

2.9.4 Implementing processing logic..44

2.9.5 Testing the module..46

2.10 Integrating with C/C++..48

2.10.1 Using the Java Native Interface..49

2.10.2 The power of templates...49

2.11 Taking the time needed to rewrite and refactor..52

2.12 Summary..54

3.Pluggable modules provided...55

3.1 Collect Scans module..55

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

ix

3.2 Cross-Correlate module..60

3.3 Cross-Correlate Native module..66

3.4 Duplicate Data module...71

3.5 Filter Convolution module..75

3.6 Histogram Cutoff module...79

3.7 Median Filter module..83

3.8 Normalize module...87

3.9 RAW Data File Import module..90

3.10 RAW Data Phantom module...94

3.11 Show XML Tree module..97

3.12 Translate Rows module...99

3.13 Visualize Scans (and Visualize Scans As Model) modules...101

3.14 XML File Import module...106

3.15 Summary..108

4. Building algorithms...109

4.1 Enhancement by addition...109

4.1.1 Theory...109

4.1.2 Construction..110

4.1.3 Step-by-step execution and Results...112

4.2 Filtered phantoms..116

4.3 Summary..120

5. User experiences...121

5.1 A developer's module..121

5.2 A user's algorithm..122

5.3 Summary..125

6. Plans for the future..127

6.1 Integration with other systems...127

6.2 Print support..127

6.3 A common database between workstations..128

7. Conclusion...129

Appendix A: System requirements...133

Framework requirements..133

Image processing requirements...134

GUI requirements..134

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

xi

Appendix B: Functional specifications..135

Framework...135

Image processing...136

GUI..137

Acknowledgments ..139

Glossary..140

Bibliography..143

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

xi

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Introduction 1

1. Introduction
This report describes the processes involved in developing a flexible image

processing software system to be used by researchers in the field of ophthalmology

(the art and science of eye medicine). Most of the techniques involved can easily be

applied to other fields of software development, e.g. addressing the different

problems involved in documenting the requirements stated by the customer,

producing a robust design for the system, taking the time needed to refactor, etc..

To better understand the background for doing this project, a short introduction

to Optical Coherence Tomography (OCT), used in acquisition of the retinal images

to be processed by the system, is provided.

Optical coherence tomography is an imaging technique that produces high

resolution cross sectional images of optical reflectivity. It is based on the principle

of low-coherence interferometry where distance information concerning various

ocular structures is extracted from time delays of reflected signals. Direct

measurements of the time delay of reflections is not possible, because of the high

velocity of light, while low-coherence interferometry provides a precise

measurement of the echo time delay of the back-reflected light. This is done by

comparing reflected light from the sample in question with light, that has traveled a

path of known length to a reference mirror. For ease of comprehension, this

principle is illustrated in figure 1.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 1, Principle of optical coherence
tomography. (Image from: "Biomedical Optics",
PhysicsWeb, June 1999, URL: http://physicsweb.org)

2 Introduction

This technology makes it possible to visualize disease pathology in living tissue,

where a biopsy would normally be performed, as the optical coherence tomography

can be performed at a resolution approaching the cellular level1.

Light waves are emitted by a super luminescent diode, the function of which can

be compared to the application of sound waves when doing ultrasound scanning or

x-rays in computed tomography (CT).

As a result of the high level of resolution achievable, OCT is particularly suitable

for retinal thickness measurements. The acquired images can be presented as

either cross sectional images or as topographic maps. Cross sectional or B-mode

imaging is accomplished by acquiring a sequence of interferometric A-scans across

a section of the retina. In figure 2, a histological image, of the layers in the retina, is

illustrated, along with their correspondence in a visualization, done by the

developed system, in figure 3.

This project seeks to help researchers in the field of ophthalmology, by providing

a tool to perform post processing of the B-scans acquired by two different retina

OCT scanners, in an easy way.

1 Pioneering New Applications for OCT Research, RLE Currents, Volume 11, No. 2, 1999

URL: http://rleweb.mit.edu/Publications/currents/cur11-2/11-2oct.htm

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 2, Histological image of a cross-
section of the retina.

Figure 3, Image, scanned with a retina
OCT scanner and processed by the system
developed in this project.

 Introduction 3

The actual image acquisition is done, using an OCT scanner connected to a

customized computer system, as shown in figure4.

Currently, users of the Carl Zeiss Humphrey OCT Retinal Scanner have no real

alternatives than to use the accompanying software when required to do post

image processing of acquired data. Very few standard processing facilities are

available, one of them is the built in alignment method, shown in figure5.

In most cases, this is sufficient, but sometimes, it would be nice to have a

possibility of applying more advanced and/or different algorithms, than the ones

provided with the scanner.

The immediate problem identified at project start, is to be able to collect a series

of acquired scans in one single image to enhance the signal/noise ratio and reveal

more details, thus providing a better base for detection of eye diseases.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 4, Birgit Sander operating the Humphrey retinal OCT
scanner at Herlev Hospital.

4 Introduction

The aim of this project, is to produce a system, flexible enough to be extended

with new functionality, integrating with existing logic, without interfering with

other parts of the system.

Also, it must be easy to use for people with no programming and little or no

image processing skills. The software should not be limited to run on one

operation system only (e.g. windows), as users and developers of the system might

have different choices of platform, e.g. Linux(x86), Solaris(Sparc), etc..

It's assumed, that people, using the system, will fall into one to three categories:

1. “Developers”, extending the system by writing new code,

2. “Constructors”, using the system to produce image processing algorithms and

3. “Users”, applying produced algorithms on data to be processed.

It should be possible for developers to integrate existing code/programs with the

system to minimize the need for them to rewrite their code to fit the language and

platform used for the system. It is a necessity to produce a graphical user interface

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 5, A screenshot of the GUI for the alignment functionality built into
the OCT system from Carl Zeiss.

 Introduction 5

(GUI) for constructors and users in general to utilize the system, but the software

architecture must support the need for separation of the GUI and processing logic,

should it be required to use the system under different environments, e.g. making

use of produced algorithms via a text based shell.

Finally, the software should be based on free components (e.g. software released

under the LGPL or similar), not bringing extra costs to users nor developers.

The report starts with a chapter, describing the processes involved in designing

and developing a robust software system. Very early in the process, it is important

to agree on a set of system requirements, that can be used as the overall guidelines

under the entire development process. It is then up to the developer to form a set of

functional specifications, where initial design considerations will be documented,

based on each of these requirements.

One of the requirements, states that the system should be designed to run on

different platforms. This has a major impact on the choice of programming

language, external libraries and programming environment, and will therefore be

dealt with in detail in a section of its own. Java was eventually chosen as the

primary programming platform for the system, but before this decision was made, a

large amount of time was spent, implementing the system in C++. This, however,

turned out to be too complex to handle, when the framework, combined with

around 10 external libraries had to be compiled and running on different operating

systems (Windows, Linux). If this was to be a system, that would easily allow

extensions to be made by students with average programming skills, another

approach would have to be taken. The decision fell on using Java, and all the

written C++ code was scrapped.

Based on the design considerations in the functional specification, the system

architecture is forged, leading to a design where image processing logic will be split

into small self containing modules. These modules should then be connected to

form larger algorithms, done dynamically using an underlying framework,

functioning as a sort of testbed. All communication to and from the framework, as

well as modules intercommunicating in constructed algorithms, is done using the

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

6 Introduction

Extensible Markup Language (XML). This enables users to very easily connect

legacy software directly with processing components in the system, as well as

deciding whether certain modules should be replaced with external entities. In the

case, where more complex communication protocols are needed, it will be fairly

easy to implement a new set of components to deal with this, possibly by making a

bridge to C or C++ code using the Java Native Interface.

A step-by-step development guide on how to create new modules, as well as how

to combine them to form algorithms, is described in detail in the tutorial section.

This system is designed to be used by and developed further by people not involved

in the project at the time of writing. Large parts of the report has therefore been

written as reference documentation for programmers, medical researchers and

others with an interest in the framework.

Many pluggable modules have been created throughout the duration of the

project. These will be described in detail in a separate chapter, which includes

background information for each module, requirements, implementation specific

details, as well as a testing section, showing how the module functions in a context.

With all the building blocks in place, it is now possible to construct algorithms,

capable of performing more complex tasks. Two large examples are provided, to

show how module components can be used – and reused – in very different ways.

The first example, is an algorithm, that will accept a sequence of RAW data files,

exported from an OCT scanner, and improve the signal/noise ratio by aligning and

superimposing them to one resulting image. This is followed by an example, where

automatically generated patterns are used in combination to generate realistic

data, to be used in testing the image processing logic of a specific module.

This module was created by a future user and developer of extensions for the

framework, Thomas Martini Jørgensen2, to test how flexible the system is, when

trying to extend it with new functionality. Based on OCT related software,

previously made by Thomas, a new alignment method was identified to be

implemented.

2 Senior Scientist, Risø National Laboratory

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Introduction 7

As the system is meant to be used in opthalmologic research at Herlev Hospital, it

is important to test the usability and functionality of the system in a real life

situation. Birgit Sander3, being one of the main researchers in the field, tries to use

the system, and takes us through the creation of an algorithm, capable of

enhancing the edges of a series of subsequently acquired scans.

Many features are planned to be implemented after the time of writing, and some

of these are described in detail. Integration with external systems, is probably one

of the more interesting features, as it would enable the system to communicate

directly with different OCT scanners, delivering instant processing of data –

possibly while patients being treated, are still in the examination room (with the

OCT scanner).

Included in the appendices, are the full list of system requirements as well as

their functional specifications. It is recommended, for the reader to take a quick

glance at the glossary in the back of this report, to see some of the terms and

definitions used.

3 M.Sci., Ph.D., Head of Laboratory, Herlev Hospital

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

8 Introduction

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Important note:

Throughout the report, the “A-scans” of the acquired images, are

referred to as “rows in the image”. This is because, the underlying image,

as well as the originating RAW data, has each A-scan represented in rows.

However, because of visual compatibility with some of the image

representations in the software delivered with the OCT scanners from

Carl Zeiss, the module constructed (in the software developed for the

project), that visualizes these images, will mirror the image around a

diagonal line in the image, so that rows become columns and vice versa –

prior to putting the image on screen.

If this decision, to separate the way images are preserved in the

underlying model from their graphical representation on screen, poses a

problem when using the system, an extra visualization module has been

constructed (VisualizeScansAsModel), where this “mirroring” of the

image has been removed.

 Imaging System Development 9

2. Imaging System Development
This chapter covers some of the major steps involved in development of the

system. As the focus of the thesis is to make a robust software system, to be used in

medical research, this part of the project is considered to be much more important

than areas of the report covering the actual implementation of image processing

algorithms. This will become more obvious, later in the report, where the produced

framework allows algorithm implementation to be done, with very little effort.

Agreeing upon a list of system requirements is the first step in almost any

software project. These requirements function as the overall guidelines throughout

the development, and shouldn't change without a common consent between the

manufacturer4 and the customer. When requirements are in place, it's up to the

software developer to run through the requirements and come up with initial

suggestions of how each requirement will be addressed in a functional

specification. These should not include low level implementation specific details,

but more function as a set of components inspiring the actual system design.

From the beginning of the project, it was required that the system would not be

confined to run on a single operating system only, as many different platforms are

used in the medical institutions as well as at the universities, where this system

would be assumed to have it's place in the future. The choice of development

platform and programming language therefore has to be considered well, before

engaging in any development activity. As it turns out, even with a good deal of

effort put into making the right choice, unexpected things might turn up, and what

seemed to be the perfect solution actually becomes more of a problem. In this case,

it lead to a complete rewrite of two months of written code – not an easy decision

to make, but definitely the right one.

In order to be able to get a greater overview of the system to be developed, it's

essential to produce a high level architectural design of how all the major

components will work and how they will interact . Software architecture forms the

backbone for building successful software-intensive systems. An architecture

4 The company or people developing (and in most cases selling) the software.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

10 Imaging System Development

largely permits or precludes a system's quality attributes such as performance or

reliability. Architecture represents a capitalized investment, an abstract reusable

model that can be transferred from one system to the next. It also represents a

common vehicle for communication among a system's stakeholders, and is the

arena in which conflicting goals and requirements are mediated.

The right architecture is the linchpin for software project success and the wrong

one is a recipe for disaster5. It's only human to make mistakes, and that might be

one of the main sources for us to gain good experience, and learn how not to do

things in similar situations the next time around. Sometimes, however, we can't

afford to make that many mistakes, while making our own experiences. In these

cases, we try to learn from other peoples success or failure, and how they made it.

In software architecture, “design patterns” tries to address this issue by cataloging

common pitfalls and their solutions. Understanding and using design patterns in

making the core architecture is a great help when trying to prevent potential weak

points in the system, causing unwanted behavior (e.g. system crashes or data

corruption). They can also assist in making the system more flexible and easier to

extend with new features.

The developed system consists of a base framework functioning as a virtual

testbed for constructing flexible image processing setups, as well as a variety of

pluggable modules to be used as components in the construction. To make the

extending modules as easy to make as possible, much of the logic, common to all

modules, has been placed in the framework, enabling the module developers to

concentrate on the mathematical models they're implementing.

Often, especially when it comes to software used in research, the ability to get the

different systems to communicate – or at least be able to exchange data – is highly

appreciated. Not knowing what exact systems, the users might choose to work

with, it was decided to let all non-binary communication inside the system, be

based on the Extensible Markup Language (XML). This also makes the system

easier to extend with new features, as adding elements to an XML document would

not require changes to existing logic.

5 “Software Architecture”, http://www.sei.cmu.edu/ata/ata_init.html, Carnegie Mellon University

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 11

Like in most other image manipulation and processing systems, a graphical user

interface is produced to assist the user in designing algorithms and visualizing

results. Inspired by the Model-View-Controller pattern, a clear separation from the

underlying processing logic was made, enabling future versions of the system to be

created, using a different user interface, e.g. being text based.

When focusing on the GUI, usability is an important element to remember, when

creating user interfaces for systems to be used outside ones “personal lab”. For this

project, it has been a goal to make a system that would be easy to use, it should be

noted, though, that covering all aspects of creating great usability would require

much more resources than available during the development of the system.

2.1 System requirements
Before any development on the system can begin, it's a necessity to get some

requirements in place[Grand98, p. 30].

These high level system requirements are the main reference points for the rest of

the development process, and can be considered a sort of contract between the

customer and the software developer.

High level requirements should not include implementation specific details that

would not affect the system in any way visible to the customer.

After a few sessions with Birgit Sander6, a suiting set of preliminary requirements,

of things , desirable to have in the system, were agreed upon:

1. Import of the RAW data format, exported from different variants of Carl Zeiss

Optical Coherence Tomography retinal scanners.

2. Image data visualization on screen.

3. Alignment of single images.

4. Collection AND alignment of a set of 2 or more acquired images, representing

the same data.

5. Other digital signal processing modules, including basic arithmetic modules.

6 Head of Laboratory, Dept. of Ophthalmology, Herlev Hospital

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

12 Imaging System Development

6. The system should be possible to extend by students with average programming

skills.

7. Existing pieces of related software, made by local researchers with an affiliation

with the hospital, should be possible to merge with the system.

A full list of the organized requirements can be found in Appendix A.

2.1.1 MoSCoW prioritization

When listing requirements, a successful method of prioritizing them, is by using

words that have meaning. Several schemes exist but a very popular method is the

acronym MoSCoW7. The o's in MoSCoW are just there for fun and the rest of the

word stands for:

� Must have this
� Should have this feature if at all possible.
� Could have this if it does not affect anything else.
� Won't have at this time but would like to have in the future.

The importance of this method is that when prioritizing the words mean

something and can be used to discuss what is important. A requirement listed as a

"Must" is non-negotiable. Without them the system will be unworkable and

useless, while “nice to have” features are classified in the other categories of

"Should" and "Could”.

Requirements marked as "Won't" are potentially as important as the "Must"

category. It might not be immediately obvious why, but it is one of the

characteristics that makes MoSCoW such a powerful technique. Classifying

something as "Won't" acknowledges that it is important, but can be left for a future

release. In fact a great deal of time might be spent in trying to produce a good

"Won't" list. This has three important effects8:

7 “MoSCoW Prioritisation”, URL:
http://www.ogc.gov.uk/sdtkdev/examples/HMCE/Guidance/MSCW/moscow_prioritisation.htm

8 “Project prioritisation using MoSCoW”, URL: http://www.coleyconsulting.co.uk/moscow.htm

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 13

� Users do not have to fight to get something onto a requirements list.
� In thinking about what will be required later, affects what is asked for now.
� The designers seeing the future trend can produce solutions that can

accommodate these requirements in a future release.

When setting priorities for the requirements listed for this project, the MoSCoW

model was used for inspiration. However, the list of requirements is not very long

compared to enterprise scale systems, where the project team would spend

months, prioritizing lists of requirements that could fill a book.

It might seem like overdoing it to use the MoSCoW model for this project, but

during development, it has shown an invaluable resource to have, when in doubt of

what was to be implemented.

2.2 Market Analysis
Developing a full blown image processing system from the ground up, is not a

small task. It is therefore essential to investigate possible alternative options, where

3rd party software could be used as a base to build on.

An extensive search for commercial as well as free tools, capable of fulfilling the

high level system requirements, listed in Appendix A, was made, and

the results would reveal, if it was feasible to make a new product or not.

A few potential alternatives emerged and an overview of these are listed in tables

1 to 5, showing detailed descriptions, including pricing, licensing, compatibility,

etc..

Note: Prices are converted to DKK where only found in foreign currencies.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

14 Imaging System Development

Name GIMP (GNU Image Manipulation Program)

Vendor N/A (Open Source)

Description An open source image manipulation program. It's functionality is very close

to that of PhotoShop from Adobe. GIMP can be extended with plug-ins

created in Lisp, working as scripts, utilizing low level functionality in the

graphics processing engine.

Platform Linux, Unix (different), Windows

Price Free

Pro � Many standard image processing features
� Possibility to make plug-ins
� Free

Con � Does not support floating point pixel types
� Not easy to design and change work flows for image processing on the

fly

URL(s) http://www.gimp.org

Summary Using GIMP as a platform for development of the system required, would

mean, that the source code for GIMP itself would have to be modified to

support floating point pixel values. There is also no mechanism for easily

combine pluggable modules in work flows, to be used as composite

algorithms, when processing images.

Table 1, Data on GIMP

Name Image-Pro

Vendor Media Cybernetics

Description Professional quality image acquisition and processing software.

Platform Windows 98/NT/2000/XP

Price DKK 25765.00 (Discovery version)

DKK 38653.00 (Plus version)

Pro � Supports floating point images
� Many powerful image processing features
� Possibility to make and buy plug-ins

Con � Only runs on windows
� Very expensive

URL(s) http://www.mediacy.com (Vendor)

http://www.unit-one.dk (Retailer)

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 15

Name Image-Pro

Summary Basically, Image-Pro (with the extensions needed), would probably fulfill

most of the image processing requirements seen from a pure technological

stand point. There are two major downsides to using Image-Pro as the base

platform though:

1. It only runs on windows, making it impossible to port to other platforms,

as required

2. The licensing costs are very high for people developing modules for the

software, as well as those using it for research.

Table 2, Data on Image-Pro

Name LabVIEW

Vendor National Instruments

Description Graphical algorithm designer (and executor).

Platform Linux, Windows 98/NT/2000/XP

Price DKK 18,170.00 (Full)

DKK 31,910.00 (Professional)

DKK 23,740.00 (Vision Development Module [Windows])

Pro � Multiple platforms are supported
� Graphical algorithm designer

Con � Very expensive
� Not very easy to modify when standard modules are insufficient.
� Vision Development Module only for Windows

URL(s) http://www.ni.com/labview (Vendor)

Summary This platform is probably the best candidate for the project among the

alternatives listed. It's very easy to construct complex algorithms in a very

short time. There are, however, some major issues, that are hard to neglect:

1. The platform is very expensive (around DKK 40,000.00 for the base +

vision package) for users and developers of extensions.

2. Extensions to do more complex image processing are only delivered as

*.dll's for Windows, eliminating the use of other platforms.

3. It's easy to use for builders of algorithms, but hard to make new modules,

when the existing ones are insufficient.

Table 3, Data on LabVIEW

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

16 Imaging System Development

Name MatLab

Vendor Mathworks

Description Mathematical scripting engine/programming language.

Platform Linux, Windows 98/NT/2000/XP

Price (ex.moms)

DKK 21,950.00 (MatLab)

DKK 29,950.00 (SimuLink)

DKK 9,950.00 (Image Processing Toolbox)

Pro � Multiple platforms are supported
� Graphical algorithm designer (SimuLink)
� Many universities use it (wide spread)

Con � Very expensive
� No modules created yet for image processing in SimuLink

URL(s) http://www.mathworls.com (Vendor)

http://www.comsol.dk (Retailer)

Summary On the positive side, this platform delivers basically everything needed for

the system, with the exception of a set of tools in SimuLink to reflect the

image processing methods in MatLab. The price, however, is too high,

when taking into account that every runtime and every development

installation requires installations with added licensing fees in the area of

DKK 60,000.00.

Table 4, Data on MatLab

Name IDL

Vendor Research Systems Inc.

Description High level programming language, providing advanced visualization

functionality in an easy way.

Platform Linux, Windows, Unix

Price $ 3,000.00 (IDL Personal)

(� DKK 18,000.00)

Pro � Multiple platforms are supported
� Quick visualization of data.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 17

Name IDL

Con � A bit pricey
� Focuses on visualization – more than of the business logic needed to

support it.

URL(s) http://www.rsinc.com (Vendor)

Summary A nice high level language, targeted at developers, wanting to do quick

scientific visualizations. Image processing capabilities are not at the level

needed for the project.

Table 5, Data on IDL

Although some of the found software packages come close, none of them could

fulfill the requirements given at the project beginning regarding:

� Portability - The software must be able to run on multiple platforms
� Low cost - Users and developers of the software must not be obligated to pay

high license fees
� Floating point pixel values - Image processing operations must support floating

point pixel types.

Based on the results of the market analysis, showing very high licensing costs on

software, suitable for use in this project, it is seen necessary to produce the basic

framework from the ground up. This would still allow incorporation of 3rd party

libraries where seen fit (e.g. vector math libraries, GUI toolkits, etc.), but bring the

potential cost enforced on the users and developers to a minimum.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

18 Imaging System Development

2.3 Functional specification
After agreeing upon a set of requirements, it is up to the software implementer(s)

to try to make small design considerations for each requirement. These should not

go into deep implementation specific details, but instead function as components

to be used when making the complete system design.

As an example, let's assume a given requirement states the following:

“A caching mechanism must be implemented to store different types of resources

in the system. The objects cashed, should not be deleted until a specifiable time

period has passed, after the objects are no longer referenced anywhere else.”

In a functional specification, relating to this requirement, considerations for a

possible solution to a partial design, might lead something like:

“Objects, to be stored in the cache, should be wrapped in a container class,

capable of keeping track of references made to the object. When the reference

count reaches zero (when the object is no longer being used), the current time plus

a configurable timeout value is stored in a member variable in the wrapper class. At

certain time intervals, all cached objects will be checked to see if they are timed out

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Note: Development costs are close to zero, as this system will be

developed as part of a master thesis project. If this had been a software

project done by well paid freelance developers, the choice of building

extensions to a system like LabVIEW might have been more realistic, as

development costs (for the system built from scratch) would be in the

range of DKK 50K-100K per month per developer hired.

Including design, planning and quality assurance, with a decent

development team of around 5-8 people, the total cost would easily run

up in the millions (of DKK).

 Imaging System Development 19

AND their reference count is still zero. In this case, the object should be deleted.”

The full functional specifications for the system are listed in Appendix B.

2.4 Choice of platform
When developing systems to be used by others, outside the comfortable

environment of ones home PC or the local university lab, it is important to gather as

much information as possible, about where the system will be used, by whom it will

be used, what software platform restrictions there will be, licensing costs of 3rd party

tools, performance requirements, etc.. Failing to do so, might cause the software to

become more of a problem, than the solution it was meant to be.

2.4.1 Considering all the options

In the beginning of the project, a great deal of effort was put into finding the right

platform for the system in terms of programming language, graphical user interface

libraries, digital signal processing libraries, etc.. It was also of importance that an

average student at a technical university, with maybe only a beginners

programming experience, would be able to use the system and extend it, without

feeling the problem would be too overwhelming to take on.

Before any choices could be made, some data mining was done to find good 3rd

party software candidates for the components to be used in the system. In table 6,

the 3rd party libraries, compilers, etc. that came into consideration, are listed:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

20 Imaging System Development

No. Name Description Type Language

1 Blitz++ Fast vector math and signal

processing library based on C++

metaprogramming.

Math

library

C++

2 Simple DirectMedia Layer

(SDL)

Extensive multi-platform media

library with an emphasis on fast

graphics.

Graphics

library

C/C++

3 ParaGUI A lightweight and platform

independent GUI framework using

the SDL library.

GUI library C++

4 PicoGUI Very lightweight GUI framework

running on anything from

embedded devices to desktops.

GUI library

and server

C

5 wxWindows Very mature and extensive GUI

framework.

GUI library C++

6 SDL_net Low-level TCP/IP extension to the

SDL library.

TCP/IP

library

C++

7 Boost C++ extensions to compensate for

differences between compilers and

platforms (and much more).

C++

extensions

C++

8 MinGW Toolkit for cross compiling

Windows applications from a

Linux machine.

Cross

compiling

toolkit

C/C++

9 ImageMagick Image manipulation framework

capable of handling many known

image formats.

Image

framework

C/C++

10 gcc The GNU C/C++ compiler. Compiler C/C++

11 Java2 SDK The Java2 Software Development

Kit including a large base of built

in functionality.

Compiler

and SDK

Java

12 Xerces XML parser library. XML library Java or C++

13 Xalan Extended XML handling library,

includes XPath and XSLT

transformations.

XML library Java or C++

Table 6, Listing of the potential 3rd party software components, to be used in the system.

After some testing and further elimination, the following two constellations were

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 21

under consideration:

1. A pure C/C++ solution, combining SDL, ParaGUI, Blitz++ and Xerces, using gcc

as the primary compiler (on Linux) and MinGW to cross compile to windows.

2. A Java solution, where most libraries were included in the standard SDK, except

for Xalan.

A list of pros and cons for the two different solutions was made to assist in the

decision making resulting in a choice of the first option of using C++ - mainly

because of the performance gain it had on the Java solution, when it comes to

signal processing. Thus, this was meant to be a pure C++ solution, that would

compile and run on multiple platforms – Linux (x86) and Windows being the two

main target platforms.

Designs were made (see the section on architecture/system design) and the

implementation process started.

After a few months of development, the complexity involved in making all

libraries compile – even just on one platform alone – had grown out of proportion.

I then realized, that even if this system was going to be performing very well and

run on multiple platforms, no ordinary student - not even with moderate software

development skills – would take on the challenge of getting all the pieces of the

system to work together. At least not on any voluntary basis.

I now faced the hard choice of either sticking with what I had, make a nice

working system, that would probably never be extended by anyone but myself, or

start over – throwing away all the code I had developed, yet bringing the gained

experience to make a much better system. A lot of the graphical user interface, as

well as a few pieces of core processing logic modules were already in place, but that

was not any excuse good enough to justify going further down the complex path.

I closed my eyes, took a deep breath and made the only right decision possible –

the system code would have to be rewritten in a new environment. This time, the

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

22 Imaging System Development

obvious need for the core parts of the system to be built on as few different

frameworks, libraries and toolkits as possible, was the key factor that lead to Java

being used.

To compensate for Java's poor performance when it comes to vector math, it was

a necessity to make it possible to integrate the system with different native libraries

through the Java Native Interface (JNI), that functions as a bridge between Java,

running on a virtual machine, and C/C++, being compiled natively for the platform

used.

JNI can be used to integrate C/C++ and Java on many levels, but for the purpose

of this project, the focus has been on using JNI to call highly tuned mathematical

operations written in C++.

2.5 Architecture and design
Throughout our lives, we gain experience - mostly by doing things wrong. In

software development, this is also true, but sometimes you can't afford to do things

wrong, and when you may finally see that some part of your architecture will break

under some stressed situations, you may try to patch things up to save time – or

that is.... you THINK you save time – but that's a whole different discussion (see the

section on refactoring).

Creating a good design is essential to making a robust and flexible system, and a

few techniques to help in the process are presented in this section.

2.5.1 Using Design Patterns

In the early 1990s, Erich Gamma, Richard Helm, John Vlissides and Ralph

Johnson addressed this challenge and began to work on one of the most influential

computer books of our time [Grand98, p. 1-5]: “Design Patterns”. These patterns

are reusable solutions to recurring problems that occur during software

development, collected in a cataloged fashion and given a name for easier

recognition among developers. To give an idea of how developing using software

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 23

patterns works, suppose that you need to write a class that manages motor control

by encapsulating low level functionality, and providing a high level public interface

to users of the class. In this case, you would not want more than one instance of the

class to exist at any given time, as it might give unpredictable results, but how to

manage this?

The Singleton pattern [Grand98, p.127] handles this kind of situation by

controlling the instantiation mechanism internally, using a static member variable,

thereby ensuring that there will never exist more than one instance.

Continuing the example of the motor controller, to implement a class using the

Singleton pattern is fairly simple, as you can see from the diagram in figure 6, and

the accompanying implementation example in source listing 1.

Walking through the code example, notice that the class constructor has been

made unavailable to the public (users of the class), forcing outside code to access it

through the static getInstance() method. When using the MotorControl class, the

public methods would be accessed by going through that function, as shown in

source listing 2.

This way, you don't have to worry about the motor controlling methods being

used in an unmanaged way.

Using patterns in general when developing software also helps when trying to

figure out why the system might not behave as you expect it to and requires

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 6, UML diagram of the MotorControl class using the Singleton pattern.

MotorControl

-m_instance: MotorControl = null

-MotorControl()

+getInstance(): MotorControl

+setSpeed(speed:double): void

+setDirection(direction:boolean): void

Return the class scoped (unique) m_instance.

If m_instance is ’null’, then m_instance

is first created by calling the private

constructor, MotorControl().

24 Imaging System Development

debugging. Here, the patterns - if used correctly - ensure that the more common

design mistakes can be ruled out.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

public class MotorControl {

// An object to hold the class instance when created
private static MotorControl m_instance = null;

// A private constructor, not callable from outside this class
private MotorControl(){

// initialize contact with low level motor control
}

// The public instantiation function,
// synchronized to ensure thread safety
synchronized public static MotorControl getInstance(){

if(null == m_instance){
// If this is the first call to getInstance, create the object
m_instance = new MotorControl();

}
// Return the instance object
return m_instance;

}

public void setSpeed(double speed){
// set the speed...

}

public static final boolean LEFT = false;
public static final boolean RIGHT = true;

public void setDirection(boolean direction){
// set the direction...

}
}

Source 1, MotorControl class - an example of the Singleton pattern in use.

MotorControl ctrl = MotorControl.getInstance();
ctrl.setSpeed(0.0);
ctrl.setDirection(MotorControl.LEFT);
ctrl.setSpeed(100.0);

Source 2, All interaction with the MotorControl goes through the
getInstance() method.

 Imaging System Development 25

2.5.2 Model-View-Controller

Throughout the design and implementation, it has been an overall goal to

separate program logic and graphical user interface. To achieve this, the Model-

View-Controller (MVC) pattern [Buschmann96, p.125] has been perfect.

Basically, the goal of using the MVC pattern, is to make a clear distinction of what

part of the code belongs to the core data storing, processing and handling, and

what part of the code belongs to the current choice of visualization mechanism (e.g.

GUI based, text based, printer output, etc.).

To better understand the split between model, view and controller, take a look at

the diagram in figure 7, illustrating the different roles as well as ways they can

communicate with one another9.

� Model: Representing a data container, as well as the business rules defined for

accessing and updating the data.
� View: The view renders the contents of a model. It is the view's responsibility to

maintain consistency in its presentation when the model changes. This can be

achieved by using a push model, where the view registers itself with the model

9 From a web page on J2EE patterns by Sun Microsystems, Inc.

URL: “http://java.sun.com/blueprints/patterns/MVC-detailed.html”.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 7, Box diagram of the Model-View-
Controller pattern.

26 Imaging System Development

for change notifications, or a pull model, where the view is responsible for calling

the model when it needs to retrieve the most current data.
� Controller: The controller translates interactions with the view into actions to

be performed by the model. In a stand-alone GUI client, user interactions could

be button clicks or menu selections. The actions performed by the controller

include activating business processes or changing the state of the model.

The module plug-in loading mechanism has been designed using this pattern, as

illustrated in figure 8.

In the current system implementation, it is possible to swap between two

versions of the pluggable module loading mechanism:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 8, UML diagram showing the structure of the Model-View-Controller pattern applied to the plug-in
loading mechanism.

PluginLoaderModel

-m_loadedPlugins: Vector

-m_listenerList: EventListenerList

-m_changeEvent: ChangeEvent

+PluginLoaderModule()

+addChangeListener(ChangeListener): void

+removeChangeListener(Changelistener): void

#fireChangeEvent(): void

-loadPluginAtRuntime(File): BasicPlugin

+scanForPlugins(String): void

+getLoadedPlugins(): Iterator

PluginLoaderView

-m_model: PluginLoaderModel

-m_rescanButton: JButton

+PluginLoaderView(PluginLoaderModel)

-repaintPluginList(): void

+stateChanged(ChangeEvent): void

PluginLoaderControl

-m_model: PluginLoaderModel

-m_view: PluginLoaderView

+PluginLoaderControl(PluginLoaderModel,PluginLoaderView)

+actionPerformed(ActionEvent): void

<<interface>>

ChangeListener

+stateChanged(ChangeEvent): void

<<interface>>

ActionListener

+actionPerformed(ActionEvent): void

 Imaging System Development 27

1. PluginLoaderModel: The basic module loading mechanism, assuming that all

modules are located in separate Java library (*.jar) files, either on a remote

server or on the local file system. This model is mainly used when deploying

release versions of the system.

2. PluginInternalModel: A version of the module loader, mainly used under

development. This model will load all modules currently available in the

development environment, thereby eliminating the need for building *.jar

library files for every change made to a module.

Because of the MVC architecture used, the difficulties involved in swapping

between the two models are very limited, and does not affect the view nor the

controller classes.

2.6 Framework
To be able to provide the versatility required for the system, it was decided to

make a solution where any extensions could be developed as small self containing

modules, not requiring changes to the rest of the system when integrated.

To achieve this, much effort is put into making the framework code handle as

much of the heavy complexity as possible. The idea is to make the framework do all

data routing through the system, leaving individual modules (extensions) with their

specific processing logic only.

2.6.1 Pluggable modules

On top of the framework, any kind of processing logic should be possible to

implement, as long as the implementing classes follow the guidelines laid out by

the governing interfaces. An UML diagram, showing these and including two

example implementing classes, XmlFileImportPlugin and TranslateRowsPlugin, is

provided in figure 9.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

28 Imaging System Development

As new modules are continuously being developed, it would be impossible to

cover all modules at the time of reading in this document. However, as part of the

master thesis, a number of modules have been produced and tested. These

modules will be described in detail in a later chapter.

The modules can either exist as independent packages (*.jar files) on disk or

possibly located on a remote server, or they can be integrated in the core system

package. This enables users the possibility to get a continuous upgrading of their

system, as remote modules could be updated in a centralized way as often as

needed (e.g. fix for one and all will be fixed).

2.6.2 Message channels

The modules are connected through data channels visualized as colored arrows.

Currently, the framework supports two types of channels:

� A ScanDataCollection (red arrows in the diagram, see section on the GUI)

channel transporting raw image data in double precision arrays and

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 9, UML diagram, showing the interfaces to be implemented from when
developing pluggable modules.

<<interface>>

IXmlProducer

+getXmlMessage(): IXmlMessage

<<interface>>

IXmlConsumer

+consume(IXmlMessage): void

<<interface>>

IBasicPlugin

<<interface>>

IBasicConsumer

<<interface>>

IBasicProducer

+produce(): boolean

<<interface>>

IScanDataCollectionConsumer

+consume(IScanDataCollectionMessage): void

<<interface>>

IScanDataCollectonProducer

+getScanDataCollectionMessage(): IScanDataCollectionMessage

TranslateRowsPlugin

+produce(): boolean

+consume(IXmlMessage): void

+consume(IScanDataCollectionMessage): void

+getScanDataCollectionMessage(): IScanDataCollectionMessage

XmlFileImportPlugin

+produce(): boolean

+getXmlMessage(): IXmlMessage

 Imaging System Development 29

� an Xml (blue arrows in the diagram, see section on the GUI) channel

transporting XML encoded information (e.g. a vector of integers, etc.).

When trying to connect two modules in the testbed diagram, looking at the

interfaces, implemented by the two modules, the framework will decide which data

channel is available for the connection, if any. If more than one type of channel can

be made between two modules being connected, the user will be presented with a

list to choose from. A UML diagram, showing the channel and message interface

relationship, is illustrated in figure 10.

2.7 GUI design and implementation
The graphical user interface (GUI) is the part of the framework, the user sees and

interacts with to control the system. It should not contain any business logic, but

only present what lies in the model code underneath, as well as feeding user

commands to the framework.

As the system has been implemented in Java, Swing will be used when

implementing the GUI. Swing is based on lightweight components [Geary99, p.6-

16], and is directly portable to other platforms, where Java is supported.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 10, The two types of messages, currently available in the
system.

<<interface>>

IMessage

<<interface>>

IXmlMessage

+getDocument(): Document

<<interface>>

IScanDataCollectionMessage

+getScanDataCollection(): ScanDataCollection

XmlMessage

-m_document: Document

+XmlMessage(Document)

+getDocument(): Document

ScanDataCollectionMessage

-m_scanDataCollection: ScanDataCollection

+ScanDataCollectionMessage(ScanDataCollection)

+getScanDataCollection(): ScanDataCollection

30 Imaging System Development

In this section, we will run through the different parts of the GUI, including the

pluggable module list, the testbed diagram view and the details panel for modules

selected in the diagram.

Some design considerations were made regarding usability and separation from

the underlying framework code. These areas are covered in the end of this section.

2.7.1 Overview of the user interface

The main user interface for the system has been designed to function as a sort of

testbed, where components can be placed and wired together. The components

are connected using message channels, capable of transporting different types of

data through them. Message channels are visualized as arrows in different colors,

going from “producer” modules to “consumer” modules. Figure 11 shows the main

graphical view, where a simple diagram has been constructed consisting of a data

phantom and a visualization module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 11, Overview of the GUI with a pluggable module list to the left, the testbed area to the
upper right and a panel, showing details for selected modules below.

 Imaging System Development 31

The pluggable component modules are listed under different categories to the

left and new instances of the modules can be dragged to the testbed using the

mouse. Connecting two modules, is done by pressing the right mouse button on

the “producing” module, dragging a channel to the “consuming” module.

A module may or may not have a details panel associated with it. If so, the details

panel will appear under the algorithm testbed area, when a module is selected in

the diagram.

2.7.2 Usability

When developing systems that are going to be used by people with different types

of background, it is vital, that some effort has been put into making the visible parts

user friendly. This area of software development has gained an increasing place of

importance - especially as more and more non-technical people get involved in

computing. As an example, Luca Passani, one of the 'gurus' in the field of usability,

tries to narrow the gap between developers and users, by explaining the possible

problems when engineers develop for the masses [Arehart00, chapter 7].

Trying to cover all sorts of aspects of usability when developing a system like

this, would be impossible, given the resources available to the project. However,

during development, it has been a key issue to keep in mind that the software

should not only function, but also try to meet the usability requirements given.

Being the developer of the system, it's hard to give an objective view on if and

how the usability requirements were met. On page 125, a statement made by Birgit

Sander (the “customer”), explains her view on this issue (in Danish).

2.8 XML for compatibility
The Extensible Markup Language (XML) is a World Wide Web Consortium

(http://w3c.org) recommended standard for creating information documents .

Unlike HTML, which contains only words and links to pictures with some

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

32 Imaging System Development

document formatting, an XML document, in general, contains elements which can

be used to define information structures [Berg99, p.562].

2.8.1 Diagram file format

The system supports saving and loading of diagrams in a human readable XML

format. This enables the user to easily create other pieces of independent software,

that may be used to modify the files, and thereby loosely interact with the platform.

A typical minimalistic example, consisting of a raw data phantom connected to a

visualization module, saved in a file, can be seen in source listing 3.

The mechanism for storing the state of the diagram, is taking advantage of the

fact that XML structures can be nested in a tree structure, and child nodes in the

tree only needs to know of the immediate parent node on which to extend. This

means, for example, that the Diagram class only needs to know how to handle a

<Diagram> element, passing all the handling of <Component> elements to the base

class of the components. Each component then decides how to handle its given

<Component> element based on the component type ("ModuleModel" or

"ChannelModel"), which will again result in a call to a handler in the respective

classes.

To give an idea of the effectiveness of this approach, take a look at the part of the

code from the RawDataPhantom class, that is responsible for storing and retrieving

of state information in source listing 4.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 33

A quick view on the code, reveals that the only state information handled

specifically by the class (RawDataPhantom) is the type of pattern selected.

Getting back to the stored file, here follows an explanation of each of the main

structures in the diagram XML:

The XML header (<?xml version="1.0" encoding="UTF-8"?>) is always present in

some form in an XML document, giving hints to XML parsers on how the document

is stored.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

<?xml version="1.0" encoding="UTF-8"?>

<Diagram>
 <Component type="ModuleModel" componentId="11...:-7fff">
 <PropertyMap>
 <Property name="xpos" value="234" />
 <Property name="ypos" value="124" />
 </PropertyMap>
 <Plugin name="com.dtu.oct.plugin.visualizescans.VisualizeScansPlugin" />
 </Component>
 <Component type="ModuleModel" componentId="11...:-8000">
 <PropertyMap>
 <Property name="xpos" value="120" />
 <Property name="ypos" value="124" />
 </PropertyMap>
 <Plugin name="com.dtu.oct.plugin.rawdataphantom.RawDataPhantomPlugin">
 <Property name="selectedPattern" value="Checker Board" />
 </Plugin>
 </Component>
 <Component type="ChannelModel" componentId="11...:-7ffe">
 <PropertyMap />
 <Channel>
 <Property name="consumerId" value="11...:-7fff" />
 <Property name="producerId" value="11...:-8000" />
 <Property name="messageType" value="ScanDataCollection" />
 </Channel>
 </Component>
</Diagram>

Source 3, Contents of an example diagram stored in an XML file. NOTE: component IDs have been
shortened to make them fit here.

34 Imaging System Development

In the files, stored by the system, there should be a root element, <Diagram>,

encapsulating different types of components existing in the diagram. At the time of

writing, there are two types of components available:

� A ModuleModel, representing a pluggable module (e.g. a RawDataImport module)

and
� a ChannelModel, representing a data channel between modules (e.g. a

ScanDataCollection message channel).

Each component has an associated componentId, used to be able to uniquely

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

public void initialize(Element pluginElement){
super.initialize(pluginElement);
System.out.println("RawDataPhantom initialized called...");

try {
AttributeNode propertyValue =

(AttributeNode)XPathAPI.selectSingleNode(
pluginElement,
"Property[@name='selectedPattern']/@value");

if(null != propertyValue){
this.setPatternGenerator(propertyValue.getValue());
m_mainPanel.updateView();

}
} catch (Exception ex){

System.out.println(""+ex);
}

}

public void saveState(Element pluginElement){
super.saveState(pluginElement);
System.out.println("RawDataPhantom saveState called...");

Document xmlDoc = pluginElement.getOwnerDocument();

Element propertyElement =
(Element)pluginElement.appendChild(

xmlDoc.createElement("Property"));
propertyElement.setAttribute("name","selectedPattern");
propertyElement.setAttribute("value",""+getPatternGeneratorName());

}

Source 4, Seralization logic of the RawDataPhantomPlugin class.

 Imaging System Development 35

identify a component, e.g. when relating producer and consumer ModuleModels in

ChannelModels. This relationship is illustrated in source listing 5.

Before continuing with the element descriptions, it might be helpful with a

graphical view of the diagram represented in the file. A simple algorithm,

consisting of a data phantom connected to a visualization module, is illustrated in

figure 12.

As clearly visible in the diagram, the two components are aligned horizontally

with a ScanDataCollection message channel arrow in between.

As the model itself does not contain specific View related member variables, the

positioning of modules in the visualization of the diagram, is stored in a property

map10 inside the modules.

10 A property map is a (name, value) pair dictionary.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
 <Component type="ModuleModel" componentId="11...:-7fff">
 <Plugin name="com.dtu.oct.plugin.visualizescans.VisualizeScansPlugin" />
 </Component>
 <Component type="ModuleModel" componentId="11...:-8000">
 <Plugin name="com.dtu.oct.plugin.rawdataphantom.RawDataPhantomPlugin">
 <Property name="selectedPattern" value="Checker Board" />
 </Plugin>
 </Component>
...
 <Channel>
 <Property name="consumerId" value="11...:-7fff" />
 <Property name="producerId" value="11...:-8000" />
 <Property name="messageType" value="ScanDataCollection" />
 </Channel>
...

Source 5, Channel components contain references to module components by their component ID.

36 Imaging System Development

A property map is a map of key-value pairs that contain any key related to any

value. This way, the view is not tightly coupled to the model code and the model

will allow other kinds of views to store their specific information in the map. The

XML representation of the map, in the stored workspace file, is shown in source

listing 6.

The "Checker Board" pattern is selected in the graphical view (see figure 13), and

the serialization code snippet from source listing 4, combined with this selection,

results in the XML element listed in source listing 7 when the diagram is saved.

In the end of this section, a small example is provided, of how the use of XML

makes it easy to extend the system with new features to be saved in the workspace

file. Late in the project, while designing a very large algorithm diagram, it became

obvious, that there was a need for a possibility of labeling the module icons in the

diagram, as it became too complex to remember the settings for each module when

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
 <PropertyMap>
 <Property name="xpos" value="234" />
 <Property name="ypos" value="124" />
 </PropertyMap>
...

Source 6, Graphical module positions in the diagram view are saved as properties in an
independent property map.

...
<Property name="selectedPattern" value="Checker Board" />
...

Source 7, The 'selectedPattern' property of the RawDataPhantom is set to
“Checker Board” in the XML file.

 Imaging System Development 37

trying to get an overview.

This kind of functionality was to be available for all kinds of modules, including

new ones being created in the future, and it shouldn't involve any code changes to

the individual module implementations. Using the existing mechanism for getting

and setting properties for modules (like in the case of the positioning of the icons,

as mentioned before), the implementation was limited to two places in the code:

1. The user interface for setting the module label, added next to the

“Consume”/”Produce” buttons in the plug-in details panel (around 15 lines of

code).

2. When painting the icons in the visual diagram, the label text needed to be

shown (around 10 lines of code).

Both places, the code would communicate directly with the generic code for the

modules (the ModuleModel class), which would from then on automatically handle

storing and retrieval of module labels. In source listing 8, the two lines of code

inserted are shown.

Looking at a snippet of one of the new XML files produced in source listing 9, the

new property, oct_nameTag, containing the label information, is automatically

inserted after the code change.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

In the GUI code, where the user can set the label (nameTag):
m_module.setProperty("oct_nameTag", m_txtNameTag.getText());

The visualization code would grab the label using:
String nameTag = getModel().getProperty("oct_nameTag");

Source 8, Example of how the developed get/set property mechanism can ease the
addition of new state information.

38 Imaging System Development

Old workspace files, not including this label, was still fully compatible with the

system, and new files (with the label set) would also load on the previous version of

the system.

2.8.2 Module intercommunication

To make the systems inner workings as flexible and open as possible, some of the

modules can be split up in two (or more) parts, communicating with each other

using XML. Some image processing module, for example, could be split up in a

data analysis part and a data modification part, where the data modification

module would take two inputs:

� A ScanDataCollectionMessage, containing the data and
� an XmlMessage, containing the data modifier.

This approach has some advantages:

� When developing similar data analyzing modules, it would be possible to reuse

the corresponding data modifying module, thereby cutting down development

time as well as limiting the amount of possible introduced bugs in the system.
� Sometimes, the data to be analyzed might have gone through some data

preprocessing modules, leaving the data polluted, yet suitable for that specific

type of analysis. In these cases, it is preferable to have the possibility of applying

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
 <Component type="ModuleModel"
componentId="11d1def534ea1be0:78dc4c:fa64ad2736:-7ffd">
 <PropertyMap>
 <Property name="xpos" value="175" />
 <Property name="ypos" value="126" />
 <Property name="oct_nameTag" value="Mean 5" />
 </PropertyMap>
 <Plugin name="com.dtu.oct.plugin.filterconvolution.FilterConvolutionPlugin" />
 </Component>
...

Source 9, Snippet from a saved XML workspace file, containing the newly created "oct_nameTag"
property.

 Imaging System Development 39

the produced data modifiers to an earlier version of the data.
� If the data analyzing modules available are inadequate in some way for a specific

problem, it would then be possible to import the data modifier as an XML file,

produced by some other entity (e.g. MatLab).
� A possibility to export the produced data modifiers to be used in other software

packages or to be used in documentation in general.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

40 Imaging System Development

2.9 Tutorial on making pluggable modules
This section will go through a step-by-step guide on how to make a new module

beginning with the problem of having identified an algorithm, that cannot be

constructed using available pluggable modules.

Before creating anything, the software packages used for development, as well as

the code base for the system itself, must be installed.

2.9.1 Identifying the problem

In some cases, it might be desirable to invert an image, e.g. for printing, where a

dark foreground on a bright background in general uses less ink than the opposite.

After some experimentation with the system, it is realized, that inversion of pixel

values (multiplying them by -1) is not possible given the existing modules. It is

therefore desirable, to create a new module, doing just that.

2.9.2 Prerequisites

First, the appropriate software, listed in table 7, needs to be downloaded.

Software URL

Java 2 SDK version 1.4

(or higher)

http://java.sun.com

Eclipse Java IDE

(this IDE is not required but is assumed to be

used throughout the tutorial).

http :// www.eclipse.org

Xalan Java 2

(Extended XML tools including XPath and

XSLT functionality).

http://xml.apache.org

Table 7, Software needed to complete the tutorial. The Java2 platform and Xalan are also needed when using the
system at runtime.

Native libraries require a C/C++ compiler to build. On Unix/Linux systems, any

recent version of gcc will suffice (gcc3.2 was used during under development of the

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Imaging System Development 41

system). On the MS Windows platform, Visual Studio 6.0 has been tested to work,

building shared libraries (*.dll) compatible with the OCT Imaging system.

� Install the Java SDK, then Eclipse and add the extra libraries from Xalan under

the Java external libraries directory ($JAVA_HOME/jre/lib/ext).
� Now, start Eclipse.
� The source code for the system can be imported into Eclipse using the import

tool available under File->Import.

After successfully getting the IDE up and running, expand the OCT project, open

a few classes, and a view, similar to the one in figure 14, should appear.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 14, Main view of the Eclipse development platform with the
OctSystem project open.

Note: Some parts of the Blitz++ vector math library will not compile

correctly with the Microsoft compiler, as Visual Studio 6.0 is not fully

compatible with the template use in Blitz++.

42 Imaging System Development

2.9.3 Beginning development

To the left, a long list of package names is displayed – many of them with the

word “plugin” in the middle.

� Right click on one of the packages and select New->Package.
� Name the new package: “com.dtu.oct.plugin.invertimage” (see figure 15).

� Right click on the new package name and select New->Class
� Fill in the information as shown in figure 16 and press “Finish”.

The reason for the interfaces are as follows:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 16, Class generation wizard of Eclipse.

 Imaging System Development 43

� IBasicPlugin: Enforces basic plug-in functionality to be present.
� IScanDataCollectionConsumer: Making sure, that the module will be able to

consume RAW data.
� IScanDataCollectionProducer: Enforces production methods to be present,

making sure, RAW data will be produced.

To make the plug-in module work in the framework, implement the constructor

and basic info methods as shown in source listing 10.

While using the module during development, the module can be added to the list

of plug-ins to be loaded automatically at system startup (as opposed to making a

new *.jar library file every time a change is made). This modification is illustrated in

source listing 11.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
// the constructor is empty
public InvertImagePlugin(){
}

// the plugin should have a name
public String getName(){

final String name = "Invert Image";
return name;

}

// the category this plugin belongs in
public String getType(){

return "Operation";
}

// a short description
public String getDescription(){

final String desc = "Invert image pixel values.";
return desc;

}
...

Source 10, Basic constructor and informational methods of the
InvertImagePlugin class.

44 Imaging System Development

The shell of the module is now fully implemented, and development of the actual

processing logic can be done.

2.9.4 Implementing processing logic

When the IScanDataCollectionMessage consumer and producer interfaces were

selected in the class creation window, some empty functions were automatically

added to the class:

� “void consume(IScanDataCollectionMessage message)”: The method called by the

framework to deliver a ScanData collection to the module.
� “IScanDataCollectionMessage getScanDataCollectionMessage()”: The framework calls

this method, when processed data has to be fetched from the module again.
� “boolean produce()”: This method is invoked, when the “Produce” button is

pressed, or the framework is doing a back-propagation sequence to force all

“parents” of a module in the diagram graph to produce data.

These are the functions, needed to be concentrated on, when implementing the

processing logic. In the case of the module in this tutorial, both the consume and the

getScanDataCollectionMessage functions are fairly simple to implement, as their job

will mainly consist of assigning the incoming ScanData collection reference (to the

object) to the member variable and vice versa (see source listing 12).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
this.addPlugin(new TranslateRowsPlugin(), "/images/translateRowsPlugin_32.png");
this.addPlugin(new VisualizeScansPlugin(), "/images/visualizeRgbPlugin_32.png");
this.addPlugin(new XmlImportPlugin(), "/images/importPlugin_32.png");
this.addPlugin(new InvertImagePlugin(), "/images/defaultPlugin_32.png");

// tell the listeners that the model changed
fireChangeEvent();
...

Source 11, Adding the created plug-in to the list of automatically loaded modules in the
PluginInternalModel class.

 Imaging System Development 45

The actual processing happens in the “produce“ function, where all incoming

ScanData objects will be pixel-wise inverted. Source listing 13 shows the code

needed to actually perform the operation. This includes the loop, iterating over the

incoming ScanData collection, fetching of the internal data array and handling of

properties.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
ScanDataCollection m_dataCollection = null;

// a press on the consume button will invoke this method - providing incoming data
public void consume(IScanDataCollectionMessage message) {

// get a reference to the incoming data
m_dataCollection = message.getScanDataCollection();

}

// this method will be called by the framework to return processed data
public IScanDataCollectionMessage getScanDataCollectionMessage() {

ScanDataCollectionMessage message = new ScanDataCollectionMessage(null);
if(isDataReady()){

message = new ScanDataCollectionMessage(m_dataCollection);
}
return message;

}
...

Source 12, Functionality to support the framework in communicating with the module over
ScanDataCollection message channels.

46 Imaging System Development

2.9.5 Testing the module

When finished developing a new module, one is of course eager to see if it works.

Try to start the system and find the module under its assigned category,

“Operation”. After verifying, that the module is indeed present in the overview

panel to the left, use the left mouse button to drag an instance of it to the testbed

area, as illustrated in figure 17.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
// a press on the 'Produce' button in the gui will invoke this method
public boolean produce() {

boolean result = true;
Iterator it = m_dataCollection.getIterator();
while(it.hasNext()){

ScanData data = (ScanData)it.next();
double[] rawData = data.getData();
try {

// get original max/min values
double maxValue = ((Double)

(data.getProperty("maxvalue"))).doubleValue();
double minValue = ((Double)

(data.getProperty("minvalue"))).doubleValue();

// invert image
for(int i=0;i<rawData.length;i++){

rawData[i] = -rawData[i];
}

// swap positions of min/max value
data.addProperty("maxvalue",new Double(-minValue));
data.addProperty("minvalue",new Double(-maxValue));

} catch (Exception e){
System.out.println(""+e);

}
}
setDataReady(true);
return result;

}
...

Source 13, All ScanData objects in a collection are pixel-wise inverted when the "produce" method of
the InvertImage module is called.

 Imaging System Development 47

At this point, the algorithm is completed by adding the following three extra

modules:

� 1 RAW data file import module,
� 1 Data duplication module and
� 1 Scan data visualization module.

Connect them as shown in figure 18.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 17, Dragging the InvertImage module to the testbed area.

48 Imaging System Development

Select the RAW data file import module and select to load a file, exported from an

OCT scanner system. Then select the visualization module and press “Consume” to

start the back-propagating enforcement of data production (throughout the

diagram graph).

When done, press the “Show” button and inspect the two resulting images,

shown in figures 19 and 20.

By visually inspecting the result of the inversion in figure 20, compared to the

original in figure 19, it seems that the ImageInvert module does what it is supposed

to.

2.10 Integrating with C/C++
One of the nice features in Java, is its ability to integrate with native (platform

dependent) code. In most cases, this is used as a way to speed up performance, as

Java, being platform independent, can't be optimized for specific CPU

architectures. One of the preferred native programming languages is C++, as it

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 19, Visualization of a RAW data file,
loaded from disk.

Figure 20, The same RAW data, visualized after
going through the new InvertImage module.

 Imaging System Development 49

provides an excellent base for the advanced developer to create very versatile

platform portable source code.

2.10.1 Using the Java Native Interface

The Java Native Interface (JNI) is a part of the Java SDK and allows Java code that

runs within a Java Virtual Machine (VM) to operate with applications and libraries

written in other languages, such as C, C++, and assembly.

Programming through the JNI framework lets you use native methods to do

many operations. Native methods may represent legacy applications, or they may

be written explicitly to solve a problem, that is best handled outside of the Java

programming environment.

For the purpose of this project, the JNI has been used to integrate with code

written in C++, mainly for performance reasons.

2.10.2 The power of templates

A key feature of C++ is support for template programming. Templates are

normally used to generalize function implementations for many data types. At

compile time, these template functions are evaluated for all implementing code

using them. If a matching template is found, the compiler constructs a function

tailored to the calling code. A typical example of a template function could be the

implementation of the 'max' operation shown in source listing 14.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

50 Imaging System Development

If somewhere in the code, a max(T a, T b) is called, where T could be any type

available, e.g. double, int, float, etc., the template function is compiled and linked

for this specific type. Generation of the specialized functions require the '<' (less

than) operator to be defined for the type 'T'.

In this project, we are interested in a specific area of the possibilities of template

support in C++ compilers, called metaprogramming. The idea of a metaprogram is

to program a program or, in other words, to “lay out code that the programming

system executes to generate new code that implements the functionality we really

want” [Josuttis02, p.301]. The functionality behind metaprogramming, can be

compared to that of functional programming languages like Lisp, where endless

recursion, endless arrays, functions calling functions and no variables are present.

The power function class, in source listing 15, is a nice example of how

metaprogramming can improve runtime performance by doing calculations at

compile time.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

template<class T>
int max(T a, T b)
{
 int result = 0;
 if(a < b)
 {
 result = -1;
 }
 else if(b < a)
 {
 result = 1;
 }
 return result;
}

Source 14, The 'max' function implemented generically with the
use of templates.

 Imaging System Development 51

To use the function, one simply needs to get a templated reference to the static

'result' member constant in the 'Pow' class, and the compiler will go through an

iterative process, unraveling 'Pow::result' values until 'N' becomes zero, where the

function will stop the iterations and return '1' as the last factor. An example of how

this would be called from the code can be seen in source listing 16.

Output from compiling and running the program is shown in text listing 1.

It is very important to note, that the “pow” calculation is not done at program

runtime, but 2*2*2 = 8 and 4*4*4 = 64 is actually calculated by the compiler and

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

#ifndef POW_H
#define POW_H

template<int T, int N>
class Pow {
 public:
 static int const result = T * Pow<T, N-1>::result;
};

template<int T>
class Pow<T, 0> {
 public:
 static int const result = 1;
};

#endif

Source 15, Implementing the 'power' function using template metaprogramming.

#include <iostream>
#include "pow.h"

using namespace std;

int main()
{
 cout << "Pow<2,3> = "<< Pow<2,3>::result << endl;
 cout << "Pow<4,3> = "<< Pow<4,3>::result << endl;
 return 0;
}

Source 16, Using the Pow function by making a reference to the internal result member.

52 Imaging System Development

assigned to a constant integer at compile time. The program execution therefore

basically just prints a constant value.

One might think that this could have been handled easier by just calling some

built in math function, but the real benefits come when scaling the amount of data

to be processed to something in the order of what we're dealing with in the OCT

case – both in execution time and low complexity in the code.

While developing the project, a template based math library, Blitz++, was used to

do fast vector calculations. Blitz++ gets a heavy performance boost, mainly because

of the nature and capabilities of metaprograms, basically eliminating the use of

temporary internal variables. This brings blitz++ to a level, where it can sometimes

outperform programs written in Fortran11.

2.11 Taking the time needed to rewrite and refactor
Sometimes, the best way to do things is not the most obvious at the time where

decisions are made to choose the path of development. That, however, does not

mean that you should just accept a suboptimal solution, when more information is

available, showing this fact. When developing reliable software, it is vital to put

one's pride aside, and accept the fact that people make mistakes. In my time as a

professional software developer, I have seen many projects go bad, mainly because

of stubborn project managers or system designers not accepting, that what they

11 “What is Blitz++”, OONumerics, URL: http://www.oonumerics.org/blitz/whatis.html

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

$ g++ pow.cpp -o pow

$./pow

Pow<2,3> = 8

Pow<4,3> = 64

Text 1, Output from compiling and running the
Pow function example.

 Imaging System Development 53

thought to be right at project start might not be true at a later stage. This is not

necessarily resulting from a lack of design competence, but because you just can't

predict the future.

Over the years, many processes have been developed to help to prevent this from

happening. Extreme Programming (XP), being one of the more famous of these so

called agile processes, describe methods and guidelines to deal with these issues.

Many thoughts and methods relating to the whole XP philosophy can be found in

the introductory book, “Extreme Programming Explained: Embrace Change”, by

Kent Beck. Covering all aspects would be outside the scope of this project, but just

to give an idea of how XP takes commonsense to extreme levels, here is a short list

of some of the core principles [Beck00]:

� “If code reviews are good, we'll review code all the time.
� If testing is good, everybody will test all the time, even the customers.
� If design is good, we'll make it part of everybody's daily business (refactoring).
� If simplicity is good, we'll always leave the system with the simplest design that

supports its current functionality (the simplest thing that could possibly work).
� If architecture is important, everybody will work defining and refining the

architecture all the time.
� If integration testing is important, then we'll integrate and test several times a

day.
� If short iterations are good, we'll make the iterations really, really short – seconds

and minutes and hours, not weeks and months and years.”

Most of these principles are meant to be used by large development teams, but

some of the ideas have been kept in mind under development of this system.

Doing refactoring, to make the code more simple and easier to change, is always

important[Beck00, p. 58]. As an example, the initial implementation of the

framework had a lot of redundant code, as it was going through its prototyping

phase, but when most of the functionality seemed to work, much development time

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

54 Imaging System Development

was spent on refactoring the code to make it faster, more reliable and easier to

change.

2.12 Summary
A lot of steps are involved in developing high quality software. Some of them

might seem ridiculous when first encountered, but after a while, software

development will never seem the same without them.

In this chapter, some of these steps have been described, as well as providing

background information on the processes involved in developing the image

processing system related to this report. Hopefully, this has given a good

foundation for understanding the inner workings of the framework.

Producing a set of valid system requirements, is always a good starting point for

development. Without them, it can become very hard to reach the goals set for

development to a satisfactory level.

When developing flexible systems, designed for change, one can enjoy the

benefits of using Design Patterns in producing the system architecture, developed

to help with providing solutions to recognizable design problems.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 55

3.Pluggable modules provided
The following sections function as a sort of module reference manual for users of

the system, as well as providing a theoretical background for the pluggable modules

provided as a part of the project.

With each module description, you will find the following:

� An short table containing an overview, including name, graphical image icon (in

the GUI), a short description, as well as a list of possible input and output

channels supported by the module.
� A theory section providing background information, about the underlying

mathematical or technical methods used.
� Implementation specific details, including code snippets where seen fit.
� A results section, containing usage examples and tests showing the module

working in a context.

3.1 Collect Scans module

Name CollectScans

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type ScanDataCollection

Description This module will perform a pixel-wise addition of

all incoming RAW data scans. The images must

be of same dimension.

Table 8, Overview of the Collect Scans module.

Theory/background

An operation that will do basic pixel-wise addition of images, is a desirable

feature to have for several reasons, e.g.:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

56 Pluggable modules provided

� It can be used when trying to reduce the noise by collecting scans of the same

data [Carstensen97, p.39-40] (see chapter 4 for an in-depth example).
� When trying to visualize difference images – e.g. to visualize changes in acquired

scans over time – the series of images can be superimposed to create a motion

shadow effect.
� Combining phantom generated patterns to form new patterns, suitable for

testing newly generated image processing modules.

Requirements

The module needs to consume and produce a ScanDataCollection message. The

incoming collection must consist of one or more ScanData (image) elements. The

outgoing message consists of a ScanDataCollection message containing the

stacked/superimposed ScanData.

Implementation

Some basic arithmetic operations are implemented in the ScanData class itself,

as seen in source listing 17).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 57

When the CollectScans module consumes a ScanDataCollection message on it's

incoming channel, all contained ScanData objects (images) are added pixel-wise,

and the summed image put into a new object (see source listing 18).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
public void add(ScanData value) throws Exception {

if(m_data.length != value.getData().length){
throw new Exception("ScanData lengths do not match!");

}

double[] valueData = value.getData();

for(int i=0;i<m_data.length;i++){
m_data[i] += valueData[i];

}
}

public void sub(ScanData value) throws Exception {
if(m_data.length != value.getData().length){

throw new Exception("ScanData lengths do not match!");
}

for(int i=0;i<m_data.length;i++){
m_data[i] -= value.getData()[i];

}
}

public void add(double value){
for(int i=0;i<m_data.length;i++){

m_data[i] += value;
}

}

public void mul(double value){
for(int i=0;i<m_data.length;i++){

m_data[i] *= value;
}

}
...

Source 17, Pixel wise arithmetic operations implemented in the ScanData class.

58 Pluggable modules provided

Usage/Results

The CollectScans module will pixel-wise add all images on incoming RAW data *

(ScanDataCollection) channels. In this example we will take a checker board

pattern, generated by the RawDataPhantom, and add some salt & pepper noise to

it.

Design a small algorithm consisting of:
� 2 raw data phantom modules,
� 1 scan collection module and
� 1 visualization module.

Connect the modules as shown in figure 21.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
while(it.hasNext()){

ScanData data = (ScanData)it.next();
if(0 == count){

dataCopy = new ScanData(data);
} else {

dataCopy.add(data);
}
count++;

}

double[] rawData = dataCopy.getData();
double maxValue = rawData[0];
double minValue = rawData[0];

for(int i=0;i<rawData.length;i++){
if(rawData[i]>maxValue)maxValue=rawData[i];
if(rawData[i]<minValue)minValue=rawData[i];

}

dataCopy.addProperty("maxvalue",new Double(maxValue));
dataCopy.addProperty("minvalue",new Double(minValue));
...

Source 18, Adding all incoming ScanData objects in a collection followed by an evaluation of the
minimum and maximum pixel values in the outgoing data.

Pluggable modules provided 59

Set one of the data phantoms to produce a “Checker Board” pattern, and the

other to produce a “Salt & Pepper Noise” pattern.

Select the visualization module, press “Consume”, then “Show” to see the results

illustrated in figures 22-24:

Figure 24 shows the combined image, were noise is applied to a checker board

pattern.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 22, A phantom
generated "Checker Board" pattern.

Figure 23, A phantom
generated "Salt & Pepper Noise"
pattern.

Figure 24, Adding the two
images, produces a noisy checker
board pattern.

60 Pluggable modules provided

3.2 Cross-Correlate module

Name Cross-Correlate

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type Xml

Description Performs a series of cross-correlations between

rows in the incoming data. Based on results of

these correlations, an optimal alignment vector is

produced.

Table 9, Overview of the Cross-Correlate module.

Theory/background

When trying to align A-scans in a noisy (and jumpy) acquired image, a method is

needed for measuring how much each A-scan row should be translated to make it

align with the others next to it.

Consider how two data signals, equal in length and possibly sharing waveforms,

might be compared. A good estimate of how alike the signals are would be to take

the sum of the products obtained by multiplying the two signals point for point

[Ifeachor98, p.184]. If the two signals are out of phase (not aligned), the maximum

sum would be found by translating one of the signals to be aligned with the other

before doing the calculations (see figure 25). This phase shift corresponds to pixel-

wise row translation in digital images.

For alignment purposes, the interest is focused on finding the offset of this

translation, as stated above, corresponding to the index of the maximum value

found in the vector resulting from cross-correlating subsequent rows in the image

data.

If, by any chance, a row (A-scan) is missing from the data, the Cross-Correlation

module should instead use the closest existing row for comparison.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 61

In some cases, it is desirable to be able to align a set of images in a ScanData

collection in such a way that the first image in the collection functions as a template

for how subsequent images should be aligned. This, for example, is a necessary

feature to have when trying to improve the signal/noise ratio by superimposing

RAW data images (see chapter 4).

Requirements

The module must be able to perform a cross-correlation for alignment in at least

two distinct ways:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 25, Illustrating how the best match is found by translating a signal to find the
maximum sum of squares when doing pixel-wise multiplications.

0

2

0

3

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

1

0

3

0

1

0

0 0 0 9 1 11 3 3 1 02

−5 −4 −2 −1 0 1 2 3 4 5−3

Maximum

Translation in pixels

Sum of products

62 Pluggable modules provided

1. Between coherent A-scans in an acquired image.

2. Between corresponding A-scans in a series of acquired images.

The result should be an XML message containing the calculated optimal

translation vectors for the incoming ScanData collections. Element values in the

translation vector should be based on results found when selecting the index of the

maximum value in the vector, produced by cross-correlating coherent data rows

within or between images in a collection.

Implementation

Although Java is not the optimal choice for doing vector math operations, for

platform compatibility reasons, a pure Java version of the cross-correlation

mechanism described has been implemented. It is, however, strongly suggested

that the native version of the module is used when dealing with large amounts of

data.

The two more interesting parts of the implemented code are:

1. The actual cross-correlation and maximum index selection implementation:

“calcMaxValueIndexCrossCorrelation(double[] signal1, double[] signal2)” and

2. the place in the code, where the resulting XML vector is forged.

A dissection of the code begins, starting with the place where the cross-

correlation vector is calculated from the two data signals, originating from rows in

the RAW data, seen in source listing 19.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 63

What happens, is that a data array (signalCross) is filled with values resulting

from a summation of products (crossValue += signal1[i]*signal2[j]) between

coherent pixel values of signal1 and signal2, where signal2 is phase shifted by an

offset.

After calculating for all offsets (possible phase shift values), signalCross contains

the cross-correlation between signals 1 and 2. When the cross-correlation between

the two signals has finished, the index of the maximum value in the cross-

correlation array is found and returned (see source listing 20). The length of signal2

minus one is subtracted from the result to compensate for border effects.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
int beginOffset = 1-signal2.length;
int endOffset = signal1.length-1;

int crossIndex = 0;

for(int offset=beginOffset;offset<=endOffset;offset++){
double crossValue = 0.0;

for(int i=0;i<signal1.length;i++){
int j = i + offset;
if(j>=0 && j<signal2.length){

crossValue += signal1[i]*signal2[j];
}

}

signalCross[crossIndex] = crossValue;
crossIndex++;

}
...

Source 19, Code snippet showing the Java implementation of the cross-correlation
function.

64 Pluggable modules provided

Usage/Results

A simple sine wave pattern will be used to demonstrate the alignment

functionality of the cross-correlation module.

Design a small algorithm consisting of:

� 1 raw data phantom module,
� 1 cross-correlation module,
� 1 row translation module and
� 1 visualization module.

Connect the modules as shown in figure 26. Then select the “Sine” pattern on the

details page for the data phantom, then click on the cross-correlation module and

choose to align rows within images (see figure 27).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
double maxValue = signalCross[0];
int maxIndex = -1;

for(int i=0;i<signalCross.length;i++){
if(signalCross[i] > maxValue){

maxValue = signalCross[i];
maxIndex = i;

}
}

result = maxIndex + beginOffset;

return result;
...

Source 20, Finding the maximum value in the cross-correlation
array and returning the index.

Pluggable modules provided 65

Use the visualization module to see the results by pressing “Consume”, then

“Show” (see figures 28 and 29).

Figure 28 shows the sine wave pattern, consisting of what would correspond to a

series of unaligned A-scans. The result after alignment, seen in figure 29, is a

straight line, as expected.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 28, A sine wave pattern generated
by the data phantom.

Figure 29, Aligning the sine wave pattern
using the cross-correlation module results in
a straight line.

66 Pluggable modules provided

3.3 Cross-Correlate Native module

Name Cross-Correlate Native

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type Xml

Description The functionality of this module is the same as for

the “Cross-Correlate” module, with the exception

that the core cross-correlation function is written

in C++.

Table 10, Overview of the Cross-Correlate Native module.

Theory/background

See the theory section for the “Cross-Correlate module”.

Sometimes it can be a slow process doing vector multiplications in pure Java as

each atomic operation will have to be converted between the virtual machine and

the hardware running it. Implementing in C, however, has some advantages, as

compiled code can be optimized, by the compiler, in a CPU specific way. In Java,

it's possible to integrate with native code through the Java Native Interface (JNI).

Requirements

See the requirements section for the “Cross-Correlate module”.

The inner workings of the cross-correlation algorithm, implemented in this

module, must be based on some C/C++ implementation, performing significantly

better than its pure Java counterpart.

Implementation

Most of the code for the native cross-correlating module is very similar to that of

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 67

the pure Java version, with one exception:

The function, that calculates the cross-correlation has been replaced with one

that makes a call to an external library, containing a high performance version of

the actual cross-correlation method (see source listing 21)

All native method calls are accessed through wrapper classes to decouple the

native interface from the core Java module even further, mainly to make it easier to

change the underlying native libraries (see figure 30).

Source listing 22 shows the accompanying C++ code

produced. The main things in the code to take note of, is

the places where arrays are being moved between Java

and C++, as well as the Blitz++ functions, allowing very

simple calls to be made, in order to perform the

correlation.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

public static int calcMaxValueIndexCrossCorrelation(
double[] signal1, double[] signal2){
// create and init the variable to return
int result = 0;

// get an instance object of the CrossCorrelateWrapper
CrossCorrelateWrapper wrap = CrossCorrelateWrapper.getInstance();

// get the result from calling the native function
result = wrap.findMaxIndexCorrelation(signal2,signal1);

return result;
}

Source 21, Java code calling the optimized native function via a wrapper class.

Figure 30, Block diagram
of the wrapper functionality.

Module logic (Java)

Wrapper class (Java)

Native implementation (C/C++)

Java Native Interface

68 Pluggable modules provided

Usage/Results

For this module, the focus of testing will be on two things:

1. Does the module produce the same results as in the pure Java case and

2. How do the two modules compare in processing time.

Example 1: Repeating the alignment test

Design a small algorithm consisting of:

� 1 raw data phantom module,

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

JNIEXPORT jint JNICALL
Java_com_dtu_oct_wrappers_CrossCorrelateWrapper_findMaxIndexCorrelation
 (JNIEnv *env, jobject obj, jdoubleArray signal1, jdoubleArray signal2)
 {

// make the data and length of signal1 and signal2 accessible
// (also locks the data, so Java won't modify it)
jsize sig1_len = env->GetArrayLength(signal1);
jdouble *sig1_data = env->GetDoubleArrayElements(signal1, 0);
jsize sig2_len = env->GetArrayLength(signal2);
jdouble *sig2_data = env->GetDoubleArrayElements(signal2, 0);

// construct blitz++ arrays arround the signals
blitz::Array<double,1>

A(sig1_data, blitz::shape(sig1_len), blitz::neverDeleteData);
blitz::Array<double,1>

B(sig2_data, blitz::shape(sig2_len), blitz::neverDeleteData);

// perform a convolution of signal2 reversed on signal1
// corresponding to making a correlation of signal1 and signal2
blitz::Array<double,1> C = blitz::convolve(A,B.reverse(0));

// find the index of the maximum value in the correlated data
// (the index is shifted to compensate for border effects of convolution)
int maxIndex = blitz::maxIndex(C)[0] - (sig1_len-1);
// unlock the data
env->ReleaseDoubleArrayElements(signal1, sig1_data, 0);
env->ReleaseDoubleArrayElements(signal2, sig2_data, 0);
return maxIndex;

 }

Source 22, C++ (native) code performing a cross-correlation of two signals and returning the index of the
maximum value found.

Pluggable modules provided 69

� 1 native (C++) cross-correlation module
� 1 row translation module and
� 1 visualization module.

Connect the modules as shown in figure 31. Then select the “Sine” pattern on the

details page for the data phantom, then click on the cross-correlation module and

choose to align rows within images (see figure 32).

Use the visualization module to see the

results, illustrated in figure 33, by pressing

“Consume”, then “Show”. The resulting

image is a straight line as in the example

from using the pure Java cross-correlation

module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 33, Aligning the sine wave pattern
using the cross-correlation module results in a
straight line.

70 Pluggable modules provided

Example 2: Comparing the two cross-correlation functions in a benchmark test

First, design an algorithm consisting of the following:

� 1 RAW data file import module,
� 1 Cross-correlation module and
� 1 Cross-correlation Native module.

Connect the modules as shown in figure 34.

Now, two different test cases are constructed:

� Case 1: 11 images from an OCT2 system being aligned by cross-correlation.

Images dimensions are 100x500.
� Case 2: 5 images from an OCT3 system being aligned by cross-correlation.

Image dimensions are 1024x512.

Duration in seconds Java version C++ version

Case 1 5.54 2.08

Case 2 51.27 17.1

Table 11, Benchmark results, comparing the C++ and Java implementations of the Cross-Correlation function.

The results, listed in table 11, clearly show a significant performance increase

when using the C++ version.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 71

3.4 Duplicate Data module

Name DuplicateData

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type ScanDataCollection

Description Duplicates the incoming data for each instance of

outgoing channels. Used to prevent data to be

corrupted by parallel modifications in different

paths.

Table 12, Overview of the Duplicate Data module.

Theory/background

To limit the amount of memory and CPU power consumed by the system while

processing, the data contained in a ScanDataCollection message is not copied

between modules. Instead, a reference to the same object is passed through from

module to module. Although being very useful when trying to limit the amount of

used resources, problems might occur when the same image data take more than

one path through the constructed setup, where modifications done to the data in

one path will affect the data in all other areas of the system. To work around this

potential problem, a special module is needed to duplicate the data.

Requirements

The module should consume one ScanDataCollection message and produce

copies of this to all connected consumers when requested.

Implementation

When data is consumed in the DuplicateData module, the reference to the data

object is just stored like in most other modules. The main difference is in the

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

72 Pluggable modules provided

function returning produced (see source listing 23).

Normally, the internally produced data is just returned as a reference pointer to

the data object, wrapped in a ScanDataCollectionMessage to be sent out on a data

channel. The data duplication module behaves differently by making a copy of the

contained data to be returned instead. This way, all data consumers connected to

the DuplicateData module will get a unique copy of the data, arriving at the

incoming channel of the data duplication module.

Usage/Results

To show the effect of the data duplication module, and why it's needed, two

examples are made. The first example shows how data can get corrupted by not

using an the data duplication module, followed by an example of how to make it

right.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

public IScanDataCollectionMessage getScanDataCollectionMessage() {

ScanDataCollection dataCol = null;

// if there is data present to copy...
if(null != m_dataCollection){

dataCol = new ScanDataCollection();

// make a copy of the internal data collection
Iterator it = m_dataCollection.getIterator();
while(it.hasNext()){

ScanData data = (ScanData)it.next();
ScanData dataCopy = new ScanData(data);
dataCol.addData(dataCopy);

}
}

// wrap the data copy in a message
ScanDataCollectionMessage message = new

ScanDataCollectionMessage(dataCol);

return message;
}

Source 23, When the data duplication module is asked to deliver a ScanDataCollection message
by the framework, a copy is returned instead, keeping subsequent modules from modifying the data
contained.

Pluggable modules provided 73

Example 1: Results of NOT using data duplication

Design a small algorithm consisting of:
� 1 data phantom module,
� 1 filter convolution module and
� 1 visualization module to compare results.

Connect the modules as shown in figure 35.

Select the “Checker Board” pattern for the phantom and the “Edge (width 5)”

filter for the FilterConvolution module, and try to see the results by pressing

“Consume” and “Show” in the visualization details panel.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

74 Pluggable modules provided

As clearly seen by the results in figures 36 and 37, the two images are identical.

That's because the underlying data for the two images is actually the same object!

The next example shows how this effect can be eliminated quite easily.

Example 2: Doing it right

Now, try to cut away the channels coming from the phantom and include a data

duplication module as shown in figure 38. Including the data duplication module,

ensures that different paths of the data will contain unique copies of the incoming

data chunks, hereby preventing the modifications on one path to affect any other

area.

Now, select the data phantom and press “Produce” to make a fresh image to work

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 36, Filtered data channel visualized. Figure 37, Data channel from phantom
visualized.

Pluggable modules provided 75

with, then select the visualization module and press “Consume” to start the

processing chain. When done, press “Show” to see the result.

The result, seen in figure 40, clearly shows how the original image data has not

been affected by the filter applied on the data, illustrated in figure 39.

3.5 Filter Convolution module

Name FilterConvolution

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type ScanDataCollection

Description Applies a selectable filter to incoming data by

convolving kernels with data rows.

Table 13, Overview of the Filter Convolution module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 39, Filtered data channel visualized. Figure 40, Data channel coming from the
phantom visualized.

76 Pluggable modules provided

Theory/background

In image processing, convolving images with a small signal, or kernel, can be

used in preprocessing to enhance edges, low/hight frequencies, suppress certain

structures, etc., using a small neighborhood of a pixel in an input image to produce

a new brightness value in the output image [Sonka93, p. 67].

As we are working with 1-dimensional rows, corresponding to A-scans in the

acquired OCT image, the kernels used are also 1-dimensional.

In this module, the filter kernel will be used directly as a mask, where it should

not be reversed prior to processing, as otherwise traditionally done, when

convolving two signals.

Requirements

This module should be able to make a convolution of the contents of an

incoming ScanDataCollection with a selectable filter kernel. The filters should be

applied in 1D for incoming A-scans. Required filters include:

� A “mean” filter, constructed as a flat filter (y = 1).
� A “gradient” or “edge” filter, designed as a straight line (y = x).

Both should be of a user selectable width.

Implementation

The filter mechanism is implemented as a light weight solution supporting only a

few different static filter kernels, mainly to make the class easy to extend by limiting

the amount of complexity in the code.

Mean and a gradient filters with kernel widths 3 and 5 are implemented as shown

in source listing 24. More filters can easily be added this way, although a generic

filtering module would be desirable sometime in the future, where the filter kernel

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 77

would be dictated by an external XML source, enabling the user to produce filters

from e.g. MatLab and import them into the system.

Usage/Results

In this example, we will try to apply two different filters to the same phantom

data pattern.

Design an algorithm, containing the following modules:

� 1 data phantom module,
� 1 data duplication module,
� 2 filter convolution modules and
� 1 visualization module to view results.

Connect the modules as shown in figure 41, then select a sine wave for the

phantom pattern (see figure 42), and do a quick visualization (see figure 43).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
// Mean width 3
m_kernelVector.addElement(new double[]{0.3333,0.3333,0.3333});
m_kernelTextVector.addElement("Mean (width 3)");

// Mean width 5
m_kernelVector.addElement(new double[]{0.2,0.2,0.2,0.2,0.2});
m_kernelTextVector.addElement("Mean (width 5)");

// Gradient width 3
m_kernelVector.addElement(new double[]{-1.0,0.0,1.0});
m_kernelTextVector.addElement("Gradient (width 3)");

// Gradient width 5
m_kernelVector.addElement(new double[]{-2.0,-1.0,0.0,1.0,2.0});
m_kernelTextVector.addElement("Gradient (width 5)");
...

Source 24, Filter kernel definitions in the FilterConvolution module.

78 Pluggable modules provided

Now, set one of the filter convolution modules to “Mean (width 5)” and the other

to “Edge (width 5)”, then select the visualization module, press “Consume”, and

then “Show” to see the results. Figure 44 shows the image with an applied mean

filter and figure 45 shows the same image with an applied gradient filter.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 43, Visualizing the pure sine wave
pattern, generated by the data phantom.

Pluggable modules provided 79

3.6 Histogram Cutoff module

Name HistogramCutoff

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type ScanDataCollection

Description Enables the user to cut away pixel brightness

values outside a selectable range. A visualization

of the histogram is provided to help with the

selection.

Table 14, Overview of the Histogram Cutoff module.

Theory/background

Often, the static noise in an acquired image will have pixel values outside the

range of where the actual signal data is present (see figure 46). If the noise can be

identified to exist under some given threshold value, it should be possible to

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 44, Visualizing sine wave with an
applied mean filter.

Figure 45, Visualizing sine wave with an
applied edge detection filter.

80 Pluggable modules provided

eliminate it (to some extent) by assigning all pixels with a value under it to that

threshold value. This way, the threshold value will become the lowest value,

thereby appearing as a “noise free” background [Teuber89, p. 158].

Requirements

The program logic must be able to limit the data values for a ScanDataCollection

by limiting individual A-scan data values to a specified range. It would also be

desirable if the GUI provided a way of displaying the histogram with

Implementation

The histograms of the incoming data are calculated and placed in a HashMap

relating to the name of the incoming image in the ScanData collection (see source

listing 25). Histograms are contained in object instances of ScanDataHistogram, a

class designed to contain and modify histogram data.

When the framework receives a “Produce” command, aimed at this module, a

window in the brightness levels is “cut out” (see source listing 26), limiting lower

and upper levels of the data according to values selected by the user:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 81

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

private HashMap m_mapOfHistograms = new HashMap();

private void makeHistograms(){

m_mapOfHistograms = new HashMap();

Iterator it = m_dataCollection.getIterator();

System.out.print("Making histograms...");
while(it.hasNext()){

ScanData data = (ScanData)it.next();

try {
String name = ((String)(data.getProperty("filename")));

m_mapOfHistograms.put(name,
new ScanDataHistogram(data));

} catch (Exception e){
// TODO handle
System.out.println(""+e);

}

}

System.out.println(" [done]");
}

Source 25, Upon data reception (where data is consumed on a ScanData collection channel),
histogram data is produced for each image in the collection.

private static void cutWindow(
double minValue, double maxValue, double[] signal){

for(int i=0;i<signal.length;i++){
if(signal[i] < minValue){

signal[i] = minValue;
} else if(signal[i] > maxValue){

signal[i] = maxValue;
}

}
}

Source 26, The cutWindow function implemented to limit the lower and upper bounds of the
brightness levels in a signal (raw data).

82 Pluggable modules provided

Usage/Results

Design an algorithm, consisting of the following modules:

� 1 raw data import module,
� 1 visualization module,
� 1 histogram cutoff component and
� 1 data duplicator to prevent mixing of filtered and unfiltered data.

Connect the modules as shown in figure 47. Then use the RAW data import

module to import some real data. Select the Histogram Cutoff module and press

“Consume” followed by “Show”. The histogram for the loaded data should look

similar to the one shown in figure 48.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 48, Window, showing the histogram and red
selection line.

Pluggable modules provided 83

Using the mouse to point at the histogram, find a value separating the huge pile

to the left from the rest. Read the value under the graph, this will be our chosen

cutoff value.

Now, select the visualization module, press “Consume” and “Show” to compare

the results.

As seen in figure 50, much of the background noise has been eliminated from the

image in figure 49.

3.7 Median Filter module

Name MedianFilter

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type ScanDataCollection

Description Applies a median filter with a selectable width to

incoming data rows.

Table 15, Overview of the Median Filter module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 49, RAW data visualized before applying
the histogram cutoff.

Figure 50, RAW data visualized after applying
the histogram cutoff. Notice how much of the
background noise has disappeared.

84 Pluggable modules provided

Theory/background

The main purpose of a median filter is to remove impulse noise from images.

The filter works by replacing a pixel value with the median of it's neighbors

[Niblack86, p.78]. The median value is found by placing all values, within a certain

distance from the pixel in question, in a sorted 1D array, followed by a selection of

the middle value in the array. The principle of the median filter is illustrated in

figure 51.

In the case of this module, the median filter will be applied to images composed

of multiple acquired - and possibly jumpy - A-scans next to each other. A one

dimensional neighborhood selection will therefore be selected, for the initial array,

as two dimensional selection would only make sense after the A-scans have been

correctly aligned.

The main advantage of median filters over generic smoothing filters (see section

on the Filter Convolution module), is that it eliminates impulsive noise quite well ,

while not blurring edges very much [Sonka93, p.74].

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 51, Principle of the median filtering mechanism illustrated. NOTE: This example
shows a 2D neighborhood matrix for input for illustrative. purposes. When working with rows
in the raw data, we will be using a 1D neighborhood function for selection.

42 42 36 2540

6035304749

4542525051

4240554642

5534424250

30

34

35

40

42

42

46

47

55

42 42 36 2540

6035304749

4542525051

4240424642

5534424250

Pluggable modules provided 85

Requirements

The module must provide means to apply a median filter of varying width on

incoming ScanDataCollections. The result is a ScanDataCollection containing all

images (ScanData objects) affected by the median filter.

Implementation

The heart of the median filtering algorithm implementation, is relying on two

very optimized functions built into the Java core (see source listing 27):

� System.arrayCopy(), doing low level memory duplication between two arrays of

the same type, given offset and length.
� Arrays.sort(), implementing the very effective Quicksort [Cormen96, p.153],

sorting the specified array into ascending numerical order.

Usage/Results

Design an algorithm like the following, consisting of:

� 1 data phantom,
� 1 visualization module,
� 1 median filter component and
� 1 data duplicator to prevent mixing of filtered and unfiltered data.

Connect the modules as shown in figure 52 and select the median filter module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
for(int i=0; i<signal.length-width; i++){

System.arraycopy(signal,i,tmpArray,0,tmpArray.length);
Arrays.sort(tmpArray);
result[i+halfwidth] = tmpArray[halfwidth];

}
...

Source 27, Using the built in Java functionality to sort arrays for median selection.

86 Pluggable modules provided

Set the width to 5 (see figure 53), then visualize the results by clicking on the

visualization module followed by a click on “Consume” and “Show”.

Comparing the two images in figures 54 and 55, it is clear that the median filter

has eliminated a lot of the salt & pepper noise.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 54, A region of the salt & pepper noise
generated by the data phantom.

Figure 55, The same region as on the left - after
applying the median filter.

Pluggable modules provided 87

3.8 Normalize module

Name Normalize

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type ScanDataCollection

Description Scales pixel brightness values in the incoming

data to fit within a specified range.

Table 16, Overview of the Normalize module.

Theory/background

Normalizing data can be useful before an addition or when comparing two sets of

data, as the data might have values in totally different scales/ranges while

representing the same properties. The standard normalization of data would

transform all pixel values to fit between zero and one, e.g. the currently lowest

valued pixels would be set to zero, the highest values set one, etc..

In this system, the mechanism will be extended to also include scaling and

translation. The principle is illustrated in figure 56.

Requirements

This module must provide the user with a way of specifying a new minimum and

a data range value (a window) for the incoming ScanDataCollection. All ScanData

elements (images) in the outgoing message should contain transformed version of

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 56, Scaling an array of pixels (brightness values) to fit within
a window from 1.0 to 3.0.

Scale to:

Window width = 2.0
Minimum = 1.0

1.41.61.0

3.01.22.6

1.61.82.0

230

1018

345

88 Pluggable modules provided

the incoming according to these parameters.

Implementation

The core part of the scaling logic is in the normalize function illustrated in source

listing 28, where all values are scaled to fit within the range defined by “newMax”

and “newMin”.

Usage/Results

In this example, a composite image is constructed, consisting of a sine wave

pattern with some background noise. The noise needs to be of a lower brightness

level than the sine wave.

Design an algorithm, consisting of the following modules:

� 2 data phantoms,
� 1 visualization module,
� 2 normalization modules and

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
private static void normalize(double[] signal,

double oldMin, double oldMax,
double newMin, double newMax){

// calculate the old and the new brightness window size
double oldDiff = oldMax-oldMin;
double newDiff = newMax-newMin;

// if the old image is not flat (max = min)
if(oldDiff > 0.0){

for(int i=0; i<signal.length; i++){
// scale the pixel value
signal[i] = newMin + (((signal[i]-oldMin)/oldDiff)*newDiff);

}
}

}
...

Source 28, Scaling the ScanData values to fit within newMin and newMax.

Pluggable modules provided 89

� 1 scan data collection module.

Connect the modules as shown in figure 57 and configure the modules according

to the accompanying labels shown. Then select the visualization module, press

“Consume” and “Show” to view the results seen in figures 58 and 59.

The brightness value of the sine wave pattern is scaled to fit between 0 and 2,

while the noise is scaled to fit between 0 and 1. This makes the sine wave relatively

more bright when combining the two patterns (see figure 60).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 58, A sine wave pattern. Brightness levels
are between 0 and 1.

Figure 59, Salt & Pepper noise pattern.
Brightness levels are between -1 and 1.

90 Pluggable modules provided

3.9 RAW Data File Import module

Name RawDataFileImport

Graphical Icon

Consumes messages of type -

Produces messages of type ScanDataCollection

Description Imports RAW data generated and exported from

Zeiss retinal OCT scanners.

Table 17, Overview of the RAW Data File Import module.

Theory/background

RAW data files exported from the ZEISS OCT systems contain the actual data

values acquired throughout the scanning. At our disposal, we have had two

different versions of the OCT retina scanner:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 60, Sine wave pattern with noise in the
background. Scaling of brightness levels prior to
addition, makes the sine wave brighter than the
background noise.

Pluggable modules provided 91

1. The Humphrey OCT scanner (Scanner A) capable of scanning 100x500

images.

2. A STRATUSOCT scanner (Scanner B) capable of scanning 512x1024 images.

After some experimentation, the following was discovered:

Data is stored as int16 values (Intel ordering) in files given the extension *.RAW

when exporting data from the systems.

A-scans are stored as concatenated raw data chunks. For scanner A, each column

is 500 rows x 2 bytes/pixel = 1000 bytes long. For scanner B it's 1024 rows x 2

bytes/pixel = 2048 bytes long.

Requirements

The internal image data format in the Java OCT Imaging System contains a

collection of double arrays (multiple images) making it possible to perform image

operations involving more than one image. A way of loading one or more raw data

images into one internal ScanDataCollection is therefore needed.

Implementation

The RAW data images loaded from disk is converted to an internal double array

and wrapped in a data container, ScanData (see source listing 29). The following

properties are set in the data object:

� Rows: The number of rows in the image.
� Cols: The number of columns in the image.
� Maxvalue: The maximum pixel brightness value found.
� Minvalue: The minimum pixel value found.
� Filename: Name of the RAW data file.
� Ratio: A possible aspect ratio, used when visualizing the image.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

92 Pluggable modules provided

Usage/Results

The two different RAW data files supported will be imported and visualized in

this example. Design an algorithm like the following, consisting of:

� 1 RAW data file import module and
� 1 visualization module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
if(100000 == file.length()){ // 500*100*2 bytes

int rows = 100;
int cols = 500;

byte[] rawbuffer = new byte[2*rows*cols];
FileInputStream fp = new FileInputStream(file);
fp.read(rawbuffer);
fp.close();

double[] rawData = new double[rows*cols];

double minValue=999999;
double maxValue=-999999;
for(int i=0;i<rawData.length;i++){

// convert the 2 bytes to a double value
rawData[i] = (double)(((int)rawbuffer[(i<<1)]&0xff) +

(((int)rawbuffer[(i<<1)+1]&0xff) <<8));
// update the max/min values found
if(rawData[i]>maxValue)maxValue=rawData[i];
if(rawData[i]<minValue)minValue=rawData[i];

}
// Assign the data
data = new ScanData(rawData);
// Set data properties
data.addProperty("rows",new Integer(rows));
data.addProperty("cols",new Integer(cols));
data.addProperty("maxvalue",new Double(maxValue));
data.addProperty("minvalue",new Double(minValue));
data.addProperty("filename",file.getName());
data.addProperty("ratio", new Double(5.0));

}
...

Source 29, Loading and converting an image, exported from the Hymphrey OCT scanner.

Pluggable modules provided 93

Connect the modules as shown in figure 61. In the file import module, load one

RAW data file originating from the Zeiss Humphrey OCT scanner and one from the

STRATUSOCTTM scanner. Select the visualization module, press “Consume” and

“Show” to see the loaded images (see figures 62 and 63).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 62, Visualizing data originating
from the Zeiss Humphrey OCT retinal scanner.

Figure 63, Data originating from a STRATUSoct system, is of much
higher resolution.

94 Pluggable modules provided

3.10 RAW Data Phantom module

Name RawDataPhantom

Graphical Icon

Consumes messages of type -

Produces messages of type ScanDataCollection

Description Produces a test pattern in a user selectable

dimension. Patterns include “Checker Board”,

“Salt & Pepper Noise” and “Sine” - new patterns

are easily added.

Table 18, Overview of the RAW Data Phantom module.

Theory/background

When testing and calibrating measurement systems, especially in the world of

medicine, it is a custom to use reference objects with well defined properties,

covering all parameters measurable to the system, in a seem to be real life

measurement12. For liquid measuring stations, like blood/gas measuring devices,

these known as quality control fluids. Objects to be used with Computed Axial

Tomography (CAT) or Nuclear Magnetic Resonance (NMR) scanners are volumetric

objects, with well defined physical properties that lies in ranges close to those of

humans [Cho93, p. 558-563]. These objects are called phantoms.

In a similar sense, phantoms in this system will be objects made to work as

reference elements, useful for verifying and testing the capabilities of image

processing modules, in the form of different reference patterns.

12 “What is a phantom?”, CIRS, http://www.cirsinc.com/overview.html

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 95

Requirements

The Phantom module should provide a way to produce test data using pluggable

pattern generators. The following patterns are recommended for testing of other

existing modules:

� Checker Board
� Salt & Pepper Noise
� Sine Wave

The patterns should be producible for all possible image sizes.

Implementation

The different selectable phantom pattern generators are implemented as

separate classes (see figure 64), each containing logic to produce a specific pattern,

given a predefined 'shell' in the form of a ScanData object. The ScanData object

should be loaded with image 'rows' and 'cols', as these values will provide the base

for the pattern generating algorithm to determine the size of the produced pattern.

Usage/Results

Build an algorithm diagram consisting of the following modules:

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 64, UML class diagram of the pattern generation implementation.

PatternGenerator

+geName(): String

+producePattern(ScanData): boolean

SinePatternGenerator

+getName(): String

+producePattern(ScanData): boolean

CheckerBoardPatternGenerator

+getName(): String

+producePattern(ScanData): boolean

SaltPepperNoisePatternGenerator

+getName(): String

+producePattern(ScanData): boolean

96 Pluggable modules provided

� 3 raw data phantom modules and
� 1 data visualization module

Connect them as shown in figure 65, and select the phantom patterns as

indicated by labels on the figure. Then select the visualization module, press

“Consume”, then “Show” to see the three patterns illustrated in figures 66 to 68.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 66, Salt & Pepper Noise Figure 67, A sine wave
pattern.

Figure 68, A checker board
pattern.

Pluggable modules provided 97

3.11 Show XML Tree module

Name ShowXmlTree

Graphical Icon

Consumes messages of type Xml

Produces messages of type -

Description Produces a 'pretty print' view of incoming XML

messages.

Table 19, Overview of the Show XML Tree module.

Theory/background

Wherever XML is used in the system, it might be desirable to be able to visualize

the data on the fly. The content might be originating from a file import, a cross-

correlation or some other module, producing XML.

Requirements

This module must at least be able to visualize the contents of an XmlMessage in a

multi-line text window. The logic should accept one incoming XmlMessage

channel.

Implementation

The XML visualization will format the incoming message for easier readability,

using the XmlWriteContext class (see source listing 30). One of the main

advantages of using XML is that it is human readable and in most cases, easily

editable without the use for anything but a simple text editor. One, however,

should make sure that auto generated XML is converted to a pretty printed form

before delivery (e.g. in a file, on screen, etc.).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

98 Pluggable modules provided

Usage/Results

Build a diagram (algorithm) consisting of the following modules:

� 1 raw data phantom module,
� 1 cross-correlate module and
� 1 XML visualization module

Connect them as shown in figure 69. The ShowXMLTree module will display the

contents of an incoming XmlMessage in a multi-line text field in the details panel,

illustrated in figure 70.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
public static void prettyPrint(Document xmlDoc, Writer out){

try {
XmlDocument doc = (XmlDocument)xmlDoc;

XmlWriteContext xmlWriteContext =
doc.createWriteContext(out, 0);

doc.writeXml(xmlWriteContext);

out.flush();
} catch (Exception e){
}

}
...

Source 30, Pretty printing XML is done by a globally available function defined in the framework.

Pluggable modules provided 99

3.12 Translate Rows module

Name TranslateRows

Graphical Icon

Consumes messages of type Xml + ScanDataCollection

Produces messages of type ScanDataCollection

Description Translates rows in an incoming RAW data

message according to related vectors in the

incoming XML message.

Table 20, Overview of the Translate Rows module.

Theory/background

This module should translate rows in a scan data collection according to an

incoming XML vector.

NOTE: As stated earlier in this report, the normal image representation, done by

the VisualizeScans module, will display columns as rows and vice versa. This has

nothing to do with the underlying model representation, where acquired A-scans

are stored as rows in the RAW data.

Requirements

A module that combines a ScanDataCollection message and an XML message in

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

100 Pluggable modules provided

such a way that rows in the incoming images (in the ScanDataCollection) are

translated (shifted) according to vectors in the XML message.

Implementation

The row translation uses an externally generated XML vector to shift the offset of

A-scan rows in a ScanData collection of images.

For example, a vector generated by running a phantom sine wave pattern

through the Cross-Correlate module, can be seen in source listing 31.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

<?xml version="1.0"?>

<Oct>
 <Translation filename="Phantom0011.raw"
type="vector">
 <Vector length="100" type="int">
 <Element>0</Element>
 <Element>7</Element>
 <Element>15</Element>
 <Element>23</Element>
 <Element>31</Element>
 <Element>38</Element>
 <Element>46</Element>
 <Element>53</Element>
...
 <Element>409</Element>
 <Element>415</Element>
 <Element>421</Element>
 <Element>427</Element>
 <Element>434</Element>
 <Element>440</Element>
 <Element>447</Element>
 <Element>454</Element>
 <Element>462</Element>
 <Element>469</Element>
 <Element>477</Element>
 <Element>485</Element>
 <Element>493</Element>
 </Vector>
 </Translation>
</Oct>

Source 31, Example output XML vector (shortened to fit here). The
vector is a “translation” vector relating to the image with the name,
“Phantom0011.raw”.

Pluggable modules provided 101

Usage/Results

See example from the cross-correlation module.

3.13 Visualize Scans (and Visualize Scans As Model) modules

Name VisualizeScans

(and VisualizeScansAsModel)

Graphical Icon

Consumes messages of type ScanDataCollection

Produces messages of type -

Description Visualizes RAW data from incoming channels as

images (in a tabbed panel) in a separate window.

Table 21, Overview of the Visualize Scans module.

Theory/background

Data visualization is an essential part of this image processing system. In the

current design, the only binary data routed through the system, consists of

collections of acquired datasets, stored as 2-dimensional arrays of double precision

values. Each dataset represents a series of acquired A-scans, originating from an

OCT retina scanner. Figure 71 shows an image of the screen on the scanner during

acquisition. The “live” scanning is visualized as a continuously updated set of pixel

rows (A-scans) in the right half of the image.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

102 Pluggable modules provided

When representing the scans, the data will be mirrored along a diagonal in the

image, going through (0,0), prior to display, as the underlying data structure

contains A-scans, stored as rows, while software on the Carl Zeiss retinal OCT

scanners displays them as columns, as seen in figure 72. The mirroring is done to

make the view more “compatible” visually, with that of the scanner software.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 71, Snapshot of the screen on the OCT scanner during image
acquisition.

Figure 72, A snapshot, illustrating how acquired scans
are mirrored in the diagonal, when shown for analysis, in
the software provided by Carl Zeiss.

Pluggable modules provided 103

Requirements

The module must be able to display a gray level image of any kind of

ScanDataCollection. The images should be flipped, so rows will become cols, and

vice versa. This is due to the fact that rows in the RAW data files corresponds to A-

scans in the acquired data. These scans are normally displayed vertical (as

columns).

For use in special cases, where it is desired to visualize data as it's stored in the

underlying model (rows being rows and columns being columns), a special version

of the visualization module should be made, called “VisualizeScansAsModel”.

Implementation

As the screen will only display gray levels between 0 and 255, brightness values in

the ScanData collection should be scaled to fit this dynamic range. The code to

achieve this, is shown in source listing 32.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

104 Pluggable modules provided

Usage/Results

Build a diagram (algorithm) consisting of the following modules:

� 1 raw data file import module,
� 1 visualize scans module and
� 1 visualize scans as model module

Connect them as shown in figure 73 load a raw data file using the RAW Data File

Import module. Pressing “Consume” and “Show” for both of the visualization

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

...
double redRange[] = new double[]{ minValue, maxValue-minValue };
double greenRange[] = new double[]{ minValue, maxValue-minValue };
double blueRange[] = new double[]{ minValue, maxValue-minValue };
// mirror the image so the upper right corner becomes the lower left
// reason: the scanned data has swapped rows/columns
// compared to normal images
m_ratio = 1.0/((Double)(data.getProperty("ratio"))).doubleValue();
int row=0,col=0,destPtr=0;
for(int i=0;i<rawData.length;i++){

int red = (int)(((rawData[i]-redRange[0])*255.0)/redRange[1]);
if(red < 0)red=0;
if(red > 255)red=0;
int blue = (int)(((rawData[i]-blueRange[0])*255.0)/blueRange[1]);
if(blue < 0)blue=0;
if(blue > 255)blue=0;
int green = (int)(((rawData[i]-greenRange[0])*255.0)/greenRange[1]);
if(green < 0)green=0;
if(green > 255)green=0;

tmpData[destPtr] = 0xff000000 + (red<<16) + (green<<8) + blue;
destPtr+=rows;
col++;
if(col>=cols){

col=0;
row++;
destPtr=row;

}
}
...

Source 32, Scaling the brightness values to fit within the dynamic range of the computer screen. The
code is prepared to support color overlay windows by separating red, green and blue channels.

Pluggable modules provided 105

modules, will result in the images shown below. One, where data is visualized after

mirroring, using the normal VisualizeScans module (figure 74), and one, showing

the raw data as-is, using the VisualizeScansAsModel module (figure 75), where rows

in the underlying data are visualized as rows in the displayed image.

Also, see one of the many other examples in this chapter, utilizing the scan

visualization module.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 74, Result of visualizing data through
the normal "VisualizeScans" module.

Figure 75, Result of using the modified
"VisualizeScansAsModel" module.

106 Pluggable modules provided

3.14 XML File Import module

Name XmlFileImport

Graphical Icon

Consumes messages of type -

Produces messages of type Xml

Description Imports XML from a file and wraps it in an

XmlMessage.

Table 22, Overview of the Xml File Import module.

Theory/background

There is a need for the system to be able to import XML based data. This data

could either be part of a previous processing (within the system), or from some

external program. Providing this module would enable the user to use totally

decoupled applications , e.g. MatLab, to produce XML data to be used as an input

for operational components, such as the TranslateRows module.

Requirements

The module must provide an easy way to import XML data using a standard file

chooser dialog. The filename should be saved as state information as part of the

generic “save...” functionality for the system.

Implementation

Java has an excellent set of APIs for handling XML built in. When importing XML

from a file, in three steps, it's possible to get from the flat file on disk to a complete

document object model (DOM).

1. Get an instance of a document builder factory.

2. Use the retrieved factory to get a document builder.

3. Use the document builder to create a DOM, parsing a file containing valid XML.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Pluggable modules provided 107

The implemented Java code to handle can be seen in source listing 33.

Usage/Results

First, create a file, containing the following line of text:

 “<Hello><World>!</World></Hello>”.

Then build an algorithm diagram consisting of the following modules:

� 1 XML file import module and
� 1 XML visualization module.

Connect them as shown in figure 76 and open the file in the import module.

Then select the visualization module and press “Consume” to see the result,

illustrated in figure 77.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

public String loadXmlDocument(File file){
String result = "(none)";

//load the actual xml file
try {

DocumentBuilderFactory domFactory =
DocumentBuilderFactory.newInstance();

DocumentBuilder domBuilder =
domFactory.newDocumentBuilder();

m_document = domBuilder.parse(file);

result = file.getName();
System.out.println("'" + result + "' is well-formed.");
setDataReady(true);

} catch(Exception e) {
System.err.println(e.toString());

}
return result;

}

Source 33, Loading an XML file, parsing it and storing the returned DOM in the member variable,
m_document. If an error occurs, “(none)” is returned, indicating to the caller that no valid XML
document was loaded.

108 Pluggable modules provided

Notice how the XML is “pretty printed”, compared to the line in the file.

3.15 Summary
The modules listed in this chapter, form what could be considered a “core base”

of functionality. However, enough modules are provided, to make the system useful

in different real-life scenarios. Some of these will be covered in the following

chapters, including a case, where a future user will test the algorithm design

functionality of the system, combining modules in new ways.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Building algorithms 109

4. Building algorithms
Now that a solid framework has been created, with a selection of different

pluggable components, the next logical step is to actually get a feel of how the

system would be used in practice.

In this chapter, two example algorithms are presented:

� “Enhancement by addition”, constructed to enhance the image quality by

adding a series of images being subsequent acquisitions of the same area in the

retina and
� “Filtered phantoms”, showing how combining phantom patterns, filters and

pixel-wise addition, can produce somewhat realistic images for testing.

4.1 Enhancement by addition
Raw data acquired and exported from the Zeiss retina OCT scanners are generally

filled with scatter noise and very jumpy. To deal with this, a method is presented

here, that will take a series of images of the same data (subsequently acquired with

a few seconds delay in between) and combine them to enhance the image quality

by reducing the noise/signal ratio. The method is inspired by a paper on the

subject, “Reducing speckle noise in retinal OCT images by aligning multiple B-

scans“ [Jørgensen04].

4.1.1 Theory

If we assume that each acquired pixel in the raw data follows this mathematical

model:

���������
	���
��������
	������������
	

where g(x,y) is the sampled intensity, f(x,y) the true value and e(x,y) is assumed to

be Gaussian noise (e.g. �����������������! "�$#�%&�), then by doing a pixel wise

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

110 Building algorithms

summation, we should be able to improve the signal/noise ratio by doing a pixel

wise addition of acquired scans representing the same data [Carstensen97, p.40].

Adding n images and dividing by n we get:

�
� ����� �������
���
	 ������� ��� �

� ��� � �������
�

where
�
� � � � � �����
� � � � "� #�%� � , showing the noise being reduced with a

factor of n.

Because of the high noise rate in raw data scans, it would be interesting to

examine the possibility of reducing it in some way by exploiting the possibility of

subsequently acquiring image data from the same place in the retina, and then do a

pixel-wise addition of the data.

4.1.2 Construction

An algorithm is constructed, reflecting the overall concept of the idea described

above. The first step is to drag a RawDataFileImport module to the testbed area,

capable of importing the series of images required for the addition.

As multiple images are being added pixel-wise, it is important that the images in

the set will be aligned with one another prior to addition, as the data will be present

in different places due to small eye movements during data acquisition. For that, a

Cross-Correlation module, a TranslateRows module followed by a CollectScans

module is needed.

The one image resulting from the pixel-wise addition, should be less noisy, due to

the fact explained above (in the Theory section), but because we have only aligned

the images to match each other, and not caring about aligning subsequent rows in

each image, the result would still appear jumpy. To correct this, yet another Cross-

Correlation module, and its TranslateRows counterpart, is required.

Adding a VisualizeScans module after the last TranslateRows module, should

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Building algorithms 111

provide means of visualizing the resulting image.

The completed algorithm, would look something like the one, illustrated in figure

78.

An extra visualization module has been added to be able to visually inspect the

incoming data before processing. The red arrows represent RAW data going in the

direction of the arrow. The blue ones represent XML messages, which in this case

would contain the translation vectors, resulting from the “best fit” alignment

algorithm, implemented in the Cross-Correlation module.

The initial DuplicateData module is there to make sure, we preserve images for

the first visualization.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

112 Building algorithms

4.1.3 Step-by-step execution and Results

Select the Raw data import module as shown in figure 79. This should bring up

the details panel for the module, where we then open a set of files, acquired in a

series, representing the same data (see figure 80).

Then select the first visualization module (see figure 81) and press “Consume” to

start loading images, followed by a click on “Show”.The result of this, should be a

series of visualized raw data files, as shown in figure 82.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Building algorithms 113

Figure 82, The six unprocessed raw data scans.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

114 Building algorithms

A few more visualization modules are inserted to be able to visually track the

changes happening to the RAW data, as illustrated in figure 83. The next

visualization module is used to verify that the other images (after the first in the

collection) are a aligned nicely with the first image (see figure 84).

Figure 84, Images 2-6 are aligned with the first image. This is a necessary step before pixel-wise addition can be
performed.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Building algorithms 115

Using the visualization module below the CollectScans module, a view of the

image resulting from doing pixel-wise addition of the six aligned images can be

shown (see figure 85). The last step, is to use a “Cross-Correlation” module to

straighten out the final image, by aligning subsequent rows in the data to one

another. Selecting the final (rightmost) visualization module, pressing “Consume”,

then “Show” should result in the display, shown in figure 86.

Looking at the final image produced (in figure 86), it is clear to see that the

signal/noise ratio has been successfully improved, compared to the incoming

images in figure 82. The image is aligned and finer details are now visible,

providing a better visual feedback to the user. Ultimately, this could possibly help

in the detection of some diseases, too hard to find in the original images.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 85, Result from doing a pixel-wise
addition of the six aligned images. There is a clear
improvement of the signal/noise ratio compared to
the original images.

Figure 86, The final image. Notice how the
noise is suppressed and the finer details in the
retina begin to appear.

116 Building algorithms

4.2 Filtered phantoms
When the standard phantom patterns become insufficient for testing of a certain

modules capabilities, experimenting with phantom images mixed with different

filters might produce what we are looking for.

In this section, a test scenario will be made, that would be useful in testing a

module produced during the project, by a potential future developer and user of

the system. The module is called SumOfSquaredDiff and described in detail in

section 5.1 on page 121.

Let's start with an idea of the kind of phantom data pattern that would be

desirable for the task:

� As the SumOfSquaredDiff module is a module, that seeks to align data, the

pattern should include some sort of wavy line to be aligned.
� Noise must be added to make the scenario more realistic.
� The pure phantom patterns are too “nice and clean”. Therefore, a combination

of patterns and image filter should be made, to make a “rough” effect.

Converting the loose requirements stated above into something producible by

the existing system modules, the resulting pattern could be described along the

lines of: “A sine wave pattern, combined with a salt & pepper noise pattern. Both

modified prior to addition by a selection of mean and gradient filters, creating the

effect of a blurry wavy line on a blurry noisy background”.

A bit of experimentation, lead to to the following constellation of modules:

� 2 RawDataPhantom modules,
� 5 FilterConvolution modules,
� 2 Normalize modules,
� 1 CollectScans module.
� 4 VisualizeScans modules,
� 2 TranslateRows modules,

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Building algorithms 117

� 1 DuplicateData module,
� 1 HistogramCutoff module and
� 2 SumOfSquaredDiff modules (see section 5.1 on page 121).

Connect the modules as shown in figure 87.

The four visualization modules (labeled in the diagram) should show the

following images:

1. Result of adding the two phantoms

2. The result of trying to align a noisy images

3. The same image as in [Visual 1], but with noise reduced by a histogram cutoff

4. Final image, alignment based on noise reduced image

The phantoms and filters are configured as indicated by the labels in figure 87.

Selecting [Visual 1], followed by a press “Consume” and “Show” will result in the

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

118 Building algorithms

noisy sine wave pattern13 in figure 88. [Visual 2] is used to see the results (see figure

89) of trying to directly align this image.

It's clearly visible, that the alignment method has failed. The noise must be

eliminated by using the histogram cutoff module. A separation between noise and

signal values is found, illustrated in figure 90. [Visual 3] is used to see how well the

noise has been removed (see figure 91).

13 Results will vary, as the random number generator used in constructing the Salt & Pepper noise
pattern is based on a “current time” seed.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 90, Finding an appropriate place to set
the threshold.

Figure 88, Sine wave pattern with a noisy
background.

Figure 89, A failed attempt to align the image.

 Building algorithms 119

Finally, an alignment vector based on the image in figure 91, is calculated and

used on the image in figure 88. The resulting image, illustrated in figure 92, is

visualized, using [Visual 4]. This example, shows one of the powerful features of the

system, where it is possible to keep the original image information intact (figure 88)

when aligning based on a modified version of the data (figure 91).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 91, Noise eliminated by using the
histogram cutoff module.

Figure 92, The result is a nicely aligned image.

120 Building algorithms

4.3 Summary
Constructing algorithms using the framework and modules provided is fairly

easy. After getting an idea of how a certain algorithm should be constructed, it

doesn't take very long to get results.

In this chapter, two different example algorithms have been presented.

1. An example of how collecting scans can drastically improve image quality

2. An all phantom generated image being used to verify functionality of several

modules.

Each of the algorithms only took a few minutes to construct, showing how simple

it is to test new modules and to use the system for everyday processing of patient

data.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 User experiences 121

5. User experiences
Until now, the system has only been used and tested in a local development

environment. This is about to change, when the framework will be tested in two

key areas by future users of the system:

� First, a developer will try to create a new module, based on a different alignment

technique than the one present in the “Cross-Correlation” module.
� Second, one of the potential users of the system, creates an algorithm to achieve

an enhancement of the edges in a collection of RAW data scans.

The contents of this chapter can be seen as a sort of customer approval of what

has been delivered.

5.1 A developer's module
As the framework and several modules were in place, it was decided to test how

easily someone else's methods and algorithms could be implemented in custom

modules using the guidelines provided. Thomas Martini Jørgensen was a perfect

candidate for this test, as he already had developed some of his own software in

C++ for different handling of the Raw data originating from both of the OCT retina

scanners. One piece of software implemented, was closely related to a paper, he

had worked on [Jørgensen04], and it was decided to see if this was transferable to

the framework developed in this project.

After some investigation, it was decided that one of the key methods used in his

algorithm, could be implemented as a module. The method was closely related to

that of the cross-correlation module but with a difference. Instead of aligning by

finding the translation resulting in the maximum value, when summing pixel-wise

multiplications, his method was based on finding the minimum, when summing

the pixel-wise squared difference.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

122 User experiences

The result was a module, called SumOfSquaredDiff, which was added to the

general module list. Integration and test of this module can be found in section 4.2

on page 116.

5.2 A user's algorithm
Now that the software is functional, it will be put to the test by letting a future

user of the system design a new algorithm, using existing module components.

A meeting with Birgit Sander, M.Sc., Ph.d. and Head of Laboratory at Herlev

Hospital, was arranged. The plan was to let Birgit design an algorithm, satisfying

needs, not possible to achieve on the existing systems.

To begin with, Birgit had to get a feel of the system, which after a short while

seemed to go quite nicely. She then decided to build an algorithm, that would take

a series of images, collect them and then try to enhance the edges, using an edge

detection filter, to make it easier to see and measure differences in the retinal

thickness.

The first part of the algorithm would follow a design similar to the one described

in section 4.1, where the signal/noise ratio is enhanced by pixel-wise addition. This

is then extended with an edge detection filter (FilterColvolution module), two

normalization modules and an extra CollectScans module, to combine the filtered

edge detection image with the enhanced image from before. A view of the full

workspace with the designed algorithm ready for use, can be seen in figure 93.

As an edge detection filter, “Gradient (width 3)” is chosen, and for both

normalization modules, the following parameters are set (see figure 94):

� Minimum value = 0.0
� Range width value = 1.0

The same series of images, as in the case of the algorithm in the previous chapter,

“Enhancement by addition”, were selected to be processed. The visualization

module was selected, and a press on “Consume” initiated the back-propagating

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 User experiences 123

process up the diagram graph, where all modules connected are forced to produce

data in an iterative fashion. After completion, three images were produced:

1. The result from collecting the scans (figure 95), where edges were a bit blurry,

but definitely presenting a better result than what was exported from the OCT

scanner,

2. an edge enhanced image (figure 96), resulting from running the collected image

through the FilterConvolution module and

3. the combined image (figure 97), produced by adding images 1 and 2 after

normalizing the brightness levels to be in the same range.

Birgit Sander was pleased with the result, as seen in her statement below (see text

listing 2).

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 93, An overview of the algorithm, designed to enhance the edges of a collected set of
RAW data scans. The first cross-correlation module is selected, and the details are shown.

124 User experiences

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Figure 95, Image, resulting from an addition
of six RAW data scans.

Figure 96, Image of edges detected in the image
to the left (figure 95).

Figure 97, Combining the two images (figures
95 and 96) above to enhance the edges.

 User experiences 125

5.3 Summary
A new module was created, based on the design of the Cross-Correlation module,

changing the way two signals are compared, to find a translation that would align

them in an optimal way. The new module, bases its comparison on a pixel-wise

sum of squared differences between the signals, where the old one bases it on a

traditional cross-correlation. Implementation and testing of the module went fairly

smooth, and the module integrated flawlessly with existing logic.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

What Birgit Sander had to say after trying out the system (in Danish):

Anvendelse af OCT til klinisk brug er stærkt stigende og dermed også udviklingen

af metoder, der udnytter potentialet fuldt ud. I denne forbindelse er det både den

billedmæssige behandling og den kvantitative beregning, der er interessant. Det

program, der nu er udviklet, giver mulighed for at bearbejde billederne med

metoder, der ikke tidligere har været tilgængelige i forbindelse med OCT, idet der nu

er mulighed for at anvende billedbearbejdnings-teknikker kendt fra andre områder

og særligt udviklede programmer til OCT. Særligt billedsammenlægningen giver et

fremragende resultat. Den store fleksibilitet og brugervenlighed gør det muligt at

bruge programmet i hverdagen og at undersøge og fastlægge programsekvenser til

forskellige patienttyper, hvor billedkvaliteten kan variere, og hvor de detaljer, der

ønskes undersøgt, kan være lokaliseret til forskellige dele af scannet. Ved analyse af

prøveeksempler i programmet var det indlysende, at der på basis af det udviklede

program er mulighed for på sigt at komme videre med en kvantitativ behandling af

data, som er meget brugbart ved længerevarende studier. Vi ser derfor frem til at

kunne tage dette nye værktøj i brug i den daglige klinik og i forskningsmæssig

sammenhæng.

- Birgit Sander, M.Sci., Ph.D.

Head of Laboratory, Herlev Hospital

Text 2, Statement made by the "customer" about the potential and usefulness of the developed system.

126 User experiences

The flexible way of designing algorithms, was tested by a future user of the

system, resulting in a method that would enhance the edges of collected scans,

thereby making it easier to measure changes in retinal thickness. Birgit Sander, the

person testing it, was very pleased with the result of the project work.

These user tests show, that developing processing modules and using the system

to design new algorithms, is not limited to be done by the developer of the system

alone.

Judging from the results of the tests, it's fair to say, that the initial requirements,

stating that the system should be easy to extend and to use, have been met.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Plans for the future 127

6. Plans for the future
Some features of the system were left out, mainly because time did not permit

them to be implemented during the project period. Plans are made, however, for

the author (and developer) of this project to work closely with Herlev Hospital,

implementing more features after the time of writing. In this chapter, we will go

through some of the more interesting planned features in detail.

As the system is based on independent modules, capable of containing virtually

any sort of logic, the developer could want to implement, it would also be possible

to make far more complex modules, directly communicating with external systems.

This could be anything, ranging from communicating with the OCT scanners to

letting a module function as a server, delivering results to a thin client requesting

data, e.g. a web-browser.

6.1 Integration with other systems
One major improvement to the system will be in the form of modules integrating

directly with other systems, e.g. integrating with the OCT scanners directly would

eliminate the need for a user of the system to export and import data via raw data

files. Modules providing this sort of feature, could possibly be developed as a joint

effort between developers of the system and different manufacturers of medical

equipment.

6.2 Print support
The possibility for print support in the following areas:

� Diagram views: When designing large algorithm diagrams, it might be desirable

to get a hard copy of the flow of the diagram, showing the constructed algorithm.

The graphical representation of the diagram, as well as a human readable

version could be produced for documentation.
� Module settings: As individual module configurations might hard to overview

when looking at larger algorithm designs, it would be useful to have a complete

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

128 Plans for the future

list of all the settings for all the modules, collected on paper.
� Processed images: When applying algorithms to different RAW data images, the

possibility of printing reports of the results, including the produced images,

would be useful for documentation and research.

6.3 A common database between workstations
Currently, images are loaded from a disk through the RawDataFileImport

module. If a group of people would like to access the same patient data (RAW data

files) for processing, the introduction of a common data store could be the answer.

There would be some advantages of this approach:

� Data storage and retrieval: Distributed information retrieval is a very nice to

have feature, as it would provide the users a way for them to access and possibly

process data from remote. In most cases, this would require a centralized data

store, e.g. a database, being accessible over the network.
� Possibility for an off-line processing unit: When user client machines are too

slow to handle processing of large data arrays, a powerful centralized mainframe

computer could take most of the load, allowing the client to handle other tasks.
� Web interface: Creating a web interface for the data store, could allow restricted

access to patient images, using a standard web browser

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Conclusion 129

7. Conclusion
The primary goal of this project was to produce a robust and flexible image

processing framework for ophthalmology researchers at Herlev Hospital, dealing

with images originating from a Carl Zeiss Optical Coherence Tomography retinal

scanner. Judging from the customers statement about the system, the mission of

the project seems to have been successful (parts of the text translated to English):

“The use of OCT for clinical purposes is rising fast and therefore also the

development of methods, exploiting the potential to its fullest... ...The software

developed, provides an opportunity to process the images using methods, not

previously available in relation with OCT, as it is now possible to use image

processing techniques known from other areas... ...The great flexibility and usability

makes it possible to use the software i every day use and to examine and settle on

program sequences [algorithms] for different types of patients, where the image

quality can vary, and where the details of interest, can be located in different places

in the scan... ...We therefore look forward be able to use this new tool in the daily

clinic, as well as in research related work.” (Birgit Sander)

Many steps are involved in making such a system, and it has been a very

educational process to investigate and actually try out what is demanded of a

software developer, when set out to produce systems, that are meant to be used

outside the university classroom.

Making the system requirements alone was a long process, involving many

iterations before settling on the result provided in Appendix A. This, however,

proved to be very useful for the rest of the project, especially as they would always

be there as overall guidelines, when focus was lost, due to all kinds of exciting

possibilities, just waiting to be explored in the system.

Before starting any development, it was important to search for tools, capable of

providing the functionality needed for the project, as there is no reason to reinvent

the wheel. After doing a wide search for similar image processing frameworks, only

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

130 Conclusion

finding a few commercial tools that matched, it became clear, that if the system

was to be built as extensions to existing software, the licensing costs alone would be

much too high for the system to be widely adopted. This meant, that the

framework would have to be built as part of the project.

It was not easy, making the decision to scrap all the C++ code developed after two

months into the project. At that time, a minimalistic - but functional - graphical

user interface, as well as some core processing part were already in place. Serious

considerations were made on how to reuse as much as possible of the existing code,

but being based so heavily on the use of template libraries in C++, the integration

task seemed almost impossible. The decision, to use Java all the way, proved to be

right in several ways:

1. Java, being multi-platform by nature, allowed the development to be focused

on building the actual framework and processing modules, instead of

spending valuable time, just to make the system compile on different

operating systems.

2. Many technologies used, are shipped with the standard Java SDK, including

XML processing, GUI functionality, basic image input/output (e.g. used to

load icons), etc.. This meant, that future developers of the system would not

have to worry about compilation and installation of several 3rd party tools.

3. As Eclipse, the powerful IDE used, as well as the Java SDK itself being freely

available for many popular operating systems, the costs put on users and

developers is limited to the cost of the hardware used

Designing the system, so it would easily be integrated with legacy software, did at

first seem like a very overwhelming task, as it would be almost impossible to make

something that would integrate with every thinkable piece of code out there. After

giving it some thought though, a solution began to appear. Using a combination of

making everything communicate using XML and make all the processing logic in

the system be based on small modular components, would enable users, wanting to

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

 Conclusion 131

integrate the framework with other systems, to either make their existing systems

communicate through the use of XML – or to make custom designed modules, that

could directly connect with their legacy systems, using any protocol they wanted.

This solution got an extra dimension to it, after swapping to Java, as developers

would now have the choice of using Java, C or C++ when integrating, because of

JNI, the Java Native Interface.

In the case of the Cross-Correlation module, two implementations were made.

One in pure Java and one using JNI to make a bridge to a native library file, utilizing

the very optimized Blitz++ library. Benchmarks showed, that significant

performance improvements could be made.

Using XML provides other benefits as well. For example, when extending the

system modules, or the framework itself, with new functionality involving changes

in state information needed to be stored and retrieved from the workspace file, the

system would in most cases be fully capable of loading files, stored with different

versions of the framework. This is due to the fact that XML is capable of storing

data in an unstructured way, where each component parsing the document, can

concentrate on the parts of the XML it knows - not affecting and not being affected

by the rest.

A fair deal of pluggable modules were created during the project. These,

combined with the underlying framework, provide a solid base for researchers to

construct algorithms, useful in their daily work with retinal OCT images.

This, however, does not mean, the system is limited to processing images of this

type only. With very little effort, new import modules could be constructed to

extend the systems use to other areas.

Successful integration of the code and methods, developed by Thomas Martini

Jørgensen, gave extra confidence to the fact, that the system actually works.

It was always the intention, that this report should not only function as the

product of a master thesis, to be put on a shelf and be forgotten, but also work as a

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

132 Conclusion

reference manual for developers, as well as a users guide for researchers

constructing algorithms. Major parts of this document will be moved to a project

web page, where the continuously growing list of modules, including source code

base and detailed descriptions, is going to reside as well.

Throughout the development process, I've tried to focus a lot on “the bottom of

the iceberg”, and not just choosing the easy way out. This has shown to pay off, as I

now feel, I can honestly say, the system produced really lives up to expectations of

being robust, easy to use and designed for change.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Appendix A: System requirements 133

Appendix A: System requirements

The requirements are split into three sections:

� Framework: The overall system and underlying framework requirements
� Image processing: Image handling methods and image processing techniques

required to be implemented in the system.
� GUI: Visualization requirements, as well as providing a basic set of guidelines

for what actions should be possible through user interaction

Framework requirements
Table explanation
Requirement ID: A traceable ID.
Priority: Must, Should, Could, Won't [MoSCoW model]

Requirement ID Priority Description

REQ-FRA-001 Should Build on available 3rd party components where in-

house development seems unreasonable.

REQ-FRA-002 Must Run on multiple platforms, with Windows and

Linux as the two primary targets.

REQ-FRA-003 Should Be easy to integrate with existing software.

REQ-FRA-004 Could Provide a text based interface to the system.

REQ-FRA-005 Must Provide a graphical interface to the system.

REQ-FRA-006 Should Minimize the amount of coding needed, when

extending the system.

REQ-FRA-007 Must Provide a way of saving and loading the

workspace and its settings.

REQ-FRA-008 Should Create a framework where future

research/algorithms can be integrated as

pluggable components (e.g. Using *.so files [*.dll

for windows])

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

134 Appendix A: System requirements

Image processing requirements

Requirement ID Priority Description

REQ-IMG-001 Must Import RAW data files generated by the Zeiss

Humphrey OCT system.

REQ-IMG-002 Must Be possible to perform visual alignment of RAW

data files, to compensate for errors caused by eye

movements, etc..

REQ-IMG-003 Must Be possible to make a combined alignment and

addition of a series of RAW data files to enhance

the signal/noise ratio in data.

REQ-IMG-004 Should Include functionality for doing histogram related

operations.

REQ-IMG-005 Should Include functionality for processing images, using

filter kernel convolution.

REQ-IMG-006 Should Include a median filter.

REQ-IMG-007 Should Support floating point pixel types.

GUI requirements

Requirement ID Priority Description

REQ-GUI-001 Must Visualization of RAW data files generated by the

Humphrey system.

REQ-GUI-002 Must Ability to control image processing features of the

underlying system/libraries.

REQ-GUI-003 Must Run on a recent version of Windows.

REQ-GUI-004 Must Run on a recent release of RedHat Linux.

REQ-GUI-005 Should Run on generic Unix systems.

REQ-GUI-006 Should Provide an organized view over available OCT

data available on disk.

REQ-GUI-007 Could Provide an interface to a PostgreSQL (or MySQL)

database for remote data storage.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Appendix B: Functional specifications 135

Appendix B: Functional specifications

The functional specification lists minimalistic design considerations to each of

the system requirements (listed in Appendix A).

Framework

Requirement ID Description and suggestion for solution

REQ-FRA-001 “Build on available 3rd party components where in-house development

seems unreasonable.”

Solution:

A market analysis must be performed, trying to uncover if existing tools can

be used to build upon. These would preferably be distributed under an

open-source licence.

REQ-FRA-002 “Run on multiple platforms, with Windows and Linux as the two primary

targets.”

Solution:

This prevents the use of operating specific APIs, including that of

window/GUI functionality. A survey should be done to find multi-platform

libraries for GUI, math, XML, etc..

All code should be possible to compile and run under Windows and Linux.

REQ-FRA-003 “Be easy to integrate with existing software.”

Solution:

Using XML for all non-binary communication, the system would be easy to

integrate with.

REQ-FRA-004 “Provide a text based interface to the system.”

Solution:

The system must be based on a Model-View-Controller architecture, so the

view may be changed from graphical to text mode with as little effort as

possible.

REQ-FRA-005 “Provide a graphical interface to the system.”

Solution:

A 3rd party GUI toolkit will be used to create the user interface.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

136 Appendix B: Functional specifications

Requirement ID Description and suggestion for solution

REQ-FRA-006 “Minimize the amount of coding needed, when extending the system.”

Solution:

The system should be split into two parts:

1. A framework, providing the core functionality

2. Pluggable modules, where all the statistical implementations reside.

When new methods needs to be implemented, only the code for a new

module needs to be made.

REQ-FRA-007 “Provide a way of saving and loading the workspace and its settings.”

Solution:

The workspace should be saved in an XML format, including all state

information of all modules.

REQ-FRA-008 “Future research/algorithms can be integrated as pluggable components

(e.g. Using *.so files [*.dll for windows])”

Solution:

A plug-in mechanism must be implemented, that will integrate easily with

existing libraries.

Image processing

Requirement ID Description and suggestion for solution

REQ-IMG-001 “Import RAW data files generated by the Zeiss Humphrey OCT system.”

Solution:

The RAW data format must be reverse engineered, and imported into the

system in a double precision format.

REQ-IMG-002 “Be possible to perform visual alignment of RAW data files, to compensate

for errors caused by eye movements, etc..”

Solution:

An alignment method, based on cross-correlation, must be implemented.

REQ-IMG-003 “Be possible to make a combined alignment and addition of a series of RAW

data files to enhance the signal/noise ratio in data.”

Solution:

An alignment method, based on cross-correlation, must be implemented.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Appendix B: Functional specifications 137

Requirement ID Description and suggestion for solution

REQ-IMG-004 “Include functionality for doing histogram related operations.”

Solution:

Implement basic functionality for working with image histograms must be

implemented.

REQ-IMG-005 “Include functionality for processing images, using filter kernel

convolution.”

Solution:

A generic filter kernel convolution mechanism should be implemented as a

module, where different kernels can easily be created and selected.

REQ-IMG-006 “Include a median filter.”

Solution:

The median filter should be implemented as a separate module.

REQ-IMG-007 “Support floating point pixel types.”

Solution:

Internal data structures, as well as the operations applied on them, should

be based on double precision floating point values.

GUI

Requirement ID Description and suggestion for solution

REQ-GUI-001 “Visualization of RAW data files generated by the Humphrey system.”

Solution:

The visualization mechanism, should be able to display the contents of

RAW data files as images with brightness levels scaled to fit within 0 and

255 (maximum range of the screen).

REQ-GUI-002 “Ability to control image processing features of the underlying

system/libraries.”

Solution:

Where needed, the GUI should provide suitable interfaces to affect the

underlying model, containing and manipulating data.

REQ-GUI-003 “Run on a recent version of Windows.”

Solution:

Make sure that the 3rd party GUI library used, will compile and run under

windows.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

138 Appendix B: Functional specifications

Requirement ID Description and suggestion for solution

REQ-GUI-004 “Run on a recent release of RedHat Linux. ”

Solution:

Make sure that the 3rd party GUI library used, will compile and run under X

windows on Linux.

REQ-GUI-005 “Run on generic Unix systems.”

Solution:

Make sure that the 3rd party GUI library used, will compile and run under X

windows on Unix in general.

REQ-GUI-006 “Provide an organized view over available OCT data available on disk.”

Solution:

A standard file chooser would function as the minimal solution to this.

REQ-GUI-007 “Provide an interface to a PostgreSQL (or MySQL) database for remote data

storage.”

Solution:

Integrated in a module, database access would be encapsulated and hidden

from the rest of the system. The data storage interface would need to use

ODBC (C++) or JDBC (Java) for communication in order to be supported on

multiple platforms.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Acknowledgments 139

Acknowledgments

Bjarne Ersbøll (Associate Professor of Statistical Image Analysis, IMM, DTU), for

great guidance and for keeping me focused on the job at hand when more

interesting things caught my attention.

Thomas Martini Jørgensen (Senior Scientist, Risø National Laboratory), for

introducing me to the field of optical coherence tomography and the need for

better software at Herlev Hospital.

Birgit Sander (M.Sci., Ph.D., Head of Laboratory, Herlev Hospital), for being very

supportive and helpful in passing on an interesting part of her research at Herlev

Hospital to my knowledge. It would be interesting to carry on the collaboration, on

the work we've done during the project.

Anders Hybertz Jensen, who has been a great help, guiding me away from major

disasters, designing and developing in C++ - as well as putting up with all of my

silly questions in the process.

Philip Anthony Nash, for his charismatic way of bringing me into his world of

pure programming excellence, as well as being there as a friend when needed most

– thanx Phil!

Luca Passani, who educated me about usability and its importance for success -

or failure when neglected. Working with him has taught me to moderate my natural

tendency to make things more complex then necessary.

Grzegorz Ciepiel, for opening my eyes to the world of patterns and good

development practices.

Jens Erik Pontoppidan Larsen, for being there for me as a friend and sparring

partner.

Bronagh Hannah McElduff, for helping me with the quirks of English

grammar ;-)

My family for being supportive in any way they could.

Nanna, for inspiration.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

140 Glossary

Glossary

Throughout this thesis, many terms are used, that might meet the

readers eye for the first time. It was therefore decided that a glossary of

some of the more uncommon terms and abbreviations was provided.

API Application Programming Interface. An API is a series of functions that

programmers can use to make the underlying layers do their dirty work.

Using Javas API, for example, a program can open windows, files, and

message boxes, as well as perform more complicated tasks, by passing a

single instruction.

Class A fundamental building block in object-oriented languages. The class

encapsulates programming logic and functions as a sort of template for

its instantiations (objects). Class functionality may be copied and

extended to other classes through inheritance.

Design The activity performed by a software developer to reach to the

architecture of the system to be produced. The Design also refers to the

product of this activity.

GCC The GNU Compiler Collection, which currently contains front ends for

C, C++, Objective-C, Fortran, Java, and Ada, as well as libraries for these

languages (libstdc++, libgcj,...).

URL: http://gcc.gnu.org

GUI Graphical User Interface. This could be considered “the tip of the

iceberg” of the application.

HTML HyperText Markup Language.

HTML is the language used for publishing hypertext on the World Wide

Web. It is a non-proprietary format based upon SGML, and can be

created and processed by a wide range of tools, from simple plain text

editors - you type it in from scratch- to sophisticated WYSIWYG

authoring tools. HTML uses tags such as � ����� and ��� ���	� to structure

text into headings, paragraphs, lists, hypertext links etc.

JDBC Java Database Connectivity. The API used in Java to connect to

databases.

JNI Java Native Interface.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Glossary 141

LGPL Lesser General Public License

(http://www.gnu.org/copyleft/lesser.html).

Linchpin A central cohesive element, e.g. Reduced spending is the linchpin of

their economic program.

OCT Optical Coherence Tomography.

Ophthalmology The art and science of eye medicine.

PHP “PHP” is a recursive acronym for “PHP: Hypertext Preprocessor”. PHP

is a server side scripting language, usually integrated closely with a web-

server.

Refactoring A change to the system that leaves its behavior unchanged, but

enhances some nonfunctional quality – simplicity, flexibility,

understandability, performance.

SDK Software Development Kit.

Thick Client Business and presentation logic resides on the client side, while data is

accessed on the server.

Example of a thick client: A Java applet, with all the business logic

implemented, using JDBC to access a remote database.

Thin Client The client only has presentation logic, while data access and business

logic resides on the server side.

Example of a thin client: A web-browser, where data would be accessed

through server side business logic, e.g. a PHP page.

Third-party software Software coming from other entities than the two parties developing a

system. E.g. in the case of the system produced in this project, Blitz++ is

coming from a 3rd party.

UML Unified Modeling Language.

Used to describes software models in diagrams. A model plays the

analogous role in software development that blueprints and other plans

(site maps, elevations, physical models) play in the building of a

skyscraper.

VM Virtual Machine. In common usage, “virtual machine” usually refers to

a piece of software that provides an implementation of a virtual

instruction set/virtual CPU that runs byte codes other than that of the

native CPU.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

142 Glossary

Wrapper class Typically, this would be a class encapsulating lower level functionality,

e.g. a class with methods interfacing with some low level protocol, while

keeping a nice high level interaction layer (public methods).

WYSIWYG Short for what you see is what you get.

XML Extensible Markup Language.

XML derived from the Standard Generalized Markup Language (SGML).

You can use both XML and SGML to create self-describing documents.

Both languages use textual markup (tags) to describe data so that other

applications or tools (like an SGML or XML parser) can correctly read

the information and then do interesting things with it. XML is a

simplified version of SGML, more suitable for use on the Web.

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

Bibliography 143

Bibliography

Grand98: Grand, Mark, "Patterns in Java, Volume 1", 1998, ISBN 0-471-25839-3, Publisher:
"John Wiley & Sons"

Buschmann96: Buschmann, Frank, "Pattern-Oriented Software Architecture: A System of
Patterns", 1996, ISBN 0-471-95869-7, Publisher: "John Wiley & Sons"

Geary99: Geary, David M., "Graphic Java 2, Mastering the JFC", 1999, ISBN 0-13-079667-0,
Publisher: "Sun Microsystems"

Arehart00: Arehart, Charles; Passani, Luca; (many others in unreferenced chapters.),
"Professional WAP", 2000, ISBN 1861004044, Publisher: "Wrox Press Inc."

Berg99: Berg, Clifford J., "Advanced Java 2 development for enterprise applications", 1999,
ISBN 0-13-084875-1, Publisher: "Prentice-Hall, Inc."

Josuttis02: Vandevoorde, David; Josuttis, Nicolai M., "C++ Templates: The Complete
Guide", 2002, ISBN 0-201-73484-2, Publisher: "Addison-Wesley"

Beck00: Kent Beck, "Extreme Programming Explained: Embrace Change", 2000, ISBN 201-
61641-6, Publisher: "Addison-Wesley"

Carstensen97: Carstensen, Jens Michael, "Digital Image Processing", 1997

Ifeachor98: Ifeachor, Emmanuel C.; Jervis, Barrie W., "Digital Signal Processing: A Practical
Approach", 1998, ISBN 0-201-54413-X, Publisher: "Addison-Wesley"

Sonka93: Sonka, Milan; Hlavac, Vaclav; Boyle, Roger, "Image Processing, Analysis and
Machine Vision", 1993, ISBN 0-412-45570-6, Publisher: "Chapman & Hall Computing"

Teuber89: Teuber, Jan, "Digital Billedbehandling", 1989, ISBN 87-571-1060-3, Publisher:
"Teknisk Forlag"

Niblack86: Niblack Wayne, "An Introduction to Digital Image Processing", 1986, ISBN 0-13-
480600-X, Publisher: "Prentice/Hall International"

Cormen96: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L., "Introduction to
Algorithms", 1996, ISBN 0-262-03141-8, Publisher: "The MIT Press"

Cho93: Cho, Z. H.; Jones, Joie P.; Singh, Manbir, "Foundations of Medical Imaging", 1993,
ISBN 0-471-54573-2, Publisher: "John Wiley & Sons"

Jørgensen04: Jørgensen, Thomas Martini; Ersbøll, Bjarne; Sander, Birgit; Larsen, Michael,
"Reducing speckle noise in retinal OCT images by aligning multiple B-scans", 2004

A Master Thesis by Technical University of Denmark
Lars Gunder Knudsen Informatics and Mathematical Modelling

