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Preface

This thesis was prepared at Informatics and Mathematical Modelling,
Technical University of Denmark in fulfillment of the requirements for
acquiring the Ph.D. degree in engineering.

The thesis deals with the assimilation of data in hydrodynamic models of
continental shelf seas. The main contribution of to this field is the devel-
opment of cost-effective Kalman filter based data assimilation schemes
applicable to operational settings. Further main contributions are the
interpretaion of the schemes in terms of regularisation and a proposed
framework for the combination of error correction modelling and Kalman
filters.

The thesis consists of a summary report and a collection of seven research
papers written during the period 2000–2003, and elsewhere published or
submitted for publication.

Lyngby, 16 January 2004

Jacob Viborg Tornfeldt Sørensen
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Summary

Data assimilation in hydrodynamic models of con-

tinental shelf seas

This thesis consists of seven research papers published or submitted for
publication in the period 2002-2004 together with a summary report.
The thesis mainly deals with data assimilation of tide gauge data in
two- and three-dimensional hydrodynamic models of the continental shelf
seas. Assimilation of sea surface temperature and parameter estimation
in hydrodynamic models are also considered. The main focus has been
on the development of robust and efficient techniques applicable in real
operational settings.

The applied assimilation techniques all use a Kalman filter approach.
They consist of a stochastic state propagation step using a numerical
hydrodynamic model and an update step based on a best linear unbi-
ased estimator when new measurements are available. The main chal-
lenge is to construct a stochastic model of the high dimensional ocean
state that provides sufficient skill for a proper update to be calculated.
Such a stochastic model requires model and measurement errors to be
described, which is a difficult task independent of the computational re-
sources at hand. Further, the need for efficient solutions necessitates
further assumptions to be imposed that maintain a skillful and robust
state estimate.

The assimilation schemes used in this work are primarily based on two
ensemble based schemes, the Ensemble Kalman Filter and the Reduced
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x Summary

Rank Square Root Kalman Filter. In order to investigate the applicabil-
ity of these and derived schemes, the sensitivity to filter parameters, non-
linearity and bias is examined in artificial tests. Approximate schemes,
which are theoretically presented as using regularised Kalman gains, are
introduced and successfully applied in artificial as well real case scenar-
ios. Particularly, distant dependent and slowly time varying or constant
Kalman gains are shown to possess good hindcast and forecast skill in
the Inner Danish Waters.

The framework for combining data assimilation and off-line error correc-
tion techniques is discussed and presented. Early results show a poten-
tial for such an approach, but a more elaborate investigation is needed to
further develop the idea. Finally, work has been initiated on parameter
estimation in two-dimensional hydrodynamic models with an approach
that avoids the development of an adjoint code by using an algorithmic
structure that favours application of office-grids as they are envisaged to
look in the near future.

The main contribution is the development of a number of regularisation
techniques for tide gauge assimilation. Further, the techniques used to
assess the validity of underlying assumptions (weak non-linearity, un-
biasedness or error model skill) provide a valuable tool-box for investi-
gating a dynamical system prior to potentially selecting an assimilation
approach. The combined data assimilation error correction framework
may be an important contribution to future improvements of forecast
skill for a number of systems. The work done on parameter estimation
is expected to mature into a future standard procedure for model cali-
bration for models with rapidly evolving complex codes.



Resumé

Data assimilering i hydrodynamiske modeller af

farvande p̊a kontinentalsoklen

Nærværende afhandling best̊ar af syv forskningsartikler, der er publiceret
eller indgivet til publicering i perioden 2002-2004, og en sammenfatning.
Afhandlingen beskæftiger sig hovedsageligt med data assimilering af data
fra vandstandsmålere i to- og tredimensionale hydrodynamiske modeller
af farvande p̊a kontinentalsoklen. Endvidere behandles assimilering af
havets overfladetemperatur og parameter estimation i hydrodynamiske
modeller. Fokus har været p̊a udviklingen af robuste og tids-effektive
metoder, der kan anvendes i virkelige, operationelle problemstillinger.

De anvendte assimileringsteknikker er alle Kalman Filter baseret. De
best̊ar af et skridt som propagerer den stokastiske tilstand ved brug af
en numerisk hydrodynamisk model og et opdateringsskridt der baserer
sig p̊a den bedste lineære biasfrie estimator n̊ar nye målinger er tilgæn-
gelige. Hovedudfordringen er at konstruere en stokastisk model af havets
tilstand, der er god nok til at en ordentlig opdatering kan udregnes.
For at lave en s̊adan stokastisk model skal man have en god beskrivelse
af model og målefejl, hvilket er svært uanset hvor store computerres-
sourcer, der er til r̊adighed. For at leve op til kravet om operationel
anvendelighed, er det endvidere nødvendigt at lave yderligere antagelser,
der samtidig er underlagt krav om robusthed.

Assimileringsskemaerne, der bruges i nærværende afhandling, er hoved-
sageligt baseret p̊a de to ensemble-baserede teknikker, ensemble Kalman
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xii Resumé

filtret og reduced rank square root Kalman filtret. For at undersøge
anvendeligheden af disse og afledte skemaer undersøges deres følsomhed
over for filter parametre, ikke-linearitet og bias i en række kunstige test-
opsætninger. Tilnærmede skemaer præsenteres som regulariseringer af
Kalman gain matricen, og demonstreres succesfuldt i kunstige s̊avel som
virkelige scenarier. En afstandsafhængig Kalman gain med langsom eller
ingen tidsvariation vises at have gode hindcast og forecast evner i de
indre danske farvande.

Et framework, der kombinerer data assimilering og off-line fejlkorrek-
tionsteknikker, præsenteres og diskuteres. Foreløbige resultater viser et
potentiale for en s̊adan angrebsvinkel, men en mere fyldestgørende un-
dersøgelse mangler for at kunne færdigudvikle idéen. Desuden er arbejdet
med parameter estimation i todimensionale hydrodynamiske modeller
p̊abegyndt. Der anvendes hér en teknik, som undg̊ar den tidskrævende
udvikling af en adjoint kode ved at bruge en algoritmisk struktur, som
tilgodeser anvendelse af morgendagens office-grid løsninger.

Hovedresultatet er udviklingen af en række regulariseringsteknikker til
assimilering af vandstandsmålere. Teknikkerne, som er brugt til at teste
de underliggende antagelser (svag ikke-linearitet, biasfrihed og korrekt
fejlmodel), giver en værdifuld værktøjskasse til at undersøge dynamiske
systemer før der potentielt skal vælges en assimileringsmetode. Det
kombinerede data assimilering og fejlkorrektion framework vil bidrage
til fremtidige forbedringer af forudsigelsesevnen for et antal dynamiske
systemer. Arbejdet med paramter estimation forventes i fremtiden at
modne til en standard procedure for model kalibrering i modeller med
hurtigt udviklende komplekse koder.
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Chapter 1

Introduction

This thesis deals with data assimilation in hydrodynamic models of con-
tinental shelfs and coastal seas. Ocean scientists and coastal engineers
are continuously faced with the problem of knowing what the state of
the ocean was in the past, is now and will be tomorrow. Simultane-
ously, there is a need for better understanding why the ocean behaves
in certain ways, i.e. what processes are dominating at various locations,
times and spatial scales. The search for answers to these questions has
been the foundation of most great scientific findings in the past centuries.
However, with the advance of hydroinformatics and with the vast com-
putational resources available today, the scene is set for pursuing new
techniques for filling out the rather large number of remaining gaps in
our capability of describing and understanding the seas. Data assimila-
tion is a rather general term for incorporating observations in a physical
and theoretical description of a system. Pending challenges to be solved
are related security, industrial and environmental issues such as climate
monitoring and prediction, risk assessment and design.

1.1 Coastal seas

The physical system under consideration consists of hydrodynamic flow
and a range of other processes acting within bays, estuaries, coastal re-
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4 Introduction

gions or shelf seas. The body of water evolves according to the laws of
internal dynamics and its interaction with the atmosphere and the solid
earth. The system is very complex, accommodating nonlinear, turbulent
mass and momentum fluxes and further a rich density structure, sedi-
ment transports as well as chemical and biological processes. Thus, a
great number of interactions and physical properties describe and deter-
mine the state of the system. The important spatial scales range from
micrometers for molecular dissipation to a basin scale seasonal cycle with
practically every intermediate scale playing a role for one process or an-
other. Likewise the temporal scales vary from seconds to millennia and
above.

Many physical phenomena are described by the hydrodynamic and ther-
modynamic equations alone. Among these are tidal waves, wind induced
coastal upwelling, frontal dynamics and eddy formation. Thus, as a
simplest approach the treatment can be restricted to the hydrodynamic
and thermodynamic variables. Hence, no chemical processes, biological
processes or sediment transports are described and the thermodynamic,
momentum and mass distributions alone constitute the system.

1.2 Numerical Modelling

With the advance of the computer technology and discrete mathemat-
ics, mechanistic numerical modelling became a more and more attractive
approach to solving hydrodynamic problems in the marine environment.
The derived techniques build on known first principles for fluid dynam-
ics, which provide the basic mathematical formulation of a boundary
value problem. A tractable solution to the problem is typically found
by applying discretisation techniques. This has lead to the generation
of a large number of numerical models distributed throughout the world
with each their set of approximations. Any such approach requires the
user to specify initial and boundary conditions along with calibration
parameters. The two models applied in the present study are MIKE 21
and MIKE 3 developed at DHI Water & Environment, (DHI 2002) and
(DHI 2001). MIKE 21 solves the depth integrated mass and momen-
tum conservation equations while MIKE 3 provides a solution to the full
3-dimensional problem.
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A numerical modelling approach thus has its starting point in well es-
tablished theoretical knowledge. This allows for a physically consistent
analysis of the results. However, a great number of approximations must
be introduced in order to obtain a tractable solution. Observations are
generally needed for model initialisation, specification of boundary con-
ditions as well as model calibration and performance assessment.

1.3 Observations

A large number of measurements with a quite diverse nature exist. These
range from spatial images of sea surface temperature (SST) with a tem-
poral sparsity to tide gauge station, which possess a high temporal res-
olution, but are sparsely distributed in space. Other examples of ob-
servations are salt and temperature profiles from cruises and HF radar
observation of surface velocities. In this study comparison with and as-
similation of tide gauge water level observations are primarily reported.

Both in the satellite earth observation community and among in situ
measurement providers, in increasing efford is being directed towards real
time delivery. The integrated service chain from sensor to assimilation
and customer service in terms of a forecast is being adressed, which
directs attention to the real-time aspects of data assimilation techniques.

1.4 Real-time operations

One final aim of the work undertaken in this thesis is to provide data
assimilation solutions, which can be applied in operational models used
to provide value adding forecasts. First of all this requires robustness.
The solution can not be marginally stable and it must handle missing
data properly. For research purposes you need one good model run. In an
operational setting you can not have one failed model run. Real-time op-
erations further impose increased constraints on execution times. Often
existing systems are already optimised to fill out these constraints and
hence very efficient assimilation schemes are called for, if the resolution
is to be maintained. Finally, the constraints on the physical consistency



6 Introduction

of the state estimates are increased. Failure to provide a balanced esti-
mate will result in generation of waves, which may deteriorate a forecast,
where no measurements are available to correct the errors introduced.

Simultaneously, real-time operations provide strong constraints on com-
putational efficiency. For dedicated cost-efficient commercial solutions,
high performance computational facilities are typically not affordable
and medium size computational resources must be employed, which sets
even higher demands for computational efficiency.

1.5 Outline of thesis

Chapter 2 will provide an introduction to the methodology. The system
description and state estimation are treated rather cursory, but present
the very basic elements. For a more elaborate discussion, the included
papers must be consulted. Section 2.3 states the main challenges in
ocean state estimation and reviews techniques developed to address each
problem. Chapter 3 gives a condensed overview of the papers included.
These should be regarded as summaries of the undertaken approaches
and results. Chapter 4 discusses the results in the context of the ocean
state estimation challenges of Section 2.3 and draws conclusions on the
work.



Chapter 2

Methodology

A fundamental formulation of the ocean state and parameter estimation
problem is to cast it in an optimisation framework. This amounts to
defining a function, J , which somehow expresses a fit or misfit between a
modelled state estimate of physical properties and observations thereof.
E.g. J could express a mean square error or a log-likelihood function.
Traditionally, there are two different approaches to solving this problem.
One is based on the variational principle and has its roots in control
theory. This approach is followed in Section 2.4, dealing with parameter
estimation. An alternative method with its roots in estimation theory
provides a sequential solution to the problem. In a linear Gaussian frame-
work this approach reduces to the Kalman filter, (Kalman 1960). Gen-
eralisations of the Kalman filter for solving the state estimation problem
are introduced and discussed in Sections 2.2 and 2.3.

2.1 System description

The first step when building a mathematical framework for estimating
the state of the ocean system, is to adapt the representation in which
the ocean is described and observed. This is discussed further in Section
2.3. Having decided on a state representation, the state at time ti can
be written as a vector xt(ti) and the time propagation is expressed by

7



8 Methodology

the system equation:

xt(ti) = M(xt(ti−1),u(ti−1)) + ηi (2.1)

where u(ti) is the external forcing and the system error is denoted ηi.
The state vector, xt(ti), and model operator M may in the general setting
be augmented.

The observations yo
i may be expressed in terms of the selected state

representation in the measurement equation:

yo
i = hi(x

t(ti)) + ǫi (2.2)

where ǫi is the measurement error and hi is the measurement operator.

2.2 State estimation

Equations 2.1 and 2.2 provide a common reference frame for the two
independent sources of information, model and measurements. If it is
assumed that the statistical properties of the two errors, ηi and ǫi, are
known, a number of estimation techniques can theoretically be employed
to estimate the state of the ocean. In the present work the Best Linear
Unbiased Estimator (BLUE) is adapted. This estimator only requires
knowledge of the first and second order moments of the stochastic vari-
ables xt(ti) and yo

i . Let the mean of these be xf (ti) and Hix
f (ti) and

their error covariances P
f
i and Ri respectively. Hi is a linearised oper-

ator of hi. The BLUE estimate of the state xa(ti) can then be written,

xa(ti) = xf (ti) + Ki(y
o
i − Hix

f (ti)) (2.3)

The Kalman gain matrix, Ki, is given by,

Ki = P
f
i H

T
i (HiP

f
i H

T
i + Ri)

−1 (2.4)

The error covariance, Pa
i , of xa(ti) will always be less than or equal to

P
f
i and can be calculated as,

Pa
i = P

f
i −KiHiP

f
i (2.5)

The BLUE estimate constitute the Kalman filter, (Kalman 1960), in
combination with a linear model operator for propagating the first and
second moments of state in between measurement updates.
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2.3 Challenges in ocean state estimation

The main challenges in state estimation of the marine environment are
embedded in the following characteristics of the problem:

• Great dimensionality of the typical setting

• Nonlinearity of the system

• Non-Gaussianity of the state

• Different representations in which the continuous reality is observed
and modelled

• Complexity of errors in numerical models of the ocean

• Heterogeneity of data sets

2.3.1 Great dimensionality

The size of the state space can easily reach n = 107 in a numerical model.
If for no other reason, this renders the classical Kalman filter approach
intractable because of the costly error covariance propagation (2n times
a normal model propagation) and storage (n2 as compared to n). Luckily
the effective degrees of freedom in an ocean model error covariance, nf ,
is much smaller than n and hence it can be described efficiently in a
much smaller subspace of size n × nf with a corresponding reduction in
propagation time to nf times a normal model propagation.

Much of the work on data assimilation has been centered around finding
the best approximations that yields a tractable solution to the estima-
tion problem. Early attempts assumed stationarity of the model error
covariance and solved the resulting equations off-line to provide a steady
Kalman gain matrix, (Heemink 1986). Subsequently, methods explicitly
exploiting the low degrees of freedom in a time varying setting was in-
troduced. The Ensemble Kalman Filter (EnKF), (Evensen 1994), uses a
Markov Chain Monte Carlo technique, while the Reduced Rank SQuare
Root Kalman filter (RRSQRT), (Verlaan & Heemink 1997), uses a sin-
gular value decomposition to determine the directions in state space with
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the largest components of uncertainty. Both these techniques are based
on defining explicit error sources in the model. The Singular Evolutive
Extended Kalman filter (SEEK), (Pham, Verron & Roubaud 1997), sim-
ilarly provides a low order model error covariance representation, but
derives the model error space from model dynamics space.

A number of extensions and refinements to these original formulations
have been developed, but the foundation for reducing the great dimen-
sionality is well established by them. For water level forecasting the
Steady approximation used in (Cañizares, Madsen, Jensen & Vested
2001) is particularly important, because is brings down the computa-
tional demands to a level, where assimilation can be applied opera-
tionally. All schemes described this far are based on a reduced rank ap-
proximation of the covariance matrix. Other approaches approximate the
model operator. (Dee 1991) used a simplified dynamical model imposing
geostrophical balance in the atmosphere, while (Cohn & Todling 1996)
employed a singular value decomposition of the model operator for the
error covariance propagation and (Fukumori & Malanotte-Rizzoli 1995)
used a coarse grid for the purpose.

2.3.2 Nonlinearity

The original Kalman filter is derived for a linear model operator. The
ocean contains many nonlinear processes and thus violates this premise
of the filter. The Extended Kalman filter, (Kalman & Bucy 1961), was
introduced as a generalisation to weakly non-linear systems. Among
other, the RRSQRT filter relies on this extended formalism. The ap-
proximation has been shown to be valid for coastal areas by (Madsen &
Cañizares 1999) as well as (Cañizares 1999). (Verlaan & Heemink 2001)
provides a more general test of the validity of the scheme. The EnKF
handles even strong nonlinearities and thus non-Gaussianity in its state
propagation. However, neither of the schemes, which all employ the
BLUE estimator, handles the derived non-Gaussianity of nonlinear model
propagation in the estimation part of the filter.
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2.3.3 Non-Gaussianity

The optimality of the BLUE estimator relies on Gaussianity and un-
biasedness of model variables as well as measurements, which is gener-
ally violated. All though the EnKF approximately propagates the non-
Gaussian model error distribution, even this filter assumes Gaussianity
in the BLUE estimator. In (Reichle, Entekhabi & McLaughlin 2002) a
general mismatch between actual model errors and the standard devia-
tion predicted by an EnKF is accredited to the non-Gaussianity of the
state, which leads to an under estimation of the uncertainty. In order
to handle non-Gaussianity we must look further into the application of
higher order approximations of Bayesian state updating. In (Anderson
& Anderson 1999) a fully nonlinear filter was used, but the approach is
not feasible for large scale application.

2.3.4 Different representations in which the continuous
reality is observed and modelled

Mostly, the model spatial and temporal discretisation defines the pro-
jection of the state representation. A projection on to this particular
subspace is implicit in a numerical model anyhow. Observations rep-
resent different projections of reality. E.g. a tide gauge observation
may be a 10 minute temporal average of the water level in an isolated
100cm2 position, while the model projection provides the average over a
2km×2km square with two minute time intervals. This mismatch poses
the question: Is it a model error that it does not resolve 100cm2 area of
the tide gauge or is it a measurement representation error that it does
not provide a measurement of the 2km×2km box? The answer is that it
depends on the projection selected for the state representation. Hence,
this choice is crucial for any model and measurement error description.
A parallel of this discussion can be drawn to the dynamical filter inherent
in a numerical model.

(Fukumori & Malanotte-Rizzoli 1995) discusses the measurement rep-
resentation error implicitly assuming that all estimation is done in the
model space. However, they provide a simplistic representation error
description by simply increasing the variance of the white measurement
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noise.

2.3.5 Complexity of errors

Representation error is by no means the only error source, which is given
a simplistic description. Model formulation, discretisation and param-
eterisation as well as parameter misspecification, round-off errors and
uncertain boundary conditions all contribute to model errors. Measure-
ments errors spans a wide range of characteristics depending on the vari-
able measured and sensor type used. Hence, both model and measure-
ment errors may typically be biased and non-Gaussian, while they are
described by unbiased and Gaussian processes in the filters. However,
the generally successful application of Kalman filter based algorithms
shows that they have some skill in assessing the first order characteris-
tics of errors, but this must not elude the fact that the error descriptions
still are erroneous.

A general model and measurement noise model can be formulated as
an augmented state description and their parameters estimated either
in a variational setting or by the filter directly. (Dee 1995) devised a
technique for estimating error model parameters, but it requires large
amounts of simultaneous data for estimating only a few parameters.

2.3.6 Heterogeneous data sets

In many demonstrations of data assimilation, a fairly good data cover-
age is used or focus is put on the area where measurements are available.
A data assimilation scheme generally corrects results close to measure-
ments, since it always basically drags the model solution towards the
measurement. However, if erroneous error descriptions and hence error
correlations are used, then the information from the measurement may
easily be used to provide erroneous updates in areas where no other mea-
surements constrain the solution. A derived effect of this is the observed
deterioration of water level predictions on intermediate time prediction
horizons as reported by (Gerritsen, de Vries & Philippart 1995) and
(Vested, Nielsen, Jensen & Kristensen 1995). Thus, sparse data sets
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increases the demand for good error modelling.

Another kind of data heterogeneity is their multivariate nature and differ-
ent error characteristics. Large data sets require extensive computational
resources if treated classically and correlated errors requires the inversion
of the innovation error covariance for calculating the Kalman gain. In
(Haugen & Evensen 2002) a singular value decomposition (SVD) of the
model error covariance is used to limit the assimilation to a subspace of
the measurement space spanned by the largest model uncertainty.

2.4 Parameter estimation

Parameter estimation can in principle be solved by the sequential state
estimation techniques discussed in Section 2.2 by augmenting the state
vector with the parameters and the system equation with a consistency
model for the parameters. However, the use of adjoint techniques in
a variational setting has been shown to provide a successful and effi-
cient solution to the problem, (Heemink, Mouthaan, Roest, Vollebregt,
Robaczewska & Verlaan 2002). In any case attention needs to be paid
to the cost function. (Evensen, Dee & Schröter 1998) show the need for
including prior knowledge about parameter values along with the uncer-
tainty of initial conditions, boundary conditions and model propagation
in the cost function, for a well-posed problem to be formulated.

Variational approaches discussed above apply a gradient based optimisa-
tion to find the parameters that minimize the cost function, J . Solving
the adjoint equations of the numerical model is a very efficient technique
for finding the gradient of J with respect to the parameters. However,
the main drawback of this approach is the demand for an adjoint code.
Compilers for automatically generating adjoint codes have been devel-
oped, but have not yet been applied in any coastal ocean model and thus
adjoint code generation remains costly in terms of man-power. This can
be circumvented by calculating gradients of the cost function by finite
differencing. This is a much more computationally demanding algorithm
but it is easy to implement. Further, it is highly parallisable and hence
with the advance of grid computing may become an attractive alterna-
tive to algorithms based on solving the adjoint equations for medium size
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model applications.



Chapter 3

Overview of included
papers

The papers included in this thesis are concerned with data assimilation of
tide gauge and Sea Surface Temperature (SST) measurements in numer-
ical models of the marine system. They cover aspects ranging from water
level hindcasting in 2D and 3D hydrodynamic models to water level and
SST forecasting and parameter estimation in a 2D hydrodynamic model.
Throughout the papers, proposed techniques are either tested in simple
idealistic settings or in the North Sea and Baltic Sea system.

Paper A deals with the sensitivity to filter parameters of the three data
assimilation schemes: The EnKF, the RRSQRT filter and the Steady
Kalman filter. The test bed is an idealised bay with a combined tidal
and wind driven circulation. The general filter performance is good when
matching the filter error description to the actual errors introduced. The
sensitivity to the the filter parameters is investigated. The filter per-
formance is demonstrated to be robust with respect to low to moder-
ate parameter variations. For more typical non-Gaussian errors such as
phase errors in the open boundary water level variation or misspecified
wind field, the fairly high temporal and spatial correlations characteriz-
ing these errors must be assumed in order to obtain good performance.
The uncertainty estimate of the filter is quite sensitive to misspecified
parameters. Hence, more care should be taken, when interpreting uncer-
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tainty estimates than the actual mean state estimates.

The basic framework underlying assimilation schemes based on the BLUE
is discussed in Paper B, showing the equivalence between the Maximum
a Posteriori (MAP) estimator and the BLUE for Gaussian distributions.
Different formulations of the state space reduction allowing an error co-
variance propagation are then used to derive the the EnKF, the RRSQRT
filter and the central EnKF combining a first order approximation of the
mean state propagation with an ensemble estimate of the error covari-
ance. These formulations are all based on assumptions of Gaussianity
and unbiasedness. Further, the RRSQRT and the central EnKF as-
sumes weak non-linearity at worst. Even the EnKF optimally assumes
non-linearity, since non-linearity creates non-Gaussianity, which violates
the BLUE assumption. In order to validate the underlying assumptions,
measures of non-linearity, non-Gaussianity and bias are formulated based
on the EnKF and the central EnKF. The measures are demonstrated in
an idealised set-up in a semi-enclosed bay with a strong wind driven flow.
All measures are shown to provide a realistic picture of their respective
properties. Finally, sparse data coverage and approximate model error
description is shown to deteriorate results far from measurements.

In Paper C a dynamical regularisation is suggested for the assimilation of
tide gauge data in a three-dimensional model. It is based on the assump-
tion that the error covariance structure is predominantly barotropic.
Time averaged gains are derived from a barotropic model with an EnKF
using 100 ensemble members. These are subsequently used in the three-
dimensional model with a Steady Kalman filter. The filter modifications
of the state are distributed to the three-dimensional velocity profile by
assuming a vertically homogeneous shift of the velocity profile. The
scheme is tested in the idealised bay also used in Paper A. This allows a
comparison to a full three dimensional EnKF. The good performance of
the elaborate EnKF in three dimensions is matched by the dynamically
regularised scheme.

The regularisation technique thus demonstrated is applied in a model of
the North Sea and Baltic Sea system in Paper D. This paper presents the
operational Water Forecast modelling system considered and the water
level and SST data chosen for assimilation in a pre-operational test. The
SST assimilation builds on the work of (Annan & Hargreaves 1999).
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The dynamically regularised assimilation technique shows good skill in
the quite densely observed Inner Danish waters. The SST results shows
a fair nowcast improvement in the mixed layer and in a 10-days forecast
of the surface temperature.

The successful application of regularisation is followed up upon in Pa-
per E. Here, the scheme introduced in Paper C is cast in a more gen-
eral regularisation framework including also a smoothed Kalman gain
evolution, the Steady Kalman filter and distance regularisation, where
prior physically based assumptions about model error covariances can
be accounted for. Only tide gauge data is considered and the proposed
regularisations techniques are demonstrated in a pre-operational set-up
of the Water Forecast model. Throughout all tests the dynamic regu-
larisation is applied. The Steady Kalman filter is shown to perform as
good as a low order EnKF using a smoothed Kalman gain evolution. The
introduction of distance regularisation significantly increases the perfor-
mance in data sparse regions which once again points to the importance
of proper error covariance description when data sparsity is part of the
setting.

In Paper F the water level forecast skill of the Steady Kalman filter with
and without the distance regularisation introduced in Paper E and a
newly introduced hybrid error correction Kalman filtering approach is
investigated. The theoretical discussion focuses on the different repre-
sentations of the real ocean in the model and measurements. The colored
error that almost inevitably results leads to the formulation of a general
system equation with augmented model and measurement error models.
The properties of the innovation series is examined and it is shown that it
will be colored when model and measurement errors are not well known.
The information thus present in the innovation series is used to train
an error correction model and hence the innovation can be forecast even
after the time of forecast and assimilated by the Steady Kalman filter.
The forecast skill of a barotropic model of the Water Forecast region is
assessed using both the Steady filter for initialisation of the model state
and using the hybrid error correction Kalman filter approach. The hy-
brid method was demonstrated to relatively improve results when the
Steady filter forecast skill is only moderate. Distance regularisation was
successfully included to vastly improve the forecast skill of the Steady
initialisation. This however, left a smaller error to correct by the hybrid
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scheme and hence no significant improvement was observed in this case.

Paper G reviews the work done on parameter estimation in hydrody-
namic models and concludes in this respect that variational optimisa-
tion using adjoints provides the most efficient solution to the problem
at present. It does however require an adjoint code and this is costly to
develop despite improving automatic adjoint compilers. A more costly
finite difference technique is used instead of the adjoint as part of of the
optimisation problem. The approach may become a realistic future al-
ternative to using the adjoint in models of moderate size, because of the
advance of grid computing and the highly parallisable structure of the
algorithm. Using this technique, wind and bottom drag friction param-
eters are estimated in a barotropic model of the Water Forecast region.
Further, a weak constraint optimisation is approximated by employing
the Steady Kalman filter in the model, thus accounting for model errors.
This increases the parameter estimation skill.
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Conclusion and Discussion

The main issue in this thesis has been state estimation in continental
shelf and coastal seas and parameter estimation in the numerical mod-
els thereof. The background and a brief methodology pointing out the
main challenges of the scientific discipline have been provided in this
summary report. The research consists of seven papers, which present
a detailed methodology, discuss the nature of the state and parame-
ter estimation problem and suggest operational solutions to some of the
challenges posed.

The assimilation schemes used throughout this thesis build on the EnKF
and the RRSQRT schemes, which have solved the challenge of the great
dimensionality to a level, where data assimilation in large modelling sys-
tem now has become feasible. The steady approximation provides an ef-
ficient algorithm, but its applicability can not be expected to be general
and it still requires computational resources capable of generating the
time-invariant gains by employing a more elaborate assimilation scheme
such as EnKF or RRSQRT.

In situations with moderate variability of the Kalman gain, the smooth-
ing factor introduced in Paper A can be used together with the EnKF
to apply the right level of time variability and thus keep the ensemble
size significantly lower than required by the original EnKF. The paper
demonstrates good assimilation performance by the steady filter using
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Kalman gain derived from an EnKF with ensemble size ten. This is to
be compared to an ensemble size of 100 for the classic EnKF and 50 for
the RRSQRT filter (with similar execution times as the EnKF with rank
100). This means that data assimilation can be used in a new class of
applications, that previously had too high computational demands.

The dynamic regularisation introduced in Paper C and tested in the
North Sea and Baltic Sea in Papers D and E provides an alternative
way of making the assimilation schemes more efficient. A Kalman gain
calculated by a barotropic model combined with a homogeneous vertical
profile for the extrapolation to the three-dimensional velocity field is
demonstrated to be sufficient for obtaining good performance matching
that of applying the EnKF in the three-dimensional model directly. On
existing computational resources the execution of MIKE 3 using EnKF
with an ensemble size of 100 in the North Sea and Baltic Sea set-up
considered was no where near feasible, but the dynamical regularisation
approach made assimilation a realistic option nevertheless.

The treatment of the nonlinearity of the model operator has been a major
issue in deriving the EnKF and the RRSQRT and their subsequent com-
parison. Hence, the schemes used in the thesis have the lessons learned
last decade embedded. Paper B provides a discussion of nonlinearity and
measures of the degree of non-linearity are suggested. These can be used
to validate the underlying assumptions of a particular scheme in given
settings and for available observations. This can guide the selection of
the assimilation scheme in a subsequent application. Nonlinearity has
important implications for the distribution in the stochastic state vec-
tor. This is usually assumed to be Gaussian, but with a nonlinear model
operator, the distributions will inevitably be non-Gaussian. Paper B also
formulates two measures of non-Gaussianity, which can be used to assess
the proper statistical interpretation of the state estimates obtained.

A rather detailed discussion of the different filters through which model
and observations see reality is provided in Paper F. The issue is most of-
ten not considered in data assimilation applications apart from inflating
the measurement error by assuming representation error to be white and
Gaussian. This simple approach is also followed in the applied Papers D,
E and F. However, the implications of taking this issue properly into ac-
count is that measurement errors are most likely not white. They depend
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on each other contrary to what is assumed for tide gauge measurements,
and even on the system state. The importance of these dependencies
and hence the error introduced by not taking them into account must be
assessed in the future.

The simple description of representation error might be important, but
is easily hidden behind the general problem of describing model errors.
Paper F presents a general framework for describing model and measure-
ment errors in a setting where numerical model and measurement errors
are non-Gaussian. Presently, we are still some way from having devel-
oped techniques to estimate model error, and hence it makes sense to
investigate the filter performance with misspecified model and measure-
ment error descriptions. Paper A takes on such a sensitivity study and
concludes that filter performance actually is pretty robust with respect
to filter parameter variations in the given ideal test considered. This is
encouraging for the application of the proposed tide gauge assimilation
techniques in real cases. However, this does not ensure low sensitivity in
other dynamical regimes and for all data types and variables.

Another important conclusion of Paper A is that the filter predicted stan-
dard deviation is sensitive to parameter variability. In any case, any filter
application should accompanied by a test for whiteness of the innovation
sequence or an analysis thereof. Paper F derives an expression for the
autocorrelation of the innovation time series for misspecified measure-
ment and model error covariances. The innovation sequence will only be
white for correctly estimated error covariances. Paper F further suggests
to use the information about the actual error covariances contained in
the innovation to improve the error modelling and hence the forecast
skill. Much work is still required to draw firm conclusions on the validity
of such an approach, but initial results are encouraging.

Paper B introduces a bias measure for indicating erroneous error mod-
elling and provides a simple example where a false error structure as-
sumption gives a significant bias in data sparse regions. In the real
application of Paper E, this problem is evident in the runs without dis-
tance regularisation. The hindcast results are severely deteriorated due
to an inadequate model error description. In data sparse areas the model
uncertainty is big and hence even a very small correlation with model
estimates of a distant measurement can give a significant Kalman gain
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in data sparse regions. The approximate model error description is un-
fortunately too poor for these correlations to be trusted and no local
measurements are available to constrain the solution.

This ideally calls for improved error modelling, but the alternative of
using a regularisation approach is taken in Paper E. The distance regu-
larisation is introduced to remedy for the erroneous behaviour described
above, and does so very effectively. The forecast skill when employing
the distance regularisation is also significantly improved in Paper F. The
regularisation approach to the filtering is general and must be expected
to have a large potential in sequential filtering.

A variational parameter estimation framework was demonstrated in Pa-
per G with the perspective of ease of implementation and efficiency in a
grid computing environment. The test of the approach in the North Sea
and Baltic Sea system showed the need for including the bathymetry
as a control parameter, use a longer time period, to decouple the op-
timisation for tidal and wind driven circulation and to employ a more
efficient optimisation algorithm. The Steady Kalman filter was used in
one optimisation approach to approximate a weak constraint formula-
tion for the model state. Despite the flaws of the test case, this weak
constraint approach showed a more robust optimisation than the strong
constraint with no data assimilation. The work done is somewhat pre-
liminary, but now the stage is set for exploring the technique in parallel
with the emergence of grid computing facilities.

Future research will extend the ideas presented to other data types such
as salinity and temperature profiles, SST data, ecosystem parameters and
HF radar velocity measurements. This will restate the challenges pre-
sented and the ideas on dimensionality reduction, error description, regu-
larisation and forecasting skill improvement in a nonlinear, non-Gaussian
setting presented in this thesis will be further pursued. Techniques for
adaptive model error estimation should be developed and further ex-
ploration of the full potential of regularisation techniques undertaken.
A parallel implementation of the EnKF will also be an objective. Fi-
nally, application of regularisation techniques in parameter estimation is
a topic of interest for making optimisation techniques that do not require
an adjoint code more feasible through integration with the advance of
grid computing facilities.
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Parameter sensitivity of three Kalman filter schemes for
the assimilation of tide gauge data in coastal and shelf sea

models

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, and Henrik Madsen2

Abstract

In applications of data assimilation algorithms, a number of
poorly known parameters usually needs to be specified. Hence,
the documented success of data assimilation methodologies must
rely on a moderate sensitivity to these parameters. This study
presents three well known Kalman filter approaches for the assim-
ilation of tidal gauge data in a three dimensional hydrodynamic
modelling system. It undertakes a sensitivity analysis of key pa-
rameters in the schemes for a setup in an idealised bay. The
sensitivity of the resulting RMS error is shown to be low to mod-
erate. Hence the schemes are robust within an acceptable range
and their application even with misspecified parameters is to be
encouraged in this perspective. However, the predicted uncer-
tainty of the assimilation results are sensitive to the parameters
and hence must be applied with care.

1 Introduction

Data assimilation methodologies are becoming increasingly applied in the
ocean modelling community. The methods employed can be categorised
according to two basic approaches: Sequential estimation and variational
optimisation. In this paper only the former approach is considered al-
though most of the conclusions drawn on the error structure formulation
carries over to the latter.

The standard approach and hence terminology of sequential estimation
techniques is that of the Kalman filter, (Kalman 1960). The original
Kalman filter was derived for a linear system with Gaussian error sources.

1DHI Water & Environment, DK-2970 Hørsholm, Denmark
2Informatics and Mathematical Modelling, Technical University of Denmark, DK-

2800 Lyngby, Denmark
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When applied to non-linear and high dimensional systems, the formula-
tion demands vast computational resources and its limitations in terms
of Gaussian error assumptions and linearity become clear. Several exten-
sions have been made in an attempt to accommodate for such deficiencies.

Primarily, the problem needs to be solvable on available computational
resources. The most widespread techniques for making the problem
tractable are ensemble based. Basically these schemes represent the in-
formation contained in the error covariance matrix in a reduced space
spanned by a small number of ensembles. The Ensemble Kalman Filter
(EnKF), (Evensen 1994) and the Reduced Rank SQuare RooT Kalman
filter (RRSQRT), (Verlaan & Heemink 1997), are examples presented in
this paper. Two alternative popular ensemble based approaches are the
SEEK filter, (Pham et al. 1997), and the SEIK filter, (Pham, Verron
& Gourdeau 1998). A recent review of ensemble based Kalman filters
is provided in (Evensen 2003). Another approach reducing the compu-
tational cost uses a simpler description of model dynamics. This can
either be done by using a coarser grid for the error covariance mod-
elling in the numerical model, (Cohn & Todling 1996) and (Fukumori &
Malanotte-Rizzoli 1995), or by approximating time consuming elements
of the numerical model, such as employing cheaper numerical schemes,
simpler turbulence closure schemes or assuming geostrophic balance for
the error covariance propagation, (Dee 1991).

A significant reduction in computational time can be obtained with the
Steady Kalman filter, where the model error covariance or the Kalman
gain is assumed to be the same at each update time. (Fukumori &
Malanotte-Rizzoli 1995) derives such a steady gain from limiting theory
solving the time invariant Riccati equation. (Cañizares et al. 2001) also
uses a steady approach, but here the steady gain is calculated as a time
average of the EnKF. The steady approach generally reduces computa-
tional times with two orders of magnitude compared to the EnKF and
is only slightly more computationally demanding than a single execution
of a numerical model.

Extensions to the Kalman filter need to accommodate for non-linearities
in the model propagation and the measurement equation. Also, bias or
coloured noise in the numerical model and the measurements requires
attention. Most schemes use a non-linear numerical model for the state
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propagation, while the foreward operator employed for the error covari-
ance propagation ranges from a steady linear operator, (Fukumori &
Malanotte-Rizzoli 1995), to a linear expansion in extended Kalman fil-
ter applications such as the RRSQRT filter and a full non-linear error
propagation in the EnKF.

While the handling and nature of non-linearities in a data assimilating
system thus have been widely examined, the importance of using a proper
error structure and robustness to error misspecification has gained only
sporadic attention. The optimality of the Kalman filter assumes known
and unbiased model and measurement errors. However, the estimation
of these errors is to some extent subjective and can typically never be
estimated from the limited data sets available. Further, structural model
errors often lead to biased model states. (Dee & da Silva 1998) present
a scheme for the simultaneous estimation of the unbiased state and the
model bias. (Cañizares 1999) and (Verlaan 1998) both uses a coloured
noise implementation. (Sørensen, Madsen & Madsen 2004a) investigates
the behaviour under misspecification of the model error in the case of a
biased forcing. In all cases a clear improvement of the estimate results
from correct error structure specification.

In a general data assimilation application the error sources are typically
only known to a first or second order approximation and hence misspeci-
fication is part of the working conditions. However for storm surge mod-
els, good performance is nevertheless demonstrated in schemes, which
do not explicitly account for the actual error structure, e.g. (Madsen
& Cañizares 1999). This must be accredited to a sufficient information
content of the measurements and subsequent distribution. Bias is also
corrected by a Kalman filter approach assuming no bias, albeit in a sub-
optimal way, (Dee & da Silva 1998). The specification of error structure
and its subsequent propagation only need to provide a good interpolation
of the innovation in space and time. Hence, when many data are avail-
able, the importance of a proper error model is reduced. In the case of
assimilation of tidal gauge data, as considered herein, the measurements
are usually sparsely distributed in space. Thus, the error structure pro-
vides the mean for updating state elements situated far from points of
observation and hence its description becomes more important.

Focusing at the three state-of-the-art assimilation schemes, the EnKF,
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the RRSQRT filter and the Steady filter, with a coloured noise assump-
tion implemented in a 3D hydrodynamic model, this papers sets out to
perform a sensitivity study of the schemes for various parameter settings.
Acknowledging that misspecifications are often part of the working con-
ditions such a study provides insight to the effect on performance of
uncertain parameters. Hence calibration can be focused at key parame-
ters and in case of low sensitivity, confidence can be build in the schemes
even for moderately misspecified parameters.

Section 2 will introduce the building blocks of the assimilation approach,
which provides the Kalman filter as a special case. The three schemes,
which constitute the basis of this study will be described briefly - namely
the EnKF, the RRSQRT and the Steady Kalman filter. In Section 3 the
filter parameters in the schemes are presented and discussed. In Section 4
results are presented for a range of sensitivity twin experiments using an
idealised bay test case. Finally, Section 5 summarises and concludes the
paper. The notation suggested by (Ide, Courtier, Ghil & Lorenc 1997)
is used throughout.

2 Assimilation approach

The foundation of sequential estimation schemes is a linear model for
combining the information contained in a model with measurements in
an estimate of state variables. Hence, let xt(ti) ∈ R

n be a representation
of the true state at time ti. This could be an array of grid averaged
water levels and velocities at all model grid points in the area of interest.
It can also contain additional augmented elements from an error model.
Let xf (ti) ∈ R

n be the model estimate of xt(ti) and yo
i ∈ R

p be a vector
of observations at time ti, which is assumed related to the state vector
through the measurement equation,

yo
i = Hix

t(ti) + ǫi (1)

The operator Hi ∈ R
p×n projects the state space onto the measurement

space. The measurement noise is assumed additive and represented by
the random variable, ǫi ∈ R

p. The relation in (1) is assumed linear.

With the definitions given above and assuming both xf (ti) and yo
i to be
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unbiased, a linear unbiased estimate, xa(ti), of xt(ti) can be obtained as

xa(ti) = xf (ti) + Ki(y
o
i − Hix

f (ti)) (2)

A good sequential assimilation scheme is characterised by a proper es-
timation of the elements of the linear operator, Ki ∈ R

n×p, which is
denoted the Kalman gain. What is meant by proper depends on the ap-
plication at hand and the properties of the estimate, xa(ti), sought for.
Usually assumptions about linearity and unbiasedness are imposed and
a least squares approach is taken. This is followed in the next section.

2.1 The BLUE estimator

The linear projection of xt(ti) on yo
i provides the best (minimum vari-

ance) linear unbiased estimate (BLUE) of xt(ti), (Jazwinski 1970). The

first moment of

[

xt(ti)
yo

i

]

is given as

[

xf (ti)

Hix
f (ti)

]

and its covariance matrix

is

[

P
f
i

HiP
f
i

P
f
i HT

i

HiP
f
i HT

i +Ri

]

. Here, Ri is the covariance of the noise process ǫi

in (1). The linear projection E(xt(ti)|yo
i) is given by (2) with Ki given

by

Ki = P
f
i H

T
i (HiP

f
i H

T
i + Ri)

−1 (3)

The error covariance of the estimated state, xa(ti), is given by

Pa
i = P

f
i − KiHiP

f
i (4)

The quest now becomes the estimation of P
f
i and Ri. The measurement

error is usually assumed constant in time and is prescribed according
to measurement uncertainty and its representation in the model state.
For sequential Kalman filter based algorithms, the discrepancies lies in
the approximations made in the estimation of P

f
i and xf (ti). Three

approaches are described in Section 2.2.

It should noted that the BLUE estimator assumes that E(xt(ti)|yo
i)

is linear in yo
i. This is true in the measurement point if the linear

relation in (1) is valid. However, the state variables are generally not
linearly related and hence this assumption is not valid. The minimal
variance property of the BLUE estimator and hence the Kalman filter
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only applies to class of linear functions. Further, the numerical model
does in most cases not provide an unbiased estimate of the true state.
Since most sequential assimilation schemes employ this estimator, they
are also subject to these sources of sub-optimality.

2.2 State and error propagation

The basis of the predictions is a numerical hydrodynamic model. In this
study the model adapted is MIKE 3, which is developed at DHI Water
& Environment, (DHI 2001). The code that constitutes a one-time-step-
ahead prediction can be regarded as a model propagation operator, MM3.
With knowledge of the state at time ti−1 and the forcing, u(ti), it provides
the state at time ti. The state considered consists of velocities and water
levels on a specified grid. The forcing is open boundary water levels,
sources and sinks, wind velocities and atmospheric pressure. Hence in a
standard non-assimilating application of the numerical model, the one-
time-step-ahead prediction can be written as,

xf (ti) = MM3(x
f (ti−1),u(ti)) (5)

In this case the state description and propagation are deterministic.

Acknowledging the approximate nature of a numerical model, a more de-
tailed description must incorporate the model error introduced at each
time step and its propagation throughout the system. Thus the propaga-
tion operator and the the state become stochastic. The error introduced
by the model propagation, ξi ∈ R

r
i is evident in the system equation,

xt(ti) = MM3(x
t(ti−1),u(ti), ξi) (6)

Optimally, knowledge of the correct time varying probability density
function (pdf) of the noise sequence ξi and an initial state could be used
to provide an exact stochastic forecast of the state. However, repre-
sentation and propagation of the full pdf is not a tractable approach. A
common approximation is to consider only the first and second order mo-
ments of the distribution. In case of Gaussian random fields and a linear
model operator this further describes the full probability distribution. In
addition, only these two moments are needed for the BLUE estimator in
(2) and (3). Another approach is to approximate the propagation of the
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pdf to a precision, which allows a confident estimation of the first and
second moments. Two schemes for forecasting the first and second order
moments in the hydrodynamic model and subsequent update of the state
conditioned on observations are presented in Sections 2.2.1 and 2.2.2. A
steady Kalman gain reduction of these elaborate techniques is presented
in Section 2.2.3.

Of prime importance to any assimilation scheme is a proper model and
measurement error description. As previously stated, the measurement
error is usually based on simple assumptions. The specification of model
error is a more difficult task. It is generally assumed proportional to
the model dynamics variability in some way or to originate solely from
external forcing fields. The latter approach is applied here. Errors are
introduced in the open boundary water level and in the wind velocity.
Hence, the numerical model is in itself assumed to be perfect. In coastal
and shelf seas this is often a good approximation to actual model inac-
curacies. A further step is taken by assuming the error to be coloured as
described by a first order autoregressive model MAR(1),

ξi = MAR(1)(ξi−1,ηi) = A ξi−1 + ηi (7)

Cross correlations are neglected, suc that A = diag(α), where the vector
α contains the coeficient of the autoregressive model. The noise process
ηi is assumed Gaussian with zero mean and error covariance matrix,
Q

η
i ∈ R

r×r. Hence, xt(ti) is augmented with the boundary and wind
error description and an extended operator, M = (MM3,MAR(1))

T , is in-
troduced. This leads to a system equation with additive noise, which
will be used in the remainder of this work,

xt(ti) = M(xt(ti−1),u(ti),ηi) = M(xt(ti−1),u(ti)) +

[

0

ηi

]

(8)

The error covariance of
[

0
ηi

]

is Qi =
[

0
0

0
Q

η
i

]

. Running the hydrodynamic

model alone with error propagation according to one of the schemes de-
scribed below, but with no assimilation, will yield a model mean esti-
mate and its error covariance matrix. Hence, the accuracy of model
results based on the given assumptions can be addressed and compared
to observational evidence.
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2.2.1 The ensemble Kalman Filter

In the Ensemble Kalman Filter (EnKF) the propagation of the full pdf
is approximated by an ensemble propagation. Both the first and second
moments are calculated as ensemble statistics and used for the update
of each ensemble member. The strength of the approach lies in its rep-
resentation of the full pdf, its handling of non-linearities and its ease of
implementation for complex state and error descriptions.

An ensemble of q state realisations is defined at an initial time. In this
work, a single model initial state defines all ensembles with zero spread
at a pre-initial point of time as the starting conditions of a spin-up pe-
riod. During this period the forcing errors are propagated throughout
the system to provide the initial model error covariance matrix and mean
state estimate.

All ensemble members are propagated according to model operator in
(8),

x
f
j (ti) = M(xa

j (ti−1),u(ti),ηj,i), j = 1, ..., q (9)

The state estimate xa
j (ti−1) is the update from the previous time step.

If no new data were available for update then xa
j (ti−1) = x

f
j (ti−1). The

model error, ηj,i is randomly drawn from a predefined Gaussian distri-
bution with zero mean and covariance, Qi. With each ensemble member
propagated by (9), the mean state estimate and model error covariance
estimate are provided by the following equations,

x̂f (ti) =
1

q

q
∑

j=1

x
f
j (ti) (10)

P
f
i = S

f
i (Sf

i )T , s
f
j,i =

1√
q − 1

(xf
j (ti) − x̂f (ti)) (11)

The vector, s
f
j,i ∈ R

n, is the j′th column of S
f
i ∈ R

n×q. The update
can be performed by (2) and (3), when given the proper interpretation
in an ensemble setting. For computational efficiency an algebraically
equivalent set of equations are used.

Each ensemble member must be updated rather than the ensemble state
estimate, in order to maintain correct statistical properties of the up-
dated ensemble. For the same reason an ensemble of measurements
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must be generated and used for each ensemble member update accord-
ingly rather than the measurement itself, (Burgers, van Leeuwen &
Evensen 1998). Hence,

yo
j,i = yo

i + ǫj,i, j = 1, ..., q (12)

Randomly generated realisations, ǫj,i, of ǫi are drawn from a Gaussian
distribution with zero mean and error covariance, R, and added to each
member. The update scheme presented here specifically considers that
measurement errors are uncorrelated to assimilate simultaneous measure-
ments sequentially. The updating algorithm for every ensemble member,
j, reads, (Chui & Chen 1991),

xa
j,m(ti) = xa

j,m−1(ti) + ki,m(yo
j,i,m −hi,mxa

j,m−1(ti)), m = 1, ..., p (13)

and xa
j,0(ti) = x

f
j (ti). In (13) yo

j,i,m is the m′th element in yo
j,i and hi,m

is the m′th row of Hi. Treating one measurement at a time the Kalman
gain is a vector, ki,m, given by,

ki,m =
Sa

i,m−1ci,m

cT
i,mci,m + σ2

i,m

, ci,m = (Sa
i,m−1)

T hT
i,m (14)

The m′th diagonal element in Ri is denoted σ2
i,m. The matrix Sa

i,m in
(14) is calculated as

Sa
i,m = [sa

1,i,m...sa
q,i,m], sa

j,i,m =
1√

q − 1
(xa

j,m(ti) − x̂a
m(ti)) (15)

for m = 1, ..., p and Sa
i,0 = S

f
i . Now, (13), (14) and (15) provides the

update equations of all ensemble members, one measurement at a time.

2.2.2 The reduced rank square root Kalman Filter

The Reduced Rank Square Root Kalman filter (RRSQRT) is based on
the extended Kalman filter formalism, in which the error propagation
is calculated using a statistical linearisation of the model propagation
operator. It further uses a square root algorithm and a lower rank ap-
proximation of the error covariance matrix. Thus, it handles weak non-
linearities and it has a concise and smooth representation of the error
covariance matrix.
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The state propagation is the model forecast of the central estimate,

xf (ti) = M(xa(ti−1),u(ti), 0) (16)

The error covariance propagation basically performs the following trun-
cated Taylor Series approximation,

Pf (ti) = MiP
a(ti−1)M

T
i + Qi,Mi =

∂M

∂x

∣

∣

∣

∣

x=xf (ti),u=u(ti),η=0

(17)

A square root implementation of this propagation and subsequent update
has been performed. Denote by Sa(ti−1) the approximation of rank q of
the square root of the error covariance matrix Pa(tt−1). The propagation
of the error covariance matrix approximated according to (17), is then
given by,

Sf (ti) = [MiS
a(ti−1)|Q1/2

i ] (18)

To calculate the derivatives needed in Mi a finite difference approxima-
tion of M is column-wise adopted as follows,

(MiS
a(ti−1))j =

M(xa(ti−1) + δsa
j,i−1, u(ti), 0) − M(xa(ti−1), u(ti), 0)

δ
(19)

The value of the parameter δ has been discussed in (Segers, Heemink,
Verlaan & van Loon 2000) and is set equal to one according to their
recommendation. The propagation step in (18) increases the number of
columns in the error covariance matrix from q to q + r. Thus a compli-
mentary part of the scheme must provide a mean for reducing the rank
of the space similarly. In order to do this a lower rank approximation
of Sf (ti) in (18) is applied through an eigenvalue decomposition of the
matrix (Sf (ti))

TSf (ti), (Verlaan 1998). This approach provides efficient
calculations, but introduces the need for normalisation in a multivari-
ate setting. The optimal normalisation is application dependent which
is approximated by using normalisation based on energy consideration.
Basically, the constribution from potential and kinetic energy to each
element of (Sf (ti))

T Sf (ti) are equal.

Now, having calculated the forecast state and error covariance, the algo-
rithms developed for the EnKF can be followed to provide the update.
The state is updated using (13). However, an additional ingredient is
needed, namely the update of the error covariance estimate, when the
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state is updated. This is provided by, (Cañizares 1999),

Sa
i,m = Sa

i,m−1 −
ki,mcT

i,m

1 +

√

σ2
i,m

hT
i,mhi,m+σ2

i,m

(20)

The vectors, ki,m and hi,m are defined in (14).

2.2.3 The Steady Kalman Filter

For the Ensemble Kalman filter and the reduced rank square root Kalman
filter, the error covariance propagation typically takes of the order 102

model executions, (Cañizares 1999), which may be too many in opera-
tional settings. A well known work around assumes time invariant model
and measurement error covariance matrices, Pf

i and Ri, rendering a time
constant Kalman gain, K. However, it can still be difficult to estimate
K without the help from more elaborate methods.

When time invariance is approximately true, both the EnKF and the
RRSQRT can provide robust estimates of the gain. Hence a Kalman
gain that is still based on model dynamics can be obtained as a time
average of the gain from one of these two elaborate methods, (Cañizares
et al. 2001). The update is still done using (13), but now with a fixed,
K, and operating on just a single state forecast.

3 Filter parameters

In an actual implementation of the filters above, several parameters need
to be specified. These mainly relate to the model and measurement error
covariance description. This section describes each parameter, while the
sensitivity to parameter variations is tested in Section 4.2.

Rank: q. The rank of the model error covariance matrix is essential to
the performance of an assimilation scheme. For the ensemble Kalman
filter this is equal to the ensemble size, while for the RRSQRT Kalman
filter it is the number of leading eigenvalues preserved in the covariance
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reduction. In either case the rank needs to be large enough to describe
the error covariance field with sufficient accuracy, but with the trade-off
of increased computational time.

Measurement standard deviation: σm. This study only considers
uncorrelated water level measurements. Hence, the error specification is
simply given by a value of σm for each measurement. Both instrumenta-
tion error and the error due to lack of representation of state variables
need to be taken into account in the specification.

Model error standard deviation: ση. The model error specification
has a more complex description. The model errors are assumed to be
due to an error in the open boundary water level and/or in the wind
forcing. The assumed standard deviation, ση, of the white noise process,
ηi is naturally a key parameter. An independent set of parameters are
specified for each boundary and wind velocities. The relative sizes of
model and measurement uncertainty basically determines which source
of information that ought to be trusted the most in the state estimation.

Temporal correlation scale: τ . The temporal correlation scale defines
the coefficient, α, in the AR(1) process by giving the half time τ of the
exponential process.

α = 0.5(∆t
τ

) (21)

where ∆t is the model time step. Note that since the noise enters into
an autoregressive process the actual standard deviation, σforcing of the
boundary or wind forcing is given by,

σ2
forcing =

σ2
η

1 − α2
(22)

A higher temporal correlation allows a more distant effect of an error in
the forcing. The formulation ensures that the standard deviation can be
specified from (21) and (22) to construct a forcing perturbation that is
independent of time step length, ∆t, and changes in τ .

If α = 1 and ση is zero with a suitable initial covariance, then the Kalman
filter provides a bias estimate of the forcing terms. An α close to one
and a moderate ση approximates this bias estimation, hence enabling the
filters to detect a slowly varying errors in the external forcing.



Parameter sensitivity of three Kalman filter schemes 43

Spatial correlation length: lc. An exponential correlation model is
employed in the definition of the error covariance model, Qη. The spatial
correlation length of the model errors plays a key role in defining the cor-
relation structure in the model that ultimately determines the update. A
too large spatial correlation scale assumption in the wind velocities can
cause an update in sparse regions based on a measurement, which does
not contain any information about this distant area in the real system.
On the other hand, a too small spatial correlation scale underestimates
the correlation in the model errors and thereby provides a filtered es-
timate, which is too close to the model solution. It also increases the
effective number of degrees of freedom in the error model, which in turn
makes the estimated parameters of the error model more uncertain.

Grid factor: g. The grid factor is introduced as an ad hoc approach to
reducing the dimension, r, of the error space. This integer factor simply
expresses the number of model grid points in between each error point.
The errors are subsequently redistributed using a kriging technique. Such
a space reduction is viable because the spatial correlation length often
is considerably larger than the grid spacing. However, when the spa-
tial correlation length approaches the distance between error points, this
assumption is violated and the spatial correlation length looses its inter-
pretation. Other space reduction techniques, e.g. EOF decomposition,
can also be cast in the present framework.

Smoothing factor: s. The Steady Kalman filter uses a time average
from one of the more elaborate schemes for the generation of the Kalman
gain. A greater deal of smoothness can be obtained in the time varying
Kalman filter schemes as well through the introduction of an exponential
smoothing factor. This number is the proportion of weight given to the
Kalman gain calculated at the present time, KKF

i . The applied gain
matrix then becomes

Ki = (1 − s)Ki−1 + sKKF
i , s ∈ [0; 1] (23)

Update interval: d. In practical applications it must be considered
whether all data shall be assimilated. Trying to drive the model into an
observed regime with effects not represented by the model, can introduce
noise and ultimately cause model instabilities. In practice, water levels
may typically be provided at half hourly intervals, but the implemen-
tation of the data assimilation schemes interpolates the measurements
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to every model time step and assimilates it. Hence, an update interval
is introduced as the final parameter to test the effect of using various
subsets of the interpolated water level measurements.

4 Idealised bay experiment

For the purpose of investigating filter performance, when basic assump-
tions are violated, an idealised, controllable and stable setup was chosen.
This choice also facilitates a large number of sensitivity runs to be per-
formed and a comparison to the full true field to be done.

4.1 Setup and basic results

The region under consideration is the hypothetical Ideal Bay situated
at 51◦N . It is a 200 km by 200 km square bay with an open North-
ern boundary and simple bathymetry with a maximum depth of 100m
as shown in Figure 1. The vertical grid spacing is 10 meters and the
horizontal resolution is 10 km.

Density is constant in this study, which is conducted over a 48 hour
period. The open Northern boundary is forced with a spatially constant
water level signal with a sinusoidal variation in time. The period is 12
hours and the amplitude is one meter. The model is further forced by
an artificially generated passing cyclone, which moves 50 km across the
bay every six hours. It has a maximum wind speed of 26 m/s.

The basic solution has a main flow, which is dominated by a Kelvin wave
moving cyclonically in the bay. This is superposed with a wind generated
flow.

4.2 Parameter sensitivity and robustness assessment

The performance of an assimilation scheme should be examined under
ideal conditions as well as under conditions, where assumptions that are
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Figure 1: Bathymetry of Ideal Bay. The three dots indicate the positions,
where water level time series were extracted to be used as measurements

typically violated break down. This section does both, but with the focus
aimed at the nature of the solution in the latter case.

A large number of twin experiments has been performed. In each case
the basic run from Section 4.1 is taken as the true state of the system.
Water levels are extracted at three locations indicated in Figure 1 at
every 15-minute time-step interval. Subsequently uncorrelated Gaussian
white noise with a standard deviation of 5 cm is added to each time series
in order to represent measurement noise. Only these three time series
provide information about the true state in the assimilation procedures.
In each perturbed run a different error source is introduced and the
ability of the assimilation scheme to correct this error is examined.

As a measure of the filter performance, the spatially averaged root mean
square error (RMSE) of water levels, l, calculated over the last 24 hours
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is used,

RMSE =
1

J

1

K

J
∑

j=1

K
∑

k=1

√

√

√

√

1

I − 1

I
∑

i=1

(ltrue(xj, yk, ti) − lpert(xj , yk, ti))2

(24)
The constants J,K = (20, 21) are the number of grid points in the x
and y direction respectively. The constant I = 96 is the number of time
steps in the period, in which the statistic is calculated. The indices true
and pert refers to results from the true experiment and the perturbed
results respectively. The error types in the perturbed runs are divided
into two groups: Gaussian errors in Section 4.2.1 and typical errors in
Section 4.2.2. Gaussian errors refer to error structures that basically
fulfill the assumptions of the assimilation schemes if the parameters are
chosen correctly. This is where the actual parameter sensitivity study is
performed. The typical errors, on the other hand, refers to errors that
include other distributions and sources than those assumed in the filters.
This latter case is thought to closer resemble a real filter application.

4.2.1 Gaussian errors

The model error assumption lies in two forcing terms: The boundary
water level and the wind velocity components. Thus, the investigation
and the presentation of the results are divided according to this divi-
sion. All the results presented in this section attempt to correct the
same two perturbed runs, where a random coloured noise realisation has
been added to the boundary forcing and wind field respectively. The
parameters used to generate these Gaussian perturbations are stated in
Tables 1 and 2.

Boundary spatial correlation scale 100 km

Boundary grid factor 1

Boundary temporal correlation scale 2 h

Boundary st.dev. 0.10 m

Autocorrelation coefficient, α 0.92

Boundary actual st.dev. 0.25 m

Table 1: Characteristics of the imposed errors in the open boundary
perturbed runs
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Wind spatial correlation scale 300 km

Wind grid factor 3

Wind temporal correlation scale 6 h

Wind st.dev. 3 m/s

Autocorrelation coefficient, α 0.97

Wind actual st.dev. 13 m/s

Table 2: Characteristics of the imposed errors in the wind velocity per-
turbed runs

Comparisons between the perturbed runs without data assimilation and
the true runs give RMSE values of 0.33 m and 0.58 m for boundary and
wind errors, respectively. The maps of the RMSE values for each case
is shown in Figure 2 and 3. Using the correct parameters in the assimi-
lation schemes, but varying the rank of the covariance matrix, yields the
RMSE results displayed in Figures 4 and 5. Since the the EnKF uses
randomly generated noise, an average over five runs were used to smooth
out the worst stochastic variations in the statistics. The assimilation
schemes simultaneously provide the standard deviation they use for the
update. The spatial averages of these are also included in the figures.
A previous study by (Madsen & Cañizares 1999) has shown that the
RRSQRT filter converges to a good performance at a lower rank than
the EnKF, but similar execution times gave similar performance. This is
also evident here for the wind error case, but in the boundary error, low
rank EnKF outperforms the RRSQRT. Further investigation shows that
this can be accredited to the normalisation procedure required in the
eigenvalue decomposition of the RRSQRT scheme and hence a tuning of
the normalisation makes the RRSQRT converge faster for the boundary
error case as well. In general the figures show good performance with re-
spect to the reduction of overall prediction error as well as the estimation
of the prediction error.

Also included in the Figures 4 and 5 are the results of the Steady Kalman
filter using a constant Kalman gain obtained as the average gain esti-
mated by the EnKF over the last 24 hours. For a low rank of the error
covariance the steady filter out-performs the EnKF. This is an example
of bias-variance trade-off. The EnKF attempts to estimate the best un-
biased state. However, this is done at the price of a high variance of the
estimated parameters in the Kalman gain. The time averaging operation
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Figure 2: Spatial distribution of RMSE values between the true run
and the false boundary run, where a realisation of the Gaussian process
described by Table 1 has been added. The positions of the measurements
are indicated by dots.
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Figure 3: Spatial distribution of RMSE values between the true run and
the false wind run, where a realisation of the Gaussian process described
by Table 2 has been added. The positions of the measurements are
indicated by dots.
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Figure 4: Sensitivity to rank of error covariance for perturbed boundary
runs. All results are RMSE and given in meters (m)

employed for the generation of the time constant gain used in the Steady
Kalman filter reduces this variance considerably, but deliberately intro-
duces a bias in the estimation by assuming the gain to be time-invariant.
For few ensembles, the latter trade-off between bias and variance gives
the better performance. As the rank is increased the ensemble based es-
timate becomes more and more certain and the performance gets much
better. For the boundary error case the estimated gain is actually rather
time invariant and hence, even when the EnKF and RRSQRT filter are
converged their performance is matched by that of the cheaper Steady
filter. The converged gain of the wind error case is more time varying.
Thus, in this case the Steady Kalman filter performs a little worse than
the two time varying filters.

In the subsequent experiments, an ensemble size of 100 is used for the
EnKF and a rank of 50 is used for the RRSQRT scheme. The Steady
Kalman filter will be based on the EnKF with 100 ensemble members.
For these choices the EnKF gives a RMSE of 0.08 m and 0.10 m and
RRSQRT 0.09 m and 0.09 m for boundary and wind error, respectively.
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Figure 5: Sensitivity to rank of error covariance for perturbed wind ve-
locity runs. All results are RMSE and given in meters (m)
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Figure 6: Spatial distribution of RMSE values between the true run
and the 100 EnKF run for the boundary error case. The positions of the
measurements are indicated by dots.

Figure 7: Spatial distribution of RMSE values between the true run
and the 100 EnKF run for the wind error case. The positions of the
measurements are indicated by dots.
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Similarly the Steady Kalman filter gives a RMSE of 0.08 m and 0.10 m.
Maps of the RMSE for the EnKF case are shown in Figures 6 and 7.
Compared to Figures 2 and 3 these demonstrate the good performance of
the filter. The results also show the importance of a good network design
for assimilation purposes. For instance, in the boundary error case the
Northwestern measurement corrects most of the noise in the Kelvin wave,
leaving little error in its cyclonic propagation further South in the bay.
Experiments show that leaving out the Southern measurement hardly
alters the performance of the schemes.

Now the sensitivity to the assumed measurement standard deviation is
examined. For each of the three measurements extracted from the basic
solution a measurement standard deviation must be specified. The same
value is used for all three stations. Table 3 summarises the RMSE re-
sults. The most notable result is the robustness of the filters for varying
measurement standard deviation. The general picture is a degradation
both when the solution is pulled too strongly toward the measurement,
where the innovation has an excessive impact on unobserved regions,
and when little trust is put in the measurements leading to only minor
corrections of the perturbed solution. However, in both directions, ex-
treme and unrealistic values must be assumed to significantly degrade
the results.

σm Bound Wind

EnKF RRSQRT Steady EnKF RRSQRT Steady

0.005 0.26 0.13 0.14 − 0.14 −
0.01 0.12 0.09 0.10 0.24 0.11 0.11

0.02 0.09 0.08 0.08 0.13 0.10 0.10

0.05 0.08 0.09 0.08 0.09 0.09 0.10

0.15 0.09 0.10 0.09 0.10 0.10 0.11

0.40 0.12 0.12 0.12 0.13 0.12 0.13

1.00 0.18 0.19 0.18 0.19 0.18 0.21

Table 3: Sensitivity to measurement standard deviation for perturbed
boundary runs. Reference run is marked in bold. All results are RMSE
and given in meters (m)

The sensitivity to model standard deviation is summarised in Tables 4
and 5 as RMSE values. Here too, a quite robust performance is achieved.
In general the behaviour degrades as the values become too large or too
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small. An interesting point is that the RRSQRT scheme has its best
performance for slightly overestimated model errors. This is explained
by the standard deviations estimated by the RRSQRT scheme itself. As
shown in Figures 4 and 5 the RRSQRT in general tends to underestimate
the size of the model error and hence it provides a more correct standard
deviation estimate with an excessive error assumption.

ση EnKF RRSQRT Steady

0.001 0.31 0.31 0.31

0.005 0.20 0.19 0.19

0.01 0.13 0.13 0.13

0.05 0.09 0.09 0.08

0.10 0.08 0.09 0.08

0.25 0.10 0.08 0.08

1.50 0.13 0.09 0.10

Table 4: Sensitivity to model error standard deviation for perturbed
boundary runs. Reference run is marked in bold. All results are RMSE
and given in meters (m)

ση EnKF RRSQRT Steady

0.05 0.32 0.32 0.36

0.10 0.23 0.22 0.26

0.50 0.12 0.11 0.13

1.00 0.11 0.10 0.11

3.00 0.09 0.09 0.10

5.00 0.11 0.09 0.11

10.00 − 0.10 −

Table 5: Sensitivity to model error standard deviation for perturbed
wind runs. Reference run is marked in bold. All results are RMSE and
given in meters (m)

Now, the sensitivity to the temporal correlation scale is examined. A
temporal correlation scale of 0 hours gives a white noise assumption and
a temporal correlation of ∞ hours gives a random walk error process.
These extremes corresponds to values of σforcing equal to ση and ∞ m
respectively. Tables 6 and 7 summarise the results. Here too, quite ro-
bust performance can be observed. The results are most degraded when
there is a small time correlation. The explanation for this is a combina-
tion of the smaller resulting standard deviation of the forcing terms and
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a worse description of the spatial correlations due to the approximate
white noise assumption. When coloured noise is adopted, the dynamical
propagation transfers the coloured signal into spatial correlations.

τ EnKF RRSQRT Steady

0.00 hours 0.15 0.15 0.14

0.25 hours 0.12 0.12 0.11

2.00 hours 0.08 0.09 0.08

6.00 hours 0.09 0.09 0.08

24.00 hours 0.10 0.09 0.09

Table 6: Sensitivity to model error temporal correlation scale, τ , for
perturbed boundary runs. Reference run is marked in bold. All results
are RMSE and given in meters (m)

τ EnKF RRSQRT Steady

0.00 hours 0.18 0.15 0.20

0.25 hours 0.16 0.13 0.16

1.00 hours 0.12 0.10 0.12

6.00 hours 0.09 0.09 0.10

24.00 hours 0.13 0.10 0.10

Table 7: Sensitivity to model error temporal correlation scale, τ , for
perturbed wind runs. Reference run is marked in bold. All results are
RMSE and given in meters (m)

This dependence on a proper spatial correlation is also evident when
considering the spatial correlation scale (Tables 8 and 9). In line with
the discussion above about temporal correlations, the case of no spatial
correlation has a poorer performance, which shows the importance of
properly describing the correlations in the state vector. This can poten-
tially be an important factor to control in real setups of the assimilation
schemes. The results are in general insensitive to grid factor variations
as long as the resulting coarse error grid resolves the assumed spatial
error covariance.

The smoothing factor shows hardly any sensitivity at all. This can be
accredited to the similar performance of the time varying and the steady
schemes. In cases, with more time varying correlation structures, this
factor must be expected to play a greater role, providing a smooth tran-
sition from the time varying to the steady performance. The smoothing
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factor opens a possibility of obtaining stable time varying runs of e.g.
a low rank EnKF. If the time variation of the error covariance fields
are slow, but important to resolve, then this approach might provide an
important operational option.

Altering the update interval degrades the result shown in Table 10. This
proves a continuous transition to the runs with no assimilation, which
corresponds to an update interval equal to ∞. Using less information
from the true state gives a lower resemblance with the truth.

All together, in the present test case the assimilation schemes are robust
to moderately misspecified parameters for Gaussian error sources that
resembles the specified error models. This is encouraging, but does not
guarantee good performance for any setup. In particular, care must be
taken to ensure a proper model error covariance in sparsely observed
systems.

lc EnKF RRSQRT Steady

0 km 0.11 0.15 0.09

25 km 0.09 0.08 0.08

100 km 0.08 0.09 0.08

250 km 0.08 0.09 0.08

1000 km 0.09 0.10 0.08

Table 8: Sensitivity to model error spatial correlation scale, lc, for per-
turbed boundary runs. Reference run is marked in bold. All results are
RMSE and given in meters (m)

lc EnKF RRSQRT Steady

30 km 0.19 0.18 0.20

100 km 0.11 0.09 0.13

300 km 0.09 0.09 0.10

1000 km 0.08 0.10 0.10

Table 9: Sensitivity to model error spatial correlation scale, lc, for per-
turbed wind runs. Reference run is marked in bold. All results are
RMSE and given in meters (m)
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4.2.2 Typical errors

The demonstrated robustness in the Gaussian error case gives some hope
that even for more typical error sources, not elaborately taken into ac-
count by the schemes, an improved performance can be obtained using
good first guess estimates of parameters in the Gaussian framework as-
sumed. This section investigates such behaviour.

Perturbed runs with ten different errors have been conducted. The re-
sults of the twin experiments both without and with the three data as-
similation schemes are summarised in Table 11. The runs with ’Bound:’
and ’Wind:’ indicates that only open boundary or wind errors was added
and subsequently assumed in the assimilation procedures. The ’Bound:’
runs apply one and three hour phase errors as well as half a meter am-
plitude error by itself and in combination with the three hours phase
error. The two systemamic wind error runs are forced by 20 m/s West-
erly winds and a a stronger cyclone with a perturbed path referred to
as ’False cyclone’. Further, a run was conducted with an erroneous bed
friction using a Nikuradse roughness coefficient of 0.5 instead of the true
0.05. The ’Bathymetry’ perturbed run refers to a run applying a mod-
ified bathymetry with a standard deviation of 1 meter compared to the
truth. Also, a run, ’All errors with †’s’, applying a composite of these
errors is included in the study. Finally, a ’No forcing’ run was conducted
with no wind and open boundary forcing at all, thus giving a solution
at rest. In all assimilation runs, the parameters of Tables 1 and 2 were
used in the assimilation schemes.

d Bound Wind

EnKF RRSQRT Steady EnKF RRSQRT Steady

1 0.08 0.09 0.08 0.09 0.09 0.10

2 0.09 0.10 0.09 0.10 0.09 0.11

4 0.11 0.12 0.11 0.11 0.10 0.12

8 0.16 0.16 0.15 0.17 0.15 0.16

16 0.22 0.21 0.21 0.27 0.25 0.29

32 0.26 0.25 0.26 0.42 0.33 0.38

Table 10: Sensitivity to update interval for perturbed runs. Reference
run is marked in bold. All results are RMSE and given in meters (m)
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A much improved performance is observed in all cases. In the worst case
the residual RMSE is 0.51, which is too large for many applications, but
a convincing result considering the size of the errors introduced into the
model. Even in the ’No Forcing’ run, the schemes are actually able to
generate a large portion of the signal from the missing forcing terms in-
cluding the forcing terms themselves through the augmented state vector
description.

However, the good performace is not matched by a good uncertainty
estimate. For instance, both time varying filters estimate a standard de-
viation of 0.07 for the 3h phase lag experiment. The standard deviation
estimates for the ’False cyclone’ run were 0.06 and 0.07 for the EnKF
and RRSQRT schemes, respectively, while the numbers for the ’All er-
rors with †’s’ are 0.13 and 0.14. This clearly shows the violation of the
underlying filter assumptions and the error estimates provided by the
filters must be applied with care. At least, data must be retained in an
attempt to perform a subsequent validation of the standard deviation
estimates.

The biased nature of the errors makes the performance even more de-
pendent on fairly high temporal and spatial correlations than was the
case in the previous section. Hence, these are key parameters to consider
in the calibration of any data assimilation setup. In general the Steady

Error Type No ass. EnKF RRSQRT Steady

Bound: 1h phase lag 0.69 0.07 0.07 0.07

Bound: 3h phase lag† 1.87 0.18 0.18 0.20

Bound: 1.5 × amplitude† 0.62 0.07 0.07 0.07

Bound: 3h phase lag
+ 1.5 × amplitude 2.23 0.23 0.22 0.26

Wind: 20 m/s West 0.17 0.07 0.09 0.09

Wind: False cyclone† 0.25 0.12 0.12 0.12

Bed friction 0.5† 0.26 0.06 0.06 0.13

Bathymetry† 0.05 0.04 0.04 0.03

All errors with †’s 2.53 0.51 0.44 0.38

No forcing 1.33 0.19 0.18 0.20

Table 11: Sensitivity to typical errors for perturbed runs. All results are
RMSE and given in meters (m)
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filter performs well with the ’All errors with †’s’ case being the most
impressive case. Basically, when all the error assumptions are violated,
the elaborate schemes can not be expected to give superior performance.
Rather, a certain regularisation of the Kalman gain acknowledges the
bias in the estimate hence allowing a reduced variance and in this case, a
better performance. However, time dependent schemes are clearly supe-
rior for bed friction error by itself. This study demonstrates the success
of assimilation schemes despite the unavoidable wrong error assumptions
imposed, and also shows how different filters handle different real error
sources the best.

5 Summary and Conclusions

This paper presented three known assimilation schemes and described
the filter parameters that can typically be varied in an application of the
schemes. In a set of experiments in an idealised bay a sensitivity study
has been conducted to investigate the filter performance for misspecified
error structure in the schemes. The sensitivity to key parameters are
vital for the practical use of sequential data assimilation techniques in
hydrodynamic modelling. It is demonstrated that the filter performance
is robust with respect to low to moderate parameter perturbations in
the specification of the noise statistics. For more typical errors such as
phase lags, bathymetry, etc., care must be taken to ensure a specification
of fairly high temporal and spatial correlations. However, thought should
be put into properly setting up every application. For some, an EnKF
with a low smoothing factor is the best choice, while a sum of a range
of significant error sources not assumed by the filter is best handled by
a steady filter.

In general the steady filter seems like a good candidate for tide gauge
assimilation in coastal areas. This is particularly true if an operational
setting is considered. The spatial distribution of the filter performance
has further demonstrated that proximity to the stations or dynamically
well chosen positions enhances the estimation skill. Hence, the denser
and better designed the measurement network is, the better the over-
all performance. Such a design increases the representative information
available. Further, dense networks diminishes the importance of the
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spatial distribution of the information and thus the correct parameter
settings.



Parameter sensitivity of three Kalman filter schemes 61

References

Burgers, G., van Leeuwen, P. J. & Evensen, G. (1998), ‘Analysis scheme
in the ensemble Kalman filter’, Monthly Weather Review 126, 1719–
1724.
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Data assimilation in hydrodynamic modelling: On the
treatment of non-linearity and bias

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, and Henrik Madsen2

Abstract

The state estimation problem in hydrodynamic modelling is for-
mulated. The three-dimensional hydrodynamic model MIKE 3
is extended to provide a stochastic state space description of the
system and observations are related to the state through the mea-
surement equation. Two state estimators, the maximum a pos-
teriori (MAP) estimator and the best linear unbiased estimator
(BLUE), are derived and their differences discussed. Combined
with various schemes for state and error covariance propagation
different sequential estimators, based on the Kalman filter, are
formulated. In this paper, the ensemble Kalman filter with either
an ensemble or central mean state propagation and the reduced
rank square root Kalman filter are implemented for assimilation
of tidal gauge data. The efficient data assimilation algorithms
are based on a number of assumptions to enable practical use
in regional and coastal oceanic models. Three measures of non-
linearity and one bias measure have been implemented to assess
the validity of these assumptions for a given model set-up. Two
of these measures further express the non-Gaussianity and thus
guide the proper statistical interpretation of the results. The
applicability of the measures is demonstrated in two twin case
experiments in an idealised set-up.

1 Introduction

The state of coastal seas has an impact on a number of socio-economic
issues such as fisheries, tourism and flood warning. Thus, estimating
this state is of great importance. One way of solving the state estima-
tion problem is by combining the theoretical knowledge encapsulated in

1DHI Water & Environment, DK-2970 Hørsholm, Denmark
2Informatics and Mathematical Modelling, Technical University of Denmark, DK-

2800 Lyngby, Denmark
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numerical models with available data at or around the time of interest.
Such an approach is generally known as data assimilation.

One particular branch within data assimilation deals with sequential
state estimation based on a Kalman filter approach. However, the op-
timality of the Kalman filter can not be preserved without imposing
linearisations and constraints on the size of the state space, which are
severe for the application in a realistic set-up of a hydrodynamic model.
Thus, sub-optimal schemes have been introduced that attempt to reduce
computational requirements by simplifying the model propagation op-
erator and/or reducing the degrees of freedom in the model covariance
estimation.

The use of a simplified process description was investigated in (Dee 1991).
Such an approach is case dependent and relies on the validity of the rather
strong dynamical approximations. Alternatively, the error covariance
calculation can be performed on a coarser grid (Fukumori & Malanotte-
Rizzoli 1995). This implies an assumption about the main model vari-
ability to be at larger scales than the model resolution. Finally, the
model operator can be represented with a reduced rank approximation
by applying e.g. a singular value decomposition (Cohn & Todling 1996).
The simplified process description, the coarse grid approximation and
the model reduction approach are all examples of applying a regularised
model operator.

A different approach to speeding up a sub-optimal Kalman filter is to
work with a simplified error covariance representation. One such ap-
proximation is to assume that the error covariance is in steady state
(Heemink 1986). This often works very well despite the strong assump-
tion and has the advantage of being operational in many real time hydro-
dynamic forecast systems, (Cañizares et al. 2001), (Heemink, Bolding &
Verlaan 1997). The reduced rank square root Kalman filter (Verlaan &
Heemink 1997) obtains a time varying approximation of the error covari-
ance matrix. Based on the extended Kalman filter, the covariance is con-
tinuously approximated by its leading eigen sets. This leads to a rather
smooth Kalman gain, but its application is limited when very strong non-
linearities are present and only few measurements are available, (Verlaan
& Heemink 2001). Alternatively the covariance can be calculated using a
Monte Carlo technique as introduced in (Evensen 1994). This approach
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handles even strong non-linearities well, but at the price of rather noisy
error covariance estimations. A larger ensemble size reduces this prob-
lem, but at the cost of an increased computational burden. Finally,
hybrids of regularised model operators and approximate error covariance
representations can be formed. As an example, (Sørensen, Madsen &
Madsen 2002) successfully combined the ensemble Kalman filter with a
depth averaged model operator for generation of a steady Kalman gain
to be used in a 3D hydrodynamic model.

Each of the sub-optimal schemes is based on a set of assumptions such
as model linearity, a simplified description of the error covariance and an
unbiased model operator. Often the assumptions are merely stated or
even implicit in order to focus on other important issues. The schemes
are typically validated by application in one or two test cases, where
performance is rather good. Means of assessing the general validity of
the underlying assumptions often lack and the filter performance when
they are violated are generally not discussed for the different schemes.
We attempt to contribute to this matter. The main aim of this paper is
to highlight the assumptions of different schemes and analyse the validity
of these assumptions under various conditions. In order to perform this
analysis, different performance measures are introduced.

In (Verlaan & Heemink 2001) a non-linearity measure is introduced,
which can be used to assess the validity of the assumption of the model
operating in a regime, which is weakly non-linear at worst. In this paper
a simplified version of the measure is implemented in a 3D hydrodynamic
model and the performance of two estimation schemes based on a cen-
tral forecast is examined with respect to variation of this non-linearity
measure and compared to an ensemble forecast. The Gaussianity of a
solution affects the valid interpretation of the results and thus two non-
Gaussianity measures are introduced. When the model noise is Gaussian,
these simultaneously provide alternative non-linearity measures. Finally,
the model bias is used to characterise the filter performance under var-
ious error structure assumptions. It is very important to understand
the filter performance when actual errors are not well captured by the
assumed error structure. This aspect will be considered in the paper.

Section 2 introduces the considered coastal ocean system, which is de-
scribed by a stochastic hydrodynamic model. Section 3 discusses state
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estimation with particular emphasis on issues of application to a hydro-
dynamic model. The propagation of model error covariance is discussed
in Section 4 along with a presentation of the ensemble Kalman filter, the
central ensemble Kalman filter and the reduced rank square root Kalman
filter. This section also describes the characteristics of each filter. In Sec-
tion 5 measures of non-linearity, non-Gaussianity and bias, which will be
applied to assess the validity of filter assumptions, are introduced. The
simulation study is described in Section 6 and a discussion of the results
is given in Section 7. Finally, Section 8 concludes the paper.

2 Stochastic state space model

The physical system under consideration consists of hydrodynamic flow
in bays, estuaries, coastal regions and shelf seas. The body of water
evolves according to the laws of internal dynamics of a fluid and its
interaction with the atmosphere and the solid earth through the sea
floor. Among the processes encompassed by this system are tidal waves,
wind induced coastal upwelling, eddy formation and turbulence.

The continuity and Navier-Stokes equations state the conservation of
mass and momentum in a continuum like the considered system. By
developing mathematical, physical and numerical approximations of the
system dynamics, the problem of estimating and predicting the state of
the coastal ocean can be solved. This theoretical approach has lead to
the advance of a range of numerical models, which are now routinely
applied to solve a number of scientific and engineering problems. One
such numerical modelling system is MIKE 3.

The MIKE 3 hydrodynamic model is part of a general finite differ-
ence modelling system and is designed to simulate non-linear, unsteady
three-dimensional flows. It is developed at DHI Water and Environ-
ment (DHI 2001) and has been successfully applied to various scientific
and engineering applications in domains with scales ranging from meters
to thousands of kilometres (Øresundskonsortiet 1998), (Vested, Berg &
Uhrenholdt 1998), (Erichsen & Rasch 2002).

MIKE 3 utilises a finite difference technique, and thus provides the dis-
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crete time evolution of the model variables defined on a mesh in the do-
main under consideration. Details of the finite difference scheme can be
found in the scientific reference manual, (DHI 2001). For the purpose of
the problem at hand it is sufficient to acknowledge that the entire state of
the model is uniquely determined by the variables ζ(ti), ζ(ti−1/2

), ζ(ti−1),

vx(ti), vy(ti−1/2
), vy(ti+1/2

) and vz(ti−1/4
) when the density of the water

is assumed constant. The variable ζ is the water level, (vx,vy,vz) are the
three velocity components and ti is the time index.

With knowledge of the initial conditions, sources and sinks as well as
boundary conditions represented by surface elevation at open bound-
aries and wind velocity and pressure at the sea surface, MIKE 3 calcu-
lates a solution to the finite difference equations. Thus, an estimate of
the state of the fluid is given at discrete temporal and spatial intervals
and the state at time ti+1 is completely determined by the state at time
ti and the forcing terms embedded in the sources and sinks and bound-
ary conditions. Thus, let MD be the model operator representing the
approximate finite difference equations, uD(ti) the forcing defined at a
snapshot in time projected onto the mesh and xD(ti) the model state at
time ti. The discrete deterministic model can then be expressed as,

xD(ti+1) = MD(xD(ti),uD(ti)) (1)

The hydrodynamic model attempts to construct the best possible es-
timate of the state of the system within the constraints of the model
structure imposed. However this estimate is based on a model and forc-
ing terms, which we know are uncertain, but often we will have some
knowledge of the second order statistical properties of the errors, ηx,i.
Thus, the discrete model can be extended to a stochastic model, propa-
gating a state that is now a stochastic variable characterised by its second
order statistical properties rather than the deterministic estimate in Eq.
(1).

For the hydrodynamic part of a continental shelf ocean model, a main
source of error comes from inaccurate meteorological and open boundary
forcing. Thus, in order to simplify the error description, it is assumed
that wind forcing and water level at open boundaries are the sole sources
of error. No initial errors are assumed, but the model is allowed a spin-up
period to propagate the forcing induced error throughout the system.
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To reduce the computational requirements, errors can be defined on a
coarser grid, G2, than the forcing grid, G1, and thus an interpolation
operator, Λ, is introduced. In general any linear reduced rank repre-
sentation can be expressed by Λ, e.g. refer to (Cañizares 1999) for this
approach. If the errors in the forcing terms can be assumed to be uncor-
related in time, then MIKE 3 can be generalised to a stochastic model
operator, MM3:

xM3(ti+1) = MM3(xM3(ti),uD(ti) + Ληx,i) (2)

where

xM3(ti) =























ζ(ti)
ζ(ti−1/2

)

ζ(ti−1)
vx(ti)
vy(ti−1/2

)

vy(ti+1/2
)

vz(ti−1/4
)























(3)

The only difference between xM3 and xD is that the elements in xM3 are
stochastic.

However, the errors in the forcing terms are usually correlated in time.
Thus it makes sense as a first approximation to construct an augmented
state vector, by including the error as modelled by a first order autore-
gressive model (AR(1)),

ηx,i = Aηx,i−1 + ηη,i (4)

where ηη,i is an nη-dimensional i.i.d. variable with zero mean and known
covariance, Qη(ti). A = diag(α) is a linear diagonal model. In the phys-
ical system under consideration a first order autoregressive process typ-
ically explains 80-90% of the variance. If necessary it is straightforward
to formulate more general correlation models still adhering to the state
space description.

Finally, by assuming the error to originate from the forcing, using the
augmented state vector with coloured error description as expressed by
Eq. (4) and allowing for a noise to be defined on a reduced space (e.g. a
coarse grid), the following stochastic finite difference model is obtained:

x(ti+1) =

(

xM3(ti+1)
ηx,i+1

)

=

(

MM3(xM3(ti),uD(ti) + Ληx,i)

Aηx,i + ηη,i

)

(5)
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or

x(ti+1) = M(x(ti),uD(ti)) + ηi (6)

where M is the augmented model operator and

ηi =
(

0 0 0 0 0 0 0 ηη,i

)T
(7)

is a n-dimensional i.i.d. variable with zero mean and covariance Q(ti).
Eq. (6) is called the system equation and is the actual stochastic rep-
resentation of MIKE 3 that will be used subsequently. The dimension
of x is designated n. Note that the equation actually has additive noise
even though the error is defined to enter through the forcing terms, i.e.
ηi enters linearly, but has a non-linear effect on xM3.

Tidal gauge measurements provide an additional source of information
about the state of the system. They are characterised by a high temporal
resolution, but the gauges are very sparsely distributed in space. Tidal
gauge sensors typically have a random instrumentation error with a stan-
dard deviation less than 1 centimetre. Let the number of measurements
be designated p.

For the purpose of data assimilation, we need to relate the measurements
to the state vector x. By doing this, a model representation error is
introduced. As an example, if the model resolution is 9 nautical miles,
then the model variable that would typically represent the observation is
the water level averaged over the grid box at the position of the gauge,
which clearly may deviate from the point measurement. Representation
error is typically the main error source that needs to be considered when
using tidal gauge data for modelling purposes, (Fukumori, Raghunath,
Fu & Chao 1999). Let x be the stochastic model state defined by Eq.
(6). It is assumed that the observation, yo

i , can be expressed as a linear
combination represented by the p×n matrix H(ti) of the state variables,
and an additive zero mean Gaussian distributed observational error, εi,
with covariance R(ti).

yo
i = Hix(ti) + εi (8)

This is called the measurement equation. The rows of Hi will in many
cases consist of zeroes and a single one. It is assumed that the separate
tidal gauge stations have both spatially and temporally uncorrelated er-
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rors. Thus the measurement error covariance can be expressed as

R(ti) =













σ2
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 σ2

Nm













(9)

Tide gauge observations are performed by independent instruments and
hence the instrumental errors are independent. However, their main
error source is probably representation error, (Fukumori & Malanotte-
Rizzoli 1995) and (Sørensen, Madsen & Madsen 2003d) and may depend
on the system state and thus be correlated. This effect is not present in
ideal scenarios as considered herein.

3 State estimation

In the previous section, stochastic descriptions of both model and mea-
surements have been presented. The description of the system is pro-
vided by the system equation (6), while the measurements are described
by the measurement equation (8). Now we will pay attention to how
the best estimate of the true oceanic state can be obtained based on the
available information from these two sources of information. The model
gives a state estimate with high temporal and spatial resolution, but the
values are hampered by the accumulation of errors. Measurements give
an alternative estimate that is usually more certain when and where an
observation is made, but they are sparsely distributed in space and time.
The two sources of information are complimentary and both ought to be
included in the state estimate.

At a given point in time consider the stochastic state, x, derived from
the model, and an observation yo. Note that by restricting ourselves
to a single time step, the propagation and the estimation problems are
separated. First, we deal with estimation. One approach is to use the
information about the oceanic state provided by the model probability
density function (pdf) to give e.g. a maximum likelihood (ML) estimate.
However, including the information provided by available measurements
will improve the estimate. By using a Bayesian approach the resulting
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pdf of the estimate can be calculated as the conditional probability of x

given the data, yo,

f(x|yo) =
f(yo|x)f(x)

f(yo)
=

f(yo|x)f(x)
∫

f(yo|x)f(x)dx
(10)

The value xa of x that maximises f(x|yo) is the maximum a posteri-
ori (MAP) estimate of x. It is common to work with the logarithmic
transformation of Eq. (10) in order to ease the arithmetic expressions.

log f(x|yo) = log f(yo|x) + log f(x) − log B (11)

In Eq. (11), B is an abbreviation for the denominator of Eq. (10). This
last term does not affect the behaviour of extreme values because it only
depends on the data. Thus, if the distributions f(x) and f(yo|x) are
known, then the optimum can be found. However, these distributions
are in general unknown and further assumptions must be imposed in
order to progress.

It will now be assumed that the distributions f(x) and f(yo|x) are Gaus-
sian with means xf and Hx and known covariance matrices Pfand R

respectively. Thus,

f(x) =
1

(2π)n/2
√

det(Pf )
exp

(

−1/2

[

(

x− xf
)T (

Pf
)−1 (

x− xf
)

])

(12)

f(yo|x) =
1

(2π)p/2
√

det(R)
exp

(

−1/2
[

(yo − Hx)T (R)−1 (yo − Hx)
])

(13)
where n and p are the sizes of Pfand R respectively. By substituting
Eqs. (12) and (13) into Eq. (11) and differentiating with respect to
x the maximum can be found. This provides the same solution as the
minimisation in a least squares approach. For further elaboration on the
least square solution refer to (Wunsch 1996) and (Jazwinski 1970).

The MAP estimator now reduces to,

xa = xf + K(yo − Hxf ) , Pa = Pf − KHPf (14)

K = PfHT
[

HPfHT + R
]−1

(15)
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The matrix Pa is the error covariance of the estimated state, xa. Since
the estimator can alternatively be derived from the least square approach
as the best linear unbiased estimator (BLUE) it will always supply the
minimum variance estimate under the assumption of a linear and unbi-
ased estimate for any distribution. In the remainder of this paper we
will refer to Eqs. (14) and (15) as the BLUE estimator. Note that the
problem of finding the probability density of the state variables has been
reduced to estimating its a posteriori mean and covariance.

The assumption about Gaussianity is certainly more an operational as-
sumption than a justified one. Particularly, model error sources are
generally far from being Gaussian. However, assimilation schemes are
traditionally based on the BLUE, which is only a minimal variance es-
timator under the Gaussian assumption. We believe an improved es-
timation technique is essential in the further development of assimi-
lation techniques. An operational Bayesian approach as discussed in
(Christakos 2002) could provide an interesting alternative.

The discussion above has focused on the estimate when a prior model
estimate is available at the time step of a new measurement. We will now
extend the discussion to encompass available information up until the
time of the latest observation. In general the approach can be extended to
a sequential estimator with each estimate having a similar MAP or BLUE
interpretation based on all past and present measurements. If the BLUE
estimator is used with a linear model for propagation of the mean and the
error covariance matrix in between updates and all variables are Gaussian
distributed, then the classical Kalman filter is obtained. The Kalman
filter has in many cases been the starting point in the literature and
necessary generalisations have subsequently been imposed, e.g. (Verlaan
& Heemink 1997). Here, we present the general problem and impose
certain simplifications that allow a solution to be found on available
computational resources.

So far the origins of the mean and error covariance estimates of model
(system error) and measurement variables (measurement error) were
avoided in order to pay attention to the estimator. However, their con-
struction is one of the major difficulties in sequential data assimilation.
For tidal gauge data the measurements at separate stations can be as-
sumed to have no error correlation and R(ti) becomes diagonal as ex-
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pressed by Eq. (9). This allows for an efficient sequential updating
of data from different tidal gauge stations within the same time step,
(Madsen & Cañizares 1999). The values of the diagonal elements are
set, based on reflections on the error sources discussed in Section 2. Es-
timates of xf (ti) are typically based on the composite hydrodynamic and
the AR(1) model in Eq. (6). The error covariance matrix, Pf (ti), on
the other hand, has been estimated by a number of different approaches
in the literature. These range from solving the Riccati difference equa-
tion (Fukumori, Raghunath, Wunsch & Haidvogel 1993) to geometric or
physical assumptions (Fox, Haines, de Cuevas & Webb 2000), and tran-
sient propagation of Pf (ti) by the hydrodynamic equations (Verlaan &
Heemink 1997), (Evensen 1994). The latter approach is pursued in this
work and is treated further in the next section. Among its strengths it
accommodates the calculation of non-linearity measures.

Anyone of the approaches above requires a proper definition of system
noise, Q(ti). The error in open boundary water level or wind velocity will
typically be correlated in space. The spatial error correlation patterns
are here assumed to be isotropic for each error source and can thus be
described by a standard deviation and a spatial correlation scale corre-
sponding to the distance at which the correlation is 0.5. Further, because
of the noise definition in Eq. (7) only the lower right nη × nη portion
of Q(ti) is non-zero. The specification of Q(ti) poses quite a problem in
real applications. (Dee 1995) suggested a maximum likelihood approach
for estimating the system noise from measurements. However, this is
quite costly and requires 2-3 orders of magnitude of data more than the
number of error parameters to be estimated. An alternative solution to
the problem should be adaptive in nature, because of the generally time-
varying and state dependent errors. This could be very interesting to test
in ideal scenarios like the one discussed in the present paper, but they
probably would be too computationally demanding for real applications.

It makes filtering seem less complex if we remind ourselves that no mat-
ter what approach is taken, the procedure basically consists of two ele-
ments: Updating and propagation of model state estimates and its error
covariance. We can pick and choose among various estimators for the
updating and various propagation schemes, but in all cases we propagate
model information in between measurement times and update the state
instantaneously whenever a new measurement becomes available. The
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resulting updated state estimate can then be propagated onwards.

4 Error covariance propagation

This section will describe various ways of propagating the model mean
and error covariance in time. The general approach for time evolution in
stochastic differential equations is based on dynamic stochastic predic-
tion, (Evensen 1994). The starting point there is a stochastic differential
equation with additive noise generated by a Wiener process. The general
solution is given by the Fokker-Planck equation and consists of the full
probability density function of the state. In our approach, the stochastic
extension was introduced in Eq. (6) at the level of the actual numerical
implementation in order to make clear the physical, mathematical and
numerical assumptions that we ideally attempt to capture. For both
approaches, the final aim is to provide accurate estimates of the state
by propagating information about the probability density in time when
called for by the estimator. In both ensemble based filters presented
in Sections 4.1 and 4.2 the pdf is approximated by a finite ensemble.
However, for the Reduced Rank Square Root Kalman filter presented
in Section 4.3, the propagation is restricted to first and second order
statistics.

The treatment will be restricted to expressing the various moments of
the state vector. Assuming the noise sequence, ηi, to be a zero mean
i.i.d. random variable, cf. Eq. (6), then the expectation of x(ti+1)is:

E {x(ti+1)} = E {M(x(ti),uD(ti))} (16)

Even this first order moment is impossible to evaluate exactly for a non-
linear forecast model, such as MIKE 3. Calculation of the second order
moment demands even more resources for a good approximation and so
forth. However, various approximate methods can be imposed, which
makes the error covariance propagation manageable. In the following,
two different ways of approximation, which are both implemented in
MIKE 3 are presented. The Ensemble Kalman Filter (Evensen 1994)
is based on Monte Carlo theory, while the Reduced Rank Square Root
Kalman Filter (Verlaan & Heemink 1997) uses a truncated Taylor series
and a square root error covariance representation.
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4.1 Ensemble Kalman filter

In the ensemble Kalman filter, (EnKF), an ensemble of possible states
represents the statistical properties of the state vector. Each of these vec-
tors is propagated according to the dynamical system subjected to model
errors, and the resulting ensemble then provides estimates of the forecast
state vector and the error covariance matrix. In the measurement up-
date, the Kalman gain matrix obtained from Eq. (15) is applied for each
of the forecast state vectors. To account for measurement errors, the
measurements are represented by an ensemble of possible measurements,
(Burgers et al. 1998). The resulting updated sample provides estimates
of the updated state vector and the associated error covariance matrix.
The following subsections provide the mathematical detail of the scheme.

4.1.1 Forecast

Each member, j, of the ensemble of q state vectors is propagated forward
in time according to the dynamics of the augmented system in Eq. (6)
and the specified model error, i.e.

x
f
j,i = M(xa

j,i−1,uD,i−1) + ηj,i−1 , j = 1, 2, ..., q (17)

where the model error ηj,i−1 is randomly drawn from a Gaussian distri-
bution with zero mean and nxn covariance matrix Qi which represents
the system noise. An estimate of the state vector (forecast) is calculated
as the average of the ensemble members, i.e.

x
f
i = x̄

f
i =

1

q

q
∑

j=1

x
f
j,i (18)

The error covariance matrix of the forecast is estimated from the ensem-
ble as

P
f
i = S

f
i (Sf

i )T , s
f
j,i =

1√
q − 1

(xf
j,i − x̄

f
i ) (19)

where s
f
j,i is the jth column in S

f
i .
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4.1.2 4.1.2 Update

An ensemble of size q of possible measurements is generated

yo
j,i = yo

i + εj,i , j = 1, 2, ..., q (20)

where yo
i is the actual measurement vector, and εj,i is the measurement

error that is randomly generated from a Gaussian distribution with zero
mean and covariance matrix Ri.

Each ensemble member is updated according to the updating scheme
in Eq. (14). The updated state vector and error covariance matrix are
derived from Eq. (18) and (19). When the data assimilation is based on
in-situ measurements that are sparsely represented in space, the full error
covariance matrix in Eq. (19) does not need to be calculated. In this case,
the measurement matrix Hi only has a few non-zero elements and only
the columns in P

f
i that correspond to these non-zero elements in Hi have

to be calculated. Furthermore, since it is assumed that measurement
errors are uncorrelated, a sequential updating algorithm that processes
one measurement at a time can be implemented and the matrix inversion
in Eq. (15) can be avoided.

The sequential updating algorithm reads (Chui & Chen 1991),

xa
i,k = xa

i,k−1+ki,k

(

yo
i,k − hi,kx

a
i,k−1

)

, k = 1, .., p , xa
i,0 = x

f
i (21)

where p is the number of measurements, hi,k is the k’th row in the
measurement matrix Hi, hi,kx

a
i,k−1 is the element in the state vector

that corresponds to the measurement yo
i,k, (i.e. (yo

i,k − hi,kx
a
i,k−1) is the

model deviation from measurement k), and ki,k is a Kalman gain vector
corresponding to measurement k. The Kalman gain vector is given by

ki,k =
Sa

i,k−1ci,k

cT
i,kci,k + σ2

j

, ci,k = (Sa
i,k−1)

T hT
i,k , Sa

i,0 = S
f
i (22)

where the numerator is the covariance between the measurement k and
the state vector and the denominator is the sum of the variance of mea-
surement k and the predictive variance of the measurement. In the EnKF
the sequential updating scheme is applied for each ensemble member, and
after each measurement update Sa

i,k is calculated from the ensemble cf.
Eq. (19). Remember that the scheme encompasses both the MIKE 3
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part and the auto regressive augmented part of the state vector. For
an infinite number of ensembles (∞-EnKF) and correct error descrip-
tion this scheme will provide an optimal estimate and is in this sense
asymptotically optimal.

4.2 Central ensemble Kalman filter

A second version of the EnKF that uses a central forecast instead of the
ensemble average forecast for x

f
i has also been implemented for the pur-

pose of calculation of the non-linearity measures discussed in Section 5.
This filter is referred to as the Central Ensemble Kalman Filter (CEnKF).
A new central state vector, xc

i , is introduced. At initial time t0 it is set
equal to the mean estimate of xa

i and subsequently it is propagated and
updated like any other of the ensemble members, i.e:

x
c,a
0 = xa

0 (23)

x
c,f
i = M(xc,a

i−1,uD,i−1) (24)

The error covariance propagation is still centred at the ensemble forecast
and hence the Kalman gain is exactly the same as in the EnKF – only the
state estimate is different. The computational requirements are similar
to those of the EnKF, requiring only one more model execution.

4.3 Reduced rank square root Kalman filter

The Reduced Rank Square Root Kalman Filter (RRSQRT) is based on
the extended Kalman filter formulation in which the error propagation
is calculated using a statistical linearisation of the model equation based
on a first order Taylor series expansion.



80 Paper B

4.3.1 Forecast

In the case of a coloured system noise process as assumed in Eq. (6), the
forecast step is given by

x
f
i = M(xa

i−1,uD,i−1) (25)

P
f
i = FiP

a
i−1F

T
i + Qi (26)

Fi =
∂M

∂x

∣

∣

∣

∣

x=x
f
i

(27)

The RRSQRT approximation of the extended Kalman filter uses a square
root algorithm as well as a lower rank approximation of the error covari-
ance matrix. Denote by Sa

i−1 the approximation of rank q of the square
root of the error covariance matrix Pa

i−1. The propagation of the error
covariance matrix is then given by

S
f
i =

[

FiS
a
i−1

∣

∣ Q
1/2
i

]

(28)

where Q
1/2
i is the n× p-dimensional square root of Qi. The matrix Sa

i−1

has q columns where q is chosen much smaller than the dimension of
the state vector. To calculate the derivatives in Fi a finite difference
approximation is adopted as follows,

(FiS
a
i−1)j =

[

M(xa
i−1 + sa

j,i−1,uD,i) − M(xa
i−1,uD,i )] j = 1, .., q (29)

where sa
j,i−1 is the jth column of Sa

i−1. Thus, the propagation of the
error covariance matrix requires q model integrations.

The propagation step in Eq. (28) increases the number of columns in
the error covariance matrix from q to q + p. In order to reduce the num-
ber of columns and hence keep the rank of the error covariance matrix
constant throughout the simulation, a lower rank approximation of S

f
i is

applied by keeping only the q leading eigenvectors of the error covariance
matrix. The reduction is achieved by an eigenvalue decomposition of the
matrix (Sf

i )TS
f
i . For full details refer to (Cañizares 1999). For a proper

reduction, S
f
i must be normalised prior to the eigenvalue decomposition.

Basically the normalisation is chosen to ensure that the potential energy
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expressed by the surface elevation and the kinetic energy expressed by
the velocity get similar total weight in (Sf

i )T S
f
i before the leading eigen-

values are found. The augmented forcing correction part of the state
vector is similarly given an equal total weight.

4.3.2 Update

Based on the square root approximation of rank q, S
f
i , the error covari-

ance matrix can be calculated as P
f
i = S

f
i (Sf

i )T , and subsequently used
for the Kalman filter update. However, by using the sequential updating
algorithm described for the EnKF it is not necessary to calculate the
forecast error covariance matrix and the sequential updating can be per-
formed using S

f
i directly. In this case the state vector is updated using

Eq. (21), and the updated square root covariance matrix is given by
(Cañizares 1999),

Sa
i,k = Sa

i,k−1 −
ki,kc

T
i,k

1 +

√

σ2
j

cT
i,k

ci,k+σ2
j

, Sa
i,0 = S

f
i (30)

where ki,k and ci,k are defined in Eq. (22).

4.4 Filter characteristics

In the previous subsections three specific Kalman filter schemes have
been presented. In the present subsection we will discuss some of their
properties in greater detail. All the schemes attempt to provide time-
efficient estimates of the predicted first and second order moments of the
state vector. They differ primarily in the way they approximate these
moments. The ensemble approach tries to make an exact propagation at
the cost of an estimate that may be significantly influenced by stochastic
errors due to slow convergence of the ensemble estimate (proportional
to 1/√q). On the other hand, the RRSQRT KF deliberately introduces
a bias in both the first and second order moments, but eliminates the
stochastic error.

In the EnKF stochastic errors are introduced in both first and second
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order moments, but when all assumptions are valid it provides an unbi-
ased and asymptotically efficient estimate. The CEnKF maintains the
stochastic error in the error covariance propagation. The state estimate
inherits this stochastic error component through the update, but on top
it has a bias from its first order approximation of the dynamics provided
by the central forecast.

The state and its associated covariance estimate are biased in the RRSQRT
KF because of the first order Taylor series truncation. A second or-
der truncation would introduce an additional term in the estimate of
the mean state, but not otherwise affect the error covariance estimate,
(Verlaan & Heemink 2001). Furthermore, the error covariance has a
truncation error originating from the eigenvalue decomposition and re-
duction. Generally, the RRSQRT will underestimate the model error
covariance for correctly specified Qi and thus provide a state estimate
closer to the model solution than the optimal estimate. However, there
is no stochastic error in this scheme.

The various Kalman filter algorithms generally attempt to minimise the
variance assuming no bias, (Dee & da Silva 1998). However, a bias, b,
can enter the state estimate either through a bias in the system error or
through non-linearities in the model operator in schemes using central
forecasts such as RRSQRT KF and CEnKF. In this case the optimal
estimator in a minimal prediction error sense must be calculated by using
Pf +bbT instead of Pf in the BLUE estimator, Eqs. (14) and (15), and
thus the error covariance estimate provided by the ∞-EnKF is no longer
optimal. Alternatively, the filter can estimate the bias by augmenting
the state with the bias terms. The bias is propagated by a persistence
model or a long memory auto regressive model. For a properly selected
A in Eq. (4) this is exactly what the AR(1) noise description does under
the assumption of all bias coming from the forcing term (Ignagni 1990).
Thus all filters accommodate bias correction in the forcing.

The reaction time of the bias correction is determined by the relative sizes
of the elements in Ri and Qi. If Qi is comparatively large, the state will
be updated to fit the measurements rather closely where available and
simultaneously update all other state variables according to the assumed
correlation structure of the model error and its subsequent propagation
throughout the model domain. Thus the imposed error structure in Qi
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is of prime importance. If the correlation between data rich and data
sparse regions are poorly estimated, significant errors can be introduced
into data sparse regions. For a comparatively small Qi there will be
more trust in the model and the state estimate will move slowly towards
the measurements. However, a potential structural error will still be
introduced into data sparse regions albeit at a slower speed.

5 Measures of non-linearity, Gaussianity and bias

It is important to note that all schemes are imposing a number of approx-
imations in order to make the data assimilation problem manageable.
The validity of these assumptions will be case dependent for a set-up
of a model like MIKE 3. Thus, before blindly relying on the schemes,
the correctness of the underlying assumptions ought to be tested. In the
following we will discuss a number of ways to estimate the non-linearity,
Gaussianity and bias of a data assimilation algorithm.

According to (Verlaan & Heemink 2001), the general aim of a non-
linearity measure of a data assimilation system is, without the artificial
twin experiment, to assess the accuracy of the data assimilation algo-
rithm associated with the nonlinearity of a particular application. In
pursuing this goal, they developed a measure that is based on the Taylor
Series second order contribution to the propagation of the state estimate.

Here we would like to add that the accuracy of a filter is associated
with other aspects than the expected bias accumulation induced by non-
linearity, although this is an important factor in highly non-linear ap-
plications. The applicability of the BLUE estimator as being optimal
in a prediction error sense and the MAP interpretation builds on the
assumption of an unbiased and Gaussian distributed state. A non-linear
model propagator inherently violates the latter of these assumptions and
bias is only avoided in the EnKF and when using unbiased forcing.

(Verlaan & Heemink 2001) demonstrate the performance of their mea-
sure in the Burgers equation and in the Lorenz-system. Depending on
the set-up, MIKE 3 possesses dynamics that can stretch over both these
domains of non-linearity. Thus, it is of great interest to examine the
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non-linearity of a given model application in order to provide guidance
in selecting the correct filter and to obtain an indication of filter per-
formance and the accuracy of the provided error estimates. Along with
validating the underlying assumptions, non-linearity measures also help
the modeller configuring a data assimilation approach and obtaining a
better understanding of the dynamics in the particular model domain
under consideration.

Three non-linearity measures are used in the present investigation. Ver-
laan and Heemink’s NL-measure V2, and two measures based on skewness
and kurtosis respectively, s2 and k2. The first of these gives information
about the accumulation of bias introduced by the non-linearity, while
the latter two measure the instantaneous deviation from Gaussianity.
Gaussianity and linearity are closely related. In general Gaussianity im-
plies linearity whereas the opposite is only true in the case of Gaussian
distributions of the sources and the initial field. All three measures are
time varying spatial L2-norms. Based on the derivation in (Verlaan &
Heemink 2001), the V2 measure can be written as:

V2(ti) =

√

√

√

√

1

n

n
∑

j=1

(

bj(ti)

γj(ti)

)2

(31)

bj(ti) = xc
j(ti) − xj(ti) (32)

Here, n is the number of elements in the state vector and γj(ti) is stan-
dard deviation of the state estimate derived as the square root of the
diagonal elements of Pa(ti). The bias, bj(ti) is simply estimated as the
difference between the central ensemble estimate and the average ensem-
ble estimate. In the update step the EnKF scheme is used to estimate
the error covariance for both state estimates. Thus, the measure in-
cludes effects from the stochastic estimate of the error covariance and
average state estimate as well as the error introduced by the non-linear
dynamics. For a proper assessment of non-linearity, it must be assumed
that the latter is dominating, i.e. that the ensemble size is sufficiently
large. The V2-measure differs from the V measure suggested in (Verlaan
& Heemink 2001),

V (ti) =
√

bTP−1b, b = [b1, . . . , bn]T (33)

While V2 measures the bias compared to the variance, i.e. the trace of
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the error covariance matrix, the V -measure compares the bias to the full
matrix taking correlations into account.

With q still being the ensemble size, the s2-measure is simply the spatial
L2-norm of the skewness, sj(ti):

sj(ti) =
q
∑q

k=1 (xk(ti) − x̄(ti))
3

(q − 1) (q − 2) γ3
j (ti)

(34)

s2(ti) =

√

√

√

√

1

n

n
∑

j=1

(sj(ti))
2 (35)

A positive skewness expresses that the distribution has a longer tail to-
wards larger values and vice versa for a negative value. Likewise the
k2-measure is the spatial L2-norm of the kurtosis, kj(ti):

kj(ti) =
q (q + 1)

∑q
k=1 (xk(ti) − x̄(ti))

4

(q − 1) (q − 2) (q − 3) γ4
j (ti)

− 3 (q − 1)2

(q − 2) (q − 3)
(36)

k2(ti) =

√

√

√

√

1

n

n
∑

j=1

(kj(ti))
2 (37)

A positive or negative kurtosis respectively expresses that the distribu-
tion is peaked or flat relative to the Gaussian distribution.

The two latter measures are introduced in order to measure the point by
point non-Gaussianity of the ensemble distribution. Having a Gaussian
initial distribution and Gaussian sources, the non-Gaussianity is an ex-
pression of the effect of accumulated non-linearity in the modelled state.
However, the measures have both a bias and a variance due to a lim-
ited ensemble size. Keep in mind that the forcing function is part of
the model operator when employing the augmented state description.
Thus, the squared dependence between wind velocity and surface mo-
mentum transfer will introduce a skewness into the velocity components.
An important operational issue is the robustness of these measures to
the ensemble size. All three measures have an off-set that vary with en-
semble size. Further, the larger the ensemble size the smaller variance of
the measures.
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The V2 measure corresponds to a 2nd order Taylor series expansion in
the error covariance propagation. Thus, it can provide information about
the validity of the extended Kalman filter (EKF) and its size can be used
to measure the linear deviation from this EKF validity regime as long
as third and higher order moments can be neglected. The s2 and the k2

measures will provide measures of non-linearity that exceeds the point
at which the V2 measure levels out. However, their interpretation as
measures of non-linearity depends on having Gaussian system errors.
Further, measures based on higher order moments could be introduced
to measure higher order non-linearity. E.g. the deviation between the
EKF and the EnKF error covariance estimates could be applied in an
appropriate way.

Finally, a bias measure is introduced, which compares the updated model
to observations where available. The measurements should include vali-
dation stations not assimilated, since assimilation might actually increase
bias in validation stations. For every measurement, k, the bias measure,
βk, is defined as,

βk =
1

T

T
∑

i=1

yo
i,k − hi,kx

a

√

hi,kP
a
i h

T
i,k + σ2

k

(38)

T is the number of time steps. The β-measure is applicable to any run
in which a model standard deviation is estimated. Taking the L2–norm
over all available measurements, possibly divided into assimilated and
non-assimilated stations can aggregate the information of the measure
further.

6 Simulation Study

A twin test in an idealised set-up is used to demonstrate the application
of the non-linearity measures in MIKE 3. The study also investigates
the model performance in a set-up with biased forcing using different
error correlation structures to estimate the state both with and without
a long memory AR(1) error assumption. Both investigations have been
designed in order to assess the validity of filter assumptions and the
performance when they are violated. However, first attention must be
paid to the performance measures used.
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Only water level is used in the performance measures, which are as such
different from the cost function that the scheme attempts to minimise.
However water level is considered the most important forecast variable,
and it is the variable that has the largest correlations with the tidal
gauge measurements and therefore most clearly shows the strengths and
weaknesses of the various approaches. Practically all results transfer to
the velocity part of the state vector, albeit with a smaller amplitude.
Similarly, the non-linearity, non-Gaussianity and bias measures defined
in Section 5 are restricted to include only water levels as well.

A standard performance measure of data assimilation schemes is the root
mean square error (RMSE) between the true (true) and assimilating or
perturbed solutions (pert) in a twin experiment, (Verlaan & Heemink
2001), (Madsen & Cañizares 1999). It can be expressed in a way that
collapses either the temporal or the spatial dimension. In the present
paper, the following definition is used,

RMSE =
1

N

N
∑

j=1

√

√

√

√

1

T

T
∑

i=1

(ζtrue
i (j) − ζpert

i (j))2 (39)

where N is the number of water level grid points, T is the number of
time steps included in the estimate and ζ is the water level. Similarly
bias and standard deviation can be defined as,
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St.dev. =
1
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(41)
The filter theory is based on ensemble statistics, but in order to estimate
the filter performance time sampled statistics must be used. This requires
ergodicity and a sufficiently long time period for the statistics to have
acceptable accuracy.

For ergodicity to apply a basin with constant wind forcing and constant
open boundary elevation provides the basis of the test case. The basin
contains a simple horse shoe island and the initial state has a constant
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surface elevation at 0 m and is at rest. The spatial resolution is 10
kilometres and the time step is 15 minutes. The northern open boundary
has surface elevation 1.0 meter and the eastern has surface elevation 0.0
meters. The bathymetry, which is shown in Figure 1, was chosen to
mimic a typical application of MIKE 3 in shelf seas, while remaining
simple enough for fairly fast execution and ease of interpretation. In the
nonlinearity twin test, NL, the false run uses a steady 20 m/s westerly
wind, while the true run is forced by the same wind field with a realisation
of two similar AR(1) processes added to the x- and y-components of the
wind velocity, respectively. Each AR(1) process has a time constant of
one hour and 25 minutes and is forced with a Gaussian distributed white
noise with a standard deviation of 5 m/s. In the error structure twin test
case, ES, the false run is similar, but the true run uses a steady 19.8 m/s
south-westerly wind corresponding to x and y wind velocity components
equal to 14 m/s.

The model was run for 16 days and statistics were calculated during the
last 15 days. The realised wind errors (the two AR(1) processes) added
to the 20 m/s westerly wind in the true NL run had spatially averaged
standard deviations of 9.0 m/s and 9.3 m/s in the x and y directions
respectively, and maximum norms of the mean of 0.5 m/s and 0.3 m/s
with spatial averages of minus 0.01 and 0.03. This is taken to provide
a sufficiently good representation of the assumed error statistics of zero
mean and standard deviation of 9.2 m/s. Thus, any bias introduced in
the system in the NL false run must be due to nonlinearity.

Note here that it is not sufficient to work with a period much longer than
the time constant of the noise itself, since the model operator potentially
filters the input and thus transforms the characteristic time scales. This
is clearly seen when an auto-regressive noise is used, but even in the case
of direct Gaussian wind stress perturbation, the model operator performs
a filtering. In order to make sure that the time statistics are reliable, the
time average of the model output from an execution with the assumed
true run should compare well with the result of a ∞-EnKF of the false
run. For the NL true run this was successfully validated against a 1000
EnKF run without assimilation.

Measurements were extracted from four points in each of the true runs
to be assimilated into the false runs. The positions shown in Figure
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Figure 1: Test case bathymetry [m]. The black dots indicate measure-
ment positions (10 km, 160 km), (60 km, 80 km), (80 km, 10 km) and
(200 km, 30 km).

1 were chosen at boundaries, as is typically the case for tidal gauge
stations. The asymmetry of the positions suggests a similar asymmetry
in the standard deviation of the state estimate to be provided by the
assimilation schemes. The measurement positions are also chosen to
investigate the filter performance in data sparse regions as compared to
data rich regions for various error structure assumptions.

The NL-experiments were designed to provide a comparison between the
various non-linearity measures and relate these to the filter performance
of the three filters presented in Section 4. The design enables the ∞-
EnKF to provide the optimal estimate since care has been taken not to
have significant reminiscent bias in the system apart from that introduced
by the non-linearity in the schemes based on a central forecast. Thus the
relation between bias and non-linearity should stand clear. The non-
linearity is expected to increase with increasing update time intervals,
(Verlaan & Heemink 2001). Therefore, update interval (ui) is chosen as
a control parameter of non-linearity. The update interval is given in time
steps and thus the ui12 run updates the state every 12th time step or
equivalently every 3 hours. Update intervals equal to 1, 4, 8, 12, 24 and
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48 are chosen and compared to a simulation without updating.

The ES-experiments are meant to expose the importance of using the
augmented AR(1) error description in the presence of bias. More gener-
ally they highlight the performance of the Kalman filter using true and
false descriptions of the error structure and how insight can be obtained
from the bias measure. The ES false run has a clearly biased wind forc-
ing having a direction, which is turned 45 degrees. The EnKF is used to
assimilate the true results under the assumptions of biased and unbiased
wind, i.e. time constants of 0 and 106 seconds equivalent to an AR(1)
parameter α equal to 0.0 and 0.9994 respectively. This is done in com-
bination with four different spatial correlation scales of 0 km, 100 km,
495 km and 10,000 km for the wind error.

7 Results and discussion

7.1 Non-linearity (NL) experiments

7.1.1 Solution without data assimilation

In order to give an impression of the general solution of the NL true and
false run and central and ensemble forecast without assimilation, Figure
2 shows a time series of water level at the measurement point (60 km,
80 km) for each case. The ensemble run is based on 1000 ensembles. All
variability in the true run is due to a changing wind field. A rather large
variation has been imposed and the shortcomings of the false runs are
obvious. Further, the bias introduced by the central forecast stands out
clearly.

An alternative view of the false run is provided by Figures 3 and 4,
which shows the bias and standard deviation over the last 15 days for
the central forecast false run. The spatial distribution of the bias re-
flects the nonlinearity from the squared dependence of wind speed in the
momentum transfer. The distribution of the standard deviation arises
from the coloured wind error showing its peak values close to the closed
boundaries. Similar statistics are shown for a 1000 ensemble forecast in
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Figure 2: Water levels extracted at (60 km, 80 km). Grey: True run.
Black dot-dashed: Central forecast false run. Black: Ensemble forecast
false run.
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Figures 5 and 6. Note the reduction in bias, while the standard deviation
remains literally unaltered.

Figure 3: Central forecast NL false run water level bias [m].

7.1.2 General filter performance

The assimilation schemes all improve the rather poor false solution sig-
nificantly. Figures 7 to 10 show the bias and standard deviation for the
RRSQRT with 40 leading eigenvalues and EnKF based on 1000 ensem-
bles, respectively, and should be compared to Figures 3 to 6. In both
cases the state was updated at every time step, i.e. ui = 1. An obvious
error reduction is seen in either case, which proves the efficiency of the
assimilation schemes. Figure 11 shows the standard deviation estimated
by the EnKF averaged over the last 15 days. Ensuringly, the structure
of this estimate is seen to correspond closely to the actual standard devi-
ation in Figure 10. Neither of the schemes have a significant bias. Note
that ui = 1 is the most linear of the NL model runs. The good esti-
mation of standard deviation generalises to all assimilation runs. Table
1 sums up the performance of the schemes as estimated by the RMSE
between the true run and each run with false forcing with assimilation
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Figure 4: Central forecast NL false run water level standard deviation
[m].

Figure 5: 1000 ensemble forecast NL false run water level bias [m].
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Figure 6: 1000 ensemble forecast NL false run water level standard de-
viation [m].

Figure 7: Forecast NL false run water level bias [m] using the RRSQRT.
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Figure 8: Forecast NL false run water level standard deviation [m] using
RRSQRT.

Figure 9: Forecast NL false run water level bias [m] using the 1000 EnKF.
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Figure 10: Forecast NL false run water level standard deviation [m] using
1000 EnKF.

Figure 11: Estimated water level standard deviation [m] by the 1000
EnKF.
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RMSE ui1 ui4 ui8 ui12 ui24 ui48 ui-∞
1000 EnKF 0.10 0.12 0.17 0.22 0.27 0.31 0.34

100 EnKF 0.10 0.12 0.17 0.22 0.27 0.32 0.34

40 RRSQRT 0.12 0.13 0.19 0.24 0.30 0.34 0.36

1000 CEnKF 0.10 0.12 0.17 0.22 0.28 0.33 0.36

100 CEnKF 0.10 0.13 0.18 0.23 0.29 0.33 0.36

No assim. 0.36 0.36 0.36 0.36 0.36 0.36 0.36

Table 1: Root mean square error (RMSE) in the NL assimilation runs
for varying update interval (ui) and assimilation scheme. Runs with no
update are denoted ui∞.

and varying update interval and a run without assimilation. The good
filter performance already demonstrated in the figures generalises to all
cases. The larger the update interval the worse performance, as expected
when longer periods of time with possible drift away from the true state
is allowed. An EnKF with 100 ensembles is also included in the present
study and has approximately the same execution time as the RRSQRT
KF with 40 leading eigenvalues. These numbers have been shown by
(Madsen & Cañizares 1999) to be sufficient in the kind of system under
consideration. In order to assess the stochastic variation of the EnKF,
five realisations of the 100 EnKF have been calculated. Only one of these
is included in Table 1, but the variability of the RMSE is generally less
than 0.005.

7.1.3 Assessment of non-linearity and non-Gaussianity

Consider the bias in the central forecast provided by CEnKF versus the
EnKF based forecast with no assimilation. Figure 3 and 5 show maps
of their time averaged bias for 1000 ensembles in the extreme case of
no updates. Table 2 shows the spatial L2-norm of the time averaged
bias for the range of different runs with false forcing and using the var-
ious schemes and update intervals. It is clear how the non-linear model
equation introduces a model bias as the update interval increases in the
schemes relying on central forecasts, RRSQRT and CEnKF, whereas the
ensemble forecast has a negligible bias. This behaviour is well captured
by the nonlinearity measure, V2, defined in Section 5. As can be seen in
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Bias ui1 ui4 ui8 ui12 ui24 ui48 ui-∞
1000 EnKF 0.01 0.01 0.01 0.01 0.01 0.02 0.01

100 EnKF 0.02 0.01 0.01 0.02 0.02 0.02 0.01

40 RRSQRT 0.01 0.01 0.02 0.04 0.07 0.11 0.13

1000 CEnKF 0.01 0.01 0.03 0.04 0.07 0.11 0.13

100 CEnKF 0.01 0.02 0.02 0.04 0.07 0.11 0.13

No assim. 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Table 2: Spatial L2-norm of the bias in the NL assimilation runs for
varying update interval (ui) and assimilation scheme. Runs with no
update are denoted ui∞.

Table 3 the effect of changing the update interval is consistently to in-
crease V2. This is a consequence of the bias demonstrated in Table 2. As
assumed, the non-linearities in the model operator introduces progres-
sively more bias in the system as the update interval (ui) is increased.
However even when no assimilation is used at all, the V2 non-linearity
measures remain small. The main source of non-linearity in the model is
the conversion of wind velocity to wind stress in the interplay between
the augmented and the model part of the state vector. Thus, the present
set-up is not highly non-linear, but on the other hand non-linearities are
not negligible either. The s2 and k2 measures in Table 3 show a similar

NL-measure ui1 ui4 ui8 ui12 ui24 ui48 ui-∞
V 2 0.10 0.12 0.14 0.17 0.22 0.29 0.33

s2 0.21 0.25 0.35 0.40 0.49 0.54 0.60

k2 0.37 0.43 0.52 0.56 0.61 0.64 0.69

Table 3: Non-linearity measures for the NL assimilation runs for varying
update interval (ui). Runs with no update are denoted ui∞.

dependence on update interval and thus provide interesting complimen-
tary measures. While describing the non-linearity they simultaneously
provide an indicator of non-Gaussianity and thus the reliability of inter-
preting the results as MAP-estimates. For s2 and k2 the variability with
update interval is somewhat different from V2. They increase rather
steadily with update interval for the chosen intervals and even in the
most linear case (ui=1) the solution seems to be non-Gaussian. There-
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fore, even the 1000 ensemble estimate does not give the state with the
maximum a-posteriori probability, but rather the state estimate with the
lowest mean square error using linear and unbiased estimators.

All three measures are merely stochastic realisation and their variability
should be assessed. First of all, the measures obviously vary with en-
semble size. This is to be expected since they rely on sample estimates
of second and higher order moments. However, for a given ensemble size
there might still be a stochastic variability, due to limited ensemble size.
Five realisations of 100 EnKF have been used to assess this variability. In
all cases, the maximum difference is less than 0.02 in the RMSE estimate,
0.02 in V2, 0.03 in s2 and 0.06 in k2. Thus the single run estimates can
be considered sufficiently accurate to indicate the relative non-linearity
and Gaussianity of various data assimilating set-ups.

Bias has been introduced as a product and measure of non-linearity,
but simultaneously it is the source of trouble for schemes based on the
extended Kalman filter, such as the RRSQRT, in strongly non-linear
applications. In (Segers et al. 2000) a second order RRSQRT filter was
introduced, which handles significantly more non-linear situations. How-
ever, the only enhancement as compared to the regular RRSQRT filter is
to estimate and correct the bias introduced in the state estimate by non-
linearities. The forcing induced bias, which can have a similar impact
on the filter performance, is most often not considered in literature, but
much more attention needs to be paid to this aspect for operational use of
Kalman filtering techniques. The next part of the discussion attempts to
examine this bias source and how the implemented schemes can handle
it in the case of true as well as false error structure assumptions.

7.2 Error structure (ES) experiments

7.2.1 Solution without data assimilation

Both the true and the false ES runs reach a steady state rather fast
and thus the false run error is essentially determined by the bias, which
is shown in Figure 12. The bias is created by a constant difference in
wind direction throughout the domain. Thus, the error source is known
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to be a bias in the wind velocity with infinite spatial correlation. The
bias is evident and has an L2-norm of 0.27 meters. However, the bias
varies throughout the domain. In real applications the bias can only
be estimated in measurement points. Thus, sufficient data coverage is
required for a proper assessment of bias. The bias in Figure 12 does
not necessarily suggest a spatially constant bias to the untrained eye.
Only with the proper physical insight and sufficient sampling, this can
be anticipated.

Figure 12: Forecast ES false run water level bias [m].

By running one of the data assimilation schemes with no updates, the
model standard deviation and thus the β-measure can be estimated.
Assuming the entire field to be known, the L2-norm of β is 1.8 and if we
restrict ourselves to the measurement points the corresponding value is
also 1.8, but obviously a different set of points could yield a substantially
different value. Four validation points were selected: (10 km, 80 km),
(160 km, 10 km), (130 km, 90 km) and (190 km, 190 km). Based on these
the L2-norm of β is 2.1. In all cases the measure shows that the model-
measurement difference is significantly larger than its standard deviation.
Knowing that the measurements are unbiased in this idealised test case,
we can conclude that the model has a bias.
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Figure 13: Forecast ES false run water level bias [m] using 100 EnkF
with a time constant of 106 and a spatial correlation scale of 10,000 km.

7.2.2 Solution with data assimilation

The biased error structure can be cast within the assimilation schemes
presented in Section 4 and thus these ought to give a very good esti-
mation of the bias. This is demonstrated in Figure 13 showing the bias
from the 100 EnKF scheme correctly assuming a biased error with a very
high spatial correlation of 10.000 kilometres. Alternatively, if the error
is assumed to be white, a bias will always remain as shown in Figure 14,
still assuming a spatial correlation of 10.000 kilometres. The results are
summarised in Tables 4 and 5, showing the L2-norm of bias and β for
varying spatial correlation lengths with a white noise or bias assumption
corresponding to a time constant of zero and 106 seconds, respectively.
The effectiveness in bias correction is seen to clearly depend on the va-
lidity of the imposed error assumptions. The assimilation runs assuming
coloured and spatially correlated noise leave a bias, which is smaller than
the estimated standard deviation of the model-measurement difference.
Since the model believes it is correcting an error in all assimilation runs,
this standard deviation is rather quickly dominated by the measurement
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standard deviation of 0.05 metres. However, for the assimilation runs
assuming white noise the resulting bias is only barely within the bounds
of the uncertainty even for the correct spatial correlation.

Bias 0 km 100 km 495 km 10,000 km

0 s. 0.25 m 0.13 m 0.08 m 0.05 m

106 s. 0.17 m 0.04 m 0.01 m 0.00 m

Table 4: The L2-norm of the bias. The time constant and the spatial
correlation scale vary along the vertical and horizontal axes respectively.
All runs are based on the 100 EnKF scheme.

β 0 km 100 km 495 km 10,000 km

0 s. 4.13 1.63 1.12 0.84

106 s. 3.03 0.64 0.21 0.06

Table 5: The L2-norm of β. The time constant and the spatial correlation
scale vary along the vertical and horizontal axes respectively. All runs
are based on the 100 EnKF scheme.

Applying a wrong spatial correlation scale can potentially increase the
bias in data sparse areas as demonstrated in Figure 15, which shows the
bias for a spatial correlation scale of 0 kilometres and a time constant of
106 seconds. Compared to Figure 12 there is an evident bias increase in
the data sparse bay of the horse shoe island.

All together, these experiments show the importance of treating the error
structure correctly. Making false assumptions can severely affect the fil-
ter performance. Both in the deterministic case and when employing an
assimilation scheme the bias in measurement points ought to be exam-
ined. The β-measure can be used to indicate whether the bias is within
the range of uncertainty for every point of interest.
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Figure 14: Forecast ES false run water level bias [m] using 100 EnkF
with a time constant of zero and a spatial correlation scale of 10,000 km.

8 Summary and conclusions

A stochastic model of the physical system consisting of hydrodynamic
flow in coastal and continental shelf seas has been formulated. This
stochastic model and observations are the foundation of providing sta-
tistically based estimates of the oceanic state. However, in order to
obtain such estimates a number of assumptions must be imposed. A
nonlinearity measure, two measures for non-Gaussianity and a bias mea-
sure have been presented with the aim of providing means of assessing
the validity of these assumptions.

The non-linearity measure has been demonstrated to vary consistently
with the non-linearity of the set-up. The EnKF handles the nonlinearity
well, leaving only a minor bias, whereas procedures based on central fore-
cast have significant biases for more non-linear set-ups. The correspon-
dence between the nonlinearity and nonGaussianity has been verified.
The MAP interpretation of the estimated state must be discredited in
the case of strong nonlinearities or lack of Gaussian noise input. Finally,
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Figure 15: Forecast ES false run water level bias [m] using 100 EnkF
with a time constant of 106 and a spatial correlation scale of 0 km.

it has been demonstrated how wrong error structure assumptions may
severely hamper the results. This is particularly true for data sparse
regions.

For the simple test case examined in this paper, the wind driven coastal
circulation does not require data assimilation schemes, which handles
strongly non-linear dynamics for assimilation of tidal gauge data. This
might not be the case for all bathymetries and thus it is recommended to
employ non-linearity measures to assess the applicability of the various
schemes. The non-Gaussianity measures provide complimentary mea-
sures that simultaneously guides the user to a proper interpretation of
the results. In many real case applications, the bias introduced by non-
linearity is not the dominating source of bias. Rather the forcing induced
bias will often be larger. A general bias measure, which is easy to calcu-
late, has been formulated. This measure indicates the presence of bias,
but not whether the source is model non-linearity or biased forcing. How-
ever, in combination with the non-linearity measures, the contribution
from each can be approximately assessed. Hence work can proceed to
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take the bias properly into account in the data assimilation scheme. In
any case, the presence of bias indicates that the filter is working under
the wrong assumptions and therefore is not optimal in a least square
sense. Another prerequisite of optimality of the estimator is a correct
error structure description. It is demonstrated that the specification of
a correct error structure is important in practical application and wrong
assumptions can induce severe errors in data sparse regions.
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Cañizares, R., Madsen, H., Jensen, H. R. & Vested, H. J. (2001), ‘De-
velopments in operational shelf sea modelling in Danish waters’,
Estuarine, Coastal and Shelf Science 53, 595–605.

Christakos, G. (2002), ‘On the assimilation of uncertain physical knowl-
edge bases: Bayesian and non-bayesian techniques’, Advances in
Water Resources 25, 1257–1274.

Chui, C. K. & Chen, G. (1991), Kalman filter with real-time applications,
Vol. 17 of Springer Series in information sciences, Springer-Verlag.

Cohn, S. E. & Todling, R. (1996), ‘Approximate data assimilation
schemes for stable and unstable dynamics’, Journal of Meteorologi-
cal Society of Japan 74, 63–75.

Dee, D. P. (1991), ‘Simplification of the Kalman filter for meteorological
data assimilation’, Q.J.R. Meteorological Society 117, 365–384.

Dee, D. P. (1995), ‘On-line estimation of error covariance parame-
ters for atmospheric data assimilation’, Monthly Weather Review
123, 1128–1145.

Dee, D. P. & da Silva, A. M. (1998), ‘Data assimilation in the presence
of forecast bias’, Q.J.R. Meteorological Society 124, 269–296.

DHI (2001), MIKE 3 estuarine and coastal hydrodynamics and oceanog-
raphy, DHI Water & Environment.

Erichsen, A. C. & Rasch, P. S. (2002), Two- and three-dimensional model
system predicting the water quality of tomorrow, in M. L. Spauld-
ing, ed., ‘Proceedings of the seventh international conference on es-
tuarine and coastal modeling’, American Society of Civil Engineers,
American Society of Civil Engineers, pp. 165–184.



On the treatment of non-linearity and bias 107

Evensen, G. (1994), ‘Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
statistics’, J. Geoph. Res. 99(C5), 10143–10162.

Fox, A. D., Haines, K., de Cuevas, B. A. & Webb, D. J. (2000), ‘Al-
timeter assimilation in the OCCAM global model. Part i: A twin
experiment’, Journal of Marina Systems 26, 303–322.

Fukumori, I. & Malanotte-Rizzoli, P. (1995), ‘An approximate Kalman
filter for ocean data assimilation; an example with an idealised Gulf
Stream model’, J. Geoph. Res. 100(C4), 6777–6793.

Fukumori, I., Raghunath, R., Fu, L.-L. & Chao, Y. (1999), ‘Assimilation
of TOPEX/Poseidon altimeter data into a global ocean circulation
model: How good are the results?’, J. Geoph. Res. 104(C11), 25647–
25665.

Fukumori, I., Raghunath, R., Wunsch, C. & Haidvogel, D. B. (1993),
‘Assimilation of sea surface topography into an ocean circulation
model using a steady-state smoother’, Journal of Physical Oceanog-
raphy 23, 1831–1855.

Heemink, A. W. (1986), Storm surge prediction using Kalman filtering,
PhD thesis, Twente University of Technology.

Heemink, A. W., Bolding, K. & Verlaan, M. (1997), ‘Storm surge fore-
casting using Kalman filtering’, Journal of Meteorological Society of
Japan 75(1B), 305–318.

Ignagni, M. B. (1990), ‘Separate bias Kalman estimator with bias state
noise’, IEEE Transactions on Automatic Control 35, 338–341.

Jazwinski, A. H. (1970), Stochastic Processes and filtering theory, Vol. 64
of Mathematics in Science and Engineering, Academic Press.
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Towards an operational data assimilation system for a
three-dimensional hydrodynamic model

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, and Henrik Madsen2

Abstract

A data assimilation system is developed for both a three-
dimensional and a two-dimensional hydrodynamic model for bays,
estuaries, coastal areas and shelf seas. A sequential time vary-
ing assimilation method based on the Kalman filter to assimilate
water level measurements is implemented. The method utilises
an ensemble Kalman filter based on a Monte Carlo approach for
propagation of model errors (EnKF). Further approximations,
which will speed up the calculations and thus enable operational
use of the system, are considered. A simple approach, using time
averaged Kalman gains from the time varying filter, is imple-
mented (Steady Filter). The state considered in the approaches
consists of the two-dimensional fields of water levels and hori-
zontal depth averaged velocities in each grid point. The three
dimensional horizontal velocity field is updated by using a con-
stant predefined profile constrained by maintenance of dynamical
balance. The idea of this is to reduce the computational costs
by using a simplified one-layer dynamics in the two-dimensional
model to propagate the error-covariance matrix.

1 Introduction

Reliable data assimilation methodologies, applicable for low budget com-
puter facilities, are consultancy and management needs of tomorrow.
During the past decade data assimilation has emerged in the 3D hydro-
dynamic modelling community and has been developed into applicable
tools for research in coastal and shelf seas. However, only for models that
have very low computational costs, is data assimilation usable in prac-
tical operational modelling systems without requiring high performance
computing (HPC) facilities.
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2Informatics and Mathematical Modelling, Technical University of Denmark, DK-
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For 2D models on the other hand, Kalman filter based data assimilation
has been demonstrated to be applicable even for more advanced set-ups
(Cañizares et al. 2001). Here, an operational approach based on physi-
cally justified error assumptions was devised. A similar approach is also
applicable in 3D models, (Sørensen, Madsen & Madsen 2001), but its use
is time consuming and has large memory requirements. The price paid
in the 2D models is the lack of vertical structure. This paper presents an
operational approach to Kalman filter based data assimilation in a 3D
model run, by using physical information from the 2D model in the as-
similation of data in the 3D model. This makes the set-up of the system
endurable and maintains the vertical structure.

2 The hydrodynamic models

The two hydrodynamic models used in the present study, MIKE 21 and
MIKE 3 developed at DHI Water and Environment, are applicable in
coastal and continental shelf seas. In this study both models are used
assuming constant density.

MIKE 21 is a 2D depth averaged model that solves for hydrodynamic flow
on a rotating sphere. MIKE 3 solves the same problem, but includes full
vertical structure in the calculations. Both models have the same time
stepping scheme and horizontal grid including a dynamic two-way nesting
facility and can thus be executed on the same bathymetry and forcing
inputs. However, the models have lived each their lives and separate
codes exist. This means that small differences exist, e.g. in the details
of the bottom drag and turbulence closure formulation. Further, the
algorithms are optimised after different criteria, which together with a
change in computer precision makes MIKE 21 a factor 4 times faster
than MIKE 3 in a one-layer setting for the particular set-up of this paper.
Similarly, MIKE 21 is 8 times faster than MIKE 3 in a 10-layer set-up.

Both MIKE 3 and MIKE 21 contain surface elevation, ζ, and depth av-
eraged velocity, (Ux,Uy) in their state representation. In MIKE 3 the
full 3D velocity field together with surface elevation constitute the state
vector needed for the model to be uniquely defined. However, if a cor-
rection of the depth averaged velocity is needed, then this correction
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can be distributed in the vertical by assuming a uniform distribution.
This maintains the vertical structure but shifts the mean. The vertical
velocity is calculated from the hydrostatic balance equation. Following
this approach a sub space of the state vector in MIKE 3 that contains
information about the variability is (ζ, Ux,Uy). If an average estimate of
the vertical structure is available, a correction in this sub space can be
redistributed to the full MIKE 3 state vector by means of the rule above.

The MIKE models can be expressed as,

xM (ti+1) = M(xM (ti),u(ti))

where ti is time indexed by i, xM is the model state vector and u is the
external forcing in terms of open boundary conditions and meteorological
forcing.

3 The state estimator

Model and measurements give two independent estimates of the oceanic
state. Both are uncertain and are thus best described as stochastic vari-
ables. Assuming the distribution of both the model and the observation
are known, a best linear unbiased estimate (BLUE) of the model state
can be achieved. This is the estimator used in the Kalman filter and
is carried over to state estimation in non-linear models as well. Let the
observational vector, yo

i , at time ti have a linear relation to the state
vector and have additive noise,

yo
i = HixM (ti) + εi

where εi is an i.i.d. random variable with zero mean and covariance
matrix, Ri. Further, assume the error covariance matrix, Pi, of xM (ti)
to be known. Then at a given time step, the BLUE estimate of the
system state, xa(ti), is,

xa(ti) = xM (ti) + Ki(y
o
i − HixM (ti))

Ki = PiH
T
i

[

HiPiH
T
i + Ri

]−1
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4 The Ensemble and Steady Kalman filter

The main bottleneck in large scale Kalman filter based data assimilation
techniques is the estimation of the model error covariance, Pi, which
needs to be propagated in time. Its dimension is n × n, where n is the
size of the state vector, which typically is of the order 105-107. The
main feature of the Ensemble Kalman filter (Evensen 1994) is to es-
timate P from an ensemble of q model states, thus reducing the time
requirements by a factor 2n/q, while simultaneously capturing the full
non-linear propagation of the system state probability density function.
In practical applications q of the order 102 is sufficient to provide good
results.

When propagating the ensemble, a model noise assumption needs to be
made. In the present set-up open boundary level forcing and wind forcing
are assumed to be the dominant sources of uncertainty and thus other
sources are ignored or rather assumed embedded in the modelled errors.
An outline of the implemented ensemble Kalman filter can be found in
(Madsen & Cañizares 1999) and (Sørensen et al. 2001).

If the Kalman gains, Ki, based on the time varying Ensemble Kalman
filter approach shows fairly little time variation, it is tempting to time
average the gains over a sufficiently long period and then use the constant
Kalman gains in the future, which completely omits the error covariance
propagation (Cañizares et al. 2001). This is how the Steady Kalman
Filter works. However, the constant gains need to be generated by a
time varying filter, thus still requiring these runs to be feasible for the
system to be set up.

5 Dynamical approximations

If it is assumed that the main errors in velocity and surface elevations are
barotropic, then MIKE 21 might be as good as MIKE 3 at modelling the
error propagation all though it lacks the vertical representation of the
complete flow field. Thus, steady Kalman gain vectors can be obtained
from a MIKE 21 simulation which is significantly faster than the MIKE
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3 because of the simpler dynamics.

Seen in the light of error covariance propagation, the idea of using En-
semble Kalman filter based MIKE 21 gains in MIKE 3, combines rank
reduction and dynamical approximation in the generation of the Steady
gains and applies the cheap steady assumption for operational use.

6 Experimental design

The purpose of the experimental design is to demonstrate the applica-
bility of using Kalman gains derived from a MIKE 21 run to assimilate
water level in MIKE 3 in an idealised bay set-up. The basic idea is to
perform a twin test in a well understood idealised bay. First, the set-up
for the MIKE 3 base run will be presented. Thereafter, some realistic
errors are incorporated to mimic the situation encountered in reality,
where both wind and boundary forcing have non gaussian errors (per-
turbed runs). MIKE 21 is similarly executed in a set-up with the realistic
errors. Finally, the different assimilation runs in the study are described.

6.1 Base run

The bathymetry of the idealised bay, in which the twin test is situated,
is shown in Figure 1. It covers a 200 km x 200 km area, has a linear
variation from land to 100 meters depth and an open northern boundary.
MIKE 3 was run with a 12-hour period and one meter amplitude sinu-
soidal level forcing at the boundary and a west to east moving cyclone
with maximum wind speeds of about 35 m/s. The solution is a cycloni-
cally moving Kelvin wave perturbed by the cyclone. The model has a
10 km x 10 km horizontal resolution and a uniform 10 meter vertical
resolution. Each time step is 15 minutes. Thus, it is a fast model to run
and thus allows for many repetitions of even quite expensive assimilation
schemes.

Time series from the base run were extracted from the three points indi-
cated in Figure 1. The base run is taken to be the truth and these three
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Figure 1: Idealised bay bathymetry. The three dots indicate measure-
ment positions, (1,16), (8,1) and (20,12) counter clockwise.

Figure 2: Surface elevation in (1,16) for the base run (solid) and the
perturbed run (dashed).
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time series will be considered observations and are the only information
from the true run in the perturbed runs.

6.2 Perturbed runs

In the perturbed runs all settings are the same apart from the bound-
ary and wind forcing. The sinusoidal boundary forcing has a one-hour
phase lag and the cyclone has a time varying error in both strength and
direction. This yields a quite severely distorted solution. To exemplify,
Figure 2 shows the time series of surface elevation for the base and the
perturbed set-up of MIKE 3.

6.3 Description of runs

1. Base run. MIKE 3 with base forcing. This run is taken as the
truth. Run (3), (4), (6), (7) and (8) assimilates the three time
series of surface elevation extracted from the base run.

2. MIKE 3 perturbed run. MIKE 3 with perturbed forcing and no
data assimilation.

3. MIKE 3 Ensemble Kalman filter. MIKE 3 with perturbed forcing
and data assimilation. The ensemble Kalman filter is used with
100 ensembles.

4. MIKE 3 Steady Kalman filter. MIKE 3 with perturbed forcing and
data assimilation. The steady Kalman filter is used with average
Kalman gain matrices calculated from (3).

5. MIKE 21 perturbed run. MIKE 21 with perturbed forcing and no
data assimilation.

6. MIKE 21 Ensemble Kalman filter. MIKE 21 with perturbed forcing
and data assimilation. The ensemble Kalman filter is used with 100
ensembles.

7. MIKE 21 Steady Kalman filter. MIKE 21 with perturbed forc-
ing and data assimilation. The steady Kalman filter is used with
average Kalman gain matrices calculated from (6).
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8. MIKE 3 with Steady Kalman filter based on MIKE 21. MIKE 3
with perturbed forcing and data assimilation. The steady Kalman
filter is used with average Kalman gain matrices calculated from
(6).

7 Results and discussion

Since the entire state of the truth is known, the performance of the
various runs can be measured by a root mean square error estimate
calculated for the last 24 hours and averaged over the entire domain,

RMSE = 1
NWater

∑

{j,k |pos(j,k) is water}
1
N

N
∑

i=1
(ζtrue

i (j, k) − ζpert
i (j, k))2

NWater is the number of water points in the domain and N is the num-
ber of time steps over the last 24 hours. Only the surface elevation is
included. The superscript true indicates base run water levels and super-
script pert indicates the various perturbed run water levels. The RMSE
measure captures both the variance and the bias. The results for run (2)
to (8) are shown in Figure 3.

Figure 3: RMSE’s for run (2) – run (8). Values are shown as well.

A number of remarks need to be made. As expected the RMSE of run
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(2) and run (5), with no data assimilation is significantly larger than in
all other runs. Run (5) on the MIKE 21 engine gives a smaller RMSE
than the similar run (2) on the MIKE 3 engine. This is mainly due to
a smaller sensitivity to the perturbations. The Ensemble Kalman filter
runs, (3) and (6) both give significant reductions in RMSE of surface
elevation. The Steady runs, (4) and (7) both maintain or even decrease
this low value despite the fact that further approximations are made.
This is due to the fact that the optimal gains in the test case actually
are quite constant in time. Hence, the steady formulation acts to stabilise
the filter, by reducing the stochastic noise through the time averaging.

Finally, pay attention to run (8). This run is the cheapest of all the 3D
assimilation runs and yet it gives an equally low RMSE, while estimating
the full three-dimensional solution. Using MIKE 21 to generate the gains
makes the approach operational, since it only requires about 1/10 of the
time needed in MIKE 3. The set-up of any operational data assimilation
system requires some tuning and occasional recalculation. Hence, the
factor of 10 becomes even more essential.

MIKE 21 and MIKE 3 do not in general produce the same results be-
cause of their somewhat different formulations. It is interesting to note,
however, that the sensitivity to the forcing, which is expressed in the
Kalman gains shows sufficient similarity for the MIKE 21 gains to be
applied in the MIKE 3 assimilation scheme. Further tests are required
to see whether this carries over to shallow water applications with more
complicated bathymetries where the model differences play a more im-
portant role.

8 Conclusions

A 2D model has been used to calculate Kalman gains that relate a dif-
ference between model and measurement estimate of surface elevation at
a given point to a correction of surface elevation and depth integrated
velocities at all points in the model domain. These have been averaged
in time with the purpose of using them in an assimilation scheme that
assumes time constant gains. A scheme for extrapolating these gains to
the partly similar variables of a 3D model has been implemented based
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on the assumption of a barotropic error. Finally, it was assumed that
a 2D model together with the extrapolation scheme gives a sufficiently
good representation of the 3D model Kalman gains. The entire combined
approach gives very good results for a simple bay test case. These results
are promising for application in complicated state-of-the-art operational
systems of coastal seas without the use of HPC-facilities. The approach
can thus be applied for a range of low-budget purposes. Future work
will test the applicability of the approach in an operational system of
the North Sea/Baltic Sea system.
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Data assimilation in an operational forecast system of the
North Sea - Baltic Sea system

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, Henrik Madsen2,
Henrik René Jensen1, Peter Skovgaard Rasch1, Anders C. Erichsen1,

and Karl Iver Dahl-Madsen1

Abstract

The operational service the ”Water Forecast” gives daily forecasts
for the North Sea, Baltic Sea and interconnecting waters. The
basic computational units include a 3D hydrodynamic module,
a 3D environmental module and a wave module. An ongoing
development is focused on data assimilation of tidal gauge and
SST data. A cost-effective Kalman filter based procedure that
uses a regularised constant Kalman gain is applied for the tidal
gauge data. For assimilation of SST data a simplified Kalman
filter procedure is adopted. The combined approach gives an
acceptable computational overhead for operational applications.
Performance of the modelling system is evaluated.

1 Introduction

During the last decades a number of complimentary developments within
oceanographic modelling and monitoring have been taking place. Numer-
ical modelling has advanced to the stage where operational systems are
now run on a routine basis, predicting an ever-increasing number of phys-
ical and biogeochemical properties (Pinardi & Woods 2002), (Erichsen
& Rasch 2002). Simultaneously, a growing amount of observations of a
wide range of these properties in the shelf and coastal seas are becom-
ing available in real or near-real time. Hence with the advance of data
assimilation schemes suitable for shelf and coastal seas, the potential of
an integrated approach has become clear. It is now possible to estimate
the state of the sea as a composite of on-line observations and model
results through the use of data assimilation techniques. In this way, the
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relatively precise but sparse data can in essence be interpolated by the
theoretical knowledge embodied in the physically consistent model.

DHI Water and Environment is operating a forecast system of the North
Sea – Baltic Sea system called the Water Forecast (WF). This contri-
bution demonstrates the application of cost-effective data assimilation
schemes for assimilation of tidal gauge and SST data into the high-
resolution model, which provides the computational component of the
WF.

2 The Water Forecast operational system

In 1999 the development of an end-user oriented web based operational
modelling system of the North Sea - Baltic Sea was initiated at DHI
Water & Environment, (Jensen, Møller & Rasmussen 2002). Since June
2001, the system has produced operational forecasts. The model area is
depicted in Figure 1. It includes two open boundaries in the North Sea
and stretches to cover the entire Baltic Sea. An area of particular interest
is defined, which surrounds Denmark and southern Sweden as shown in
Figure 1. The basic computational engine is composed of a two-way
dynamically nested 3D baroclinic hydrodynamic module (MIKE 3 HD),
a 3D environmental module (MIKE 3 EU) as well as a 2D wave module
(MIKE 21 SW). Every 12 hours a 4 days forecast is provided, predicting
a range of physical and environmental parameters. These include water
level, currents, salinity, temperature, wave height, period, spectra and
swell as well as chlorophyll-a, oxygen and algae growth. A thorough
description of the system can be found in (Erichsen & Rasch 2002).

3 The data

In principle all data, which can be assimilated at an acceptable cost and
yet provide an improvement to the ocean state estimation skill, ought
to be considered. For the WF system two data sources are considered
initially: Tidal gauge water level observations and satellite sea surface
temperature (SST) observations from the Ocean Pathfinder AVHRR sen-
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Figure 1: The WF model area. The dotted line between Scotland and
Norway indicates an open boundary whereas the dashed square shows
the area in focus.
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sors.

3.1 Tidal gauge data

Tidal data from 14 stations in the focus area have been selected for
the present study. Eight of these will be assimilated and six used for
validation. Figure 2 shows the positions of these stations and whether
each station acts as a measurement (M) or a validation (V) station. Data
are provided from the Danish Meteorological Institute and the Danish
Coastal Authority.

Figure 2: Tidal gauge measurement (M) and validation (V) stations.

3.2 SST data

The Pathfinder AVHRR SST data was obtained from Collecte Localisa-
tion Satellites (CLS), who has pre-processed the data into 10-day interval
products as part of the EU funded project, GANES. For the purpose of
assimilation it is essential to notice that the SST fields are derived from
composit images and are therefore not snapshots in time. Data from
22/9, 2/10 and 12/10 1994 was used for assimilation. The SST field
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from the 22/10 1994 was used for validation. Figure 3 shows the data
coverage by the SST data. Further, all available temperature data from
the ICES database in the given period was used for validation. These
are highly sparse in time and space. Their spatial distribution is shown
in Figure 4.

4 The data assimilation approach

The final aim is to utilise data assimilation techniques that can have a
widespread use in engineering and scientific applications and thus it is
essential to develop schemes, which are both cost-effective and robust.
We define this as model execution time and memory requirement less
than five times that of a pure model run and preferably below a factor
of two. The following two approaches comply with these constraints
while retaining a robustness and effectiveness caused by the advanced
data assimilation approaches on which they build and the corresponding
physical error assumptions. Thus both are applicable for operational
systems.

4.1 Tidal gauge assimilation

The implemented assimilation scheme for tidal gauge data is a hybrid
scheme that combines the ensemble Kalman filter approach (Evensen
1994) with a barotropic dynamical approximation (Sørensen et al. 2002),
a steady gain assumption (Cañizares et al. 2001) and a regularisation of
the gain matrix. A one-layer barotropic version of the three-dimensional
hydrodynamic model is run over a three days period with an ensemble
Kalman filter using 100 ensembles. Errors are assumed to originate solely
from the open boundaries and the wind field. The time varying Kalman
gain is averaged over the last two days of the run and saved for application
in the steady Kalman filter approach. This two-dimensional Kalman
gain basically assumes the model errors to be barotropic and hence for
application of the gain in the three-dimensional baroclinic model the
same assumption can be followed to relate the full velocity field to the
depth averaged velocities. Thus, an update of the full velocity field based
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on a depth averaged gain will merely shift the mean of the vertical profile,
not the structure. For further detail refer to (Sørensen et al. 2001).

Figure 3: Data coverage for every 10 day period of the AHVRR SST
data.

Due to spurious correlations in the ensemble Kalman filter, which have
not diminished in the averaging process, rather large Kalman gain val-
ues can be observed in data sparse regions even when such correlations
have no physical interpretation. Also the correlation between water level
and velocity is dominated by noise in large parts of the area. Thus,
in order to ensure robust results a rough manual regularisation of the
gain is performed. This practically sets velocity gains to zero and cuts
off water level gains at the 0.01 contour. More advanced regularisation,
which allows the velocity to re-enter and significant negative correlations
to remain must be considered as a future improvement. However, the
present implementation is an important first step.
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Figure 4: Positions of in-situ temperature measurements from the ICES
database during the validation period.
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4.2 SST assimilation

A module for cost-effective data assimilation of SST data (Annan &
Hargreaves 1999) has been implemented in MIKE 3 HD. Based on a
few simple dynamical assumptions imposed on the Kalman filter ap-
proach the data assimilation module is able to correct the temperature
field above the mixed layer. It is assumed that horizontal correlations
are small enough to be ignored. Further, it is assumed that the areas
above and below the mixed layer are each well mixed. This yield a
one-dimensional gain vector for each SST data point approximating the
Kalman gain. The SST data are interpolated in time to provide an ob-
servation at every time step. This represents the fact that the SST fields
are averages over a longer period of time. The base of the mixed layer
can be defined in a range of different ways. Note that the mixed layer is
merely a theoretically constructed concept. In the present approach, it
is taken to be the highest grid point with a diffusion coefficient of 10−4

or lower. However, the exact threshold value is a calibration factor.

5 Results and discussion

For the purpose of testing the developed water level data assimilation
schemes, the period 3 to 27 February 2002 was selected, whereas a pe-
riod between 20 September and 22 October 1994 was considered for the
SST assimilation. The different periods were chosen to match the avail-
able data for assimilation and validation. In both periods the model
was run both with (assimilation) and without (model) the appropriate
assimilation scheme.

5.1 Tidal gauge results

The performance of the model with assimilation of tidal gauge data is
compared to a pure model execution in Figures 5 and 6, which show
the root mean square error of the validation points and the measure-
ment points respectively. The mean values are also shown. There is a
clear improvement in all stations with an average of a 35% increased
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performance in validation points and 58% in measurement points. This
significant improvement can be obtained at an overhead in execution time
of less than a factor of two. All stations here are located in data dense
regions. In more data sparse regions, performance converges to that of a
normal model execution. When the regularised gain is not used a signif-
icant bias can be introduced from spurious correlations in the ensemble
Kalman filter. Thus, an assimilation scheme has been implemented which
meets the constraints of fast execution and robust improvements.

Figure 5: Root mean square error of water level results in validation
points with (white bars) and without (dark bars) assimilation.

Figure 6: Root mean square error of water level results in measurement
points with (white bars) and without (dark bars) assimilation.
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5.2 SST results

The performance of the model with assimilation of SST data is compared
to a pure model execution in Table 1, showing the root mean square error
of the 10 days forecast and the validation SST field from the 22 October
1994. Also shown is the root mean square error compared to the in-situ
measurements from the ICES database. The latter is divided into two
bins above and below 20m in an attempt to roughly look at results above
and below the thermocline. The assimilation scheme clearly improves
the results, where expected. It was assumed that no information was
available below the thermocline and thus it is consistent to maintain the
performance below 20m. Above 20m we see an 18% reduction of the
RMSE. However a more significant reduction must be expected to be
obtainable if the SST data was assimilated timely. The 10 days forecast
gives a 30% RMSE reduction. These are encouraging results, but also in
the forecast statistics, a further improvement must be expected when the
validation is done timely, since movements of fronts and rapidly changing
atmospheric conditions will be more accurately captured.

RMSE
(m)

CLS
10 days fore-
cast

ICES
Above 20m

ICES
Below 20m

Model 0.74 0.66 1.27

Assimilation 0.52 0.54 1.28

Table 1: Root mean square error (RMSE) of temperature results with
(Assimilation) and without (Model) assimilation.

6 Conclusions and future work

The successful assimilation of tidal data and satellite derived SST data
have been demonstrated in a model of the North Sea – Baltic Sea for
operational use. For the assimilation of water level data a proper regular-
isation of the Kalman gain will be considered for further improvement.
The SST assimilation scheme will be developed to use data timely in
cloud free areas leaving the propagation of the information to the model
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dynamics. In the near future simple optimal interpolation schemes for
the assimilation of chlorophylla and dissolved oxygen will also be imple-
mented.
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Cañizares, R., Madsen, H., Jensen, H. R. & Vested, H. J. (2001), ‘De-
velopments in operational shelf sea modelling in Danish waters’,
Estuarine, Coastal and Shelf Science 53, 595–605.

Erichsen, A. C. & Rasch, P. S. (2002), Two- and three-dimensional model
system predicting the water quality of tomorrow, in M. L. Spauld-
ing, ed., ‘Proceedings of the seventh international conference on es-
tuarine and coastal modeling’, American Society of Civil Engineers,
American Society of Civil Engineers, pp. 165–184.

Evensen, G. (1994), ‘Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
statistics’, J. Geoph. Res. 99(C5), 10143–10162.

Jensen, H. R., Møller, J. S. & Rasmussen, B. (2002), ‘Operational hydro-
dynamical model of the danish waters. danish national programme
for monitoring the water environment’, Operational Oceanography
66, 87–97.

Pinardi, N. & Woods, J., eds (2002), Ocean forecasting. Conceptual basis
and applications, Springer-Verlag.

Sørensen, J. V. T., Madsen, H. & Madsen, H. (2001), Data assimilation
of tidal gauge data in a three-dimensional coastal model, in ‘Pro-
ceedings 4th DHI Software Conference’, DHI Water & Environment.

Sørensen, J. V. T., Madsen, H. & Madsen, H. (2002), Towards an op-
erational data assimilation system for a three-dimensional hydro-
dynamic model, in R. A. Falconer, B. Lin, E. L. Harris & C. A.
M. E. Wilson, eds, ‘Proceedings of the fifth International Confer-
ence on Hydroinformatics’, International Water Association, IWA
Publishing.



Paper E

Efficient Kalman Filter
Techniques for the
Assimilation of Tide Gauge
Data in Three-Dimensional
Modelling of the North Sea
and Baltic Sea System

E

Accepted by Journal of Geophysical Research.

137



138 Paper E



Efficient Tide Gauge Assimilation 139

Efficient Kalman Filter Techniques for the Assimilation of
Tide Gauge Data in Three-Dimensional Modeling of the

North Sea and Baltic Sea System

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, and Henrik Madsen2

Abstract

Data assimilation in operational modeling systems is a discipline
undergoing a rapid development. Despite the ever increasing
computational resources, it requires efficient as well as robust
assimilation schemes to support on-line prediction products. The
parameter considered for assimilation here is water levels from
tide gauge stations. The assimilation approach is Kalman Filter
based and examines the combination of the Ensemble Kalman Fil-
ter with spatial and dynamic regularisation techniques. Further,
both a steady Kalman gain approximation and a dynamically
evolving Kalman gain is considered. The estimation skill of the
various assimilation schemes is assessed in a four week hindcast
experiment using a setup of an operational model in the North Sea
and Baltic Sea system. The computationally efficient dynamic
regularisation works very well and is to be encouraged for water
level nowcasts. Distance regularisation gives much improved re-
sults in data sparse areas, while maintaining performance in areas
with a denser distribution of tide gauges.

1 Introduction

Marine operational forecasting systems are being increasingly applied
for a number of engineering and public service purposes, e.g. (Pinardi &
Woods 2002), (Erichsen & Rasch 2002). The products are valuable for
both hindcast, nowcast and forecast situations and in all cases there is a
need for higher precision simulation of the physical variables. In order to
increase the predictive skill, the numerical models have been continuously
improved during the past decades. Better numerical methods have been

1DHI Water & Environment, DK-2970 Hørsholm, Denmark
2Informatics and Mathematical Modelling, Technical University of Denmark, DK-

2800 Lyngby, Denmark
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developed, smaller scales resolved and improved parameterizations im-
plemented. The developments in the numerical models have been carried
over to the operational systems as robustness has been proved. Along
with this development, attention has been paid to including an increas-
ing number of physical variables in the models. Hence the portfolio of
products has been expanded from the hydrodynamic and thermodynamic
parameters to include estimation and prediction of waves, biogeochem-
ical parameters and sediments. All together these developments have
taken us to the stage we have reached today.

A number of model errors remain despite the clear improvements of the
predictive skill that the present operational systems have experienced
during their life time. However, the measurements that demonstrate this
error are often available on-line and can potentially be used to update
the estimation of the ocean state in real-time. Methods that pursue this
line of thought are referred to as operational data assimilation techniques.
Data assimilation is a cross disciplinary field with a range of uses, e.g. the
engineering community and meteorological sciences have a long history
of successful applications. Data assimilation in ocean models for hindcast
studies has also been rather widespread during the past decade.

However, the methodologies are computationally demanding and hence,
the use of assimilation approaches has only been applied to a lesser ex-
tend in the operational modeling community. Examples are the MERCA-
TOR project, (Bahurel, Mey, Provost & Traon 2002), and the MFSTEP
project, (Pinardi, Auclair, Cesarini, Demirov, Umani, Giani, Montanari,
Oddo, Tonani & Zavatarelli 2002). In common for these and similar
developments is the accessibility of high performance computational re-
sources and assimilation of a large range of satellite and in-situ mea-
surements into three-dimensional regional or global models. For more
widespread application, techniques must be applicable on the moder-
ate computational resources available to project engineers and scientists
working in applied modeling. For the assimilation of tide gauge data,
operational storm surge forecasting has been one of the targets. Here
smaller geographical areas and simpler two dimensional models have of-
ten been considered, which gives some reduction in the required com-
putational resources. Simultaneously, cheap assimilation methods have
also been proven successful, hence encouraging its implementation, e.g.
(Vested et al. 1995), (Gerritsen et al. 1995) and (Cañizares et al. 2001).



Efficient Tide Gauge Assimilation 141

A less computationally demanding assimilation approach based on the
steady solution of the Riccati equation and subsequent use in a Kalman
filter was suggested by (Heemink & Kloosterhuis 1990). This approach
reduces the computational demands to the same order of magnitude as
a standard model execution. (Verlaan & Heemink 1997) suggested the
improved reduced rank square root (RRSQRT) extended Kalman filter,
with successful application for storm surge prediction along the Dutch
coast. (Bertino, Evensen & Wackernagel 2002) similarly used a RRSQRT
Kalman filter for water level assimilation in the Odra Lagoon. (Madsen
& Cañizares 1999) demonstrated an implementation of the RRSQRT and
the Ensemble Kalman filter (EnKF), (Evensen 1994), in an idealised bay.
They showed that the two schemes have similar computational demands
and performance. However, computational times are of the order 102

times greater than a standard model execution. (Cañizares et al. 2001),
demonstrated a successful application in the North Sea and Baltic Sea
system of a steady Kalman filter using a gain obtained as a time average
of the gain produced by the EnKF. Interestingly, spurious correlations
caused the results to get worse in data sparse regions, showing the limita-
tion of the Kalman filter approach. Based on ideas from (Houtekamer &
Mitchell 1998), (Hamill, Whitaker & Snyder 2001) discussed this artifact
of the EnKF and suggested that a distance function can be used to con-
trol the effect of uncertain ensemble estimates. (Evensen 2003) argued
that such an approach should be avoided because it no longer generates
updated ensembles as linear combinations of the forecast ensembles.

The main computational issue in Kalman filter based data assimilation
is the propagation of the system error covariance matrix. The EnKF
and RRSQRT schemes along with e.g. the SEEK, (Pham et al. 1997),
and the SEIK filter, (Pham et al. 1998), attempt to save computational
resources by constructing a low rank approximation of the model error
covariance. The Steady filter assumes no time variation, but still requires
a solution of the Riccati equation or a more elaborate scheme for the
generation of the gain. (Dee 1991) suggested using a simpler dynamical
model propagator for the error propagation. (Fukumori & Malanotte-
Rizzoli 1995) presented a scheme which employed a coarser grid for the
error propagation, hence reducing the dimension of the state space but
simultaneously simplifying the dynamics.

The objective of the present study is to investigate the possibility of
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combining a range of approximate Kalman filter based techniques to
the assimilation of tidal gauge data in the North Sea and Baltic Sea
system. The techniques are selected in order to provide an optimally
efficient scheme for this case, but their nature is discussed in a general
regularisation perspective. This framework acknowledges the violation of
underlying assumption in the elaborate assimilation schemes and enables
the incorporation of prior independent knowledge in the estimation of the
ocean state.

Within the regularisation framework we describe four approximations to
the EnKF. These are temporal smoothing of the Kalman gain, the steady
Kalman gain, a barotropic model error approximation and a distance
dependence of the Kalman gain. The performance of the techniques is
presently examined in a hindcast scenario of the North Sea and Baltic
Sea system, but the goal is to develop schemes that can be used in an
operational forecast setting.

In Section 2 the two- and three-dimensional hydrodynamic models em-
ployed in this study are presented along with the available tide gauge
measurements. Section 3 provides the theoretical basis of the assimi-
lation approaches considered. This encompasses a general discussion of
the estimation technique used in Kalman filtering along with a discussion
of model and measurement uncertainties. The EnKF is also described
in Section 3 as are four regularisation techniques leading to a Kalman
gain smoothing, a Steady Kalman filter as well as a barotropic and a
distance regularisation. Section 4 presents the design of the numerical
experiments. The results are shown and discussed in Section 5, while
Section 6 concludes the paper. The nomenclature suggested in (Ide et
al. 1997) is followed throughout this work, where applicable.

2 Description of Models and Measurements

The Water Forecast is an operational forecasting system covering a large
part of the North Sea, the Baltic Sea and the interconnecting waters,
(Erichsen & Rasch 2002). The hydrodynamic model has run opera-
tionally as part of the Water Forecast service since June 2001. While
the system provides four-day forecasts of hydrodynamic, water quality
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Figure 1: Bathymetry and available tide gauge stations, including 10
measurement stations (M1-M10) and 7 validation stations (V1-V7).

and wave parameters every 12 hours, this study restricts attention to
water levels in a hindcast setting.

The hydrodynamic model of the forecast system is the three-dimensional
MIKE 3, (DHI 2001), which handles free surface flows. It solves the
primitive equations making the hydrostatic and the Boussinesq approxi-
mations. The turbulence closure scheme adopted is the k-ǫ model in the
vertical and Smagorinsky horizontally. The area covered by the model
is shown in Figure 1. Tidally varying water levels are prescribed at the
two open boundaries, which are situated in the English Channel and
in the Northern North Sea between Stavanger in Norway and Aberdeen
in Scotland. Wind fields and sea surface pressure are derived from the
Vejr2 commercial weather service, (Rogers, Black, Ferrier, Lin, Parrish
& DiMego 2001), and force the momentum equations at the sea surface.
The vertical resolution is two meters within the top 80 meters. Larger
depths are contained in the model bottom layer. The model is nested as
displayed in Figure 1 and the horizontal resolution varies from 9 nautical
miles to 1 nautical mile in the inner Danish waters and one third nautical
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mile in a few narrow straits. A two-way nesting technique is employed
securing a dynamic exchange of mass and momentum between grids.

The numerical model mentioned above attempts to express the true state
of system in discrete space and time. The model space is spanned by
water level, l, velocity, v, temperature, T , and salinity, S, averaged over
spatial volumes at discrete times. Let xM3(ti−1) ∈ RnM3 be the model
estimate of the true state at time ti−1. Hence, the one-time-step-ahead
model operation, MM3 provides the model estimate at time ti as,

xM3(ti) = MM3(xM3(ti−1),u(ti−1)) (1)

where u(ti−1) is a vector containing the model forcing.

For the purpose of this study the barotropic two-dimensional model
MIKE 21, (DHI 2002), was setup on the same horizontal grid and with
the same forcing. The model has a smaller state space dimension and
simpler dynamics excluding density variations and collapsing the verti-
cal axis. Only water level, l, and depth averaged velocities, V, enters
the state, xM21(ti−1) ∈ RnM21 . The model propagator, MM21 provides the
model estimate at time ti as,

xM21(ti) = MM21(xM21(ti−1),u(ti−1)) (2)

Both in terms of state space dimension and execution times the barotropic
model is significantly cheaper.

For the purpose of this study, 17 tide gauge stations were selected. These
are displayed in Figure 1. All stations are situated in Danish or Swedish
waters. The 10 tide gauge stations used for assimilation will be referred
to as measurement stations and indicated by an ’M’. The 7 stations used
for performance assessment will be referred to as validation stations and
indicated by a ’V’. The stations in each of these groups are numbered
consecutively and the corresponding station names can be read from
Figures 2 and 3.

A much better data coverage than what is used in this constribution is
needed for improved storm surge predictions in the North Sea. How-
ever, the Water Forecast model does not have storm surge modeling as
a sole objective. The objective also lies in transports as well as ecosys-
tem parameters and the aim is to apply a unified consistent model for
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all purposes. Hence, we employ a three-dimensioanl model and it would
be appropriate to also validate results against the velocity. However,
very little representative velocity data has been at our disposal in the
considered period and we follow a more traditional storm surge model
validation approach in a restricted area, which should be regarded only
a partial validation for the full purpose of the system. In this respect, it
is important that there are validation stations (V6 and V7) far from as-
similation stations to examine aspects of the consistency of the employed
techniques.

3 Assimilation Approach

The schemes used for the assimilation of water level data in the present
study can be categorized as sequential estimation techniques. The theory
can basically be divided into two parts. One is an estimation of the true
state based on the distributions of the model and measured variables,
respectively. The standard approach is to assume no bias and use the
best estimator in a minimal variance sense. This estimator is presented
in Section 3.1. The other part is a specification and a subsequent propa-
gation of the stochastic model state in between measurement times. The
observational error also needs to be quantified. The specification of an er-
ror model for the numerical model as well as for the observations is build
on a number of assumptions. A discussion of these and a description of
the error models employed in the present study is presented in Section
3.2. In a dynamical model the model error is continuously altered by the
model dynamics and hence the error description needs to be propagated
in time. A Markov Chain Monte Carlo approach is followed here leading
to the Ensemble Kalman Filter (EnKF) described in Section 3.3.

The ensemble approach is an efficient way of making the work load of the
model error propagation tractable, by reducing the degrees of freedom
in the description dramatically. However, the resulting scheme is still
too expensive for many operational systems, which are typically pushed
close to the limit in terms of computational resources in order to resolve
as many processes as possible. Further, the EnKF scheme may introduce
spurious correlations in data sparse regions due to an inaccurate model
error description and the stochastic nature of the scheme. Hence, despite
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risking introducing non-dynamical modes in the system, various forms
of regularisation of the gain is proposed. Section 3.4.1 presents a simple
temporal smoothing of the Kalman gain matrix, Section 3.4.2 describes
a Steady Kalman gain approach, while Section 3.4.3 presents a dynamic
regularisation based on the assumption that the errors are barotropic.
Finally Section 3.4.4 describes a distance regularisation technique.

3.1 BLUE Estimator

In this section the estimation of the state of the system is under con-
sideration. This is often referred to as the analysis step. The state
is essentially a multivariate continuous four-dimensional field. Observa-
tions are noisy samples from this field and are typically integral measures
over some spatial and temporal scale. Similarly, model variables repre-
sent per definition spatial averages of the true state. The spatial and
temporal representation of the three-dimensional model is taken as a
common reference frame and the state is described in terms of its projec-
tion onto it, xt(ti) ∈ Rn. Here ti denotes time indexed by i and xt(ti) is
further restricted to include the model variables, water level, li and ve-
locity, vi, hence excluding temperature and salinity. This approximation
is due to later time savings in the EnKF error propagation and in order
to facilitate the barotropic regularisation in Section 3.4.3. Next, let the
prediction by a numerical model, xf (ti), describe the first moment of the
stochastic state and assume its error covariance matrix, Pf (ti), known.

Now, let the observation at time ti, yo
i ∈ Rp be related to xt(ti) through

the linear measurement equation,

yo
i = Hix

t(ti) + ǫi (3)

The matrix Hi ∈ Rp×n is a linear operator projecting the state repre-
sentation onto the measurement space and the measurement noise term
ǫi is assumed to be an i.i.d. random process. Assume the first and the
second moments of this noise to be known, respectively, 0 and Ri.

When information from the true system becomes available in the form
of measurements an improved state estimate can be obtained. One pro-
cedure for doing this is to assume a linear combination of the unbiased
model prediction and the observation that gives the minimum variance
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estimate, xa(ti). This approach is called the Best Linear Unbiased Es-
timate (BLUE). A derivation can be found in (Jazwinski 1970) yielding
the following estimator,

xa(ti) = xf (ti) + Ki(y
o
i − Hix

f (ti)) (4)

The Kalman gain matrix, Ki ∈ Rn×p, is given by,

Ki = Pf (ti)H
T
i (HiP

f (ti)H
T
i + Ri)

−1 (5)

The error covariance, Pa(ti), of xa(ti) will always be less than or equal
to Pf (ti) and can be calculated as,

Pa(ti) = Pf (ti) − KiHiP
f (ti) (6)

The set of equations (4) and (5) supplies the variance minimizing anal-
ysis among the class of linear equations and (6) the a posteriori error
covariance, if Ri and Pf (ti) indeed were the real a priori error covari-
ances.

3.2 Error Descriptions

The optimality of the BLUE estimator for the analysis relies on a correct
specification of the model and measurement error covariances. Hence,
any misspecification of these will make the scheme suboptimal. This
section takes a closer look at model and observation errors and how they
are quantified in the scheme.

3.2.1 Measurement Error

The error, ǫt, in the measurement equation (3) includes both an instru-
mental error and a representation error and is thus properly refered to as
a measurement constraint error as suggested by (Fukumori et al. 1999).
Depending on the observation considered, either instrumental or rep-
resentation error can be the dominating source. The instrumental er-
ror refers to the actual error in measurement of the physical property
under consideration. Often such statistics can be assessed rather pre-
cisely. However, the instruments may be badly calibrated and electronic
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or mechanical malfunctioning may induce systematic errors. Hence, an
elaborate quality check on the data must be performed.

The other contribution to the measurement constraint error is due to
the fact that the state estimation is done in the model space. (Fukumori
et al. 1999) provide a nice discussion of this, arguing that the result-
ing measurement representation error contributes to the measurement
constraint error. A measurement typically represents a physical prop-
erty averaged over a different spatial and temporal scale than the model
representation. As an example, the measured water level in a corner of
a harbour needs not be representative of the water level averaged over
an area of 1 × 1 km2. If we had retained the continuous reality as the
space in which we estimate the state, then the spatial discretisation of
the model should have been described as a model error. However, the
adaption of the discrete model space as the state space moves the error to
the measurement equation, now expressing that the measurement only
approximately represents the spatial average adopted by the model.

Similarly, observed signals that are caused by processes not included in
the numerical model can be described as a representation error. The
only difference is that we now consider the dynamical subspace spanned
by the model rather than the spatial subspace. It must be stressed that
the adoption of the model space as the state space is a choice. We could
have chosen another projection of reality, but important in either case is
that the error process description is formulated according to this choice.

When using the state definition discussed above, a white noise error does
not provide a good description of the expected error and hence the entire
premises of the Kalman filter is violated. The representation error must
be expected to be colored and it should be described as such. This can
be done by augmenting the state space by its colored components of a
suitable measurement error model. This is however a difficult task and
the rather crude approximation of merely increasing the white measure-
ment error standard deviation is taken here, as suggested by (Fukumori
et al. 1999).

The measurement error is usually given some predefined value, by con-
sidering instrumentation errors and representation errors as discussed
above. The measurement error can easily be time varying if justified by
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such considerations. In the present implementation, the error at a given
tide gauge station is assumed independent to all other stations. For the
instrumental errors this is true, but for representation error this might
be violated.

3.2.2 Model Error

Let xt
M(ti) define the true state represented in the space of the model at

time ti. A system equation can then be formulated as,

xt
M(ti) = MM(xt

M(ti−1),u(ti−1)) + ηM,i (7)

Thus, the model error, ηM,i, describes the error imposed by the model
operator, MM at time ti. This error must be described along with the
error covariance of the state at an initial point in time in order to provide
a stochastic description of the system.

The description of model error is a complex task. The exclusion of pro-
cesses at the very level of the definition of the mathematical model and
the spatial discretisations used in the state description are model er-
rors, but described in terms of the representation error as discussed in
Section 3.2.1. Errors in the mathematical formulation of processes we
wish to describe (including feedback from undescribed processes!) and
the numerical methods used to solve the equations as well as numerical
truncation errors and parameter specifications, all impose errors in the
model simulation. Finally, incorrect forcing terms are potentially major
sources of model error. The model error has a complex spatially varying
structure and is dynamically altered throughout its propagation in time.
It is thus presently intractable to describe accurately. However, an ap-
proximate second order description of its statistical properties is not out
of reach.

When looking at the sources of model error in a well calibrated hydrody-
namic model of a coastal area, it is a good first approximation to assume
that the main error source at each time step comes from the forcing
terms. The system is quite strongly driven by its forcing and these are
known to be inaccurate. Atmospheric forcing is provided by meteoro-
logical forecast or hindcast models and open boundary water levels are
typically described by a model of harmonic constituents. In the present
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implementation it is assumed that all other model errors are neglectable
and hence, a model error description can be provided if the error sources
in the forcing terms can be propagated throughout the system. The er-
rors in the forcing terms are assumed to be colored processes described
by an autoregressive model with a spatially co-varying error driving it,
i.e.

ξi = MAR(1)(ξi−1,ηi) = A ξi−1 + ηi (8)

where A = diag(α). For the sake of simplicity, the noise process ηi is as-
sumed Gaussian with zero mean and error covariance matrix, Qη

i ∈ Rr×r.
Hence, xt(ti) is augmented with the open boundary water level and wind
velocity error description and an extended operator, M = (MM,MAR(1))

T ,
is introduced. This leads to a system equation with additive noise, which
will be used in the remainder of this work,

[

xt
M(ti)

ξi

]

= xt(ti) = M(xt(ti−1),u(ti−1),ηi) = M(xt(ti−1),u(ti−1))+

[

0

ηi

]

(9)

The error covariance of
[

0
ηi

]

is Qi =
[

0
0

0
Q

η
i

]

. The determination of the

error covariance Q
η
i is based on experience and theoretical considerations.

3.3 Ensemble Kalman Filter

The Kalman filter based data assimilation schemes used today are all
based on the BLUE estimator. They differ mainly in the way they prop-
agate the stochastic state representation. The foundation of the En-
semble Kalman Filter (EnKF) is to approximate the propagation of the
full pdf using a Markov Chain Monte Carlo technique, (Evensen 1994).
While the deterministic model in Eq. (1) or Eq. (2) propagates the
state assuming the model and forcing to be perfect, the EnKF takes the
stochastic nature of the model prediction and the non-linearities explic-
itly into account.

An ensemble of q state realizations is defined at an initial point in time.
In the approach presented here, the same initial state defines all ensem-
bles with zero variance at the beginning of a spin-up period. During this
period the forcing errors are propagated throughout the system to pro-
vide the initial mean state estimate and model error covariance matrix.
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Each ensemble member is propagated according to,

x
f
j (ti) = M(xa

j (ti−1),u(ti−1),ηj,i), j = 1, ..., q (10)

The model error, ηj,i is randomly drawn from a predefined distribu-
tion with zero mean and covariance, Q

η
i ∈ Rr×r. With each ensemble

propagated by Equation (10), the mean state estimate and model error
covariance estimate are provided by the following equations,

x̂f (ti) =
1

q

q
∑

j=1

x
f
j (ti) (11)

Pf (ti) = S
f
i (Sf

i )T , s
f
j,i =

1√
q − 1

(xf
j (ti) − x̂f (ti)) (12)

The vector, s
f
j,i ∈ Rn, is the j′th column of S

f
i ∈ Rn×q. The update can

be performed by Equations (4) and (5), when given the proper interpreta-
tion in an ensemble setting. For computational efficiency an algebraically
equivalent set of equations are used.

In order to maintain correct statistical properties of the updated ensem-
ble, each ensemble member must be updated rather than the ensemble
state estimate. For the same reason an ensemble of measurements must
be generated and used for each ensemble member update accordingly
rather than the measurement itself, (Burgers et al. 1998). Hence,

yo
j,i = yo

i + ǫj,i, j = 1, ..., q (13)

Randomly generated realizations, ǫj,i, of ǫi are added for each mem-
ber. The update scheme presented here specifically uses the uncorre-
lated measurement structure to assimilate simultaneous measurements
sequentially. The updating algorithm for every ensemble member, j,
reads, (Chui & Chen 1991),

xa
j,m(ti) = xa

j,m−1(ti) + ki,m(yo
j,i,m −hi,mxa

j,m−1(ti)), m = 1, ..., p (14)

and xa
j,0(ti) = x

f
j (ti). In (14) yo

j,i,m is the m′th element in yo
j,i and hi,m

is the m′th row of Hi. Treating one measurement at a time the Kalman
gain is a vector, ki,m, given by,

ki,m =
Sa

i,m−1ci,m

cT
i,mci,m + σ2

i,m

, ci,m = (Sa
i,m−1)

T hT
i,m (15)
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The m′th diagonal element in Ri is denoted σ2
i,m. The matrix Sa

i,m in
(15) is calculated as

Sa
i,m = [sa

1,i,m...sa
q,i,m], sa

j,i,m =
1√

q − 1
(xa

j,m(ti) − x̂a
m(ti)) (16)

for m = 1, ..., p and Sa
i,0 = S

f
i . Now, (14), (15) and (16) provides the

update equations of all ensemble members, one measurement at a time.
The time consumption of the EnKF is of the order of q times a standard
model execution.

3.4 Regularisation

In the EnKF most of the computational effort is used for providing an
estimate of the Kalman gain matrix, Ki. This matrix contains n× p ele-
ments which are calculated based on q ensembles. This leads to uncertain
estimates which in particular can have an unwanted effect in data sparse
regions with large model variability. Such areas are susceptible to erro-
neous updates from spurious correlation estimates, (Hamill et al. 2001).
However, even for q = ∞, the gain estimate will only have a limited
accuracy because of the simplistic nature of the models used to describe
measurement and model error. Propagating an approximate error source
gives an approximate error covariance matrix.

Regularisation methods allow the expression of a prior knowledge about
the elements in Ki and their interdependence to be taken into account,
(Hastie, Tibshirani & Friedman 2001). The techniques can usually be
cast in a Bayesian framework, e.g. if a prior information about the model
error covariance, Pprior, is available for Pf , then the posterior estimate,
Pposterior, is

(Pposterior)−1 = (Pprior)−1 + (Pf )−1 (17)

Such an approach is not tractable in the high-dimensional state space
under consideration. However, the line of thought can still provide a
useful angle at Kalman filtering. Is there knowledge about the model
error covariance that clearly conflicts with the estimates provided by e.g.
the EnKF? Regularisation methods deliberately makes biased estimates
in order to lower the variance of the estimated elements. Because of the
approximate error models and structural model errors the estimates of
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the Ki-elements will typically be biased anyhow, so it makes sense to
express this in order to lower the total prediction error of the elements,
which is a sum of squared bias and variance.

3.4.1 Smoothing of Kalman Gain

Not to be confused with Kalman smoothing for the state vector estimate,
a temporal smoothing factor, s, is introduced. It is used to regularise
the EnKF derived gain matrix in (5) and implemented in (15). With the
instantaneous Kalman gain still being denoted Ki, a smoothed Kalman
gain, KS

i , which replaces Ki, is obtained as,

KS
i = (1 − s)KS

i−1 + sKi, s ∈ [0; 1] (18)

This approach reduces the stochastic variability of the gain estimate
at the cost of leaving out high frequency signals in the gain as well as
introducing a phase error. In general the use of a smoothing factor gives a
good performance even for insufficient ensemble sizes, (Sørensen, Madsen
& Madsen 2003b). Thus, it allows a smaller q to be chosen for the same
performance, implicitly saving computational time. This proves the need
for regularisation techniques for efficient filtering. It can be regarded as
an intermediate method in between the ensemble Kalman filter and the
Steady Kalman filter described subsequently.

3.4.2 Steady Approximation

The Steady Kalman filter can be regarded as an ad-hoc regularisation
method. Instead of calculating the Kalman gain at every measurement
time, it can be assumed that the state and measurement error covariances
are the same at every update, which yields a constant Kalman gain. This
gain is calculated as a long time average of Kalman gains estimated by
the EnKF. Since the gain actually is varying, this introduces a bias in
the gain, but the time averaging that creates the steady gain smoothes
the gain and lowers the variance. This variance reduction possibly lowers
the prediction error of the gain elements if the time varying bias indeed is
not too big. Using a snapshot of the gain from the EnKF would similarly
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be expected to make the estimate worse, since it still would result in an
increased bias without lowering the variance.

The Steady Kalman filter uses (9) for the model propagation with ηi = 0

xf (ti) = M(xa(ti−1),u(ti−1)) (19)

Subsequently (14) is used for the analysis, where k is calculated as a
time average from an execution of the EnKF, p = 1 and yo

j,i,m = yo
j,i.

The time consumption of the Steady Kalman filter is of the order of a
standard model execution.

The Kalman gain is calculated as a long term average of the gain from an
EnKF, where the error has been assumed to lie in the wind velocity. The
noise is thus included as a quadratic term in the momentum equations.
On average this leads to an overestimation of the values in the Steady
Kalman gain, but in periods with strong winds it is underestimated. This
is the approximation made by the steady assumption.

3.4.3 Barotropic Approximation

The method described in this section belongs to the group of methods
that apply simplified dynamics for calculating the model error covari-
ance and hence the Kalman gain. The idea is that since the water level
response to variations in tides and wind forcing is mainly barotropic,
its error covariance due to errors in open boundary conditions and wind
velocity can be well modelled by a depth averaged barotropic model.
The forecast step is composed of an ensemble forecast step using the 2D
model and a single forecast of the 3D model according to (19).

The first component of the analysis step consists of the EnKF analysis
for the 2D model. The other component is to update the full 3D forecast
based on the ensemble statistics from the 2D model. The augmented
AR(1) error model part of the state space has the same size and inter-
pretation in both model spaces and hence it can be carried directly over
from 2D to 3D. Depth averaged velocity, V and water level l also have
similar interpretation and hence in the corresponding subspace the 2D
Kalman gain can be applied directly in 3D.



Efficient Tide Gauge Assimilation 155

However, temperature, T , salinity, S, and the three-dimensional velocity,
v, are not included in the 2D state space and thus additional assumptions
must be imposed. The error covariances between T and S and water
levels in the measurement points are all assumed to be zero. This means
that the thermodynamic variables are unaffected by the analysis. The
velocity, on the other hand needs to be updated. When V is updated,
then for consistency v must be updated as well, since V is the depth
average of v. A vertical structure, s(zk), must be chosen under the
constraint that its depth average is not zero. Let V a

x be the updated
depth averaged x-velocity component in the 3D model. Let vf

x(zk) and
va
x(zk) be the forecast and analysis of the x-velocity in the 3D model at

depth zk. Now, the updated full velocity field can be found by solving
the following equations for va

x = (va
x(z1), ..., v

a
x(zKmax)) and the zonal

structure scaling parameter θ.

V a
x = (va

x)T dz (20)

va
x = vf

x + sθ (21)

where v
f
x = (vf

x(z1), ..., v
f
x(zKmax)), s = (s(z1), ..., s(zKmax)) and dz =

(dz(z1), ..., dz(zKmax )) is a vector of layer depths.

The solution to (20) and (21) is,

θ =
V a

x − (vf
x)Tdz

sT dz
(22)

va
x = vf

x + s
V a

x − (vf
x)T dz

sTdz
(23)

A similar set of equations can be solved for the other velocity component.
The vertical velocity is updated by the mass conservation equation. In
the present study s was chosen to be s = (1, ..., 1). This corresponds to
simply moving the entire forecast velocity profile to match the updated
depth averaged velocity.

In the light of regularisation, the scheme assumes all elements in Ki that
are used for updating T and S to be zero and elements for updating the
velocity components to be related through (23). Again, this certainly
may introduce a bias, if the assumption of no correlation to the ob-
served water levels or the vertical interdependence of the velocity errors
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break down, but a much lower variance has been obtained. And most
importantly, a huge time reduction has been gained in the model error
propagation.

(Sørensen et al. 2002) compared the barotropic approximation applied
to the Steady Kalman filter to the standard EnKF as well as the Steady
Kalman filter with no barotropic approximation in an idealised bay setup.
All methods showed similar performance, but the barotropic approxima-
tion has the lowest computational requirements both in terms of time
and memory demand.

3.4.4 Distance Regularisation

The use of distance regularisation comes down to a trade-off between ac-
cepting inaccurate elements in the Kalman gain and introducing spurious
or non-dynamical modes in the analysis. The model error covariance is
modelled dynamically by assuming errors in the forcing terms. There
are many good reasons for doing so, but it may lead to correlations in
the error of the state that conflicts with our prior knowledge and hence
a regularisation can be performed taking this into account.

The distance regularisation is an ad-hoc procedure for expressing that we
do not believe any tide gauge observation should be used for updating
state variables that are positioned far away. This is implemented by
constructing a vector, with coefficients between 0 and 1, which are a
Gaussian function φ of their geographical distance, dm to observation,
m, according to,

φ(dm) = exp(− d2
m

2D2
) (24)

The parameter, D specifies the spatial decorrelation scale. This regulari-
sation can be used in either the EnKF or the Steady Kalman filter (p = 1)
presented above, by modifying the analysis equation (14) according to

xa
j,m(ti) = xa

j,m−1(ti) + k̂i,m(yo
j,i,m −hi,mxa

j,m−1(ti)), m = 1, ..., p (25)

k̂i,m =







k̂i,m(1)
...

k̂i,m(n)






=







ki,m(1)φ(dm)
...

ki,m(n)φ(dm)









Efficient Tide Gauge Assimilation 157

4 Description of Experiments

The main objective of this study is to demonstrate the hindcast per-
formance of the time efficient barotropic approximation for a Steady
Kalman filter in the Water Forecast model. Further, the impact of ap-
plying a time varying EnKF with barotropic and distance regularisation
is investigated. No comparison is made with an ensemble Kalman fil-
ter in the full three-dimensional setting, because it is not operationally
feasible. Further, (Sørensen et al. 2002) demonstrated that the dynamic
regularisation has similar performance to the full three-dimensional im-
plementation of time varying EnKF in a simple test case.

All experiments span the period: 00:00 January 1 to 00:00 January 29,
2002. The initial state is obtained from the data base of the operational
system. The steady gain employed in the study is based on the period
00:00 January 2 to 00:00 January 6, 2002. Figure 8 shows that this
period includes a single storm surge event and average winter conditions
the rest of the time.

The results will be compared to a reference run, which is obtained from
a hindcast execution of the Water Forecast system. All assimilation
runs make use of the barotropic approximation and hence do not have
higher demands to the computational hardware than the Water Forecast
itself and has operational execution times less than 2.5 times that of the
reference run. The model runs can be summarized as:

• Reference run. Standard 3D Water Forecast model execution
with no use of data assimilation.

• Steady. 3D Model execution with the Steady Kalman filter. The
gain is obtained from the 2D model using the EnKF with temporal
smoothing.

• Steady Dist. 3D Model execution like Steady, but with distance
regularisation used in the 3D environment.

• EnKF. 3D Model execution using a time varying gain is obtained
from the 2D model employing temporal smooting. Distance regu-
larisation is enabled in the 3D execution.
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When adopting the barotropic regularisation in all assimilation runs, it
is implied that the central model forecast (19) is employed for the 3D
model, while the ensemble forecast (10) and (11) is employed for the
calculation of 2D steady and time-varying Kalman gains.

In any assimilation approach it is important first to correct the measure-
ment datum such as to approximately represent model datum in order
to allow proper inter-comparison between observed and modelled quanti-
ties. Model datum is determined by the open boundary levels and a long
term average dynamical balance. In order to assess the model datum,
the water levels at all measurement stations were extracted from a one
year simulation spanning all of 2002. The time average was calculated for
each station, and the corresponding measurement was adjusted to match
this average. Note that the model error may have a seasonal dependence,
and hence the datum corrected measurements may still contain an off-
set in January, where the study is performed. The measurements were
adjusted to the model datum for both the 2D and the 3D model.

A number of parameters need to be specified in the filtering schemes.
The assimilation system is too complex for statistically based parameter
estimation and hence first guesses based on experience and theoretical
considerations are used. For tide gauges, the measurement representation
error is in general dominating over the instrumentation error. The water
level readings can be expected to measure the truth projected onto the
model space with an accuracy around 0.05 m. Hence, the tidal gauge
measurement errors are assumed to have mutually uncorrelated, unbiased
Gaussian distributions with a standard deviation of 0.05 m. However,
sometimes less trust is put in the measurement in order to constrain the
model less. This is the case in M1, Esbjerg, M9, Rønne and M10, Kalix,
where the standard deviations were assumed to be 0.15, 0.08 and 0.15,
respectively.

The model wind error was assumed to have a temporal correlation scale
of 5.7 hours and a spatial correlation scale of 300 km. The standard
deviation of the white noise in (8) was assumed to be 0.3 m/s leading
to a standard deviation of 3.0 m/s for the wind. The model error in
open boundary water levels was assumed to have a temporal correlation
scale of 1.7 hours and a spatial correlation scale of 95 km. The standard
deviation of the white noise in the boundary error was assumed to be
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0.05 m. This leads to a standard deviation of 0.27 m for the water level.

An ensemble size of 100 and a smoothing factor of 0.05 was used for the
EnKF runs of the study. Measurements were available every 30 minutes.
These were linearly interpolated in time and the model was updated from
the interpolated time series every 10 minutes. The distance parameter,
D, in the distance regularisation was set to 250 km.

As a measure of the filter performance, the root mean square error
(RMSE) of water levels, l, calculated over the 28 day simulation pe-
riod for each measurement and validation station is used,

RMSE =

√

√

√

√

1

I

I
∑

i=1

(lobs(ti) − lpredicted(ti))2 (26)

5 Results & Discussion

The performance of the reference run and the three assimilation runs are
summarized in Figures 2 and 3 for measurement and validation stations
respectively. For the reference run, RMSE is in the range 0.10m to
0.15m for most stations with M1-Esbjerg peaking above 0.20m.

The RMSE can be decomposed into a standard deviation and a bias
component. Such an analysis shows that the datum correction method
equating one-year averages discussed in Section 4 leaves a variability at
monthly time scales with biases in the range −0.12 to 0.07 for the refer-
ence run. This might be due to long term variability in meteorological
error (the boundaries can not explain such long term variability) or long
term error components in the model (biases in annual cycle of the density
modeling etc.). However, at present, the bias is accepted as the working
conditions, adhering to the bias correction properties of filters using a
colored noise implementation, (Sørensen et al. 2004a).

Figure 2 also shows that all assimilation runs significantly reduce the
RMSE in measurement points. The remaining error is in fair agreement
with the standard deviation of 0.05 m assumed in most stations. Fig-
ure 3 shows similar good performance in stations close to measurement



160 Paper E

Figure 2: RMSE performance in measurement stations
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Figure 3: RMSE performance in validation stations
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Figure 4: Water level part of the Steady Kalman gain for M3-Skagen

points. However, in the Baltic Sea (V6 and V7) far from measurements,
the Steady Kalman filter without distance regularisation significantly
degrades the results.

Figures 4 to 7 show examples of the water level part of the Steady Kalman
gain for the measurement stations, M3-Skagen and M9-Rønne, with and
without the distance regularisation imposed. In the M3-Skagen station
the gain is clearly affected by the error assumed in the tidal signal, while
the M9-Rønne station is dominated by the wind driven dynamics. In
this latter case the gain without distance regularisation shows large cor-
rections in the entire southern part of the Baltic. This can in part be
explained by the assumed wind error model, which has spatial correlation
scale of 300 km. The distance regularisation of the M3-Skagen station
effectively filters the gain structure in the North Sea, which constrasts
our prior understanding of the system and our modelling capability.
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Figure 5: Water level part of the distance regularised Steady Kalman
gain for M3-Skagen
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Figure 6: Water level part of the Steady Kalman gain for M9-Rønne
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Figure 7: Water level part of the distance regularised Steady Kalman
gain for M9-Rønne



166 Paper E

Figure 8: Time series of water level in V1-Göteborg. The thin black line
is the measured level. The thick black line shows the reference solution.
The thick gray line shows the solution with the barotropic and distance
regularised Steady Kalman filter.

The model water level has a large variance far from observations in the
Baltic, and hence even a small covariance will provide an impact of the
update in this area. The stochastic variability of the gain is filtered out
in the Steady approach and thus does not contribute significantly to the
gain structure. The distance regularised gain structure dampens the ef-
fect of distant correlations by imposing the assumption that such error
correlations does not exist despite its prediction by the filter. As is evi-
dent in Figure 3 this significantly improves the results in the data sparse
Baltic. The distance and barotropic regularised Steady Kalman filter
adds significant state estimation skill in all measurement and validation
points at a very low computational cost both for the generation of the
gains and for execution, enabling use in an operational setting.

A time series plot of measured water level in the validation station, V1-
Göteborg, is displayed in Figure 8 along with estimates by the reference
run and the distance and barotropic regularised Steady Kalman filter.
This plot shows the good performance previously expressed by the sta-
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tistical RMSE measure in a visually interpretative form.

The use of a time varying gain from the EnKF with the barotropic ap-
proximation and distance regularisation was compared with the success-
ful Steady approach. Figures 2 and 3 show the results as the last hor-
izontally striped bar. The performance is similar to that of the Steady
distance regularised scheme. However, its implementation is more de-
manding on computational time, although the 2D EnKF execution with
100 ensemble members has a similar speed as a single 3D model execu-
tion, and hence still can be applied in operational settings.

Figures 9 and 10 show the variance of the EnKF derived gain for the
water level portion of the gain for the M9-Rønne station with and with-
out smoothing in the ensemble run. The variability of the non-smoothed
Kalman gain shows its maximum values far from the station itself in-
dicating spurious correlations. This also explains the model problems
that has been encountered when applying the standard EnKF without
distance regularisation. In this case, the analysis may impose a state
estimation which is not a likely outcome in the real system despite the
fact that the EnKF always produces its analysed ensemble members as
linear combinations of the forecast members (an example is pulling wa-
ter out of a shallow region until a water point is dried out). A spurious
correlation can last over a dynamically significant length of time due to
the colored noise implementation.

The variability near M9-Rønne is quite similar with and without smooth-
ing in the EnKF gain calculation and in both cases the variability is small
compared to the actual size of the Steady gain in Figure 6. This small
Kalman gain variability in regions where the update is also largest ex-
plains the similar performance of the Steady filter and the EnKF.

6 Conclusions

The water level estimation problem has been discussed and the well
known Ensemble Kalman Filter technique presented for solving the prob-
lem. In this sequential setting the estimation of the water levels requires
an estimation of the elements of the Kalman gain matrix as an interme-
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Figure 9: Standard deviation of M9-Rønne water level part of the
Kalman gain derived using smoothing.
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Figure 10: Standard deviation of M9-Rønne water level part of the
Kalman gain derived without using smoothing.
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diate step, which is important for understanding the behaviour of the
scheme. The estimate of the gain elements possess both a bias and a
variance, because of inaccurate measurement and model error descrip-
tions and the stochastic variability in the EnKF. This uncertainty is
discussed from the viewpoint of regularisation techniques and a Kalman
gain smoothing, a Steady Kalman filter, a barotropic approximation and
a distance regularisation is discussed in this light.

These techniques are combined and tested for the assimilation of water
levels in the Water Forecast operational system. The Steady and the
barotropic approximations show the best performance at the lowest cost.
The use of distance regularisation has been demonstrated to be important
for data sparse regions, while maintaining performance in areas with
denser data coverage. The difference in the RMSE of the various filter
algorithms is moderate in the Inner Danish Waters and it must be kept
in mind that the sensitivity to parameter values is likely on the same
scale.

The distance and barotropic regularised Steady Kalman filter has a good
estimation skill in all areas of the model. Further, its low computational
cost enables easy operational implementation.

Future developments will investigate the use of regularisation techniques
for controlling the bias-variance trade-off together with attempting to
improve model error description. Also, more work needs to be done on
estimating the bias of the measurements when applied in a model datum
frame work. Most important in an operational setting is the forecast
skill. This will be addressed in a future study.
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Water level forecast skill of a hybrid steady Kalman filter
- error correction scheme

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, and Henrik Madsen2

Abstract

The forecast skill of a Steady Kalman filter alone and combined
with a simple autoregressive error correction model is demon-
strated in the North Sea, Baltic Sea system. Any practical
Kalman filter estimate will in general provide a sub-optimal state
estimate, if for no other reasons, then because of approximate
model and measurement error descriptions. The state estima-
tion problem is reviewed with a close consideration of the in-
terconnection between representation error and error modeling.
This leads to an interpretation of innovation auto-covariance and
suggests a hybrid data ASsimiation - Error correction Prediction
scheme (ASEP) for the forecast. In this scheme a modified sys-
tem equation is assumed with an autoregressive model predicting
the innovation, which is assimilated with a Steady Kalman filter.
Compared to a hydrodynamic forecast the ASEP scheme gives an
improved prediction skill for 10-11 hours on average. Recently, a
distance regularised Kalman gain has been shown to significantly
improve filtering performance in areas with sparse data coverage.
The forecast skill of a distance regularised Steady Kalman filter
is tested. This gives an improvement for several days, but the
ASEP scheme no longer gives a significant further improvement.

1 Introduction

A large part of the world’s population lives close to the ocean and is
affected by the coastal environment. Storm surges, toxic algae and oil
spill pollution are a few examples of events with harmful consequences
for people and whose prediction can help take proper action to minimize
human harm and economic expense. Therefore, forecasting of key pa-
rameters in the coastal ocean has been on the agenda for decades and in

1DHI Water & Environment, DK-2970 Hørsholm, Denmark
2Informatics and Mathematical Modelling, Technical University of Denmark, DK-

2800 Lyngby, Denmark
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many countries warning systems are being operated for selected key pa-
rameters, e.g. (Vested et al. 1995), (Gerritsen et al. 1995) and (Erichsen
& Rasch 2002).

More recently, with continual improvements of the modeling systems
encompassing forecasts of an increasing number of physical and biogeo-
chemical parameters, the operational services have matured to a degree,
where more and more needs of governmental agencies and private enter-
prises are met at an affordable price. For most forecast products, the
forecast skill is of prime importance. Since numerical modelling is only
slowly improving and has fundamental limitations, the present on-going
development also focuses on the on-line assimilation of available data.

The basic idea in most assimilation systems with a forecasting objective,
is to provide the best possible estimate of the ocean state at the time
of forecast. Such an approach was implemented by (Heemink 1986) in
a storm surge model for the Dutch coast. He used a Steady Kalman
filter and showed an improved skill relative to a standard forecast model
at both a three and six hour forecast horizon. (Vested et al. 1995) and
(Gerritsen et al. 1995) also investigated the forecast skill in the Southern
North Sea. They similarly found that Kalman filter based initialisation
improves the forecast skill at short time scales. However, at longer time
scales the skill deteriorates for a while before converging to that of the
standard forecast model. (Cañizares et al. 2001) applied the Steady
Kalman filter for assimilating tide gauge data in the North Sea, Baltic
Sea system, where they showed a good filtering performance in areas of
fairly dense data coverage. However, far from observations the filtering
skill was degraded. This problem was treated in (Sørensen, Madsen &
Madsen 2004) and a regularisation technique (distance regularisation)
introduced to solve it. The effect on forecast skill of applying distance
regularisation is investigated in this paper.

A different approach to provide improved forecast skill is to use error
correction schemes. These provide an off-line forecast of a vector of nu-
merical model residuals in points of observation by constructing data
driven models that relate the residuals to the residuals at previous time
steps, state variables predicted by the numerical model and forcing vari-
ables. (Babovic, Cañizares, Jensen & Klinting 2001) demonstrated a
successful application of a neural network based error correction scheme
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for the prediction of current speeds in Øresund strait between Sweden
and Denmark. Another error correction approach was taken by (Babovic
& Keijzer 2001), who used a Gaussian process model to improve forecast
skill of water level in a model of the Venice lagoon. All of these methods,
however, only provide local predictions. Any spatial distribution of the
predicted residuals must rely on assumptions about spatial correlations,
(Babovic & Fuhrman 2002).

When using data assimilation to improve the initial field at time of fore-
cast, the improved prediction skill is limited to a time horizon, at which
initial conditions are washed out. Error correction methods do not have
this constraint, but they only provide forecasts in measurement points.
Spatial distribution of the predicted correction rely on simple statistical
assumptions rather than system dynamics. Note that error correction is
a post processing procedure. It does not influence the forecast made by
the numerical model.

In this study a hybrid data ASsimilation Error correction Prediction
(ASEP) scheme is suggested, where the error correction methodology is
applied as an integrated part of a sequential model state update using
the Kalman filter. It is shown that data assimilation methods have a
colored innovation sequence in practice. Error correction is applied to
forcast the one-step-ahead errors of the numerical model in measurement
points and subsequently distributing this forecast in space according to
the Kalman filter update scheme.

Section 2 reviews the system description of the ocean and the classical
augmentation approach for model construction in the case of colored sys-
tem noise. Also included in Section 2 is a discussion of the choice of state
space definition when using numerical models for the state propagation
and its relation to system error and representation error included in the
measurement equation. Section 3 investigates the nature of the innova-
tion in a filtering scheme for correct and incorrect model and measure-
ment error descriptions, while the adapted filters (Ensemble and Steady
Kalman filters) are briefly outlined in Section 4. Section 5 describes the
hybrid approach taken for data assimilation, while Section 6 describes
the setup of the North Sea, Baltic Sea forecasting system and the assim-
ilation schemes. The results of the numerical experiments are presented
and discussed in Section 7 and Section 8 concludes the work.
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2 System description and state estimation

2.1 System

The physical system under consideration is the ocean in general. Our
focus is on coastal and continental shelf areas with the North Sea, Baltic
Sea and interconnecting waters providing our test grounds. The prop-
erties of this system are composed of a wide range of interacting, dy-
namically evolving components usually classified as hydrodynamic, wa-
ter quality, wave and sediment variables. In the theoretical treatment we
retain the full system in a rather general discussion about system models.
However, in the numerical experiments, we restrict our attention to the
mass and momentum distribution and hence the pressure and velocity
components.

Our inability to perfectly observe and predict the ocean naturally leads us
to put error bars on our predictions, and more elaborately to make the
state variables and system evolution stochastic. However, reality only
provides a single realisation of the actual state trajectory. Thus, the
perception of the actual ocean state having a probability distribution is
just a theoretical device - at least in the realm of Newtonian physics. It
is however, a very useful device, which allows us to express our imposed
imperfections and thus estimate the ocean state based on several sources
of information.

Let xt(ti−1) ∈ Rn be the true ocean state defined in discrete space and
time ti−1. Let M be a one time step ahead model propagator of this state.
Now assume that the error imposed in this ocean state propagation is
an unbiased white noise process, ηi, with covariance Qi. This gives the
following system equation:

xt(ti) = M(xt(ti−1),u(ti−1)) + ηi (1)

where u(ti) is the external forcing.

Let yo
i ∈ Rp be a an observation of a subspace of the state. This mea-

surement is assumed to be unbiased and its error, ǫi, to be white noise
with covariance Ri. This gives the following measurement equation:

yo
i = Hix

t(ti) + ǫi (2)
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where Hi is a linear operator, which projects the state space onto the
measurement space.

2.2 State estimation

Now assume the ideal case that (1) and (2) constitute the correct stochas-
tic descriptions of the state propagation and the measurements. If we
know the probability density function (pdf) of the state at some initial
time t0, then the nonlinear model operator, M , and the error distribution,
ηi, can be used to predict the a priori pdf of the state at a subsequent
time ti. Denote the prior expectation of this state xf (ti) and the prior
covariance Pf (ti). If a measurement becomes available at time ti, the
prior information embedded in the measurement can be combined with
the model prior to give an improved a posteriori estimate. The Minimal
Variance (MV) estimator is given by,

xMV (ti) = E{xt(ti)|yo
i } (3)

The prior model state estimate does not need to be Gaussian for (3) to
hold. Nor does the measurement error. For a nonlinear model and hence
a non-Gaussian distribution of xt, the estimate of xMV does not need
to be linear in yo. However, assuming this and solving the minimisation
problem under this constraint, gives the Best Linear Unbiased Estimate
(BLUE), xa, as

xa(ti) = xf (ti) + Ki(y
o
i − Hix

f (ti)) (4)

where
Ki = P

f
i (ti)H

T
i (HiP

f
i (ti)H

T
i + Ri)

−1 (5)

The error covariance of the updated state estimate, xa, is given by,

Pa(ti) = Pf (ti) − KiHiP
f (ti) (6)

2.3 Model and state space

For now it is assumed that some perfect technique is used for propagating
the pdf of the state and estimating P

f
i for a given M . A numerical model,
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MN , is chosen for the prediction of the dynamical evolution of the model
state, xN . This enables us to use our basic theoretical knowledge about
the ocean dynamics for constructing the model. However, in practically
all real ocean models, the model operator contains several error sources,
which can not be described as white noise processes like assumed in (1).
Thus, the starting point when a numerical model is used for the state
propagation, is the presence of colored noise in the system equation.

When using a numerical model as the corner stone of the predictor,
the model state space is simultaneously adopted as the carrier of the
system state space. We have to make a choice about the exact space
in which we wish to estimate the state and define our error processes
according to that. (Fukumori et al. 1999) provide a nice discussion of
representation error and emphasises that the error description in the
measurement equation is a measurement constraint error rather than a
measurement error. Their basic assumption is that the filtered reality,
which we adopt as the state space, is defined as the model range both
in terms of projection onto spatial and temporal averages as well as
dynamical projections.

Adapting the model state space allows a decomposition of the true con-
tinuous ocean state into this model solution space, ΣM , and the cor-
responding null-space, Σ⊥

M . It means that the limitation of the model
definition is embedded in the state space. They do not give a rigorous
definition of the meaning of such a dynamical projection, but empha-
sises that model errors are based on ’truncation and/or approximation
in physics’. Such a state representation makes sense. We do not want to
reinitialise the model with a state, whose further propagation is unsup-
ported. In this way we suppress signals, which are not solutions to the
model operator, at least in the ideal filtering case.

However, the definition of the dynamical model projection is a matter
of definition. No matter what dynamical projection is chosen within
the same spatial and temporal averages, then as long as the errors in
the resulting system equation are well described, it provides a stochastic
model within the chosen projection of the system. A good definition
leaves small and uncorrelated model errors. To obtain this, the processes
deliberately left out in the model definition should be represented as
representation error, while feedback from these processes back into the
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modelled processes should be described as model errors together with
unwanted approximations such as numerical errors as well as uncertain
parameters and forcing.

Measurements are usually averages over different length and time scales
than the numerical model. Also, signals from all physical processes that
remain after the averaging operations employed in the measurement ac-
quisition are present. Such incompatibilities are usually treated in geo-
statistics through the use of so called change of support models, (Bertino
et al. 2002). However, a more rudimentary approach is to increase mea-
surement error by considering the representation error. Despite the fact
that it is the model, which is unable to represent the true system state,
then having adapted the model state space projection, the portion of the
observation that lies in the null-space must be accredited to measure-
ment representation noise. With this noise description, the measurement
constraint error can easily be colored and will generally depend on the
state. The measurement matrix that projects the model space onto the
measurement space is denoted, HM .

It is important to note in this respect that most validation procedures,
including the one employed in this paper, look for the best fit with mea-
surements and hence the model is validated in measurement space, while
the estimation was performed in model space. Hence, if spatio-temporal
correlations exist among the null-space projections of the measurements,
an overly fit state estimate may yield better prediction skill than the
ideal filter. An overly fit model attempts to pull the state into the model
null-space. Particularly, close to observations, this may provide a state
estimate closer to reality despite the erroneous error assumptions. How-
ever, the subsequent propagation of the estimated state is no longer
guaranteed to be well described by the model operator. This may either
be due to neglected dynamics or due to numerical schemes, where the
valid regimes are exceeded by the state estimate.

With colored noise components, the BLUE estimator no longer provides
the optimal state estimate. The classical way to solve this problem in
time series modeling is to augment the model state with variables that
descrobe the autocorrelation and leave an error that fulfills the white
noise assumption in (1). So far, we have simply assumed some white
model error with known mean and covariance. However, analysis of the
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model equations suggests that this is not the case, e.g. dominant model
errors can be expected to come from a colored error in the forcings or
slowly varying parameters. Errors derived from the numerical methods
will generally be state dependent and hence colored, e.g. unwanted nu-
merical damping.

This knowledge about the error sources can be used to develop a better
model of the system. This is done by augmenting the state space and
model operator with elements, xη, and functions, Mη, needed to model
the error of the numerical model, which we assume to know the properties
of. The error models need to be expressed as Markov processes having
white noise errors themselves. Time dependencies with lags greater than
one can be included through an additional state augmentation. We in-
troduce an extended numerical model operator, MM , which includes the
numerical model operator, MN , and the forcing of the model state xN

with the errors, xη.

Similarly the state can be augmented with the colored measurement er-
rors, xǫ, the time evolution of which is described by Mǫ. All together
this leads to the following system equation,

xt(ti) =





xt
N (ti)

xt
η(ti)

xt
ǫ(ti)



 (7)

=





MM (xt
N (ti−1),u(ti−1),x

t
η(ti−1))+GMηM,i−1

Mη(x
t
η(ti−1)) + ηη,i−1

Mǫ(x
t
ǫ(ti−1)) + ηǫ,i−1



 (8)

= M(xt(ti−1),u(ti−1)) + Gηi−1 (9)

where GM is a transformation matrix of the state space, in which the
white noise model is defined, onto the numerical model state space and

G =





GM 0 0

0 I 0

0 0 I



 (10)

is the general noise-to-model-space transformation operator. The gener-
alised model error ηi is composed of the white numerical model error,
ηM,i, the error in the colored model error description, ηη,i, and the error
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in the colored measurement and representation error description, ηǫ,i.
The measurement equation now reads,

yo
i = Hi,Mxt

N (ti) + xt
ǫ(ti) + ǫi = Hxt(ti) + ǫi (11)

The two equations (7) and (11) outline the standard framework for han-
dling colored model and measurement errors, by augmentation of the
space to include the colored components.

3 Innovation autocorrelation

In this section the whiteness of the innovation sequence for perfect er-
ror assumptions and a linear model, M, will be demonstrated leading to
an expression for the auto-covariance when approximated error assump-
tions are used. The information in the one-step ahead forecast error of
the observation is contained in the innovation, di = yo

i − Hxf (ti). Let

xf (ti) = xt(ti) + δ
f
i and consider the expected lag-one auto-covariance

of the innovation sequence,

Cov(d(ti+1),d(ti))
= Cov(yo

i+1 − Hxf (ti+1),y
o
i − Hxf (ti))

= Cov(ǫi+1 − Hδ
f
i+1, ǫi − Hδ

f
i )

= Cov(HM
[

δ
f
i + Ki(ǫi − Hδ

f
i )

]

+ Hηi,Hδ
f
i − ǫi)

= HM(I − KiH)Pf,t
i HT − HMKiR

t
i

= HM

[

P
f,t
i HT

[

HP
f,t
i HT + Rt

i

]−1
−

P̂
f
i H

T
[

HP̂
f
i H

T + R̂t
i

]−1
]

[

HP
f,t
i HT + Rt

i

]

(12)

P
f,t
i and Rt

i are the true model and measurement error covariance matri-

ces, while P̂
f
i and R̂i are those assumed and derived from the assimilation

scheme. In order to simplify the expression, we have used the assump-
tion that ǫi+1 and ηi+1 are uncorrelated with previous measurement and
model errors, or at least that these terms are much smaller than the
other terms.

Equation (12) shows that the autocorrelation is only zero in the ideal case

with correct error assumptions and error propagation, i.e. P̂
f
i = P

f,t
i
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and R̂t
i = Rt

i. In all other cases the auto-covariance of the innova-
tion sequence is given by the propagation of the difference between the
estimated and the true Kalman gain matrices projected onto the mea-
surement space and multiplied by the true covariance of the innovation.
This means that in most real case applications of approximate Kalman
filters using suboptimal error modeling, the innovation sequence has a
predictable component. Further, it can be used to test for correct error
assumptions.

The innovation sequence is potentially a result of the composite model-
measurement error signal. If the colored components are due to pure
model error then the model error description should be improved. The
assumption then is that the model structure is capable of producing
results that overlap the measurements, but due to improper error de-
scription the analysis fails to do so. In this respect a suggestion for
error model improvement is to use the innovation sequence to construct
a model, Mη, of the model error, xη in measurement space. This can
then be distributed to the entire model space by imposing proper covari-
ance assumptions. A simple first guess is to use the Kalman gain for
this purpose, all though this assumes that the previously neglected error
component has the same covariance as the modelled error component.
This corresponds to MM in (8) with no measurement error model to be
given by,

MM (xt
N (ti),u(ti),x

t
η(ti)) = MN (xt

N (ti),u(ti)) + Kix
t
η(ti) (13)

Once the model is changed in this way, the resulting innovation series
will change as well and there is no guarantee that the process leads to an
improved model error description and hence a more efficient estimate, but
it is an obvious way to attempt to implement the information contained
in the original innovation sequence to improve the system description.

If the colored components are due to pure measurement constraint er-
ror, i.e. lies in the model null space, then the measurement error model
should be improved. Remember, that such measurement error mod-
els also encompass models of the structural model errors. Thus, if the
model imposed measurement error dominates, a subsequent forecast of
the measurement error actually predicts the true physical system and not
an instrumental error. This estimate, which is defined in measurement
space can be used to estimate the state of the null space through impos-
ing additional error covariance assumption, hence leaving to an improved
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estimate of the true state composed of the sum of the estimates in ΣM

and Σ⊥
M .

4 Assimilation scheme

So far we have merely assumed perfect propagation of the first and second
moments of the model probability distribution. Obviously, this is not
possible and much work has been put into deriving proper propagation
schemes for data assimilation. In this study we use the Steady Kalman
filter approximation with the steady Kalman gain calculated off-line by
the Ensemble Kalman Filter, (Evensen 1994). Its description and details
about its implementation in the present setup can be found in (Sørensen
et al. 2004), which also describes the distance regularisation based on
ideas in (Houtekamer & Mitchell 1998). The adoption of a suboptimal
scheme and particularly the steady approximation imposes a number of
errors in the Kalman gain estimation, and hence a colored component in
the innovation sequence according to (12). However, the misspecification
of model and measurement errors most likely imposes equally large errors
and their impact has been much less studied. Hence, the theoretical
discussion has focused on the latter, while acknowledging the importance
of proper state and error covariance propagation.

5 Hybrid prediction scheme

It is well known that model residuals can be modelled very well by data
driven models, e.g. (Babovic et al. 2001), and thereby improve the pre-
dictive power. This is usually done off-line by superimposing error fore-
casts to the model simulation and allows the use of information contained
in measurements to be used for the prediction of observed variables. In
a data assimilation system this additional information is used to update
the entire system state, hence leaving no information in the innovation.
However, as discussed above, this is not the case for suboptimal filtering
and a reminiscent signal is left in the innovation sequence. This can be
modelled by a suitable data driven model, Md, which subsequently can
be used to forecast the innovation. This approach, where the presence of
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imperfection in the assimilation approach is acknowledged and modelled,
is referred to as the hybrid data ASsimilation Error correction Prediction
scheme (ASEP).

The filter analysis step (4) can be rewritten,

xa(ti) = xf (ti) + Kid̂i + Ki(y
o
i − Hix

f (ti) − d̂i) (14)

where d̂i is the predictable part of the innovation in an imperfect assim-
ilation scheme. Hence, the analysis is split into a term assimilating only
the unpredictable projection of the measurement and an update based
on the predictable part of the innovation. The closest approximation to
this in a forecast setting is to maintain the first two terms instead of just
the first term. Hence, in forecast the model propagation is changed to,

xf (ti+1) = MN (xf (ti),u(ti)) + Kid̂i (15)

d̂i+1 = Md(d̂i) (16)

Following (15), Ki, is the Kalman gain used in the estimation of the error
model. However, this is based on assimilating measurements and not pre-
dicted innovations, which will be more uncertain. Hence, alternatively
the Ki to be used in the forecast setting can be estimated by considering
the innovation estimate as an additional source of information and mod-
eling its error statistics. This would result in smaller corrections. The
approach adopted in the present study is to use a steady Kalman gain
both for hindcast and for forecast.

In the present study a very simple data driven model was used for the
innovation prediction, namely a univariate AR(1) model. Much more
elaborate models such as artificial neural networks, local linear modeling
or genetic programming can be derived, but for the present purpose of
demonstrating the feasibility of the approach, the simple autoregressive
model was chosen.

d̂i+1 = Md(d̂i) = Ad̂i (17)

where A = diag(α1, ..., αp) and |αi| < 1, i = 1, ..., p.
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Figure 1: Bathymetry and available tide gauge stations, including 10
measurement stations (M1-M10) and 7 validation stations (V1-V7).

6 Design of experiments

The area under consideration is the North Sea, Baltic Sea and inter-
connecting waters. We restrict our attention to the barotropic hydrody-
namics and hence employ the depth averaged numerical model, MIKE
21, developed at DHI Water & Environment, DHI (2001). The area and
bathymetry is shown in Figure 1 with the available tidal gauge mea-
surement points indicated. The gauges were divided into measurement
stations (M) used in the assimilation and validation stations (V), which
were only used for performance assessment. The spatial resolution varies
from 9 to 1/3 nautical miles through a two-way dynamic nesting tech-
nique. The temporal resolution is 2.5 minutes and measurements are
available every 30 minutes. The measurements are linearly interpolated
and assimilated every 10 minutes, i.e. every fourth model time step.

The period of January 2002 was used in the study. A steady Kalman
gain was estimated as an average of the gain calculated in an execution
of the EnKF in a three day period from 1 January to 4 January. All
measurements were adjusted to have the same average as a standard
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model prediction in January 2002 to diminish datum problems.

The experiments were designed to test the forecasting performance of
five prediction schemes:

• A standard model execution

• A Steady Kalman filter

• A Steady Kalman filter until time of forecast and the ASEP there-
after

• A Steady Kalman filter using distance regularisation

• A Steady Kalman filter using distance regularisation until time of
forecast and the ASEP thereafter

Twenty forecasts were performed with one day intervals. Each model
run included one day of hindcast and a four day forecast. Hindcast wind
fields were used for forecast.

In the assimilation schemes, the model error was assumed to derive solely
from errors in the wind velocity and open boundary water level forcing
terms. These errors were assumed to be colored with temporal corre-
lation scales of 5.7 and 1.7 hours, respectively, and to have spatial cor-
relation scales of 300 and 95 km. All measurements constraint errors
were assumed to have a standard deviation of 0.05 m. See (Sørensen et
al. 2003b) for a more detailed description of the Kalman filter settings
and their effect on hindcast performance.The spatial decorrelation scale
of the distance regularisation was set to 250 km.

The steady Kalman filter was run for the full month of January both
with and without distance regularisation and the resulting innovation
sequences were used to construct their respective AR(1) model in each
measurement point. The autoregressive parameters was set to the lag
one autocorrelation of the corresponding innovation series. The parame-
ters are shown in Table 1. The innovation sequences look quite different
in different locations indicating a heterogeneous model error structure.
Figure 2 and 3 show two examples of the innovation time series with-
out using regularisation in M4-Ballen and M6-Gedser, respectively. As
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expected from their relatively high and low auto-correlation values, M4-
Ballen has a rather smooth variability, while the M6-Gedser innovation
sequence is more high frequent. M6-Gedser also seems to have a time
varying variance. Clearly, in an elaborate implementation of the ASEP
approach, a more complex error correction model must be developed.

Station No regularisation Distance regularisation

Esbjerg (M1) 0.95 0.96

Hanstholm (M2) 0.84 0.88

Skagen (M3) 0.96 0.97

Ballen (M4) 0.95 0.96

Korsør (M5) 0.98 0.99

Gedser (M6) 0.87 0.85

Hornbæk (M7) 0.94 0.92

Rødvig (M8) 0.93 0.94

Rønne (M9) 0.96 0.93

Kalix (M10) 0.98 0.998

Table 1: Estimated innovation lag one auto-correlations in January 2002
for a standard Steady Kalman filter (no regularisation) and imposing
distance regularisation

The performance of the schemes were assessed as root mean square errors
RMSE of the A = 20 forecasts for each forecast horizon, ti, and tidal
gauge station, s,

RMSE(ti, s) =

√

√

√

√

1

A

A
∑

a=1

(yo
i (s) − H(s)xa(ti))2 (18)

For each station the time horizon, over which the assimilation approaches
improve the forecast according to the RMSE-measure, was derived by
visual inspection. Further, bulk performance measures were constructed
as averages of measurement and validation stations.



192 Paper F

Figure 2: Time series of the innovation in M4-Ballen for the first four
days of February 2002

Figure 3: Time series of the innovation in M6-Gedser for the first four
days of February 2002
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Figure 4: Aggregated RMSE of the reference run (thin black), the Steady
run (thick black) and the ASEP run (thick grey) in all measurement
points. The horizontal axis is time (h) relative to time of forecast.

7 Results and discussion

In the case of the non-regularised steady Kalman filter, the bulk RMSE
statistics are shown in Figures 4 and 5 for measurement and validation
stations respectively. The overall picture is that while the data assimila-
tion clearly improves the state estimate in hindcast, this improved skill
on average only lasts 6-8 hours without the hybrid scheme and 10-11
hours with it. After this period of improved predictive skill a period
follows with degraded water level predictions.

In order to understand this behaviour, the spatial distribution of im-
proved predictive horizon is shown in Figure 6 with values and relative
ASEP improvement listed in Table 2. Large differences exist and it is
clearly evident that M1-Esbjerg in the Southern North Sea and stations
south of the Danish straits have the worst performance, while stations
in the Skagerak and Kattegat improve prediction 18-36 hours and even
up to 55 hours for the hybrid scheme.

The areas with short prediction horizon lies close to areas of sparse data
coverage. The Steady Kalman filter has been shown to provide bad
state estimates in these areas, (Sørensen et al. 2004), and when data
no longer is available to constrain the solution, the errors in these areas
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Figure 5: Aggregated RMSE of the reference run (thin black), the Steady
run (thick black) and the ASEP run (thick grey) in all validation points.
The horizontal axis is time (h) relative to time of forecast.

Station Steady ASEP Improvement
(hours) (hours) (%)

Esbjerg (M1) 2 3 52

Hanstholm (M2) 18 18 0

Skagen (M3) 28 31 11

Göteborg (V1) 32 55 72

Sjællands Odde (V2) 30 34 13

Ballen (M4) 28 37 32

Korsør (M5) 15 17 13

Spodsbjerg (V3) 14 16 14

Gedser (M6) 7 10 43

Hornbæk (M7) 31 34 10

Drogden (V4) 5 8 60

Rødvig (M8) 5 8 60

Hesnæs (V5) 5 9 80

Rønne (M9) 5 8 60

Marviken (V6) 0 0 0

Spikarna (V7) 0 0 0

Kalix (M10) 8 13 63

Average 14 18 29

Table 2: Forecast horizon (hours) in all tide gauge stations
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Figure 6: Schematic view of the spatial distribution of the forecast hori-
zons for the Steady initialisation (grey) and the ASEP approach (black)
listed in Table 2.

flush into the observed regions. This dynamic propagation of the errors is
damped, reflected or redirected before it reaches Skagerak and Kattegat
where prediction performance hence is good. An example of water level
hindcast and forecast for the validation station, V2-Sjællands Odde is
shown in Figure 7.

The average RMSE of Skagerak and Kattegat stations is shown in Fig-
ure 8. An important observation is that there is no subsequently de-
graded performance in these stations, where good performance is ob-
served. Thus, when an assimilation scheme is used, which minimizes the
estimation errors everywhere in hindcast, then the assimilation based
forecast is also to be trusted even on longer horizons.

It turns out that the ASEP improvement over the Steady lasts the longest
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Figure 7: Example of improved forecast skill of the reference run (thin
black), the Steady run (thick grey) and the ASEP run (thick light grey)
in the validation station V2- Sjællands Odde in the Southern Kattegat.
Observations are in thick black. Time of forecast is at 00:00 2002-01-12.

Figure 8: Aggregated RMSE in of the reference run (thin black), the
Steady run (thick black) and the ASEP run (thick grey) the Skagerak
and Kattegat stations. The horizontal axis is time (h) relative to time
of forecast.
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in stations, where the Steady performs rather well by itself. It is the
same gain that is used to assimilate the observations and the forecast
innovation and hence the predicted innovation in the ASEP is distributed
according to a gain, which provides good forecast and thus a longer
lasting effect. On the other hand, the best relative improvement is found
in the stations with modest prediction skill because of the influence by
the erroneous state estimate in the Baltic. This implies larger actual
corrections relative to error imposed in every forecast. In other words,
the error correction method corrects more, when there is more error to
correct.

A closer analysis reveals that the innovation sequence has both periodic
and higher order autoregressive components. Thus, an AR(1) model
will give phase errors and an improved error correction model should
be applied. However, this present study is meant as a first step in the
direction of applying hybrid data assimilation - error correction schemes
in a forecasting scenario. In actual implementations a decision must also
be made about the purpose of the model. For example, if storm surge
prediction is the ultimate goal of the scheme, then the error correction
component of the scheme should be trained under such conditions.

Many future challenges and developments remain. A first step would
be to include a stochastic error in the error correction model during the
forecast. The predicted innovation does not have the same error as the
real innovation. Hence it should be modelled and a corresponding gain
calculated for merging the predicted innovation and the numerical model
estimate of the state.

Alternatively, the presence of the innovation time correlation suggests
an improved system model. Such an improvement could be inspired
by the innovation sequence itself, hence trying to use the hybrid model
presently employed in the forecast in hindcast as well. This changes the
entire state space and system description, but may nevertheless provide
an improved model. Such an approach was pursued for bias estimation
in (Dee & da Silva 1998).

Now we consider the results of the experiments using distance regular-
isation. Figures 9 and 10 show aggregated RMSE measures for mea-
surement and validation stations respectively. The most striking feature
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Figure 9: Aggregated RMSE of the reference run (thin black), the Steady
distance regularised run (thick black) and the corresonding ASEP run
(thick grey) in all measurement points. The horizontal axis is time (h)
relative to time of forecast.

Figure 10: Aggregated RMSE of the reference run (thin black), the
Steady distance regularised run (thick black) and the corresonding ASEP
run (thick grey) in all validation points. The horizontal axis is time (h)
relative to time of forecast.
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here is the impressive effect of distance regularisation on the water level
forecast skill, which now exceeds 24 hours. The RMSE measure levels
out to that of the reference run after 2-3 days and no deterioration is
observed at any forecast horizon for any station. In this case the ASEP
scheme does not improve results further. A smaller error is left to correct
by the hybrid scheme and hence no significant improvement is observed.
The distance regularisation makes an improved global state estimate and
hence no erroneous signals are set free to propagate in the domain at time
of forecast.

8 Conclusion

This paper has highlighted the general problem of properly estimating
model and measurement errors in sequential data assimilation schemes.
Since the imposed error model typically contains an error in real data
assimilation applications in coastal seas, then any scheme will be subop-
timal for this reason alone. We have shown that sub-optimality leaves
predictability in the innovation series and suggested a combined data
assimilation - error correction scheme for prediction in this case. The
scheme contains the predictable part of the combined forecast-analysis
in the assimilation scheme.

The performance of the scheme was investigated in an operational model
of the North Sea, Baltic Sea and interconnecting waters. Forecast ini-
tialisation by the Steady Kalman filter gave an improved prediction for a
period of 5-32 hours in the Region stretching from Skagerak to the West-
ern Baltic. The hybrid scheme improves this improved forecast horizon
to 8 to 55 hours.

An interesting observation is the lack of a subsequent degradation of
the performance on longer time scales in the Skagerak and the Katte-
gat. In areas, which are dynamically influenced by regions of sparse data
coverage and poor state estimates, the longer time scale prediction skill
of the Steady Kalman filter initialisation is hampered by the propaga-
tion of these errors. This longer time scale degradation is slightly more
pronounced when using the Hybrid scheme.
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The use of distance regularisation significantly improves the forecast skill
and is to be encouraged for operational forecasting purposes.
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Parameter estimation in a hydrodynamic model of the
North Sea and Baltic Sea

Jacob V. Tornfeldt Sørensen1,2, Henrik Madsen1, and Henrik Madsen2

Abstract

This report briefly reviews the initial work done on parameter
estimation and calibration in DHI’s hydrodynamic models of the
marine environment. In a setup of MIKE 21 in the Water Forecast
area covering the North Sea, Baltic Sea and Inner Danish Waters,
an optimisation of bed friction maps and wind friction parame-
ters, which minimises the standard deviation of model residuals
is performed. This is done in an approximate weak constraint
formulation, where the model assimilates tide gauge data and
in a strong constraint formulation, where a standard determin-
istic model is employed. Generally, a rather poor performance
is obtained in a validation run. However, the approximate weak
constraint formulation using data assimilation in the parameter
estimation gives a better performance, because this attempts to
estimate the parameters, while acknowledging model errors. Part
of the generally poor performance can be ascribed to the fact
that the calibration was only done over a five day period. Also,
bathymetry variations were not included as controls in the opti-
misation. The weak constraint formulation further imposed its
own errors. One of the tide gauge stations that enter the opti-
misation objective lies in an area that is erroneously updated by
the Kalman filter, thus severely affecting the optimisation.

1 Introduction

Throughout the advance of numerical models in ocean sciences, the prob-
lem of determining the model parameter values has been an integrated
part of every application. To this date, the most widespread technique
in ocean and coastal sea applications is a manual trial-and error ap-

1DHI Water & Environment, DK-2970 Hørsholm, Denmark
2Informatics and Mathematical Modelling, Technical University of Denmark, DK-

2800 Lyngby, Denmark
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proach. This allows the modeller to employ a complex physical under-
standing based on theoretical considerations and experience. However,
every modeller will have a different approach and criteria for good per-
formance. The objective of the modeller is typically rather vaguely to
make the model trajectory come close to observations. Further, in many
cases the nonlinear nature of the parameter estimation problem makes
the calibration task very difficult.

Another approach is to cast the problem in an optimisation framework.
This mathematical inverse problem was presented and discussed rather
elaborately by (Evensen et al. 1998). Here, a weak constraint formu-
lation is suggested, which leaves a well posed inverse problem. If the
formulation is relaxed to be strong constraint, the problem may be ill-
posed and leave non-unique and noisy parameter estimates. In the strong
constraint formulation, a cost function of model residuals is minimised
with respect to a set of chosen control parameters. In the weak con-
straint formulation, penalty functions are added to the cost function for
the deviation of the parameters from an initial parameter guess as well
as deviation from the model propagator, the boundary condition and the
initial conditions, respectively.

The size of the state vector in oceanographic studies using numerical
models is large (105-107). Hence, the most tractable approach of solving
this problem is in a variational setting, employing a gradient based nu-
merical optimisation algorithm together with an implementation of the
adjoint equations. In the case of multiple local optima, the adjoint solu-
tion should be combined with a global optimisation algorithm in order
to increase chances of finding the global optimum. Generally this is not
pursued and a local quasi-Newton or conjugate gradient method is used,
(Heemink et al. 2002).

The combination of local, gradient based optimisation algorithms and
solving the adjoint equations has been employed in a number of previous
studies for two- and three-dimensional numerical hydrodynamic models.
(Lardner, Al-Rabeh & Gunay 1993) used this approach to calibrate bot-
tom friction coefficients and water depth in a barotropic tidal model of
the Arabian Gulf over a 29-day period. In order to stabilise the method,
they introduced a penalty for strong parameter variations. The calibra-
tion was consistent in a 100-day validation run. In (ten Brummelhuis,
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Heemink & van den Boogaard 1993) an extended approach was applied
to calibrate a numerical model over a one-day period while applying a
Steady Kalman filter for assimilating tide gauge data assuming uncertain
boundary conditions. This provided smoothed estimates of boundary el-
evation corrections, which were applied iteratively in an optimisation of
water depth and bed friction. (Heemink et al. 2002), applied the ad-
joint approach for estimating tidal constituents, depth, bed friction and
viscosity parameters in a three-dimensional model solving the shallow
water equations on the European Continental Shelf. They demonstrated
significant improvements in areas of prime interest.

The success of the gradient based studies above proves that gradients
are well defined. However, the assumption that a local optimisation
technique is sufficient, has mainly been confirmed by the relatively real-
istic values of the obtained parameter estimates. The non-linear nature
of the problem may give a cost function with several local minima. In all
cases above the cost functions are based on square error measures in the
observational space. Other alternatives, such as phase error measures
may be more relevant in certain cases. A major drawback for adjoint
techniques is the need for an adjoint model operator. Despite the de-
velopment of automatic adjoint compilers, (Giering & Kaminski 1998),
most models do not have adjoint codes developed and no automatically
generated adjoint codes are known to have been compiled for shallow
water flow computations in coastal areas.

An alternative parameter estimation approach was taken by (Heemink
1986), who demonstrated the use of a Kalman filter to estimate model
parameters in a one-dimensional along-coast setting. With the advance
of sequential estimation techniques capable of handling non-linearities,
(Evensen 1994) and (Verlaan & Heemink 1997), a similar approach should
be applicable even in two and three dimensional models. However, no
such application has been found in literature for coastal ocean modelling
despite its appeal.

In hydrological literature the parameter estimation problem has been
more extensively studied. Here, non-linearities often renders gradient
based local optimisation insufficient and hence, focus has been largely on
developing global methods that are not gradient based. Among the de-
velopments are the Shuffled Complex Evolution (SCE) algorithm, which
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has been proven successful in handling strong non-linearities and multiple
equilibria, (Madsen 2003). However, compared to efficient Quasi-Newton
or conjugate gradient schemes the SCE has a slow convergence. The is an
expression of the general trade-off between efficiency and effectiveness.
Further, the method is not gradient based and hence, it can not take
advantage of the adjoint technique.

In any optimisation scheme, the inverse problem itself is defined by the
cost function and hence the calibration data and model parameterisation.
In a particular case, the cost function should reflect the application of
the model. Thus, a great deal of knowledge is nevertheless required to
select these parameters of the problem in a manual way. This must be
done such as to allow identifiability of the the parameters and typically
results in a spatial grouping of a field of parameters. This is in fact an
ad hoc regularisation of the problem and more elaborate regularisation
techniques might be explored in this context.

The objective of the present study is to explore the application of param-
eter estimation techniques, which do not require the development of an
adjoint solver, to a depth averaged hydrodynamic model. Using a sim-
plex optimisation algorithm, bed and wind friction coefficients of a depth
averaged two-dimensional model are estimated for optimal performance
in the inner Danish waters. The parameter estimation is performed in
both a strong constraint and a quasi-weak constraint context. The re-
sults are validated in both settings as well.

2 Parameter estimation framework

The definition of and the solution to a parameter estimation problem
consists of a number of elements. First the model of the system under
consideration must be specified. The model can either be deterministic
or stochastic in nature. Next, the notion of model performance must be
quantified in a cost function expressing the fit or misfit of a model esti-
mate with observations. This includes selecting a calibration period and
data as well as functional relationships. It is well known that hydrody-
namic models are typically over parameterised and thus not identifiable
by the observational data. Therefore, a subset of the parameter space
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Figure 1: Bathymetry and tide gauge stations, including 12 measurement
stations (M1-M12)

needs to be selected as control parameters. Finally, having defined the
inverse problem, an optimisation algorithm must be chosen to provide a
solution.

2.1 Model setup and data

The numerical model employed in this study, is the widely used MIKE
21 developed at DHI Water and Environment, (DHI 2002). The model
solves the depth averaged mass and momentum conservation equations
on a staggered grid using finite differences. Thus, it simulates the evolu-
tion of the water level, ηi, and horizontal fluxes, Vx,i and Vy,i, discretised
in time (ti indexed i) and space. It is setup in a region covering the
North Sea - Baltic Sea system with bathymetry shown in Figure 1.

The model is forced by winds and surface pressure from the Vejr2 weather
service, (Rogers et al. 2001), as well as tidal surface elevations at the
Northern and Southern boundaries in the North Sea. Initial water levels
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Station Cost function Assimilation

Esbjerg (M1) + +

Hanstholm (M2) + +

Skagen (M3) + +

Ballen (M4) + +

Korsør (M5) + +

Gedser (M6) + +

Hornbæk (M7) + +

Rødvig (M8) + +

Rønne (M9) + +

Kalix (M10) - +

Lowestoft (M11) + -

Wick (M12) + -

Table 1: Tide gauge stations and their usage in the optimisation

and fluxes are obtained from the Water Forecast Service, (Erichsen &
Rasch 2002). The model is calibrated and validated against a number
of tide gauge stations, providing water level measurements, ηobs,i. These
are listed in Table 1 and their position plotted in Figure 1. The stations
have the densest distribution in the inner Danish water, which is the
area of prime focus in this study. However, we maintain a few North Sea
stations in an attempt to avoid parameters that give unrealistic results
there. No attempt has been made here to scale the contribution from the
North Sea stations with the much larger tidal range in these positions.
The Baltic is not similarly constrained. Ideally, an independent set of
tide gauge stations should be used for the validation procedure. This is
not done at the present stage of development.

2.2 Steady Kalman filtering

In the deterministic model above, the model equations themselves are
considered perfect and the optimal parameters will be sought for under
that assumption. This will provide parameter estimates which are fit to
compensate for other model errors as demonstrated by (ten Brummelhuis
et al. 1993). Alternatively, the model simulation can attempt to correct
model errors unrelated to parameter values by using a Kalman filter,
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which takes these errors into account.

In a previous study of (Cañizares et al. 2001) the Steady Kalman fil-
ter was tested in a similar model set-up of MIKE 21 in the North Sea,
Baltic Sea area for assimilating tidal gauge data. In the present study,
uncertain boundary and wind forcing is assumed to be the sole sources
of model error. Table 1 lists the tide gauges used for assimilation. The
Steady Kalman Filter is described in detail in (Sørensen et al. 2004).
The distance regularisation proposed in that paper is not used in this
study and hence regions far from measurements might have a deterio-
rated performance.

If the approximations of the Steady Kalman Filter are ignored for the
sake of simplicity, then the filtered model solution is the state estimate
with the lowest variance within the stochastic model adopted. Hence, as-
suming errors in the open boundaries and the wind velocities, the Kalman
filter provides the solution corresponding to the variance minimizing real-
isation of the error sources, assuming the model parameters to be perfect.
The parameter estimation using the Steady Kalman Filter then ideally
seeks parameters that minimise the cost function while allowing the fil-
tered solution to estimate the independent errors sources assumed by the
filter.

2.3 Cost function

Defining the cost function is a crucial step in defining the inverse problem
itself. In a given application, the modeller will attempt to express a cost
function that reflects the aim of the model calibration. It could be a
balanced trade-off of all error types, a bias measure, a standard deviation
or a phase error measure. In fact any kind of measure which express a
deviation from observations or prior knowledge can be included in the
cost function.

In the present set-up, a composite measure of standard deviations of
model residuals over a five days period ranging from 1 January to 6
January is chosen. All stations are given equal weight. Hence, more em-
phasis is put on improving performance in areas with dense observation
coverage. Due to difficulties of assessing model datum, the standard de-
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viation rather than the mean square error is used in the measure. A very
simple penalty, Jp, is added for parameter values diverging from the ini-
tial guess. Parameter values outside an initially defined acceptable range
are given infinite penalty, while, parameters inside the range have zero
contribution to the cost function. Thus, the cost function without using
the Steady Kalman filter is,

J =

√

√

√

√

Tc
∑

i=1

((ηobs,i − ηobs) − (ηi − η))2 + Jp (1)

where Tc is the number of observations in the calibration period. The
optimisation with and without the Steady Kalman filter can be regarded
as solutions to a strong and a quasi-weak constraint inverse problem
formulation. Let over-line denote a time average. The cost function
using an ideal filter is

J =

√

√

√

√

Tc
∑

i=1

((ηobs,i − ηobs) − (ηa
i − ηa))2 + Jp (2)

where ηa
i is the element of the model state space which is the expectation

of the model state conditioned on all previous measurement. The Steady
Kalman imposes a large number of approximations such as a given error
model, stationarity of model correlations at time of update and a lin-
ear estimator, but without these simplifications, the optimisation would
become intractable.

2.4 Calibration parameters

Any model simulation requires a number of parameters to be set and
hence their value to be assessed in some way. A coastal ocean model, like
MIKE 21, has many free parameters. These include bathymetry, spatial
bed friction maps, viscosity parameters and wind frictions parameters
and can easily count of the order 105 parameters. They are however not
all independent - two neighbouring bed friction values will most likely
be almost equal. Hence, the effective dimension of the parameter space
is much smaller.

In the present study the optimised parameters are wind stress parameters
and bed friction maps according to predefined patterns that strongly
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reduces the dimension of the parameter space. The wind friction, τ =
(τx, τy), is calculated from the the two wind components, W = (Wx,Wy),
according to,

τ = Cw
ρair

ρwater
|W|W (3)

where ρair and ρwater are air and water density respectively. The param-
eter Cw is a piecewise linear function of W as shown in Figure 4 and is
specified by four parameters that are assumed constant in space. Default
values are Cw,min = 0.0016, Cw,max = 0.0026, Wcw,min = 0 m/s and
Wcw,max = 24 m/s yielding the solid line in Figure 4.

The bed friction map (of Manning numbers) consists of approximately
105 points and a strong space reduction is required for many optimisation
algorithms in Section 2.5 to be tractable. The approach taken here is in
an ad hoc way to let the Manning map be a sum of a limited number of
independent contributions. These are constituted by

• a spatially constant background value

• A depth dependent map

• A Gaussian bell centered at Wick with spatial decorrelation scale
of 300 km.

• A Gaussian bell centered at Lowestoft with spatial decorrelation
scale of 300 km.

• A Gaussian bell centered at Esbjerg with spatial decorrelation scale
of 300 km.

• A Gaussian bell centered at Hanstholm with spatial decorrelation
scale of 300 km.

The depth dependent map has a zero crossing at 30 m and is a non-linear
function of depth with -800 m and 0 meters being of equal size but oppo-
site sign. The Gaussian bells at Wick, Lowestoft, Esbjerg and Hanstholm
were chosen at measurement point to allow a local impact and a smooth
variation. Traditional alternatives are to divide the domain into zones
or use triangularisation. In (Heemink et al. 2002) a triangularisation
was made based on a parameter sensitivity estimate by the adjoint of an
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initial guess. This is not feasible in our case and the Gaussian bells were
adopted.

All together 10 parameters were calibrated in the optimisation.

2.5 Optimisation method

The previous subsections have defined the inverse problem to be solved.
The objective is to find the set of parameters defined in Section 2.4, that
minimises the cost function (1) or (2) for the numerical model implemen-
tation and set-up described in Subsection 2.1.

The solution to this inverse problem can be found using a number of tech-
niques with each having their advantages. The most frequent approach
in hydrodynamical modelling is to combine a gradient based local search
algorithm, such as a quasi-Newton technique or conjugate gradient, with
a solver of the adjoint equations belonging to the inverse problem. The
great advantage of this approach is the efficient calculation of the gradi-
ents of the cost function with respect to parameter values provided by the
adjoint solution. This advantage increases with the number of param-
eters to be optimised. The disadvantage is the costly development and
maintenance of the adjoint solver. Further, for potentially rough (highly
variable) cost functions a gradient based algorithm is undesirable in any
case.

So far the adjoint, gradient based approach has seemed like the only vi-
able solution to the problem for large scale ocean models. However, by
taking full advance of recent developments in parallel high performance
computing (HPC), optimisation techniques that do not require the imple-
mentation of the adjoint gain increasing interest because of their highly
parallisable algorithmic structure.

Previous studies have shown successful application of gradient based op-
timisation algorithms and hence these will be used in a future implemen-
tation. However, due to the code history for the optimisation package at
DHI, these techniques are still at the stage of implementation and the
existing Simplex and Shuffled Complex Evolution (SCE) algorithms are
used in the present study. Neither of these are gradient based. The Sim-
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Figure 2: Optimised bed friction Manning map for the non-assimilating
model operator (noDA)

plex is a local search algorithm, while SCE is a global search algorithm,
(Duan, Sorooshian & Gupta 1992). A parallel implementation have been
developed for the SCE optimisation algorithm. A coarse parallisation
strategy was taken, in which the performance of a heterogeneous cluster
was optimised.

3 Results and discussion

Two parameter estimation procedures are tested in the setup of MIKE 21
described in Section 2.1 with particular focus on the Inner Danish Waters.
The bed and wind friction parameters are estimated in both the strong
constraint and quasi-weak constraint data assimilating formulation. In
either case the calibration is performed in the five-day period from 1
January to 6 January 2002. This is a short period, but enables the
technique to be tested despite the lack of a parallel cluster at present and
it does provide some insight into the performance of the estimations.
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Figure 3: Optimised bed friction Manning map for the assimilating model
operator (DA)

The cost function, J , is presented in Table 2 for the calibrated and ref-
erence runs in the case of both quasi-weak (DA) and strong (noDA)
constraint optimisation. Figures 5 and 6 provides a detailed view of the
contribution to the cost function from each tide gauge station. First of
all, note that the calibrated parameters do not improve the model in all
stations. Actually, in both calibration runs the main absolute improve-
ments are in the North sea - Esbjerg for noDA and Lowestoft for DA.
Closer inspection further reveals that the reference using assimilation is
actually worse than with no assimilation in Lowestoft. This station is
situated quite far from assimilation points and poor performance in data
sparse regions has previously been noticed, (Sørensen et al. 2004). In a
parameter optimisation context this actually means that we are optimis-
ing parameters to minimize the error introduced by the assimilation.

The estimated Manning maps and Wind friction coefficient function are
shown in Figures 2, 3 and 4. Clear differences are evident, stressing the
different nature of the optimisation in a quasi-weak and strong constraint
formulation. Also included in Figure 4 is the default wind drag coefficient
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Figure 4: Wind drag coefficient. Solid line: Default values used in refer-
ence run. Dot-dashed line: Optimised values in the noDA case. Dashed
line: Optimised values in the DA case.

Reference Optimised

no DA 1.31 1.25

DA 0.58 0.49

Table 2: Cost function values in the calibration period for the optimised
parameter sets and the reference parameters excluding and including the
Steady Kalman filter, respectively
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Figure 5: Cost function contributions, Strong constraint (noDA) calibra-
tion
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Figure 6: Cost function contributions, Weak constraint (DA) calibration
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Reference Opt. no DA Opt. DA

no DA 2.14 2.17 2.08

DA 1.09 1.25 1.06

Table 3: Cost function values in the validation period for parameter sets
optimised with and without assimilation and the reference parameters.
Each parameter set is validated in both the no assimilation the assimi-
lation setting. the Steady Kalman filter, respectively

for the reference run. The default Manning number is 32 throughout the
model. These express an experienced based good first guess in a arbitrary
model application.

The performance of the two estimated parameter sets are assessed in
a one month model execution spanning February 2002. Table 3 con-
tains the validation performance statistics for an assimilating and non-
assimilating February model execution respectively. Figures 7 and 8
provides a detailed view of the contribution to the cost function from
each tide gauge station. Wick should be disregarded due to erroneous
data in the validation period. It does not affect the relative performance.

In the strong constraint setting, the performance is worse than the ref-
erence. Even performance in the Esbjerg station, which had the domi-
nating reduction in the calibration period is now degraded. It must be
concluded that the parameters have been tuned to correct other error
sources over an insufficient length of time. In the quasi-weak constraint
setting the assimilation error correction is still dominating. Only the
the North Sea stations, Lowestoft and Esbjerg, affected by this have a
notably improvement in the validation period. However, despite this a
better performance is obtained in the noDA validation run, indicating
that the weak constraint is a more robust approach than strong con-
straint.

Obviously, a number of changes should be made to the optimisation
setup.

• The bathymetry should be included in the optimisation. This has
been noted to be one of the most important parameters in previous
studies, (ten Brummelhuis et al. 1993).
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Figure 7: Cost function contributions. Strong constraint (noDA) valida-
tion
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Figure 8: Cost function contributions. Quasi-weak constraint (DA) val-
idation
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• A more thorough selection of calibration stations and the cost func-
tion definition should be considered. E.g. a relative improvement
of standard deviation as compared to the reference run standard
deviation would put more emphasis on the stations in the Inner
Danish Waters.

• A quasi-Newton optimisation scheme should be used and applied
in a parallel cluster allowing a longer calibration period.

• The distance regularisation scheme devised in (Sørensen et al. 2004)
must be applied if stations far from assimilation stations are to be
included in the optimisation.

• Different space reductions of spatially varying parameters should
be investigated.

• A two step calibration procedure should be investigated. Step
one estimates the bathymetry, bed friction and possibly tidal con-
stituents in a purely tidal setting. Step two estimates wind friction
parameters.

4 Conclusion

This study has presented a parameter estimation framework for two-
dimensional hydrodynamic models of coastal and shelf sea areas. The
main difference from previous work in the field is to perform the op-
timisation without requiring the development of an adjoint code. The
approach supports current developments in parallel cluster technology,
which exploit the computational resources of PC’s in an office grid. The
optimisation framework included both a strong constraint and a quasi-
weak constraint formulation and was demonstrated to estimate bed and
wind friction parameters in a model application in the North Sea, Baltic
Sea and Inner Danish Waters. The quasi-weak constraint setting seemed
more robust, but a combination of factors calls for further experiments
for firm conclusions to be drawn.

The use of a formalised parameter estimation framework in DHI’s hydro-
dynamic models has been initiated and fair results obtained considering
this being a first attempt with many improvements all ready identified.
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