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Preface

This thesis has been prepared at the Institute of Informatics and Mathematical
Modelling (IMM), Technical University of Denmark (DTU), as partial fulfilment
of the requirements for the degree of Ph.D. in engineering.

The general framework of the thesis is data analysis, multivariate statistics and
digital image analysis. It is implied that the reader has a basic knowledge of
these areas.

The work presented is a part of the multidisciplinary project named DANMAC
(DANish Multisensor Airborne Campaign) and is split between Informatics and
Mathematical Modelling (IMM) at the Technical University of Denmark (DTU)
and the National Environmental Research Institute (NERI) departments of
Freshwater Ecology at Silkeborg and Landscape Ecology (LAND) at Kalg. The
purpose of the DANMAC project has been to achieve a better understanding of
the physical conditions and processes at or near the surface and their influence
on the signals registered by radar and optical, remote sensing sensors.

The DANMAC project (1994 — 1998) was led by Keith McCloy at the Danish
Institute of Agricultural Sciences (DTAS). The project collaborated furthermore
with the Danish Center for Remote Sensing (DCRS) at the OrstedeDTU at
DTU. Another research institution involved in the DANMAC project is the
Institute of Geography (GI) at the University of Copenhagen.

A core aspect of this Ph.D. is the development and application of appropriate
analysis methods, based upon advanced mathematical modelling, for the optimal



use of the Synthetic Aperture Radar (SAR) data in the characterization of semi-
natural ecosystems in Denmark.

Kgs. Lyngby, June 2005
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Summary

Methods for segmentation and restoration of SAR data using Markov Random
Fields (MRF) have been studied extensively by many researchers over the last
two decades. What is of special interest is not only methods for segmentation
and classification of SAR data for land cover labeling applications, but also
methods for detail preservation, which have experienced a rapid growth over
the past few years.

The main part of this thesis concerns the development of image restoration
methods that facilitate the extraction of biotope relevant information from po-
larimetric SAR data. Because the semi-natural environments under study are
very small, it is crucial for this investigation that the restoration methods are
capable of restoring fine structures as well as preserving homogeneous areas.

The restorations are carried out in a signal adaptive mode using MRF in a
Bayesian framework. Different a priori models are implemented in both the
local optimizer Iterated Conditional Modes (ICM) and the global optimization
technique Simulated Annealing (SA).

A new technique for algorithm optimization is presented, which relies on ratios
of SAR data and their histograms. A quantitative evaluation of the restorations
based on statistics derived from the ratio images is presented together with
comparative analyses of restorations using ICM and SA.

The relation between the restored polarimetric SAR data and in situ data col-
lected at two semi-natural wetland and grassland areas is investigated using
multivariate techniques. The restored polarimetric SAR data are classified by



using a supervised and an unsupervised classifier and comparative analyses of
their performances are carried out.



Resumé

Metoder til segmentering og restaurering af SAR data ved anvendelse af Markov
Random Fields (MRF) er blevet studeret intensivt af forskere i de sidste to
artier. Hvad der har speciel interesse, er ikke alene metoder til restaurering
og klassifikation af landskabstyper, men ogsa metoder til restaurering af sma
detaljer har veeret under kraftig udvikling de senere ar.

Hoveddelen af denne athandling omhandler udvikling og undersggelse af meto-
der, der kan lette kortlaegning og karakterisering af biotop relevant information
i polarimetriske SAR data. Da de semi-naturlige gkosystemer under betragt-
ning er meget sma, er det af afggrende betydning for resultatet af denne un-
dersggelse, at restaurerings metoderne evner at bevare fine strukturer og homo-
gene omrader.

Restaureringerne, der er tilpasset data, ggr brug af Bayes regel og er foretaget
inden for rammerne af MRF. Forskellige a priori modeller er implementeret i
bade den lokale optimerings algoritme Iterated Conditional Modes (ICM) og
den globale optimerings algoritme Simulated Annealing (SA).

En ny teknik til algoritme optimering, der er baseret pa ratioer af SAR billeder
og deres histogrammer, er preesenteret. En kvantitativ evaluering af restau-
reringerne, baseret pa statistiske parametre udledt af ratio billederne, er fore-
taget og sammenlignende analyser mellem ICM og SA er fremlagt.

Sammenhangen mellem de restaurerede polarimetriske SAR data og in situ data
indsamlet i de to semi-naturlige vad- og engomrader er undersgget ved brug af
multivariate teknikker. De restaurerede SAR data er klassificerede ved brug af
en supervised og en unsupervised algoritme, og resultaterne er sammenlignet.
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CHAPTER 1

Introduction

Ecosystems are of fundamental importance to society and to sustain life on Earth
by providing a wide variety of goods and services. These goods and services that
are critical to individuals and societies include e.g. food, fiber, shelter, energy,
the purifying of water and air, the storing of carbon and nutrients and providing
opportunities for recreation and tourism. Moreover, ecosystems are housing the
Earth’s entire reservoir of genetic and species diversity as well as providing
cultural, religious and aesthetic benefits to society [35].

However, in recent years vulnerable ecosystems have been disturbed region-
ally and globally due to both anthropogenic and natural impact. The use of
Earth-observing satellites in the monitoring of our planet has therefore become
increasingly important. These spacecrafts are the world’s chief eyes on critical
issues such as how fast the ice caps are melting, the concentration of green-
house gases in the atmosphere, the change of the ozone hole and the state of the
ecosystems [70]. In order to help answering these and other important issues
about the current variations in the climate the ENVISAT satellite was launched
1 March 2002. ENVISAT is a part of the European Space Agency’s (ESA)
ongoing Earth Observation Programme. Among the ten instruments onboard
ENVISAT is the Advanced Synthetic Aperture Radar (ASAR).

Interferometric and polarimetric SAR represent some of the most sophisticated
and up-to-date developments in SAR remote sensing, providing wide scope for



2 Introduction

research and application development work. Interferometric SAR is a technique
used to generate height difference information of the Earth’s surface. As such
interferometric SAR possesses a great potential in the monitoring of the natural
environment e.g. the studying of glacier dynamics, dune dynamics and earth-
quake mapping. Polarimetric SAR can provide information of the geometrical
structure and orientation of the constituents of a medium as well as its geophys-
ical properties. As such polarimetric SAR has unique capabilities in e.g. sea
ice mapping, flood monitoring, the mapping of forest and agricultural crops, in
hydrology and in the characterization of ecosystems.

The general purpose of the DANMAC project was to achieve better understand-
ing of the physical conditions at the surface of the Earth influencing the signal
of both optical and radar sensors. This understanding is necessary to improve
the interpretation, the parameter estimation, the monitoring and classification
using present and future satellite sensors. The parameters are needed for appli-
cations within hydrology, atmospheric sciences, agricultural and environmental
management, forestry, and eco-system managing [30], [49].

1.1 Ecosystems

Wetland regions are unique ecological resources that include saltwater marshes,
coastal wetlands, estuaries, coral reefs, swamps, marshes and shallow waters.
They are considered to be one of the most productive ecosystems on Earth and
have an abundance in wildlife species and are a habitat for many different types
of plants and animals. In addition wetlands play an important role in water
purification by absorbing nutrients and help cycle them through the food chain.
Finally, wetlands can counteract global warming by accumulating carbon from
decaying plant and animal tissue rather than releasing it into the atmosphere
as carbon dioxide. The existence of wetlands is vital to maintaining a balanced
hydrological system and their geographical distribution is likely to be affected
by changes in temperature and precipitation. Methods for characterizing and
monitoring wetlands on local and global scales are therefore crucial because
changes in these ecosystems could seriously affect freshwater supplies, fisheries
and biodiversity [35].

Also methods for characterizing and monitoring the properties of vegetated
surfaces e.g. agriculture, forests and grasslands on local and global scales are
of paramount importance. Parameters such as tree height, crown width and
vegetation structure are key factors that reflect biomass, growth dynamics and
biodiversity. Biomass estimates are important for the estimation of surface
energy balance, hydrology modelling and evaluation of the atmospheric carbon
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dioxide concentrations.

Ecological systems are dynamic in the sense that they are constantly being af-
fected by changes in the environment. The pressure that the ecosystems are
exposed to is due not only to changes in the global climate but also to human
activities such as agriculture, nutrient inputs, urban expansion, wastes from
industry, extraction of groundwater and changes in land use or management.
Quantifying geophysical and biophysical parameters such as soil moisture, soil
roughness, biomass and vegetation characteristics retrieved from e.g. forests,
agriculture, wetlands and landscape-ecology are therefore crucial in the under-
standing of how much pressure ecosystems can stand and what probable changes
may occur. Furthermore, the geophysical and biophysical parameters are essen-
tial to the understanding and modelling of hydrology, the global carbon cycle
and the effects of global warming.

Two types of terrestrial semi-natural ecosystems located in Denmark are the
subject for this investigation. The selected areas include important representa-
tives of physical, biological and land variation in Denmark. The first is a ripar-
ian wetland environment with dense vegetation located at Ladegaards Enge in
the river valley of Gjern [2], [53]. The second comprises three dry moderately
to heavily vegetated grassland environments located at Trehgje, Benlighgj and
Stenhgje at Mols Bjerge [38]. The main focus in the test area at Gjern is the
moisture content of the upper soil layers and the vegetation characteristics. The
subject of interest at Mols Bjerge is the differences in biomass and vegetation
characteristics between the three test areas. Each of the test areas is relatively
small and flat and measures approximately 100 m x 100 m. Within the test
sites small biotops exist characterized by different plant species and soil mois-
ture contents. In situ data in terms of plant species, vegetation characteristics,
TDR measurements, topography measurements, biomass and bulk densities of
soil samples, were collected in the test sites simultaneously with the overflight
by EMISAR.

1.2 Polarimetric EMISAR

The polarimetric SAR data to be used in this Ph.D. project are from EMISAR
imaging missions over areas in Denmark. EMISAR is a fully polarimetric dual-
frequency SAR developed and operated by the Danish Center for Remote Sens-
ing (DCRS) at the OrstedeDTU at DTU and carried on a Gulfstream G3 aircraft
of the Royal Danish Air Force. The polarimetric SAR data were acquired by
EMISAR on 3 and 4 June 1997 and cover the semi-natural ecosystems described
in Section 1.1. These data comprise both C-(5.3 GHz) and L-(1.25 GHz)-band.
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The image data to be used in this thesis are one-look, slant range, scattering
matrix data. Data are motion compensated and calibrated. The scattering
matrix is a 2-dimensional matrix, whose elements are complex numbers repre-
senting both magnitude and phase of the reflected microwaves from a resolution
cell. An inherent feature of SAR imaging is a signal dependent noise known as
speckle, which gives the SAR images a characteristic grainy appearance. This
speckle phenomenon is a result of the coherent imaging process of SAR.

EMISAR transmits alternately in the horizontal (H) and the vertical (V) polar-
ization and receives simultaneously in both the horizontal and the vertical polar-
ization, with the resulting combinations VV (Vertical receive, Vertical transmit),
VH, HV and HH. This gives the polarimetric EMISAR the capability of mea-
suring the full polarimetric signatures of targets [32]. Throughout this thesis
we will use amplitudes and phase differences of the elements in the scattering
matrix, see Section 2.4. For example the notation LHH denotes the amplitude
of the L-band HH polarized signal and ZLHH-LVV denotes the L-band phase
difference between HH and V'V, unless otherwise mentioned.

Because EMISAR has the capability of measuring the full polarimetric signa-
tures of targets, knowledge of the scattering matrix can provide unique infor-
mation about the geometrical and dielectric properties of an area. This full
polarimetric information is e.g. utilized by Schou and Skriver (2001), who pro-
posed an algorithm for estimating the mean complex covariance matrix using
Simulated Annealing (SA) [74]. Later Conradsen et al. (2003) have derived
test statistics in the complex Wishart distribution for equality of two complex
covariance matrices [20].

1.2.1 Vegetation and soil moisture

In vegetated areas the interaction between the polarized microwaves of SAR and
a vegetation cover is highly complex. This is due to a number of factors, which
affect the backscattering coefficient and the phase. These factors comprise:
scattering mechanism, vegetation geometry, dielectric constant, wavelength and
polarization of the microwave. Ozesmi and Bauer (2002) summarize the liter-
ature on satellite remote sensing of wetlands and Price et al. (2002) compare
Landsat TM and ERS-2 SAR data for discrimination among grassland types in
eastern Kansas [01], [66].

The vegetation geometry includes the size, orientation and distribution of e.g.
leaves, ears, stems, twigs, branches and trunks. Because of the sensitivity of
microwaves to structural characteristics, L-band is more likely to reflect from
e.g. branches and trunks whereas at shorter wavelengths the backscatter is in-
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fluenced by e.g. leaves, ears and stems. In Morrison et al. (2000) the scattering
characteristics of wheat canopies are investigated using very high resolution
polarimetric L, S, C and X-band 3D SAR imagery [51]. The depth of pene-
tration increases with wavelength and vegetation is therefore more transparent
to L-band than C-band. In case of double-bounce scattering from e.g. ground
and vegetation a m phase shift is introduced between the HH and VV polarized
signals [31].

The two cross-polarized combinations HV and VH are affected by very rough
surfaces or by the orientations of the structural components in e.g. vegetation.
This is due to depolarization of the transmitted wave, which occurs when e.g. a
H-polarized wave undergoes multiple scattering in vegetation canopy and is then
received by the antenna in a V-polarized state. The depolarized HV and VH
backscatter are therefore particularly useful for separating areas with different
vegetation geometries. This is utilized by Kouskoulas et al. (1999) for classifica-
tion of short vegetation using multi-frequency SAR and by Dubois et al. (1995)
where the cross-polarized L-band ratio HV/VV is used as a discriminator of
biomass [44], [20].

In research done by Oh et al. (1992) it was concluded that the co-polarized ratio
HH/VV< 1 for all incidence angles, roughness conditions and moisture contents
[57]. However, this is not always true. HH/VV can in general exceed 1 e.g. in
situations where the vegetation geometry allows HH to be larger than VV. For
heavily vegetated areas or very rough surfaces HH/VV approaches 1, whereas
for areas with low vegetation or low surface roughness HH/VV decreases with
increasing dielectric constant. This implies that areas with sparse vegetation
cover, that is HV/VV less than -11 dB, HH/VV can be used for soil moisture
retrieval [26], [37].

In this study the co-polarized and cross-polarized amplitude ratios LHH/LVV
and LHV/LVYV are selected in preference to LHH/LHV because of their higher
sensitivity to soil moisture and vegetation biomass [26], [35]. The phase dif-
ference ZLHH-LVV is selected in preference to ZLHH-LHV and ZLHV-LVV
because of its sensitivity to double-bounce scattering from the ground and the
vertically oriented stems, which are present in the Gjern test site in particu-
lar. Because vegetation is more transparent at L-band than C-band LHH/LVV
is less affected by backscatter due to vegetation than CHH/CVV and therefore
more likely to represent backscatter due to soil moisture. The L-band amplitude
ratio LHH/LVV is therefore selected in preference to CHH/CVYV for soil mois-
ture retrieval. Because vegetation is more transparent at L-band than C-band,
the backscatter from LHV/LVV is more likely to represent multiple backscatter
from the bottom to the top of the vegetation in areas with dense vegetation.
Because of the dense vegetation in the test sites at Gjern and Mols Bjerge the
L-band amplitude ratio LHV/LVV is selected in preference to CHV/CVV as a
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discriminator of biomass. The L-band phase difference ZLHH-LVV is selected in
preference to ZCHH-CHYV again due to the larger penetration for L-band. The
ZLHH-LVYV is thereby more likely to represent backscatter due to double-bounce
scattering from the ground and the vertically oriented stems than ZCHH-CHYV,
which is likely to be affected by multiple scattering in the vegetation canopy.
The polarized EMISAR data to be used in the analyses to follow then span
CVV, CHV, CHH, LVV, LHV, LHH, LHV/LVV, LHH/LVV and ZLHH-LVV.

1.3 Digital image processing

Since the advent of digital computers and the recent advances in hardware and
software development, statistical computing has become increasingly important.
Image processing is the manipulation of digital values contained in an image for
subsequent processing and interpretation. For more general surveys the reader
is referred to Andrews (1977) and Sonka (1999) [4], [77].

A digital image is simply the digital form of an image recorded by a sensing de-
vice. Examples of sensing devices are scanners, cameras, industrial radiographs,
infrared sensors, multi-spectral remote sensing and radar remote sensing. A
2-dimensional plan can be partitioned in regular polygons in three ways. These
partitionings are the regular square tessellation, the regular triangular tessella-
tion and the regular hexagonal tessellation. By the term image is here meant
2-dimensional data, which constitute a series of square picture elements (pixels)
arranged in a regular pattern of rows and columns. Such a partitioning is also
called a square tessellation and the polygons correspond to pixels.

In case the data are obtained from e.g. an optical sensor the pixel has a digital
value (grey-level) representing reflected light from the area, which the pixel
covers. In radar remote sensing the pixel has a complex number representing
both magnitude and phase of scattered microwaves from a resolution cell. In
polarimetric SAR data a pixel may represent the complex scattering matrix. In
case several values at each pixel are available the term multi-variate data or
multi-dimensional image is used. In such a p-dimensional image each pixel has
p values covering the same geographical area.

The computer vision process can be separated in three levels: low, intermediate
and high. Low-level processing (or early vision) deals with raw pixel data and
includes e.g. restoration, segmentation, edge detection, texture analysis and
optical flow. Low-level processing is invariably data driven and nothing or little
is known about the objects in the scene. The intermediate level of processing
is concerning grouping the output from the low-level processing into e.g. lines.
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High-level processing is object oriented and aims at extracting symbolic features
such as the recognition of e.g. characters in a handwritten letter or wetlands in
SAR data. Some knowledge about the objects in the scene is therefore required.

Because the test sites are relatively small compared to the pixel spacing it is
crucial for this investigation that as much information as possible is preserved
about the geophysical and biological properties of the test sites. Unfortunately,
the price paid for moving from one level to the next is a loss of information.
Since detail preservation in this work is of major concern the image processing
in this thesis is therefore restricted to the low-level domain.

1.3.1 Contextual constraints

Textural information plays an essential role in human interpretation and analysis
of visual data. Although no precise definition of texture exists texture can,
according to Haralick (1979), be described as something consisting of mutually
related elements [32]. Texture can therefore be perceived as a region that is
spatially homogeneous in some sense. Within the context of remote sensing
such texture regions could be e.g. cities, forests or grasslands.

The type of information or features that can be extracted from image data
depends strongly on the scale at which the features are detected [48]. For
example large object such as cities and forests are in satellite images observed
at coarse scales, whereas smaller objects such as houses and trees are observed
at finer scales.

This implies that at low level of detail (large scales) smaller objects are sup-
pressed and likewise at high levels of detail (small scales) all information is
retained. Because detail preservation is of great importance in this thesis the
images are observed at the smallest scale possible corresponding to the resolu-
tion of the images. Here resolution refers to the size of the smallest objects that
can be identified.

The presence of speckle considerably reduces the interpretability of the SAR im-
ages and consequently some kind of spatial filtering is used routinely to increase
the signal-to-noise ratio. Some popular representatives of SAR speckle filters
are the median, Lee, Frost and Kuan filters. In Dong et al. (2000) these speckle
filters are examined in terms of texture preservation and in Rees and Satchell
(1997) the effect of median filtering on SAR images is reviewed [24], [68]. Based
on the Frost filter kernel a new method for SAR speckle reduction is proposed
by Zhang et al. (2002) [389]. The simplest of these techniques is the median
filter, which has edge-preserving properties but is unsuited for texture preser-
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vation. The Lee, Frost and Kuan filters and the method proposed by Zhang et
al. are on the whole efficient in speckle reduction but they have a tendency of
slightly distorting the texture and oversmoothing fine details. Because detail
preservation is of major concern in this thesis these filters do not seem suitable
for speckle reduction in this investigation. More sophisticated techniques for
speckle reduction are therefore applied.

As early as 1962 Chow proposed a method for using contextual information
in pattern recognition [15]. Here the dependence between the pixels and their
neighbours was used for character recognition. Chow utilized that neighbouring
pixels tend to have similar intensities and such regularities are in a probabilistic
framework conveniently described by MRF [34].

Markov Random Field (MRF) is an extension of the 1-dimensional Markov
process to 2-dimensions and has attracted much attention in the image process-
ing community. Hassner and Sklansky (1980) first proposed MRF as a statistical
spatial interaction model for digital images [34]. One reason is that MRF pro-
vides a general and natural way of modeling spatially correlated image pixels.
Another reason for using MRF is due to Hammersley and Clifford (1971) who
established an equivalence between the local properties of MRF and the global
properties of Gibbs distributions. This MRF-Gibbs equivalence gives an explicit
formula for defining the joint distribution of MRF's through clique-potentials [6].

Most vision problems can be formulated in a general framework called image
labeling. Here the task is to assign a label for a pixel, which in some sense is
optimal. A label can belong to several categories depending on the problem we
are trying to solve and a label set may be categorized as being continuous or
discrete. For edge detection, for example, the label set is discrete containing
the labels edge or non-edge, for image segmentation the label set is containing
classes or regions and for image restoration it is containing grey-levels. In im-
age segmentation the aim is to partition an image into homogeneous exclusive
regions, where each region is assigned a unique label. Here the discrete label set
could e.g. be grey-levels, colour or texture. For image restoration the aim is to
estimate the true signal from a degraded or noise-corrupted image using knowl-
edge about its nature [77]. Since the nature of the noise in SAR data is known
in advance, the method to be used to search for the scene in the polarimetric
EMISAR data that best describes the observed records is image restoration.
The label set here includes both discrete and continuous grey-levels.

In a Bayesian framework the most successful criterion in optimization-based
MRF modeling is the Maximum A Posteriori (MAP) estimate. The MRF-
MAP framework for solving vision problems was formulated by Geman and
Geman (1984) and later the subject is addressed by e.g. Besag (1986), Dubes
and Jain (1989), Besag (1989) and Carstensen (1992) [29], [7], [25], [8], [L1]. Our
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approach in this investigation is probabilistic and we therefore wish to select the
most probable labeling for a pixel in terms of the MAP estimate of the label
field.

Unfortunately considerable computational cost is involved in solving a labeling
problem. If we for example consider an image with 150 x 150 pixels and only 2
possible labels, there exists a total number of 222°%° Jabelings or configurations.
It is obviously not practicable to find the optimum by computing all possible
labelings and as the number of labels increases the number of configurations
becomes astronomic.

Finding such an optimum requires a minimization of a non-convex energy func-
tion. This is not a trivial task and the use of classical gradient descent methods,
such as Tterated Conditional Modes (ICM), is questionable because they are
likely to get stuck in local minima [7]. A technique however, which is able to
overcome this non-convexity and avoid being trapped in local minima is Simu-

lated Annealing (SA) [13], [13].

1.4 Scope of the thesis

Due to the necessity to reduce the speckle in the polarimetric EMISAR data to
facilitate the extraction of biotope relevant information the first and main part of
this thesis concerns restoration in the framework of MRF-MAP. The contextual
information in an image is embedded not only in the individual pixels but also
in the spatial position of neighbouring pixel values. The potential of utilizing
this relative position in the feature extraction is explored by taking the eight
pair-site interactions in the local MRF into account.

In order to find the algorithm that best explains the structure underlying the
observations, comparative analyses are carried out. These analyses comprise a
comparison of various a priori models implemented in the two different opti-
mization techniques ICM and SA.

The fact, that the speckle has a well defined statistical distribution for each
pixel in the scene, is utilized in this thesis where one of our main results is
a new method for algorithm optimization and a Multi-Temperature Anneal-
ing (MTA) schedule. Here the technique for algorithm optimization rely on
ratios of SAR images and their histograms. The convergence of the MTA algo-
rithm towards the global optimum is governed by a local temperature schedule
where each clique has its own temperature. This has the great advantage for
real-life applications that the optimized algorithms are completely data-driven.
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The proposed models and algorithms are applied and evaluated on polarimetric
EMISAR data and synthetic SAR data.

In the second part of this thesis exploratory analyses of the relations between
the polarimetric EMISAR data and the semi-natural ecosystems are carried
out. Here the multivariate image data to be used in the analyses comprise the
restored C- and L-band polarizations VV, HV and HH, the restored L-band
ratios HV/VV and HH/VV and the L-band phase difference between HH and
VV.

The interaction between the collected in situ data and the polarized EMISAR
data is investigated using multivariate techniques. These analyses are twofold.
Firstly, the interactions between the in situ data and the polarized microwaves
are analyzed and discussed using linear transforms of training data. Secondly,
comparative analyses between a supervised and an unsupervised classification
technique are performed. This will disclose to what extent the geographical dis-
tribution of classes predicted from training areas correspond to the geographical
distribution of the natural grouping (clusters) and how possible differences relate
to the in situ knowledge.

The results are encouraging but the work presented is by no means exhaustive.
It is meant to explore the potential of using polarimetric SAR for monitoring
semi-natural environments and hopefully improve the knowledge.

1.5 Outline of the thesis

Chapter 2 gives a short overview of the basic principles and aspects of SAR
remote sensing. This includes a brief introduction to SAR theory, which is
followed by a description of geometric distortion. The fundamental aspects of
polarimetric SAR are presented and the speckle phenomenon is outlined.

Chapter 3 presents sample strategies for the collection of in situ data and rel-
evant techniques and multivariate methods are reviewed. The sample strate-
gies cover collection of biomass and soil samples. The techniques and methods
comprise Time-Domain Reflectometry (TDR), geometrical rectification, Ordi-
nary Kriging (OK), Multiple Regression Analysis (MRA), Principal Components
Analysis (PCA), Canonical Discriminant Analysis (CDA), Multiple Discrimi-
nant Analysis (MDA) and Cluster Analysis (CA).

Chapter 4 deals with the framework of MRF-MAP and its theoretical foundation
and the two optimization techniques ICM and SA are described.
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Chapter 5 presents the technique of using ratios of SAR data for algorithm
optimization. This technique is applied and evaluated on EMISAR data and
synthetic SAR data for restoration purposes. The evaluation includes compar-
ative analyses of different a priori models using both ICM and SA.

Chapters 6 and 7 contain a description of the test sites at Gjern and Mols Bjerge
together with a presentation of performed fieldwork and collected in situ data.
The presented and analyzed in situ data comprise plant species, vegetation
characteristics, TDR measurements, topography measurements, biomass and
fresh, dry and saturated bulk densities of soil samples.

Chapters 8 and 9 contain exploratory analyses of the relations between the in
situ data and the polarimetric EMISAR data. The multivariate techniques used
in these analyses comprise PCA, CDA, MDA, MRA and CA.

Appendix A contains a description of the synthetic SAR data together with
a presentation of restored, segmented and filtered synthetic SAR data using
different optimization techniques and algorithms. The restored, segmented and
filtered synthetic SAR data are displayed together with their corresponding ratio
images and histograms. Statistics and characteristic parameters derived from
the histograms are tabled.

Appendix B contains the restored result of polarimetric EMISAR data covering
the town Gjern and its surroundings. The restoration is carried out using the
Gamma pizel prior through a SA algorithm and the large scene contains a wide
range of human artefacts and cover types.

Appendix C shows the Danish and Latin names of plant species in biomass
samples collected within the test sites at Gjern and Mols Bjerge.

Appendix D describes the coordinate system in which the vegetation in the test
site at Gjern is mapped.

Appendix E contains a list of software developed during the course of this work.
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Introduction




CHAPTER 2

SAR theory

Since the origin of SAR in the 1950’s SAR remote sensing technologies have
gradually been refined and their applications extended. Of these new technolo-
gies and applications, one of the most interesting is polarimetry. Polarimetric
SAR can reveal the underlying physical scattering mechanism for terrain type
identification and geophysical parameter extraction. An example of such a de-
velopment is the fully polarimetric EMISAR.

A comprehensive and detailed introduction to the techniques of remote sensing
is found in Elachi, 1987 [27], and Ulaby & Elachi, 1986 [32]. For a thorough
treatment of the fundamental properties of SAR images refer to Quegan and
Oliver, 1998 [59].

2.1 Introduction

Synthetic Aperture Radar (SAR) is a side-looking imaging radar (RAdio De-
tection And Ranging). The SAR is mounted on an aircraft or a satellite, and
is used to make high-resolution images of the surface of the Earth. A SAR
possesses unique capabilities as an imaging tool, because it provides its own
illumination in terms of the radar pulses. It can image at any time of day or
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night regardless of sun illumination, and because the radar wavelengths are long
the SAR can also penetrate cloudy conditions that visible and infrared instru-
ments can not. The typical micro-wavelength used is in the range 1 ¢cm to 1 m,
which corresponds to a frequency range of about 300 MHz to 30 GHz. Other
sensors used to image the Earth are e.g. optical sensors. Optical sensors mainly
look straight down and commonly use wavelengths from 0.4 pm to 1 gm, which
correspond to that of visible light and the near infrared region [27].

There are three basic scattering mechanisms between the microwave and a tar-
get. They involve single-bounce scattering, double-bounce scattering and volu-
metric or multiple scattering. In single-bounce scattering the pulse bounces off
e.g. a surface only once before it is received by the antenna. In double-bounce
scattering incoming pulses are able to bounce off e.g. buildings and then again
bounce off the ground and is then received by the antenna. This types of scat-
tering is also common in forested areas between e.g. vegetation and ground. In
multiple scattering the pulse undergoes many bounces in e.g. vegetation before
returning to the antenna.

The darker areas in a SAR image represent low backscatter, that is to say very
little energy is reflected, and brighter areas represent high backscatter. The
backscatter from a target that is received by the antenna is due to a number of
factors. These comprise the look direction y of the sensor, the aspect angle £, the
incidence angle ¢, surface roughness, polarization, frequency, and the dielectric
and geometrical properties of a target, see Figure 2.1. The aspect angle £ will
affect backscatter from very linear features such as urban areas, fences, rows of
crops, ocean waves and fault lines. Also the incidence angle ¢ of the radar wave
at the Earth’s surface causes a variation in the backscatter. For smooth surfaces
low ¢ will result in high backscatter and high ¢ will result in low backscatter.
Rough surfaces are more independent of ¢ and the rougher the surface being
imaged is, the higher the backscatter. For vegetated regions, however, low ¢
will result in low backscatter and high ¢ will result in high backscatter due to
multiple scattering in e.g the leaves and straws. Due to this multiple scattering
the backscatter from vegetated areas is usually moderately high on the scale of
most radar wavelengths. The vegetation therefore appears as grey or light grey
in a SAR image.

The backscatter is furthermore often related to the size and orientation of an
object. At specific transmit/receive polarizations objects with approximately
the size of the wavelength have high backscatter whereas objects smaller than the
wavelength have low backscatter. The dielectrical properties (and temperature)
of a target also affect backscatter. Water in particular has a high dielectric
constant and consequently areas with high moisture content or wet objects will
appear bright, and drier targets will appear dark. The exception to this is a
smooth body of water, which will act as a smooth surface and reflect incoming
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Figure 2.1: The imaging geometry of SAR. The SAR is positioned at the point
P at the altitude h above ground surface. The velocity of the platform is v, Ry
is the slant range between the SAR and the target, R, the ground range and
Ry the shortest distance between the SAR and the target. The look angle is Yy,
¢ is the aspect angle and ¢ the incidence angle.

pulses in a direction away from the antenna. Such a body will appear dark.

This chapter is organized as follows: In Section 2.2 the basic principles of SAR
image formation are described and in Section 2.3 is given an overview of geo-
metric distortion. Section 2.4 presents the fundamental aspects of a fully po-
larimetric SAR. In Section 2.5 the speckle and its statistical foundation are
outlined.

2.2 Radar Theory

In Figure 2.1 is illustrated the imaging geometry of SAR for a flat Earth. The
antenna is usually a planar array, which has its longest axis along the flight
direction. The radar system measures the strength and the time delay of the
microwave signal that is emitted by the radar antenna, reflected by a particular
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target and received by the radar antenna. These echoes are converted to digital
data and passed to a data recorder for later processing and display as an image.
Where c is the speed of light and 7 is the duration of the pulse the resolution
AR in the range direction, or across-track direction, is given by

where it is taken into account that the pulse travels both forward and backward.

Side-Looking Airborne Radar (SLAR) systems, also called Real Aperture Radar
(RAR), is an early form of imaging radar, which generally have very long anten-
nas in order to improve the azimuth resolution. The resolution in the azimuth
direction, or along-track direction, is given by

A
AR(in'rnuth = ROB;

where D is the length of the antenna, A the wavelength of the pulses and Ry
the shortest distance between the SAR and the target [12].

2.2.1 SAR

Synthetic Aperture Radar (SAR) refers to a technique used to synthesize a very
long antenna by combining echoes received by the radar as it moves along its
flight track. ’Aperture’ means the opening used to collect the reflected energy
that is used to form an image. In the case of a camera, this would be the shutter
opening, which corresponds to the antenna for a radar. A synthetic aperture is
constructed by moving a real aperture or antenna through a series of positions
along the flight track.

As the radar moves, a pulse is transmitted at each position and the return echoes
pass through the receiver and are recorded. Because the radar is moving relative
to the target, the returned echoes are Doppler-shifted. By compensating for
the Doppler-shift the returned signals are focused on a single point, effectively
increasing the length of the antenna that is imaging that particular point. This
focusing operation, commonly known as SAR processing, is now done digitally
on fast computer systems.
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The resolution in the azimuth direction for a SAR system is given by

D
ARazimuth = E

Contrary to the SLAR system the resolution of the SAR is improved by reducing
the length of the antenna [12].

2.3 Geometrical distortion

The characteristics of the SAR imaging system give rise to geometric and ra-
diometric distortion in SAR images. The one-look, slant range, EMISAR data
to be used have been radiometrically calibrated and since geocoding is of major
concern in this project only geometric distortion will be addressed.

Geometric distortion occurs because SAR measures the slant range Ry rather
than angle in the direction perpendicular to the line of flight. The conversion
between the slant resolution and the ground resolution is given by

Geometric distortion may be divided into three categories: shadowing, fore-
shortening and layover. Shadowing occurs when a radar is unable to receive
signals from the backside of an object because the look angle x is too large.
Due to the lack of signals, these regions will appear dark in a SAR image. The
shadowing effect increases with increasing y. Foreshortening is an effect, which
is common in mountainous areas. In this case the object reflects radar signals
from all sides but because of the slopes facing the SAR the radiometric infor-
mation in the foreslope areas will be compressed. Layover occurs in the extreme
case where the top of e.g. a mountain has a smaller slant range than the bottom.
In such a situation it appears as if the top of an object is closer to the radar than
the bottom. This phenomenon is more pronounced for small incidence angles

@.

Due to the geometrical distortions SAR images have to be transformed to con-
form to a specific map projection system. In Section 3.3 is given a brief intro-
duction to various techniques of geometric transformations.
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2.4 Polarimetric SAR

Using the Backscatter Alignment (BSA) convention the transmitted electric field
component E! and the received field component E” can be written as

E' = E'%,+ Elh,

E" = E'®,+Ejh,,

where the horizontal and vertical unit vectors & and h are defined with respect
to the direction of the propagation of the wave k. That is h = 2 x k/|Z x k|
and © = h X k, where £ is a unit vector normal to the Earth’s surface.

For linearly polarized waves the components E! and E" are related through

ET\  eFR 8, S E!
E; )T R Sho  Shi E; )’

or

iR

E =

SE!,

where S is the scattering matriz, )\ is the wavelength of the pulse and R the
range between the antenna and the scatterer. Knowing the scattering matrix
the response of a scatterer to any combination of transmitted and received
polarizations can therefore be synthesized. The complex scattering amplitude
Spq is given by

Spqg = quei%qap»q = h,v,

where A, is the amplitude and ¢ the phase angle [82].
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Given the target vector

S’U'U
Svh
Shv ’
Shh,

the covariance matrix C is defined as
cC = XX".
For most naturally occurring scatterers

Shv = Ovh, (22)

and throughout this thesis we shall assume this reciprocity to be valid.

Taking (2.2) into account the calculated elements in C are then reduced to the
symmetrical matrix

SUUS;';@ Svw S}ty SUUS;;h
C = ShvS:v Shv S;;v ShUSZh ’
ShnSyy  SnnSp,  SwnSpy

hv

where * indicates the conjugation. The diagonal backscattering coefficient o,
is given by

2
Opapq = {ISpel™)s  Pya = hyv,

and the off-diagonal complex correlation coefficient py; ,q between Sy and S,
is defined as

(SkiSpq)
vV OklOpq 7

Pkl,pq = k7lap7q:h’71}a

where () indicates the ensemble average [59]. The three off-diagonal phase dif-
ferences between S, and Sy, Sy, and Sy, and Sy, and Sy are given by

¢kl_¢pq245kl‘s’;q) k7l7paq:h,v.
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Given the field polarization vector

Em

Pm: m|
|E™|

m=r,t,

the backscattering coefficient o¥ can in terms of the scattering matrix be written
as

dT, . 2
qu:jqp S‘Pt' >’ P, q=h,v,

where A is the illuminated area [82], [59].

Throughout this thesis we will use pq to denote the amplitude qu. For exam-

ple the notation LHH is synonymous with the L-band \/c%,. The ZLHH-LVV
is synonymous with the L-band phase difference £5,1.5},, where the complex

element S, S7, in the covariance matrix has been lowpass filtered before ex-
tracting the phase difference.

2.5 Speckle

The noise in a SAR image, which is called speckle, is a real electromagnetic
phenomenon of interference. It originates from the interference of a large number
N of discrete scatterers within a resolution cell. For a complex SAR image the
signal measured from position (z,y) by the receiver is

glz,r) =Ae® = X +iY

where

N N
X = ZAZ'COS¢Z', Y = ZAisinqSi.

i=1 i=1

Here X refers to the real part of the complex signal and Y the imaginary part,
A;’s and ¢;’s are the amplitudes and phases of the individual scatterers within
a resolution cell [75].
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By making the assumptions:

1. ¢; must be independent and uniformly distributed from 0 to 2.

2. A; and ¢; of the individual scatterers must be uncorrelated.

3. N must be large.

4. A; must be identically distributed, or fulfil the weaker constraint that no

term in the sum must predominate.

It can be shown wvia the Central Limit Theorem that X and Y are independent
identically Gaussian distributed variables with

() = L exp(—
= e —_——
P V2ro? P 202

).

The observed power or intensity I = z2? + y? of the signal is exponentially
distributed

1 1

pi(l) = @exp( ), I=0.

2020 T T

An improved estimate of I can be provided by averaging L independent mea-
surements also called L look. In terms of intensity data the L look average then
is

The multi-look intensity data I follow the Gamma distribution

- I L. -
pr(l) = WGXP(—ih I=0. (2.3)
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The amplitude A = /T of the observed signal will obey the Rayleigh distribution

A A2

pa(d) = Sexp(—2 ), 420, (2.4)

202 =

where the mean amplitude E(A4) is

B(4) = 022V, (2.5)

and the variance Var(A) is given by

Var(A) = 02(2 — g). (2.6)

We can now derive the distribution for the multi-look amplitude data A = VT
by utilizing (2.3) and the variable relation

pa(A) = 24p;(A?),
resulting in the square root Gamma distribution

242L-1 AL
A)=— exp(—=—=), A>0.
Pald) = 5 e (557

Although the estimates of the intensity or amplitude at a particular pixel is
improved by using L-look data the resolution is at the same time degraded by
a factor L. Since the resolution is important in this study the SAR data to be
used in the following are single-look data.



CHAPTER 3

Methodology

In this chapter central methods used in connection with the analyses of EMISAR
data from Ladegaards Enge and Mols Bjerge are described. In the Sections 3.1.1
and 3.1.2 are the sampling strategies for collecting biomass- and soil samples
outlined. A short introduction to Time-Domain Reflectometry (TDR) is given in
Section 3.1.3. The interpolation technique Ordinary Kriging (OK) is introduced
in Section 3.2. Section 3.3 deals with methods for geometric rectification. A
short review of Multiple Regression Analysis (MRA)is provided in Section 3.4.
Section 3.5.1 concerns Principal Component Analysis (PCA). Canonical Dis-
criminant Analysis (CDA) is introduced in Section 3.5.2. In the Sections 3.6.1
and 3.6.2 are Multiple Discriminant Analysis (MDA) and Cluster Analyses (CA)
briefly described.

3.1 Measurements in situ

In order to achieve relevant knowledge of the physical environment at the test
sites in situ measurements were required. Relevant knowledge is in this con-
text information about physical properties that affect the polarizations and fre-
quencies used by EMISAR. The criteria for choosing the methods were their
capability of providing information concerning hydrology and vegetation. The
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geographical locations of the sampling points conform to the Universal Trans-
verse Mercator (UTM) system, zone 32 ED(50).

3.1.1 Biomass samples

The above ground biomass in terms of vegetation and dead organic material has
been collected at the test sites. The biomass samples collected are representative
in terms of the distribution of species and the overall volumetric and geometric
appearance within the areas that the samples represent. The location of each
sample has either been chosen at random or at places that are typical for the
area as a whole. An estimate of how much of the soil surface is covered by
leaves and stems is made for each of the plant species. This implies that the
total degree of cover can exceed 100 %.

At each location a frame with the dimensions 10 cm x 20 cm was placed on the
ground. Subsequently all the biomass above the soil was harvested within the
frame and a botanical determination carried out. The biomass was put in an
airtight plastic bag and after the estimation of the fresh weight of the biomass
the sample was dried at the temperature of 105° C for 24 hours [76]. Hereafter
the dry weight and the water content in weight percent of the biomass samples

were calculated.

The various species of vegetation are in the chapters specified by their Latin
names. For the corresponding Danish names refer to appendix C.

3.1.2 Soil samples

Within each test site soil samples from the upper soil layer were collected. The
soil samples were taken by pressing a metallic cylinder just below the surface
of the ground. The cylinder filled up with soil of a volume V' of approximately
88 ecm?, was subsequently brought to the laboratory for further analyses.

After estimation of the fresh weight my, the samples were saturated with water
by placing the fresh samples in a water bath for several days. The saturated
weight m, was then measured, after the surplus water had dripped off. After the
saturation the soil samples were dried at a temperature of 105 °C and the dry
weight my was determined. Finally, the organic content of the soil samples was
estimated by using a method called heat combustion in a muffle furnace. Here
the samples are dried at 550 °C until the organic matter disappears [76]. The
fresh bulk density pf, the saturated bulk density p, and the dry bulk density
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pq are then given by

mg ms mgq
Pf:77 05277 Pd:7-

The porosity 0, is calculated using

) _ms—md
p Vpp )

where p,, is the density of the fluids filling the pore space. The volumetric water
content 6, of the fresh soil sample yields

myg—mgq

0, = x 100%,

Pp

and the relative volumetric water content @, of the fresh soil sample is derived
from

myg —mgq

0, = x 100%.

(ms —myq)

In the case of Ladegaards Enge the fluids were ground water and we there-
fore make the approximation p, ~ 1. The loss in weight Amg of the sample
represents the organic content m,, which given in percent of the dried sample
is

Amy = % % 100%.
mg

3.1.3 Time-Domain Reflectometry

Time-Domain Reflectometry (TDR) and SAR are affected by the same physical
property, namely the dielectric constant. Both methods are based on the prin-
ciple of electromagnetic waves. But as the SAR makes remote measurements,
TDR is here used for making measurements in situ.
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The justification of using SAR as a tool for making remote measurements of the
soil moisture relies on the backscattering coefficient, which is strongly affected by
the complex dielectric constant . The complex dielectric constant of a material
is

i Odc
eE=¢ z(zs +27rf50>’

where &’ is the real part and ¢” the imaginary part. The zero-frequency con-
ductivity is o4c, f is the frequency of the electromagnetic wave and ¢ the free
space permittivity [80]. The real part of the dielectric constant is rather invari-
ant for most soil types ranging from sandy loam to silty clay in the frequency
range from 1 MHz to 1 GHz. This is valid for temperatures above 5 °C and
corresponds to the range of frequencies used by TDR [22]. Because £’ is about
30 times larger than ¢” for a dry soil the imaginary part £ can be neglected.
The apparent dielectric constant K, is therefore K, = ¢’ [35].

The apparent dielectric constant of water is approximately 80 whereas the other
main soil particles have a K, value in the range of 2 - 4. A consequence of that
is that even small changes in the volumetric water content 6, have a significant
effect on K, [50].

By taking the volume fractions of the soil components into account it is possible
to establish an empirical relationship between K, and the volumetric water
content of the soil. Not surprisingly several calibration functions have been
developed depending on the characteristics of the soil. The empirical calibration
function most widely used is published by Topp et al. (1980) [80]. The third
order polynomial relationship between K, and 6, is

0, = —0.053 4 0.0292K, — 0.00055K2 + 0.0000043 K3, (3.1)

and is valid for four soils ranging from sandy loam to heavy clay soils.

The device used for making TDR measurements in this project was a portable
TDR instrument (Tektronix model 1502 B/C cable tester). The probes to be
used for vertical placement in the soil are made from 6 mm steel rods of length
L, =10 cm [79]. After the vertical placement in the soil the apparent probe
length L, is detected by the instrument and the apparent dielectric constant
K, is given by

K, = (j) (3.2

p
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The penetration depth for frequencies larger than 1.4 GHz (L-band) is less than
10 cm. This is valid for loamy soils with a volumetric water content larger than
0.2 g/cm3.

3.2 Kriging

In the best of all worlds relevant data at every desired point would be available.
However, that is not practically possible and interpolation is therefore used to
predict unknown values from data at known locations. There exist numerous
techniques for interpolating irregularly spaced data. Some of the commonly
used methods are e.g. nearest neighbour interpolation, spline interpolation and
weighted moving average methods.

Kriging is a weighted average method used in geostatistics and first introduced
by the South African mining engineer E. Krige. This method uses a semi-
variogram to express the spatial variation and it minimizes the error of the
predicted values. In this section the most important elements of kriging are
presented. This includes a description of ordinary kriging, which is a technique
well suited for modelling the spatial irregularities we are facing in this project.

A detailed introduction to most geostatistical methods is provided in Isaaks
and Srivastava (1989) [36] and Huijbregts (1978) [41]. Analysis of irregularly
distributed points is given in Hartelius (1996) [33]. An explanatory introduction
to geostatistics and kriging with applications is found in Nielsen (1999) [55] and
for a thorough analysis of regularly and irregularly sampled spatial, multivariate,
and multi-temporal data refer to Nielsen (1994) [54].

3.2.1 Geostatistics

The fundamental concept in geostatistics is regionalized variables. These vari-
ables have been introduced because the spatial variation of any continuous sur-
face often is too irregular to be modeled by a simple mathematical function.
Instead the variation can be described by a stochastic surface and the measur-
able quantity is then called a regionalized variable.

The regionalized variable theory states, that for each position & in a domain
D there exists a measurable quantity z(x). The quantity z(zx) is called a re-
gionalized variable and D is typically a subset of R? or R3. z(x) is consid-
ered a particular realization of a random variable Z(x). The set of random
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variables {Z(x)|x € D} constitutes a random function and Z(z) is often as-
sumed to follow a normal or log-normal distribution. Z(x) has expectation
value E{Z(x))} = p and covariance Cov{Z(x),Z(x + h)} = C(x,h). Here
z(x) and z(x + h) are quantities measured at two points in space « and x + h
and separated by h. If u is constant over D, Z is said to be first order stationary.
If the covariance is constant over D also, i.e. C(x, h) = C(h), Z is second order
stationary.

3.2.2 Semivariogram

The autocovariance function between Z(x) and Z(x + h) is
Clz,h) = E{[Z(x) — p][Z(z + h) — p]}.

The variability in space is also described by the semivariance, which is defined

V(@ h) = S E{[Z(@) - Z( + B},

The intrinsic hypothesis states that the semivariogram is a function of the dis-
placement vector h and not of the position «, that is

V(@ h) =~(h).

The intrinsic hypothesis is less restrictive than second order stationarity. For
the intrinsic hypothesis second order stationarity is not assumed for Z(x), but
rather the first order differences Z(x + h) — Z(x). Second order stationarity
for Z(x) implies the intrinsic hypothesis but not wvice versa. If second order
stationarity is assumed or imposed the relation between the semivariogram and
the autocovariance is

where C(0) = o2.
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The experimental semivariogram can be estimated using

Y(w, h) =

2(zy,) — z(zi, + h)]?, (3.3)

where N(h) is the number of point pairs separated by h.

In order to characterize the experimental semivariogram a number of models
can be fitted. A frequently used model, which is also applied in this project,
is the spherical model v*(h) with nugget effect. A reason for this is the easy
interpretability of the parameters. By setting |h| = h we assume isotropy and
get

0 ifh=0
Yi(h) =3 Co+Ci[38 —1(£)*] if0O<h<R
Co+ C4 if h > R.

The constant Cjy is the nugget effect, which is a discontinuity at h = 0 due to
measurements errors and short range spatial variations. The quantity Cy/(Co+
() is the relative nugget effect where Cp+ C1 is the maximum level of semivari-
ance also called the sill (= 02). The range of influence is R corresponding to
the maximum semivariance. Other models used are e.g. the cubic, exponential,
Gaussian and the linear model.

3.2.3 Ordinary kriging

At the unsampled location g we consider a value Z,, which we wish to estimate
as a weighted average of the values z; sampled at locations around it. The
unbiased linear estimator is given by

Zo0 = wq+ E W; 24 :wo+sz
1=1

E(Zy—Zy) = 0,
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where w; are the weights, wy is a constant and N refers to the number of
neighbours to Zy. The expected error of estimation is

E(Z() — Zo) = E(ZO — Wo — ’U)TZ)
= po—wo—wp, (3.4)

and this unbiasedness gives
T
o —wo —w' p=0. (3.5)
The kriging variance, or the minimum mean square error o, is

0',29 = E(Z() - 20)2
= o’ +w?(Cw —2Cov(Zy, Z)), (3.6)
where C' is the dispersion matrix of z.

In ordinary kriging (OK) we suppose that E(Z;) = uo for the N neighbours and
by combining (3.4) and (3.5) it follows that

E(ZO — Zo) = ,U,o(l - 'LUT]_) — Wy = 0.
This implies that wy = 0 and w?1 = 1. In the case of simple kriging (SK) the
mean f is known and the constraint Zf\;l w; = 1 is ignored.
The minimum variance of error is obtained by minimizing (3.6) under the con-
straint Zf\; w; = 1. This can be done using the Langrangian multiplier A and

solving the equations 9[c%+2A(wT —1)]/0w; = 0 and 0% + 2\ (wT — 1)]/OX = 0.
This leads to the ordinary kriging system

Cw+ 1 = Cov(Zy,2Z) (3.7)
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or
Cun - Civ 1 w1 Co1
fr— . 5
Cnyi -+ Cnn 1 wN Con
1 1 0 A 1
where the covariances Cjj;, i,7 =1,...,N and Cy;, j = 1,..., N are estimated

from the semivariogram. Using (3.6) and (3.7) the estimated kriging variance is

05k = 0* —wlCov(Zy, Z) — M.

A variety of other kriging techniques has been developed. Of these are e.g. sim-
ple kriging, universal kriging, co-kriging. In simple kriging the mean is known
and second order stationarity is assumed. Universal kriging is a technique where
a drift polynomial is used to model a non-stationary trend surface. In case the
original variables have been undersampled, the covariation between different
variables can be taken into account in the reducing of the estimation variance.
This is referred to as co-kriging. Ordinary kriging is well suited for interpolating
surfaces where 1 is not constant i.e. the lack of first order stationarity. Hence
the ordinary kriging technique described above is applied in this project.

Some very important advantages of kriging:

e Kriging is exact and it is the Best Linear Unbiased Estimator (BLUE). If a
value at a location that has been sampled is estimated, the kriging system
will return the sample value as the estimator and a kriging variance zero.

e The kriging system has a unique solution if and only if the covariance
matrix C' is positive definite, this also ensures a non-negative kriging vari-
ance.

e The kriging system and the kriging variance depend only on the covari-
ance function (semivariogram) and on the spatial lay-out of the sampled
supports and not on the actual data values. If a covariance function is
known or assumed this has important potential for minimizing the esti-
mation variance in experimental design (i.e. in the planning phase of the
spatial lay-out of the sampling scheme).
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The programs used to compute semi-variograms and to do the ordinary kriging
(OK) is a part of GSLIB which is a library of geostatistical programs [23].

3.3 Geometric rectification

Raw sensor data often contain too many distortions to be used as a map. The
process of correcting these errors is known as geometric correction. One of the
key subjects of this thesis is the fusion between the in situ measurements per-
formed at the test sites and the polarimetric dual frequency EMISAR data.
In order to match these remotely sensed data with the in situ data the exact
geographical position of a particular pixel in the SAR image has to be known.
However, as explained in Section 2.3 the EMISAR data to be used are geomet-
rical distorted and a geometric correction is therefore required.

3.3.1 Introduction

The image to be geometrically rectified or warped is called the input image and
the rectified result is called the output image. In this context the transformation
is done by aligning the input image with another image called the reference
image. The geometric rectification of the input image is performed using Ground
Control Points (GCP’s), which are features identified in both the input and the
reference images.

The geometric rectification involves two steps described in the sections below.
In Section 3.3.2 is the use of first order polynomials as deformation models
reviewed and in Section 3.3.3 the bilinear resampling technique is outlined. The
techniques of geometric transformations are described in e.g. Sonka (1993) [77]
and Niblack (1985) [52].

3.3.2 Deformation models

The deformation is often described by polynomials of up to third and fourth
orders. It is these polynomials that connect the geometrical relationship between
the input and the output image, or alternatively the output and the input image.
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The output-to-input transformation of first order given by

r = ag+ a1t + asy
= by + biZ + bay,

maps the point (£, ¢) in the output image to the point (x,y) in the input image,
see Figure 3.1. The coefficients of the polynomials ag, a1, as, by, b1, by are derived
through the GCP’s in the two coordinate systems. Although only three point
pairs are necessary as a minimum for estimating the a and b coefficients of the
first order polynomial, additional point pairs are often used. This will ensure
a better estimation of the coefficients in a least squares sense and a quality
measure of how well the transformation fits the points.

The a-coefficients for a transformation of first order is given by

T 1 &1 % ao €1
= ai + P
TN 1 fN yN az EN
or
x = A0 + ¢,

where N is the number of point pairs, A is the design matrix for the model, 6
is a vector containing the coefficients and e is the residual vector. The vector
containing the coefficients is estimated from

6=(ATA) AT,

assuming that the measurement error is zero. The estimate of the observed
geometric error o2 for the 2 coordinates is

L2
o _ ||z — A6
G5 = N —ra(A)’ (3.8)

where || - || is the Euclidean norm and rg(A) is the rank of matrix A. The
b-coefficients and 62 for the y coordinates are derived in a similar manner.
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Figure 3.1: Illustration of the bilinear resampling. The point (£, ¢) in the output
image is mapped to the point (z,y) in the input image. The neigbours to (z,y)
are located at (k,1), (k+1,1), (k,l+1) and (k+ 1,1+ 1).

In practical applications polynomials of up to third and fourth orders are used.
In the case of second order transformation we have

T = ag+ad+ asy+ azd® + as? + asty
= Do + byt + bot + b3t? + byyf® + bst,

and here at least 6 point pairs are needed.

3.3.3 Resampling

After establishing an appropriate transformation each pixel in the output image
is assigned a value. However, the position (z,y) of the pixels in the input image
does typically not fit the integer coordinates (&, %) of the output image. This
is because the collections of transformed points give the samples of the output
image with non-integer coordinates. However, values on the integer output grid
are needed and it is therefore necessary to interpolate between the non-integer
points in the input image. This process is called resampling.

The methods that most frequently are used for resampling are nearest neighbour
(NN), bilinear and cubic convolution. The simplest method for assigning a value
for the output image is the nearest neighbour, which chooses the pixel value in
the input image that has its centre closest to the position (z,y) determined
by the transformation. This method has the disadvantage of introducing a
position error of at most half a pixel. On the other hand, the method preserves
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the original values and the method is therefore preferred in situations where a
classification is the intention or the preservation of the radiometric information
is needed.

The bilinear resampling makes use of the four pixel values that surround the
calculated position (z,y) in the input image. The interpolated pixel value p,
which is assigned the position (#,7) in the output image is a weighted average
between the calculated position and its four neighbours. With reference to
Figure 3.1 the bilinear interpolation is given by the equation

’

p(i‘,y’) = (1 - b)(l - a)p(k;,l) + b(l - a)p(k; +1, l)
+(1 = bap(k, 1+ 1) +abp(k + 1,1+ 1).

Due to the averaging nature of the bilinear interpolation the resampling will
cause a small decrease in resolution as well as blurring of the output image.
However, the problem of the step-like boundaries using nearest neighbour re-
sampling is reduced.

In the cubic convolution or bicubic interpolation the fifteen neighbouring points
are used in the resampling. The interpolation copes with the bilinear blurring
as well as the step-like boundary problem of the nearest neighbour interpola-
tion. Furthermore it is superior in terms of preserving fine details. The cubic
convolution can be performed in many ways, but the result is also a weighted
average that is assigned the position (£, %) in the output image.

The test areas at Gjern and Mols Bjerge are relatively flat and very small and
consequently the local incidence angle ¢ can be considered constant within each
area. Using (2.1) this again implies that the ground resolution AR, can be
considered constant within each area. A polynomial of first order is therefore
used in the geometric rectification of the polarimetric EMISAR data covering
the test sites.

Due to the varying topography of the areas surrounding the test sites the GCP’s
have been manually collected within or as close as possible to the test sites. Here
the reference images are UTM rectified ortho-photos from 1995 and as input we
use the EMISAR data. Due to the speckled nature of these EMISAR data it has
been difficult to identify features in both the reference and the input images.
The number of GCP’s for each test site is therefore only 5 to 8. However, in
spite of this small number of GCP’s the affine transformation has proved to be
quite accurate in terms of how well the transformation fits the points in the
areas of the test sites, see page 172 and 210.

The resampling of the restored EMISAR data is performed using the bilinear
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interpolation. This method is suitable because the restored regions to be rec-
tified are coherent and homogeneous and without large discontinuities between
them. The blurring effect of the bilinear resampling is therefore not significant.
The cubic resampling could be used as well, however, there are no distinct fine
details in the restored samples containing the test sites and consequently not
much is gained. Concerning the nearest neighbour (NN) interpolation we are
not interested in preserving the radiometric content in particular but rather the
gap between mean amplitude levels. In addition the NN interpolation will cause
a geometrical distortion, which is unwanted given the small size of the test areas.

3.4 Multiple regression analysis

The main goal of multiple regression is to learn about the association between
a dependent variable Y; and several independent variables x;. This is done
by determining the values of parameters for a model that causes the model to
best fit a set of data or observations. Here the model in form of a parametric
equation can range from simple linear to non-linear models such as polynomials
and exponential functions. In this project a linear relationship between the
apparent dielectric constant K, and the restored EMISAR data is investigated
using Multiple Regression Analysis (MRA). For an introduction to MRA refer
to Anderson (2003) [3].

3.4.1 Introduction

Consider the k dimensional stochastic variable Y € N(u,0?X), where o2 is the
measure of how well the model as a whole accounts for the variation in the de-

pendent variables and X is the dispersion of the N observations @1, xs,...,TN.
In linear regression, the dependent variable or response variable Y; is modeled
as a linear function of the independent variables or regressors x;1, 2, ..., Tik-

The linear multiple regression model is then

yi = o+ Bz + Bazio + - - + Brxik + €4y

where «, (1, ..., Ok are known as the regression coefficients. The residual is e;
where Cor(g;,e;) = 0,Vi # j and E(g;) = 0. This may also be written in a
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matrix form as

@
Yy 1 x1 Yk 3, €1
. ~ ; ) S ’
Yy 1 znv1 0 ynk @g EN
or
Y =a28+e¢

The estimate of the vector B containing the coefficients is
B= ("2 le) 2" =Y.
Th}fs estimate is BLUE and is derived by minimizing the sum of squared residuals
PRI
The quantity 2 is unknown but can be estimated using

A2
Y —
o Iy —aB|

N —rg(x) (3.9)

The measure of how much variation in the dependent variable that can be
explained by the model is R? given by

— A2
Y —YI[]? - |[Y — 28]

R2:| -
Y —Y|[?

(3.10)

The range of R? is from 0 to 1 and in general the larger the value the better the
model fit. Some reservation should be taken in the interpretation of R? because
it is affected by the number of regressors in the model. That is R? increases
with an increasing number of regressors.

The observations to be used in this project are assumed to be multivariate
normal and the computations have been performed with PROC GLM from the
SAS package [73].
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3.5 Orthogonal transformation

There is often a high correlation between the different channels or bands in
multidimensional data. It has therefore proven useful to generate orthogonal
linear transformations of the original bands when analyzing multivariate images.
Such a linear method of projection is Principal Components, which is a well
known and widely used technique for dimensionality reduction in multivariate
image data. Other very successful linear methods for analyzing multivariate
images are factor analysis, min/max autocorrelation factors, canonical variables
and canonical discriminant functions.

The linear transforms to be focused upon in this thesis are principal components
and canonical discriminant functions, which are described in the Sections 3.5.1
and 3.5.2 below. An instructive overview of orthogonal transformations of mul-
tichannel image data is given in Conradsen and Ersbgll (1991) and Windfeld
(1992) [19], [87].

3.5.1 Principal components analysis

Principal Components (PC) reduces the dimensionality within the data and
creates linear combinations of the original variables with maximal variance.
This classical technique in stochastic multivariate data analysis was originated
by Pearson (1901) [63] and later developed by Hotelling (1933). In this project
PC are used to detect linear relationships in the restored multivariate EMISAR
data and to evaluate the linear dependencies among variables.

3.5.1.1 Introduction

Consider the stochastic vector X7 = (X1,X2,...,Xp) where the variables e.g.
are p dimensional image data. The dispersion matrix of X is ¥ and without
loss of generality we assume E(X) = 0. The eigenvalues to 3 are ordered
AL > >\ > .- > )\, and the corresponding orthonormal eigenvectors are

pl""?pi""?pp'

The principal components are then given as

Y,=al'X, i=1,...,p,
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where the unit vector a; has the property

Var(aT X aTSa
Var(Y;) = sup # =sup —— =\
acM; a‘a acM; a’a
where
M; = {a|an1 == ani—l = 0}.

From the above we see that the first principal component Yy is the linear
combination of the original variables that accounts for the greatest possible
variance A1. The i’th principal component Y; is the linear combination of the
original variables that has the greatest possible variance A; and is uncorrelated
with the first ¢ — 1 principal components.

Principal component analysis reduces the dimensionality of a set of data while
preserving the structure. Furthermore, since the variance is maximized in the
PC the first components are often more interpretable than the original data
(images). The fraction of the total variation that is explained by the first 4
principal components is therefore given by

AL+ N
At AN

A drawback of PC is that it does not take the spatial context into account. This
has the consequence that the transformation is invariant to all permutations
of the pixels in the image. A linear method of projection, which is able to
cope with this problem and incorporate the spatial context in images is the
Minimum/Maximum Autocorrelation Factor (MAF) transformation.

Unfortunately PC depend critically on the units in which the original vari-
ables are measured. If the PC transformation is performed on the standardized
variables e.g. the correlation matrix instead of the dispersion matrix 3, this
problem is eliminated. The PC analyses to follow have been performed with
PROC PRINCOMP from the SAS package [73].
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3.5.2 Canonical discriminant analysis

In Canonical Discriminant Analysis (CDA) differences between sets of observa-
tions are maximized, see Conradsen and Ersbgll (1991) [19]. CDA is in this thesis
used to generate linear combinations of the variables in the restored EMISAR

data with the highest possible between-group correlations.

3.5.2.1 Introduction

Consider the k-classes or populations 7y, ..., 7, with nq,.
(pixels), where each observation is a p dimensional vector =
The group means are

n;

1 .

r; = — :Eij,lzl,...7k,
n; 1

Jj=

and the overall mean is

.., observations
= (1‘1, T2y ,xp).

where N = Y n; is the total number of observations. The among-groups varia-

tion is then
k
A=) ni(z —T)(T —T),
i=1
and the within-groups variation

k  ny
W = Z Z(m” - Ez)(mvj - El))l

i=1 j=1

The Rayleigh coefficient is
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and maximizing ¢(d) gives the direction d; with the maximum variation between
group means relative to within-group variation. Here d; is the eigenvector
corresponding to the largest eigenvalue of A with respect to W. The first
canonical discriminant function is d;x and further discriminant functions can
be found by maximizing ¢(d) under the constraint that d, = is uncorrelated with
the previous variables. This process of computing linear combinations can be
continued until the number of canonical discriminant functions equals

min(k — 1, p).

CDA is robust to mild deviations from normality, which is implicitly assumed.
However, nonlinearity or clustering of the observations can degrade the perfor-
mance.

In this project it is assumed that the observations are mutually independent and
that the distribution within each class is multivariate normal. The CDA compu-
tations have been performed with PROC CANDISC from the SAS package [72].

3.6 Classification

Classification is the process of sorting observations e.g. pixels into a finite num-
ber of individual categories based on a set of criteria. If a pixel satisfies one of
those criteria the pixel is assigned a certain class label. There are basically two
types of classification algorithms, namely, the supervised and the unsupervised
classifier.

The supervised classifier Multiple Discriminant Analysis (MDA) and the unsu-
pervised classifier Cluster Analysis (CA) is described below in the Sections 3.6.1
and 3.6.2. In this thesis these two types of classifiers are applied in the analyses
of the multivariate restored EMISAR data and their performances are compared.

3.6.1 Multiple discriminant analysis

In Discriminant Analysis (DA) the classes are determined beforehand in terms
of training samples or areas. The objective is here to determine the combination
of variables that best discriminates between two or more classes. In case of more
than two classes the classification is often referred to as Multiple Discriminant
Analysis (MDA). DA is used for several purposes e.g. to investigate differences
among classes or discard variables which are little related to group distinctions.
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Choice
m o Tk
| 0 L2 - Lk
Population 7 | L(2,1) 0 <o L(2,k)
e | L(k,1) L(k,2) - 0

Table 3.1: Loss function

In this context MDA is performed on the multivariate restored EMISAR data
using training areas. The training areas are here taken to represent different
physical properties in the test sites such as variations in biomass, vegetation
characteristics and soil moisture contents. For an introduction to DA refer to
Anderson (2003) [3]. A Danish introduction to DA and related topics can be
found in Conradsen (1984) [17].

3.6.1.1 Introduction

The problem of classification is to classify the observation

1o
T2
T = )
Lp
into one of the predetermined populations or classes 7,73, ..., 7. Here x is a

vector of p measured or derived features characterizing the observation.

The conditional density function

fz(:c):p(:chri), i:(),l,...,k

specifies the probability that the observation & belongs to the class variable ;.
In situations where prior experience or belief of the class variable 7; is available
the a priori probability of class ; is denoted

p(mi) =pi, i=0,1,...,k.
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Through Bayes’s theorem it now is possible to express the a posteriori proba-
bility

p(x|m;)p(m;)
Sr_ p(z|m;)p(n;)
pifi(x)

h(z) ’

p(mile) =

which denotes the probability that the class is m; given observation x. The
denominator h(x) serves as a normalization factor that ensures that the a pos-
teriori probabilities sum to unity. The importance of Bayes’s theorem is that it
is possible to make optimal decisions based on the knowledge of the conditional
density function f;(x) and the prior probability p;.

In many applications there may be serious consequences if a wrong classification
is made e.g. classifying an image of a tumour as normal. We therefore define a
loss function L(j,),7 # j as shown in Table 3.1. Here it appears that no loss
is expected when the right choice is made, whereas a penalty term is associated
with wrong decisions.

Using the loss function in Table 3.1 the expected loss Eg{L(j,)} for choosing
class m; is given by

Ex{L(j,i)} L(1,i)p(mi|z) + L(2,i)p(me|x) + ... + L(k, i)p(ms|x)

1

*

where the discriminant score S} is
S =—L(1,i)p1fi1(x) — L(2,9)pafa(x) — ... — L(k,i)pk fr(x).

The Bayes solution of the classification problem is to choose the class m; that
minimizes the expected loss Ex[L(j,¢)] which is equivalent to maximizing S;.
In other words we choose ,, if

SE> 87, Vi

If all losses L(j,7),i # j are equal then the discriminant score S} can be simpli-
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fied to
S; =pifi(x),

which corresponds to choosing the class with the maximum a posteriori proba-
bility.

Supported by the central limit theorem and due to its analytical simplicity the
multivariate normal distribution

! ! e ) @ - ), (3.11)

o) = e s, s

is a common choice for expressing the class conditional density function of the
feature vector . When equal losses and known priors are considered we there-
fore can apply the logarithm to the discriminant score S, which leads to the
quadratic discriminant function of the form

1 1
Si = —3 log(det 33;) — i(m — 1) TE (e — i) + log pi,

where the common factor 27 ?/2 is neglected. In the case of equal covariance
matrices (X; = X) the discriminant function is linear. The decision boundaries
for classification are given by the regions where the discriminant functions are
equal.

In many applications a rejection threshold is introduced in the classification
procedure. Hereby it is possible to exclude observations that are too uncertain
i.e. too far from known classes. In image analysis this is useful in situations
where one extrapolates from the training areas to the rest of the image. This is
conveniently done using the Mahalanobis distance

Di = (x — pi) "5z — pa),

which is the distance from observation @ to the class mean p; with respect to
DI ! Surfaces of constant probability in (3.11) are hyper-ellipsoids on which D;
is constant.

In this thesis the individual within-group covariance matrices 3; are estimated
from training data. It is here assumed that the observations are mutually inde-
pendent and that the distribution within each class is multivariate normal. The
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discriminant function to be used is quadratic with equal prior probabilities and
losses. Furthermore the rejection threshold is set to the commonly used p value
0.05. The supervised classification is carried out using PROC DISCRIM from
the SAS package [72].

3.6.2 Cluster analysis

It is usually expected that observations that are far apart belong to different
classes or clusters, while observations that are close to each other are assigned to
the same cluster. In Cluster Analysis (CA) the clusters are not predetermined
and the aim is therefore to determine the best way of grouping data.

The clustering method to be focused upon in this thesis is MacQueen’s non-
hierarchical clustering algorithm k-means [47]. The k-means algorithm is chosen
because we wish to study the natural grouping of the multivariate restored
EMISAR data using different number of clusters.

In Baggesen, Nielsen and Larsen (2001) initial exploratory analysis of multivari-
ate image data is carried out using a SMAF transformation and a fuzzy k-means
algorithm [5]. For a thorough treatment of CA refer to Anderberg (1973) [1].

3.6.2.1 Introduction

The MacQueen’s k-means algorithm, which is a nearest centroid sorting method,
can be described as follows: A number of clusters k is chosen in advance and a
set of points called cluster seeds is selected. In order to form temporary clusters
each observation is assigned to the nearest seed. Next, the new seed points are
generated by replacing the old seed points by the mean vectors (centroids) of
the temporary clusters. This procedure is repeated until no further grouping of
the data occurs.

If a given seed point is chosen as the mean vector Z; of a cluster j then the
sum of squared deviations between the seed point and the N; data units in the
cluster will be a unique minimum. Naturally, the algorithm therefore seeks to
partition the data points into k disjoint subsets in such a way that the total
within group sum of squares

k. Nj

E=>"> |z -zl

j=11i=1

~
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is minimized. The mean vector x; is

1
=, 2
Ji=1
and we note that it is the Euclidean distances between the centroid of cluster j

and its N; data units that are used.

It can be shown that the total number of different ways a set of N data units
can be partitioned into k clusters is a finite number given by

1
Sz

HMH
o
s
|
o
N—
o
L
iy
-
v
=z
4

which is a Stirling number of the second kind. The algorithm therefore is guar-
anteed to reach the global minimum if the § partitions are generated [1]. We
see that S becomes very large for large data sets and algorithms such as sim-
ulated annealing and gradient descent methods are consequently often used in
the process of searching for the global minimum.

The software used in our application for disjoint clustering of restored EMISAR,
data is PROC FASTCLUS developed by SAS [72]. This procedure is chosen
because of its ability of finding good clusters of very large data sets with only a
few passes over the data. The program uses the nearest centroid sorting method
introduced by Anderberg (1973) and described above. Here the analysis is based
on Euclidean distances and each observation is assigned to one and only one
cluster. The FASTCLUS procedure combines an effective method for finding
initial clusters with a standard iterative algorithm for minimizing the sum of
squared distances from the cluster means.
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Markov random fields

Many of the tasks in computer vision can be regarded as optimization problems
with respect to a function depending on one or more variables. The function
which is often referred to as the cost or objective function of the problem serves
as a heuristic guide in the search for the optimal solution.

Unfortunately these optimization problems are not easy to solve in terms of
finding the optimal solution. Firstly, an exhaustive search is not feasible due to
the often very large search space. Secondly, the objective function cannot be
expressed in a closed form. However, the optimal solution can be located by
resorting to numerical optimization techniques.

The optimization problem in relation with image restoration can be formulated
as the minimization of an energy function. In this case the energy function
corresponds to the cost or objective function of the problem. The energy func-
tion is typically non-convex having a large number of local minima. Normally
these local minima are due to artifacts and noise in the image and are therefore
viewed as sub-optimal solutions. The ultimate goal, however, is to retrieve the
global energy minimum which corresponds to the optimal solution.
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4.1 Introduction

In this chapter two different optimization schemes based upon Markov Random
Field (MRF) are described. The optimization schemes presented are in Chap-
ter 5 applied on synthetic SAR data and EMISAR data using various a priori
models.

The first technique is the local optimizer Iterated Conditional Modes (ICM)
suggested by Besag (1986) [7]. It is a quick deterministic algorithm, which
based on a down-hill strategy unfortunately is likely to track a sub-optimal
solution. The second optimization scheme is Simulated Annealing (SA). SA is
a stochastic method proposed independently by Kirkpatrick (1983) and Cerny
(1985) for global optimization [13], [13]. SA also relies on a down-hill strategy
but instead of performing gradient descent the successful applications of SA rely
on random research methods such as Metropolis algorithm or Gibbs sampler [50],
[29]. In contrast to ICM SA is therefore able to escape local minima and thereby
finally reach the global minimum.

In Section 4.2 the theory of Markov random fields and Gibbs random fields are
reviewed. The definition of cliques is given and Bayes rule is outlined. Section
4.3 contains a description of Iterated conditional modes (ICM) and in Section 4.4
the concepts of Simulated Annealing (SA) are outlined.

4.2 Random fields

Let X = Xi,...,X, be a family of random variables defined on the (two-
dimensional) region S, which has been partitioned into n pixels. Assume further
that A denotes the corresponding state space i.e. the set of all possible values
x; which the random variable X; can take. The family X is called a random
field. We use the notation X; = x; to denote the event that X, takes the value
or label z; and the notation X; = z1,..., X,, = x, to denote the joint event.
For simplicity, a joint event is abbreviated as X = x where x = {z1,...,2,}
is a configuration of X, corresponding to a realization of the field. The set
of all possible configurations on S is called 2. For a discrete label set A, the
probability that random variable X; takes the label x; is denoted P(X; = x;)
abbreviated as P(z;) unless there is a need to elaborate the expressions, and
the joint probability is denoted P(X = x) = P(X; = z1,..., X, = x,) and
abbreviated P(x). For a continuous A, we have probability density functions
(pdf’s), p(X; = x;) and p(X = x).
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Figure 4.1: Ordering of neighbours on a regular lattice.

4.2.1 Markov random fields

X is said to be a Markov Random Field (MRF) on S with respect to a neigh-
bourhood system N if and only if the following two conditions are satisfied [29].

Definition 4.1 Let S = {so, $1,...,Sn—1} be a set of sites. A neighbourhood
system N = {N;,s € S} is a collection of subsets of S for which

1. s # Ny

2. 1€ Ny < s €N,.

Definition 4.2 A random field X is a Markov Random Field (MRF) with
respect to the neighbourhood system N = {Ng, s € S} iff

1. P(X =z) >0,V €

2. P(Xs =4 X, =xp,r #5) = P(Xs = 24| X, = x,.,7 € Ny),
VseSAxe Q.

The first positivity condition denotes that none of the possible random field
realizations should have zero probability. This is a technical assumption that
usually is satisfied in practice. The second condition is the Markov property
that states that the probability of xs given the values of all other sites depends
only on the values of the sites in the neighbourhood of s [6].
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4.2.2 Cliques

A graph on the finite lattice S is denoted G = (V,&) where V is the set of
neighbours that are connected with an edge & .

Definition 4.3 A clique ¢ for (V,€) is a subset of S for which every pair of
sites are neighbours.

Individual sites are, by definition, cliques. The usual neighbourhood system for
a square grid in image analysis defines the first-order neighbours of a pixel as the
four pixels sharing a side with the given pixel, see Figure 4.1. The single-site,
horizontal and vertical pair-site cliques corresponding to a first-order neighbour-
hood configuration are shown in Figure 4.2 (a). Second-order neighbours are the
four pixels sharing a corner and Figure 4.2 (a)—(b) illustrates the clique types
that exist when the neighbourhood is restricted to 2nd order. Higher order
neighbours are defined in an analogous manner as illustrated in Figure 4.1 [40].

The clique types for a 2nd order neighbourhood include not only those in Fig-
ure 4.2 (a) but also diagonal pair-site cliques, triple-site and quadruple-site
cliques, which are shown in Figure 4.2 (b). The set of all cliques for (V,€) is

C=CUCUC3U---UC,,

where C7,Cy and C3 denote the collection of single-site, pair-site cliques, triple-
site and quadruple-site cliques [12].

Together with the pair-site clique types in Figure 4.2 are shown their corre-
sponding weights. These weights, and other parameters, are empirically derived
using an optimization scheme presented in Section 5.2.

In the context of feature extraction the clique structure is vital because position
information is very important to determine the value of the centre pixel z;, see
Park and Kurz (1996) [62]. In order to take full advantage of the information
embedded in the relative spatial positions of pixels, all clique types involved in
a 2nd order neighbourhood system should be taken into account, see Figure 4.2.
In Figure 4.3 is shown the 25 interactions involved in a 2nd order neighbourhood
system when all teen clique types in Figure 4.2 are used.
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Figure 4.2: (a) cliques for a 1. order neighbourhood and (b) additional cliques for
a 2nd order neighbourhood configuration. Associated with the pair-site cliques
are their empirically derived weights.

4.2.3 Gibbs random fields

Markov random fields described in the terms of Gibbs distribution are known
as Gibbs Random Fields (GRF). Hammersley-Clifford stated the following the-
orem:

Theorem 4.4 (Hammersley-Clifford). A random field X is a Gibbs random
field with respect to the neighbourhood system N if and only if X is a Markov
random field with respect to N .

The Gibbs distribution is an exponential distribution that expresses certain de-
sired structural properties. A Gibbs random field describes the global properties
of an image in terms of a joint probability distribution function (pdf) for all the
random variables in the considered field. A set of random variables is said to
be a Gibbs Random Field (GRF) on S with respect to N if and only if its
configurations obey a Gibbs distribution. MRF's are expressed in terms of local
conditional pdfs through the clique potentials.

The Gibbs distribution is based on the principle of thermodynamics, where the
probability that a molecule is at a specific state of energy E is governed by the
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Figure 4.3: All 25 interactions involved in a 2nd order neighbourhood system.

Boltzmann distribution

1 E

p(E) = A0 eXp(_k_T)’ (4.1)

where the partition function Z(T') is a normalizing constant, 7' the temperature
and k Boltzmann’s constant. The quantity kT equals energy and it will be
substituted by 7" in the succeeding.

The Gibbs distribution now takes the form

p(X =) = ﬁ exp(- %)) (4.2)
where
2@ = Y exp(- 1))

T controls the peak of the distribution and U(x) is the energy function. For
T — oo (4.2) is a uniform distribution on § i.e. all configurations have equal
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probabilities. In the limit 7" — 0 (4.2) is concentrated only on configurations
with global minimal energy [83]. One of the most studied models in statistical
mechanics, which makes use of MRF is the Ising model (1925). It is a simplified
model for describing ferromagnetism. Later the use of MRF in image processing
became mostly inspired by Geman and Geman (1984) [29].

An interesting property of Gibbs measure is that it maximizes the entropy

— Z )Inp(x

xreQ

for a given energy, which makes it possible to assign a probability to an event

[40].

The positivity condition in definition 4.2 ensures that an entire realization of
zeros is possible and the relative probability measure Q(x) may be defined

p(x)

Q(x) =In —=.

It can be shown that the local characteristics is determined by @(x) which has
the following form [6]:

Q(x) = Z i(x3) +ZZ xix; Gy (x5, ;) +

1<i<n 1<i<j<n
E E E TiT;Th Gi,j7k($i,$]’,$k)—|—...
1<i<j<k<n

+2129... 2, Gi 2, n(T1, 22, ..., T0).

Because of the Markov condition all cliques that do not include x; will be can-
celled out and the energy function U(x) becomes

Q@) - Q) = 3. Vulw)

ceC

where the potential function V. depends only on x4, s € C.
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Figure 4.4: The C-band HH polarized EMISAR amplitude data covering a rel-
atively homogeneous grassland area at Mols Bjerge. The data are stretched
linearly between their mean £3 std

In the following only pair-site cliques are used to derive the potential V.. As
illustrated in Figure 4.2 the empirically derived weights for the horizontal and
the vertical cliques are 0.575 and the weights for the diagonal cliques are 0.425.
This has the implication that the four pixels sharing a side with the centre pixel
x;, have a larger impact on the restored results than the four pixels sharing a
corner. The use of larger weights for horizontal and vertical cliques is natural
in the sense, that the Euclidian distance between the centre of pixel x; and the
center of the pixels sharing a side is smaller than the Euclidian distance between
the centre of pixel x; and the center of the pixels sharing a corner.

4.2.4 Bayes rule

When performing the unsupervised restoration of the SAR data, the discrete
grey values (amplitudes) themselves represent the labels e.g. classes.

The true pixel labeling is denoted x* = {x7, 23, ..., 2% } and the set of observable
random variables is denoted y = {y1, 92, ..., Yn }, Where y; is the feature vector
associated with the ith pixel.

The key subject is to find the a priori model {H;} that best describes the data.
By using Bayes’ rule

p(aly, H;) = p(ywégzigf)x'm)
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Figure 4.5: Coding pattern for a 2nd order neighbourhood where pixels with
the same number are members of the same coding pattern.

the MAP (Maximum A Posteriori) estimate is obtained by choosing the estimate
& and the a priori model {H;} that maximizes (4.3) [21].

In the ideal case when the y1,yo, ..., y, are conditionally independent, then

n

p(yle) = Hp(yz‘xz) (4.4)

i=1

is valid where all the y; have the conditional density function p(y;|z;) depending
on z; only. Unfortunately, due to a point spread function, this is not quite true
for the single-look SAR data [59]. Although there are some natural clutter
these correlations will in the following be considered so small that they can be
neglected. We furthermore assume, that the true scene x* is a realization of a
locally dependent MRF with the a priori distribution p(x).

In Figure 4.4 is shown a small sample of C-band HH polarized EMISAR am-
plitude data from a relatively homogeneous grassland at Mols Bjerge. The
estimated empirical autocorrelation at lag 1 in the azimuth direction is 0.18,
which is significant but not too high. The empirical autocorrelation at lag 1
in the range direction is 0.05 and thereby negligible. Here it should be noted
that some correlation is to be expected due to possible variations in the physical
environment within the grassland.

By using the local property of MRF's and the Gibbs distribution (4.2) only pixels
in the neighbourhood of pixel i need be considered. We can therefore write

p(zilws, i # j) = pi(wilz;, j € Ni), (4.5)
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where p; is specific to pixel ¢ [7]. Actually (4.4) also defines Y given X as
a MRF although with an empty neighbourhood. Both p(x) and p(y|z) are
according to Theorem 4.4 therefore Gibbs distributions and being a product
of those functions the a posteriori distribution will inherit this property. By
combining Bayes’ theorem with (4.4) and (4.5) it now follows that

p(zily, Tj,1 # ) o< p(yslzs)pi(wi|zs, j € Ny). (4.6)

The conditional density function p(y;|x;) to be used in this context is

o) o< exp{~ Ty (4.7

where the selected mean level 1 and the variance o; is estimated from the local
statistics. The weighting factor « is a shape parameter which controls the
edge preserving properties of the restoration. A small value will give a smooth
restoration whereas a high value preserves details.

In order to prevent artifacts in the restored images the pixels are partitioned
into a disjoint set of pixels called a coding pattern [6]. This will ensure that
no two pixels, which are neighbours, are visited in the same coding pattern.
Pixels belonging to the same coding pattern are conditionally independent and
for a 2nd order neighbourhood one iteration consists of four coding patterns
called sweeps. Figure 4.5 illustrates the procedure to be used in the restoration
process. Here pixels with the same number are members of the same coding
pattern.

4.3 Iterated conditional modes

Consider the case where the final model of the previous image is propagated
to the current image and the changes between these two image sequences are
sufficiently small. Then it will be possible to track the global energy minimum
through a local optimization technique.

Iterated Conditional Modes (ICM) is a deterministic relaxation technique with
the properties of a local optimizer and proposed by Besag 1986 [7]. Because
deterministic relaxation only makes changes which improve the current confi-

guration it is faster than stochastic relaxation methods which makes changes at
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random. It should be noted that as the ICM algorithm is regarded as a local
optimization technique rather than a global one the quality of the final result is
very dependent on the initial estimate [71].

Setting T' = 1 in (4.2) the basic idea of ICM is that an estimate of @ may possibly
be enhanced by replacing the current estimate Z; with the one that maximizes
(4.6). This principle for estimating pixel labels by ICM is implemented as
follows:

1. Choose a MRF model for the true label x*.

2. Initialize & by choosing z; as the value Z; that maximizes p(y;|x;) for each
pixel 1.

3. For i from 1 to n update &; by the value of z; that maximizes
p(yilzi)p(wild;, j € Ni)
4. Repeat (3) Njter times or until no changes occur.

The convergence is assured by

p(@ly) = p(aile, 25,7 # j)p(z;ly)

so that p(&|y) never decreases [7]. The algorithm will normally converge within
6-10 iterations to the final estimate of a*.

In our context the selected number of equally spaced grey-levels or classes for
the unsupervised restoration of the SAR data is 1000. Strictly speaking we then
are performing a segmentation but due to the high number of grey-levels it is
safe to view the reconstruction as a restoration.

It should be noted that in the case where the parameters 6 and ¢ are unknown
it is possible to obtain estimated values 6 and QAS which maximize p(x;6) and
p(y|x; ¢). This can be done either by using relevant training data alone or
if no training data are available the parameter estimation can be carried out
simultaneously with the algorithm optimization [6].
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4.4 Simulated annealing

Simulated Annealing (SA) is a stochastic relaxation technique based on the
principles of thermodynamics. Metropolis et al. (1953) presented the algorithm
as a method to simulate the equilibrium states of thermodynamic processes [50].
The idea of using SA to approximate the solution of very large combinatorial
optimization problems was first introduced by Kirkpatrick et al. (1983). They
used the technique for the optimization of the traveling salesman problem [43].

Since then the algorithm has been widely used for various types of optimization
problems. Geman and Geman (1984) first applied the SA algorithm to image
restoration and later Lakshmanan and Derin (1989) and Vandermeulen et al.
(1994) used the algorithm in image segmentation [45], [84]. Oliver et al. (1996)
[58] used the algorithm for segmentation of SAR data. For a general description
of SA the reader is referred to Laarhoven and Aarts (1987) [33] and Otten and
van Ginneken (1989) [60], which covers a wide range of the aspects.

Annealing or heat bath refers to the fundamental process in which a solid material
is first melted, i.e. the molecules can move freely, and then allowed to cool by
slowly reducing the temperature. Provided that the temperature is gradually
lowered in stages and under the constraint that at each stage the thermal quasi-
equilibrium is reached the molecules will attempt to arrange themselves in low
energy states. By carefully continuing the process the molecules will finally
form a crystal reflecting that the energy of the material has reached a global
minimum.

The collective energy states of the ensemble of particles can be considered the
configuration of the material. The probability that a particle is at any energy
level can be calculated by use of the Boltzmann distribution (4.1). As the
temperature of the material decreases, the Boltzmann distribution tends toward
the particle configuration that has the lowest energy.

By applying the basic concepts of the physical annealing process to numerical
optimization problems it is possible to develop algorithms which in theory are
capable of reaching the global minimum of a given energy function.

4.4.1 Mathematical model

The simulated annealing algorithm generates a Markov chain, which at the state
of thermal equilibrium approximates the Gibbs distribution. A Markov chain
describes a series of trials where the outcome of each trial depends only on the
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outcome of the previous one. In our context the previous outcome is the current
configuration.

The conditional probability P;;(k — 1, k) denotes the probability that the out-
come of the k’th trial is j given that the outcome of the (k—1)’th trial is ¢. This
probability is also called the transition probability, which denotes the probability
of obtaining configuration j given configuration i after the k’th transition. If
we let a;(k) denote the probability of outcome 7 at the k’th trial then a,(k) is
defined by the recursion

ai(k) = ai(k —1)Py(k — 1,k),
l

where [ is all possible outcomes. Given the initial state ¢ the probability of
reaching j after n transitions is P;. In the case where the conditional proba-
bilities do not depend on k the Markov chain is called homogeneous otherwise
it is called inhomogeneous [33].

Assuming a homogeneous Markov chain a stationary distribution is given by

Theorem 4.5 The stationary distribution q of a finite homogeneous Markov
chain exists if the Markov chain is irreducible and aperiodic. Furthermore the
vector q is uniquely determined by the equations:

Vi:qi>0,2qi:1,
i

Vi : q;, = qupﬂ
J

Definition 4.6 A Markov chain is irreducible if for all pair of states (j, k) there
is a positive probability of reaching k from j in a finite number of transitions:

Vj,k3n : Pl > 0.

Definition 4.7 A Markov chain is aperiodic if for all states i, the greatest
common divisor of all integers n > 1, such that

P> 0

is equal to 1.
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The ergodic properties of an inhomogeneous Markov chain are

Definition 4.8 An inhomogeneous Markov chain is weakly ergodic if for all
m>1,i,7€ R

lim (P;x(m,n) — Pjr(m,n)) = 0.

n—oo

Definition 4.9 An inhomogeneous Markov chain is strongly ergodic if there
exists a vector w, satisfying

Zﬂ'izl,ViIﬂ'i > 0,
[

such that for all m > 1,i,j € R

lim P;;(m,n) = ;.
n—oo

In SA the homogeneous Markov chain is generated at a fixed temperature un-
til thermal equilibrium is reached. Subsequently, the temperature is decreased,
which results in a new homogeneous sequence. The inhomogeneous algorithm
generates a single inhomogeneous Markov chain where the temperature is de-
creased in between each transition.

The convergence properties of the two types of Markov chains have been ex-
tensively discussed in Laarhoven (1987) [33]. They both approach the global
energy minimum provided that the following relation is satisfied:

P(X (k) € Ropt) =1,

where X (k) denotes the realization of the k’th trial as k approaches infinity and
Ropt is the set of globally minimal configurations. In practice, however, these
asymptotic values have to be approximated.

In the following two important methods of sampling are presented. They are
known as the Metropolis algorithm and the Gibbs sampler and they both lead
to equivalent results.
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4.4.2 The Metropolis sampler

Metropolis et al. first realized that the thermal equilibrium process could be
simulated for a fixed temperature by Monte Carlo methods to generate sequences
of energy states [50]. These energy states, that can be referred to as a Markov
chain, approximate the Gibbs distribution.

The algorithm given below illustrates the general principles of the Metropolis
sampler.

1. Choose an initial temperature 7.

2. Make a random change to the current configuration. Let

AFE = FEyq — Epew, (4.8)

be the differences in energy.

3. If AE > 0 then replace the old configuration by the new one; else accept
the new configuration with probability e2#/T .

4. Repeat (2)-(3) Ninner times until thermal equilibrium.
5. Replace T by a lower temperature.

6. Repeat (2)-(5) until frozen.

As it appears we are looking for the configuration that minimizes a certain
energy function F. In order to achieve this the system is perturbed to yield a
new configuration by making a local random change. Here the random change
is implemented by choosing a new value from a uniform distribution over the
set of possible values.

The energy difference before perturbation E,;q and after perturbation FE, ., is

AE = Eold - Enew
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If the change in cost function is positive that is AE > 0 the transition is
unconditionally accepted.

If on the other hand AE < 0 the new perturbed configuration is accepted with a
probability of acceptance that depends exponentially on the temperature. This
acceptance probability is referred to as the Metropolis criterion [50].

Following this criterion to the state of thermal equilibrium at a fixed temperature
the system will eventually approach Gibbs distribution. This temperature is
then gradually lowered starting at a high value where almost every proposed
transition is accepted to a freezing temperature, where no further changes occur.

4.4.3 The Gibbs sampler

The Gibbs sampler generates a Markov chain by sampling from the local char-
acteristics of Gibbs distribution. Or in other words the values are sampled from
the conditional distribution of a given pixel x; given its neighbours. The Gibbs
sampler was first introduced by Geman and Geman (1984) and contrary to the
Metropolis sampler a new configuration is always accepted. Using this sampling
technique the configuration will eventually reach its equilibrium.

4.4.4 The cooling schedule

The schedule by which the temperature T'(k) is reduced is called the cooling
schedule and is critical to the success of SA. The important parameters that
govern the schedule are the initial temperature, the number transitions for each
temperature, temperature decrement between successive stages and the stop
criterion. Unfortunately a selection of the exact parameters to be used in an
annealing scheme requires a detailed knowledge about the energy space. Not
surprisingly there therefore in the literature exists a vast number of different
heuristics for selecting the parameters.

The selection of the initial temperature should reflect that the system is just
melted and is therefore crucial to the ability of SA to find the global minimum.
Although the temperature is strongly dependent on the measured data and the
initial image the following empirical rule has been proposed: The initial temper-
ature should be chosen so that 80% of all the proposed transitions are accepted
[33]. Selecting the initial temperature too high has the effect of smoothing out
the features in a configuration whereas a low temperature leads the algorithm
to track a local energy minimum.
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The length [(T") of the homogeneous Markov chain, which is generated by the
algorithm at a fixed temperature T'(k), depends heavily on the sampling tech-
nique. This length defines the time required to reach the thermal equilibrium
at each stage. An informed sampling technique like the Gibbs sampler will nor-
mally reach the stage of thermal equilibrium faster than an uninformed sampling
strategy. It therefore can be justified to use a Markov chain of length [ = 1 in
the choice of the Gibbs sampler. In the choice of an uninformed sampling strat-
egy like the Metropolis sampler a larger number is often required in order to
achieve thermal equilibrium.

The decrement of the temperature has a major effect on the final result and
should be chosen in such a fashion that small Markov chains can re-establish
thermal equilibrium after the temperature decrement. The most widely used
decrement rule is

T(k) = aT(k — 1), (4.9)

where « is the cooling factor in the range of 0.5 — 0.99. Although the rule can
lead to good results it is not guaranteed of reaching the global energy minimum
and the schedule is referred to as simulated quenching.

If the temperature is decreased under the condition

c

) 2 (4.10)

the convergence of the algorithm towards the global energy minimum is ensured
as demonstrated by Geman and Geman (1984) [29]. The success of the conver-
gence, however, is relying on the choice of the problem specific constant c. It
has been demonstrated by Hajek (1988) that a sufficient condition for ¢ is that
it has to be larger than the deepest local minimum in the energy space [31].

Concerning the stop criterion the cooling stops when the configuration is frozen
or the number of accepted transitions is sufficiently low.
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CHAPTER 5

Restorations

The concepts of digital image restoration include the detail preservation and
interpretation of information in an image. Image restoration requires some
knowledge concerning the noise or degradation mechanism if the objective is an
inversion of the process. This knowledge may e.g. include a priori information
from training data or knowledge regarding the degradation process or physical
sensing system.

A successful method for image restoration is the use of MRF in a Bayesian
framework. Here the key question is how to design algorithms and energy func-
tions for finding the optimal solution to a vision problem. However, the design
of energy functions and optimization algorithms are highly problem specific and
consequently no simple answers are given. Many useful models and algorithms
have therefore been proposed through the years. They include multi-temporal,
multi-scale and hierarchical algorithms and successful MRF models for modeling
the energy function are e.g. coupled, compound, binary, binomial and Gaussian
MRFs. Various aspects of MRF models and applications may be found in Kin-
dermann (1980), Laarhoven (1987), Chellappa (1993) and Li (1995) [12], [83],
[14], [46]. Methods for restoring and segmenting polarized SAR data using
MRF are extensively investigated. Numerous algorithms have been proposed
and among them are e.g. White (1994), Oliver (1996), Schou and Skriver (2001)
and Xu et al. (2003) [86], [58], [74], [88].
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5.1 Introduction

This chapter concerns the development and analyses of algorithms and tech-
niques for restoring single-look SAR amplitude data in the framework of MRF-
MAP, see Chapter 4. According to the test site description in Section 1.1 the
algorithms must be capable of restoring details, homogeneous regions and edges
at very small scales.

The unsupervised restorations are carried out in a signal adaptive mode using
a new optimization principle, which makes use of ratios of synthetic SAR data.
The a priori models to be used in the analyses comprise Gaussian, LaPlace,
exponential, Gamma mean prior and Gamma pizel prior models all represent-
ing different shapes of the energy function. These models are implemented in
the ICM algorithm and their performances are evaluated using an optimiza-
tion criterion. The Gamma pizel prior is then implemented in a SA algorithm
using a specially designed Multi-Temperature Annealing (MTA) schedule. A
comparative analysis between ICM and SA using the Gamma pizel prior is fi-
nally carried out and the algorithm that best explains the structures underlying
the EMISAR data covering the test sites at Gjern and Mols Bjerge is selected.
The proposed models and algorithms are applied and evaluated on 150 x 150
single-look C-band VV-polarized EMISAR data and synthetic SAR data.

In Section 5.2 the optimization principle using ratios of SAR data is outlined.
Sections 5.3, 5.4 and 5.5 contain a description of the Gaussian a priori model,
the exponential a priori model and the LaPlace a priori model. In Section 5.6
the two new models the Gamma mean a prior and the Gamma pizel a prior
are presented. Section 5.7 contains a description of the Gamma sampler and
Section 5.8 is discussion.

5.2 Optimization

The ratio z between the SAR data and its restored equivalent is a good measure
of how well the restored data describes the true scene. This has been utilized by
Oliver and Quegan (1998) who used ratios of SAR data as a quality measure of
various reconstructions and segmentations [59]. As it appears from the following
the ratio image z will be pure speckle with mean zZ = 1 and variance S%(z) =
4/m — 1 everywhere, provided that the restoration is perfect and the amplitude
data are correctly described by the Rayleigh distribution (2.4). Hence, following
those criteria the ratio image will show no features [59]. We get
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where N is the total number pixels, k is number classes or segments and n;
number pixels within the ’th class.

The fact that the statistics of the ratio image are well defined, given that the
restoration is perfect, makes it possible in a unique way to compare model per-
formances. This is done by carefully selecting the parameters in the succeeding
a priori models and optimization techniques. That is to say the optimal para-
meters are chosen under the constraints that z and S?(z) of the observed ratio
images are as close as possible to the ideal parameters u = 1 and 0?(z) = 4/7—1
or approximately 0.2732.

The x2(f)-Goodness of Fit test with f degrees of freedom and histograms of
the observed frequency data from the ratio image are used to evaluate the null
hypothesis Hy that the observed frequency data from the ratio image do match
the expected Rayleigh distribution. The commonly used standard for accepting
Hy is if the p value for the calculated x? is larger than the significance level of
0.05. Here p denotes the probability that the deviation of the observed from the
expected is due to chance alone.

The fine tuning of the a priori models and algorithms is performed on ratios
based on the synthetic one grey-level independent and identically-distributed
SAR data presented in Figure 5.1 (a). This is done to ensure that homogeneous
regions are fully restored without the disturbing effect discontinuities might have
on the optimal parameters. With this a common basis for comparing the differ-
ent models and algorithms is provided. It is furthermore illustrated and analyzed
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Figure 5.1: (a) Homogeneous synthetic one grey-level SAR data and (b) syn-
thetic five grey-levels SAR data. The original synthetic five grey-levels image is
shown in Figure A.1. The data are stretched linearly between their mean +3
std.
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to what extent discontinuities interfere with the statistics of the ratio images.
This is done by applying the optimal parameter settings, derived from the ho-
mogeneous synthetic one grey-level SAR data, on the synthetic five grey-levels
SAR data in Figure 5.1 (b). Here § is a factor that governs the correlation
between neighbouring pixels. The weighting factor w. depends on the orienta-
tion of the clique ¢, see Figure 4.2. The GRF is said to be isotropic if w. = 1
[46]. Finally, in order to evaluate the model performances on real SAR data, the
optimal parameter settings are applied on the C-band VV polarized EMISAR
data in Figure 5.2.

A description of the synthetic SAR data and tabled statistics derived from the
ratio images is given in Appendix A.

5.3 Gaussian a prior: model

The anisotropic Gauss-Markov Random Field (GMRF) model

LU}, (5.1)

. 1
p(xilx, j € Ny) = Wexp{—@

where

Us) ={xs —p =B welz; — )},

ceC

and

1 &
N:ﬁc;%,

where N, is the 9 pixels involved in the configuration.

The model (5.1) is a simple choice in terms of describing continuous phenomena
in a 2nd order neighbourhood system. The model (5.1), here involving the eight
pair-site interactions, is known as a conditional autoregressive (CAR) model.
The energy function is U(x;) and o2 is the variance of the conditional distribu-
tion given by the neighbours of x;. The mean value is ¢ and C' denotes in this
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Figure 5.2: The C-band VV-polarized EMISAR amplitude data covering Lade-
gaards Enge 3 June 1997. The data are histogram equalized using the beta
distribution with the parameters 3 and 2.

context the set of the pair-site cliques [6]. The quantity [ is a factor that con-
trols the dependence between z; and its neighbours. The weights of the clique
potentials as they appear in Figure 4.2 are w,.

The distribution (5.1) is symmetrical while the amplitude data to be used are
Rayleigh distributed. Because of the positive skewness the mode of the Rayleigh
distribution is not at the mean. Unfortunately this skewness has the effect that
(5.1) performs badly in terms of preserving mean levels in amplitude data. In
other words the restored mean levels will be smaller than the true mean levels.
This again implies that the mean value Z of the ratio between the SAR data
and the restored data becomes larger than 1.

According to the concept of the Boltzmann distribution (4.1) and the prin-
ciples of thermodynamics, particles attempt to arrange themselves towards a
configuration that has the lowest energy. Consequently we are searching for a
&; = argmax,, p(x;|xj,j € N;) that reflects that the neighbourhood configura-
tion is in a minimum state of energy, that is e.g. to say the sum of absolute dif-
ferences between the centre pixel x; and its neighbours has reached a minimum.
However, this is not always the case with the Gaussian model where (5.1) has
the disadvantage of sometimes choosing estimates of p in the opposite direction
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(b)

Figure 5.3: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1(a) and (b) the restored synthetic five grey-levels SAR data in
Figure 5.1(b). The restorations are performed using the Gauss prior and ICM
with the optimized parameters a = 2,5 = 3,n = 9. The data are stretched
linearly between their mean +3 std.
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Figure 5.4: (a) The ratio between the homogeneous synthetic one grey-level SAR
data in Figure 5.1 (a) and the restored SAR data in Figure 5.3 (a) using the
Gaussian prior and the ICM algorithm and (b) a comparison of the histogram
of the ratio image and the theoretical Rayleigh distribution.
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Figure 5.5: (a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1(b) and the restored data in Figure 5.3 (b) using the Gauss prior
and ICM. In (b) is the histogram of the ratio image shown together with the
theoretical Rayleigh distribution.
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Figure 5.6: Restored C-band VV-polarized EMISAR data in Figure 5.2 after 9
iterations using a Gaussian prior and ICM with aw = 2, and 3 = 3. The data are
histogram equalized using the beta distribution with the parameters 3 and 2.

of what is to be expected given the neighbours of pixel x;. This occurs when
the mean of the neighbourhood is larger than z; and is a consequence of the
fact that it is not the sum of the absolute values of the differences between x;
and its neighbours that enter the energy function in (5.1).

The Gaussian prior in the choice of (5.1) compensates by choosing an estimate
Z; < p, which is inconsistent with the principles of thermodynamics. This bias
is significant for 5 < 0.2 and small n. For large 3 and n the effect is negligible.
Another disadvantage of (5.1) is that too much weight is put upon pixels that
diverge. That is specific features in a neighbourhood configuration such as e.g.
edges are not easily preserved. Or the opposite case where an outlier severely
can change the local characteristics. It therefore follows that discontinuities in
the restored data will have a smooth appearance in the choice of (5.1).

An unfavorable side effect of the previously mentioned problem concerning di-
verging pixels in a neighbourhood configuration is that mean values of areas close
to discontinuities will be affected too. That is to say the areas with small am-
plitudes will increase their mean value whereas areas with large amplitudes will
decrease their mean value. This side effect, which is amplified by the iterating
nature of the ICM-algorithm, gets more pronounced as the iterations proceed
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Figure 5.7: (a) Ratio of the C-band VV-polarized EMISAR data in Figure 5.2
to the restored data in Figure 5.6 using the Gaussian prior and ICM and (b)
a comparison of the observed and the theoretical ratio distributions. The blue
and green areas in (a) correspond to the pixels in the range 0-0.6 and 1.8-3.5
in (b) that exceed the theoretical curve.
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and for n — oo all discontinuities eventually will be smeared out leaving a
single grey-level image. On the other hand the property of (5.1) of smearing
out discontinuities makes (5.1) a good a priori model in terms of reproducing
homogeneous areas.

Figure 5.3 (a) shows the optimal restoration of the synthetic one grey-level SAR
data in Figure 5.1 (a) using @ = 2, § = 3 and n = 9. The characteristic para-
meters from the restoration are listed in Table A.1(a). The mean value Z of the
ratio between the synthetic one grey-level test data and the restored data is 1.108
and its variance S?(z) = 0.331. As we see Z > 1 which is in perfect agreement
with the above mentioned inconsistency between (5.1) and the Rayleigh distri-
bution. The chi-square statistics x?(75) is 1216. Since we are interested in a
significance level of 0.05 we may reject the null hypothesis Hy. In other words
there is a significant difference between the expected and the observed results
which is evident examining the histogram in Figure 5.4(b). It is therefore safe
to say that (5.1) fails in terms of preserving the level of homogeneous regions.

In Figure 5.3 (b) is presented the restoration of the synthetic five grey-levels
SAR data shown in Figure 5.1 (b). With reference to Table A.1(b) Z = 1.091,
S?(z) = 0.406 and the chi-square statistics x2(77) is 5496 which means that the
Hj hypothesis is rejected. This supposition is also supported by the ratio image
in Figure 5.5(a), which does not look homogeneous, and the corresponding his-
togram in Figure 5.5(b). Obviously the observed histogram and the theoretical
curve are not coincident as one would expect given the restoration was perfect.
The frequencies causing the observed histogram to exceed the theoretical curve
are in the range 0.3-0.4 and 1.6-3.5.

After the restoration and as expected the image appears blurred with a smooth
transition from areas with small amplitudes to areas with large amplitudes.
The previously mentioned tendency of (5.1) to pick low estimates of 1 has not
proven to have any significant effect on the restored data in Figure 5.3 (b).
All discontinuities in Figure 5.1 (b) are badly preserved. Areas with small
amplitudes close to areas with larger amplitudes in Figure 5.1 (b) correspond
to frequencies concentrated in the range 0.3-0.4 in Figure 5.5(b). These outlier
frequencies are caused by the former mentioned tendency that areas with small
amplitudes close to a discontinuity will increase their mean values during the
iterations and therefore the ratio will be smaller than 1. Subsequently pixels
or areas with large amplitudes in the immediate neighbourhood of areas with
smaller amplitudes will decrease their mean values by the same amount but the
ratio will now be larger than 1. These pixels are reflected in frequencies in the
range 1.6-3.5 in Figure 5.5(b).

Finally, the optimal setting from the synthetic one grey-level SAR data is ap-
plied upon the EMISAR data illustrated in Figure 5.2. Figure 5.6 shows the
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restored data. The statistical parameters derived from the ratio between the
C-band VV-polarized EMISAR data and the restored data, which is illustrated
in Figure 5.7(a), are z = 1.101, S%(z) = 0.5953 and the chi-square statistics
x2(52) is calculated to > 107. We therefore can reject the Hy hypothesis. The
corresponding histogram in Figure 5.7(b) displays a considerable bias between
the observed and the theoretical distribution. Here the frequencies causing the
disturbance are located in the intervals 0-0.6 and 1.8-3.5 and the pixels causing
the observed histogram to exceed the theoretical curve are indicated with blue
and green colours in Figure 5.7(a).

The mechanism causing the smooth and blurred appearance of the Figures 5.3
(a), (b) and Figure 5.6 is the same. However, according to their respective
histograms there are differences. This is due to the expected majority of classes
and discontinuities in the real EMISAR data compared with the synthetic five
grey-levels data. The overall performance of the restoration is decreasing with
increasing number of discontinuities as reflected in the x? test statistics. The
restored homogeneous one grey-level data in Figure 5.3 (a), however, does not
appear as a one grey-level image. This is partly due to the natural clutter in
Figure 5.1 (a), which the algorithm (5.1) attempts to model, and partly due to
the nature of the ICM algorithm in terms of being trapped in local minima.

5.4 Exponential a prior: model

The anisotropic exponential a priori model is
) 1
p(xilz;,j € Ni) ;exp{—U(wi)}, (5.2)

where the energy function U(x;) is of the form

T; + ﬂZceC we(x; + )

Ulw) = w(l+p zcec we)

The model involves the set of the eight pair-site interactions, which is denoted C.
The quantity w. corresponds to the weights of the clique potentials in Figure 4.2.
The model (5.2) is not quite proper in the sense of directly minimizing the energy
gap between z; and its neighbours. Instead (5.2) is attempting to level the local
differences in mean values within a given region. A high energy system is in this
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Figure 5.8: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1(a) and (b) the restored synthetic five grey-levels SAR data in
Figure 5.1(b). The restorations are performed using the exponential prior and
ICM with the optimized parameters a = 2,3 = 5,n = 9. The data are stretched
linearly between their mean £3 std.
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Figure 5.9: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored data in Figure 5.8 (a) using the
exponential prior and ICM and (b) a comparison of the histogram of the ratio
image and the theoretical Rayleigh distribution.
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Figure 5.10: (a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1(b) and the restored data in Figure 5.8 (b) using the exponential prior
and ICM. In (b) is the histogram of the ratio image shown together with the
theoretical Rayleigh distribution
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Figure 5.11: The restored C-band VV-polarized EMISAR data in Figure 5.2
after 9 iterations using the exponential prior and ICM with the optimized pa-
rameters @ = 2 and § = 5. The data are histogram equalized using the beta
distribution with the parameters 3 and 2.

context therefore equivalent with high local differences in mean values within a
homogeneous area where E(U(z;)) = 1. Notice, that U(x;) — 1 while the energy
gap between pixels decreases as the iterations proceed. The energy function
in (5.2) is a relative measure between the pixels involved in a neighbourhood
configuration and the true mean of the pixels. As a consequence, (5.2) has the
advantage of not being as sensitive towards the presence of discontinuities as
(5.1). Furthermore, because (5.2) is estimating the mean of the pixels involved
in a neighbourhood configuration it is, contrary to (5.1), excellent in terms of
preserving mean levels. Still, mean values of areas close to discontinuities are
not left unaffected as the iterations proceed. For a more detailed description
refer to Section 5.3.

Using the parameters o« = 2, § = 5 and n = 9 the restored synthetic one
grey-level SAR data are shown in Figure 5.8 (a). Referring to Table A.1(a) the
statistics of the ratio between the synthetic one grey-level SAR and the restored
data are as follows: z = 0.9957, S?(z) = 0.2571 and x?(78) = 97. This is
within the range of acceptable deviation and we can conclude that the observed
histogram in Figure 5.9(b) matches the theoretical Rayleigh distribution.
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Figure 5.12: (a) The ratio between the C-band VV-polarized EMISAR data
in Figure 5.2 and the restored data in Figure 5.11 using the exponential prior
and ICM and (b) a comparison of the histogram of the ratio image and the
theoretical Rayleigh distribution. The blue and green coloured pixels indicate
frequencies in the ranges 0 to 0.6 and 2 to 3.5.
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The second test image to be used is the synthetic five grey-levels SAR data in
Figure 5.1 (b). Using the parameters from above we get the restored data in
Figure 5.8 (b). According to the information given in Table A.1(b) the mean
of the ratio image z is 0.9757, S%(z) = 0.2892 and \?(81) is 214. The Hy hy-
pothesis is thereby rejected and we conclude that some factor other than chance
is operating for the deviation. Due to the unfavourable influence by the dis-
continuities there is a smooth transition between edges in Figure 5.8 (b) . The
mechanism behind this behaviour is explained in Section 5.3. The frequencies
causing the observed histogram in Figure 5.10(b) to exceed the expected distri-
bution are in the ranges 0-0.7 and 2.5-3.5. The location of the corresponding
pixels is displayed in Figure 5.10(a) in the shape of the unwanted structure.

The restored example of the C-band VV-polarized EMISAR data are presented
in Figure 5.11 and the data prior to the restoration are shown in Figure 5.2. The
ratio of the EMISAR data to the restored data is illustrated in Figure 5.12(a),
where z = 0.9754, S?(2) = 0.4077 and x?(56) is calculated to 7348. These
values are far from the ideal parameters that were derived in Section 4.3 and
by this we reject the Hy hypothesis. The frequencies responsible for the bias
between the observed and the theoretical distribution are located in the intervals
0-0.6 and 2-3.5 in Figure 5.12(b). The corresponding pixels which accounts for
the structure in Figure 5.12(a) are indicated with blue and green colours. A
comparison between the Figures 5.10 and 5.12 discloses not surprisingly that
(5.2) fails in terms of reproducing regions with much structure. Nevertheless,
the overall performance of (5.2) is slightly better than (5.1) due to the reduced
sensitivity to discontinuities.

It is immediately striking that the restored data in Figure 5.8 (a) have such a
blurred appearance. Again this is due to the natural dark and light clutter in
Figure 5.1 (a), which are restored too as a part of the restoration. Furthermore
artifacts must be expected due to the nature of the ICM algorithm. This sug-
gests that a significant amount of the structure observed in Figure 5.11 is due
to chance alone.

5.5 LaPlace a priori model

The anisotropic LaPlace a priori model involving the eight pair-site cliques has
the form

plailas,j € Ny) o exp {—:;U(xi)} 7 (5.3)
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Figure 5.13: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1(a) and (b) the restored synthetic five grey-levels SAR data in
Figure 5.1(b). The restorations are performed using the LaPlace prior and ICM
with the optimized parameters o = 2,3 = 3,n = 9. The data are stretched
linearly between their mean £3 std.
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Figure 5.14: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored data in Figure 5.13 (a) using the
LaPlace prior and ICM. In (b) is the histogram of the ratio image shown together

with the theoretical Rayleigh distribution.
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Figure 5.15: a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1(b) and the restored data in Figure 5.13 (b) using the LaPlace prior
and ICM. In (b) is the histogram of the ratio image shown together with the
theoretical Rayleigh distribution.
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Figure 5.16: The restored C-band VV-polarized EMISAR data in Figure 5.2 af-
ter 9 iterations using the LaPlace prior and ICM. The optimized parameters are
a =2 and § = 3. The data are histogram equalized using the beta distribution
with the parameters 3 and 2.

where & is a positive scale parameter [18]. The energy function is

U(zi) = | — pl + B welr; — pl,
ceC

where

2

c
L,

1
o= ==
Ncil

and NN, is the 9 pixels involved in the configuration. Again C' is the eight pair-
site interactions in the 2nd order neighbourhood system. Referring to Figure 4.2
w, corresponds to the weights of the clique potentials.

Because (5.3) has its mode at the median rather than at the mean of the neigh-
bours of z; the model is also known as the median prior [3]. As was the case
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Figure 5.17: (a) The ratio between the C-band VV-polarized EMISAR data in
Figure 5.2 and the restored data in Figure 5.16 using the LaPlace prior and
ICM and (b) a comparison of the histogram of the observed ratio image and the
theoretical Rayleigh distribution. The blue, green and red areas in (a) illustrate
the pixels in the intervals 0-0.5, 0.95-1.05 and 1.8-3.5 in (b) that exceed the
theoretical curve.
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with the Gaussian a priori model, (5.3) is symmetrical while the amplitude
data to be used are skewed. While (5.3) at the same time has its mode at the
median rather than at the mean the LaPlace model is even worse compared to
the Gaussian model when it comes to preserving mean levels and consequently
we again have Z > 1. On the other hand, contrary to the Gaussian a priori
model, (5.3) is always reflecting that the neighbourhood configuration is in its
minimum state of energy when &; = argmax,, p(x;|z;,j € N;).

The optimized parameters are o = 2, 8 = 3 and n = 9, which applied on
the synthetic one grey-level SAR data in Figure 5.1 (a) results in the restored
data in Figure 5.13 (a). Using Table A.1(a) we find the values reflecting the
statistics of the corresponding ratio data to be z = 1.0554, S2(z) = 0.2920
and the x2(77) = 545. The null hypothesis is therefore rejected and as we see
from Figure 5.14(b) the observed frequency data do not match the theoretical
Rayleigh distribution. As previously mentioned the combination of the skewed
amplitude data and (5.3) enforce the ratio Z to become larger than 1. The
rejected null hypothesis and the observed high mean value Z = 1.0554 derived
from the one grey-level ratio image are therefore not suspicious.

Next we use the synthetic five grey-levels SAR data in Figure 5.1 (b) in our inves-
tigation and the restored result is illustrated in Figure 5.13 (b). In Table A.1(b)
are listed some statistics derived from the ratio between the synthetic five grey-
levels SAR data and the restored data, namely, z = 1.0587, S%(z) = 0.3122 and
x2(68) = 1206. Based on the high x? test value the Hy hypothesis is rejected.
The rejection of the null hypothesis is supported by the structure in the ra-
tio image in Figure 5.15(a) and the corresponding frequencies are displayed in
Figure 5.15(b).

An examination of the Figures 5.15(a)—(b) indicates, that the LaPlace a priori
model is sharing the same weakness as (5.1) and (5.2), namely, that specific
features in a neighbourhood configuration are either badly preserved e.g. edges
or given too much weight e.g. outliers. As described in Section 5.3 this has
the consequence that mean values of areas close to discontinuities are affected
too as the iterations proceed. However, the disadvantages of (5.3) as described
above are not as pronounced as for (5.1) and (5.2), because (5.3) has its mode
closer to the median. In fact the capabilities of (5.3) in terms of preserving
discontinuities can for certain very high outliers result in ratios close to one.
This phenomenon is visualized by the peak in the histogram in Figure 5.15(b)

In Figure 5.16 is shown the isotropic LaPlace a priori model applied on the
C-band VV-polarized EMISAR data in Figure 5.2. The ratio between the
EMISAR data and the restored data is illustrated in Figure 5.17(a). Based on
the ratio image the x?(52) > 10°, 7 = 1.125 and the variance S%(z) = 0.5446.
Thus, the Hy is not accepted. This substantial bias indicated by the x? Good-
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Figure 5.18: The histogram of the observed energy function U(x;) using (5.4)
and the pdf’s for the optimized Gamma pizel prior and the Gamma mean prior.
The histogram is derived on basis of the synthetic one grey-level SAR data in
Figure 5.1 (a).

ness of Fit test is visualized in Figure 5.17(a) in term of the unwanted structure.
This bias is also clear when examining Figure 5.17(b) that illustrates the the-
oretical distribution and the observed histogram of the ratio image. Here the
frequencies causing this disturbance are located in the intervals 0-0.5, 0.95-1.05
and 1.8-3.5 and the spatial distribution of the corresponding pixels are indicated
by blue, red and green colours in Figure 5.17(a).

As one would expect (5.3) performs better than (5.1) and (5.2) in terms of
preserving e.g. edges because less weight is put upon diverging pixels. However,
as mentioned before, (5.3) is insufficient when it comes to restoring mean values.
This is evident in Figure 5.17(b) where the frequencies causing the disturbance
dominate in the tail of the distribution. Again there is reason to believe that the
restored data in Figure 5.16 has artifacts caused by the tendency of the ICM
algorithm to become trapped in local minima. Again the unwanted natural
dark and light clutter, which are generated by the statistics, are restored by the
algorithm.
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5.6 Gamma a priori models

Except for the exponential prior the a priori models described so far have been
symmetrical. However, as mentioned earlier, the conditional distribution of the
observed amplitude data is the Rayleigh distribution, which is asymmetric. In
the need of a priori models that model the skewed distribution of the data a
new model is presented. This model utilizes the Gamma distribution, which
provides a good basis for modeling the SAR amplitude data.

The Gamma, a priori model has the form

plaey € M) o ol o { T (5.4

where I' is the Gamma function and

U(zi) = |pi — il + B Y welpi — a5,
ceC

where p; is the perturbed value.

The constant k governs the peak of the distribution and U(z;) is the energy
function involving the single-site clique z; and the eight pair-site interactions in
the configuration. The constant k is estimated so that (5.4) models the actual
distribution of U(z;). The set of the eight pair-site interactions in the 2nd order
neighbourhood configuration is denoted C. The quantity w. is a weighting
factor between the centre pixel x; and its neighbours z; depending on the clique
is horizontal, vertical or diagonal, see Figure 4.2.

As demonstrated earlier (5.3) is more convincing in terms of preserving disconti-
nuities than (5.1) and (5.2), because it has its mode closer to the median than to
the mean of the neighbourhood configuration. In order to utilize that advantage
the energy function of (5.3) is implemented in (5.4).

The value v; represents the energy U(x;) in accordance to a predefined mean
level of the local configuration. This is a crucial step in the development of the
algorithm because v; governs the shape of the energy function. Hence, using
B = 0.5, two versions of the Gamma a priori model are proposed.
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5.6.1 Gamma mean a prior model

The first version we denote the Gamma mean prior and here the estimate of the
local energy level v; is defined as the estimated mean ™ of the pixels involved
in the neighbourhood configuration. Let v; be given by

v; = \xi—m|+ﬂ2wc|m—xj|), (5.5)
ceC
then
I
m = E : T,y
=1

where IV, is the 9 pixels involved in the configuration. As was the case with the
previous a priori models (5.5) has the disadvantage of not being satisfactory
in terms of reconstructing e.g. edges and discontinuities. For a more detailed
description of that phenomenon refer to Section 5.5.

In Figure 5.18 is illustrated to what extent (5.5) approximates U(x;) in the
initial state of the restoration of the synthetic SAR data in Figure 5.1 (a). In
Figure 5.18 the observed histogram of U(x;) is shown together with the pdf of
the optimized mean a prior using the parameters « = 2, § = 0.5, n = 9 and
k = 7. Although the mode of (5.5) is not coincident with the mode of observed
histogram, its pdf possesses a positive skewness like the observed frequencies of
U(.I‘l)

The restoration of the synthetic one grey-level SAR data in Figure 5.1 (a), us-
ing (5.5) and the optimal parameter setting above, is illustrated in Figure 5.19.
Statistics derived from the ratio between the synthetic one grey-level SAR data
and the restored data are listed in Table A.1(a). Reading from the table we
find z = 1.0554, S%(z) = 0.2901 and the test statistics x?(74) is estimated to
797. Since p < 0.05 Hy is rejected. The structure in the ratio image in Fig-
ure 5.20(a) is not evident, however, according to the histogram in Figure 5.20(b)
the observed frequencies in the range 0.95-1.05 and 1.05-3.5 are exceeding the
theoretical distribution. The bias in the interval 1.05-3.5 is due to the same
conditions accounted for in Section 5.5, namely that (5.5) has its mode closer to
the median than to the mean and consequently Z > 1. The mechanism causing
the small peak in the interval 0.95-1.05 is also explained in Section 5.5.
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Figure 5.19: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1(a) and (b) the restored synthetic five grey-levels SAR data in
Figure 5.1(b). The restorations are performed using the Gamma mean prior
and ICM with the optimized parameters a =2, k=7, = 0.5 and n = 9. The
data are stretched linearly between their mean +3 std.
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Figure 5.20: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored SAR data in Figure 5.3 (a) using
the Gamma mean prior and ICM. In (b) is the histogram of the ratio image
shown together with the theoretical Rayleigh distribution.
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Figure 5.21: (a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1(b) and the restored data in Figure 5.19 (b) using the Gamma mean
prior and ICM. In (b) is the histogram of the ratio image shown together with
the theoretical Rayleigh distribution.
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Figure 5.22: The restored C-band VV-polarized EMISAR data in Figure 5.2
after 9 iterations using the Gamma mean prior and ICM with the optimized
parameters a = 2, # = 0.5 and k = 7. The data are histogram equalized using
the beta distribution with the parameters 3 and 2.

In Figure 5.19 (b) is shown the restoration of the synthetic five grey-levels SAR
data in Figure 5.1 (b). With reference to Table A.1(b) the statistics of the
corresponding ratio image in Figure 5.21(a) are z = 1.0598, S?(z) = 0.311 and
x2(54) = 1404. Again Hj is rejected, which is in perfect accordance with the
unwanted structure in Figure 5.21(a). It is striking that the histograms derived
from the one grey-level and five grey-levels SAR data in the Figures 5.20(b) and
5.21(b) seem very similar. This implies that (5.5) is well suited for preserving
structure.

The restored C-band VV-polarized EMISAR data are presented in Figure 5.22
and the data prior to the restoration are shown in Figure 5.2. The ratio of
the EMISAR data to the restored data is illustrated in Figure 5.23(a), where
z = 1.1250, S?(z) = 0.5375 and x?(54) is > 5 x 10°. These values are far from
the parameters for the ideal ratio image derived in Section 4.3 and naturally H
is rejected. The frequencies responsible for the bias between the observed and
the theoretical distribution are located in the intervals 0-0.6, 0.95-1.05 and 2—
3.5 in Figure 5.23(b). The corresponding pixels, which account for the structure,
are indicated with blue, red and green colours in Figure 5.23(a). The bias is
due to the same reasons given above, which caused the disturbances in the ratio
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Figure 5.23: (a) The ratio between the C-band VV-polarized EMISAR data in
Figure 5.2 and the restored data in Figure 5.22 using the Gamma mean prior
and ICM and (b) a comparison of the histogram of the ratio image and the
theoretical Rayleigh distribution. The red, blue and green areas in (a) indicate
pixels located in the intervals 0.95-1.05, 0-0.6 and 2-3.5.
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images in the Figures 5.20(a) and 5.21(a).

5.6.2 Gamma pizel a prior model

The second version we call the Gamma pixel prior and here the estimated energy
level v; simply is defined as

l/i:ﬂZwAmij\). (5.6)

ceC

where
m=x;.

In other words the value of the centre pixel x; itself is taken to represent the
mean of the neighbourhood configuration. The approximation to U(x;) using
(5.6) is shown in Figure 5.18. Again the synthetic one grey-level SAR data in
Figure 5.1 (a) are used in the process of deriving the observed histogram of
U(z;) in the initial state of the restoration. As it appears the mode and the
long tail of the observed U(x;) are well represented by (5.6) using the optimized
parameters « =2, 6 =0.5, n =9 and k = 5.

These parameters from the fine tuning of (5.6) are also used in the restoration
of the synthetic one grey-level SAR data in Figure 5.1 (a) shown in Figure 5.24.
Referring to Table A.1(a) the statistics of the corresponding ratio between
the synthetic one grey-level SAR data and the restored data are Z = 1.0440,
S2(2) = 0.2813 and x%(76) = 573. This is far from within the range of ac-
ceptable deviation and we conclude that Hy is rejected. The rejection of Hy is
supported by the histogram in Figure 5.25(b) where the observed frequencies do
not match the theoretical Rayleigh distribution. Here the frequencies exceeding
the Rayleigh distribution are located in the intervals 0.95-1.05 and 1.05-3.5.
This bias is due to the same condition as explained above concerning the mean
prior (5.5). However, in the choice of (5.6) these effects are less pronounced
because the reference level ™ now is x; instead of the mean of the pixels in the
neighbourhood configuration.

We now turn to the synthetic five grey-levels SAR data in Figure 5.1 (b), which
restored equivalent is illustrated in Figure 5.24 (b). Referring to the information
provided in Table A.1(b) the mean Z of the corresponding ratio image is 1.0450,
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Figure 5.24: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1(a) and (b) the restored synthetic five grey-levels SAR data in
Figure 5.1(b). The restorations are performed using the Gamma pizel prior and
ICM with the optimized parameters a =2, k = 5,3 = 0.5 and n = 9. The data
are stretched linearly between their mean +3 std.



100 Restorations

T
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Frequency
T T T T T
1 1 1 1 1

T

T

Figure 5.25: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored SAR data in Figure 5.24 (a) using
the Gamma pizel prior and ICM. In (b) is the histogram of the ratio image
shown together with the theoretical Rayleigh distribution.
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Figure 5.26: (a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1(b) and the restored data in Figure 5.24 (b) using the Gamma pizel
prior and ICM. In (b) is the histogram of the ratio image shown together with
the theoretical Rayleigh distribution.
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Figure 5.27: The restored C-band VV-polarized EMISAR data in Figure 5.2
after 9 iterations using the Gamma pizel prior and ICM with the optimized
parameters a = 2, # = 0.5 and k = 5. The data are histogram equalized using
the beta distribution with the parameters 3 and 2.

S2(2) = 0.2970 and x2(55) is 748. Hereby Hj is rejected and we conclude that
some factor other than chance is operating for the deviation. The frequencies
which account for the bias are located in the intervals 0.95-1.05 and 1.05-3.5
according to the histogram in Figure 5.26(b). This bias is due to the same
conditions that caused the bias in the histogram for the one grey-level ratio
image in Figure 5.25(b). The small differences between the ratio images and
the histograms of the synthetic one grey-level SAR data and the five grey-levels
SAR data in the Figures 5.25(a)—(b) and Figures 5.26(a)—(b) indicate, that edges
and discontinuities are well preserved using (5.6).

Figure 5.27 illustrates the restoration of the C-band VV-polarized EMISAR data
in Figure 5.2 using (5.6). The ratio of the EMISAR data to the restored data
is illustrated in Figure 5.28(a) and the corresponding statistics are z = 1.1037,
S2(2) = 0.5092, and x2(54) > 1.7 x 10°. This rejects Hy, which is supported by
the histogram in Figure 5.28(b).

A comparison of the statistics in the Tables A.1(a)—(b) suggests that the expo-
nential a priori model (5.2) using ICM has the best over-all performance. This
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Figure 5.28: (a) The ratio between the C-band VV-polarized EMISAR data in
Figure 5.2 and the restored data in Figure 5.27 using the Gamma pizel prior
and ICM and (b) a comparison of the histogram of the ratio image and the
theoretical Rayleigh distribution. The red, blue and green areas in (a) indicate
pixels located in the intervals 0.95-1.05, 0-0.6 and 2-3.5.



104 Restorations

is due to the energy function, which makes (5.2) superior in terms of preserving
mean levels of homogeneous regions. Unfortunately, as Figure 5.8 (b) indicates,
(5.2) is less convincing when it comes to preserving discontinuities. According
to Figure 5.24 (b) and the Tables A.1(a)-(b) the Gamma pizel prior (5.6) is
superior when it comes to the preservation of structure and sharp transitions
but less satisfactory in terms of preserving mean levels of homogeneous regions.

5.7 The Gamma sampler

In Section 5.6 two Gamma a priori models were introduced. They were im-
plemented in an ICM algorithm and designed to model the skewed distribution
of SAR amplitude data. As mentioned previously a core aspect of this the-
sis is the development of a model that is superior in terms of preserving both
discontinuities and homogeneous areas.

In that sense the Gamma pizel a priori model (5.6) turned out to be well suited,
although it fails in terms of preserving homogeneous areas. This insufficiency
in terms of restoring homogeneous areas is ascribed to ICM because it is likely
to get trapped in local minima. Simulated Annealing (SA), however, is a tech-
nique able to escape these local minima and finally reach the global minimum,
see Section 4.4. In order to improve the restoration of homogeneous regions a
promising choice is therefore to implement the Gamma pizel prior in the SA
algorithm.

Using (4.1) and (5.4) the Gamma pizel prior now takes the form

E—14T
7 —1

xi|xy, N;) x T XDy T ¢ 5.7
p(xilzj,j € Ni) STETIy—: P{ Ty, } (5.7)

where T' is the Gamma function, T the temperature and k a constant. The
variance is

Tz/i2
L2

S2=(k—1+T)
and the energy function U (x;) is

U(i) = Ipi — @l + 8 Y welpi — 51,
ceC
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Figure 5.29: The evolution of the energy function U(z;) and the temperature T
for the Gamma pizel prior and SA during the annealing process. The cooling
schedule used is logarithmic.

where p; is the perturbed value and

vi =0 welm— ;).

ceC

The eight pair-site interactions in the neighbourhood configuration are involved
and the quantity v; again denotes the local energy of U(xz;) where

m=ux;.

The set of all pair-site cliques in a second order neighbourhood configuration is
C. The weighting factor w,. depends on the clique c is horizontal, vertical or
diagonal, see Figure 4.2.
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Figure 5.30: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1(a) and (b) the restored synthetic five grey-levels SAR data in
Figure 5.1(b). The restorations are performed using the Gamma pizel prior
and SA. The Markov chain is inhomogeneous and the cooling schedule used is
logarithmic. The data are stretched linearly between their mean +3 std.
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Figure 5.31: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored data in Figure 5.30 (a) using the
Gamma pizel prior and SA. In (b) is the histogram of the ratio image shown
together with the theoretical Rayleigh distribution.



108 Restorations

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Frequency
T T T T T T
1 1 1 1 1 1

T

T

Figure 5.32: (a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1 (b) and the restored data in Figure 5.30 (b) using the Gamma pizel
prior and SA. In (b) is the histogram of the ratio image shown together with
the theoretical Rayleigh distribution.
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Figure 5.33: The restored C-band VV-polarized EMISAR data in Figure 5.2
using the Gamma pizel prior and SA. The cooling schedule is logarithmic with
an inhomogeneous Markov chain. The data are histogram equalized using the
beta distribution with the parameters 3 and 2.

A modified version of the Gamma pizel prior, which is implemented in the
annealing algorithm is

p(xilxj, j € Ny) o (5.8)

Uz "1 { kU (2;) } .

T(k)(Tw, k)" Tv;

It is important to emphasize, that (5.8) is not converging towards a uniform
distribution when the temperature is raised. The proposed (5.8) is therefore
inconsistent with (4.1) and the fundamental thermodynamic principle that the
energy distribution must converge towards a uniform distribution for 7' — oo.
We recall that the estimated variance S? of (5.8) is given by

Tv?
2 7
§?= =%, (5.9)

As mentioned in Section 4.4.4 the decrement rule is of paramount importance
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Figure 5.34: (a) The ratio between the C-band VV-polarized EMISAR data in
Figure 5.2 and the restored data in Figure 5.33 using the Gamma pizel prior and
SA and (b) a comparison of the corresponding histogram and the theoretical
Rayleigh distribution. The cooling schedule is logarithmic with an inhomoge-
neous Markov chain.
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for the quality of the final result. Although the decrements of T' quickly become
very small using the logarithmic cooling (4.10) our experiments show that it is
more convincing in restoring singe-look SAR amplitude data than the exponen-
tial schedule (4.9). The logarithmic cooling schedule (4.10) is therefore applied
in the SA algorithm. The stochastic sampling scheme used is the Metropolis
algorithm and here the random variable used to perturb the system is sampled
from a uniform distribution. In order to keep the system close to its thermal
equilibrium the random variable is sampled within a range close to the mean of
the local neighbourhood configuration.

A short homogeneous Markov chain is with that sufficient to obtain stages be-
tween temperature decrements which are close to equilibrium. In addition the
temperature decrements quickly become very small using (4.10) as illustrated in
Figure 5.29. As the iterations proceed the thermal equilibrium is therefore con-
sidered re-established after each decrement using a short Markov chain. In the
SA algorithm presented a short Markov chain of length [ = 1 is applied. This
inhomogeneous Markov chain is chosen in order to prevent too much smoothing
between sharp transitions and smaller objects.

Due to the Rayleigh distribution the variance of SAR amplitude data is propor-
tional to the squared mean amplitude level, see (A.1). Since the variance again
reflects the thermal energy of the system, different types of e.g. grassland areas
may be represented by different temperatures. A common temperature 7" for re-
gions with different variances is therefore not appropriate. In order to overcome
this problem a Multiple Temperature Annealing (MTA) schedule is introduced.
Here S?, which according to (5.9) is proportional to T, is re-estimated from
the characteristics of the local neighbourhood configuration for each iteration.
Furthermore by using the logarithmic cooling schedule (4.10) the variance of
the restored EMISAR data is strongly reduced as the annealing proceeds but it
never reaches zero. Because of the MTA-schedule and the fact that the variance
never reaches zero the variance of the restored EMISAR data is larger in regions
with large mean amplitude levels than in regions with small mean amplitude
levels. It should be noted, that by using (5.8) instead of (5.7) S? is proportional
to T" and not (k—1+T)T. This has the implication for the restored result, that
the smoothing effect of (5.8) is larger than the smoothing effect of (5.7).

Using the uninformed sampling strategy above the SA-MTA algorithm quickly
converges towards the global energy minimum. This is demonstrated in Fig-
ure 5.29 where the thermal energy U(z;) and its fluctuations have diminished
considerably after only 1000 iterations. The cooling stops when no significant
improvements of the statistics of the ratio image are found. Experiments show
that this stop criterion is met after 1000 iterations.

The restored result of the synthetic one grey-level SAR data in Figure 5.1 (a)
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using (5.8) after the fine tuning, is shown in Figure 5.30 (a). The corresponding
tuned parameters are o = 2, k = 3.75 and Ty = 0.65. In Table A.2(a) is listed
a number of statistics derived from the ratio between the synthetic one grey-
level SAR data and the restored data. Reading from the Table A.2(a) we find
z = 1.010, S%(z) = 0.267 and the test statistics x?(78) is estimated to 91. Since
p > 0.05 the Hy hypothesis is accepted. The absent structure in the ratio image
in Figure 5.31(a) is therefore expected as well as the perfect match between the
observed frequencies and the theoretical Rayleigh distribution in Figure 5.31(b).

In Figure 5.30 (b) is shown the restoration of the synthetic five grey-levels SAR
data in Figure 5.1 (b). In the restored result the transitions between homoge-
neous regions are relatively sharp, the homogeneous regions appear uniform and
there is a high degree of detail preservation, which gives the first impression that
the restoration is good. This is supported in the ratio image in Figure 5.32(a),
where there is only faint evidence of structure and in the corresponding his-
togram in Figure 5.32(b), where the observed frequencies are almost Rayleigh
distributed. However, with reference to the statistics z = 1.023, S?(z) = 0.310
and x2(53) = 156 derived from the ratio image in Table A.2(b), the Hy hypoth-
esis is rejected.

Figure 5.33 illustrates the restoration of the C-band VV-polarized EMISAR data
in Figure 5.2 using (5.8). Again the transitions between homogeneous regions
are relatively sharp and homogeneous areas have a smooth appearance. The
statistics of the corresponding ratio image in Figure 5.34(a) are Z = 1.0556,
S2(2) = 0.4781 and x?(63) is estimated to 38855. Hj is hereby rejected and the
bias between the observed histogram and the theoretical Rayleigh distribution
is visualized in Figure 5.34(b). The pixels causing this disturbance are located
in the intervals 0-0.6 and 2-3.5 and indicated with blue and green colours in
Figure 5.34(a). Obviously the test statistics based on ratios of the C-band
VV-polarized EMISAR data are worse than statistics based on ratios of the
synthetic five-grey-levels SAR data above. This is due to the high number of
discontinuities in the C-band VV-polarized EMISAR data. For a description of
how discontinuities affect the restorations refer to Section 5.3.

A characteristic feature in the Figures 5.30, 5.30 (b) and 5.33 is the clutter. This
clutter is not due to artifacts, but is reflecting the original structure in the SAR
data, which is preserved by the annealing algorithm. Another characteristic
feature is the salt-and-pepper like appearance caused by single pixels. Some
of these single pixels are frozen artifacts generated by the algorithm. This is
due to the inhomogeneous Markov chain, which is too short to ensure thermal
equilibrium between temperature decrements. Others of these single pixels were
originally outliers that are preserved as such by the annealing. This is partly
due to an inaccuracy in the optimized parameters, partly due to (5.8), which is
not perfect in terms of modeling the actual shape of U(z;). Finally, a number
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of the single pixels in Figure 5.33 represent real measurements caused by the
interaction between the polarized microwaves and e.g. trees.

5.8 Discussion

In this chapter a new approach for restoring SAR data in the framework of MRF-
MAP has been presented. This approach relies on ratio images for algorithm
optimization. The optimization techniques under study are Iterated Conditional
Modes (ICM) and Simulated Annealing (SA).

The Gaussian a priori model and ICM in Section 5.3 turned out to be well suited
for reproducing homogeneous regions in SAR data. However, when it comes to
the preservation of discontinuities and mean amplitude levels, the Gaussian prior
performs badly. The performance of the LaPlace a priori model, as described in
Section 5.5, is better than the Gaussian a priori model in terms of reproducing
discontinuities and mean levels of amplitudes. However, the preservation of
homogeneous areas is worse.

In a need for modeling the positive skewness of the SAR amplitude data, the
exponential a priori model was selected. The exponential a priori model in
Section 5.4 proved to be good in terms of preserving mean levels of amplitudes.
But again discontinuities are not reproduced satisfactorily. The Gamma distri-
bution provides a good model for the skewed distributed SAR amplitude data.
This is utilized in the Gamma mean prior in Section 5.6.1 and in the Gamma
pizel prior in Section 5.6.2 where the energy function is specially designed to
preserve discontinuities and homogeneous regions in SAR data. While the per-
formance of the Gamma mean prior was quite similar to the LaPlace a priori
model, the Gamma pixel prior turned out to be more convincing when it comes
to preserving discontinuities and mean amplitude levels.

Unfortunately the price paid for the high speed of the ICM algorithm is that
ICM easily gets trapped in local energy minima. As we have demonstrated this
makes the use of ICM for preserving homogeneous areas and details in SAR
data doubtful. The other optimization technique, which makes successful use
of MRF, is SA. It has the advantage, in preference to ICM, that it is capable
of escaping these local energy minima. In order to avoid the artifacts created
by ICM the Gamma pizel prior is therefore implemented in the SA algorithm.
A characteristic property of SAR amplitude data is that the standard deviation
is proportional to the mean amplitude value. This is utilized by introducing
a MTA schedule, where the temperature is proportional to the variance of the
local energy distribution.
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Also the 8 pair-site interactions where w, = w are implemented in the Gamma
pizel prior using the SA algorithm. The corresponding restored examples of
the synthetic one grey-level and five grey-levels SAR data are displayed in the
Figures A.3(a)—(b). A comparison of Figure 5.30 (b) and Figure A.3(b) shows
a small improvement in the preservation of edges and details using w, = w
instead of pair-site interactions with different weights. This is supported by
the corresponding statistics in Table A.2, which also indicate that, in terms of
preserving mean amplitude level, there is no significant improvement in using
the selected weights of the cliques.

The synthetic noise in Figure 5.1 (a) is independent identically-distributed SAR
speckle and one therefore could expect the restored equivalent to be a uniform
image. However, the restored one grey-level synthetic SAR data in Figure 5.30
do not look homogeneous but have a lot of clutter. This clutter is not due to
artifacts, but is due to the natural micro-structure in Figure 5.1 (a), which the
SA-MTA algorithm is capable of preserving. In the cases where the clutter is a
problem for the restored result one has to e.g. reduce the image by a factor 2
in order to remove the correlation between neighbouring pixels. In this context
where the preservation of details in the test sites in Gjern and Mols Bjerge
is of paramount importance no reduction or filtering of the EMISAR data is
performed prior to the restoration.

The median filter, i.e. the 50% quantile, is known to be better than the mean
filter at preserving discontinuities and sharp edges. This is because single un-
representative pixels in a neighbourhood configuration do not affect the median
significantly. For that reason it could be interesting to see how the median filter
performs in terms of preserving features in the speckled SAR data. Research
done by Rees and Satchell (1997) has pointed out, that although the median
filter does have edge-preserving properties, it can introduce significant bias and
is not suited for preserving small details in SAR data [68]. However, the MAP
estimate (4.3) of the local neighbourhood configurations, which is used in the
presented algorithms, is at the mode of the energy distribution corresponding
to the 40% quantile in the Rayleigh distribution. Instead of the median filter
it therefore seems more appropriate to use the 40% quantile filter. The filtered
result is presented in Figure A.6 and the statistics derived from the correspond-
ing ratio image are listed in Table A.2. A comparison between the statistics in
the Tables A.1 and A.2 shows, that the MRF-MAP framework is better suited
for preserving edges and discontinuities in the impulsive noise environment of
SAR speckle than the 40% quantile filter. Note that because the SAR amplitude
data are Rayleigh distributed, and thereby positively skewed, the 40% quantile
is lower than the mean level. This explains the high z value using the 40%
quantile filter in Table A.2.

In Figures A.9 (a)-(b) are presented the segmented results of the synthetic SAR
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data in Figures 5.1 (a) and 5.1 (b) using the licensed SA program segann. The
segann algorithm was kindly offered at my disposal by Shaun Quegan of the
Sheffield Centre for Earth Observation Science (SCEOS). Even though there is
a fundamental difference between a restoration and a segmentation, it is pos-
sible to compare their qualitative performances through the statistics of the
respective ratio images. Given the specific parameter settings in the two algo-
rithms, the statistics in Table A.2 suggest the qualitative performances of the
segann algorithm and the Gamma pizel prior to be quite similar. That is to say
the segann algorithm is on the large-scale slightly better in terms of preserving
discontinuities and mean amplitude levels whereas the Gamma pixel prior is
more convincing in terms of preserving small-scale structures and homogeneous
regions in SAR data.

A comparison between the test statistics in the Tables A.1 and A.2 shows that
the Gamma pizel prior implemented in the SA algorithm is superior in terms
of preserving discontinuities as well as homogeneous regions in SAR data. It
is therefore concluded that the a priori model and optimization technique that
best fulfills the objective of this study is the Gamma pizel prior and the SA-MTA
schedule.
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CHAPTER 6

Gjern

In this chapter fieldwork performed within the semi-natural wetland environ-
ment at Ladegaards Enge in the river valley of Gjern is presented. The collected
in situ data are used in Chapter 8 where a possible correlation between the phys-
ical properties of the wetland and the restored EMISAR data is investigated.

The fieldwork was initiated at the date of the EMISAR acquisitions 3 and 4
June 1997. In order to support the investigation, supplementary fieldwork was
carried out in the autumn of 1998 and in July 1999. The fieldwork comprises a
description of vegetation cover, estimation of biomass, soil samples and TDR-
measurements. In Sections 3.1.1, 3.1.2 and 3.1.3 is given a brief description of
sampling methodologies of in situ data.

The area in Ladegaards Enge has been subject to a vast amount of research
due to its unique properties for studying e.g. ground-water flow and seepage to
surface-water in a catchment. For a thorough investigation within these areas
refer to Rasmussen (1996) [16] and Andersen E. (2001) [2].
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Figure 6.1: Map displaying the geographical placement of the Gjern area. The
blue arrow shows the flightline of the EMISAR where the acquisitions are made
within the start and end points on 3 June 1997. The EMISAR is looking to the
left and the red spot indicates the test site at Ladegaards Enge. (Map material
from the Danish Kort- og Matrikelstyrelsen (KMS) is reproduced according to
agreement G18/1997 between NERI and KMS.)

6.1 Description of test site

The test site at Ladegaards Enge is located in the river valley of Gjern, which is
a part of the Gjern catchment in Eastern Jutland in Denmark. The catchment
area for the test site is 114 km? and the land use is 77% cultivated, 14% forest,
4.5% wetland and riparian meadows and 3% urban areas and roads [16]. The
geological history of the catchment starts in the late Oligocene and since then
several geological events such as glacial activities have formed the landscape.

For a geographical placement of the area refer to Figure 6.1, where the red
spot indicates the test site. In Figure 6.2 the test area is marked within the red
crosses on an aerial ortho-photo covering Ladegaards Enge. The ortho-photos in
the succeeding are from 1995 and are originally geometrically rectified according
to system 34 for Jutland. However, the coordinate system used in the following
is Universal Transverse Mercator (UTM), zone 32, datum ED50.
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Figure 6.2: An orthophoto from 1995 displaying an aerial view of the test site at
Ladegaards Enge. The test area is located within the red crosses. (Ortho-photos
are copyright Kampsax 1995.)

The test site is a riparian wet meadow due to a high level of ground-water and
during the winter the area is flooded by a stream and in the summer period the
conditions are less humid [53]. This particular site has been selected because of
its homogeneity. The area can be divided into the three sub-areas I, II and III
and within each sub-area the vegetation cover and soil moisture are relatively
homogeneous. The wettest part of the test site is sub-area I, which is a swampy
area with standing water. This area is numbered 1, 2, 4, 5, 6, 10, 16 in Figure 6.3.
Sub-area II, which is intermediate in terms of soil moisture, constitutes number
14 and the third and driest sub-area III is represented by the numbers 3 and 13.

The water table generally follows, with a more subdued form, the contours of
the surface topography. In the case of Ladegaards Enge the ground water is
near the surface and the ’outcrops’ of the water table are typically the river
bed. This implies that the soil moisture of the upper layers in the floodplain
during periods of low precipitation mainly is a function of the discharge in the
river and the local topography.

The sediment in the test area, or floodplain, is sand and silt which is deposited
as the river meanders back and forth. As the river overflows its banks, it rapidly
decreases in velocity away from the channel and drops most of its sediment. The
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Figure 6.3: Vegetation map illustrating the distribution of the dominant species
within the test site at Ladegaards Enge June 1997. (1) Phalaris arundinacea,
(2) Carex acuta, (3) vegetation at the cliff of the river which is a mizture of Glyc-
eria mazima, Deschampsia caespitosa and Phalaris arundinacea, (4) Glyceria
mazxima and Rumez hydrolapathum, (5) Glyceria mazima and Typha angus-
tifolia, (6) Potentilla palustris, (7) mixture of Phalaris arundinacea, Glyceria
maxima and Deschampsia caespitosa, (8) Glyceria fluitans, (9) Filipendula ul-
maria, (10) Glyceria mazima and Filipendula ulmaria, (11) Poa trivialis and
Carez elata All., (12) mizture of Alopecurus pratensis and Deschampsia cae-
spitosa, (13) Alopecurus pratensis , (14) Deschampsia caespitosa, (15) Juncus
effusus, (16) mizture of Glyceria mazima and Carezx acuta

coarser fraction of sediments is deposited at the levee or near the channel and
the finer fraction of sediments such as silt, clay and organic matter, is layered
over most of the floodplain. In this way successive floods have build up natural
levees and the plain gradually falls away from the levees for about 100 m [2],
[64].

The levee is at the surface a sandy loam and the whole levee profile is classified
a Gleyic Fluvisol. The central part of the floodplain is in the upper 8 cm a
fibric to hemic peat which is overlaying a clay loam. The wettest part of the
test site is a marsh which is a hemic peat at the surface and the classification is
Histic/Fibric Histosol [2].
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Figure 6.4: Fieldwork performed in Ladegaards Enge on 3 June 1997. The blue
lines represent the 6 transects T1 — T6 used for TDR measurements starting at
the cliff of the river. The location for the TDR measurements is shown with a
pink cross. Biomass samples are collected at the red circles and soil samples are
collected at the yellow circles. (Ortho-photos are copyright Kampsax 1995.)

In Figure 6.4 the setup for the fieldwork in 1997 is illustrated. To the south the
area is limited by the stream and to the west and east the area is limited by
transect TH and T6. Facing the north the test site is limited by the endpoints of
the transects. The six transects in the figure are uniformly distributed within the
test site each crossing the three zones of different geomorphological, hydrological
and vegetation characteristics.

6.2 Ladegaards Enge 1997

The in situ data collected during the field campaign 3 and 4 June 1997 comprise
biomass and soil samples, estimation of vegetation cover and TDR-measurements.
The fieldwork was carried out simultaneously with EMISAR acquisitions in both
C-(5.3 Ghz) and L-(1.25 Ghz) band. In Figure 6.1 the flightline of the EMISAR
is shown together with the start and end points of the acquisitions. The EMISAR
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Figure 6.5: Discharge, temperature and precipitation in Ladegaards Enge from
1 May 1997 to 30 June 1997. The fieldwork was performed 3 June 1997. The
river discharge is measured at the gauging station in Ladegaards Enge and
the temperature and precipitation is averaged over 24 hours within an area of
40 km x 40 km. (Copyright Danish Institute of Agricultural Sciences. The
hydrometric data are from NERI’s gauging station at Sminge Vad).

is looking to the left and the test area at Ladegaards Enge is indicated with the
red spot. At the test area the local incidence angle ¢ is 50°.

During the campaign the weather was hot and dry as it had been some weeks
prior to the fieldwork. Furthermore it was calm so wind did not have any sig-
nificant affect on the interaction between the EMISAR and the vegetation. The
general weather conditions within the Gjern area in terms of the temperature
and precipitation are illustrated in the Figures 6.5. Here the temperature and
precipitation are averaged over 24 hours within an area of 40 km x 40 km.

6.2.1 Vegetation cover

In June 1997 a botanical determination and registration of the vegetation at
Ladegaards Enge was performed by botanist J. Petersen. The vegetation was
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Figure 6.6: The boundaries between the dominant species of vegetation within
the test site at Ladegaards Enge June 1997 projected upon an orthophoto.
(Ortho-photos are copyright Kampsax 1995.)

registered along 13 transects according to a coordinate system with its origin in
the centre of the test area and its axes going south-north and east—west. Besides,
the vegetation was evaluated along the 6 transects illustrated in Figure 6.4.

For a description of how the botanical determination was carried out refer to
appendix D. Based upon the various vegetation data in appendix D maps cov-
ering the dominant species and their boundaries are presented in the Figures 6.3
and 6.6.

6.2.2 Biomass samples

At the test site at Ladegaards Enge 9 biomass samples were collected 3 June
1997. The samples were grouped in three with each group located within each of
the three sub-areas. The positions of the centres of the groups were selected at



124 Gjern

Figure 6.7: (a) Photo taken 3 June 1997 showing the test-site at Ladegaards
Enge. In the foreground is the intermediate sub-area II dominated by De-
schampsia caespitosa and in the background it is possible to catch a glimpse of
the driest part of the site, sub-area III, dominated Alopecurus pratensis. Sub-
area III dominated by the long vertical straws of Alopecurus pratensis is also
shown in (b).
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Figure 6.8: (a) A typical scene from the intermediate sub-area II within Lade-
gaards Enge dominated by Deschampsia caespitosa and (b) shows Glyceria maz-
ima and Carex elata All. which are pre-dominating in sub-area I, which is the
wettest part of the test site. The photos were taken 3 June 1997.
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Sub- | Nr.: || Fresh weight | Dry weight Water
area kg/m? kg/m? weight %

Bs 6.02 1.14 81.00

1 By 5.54 0.88 84.00

Bs 6.13 0.88 85.70

Bg 4.69 1.13 75.80

I By 4.66 0.96 79.30

Bs 7.64 1.32 82.80

By 3.15 0.73 77.00

I | Big 4.37 1.00 77.10

B 2.90 0.70 75.90

Table 6.1: Biomass samples collected at Ladegaards Enge 3 June 1997. The
index is referring to the numbers of the red circles in Figure 6.4.

random on a map. The positions of the biomass samples within each group were
chosen at the points where a thrown object landed. In Figure 6.4 is shown with
red circles how the biomass samples are distributed within the test site. Each
sample is numbered as it appears from the figure and these numbers correspond
to the index numbers in Table 6.1. In Section 3.1.1 is described how the samples
were collected and analyzed.

The samples Bg—Bj1 in Table 6.1 are collected in the sub-area III. This sub-area
has the lowest soil moisture content and the ground has a firm appearance. The
area was dominated by Alopecurus pratensis with a 100% degree of cover and an
estimated height of 1.1 m, see Figure 6.7 (b). Due to the long stems the dom-
inating geometrical structure of Alopecurus pratensis is vertical, in particular
in the eastern part of sub-area III. Although Alopecurus pratensis is prevailing
Poa pratensis and Phalaris arundinacea are frequent downstream in the western
part of sub-area III.

The distribution of the various species in sample Bg was Alopecurus pratensis
100%, Festuca rubra 20%, Deschampsia caespitosa 10% and Rumez acetosa 2%.
In B the distribution was 60% for Deschampsia caespitosa, Holcus lanatus
30%, Alopecurus pratensis 30%, Rumex acetosa 10% and Cardamine pratensis
5%. The contents of By are Alopecurus pratensis 100% and Holcus lanatus
10%.

The biomass samples Bg—Bg were collected in the intermediate sub-area II in
terms of soil moisture content. Here the ground was soft and saturated with
water. In this area Deschampsia caespitosa was dominating with an estimated
degree of cover of 100%. Figures 6.7 (a) and 6.8 (a) show a view over the sub-
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area and a close up of Deschampsia caespitosa. The height was 0.20 m and
the tussocks were growing close together. The stems from the fresh vegetation
were mainly ranging from oblique to vertical and below the fresh vegetation the
prevailing direction of the withered material was horizontal. From the surface
of the soil the approximate length of the fresh stems was 20 cm.

The content of sample Bg was 100% Deschampsia caespitosa. In By Deschamp-
sia caespitosa again was dominating with 100% and Ranunculus repens 2%. For
Bg the estimate was 100% for Deschampsia caespitosa.

In the wettest sub-area I the samples Bs—Bs have been collected. This area,
which is a mixture of fresh and withered material, is pre-dominated by Glyceria
mazima and Carez elata All. that grow in water, see Figure 6.8 (b). The
fresh vegetation is randomly orientated whereas the withered material to a large
extent is horizontal. The estimated height is 0.5 m. The biomass sample Bj
contains 20% Carez elata All. and 80% Glyceria mazima. In By the distribution
was 80% Glyceria mazima and 20% Carex elata All. and finally Bs, which
contains 30% Glyceria mazima and 20% Carex elata All

Although the number of biomass samples is very small evidence suggests that
the fresh and dry weight of the samples in Table 6.1 increases with increasing
soil moisture content. This is not surprising viewed in the light that the higher
soil moisture content enables a more dense and vigorous vegetation. Besides
additional water from the environment might affect the estimates too. This is
in particular the case concerning the samples B3—Bs, which explains the higher
content of water in the leaves in weight percent.

6.2.3 Soil samples

During the fieldwork 3 June 1997 at Ladegaards Enge 12 soil samples were
collected. These samples were distributed all over the test site within the two
sub-areas II and III. Due to the standing water no soil samples were collected in
the swampy sub-area I. For a description concerning the methodology in terms
of collecting and analyzing the samples refer to Section 3.1.2. In Figure 6.4 the
yellow circles show the locations for the collection of these soil samples. The
numbers at the circles correspond to the index numbers of the soil samples in
Table 6.2.

In Table 6.2 the soil samples S9—S11 were collected in the sub-area III with the
lowest soil moisture content. Soil sample Sg was sampled at the same location
as By, S1p under Bjy and likewise S7; under Bp;. For a description of the
vegetation refer to Section 6.2.2.
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Sub- | Nr.: Pr Pd Ps 0y 0., 0, Amy
area g/cm? | g/em? | g/cm3 vol. % | vol. % | weight %
S1a 0.980 0.48 2.27 0.73 | 49.85 68 17.5
S1p 1.37 0.76 2.22 0.73 | 60.07 83 14.1
S1ie 1.15 0.63 2.34 0.71 51.21 72 13.5
S9a 0.88 0.14 1.29 0.91 | 73.81 81 70.0
1I Sop 1.04 0.21 1.16 0.91 83.45 92 52.9
Soe 1.01 0.18 1.13 0.91 83.20 92 57.8
Se 0.67 0.12 1.41 0.77 | 55.04 71 69.2
S~ 0.81 0.11 1.23 0.84 | 69.21 83 79.1
Sg 1.02 0.23 1.14 0.78 | 79.16 101 44.8
Sy 0.77 0.42 3.17 0.83 | 35.29 42 25.2
IIT S1o 0.79 0.34 2.14 0.79 | 4547 58 31.8
S11 0.98 0.47 2.25 0.81 50.76 63 22.8

Table 6.2: Soil samples collected at Ladegaards Enge 3 June 1997. The fresh-,
dry- and the saturated bulk densities of the soil samples are refered to as ps, pa
and ps. The porosity of the samples is 6,, the volumetric water content is 0,
and the relative water content ,.. The organic content given in percent of the
dried soil sample is Amg. The index of numbers of the samples is referring to
the numbers of the yellow circles in Figure 6.4.

The soil samples S1,, S1, and Sy, were collected at transect T4 12 m from
the river. This corresponds to the intermediate sub-area II area in terms of
soil moisture. The vegetation at that location was characterized by Phalaris
arundinacea 80%, Poa trivialis 30% and Alopecurus pratensis 10%.

Also the samples Sg—Sg were collected in the sub-area II. Here sample Sg was
collected under Bg, S7 under B7 and finally Sg under Bg. The soil appeared
wet and soft and again refer to Section 6.2.2 for a description of the vegetation.

Samples So,, Sop and Ss. in Figure 6.4 and Table 6.2 were from transect T4
collected 48 m from the river. Here the distribution of the various species was:
Deschampsia caespitosa 80%, Ranunculus repens 20% and Poa pratensis < 5%.

Roughly speaking the gathered samples can be divided into two groups. One
group is collected in sub-area III close to the levee and the other is collected
in sub-area II in the floodplain. This is also reflected in Table 6.2 where the
samples S9—S711, which were collected in sub-area III, have a lower volumetric
water content 6,, compared to the samples Si4, S1p, S1e and Saq, Sap, So. and
Se—Sg, which were collected in the wetter sub-area II.
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However, it is noticeable from Table 6.2 that within sub-area II variations in
moisture content also exists. This is the case when addressing the central part
of sub-area II where So,, So;, and Sy, have a higher 6, compared to the samples
S—Ss. In other words the general soil moisture content in the floodplain is
increasing downstream, which possibly reflects the falling terrain.

Concerning the organic content in weight percent Amyg it is evident from Ta-
ble 6.2 that there is a significant difference between whether the samples are
gathered at the relatively dry levee or in the wetter floodplain. The high or-
ganic content in the floodplain is caused by the fibric to hemic peat whereas the
organic content at the levee is lower due to the sandy loam.

6.2.4 Time-Domain Reflectometry

The fieldwork 3 June 1997 also included preliminary TDR measurements. The
purpose of these measurements was to evaluate the spatial distribution of the
apparent dielectric constant K, within the test site and the autocorrelation
between points of measuring. This is relevant because K, is strongly affected
by the soil moisture content. For a brief introduction to the TDR device and
the fundamental theory refer to Section 3.1.3.

The TDR measurements were performed along the six transects T1-T6 shown
in Figure 6.4. These transects were distributed to cover the whole test area. The
transects are all crossing the three sub-areas of different soil moisture content
and vegetation characteristics and the spacing between the transects is at least
4 m. The measurements start on the levee of the river and the spacing between
the points of measurement along the transects is 4 m. The measuring points are
shown with pink crosses in Figure 6.4. At each location 3—5 TDR measurements
were made within an area of approximately 80 cm x 80 cm.

At each point of measuring the average apparent probe length L, is estimated.
Figure 6.9 illustrates the graphical variation of L, and the estimated volumetric
water content 6, along the transects T1-T6. Here the 6, is estimated using
(3.2) and the third-order polynomial relationship (3.1) published by Topp et
al. (1980) [80]. Topp’s relation is valid for four soils ranging from sandy loam
to heavy clay soils. As it appears from Figure 6.9 there is an almost linear
relationship between L, and the volumetric water content within the first 40 m
of the transects using (3.1) and (3.2).

As previously mentioned the spacing between neighbouring points of measure-
ments within Ladegaards Enge is at least 4 m. This is too much for our purpose
and interpolation between the points and transects is therefore of paramount
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Figure 6.9: Graphic plot illustrating the variation of the apparent probe length
L, in metres and the volumetric water content in percent along the transects
T1-T6 at Ladegaards Enge in Gjern 3 June 1997. The volumetric water content
is estimated from a third-order polynomial relationship published by Topp et
al. (1980). The errorbars indicate the standard deviation of the measurements.
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Figure 6.10: Plot illustrating the variation in the apparent probe length L, in
metres along the first 40 m of the transects T1-T6 at Ladegaards Enge in Gjern
3 June 1997. The straight line represents the best linear fit in a least squares
sense.
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Figure 6.11: Experimental semivariograms of the apparent probe length L,
along the transects T1-T4 and T6 at Ladegaards Enge in Gjern 3 June 1997.
Due to the small number of measurements the semivariogram concerning T5 is

left out.
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importance in order to generate an interpolated map to be used in further
analyses with other in situ data. The interpolation is provided by the ”opti-
mal prediction” method kriging described in Section 3.2, which requires spatial
correlations between neighbouring points.

As it appears from the various plots in Figure 6.9 there is a trend in the data
due to the increasing moisture content. In order to calculate the autocorrela-
tion this trend has to be subtracted. By assuming a linear trend within the first
40 m of the transects we have estimated the best linear fit using a linear least
squares regression. In Figure 6.10 the variation in L, along the first 40 m of
the transects T1-T6 is displayed. The straight line represents the best linear
fit in a least squares sense. After subtracting the trend the spatial autocor-
relation is estimated using semi-variograms. Based on (3.3) the experimental
semi-variograms are calculated for each of the transects T1-T6 and shown in
Figure 6.11.

Unfortunately none of the semi-variograms in Figure 6.11 are suitable in terms
of evaluating the nugget effect, sill and range of influence. This circumstance is
due to the number of point pairs N(h) in (3.3), which is too small to obtain a
significant semi-variogram. It is therefore not possible to use kriging for interpo-
lating between points of TDR-measurements performed 3 June 1997. However,
the plots in Figure 6.10 suggest that TDR-measurements that are 4 m or less
apart are correlated.

In order to construct a low resolution map covering K, at Ladegaards Enge 3
June 1997 we therefore in the following apply an alternative approach.

6.3 Ladegaards Enge 1998-99

In order to support the fieldwork performed in June 1997 in Ladegaards Enge
supplementary fieldwork was required. The additional fieldwork took place in
the autumn of 1998 and in July 1999 and was split between an estimation of
the micro-topography, additional soil samples and TDR measurements.

6.3.1 Micro-topography

In collaboration with agronomist H. E. Andersen additional fieldwork was per-
formed in Ladegaards Enge during the fall of 1998 with the purpose of measuring
topography. The topography is measured according to the Danish National Ver-
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Figure 6.12: A map illustrating the points of topography measurements per-
formed in the autumn of 1998 at the test site in Ladegaards Enge. The points
are displayed on an ortho-photo from 1995 covering the area. (Ortho-photos are
copyright Kampsax 1995.)

tical Reference system called Dansk Normal Nul (DNN), which is height above
sea level. These measurements were carried out because the volumetric water
content in the upper soil layer is strongly governed by the micro-topography
in this area. Or in other words the micro-topography reflects the soil moisture
content. The device to be used for surveying was a Theodolite which is a level
and electronic distance measuring instrument.

The micro-topography in Ladegaards Enge is estimated with the purpose of
covering spatial variations within the range of 2 m. Therefore the sampling
is very dense in order to ensure that neighbouring points are correlated. The
layout for the fieldwork is illustrated in Figure 6.12 where the measurements of
the topography were made at the crosses.

The points of measurement are irregularly distributed over the test site and the
average distance between the points is 2 m. At each point one measurement
is made. Subsequently the coordinates of the points have been converted to
UTM, zone 32, ED50 and the level to metres above sea level. Figure 6.13 shows
a contour map over Ladegaards Enge based on the measurements. The contours
of the micro topography are drawn using a smooth cubic spline interpolation.
The distance between the isolines is 10 cm and as expected the level is highest
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Figure 6.13: A map illustrating the contours of the micro topography [m] in
the autumn of 1998 in the test site at Ladegaards Enge. The level is highest
at the levee and is then gradually falling towards the north. The contours are
based upon the topography measurements in Figure 6.12. (Ortho-photos are
copyright Kampsax 1995.)

at the levees and is then gradually falling towards the north.

In order to combine topography data at every desired point with the other
in situ data available, spatial interpolation is applied. The method used for
interpolating the topography data is kriging because it e.g. handles spatial au-
tocorrelation and is the best linear unbiased estimator. For a brief description
of the technique refer to Section 3.2.

Due to a trend in the topography in the area close to the levee the experimental
semi-variogram (3.3) is performed on sample data from the floodplain, which is
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Figure 6.14: Experimental semi-variogram based on topography data from Lade-
gaards Enge. In (a) the direction for the semi-variogram is north-south and in
(b) the direction for the semi-variogram is east-west.
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Figure 6.15: Kriged map of the topography [m] at Ladegaards Enge. A spherical
structure is used with 5 m as the range of influence and the nugget effect 0.14.
The spacing of grid nodes is 0.25 m and the coordinate system is UTM zone 32
(ED50).

the flattest part of the test site. This can be justified because the scale of the
autocovariance structure to be modeled has a range of 5 m. This is much less
than the scale of the autocovariance structure that the levee is a part of, which
is approximately 20 m.

In order to analyze whether or not anisotropy exists in the autocovariance func-
tion the experimental semi-variogram is made in two directions, one in the north-
south direction and one in the east-west direction. The two semi-variograms are
shown in Figure 6.14. Due to the similarity in the semi-variograms we assume
the autocovariance structure to be isotropic and therefore the average nugget
effect is 0.14 m?, range of influence 5 m and sill 0.45 m?. As it appears from the
figures the covariation between measurements are not zero for measurements
taken further apart from the range of influence. This is due to the different
autocovariance structures at different scales.
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Figure 6.16: The estimated krigingvariance [m?] corresponding to the kriged
map in Figure 6.15 of the micro topography in the test site at Ladegaards Enge.

The coordinate system is UTM zone 32 (ED50).

In Figure 6.15 is shown the interpolated map of the topography in Ladegaards
Enge using ordinary kriging (OK). The interpolation is based on the isotropic
spherical model for the experimental semi-variogram (3.3), which is shown in
the Figure 6.14. The spacing of grid nodes is 0.25 m, the search radius used for
kriging is 6 m and the minimum and maximum number of data points is 2 and
80. In Figure 6.16 is the corresponding krigingvariance shown and we note that
the variance is small close to the points of measurements.

6.3.2 Time-Domain Reflectometry

The TDR measurements performed in June 1997 turned out not to be sufficient
in terms of evaluating the apparent dielectric constant K, of the top soil layers
at Ladegaards Enge. Therefore additional TDR-measurements were performed
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12 July 1999 in order to study the spatial variation of K,. For a brief description
of the TDR-measurements refer to Section 3.1.3.

The TDR measurements constitute a regular grid as illustrated in Figure 6.17
and are carried out along transects which are parallel with transect T1 in Fig-
ure 6.4. Thereby the transects cuts through the three zones of different soil
moisture and vegetation characteristics. In Section 6.3.1 it was shown that the
autocovariance structure of the topography has a range of 5 m. If the soil
moisture, and thereby K, follows the topography we can assume that the au-
tocovariance structure of K, also has a range of 5 m. The spacing between the
transects is therefore 4 m and the interval between points of measurements is
alternately 4 m and 8 m along the transects.

In order to reduce the variance 4—6 TDR readings are made within an area of
80 cm x 80 cm at each point of measurement and subsequently the readings are
averaged. The TDR measurements are performed within the first 20-40 m of
the transects starting at the levee of the river. Beyond the point of the 20-40 m
the soil was saturated and consequently no significant changes in K, occurred.

Based on the TDR measurements and a cubic spline interpolation a prelimi-
nary contour map showing K, is presented in Figure 6.18. Here the isolines
show similarities with the isolines in Figure 6.13, which indicates that K, and
thereby the soil moisture, is affected by the topography. In order to evaluate
the temporal variation of K, the TDR measurements performed in June 1997
at T1 were repeated in July 1999. This enables a comparison between measured
K, values in 1997 and in 1999 at T1. The variation of K, along T1 in 1997
and 1999 is illustrated in Figure 6.19. As the figure shows the conditions were
generally drier in 1997 than 1999 within the test site. However, beyond the
point of 35 m at T1 the soil moisture conditions were the same.

6.3.3 Soil samples

As a part of the additional fieldwork 3 x 10 soil samples were collected 12 July
1999. For a description concerning the methodology in terms of collecting and
analyzing the samples refer to Section 3.1.2. These soil samples are collected
along T1 in Figure 6.4 and sampled at the yellow circles in Figure 6.17. This
strategy is chosen because T1 cuts through the three sub-areas in places that
are representative in terms of soil moisture and vegetation characteristics. The
spacing between sampling points is 4 m, which as the succeeding sections will
show, is sufficient to ensure correlation between soil moisture content and pos-
sibly organic matter.
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Figure 6.17: The location for TDR measurements and soil samples for the addi-
tional fieldwork performed on 12 July 1999. The points for TDR measurements
are marked with a blue cross and the location for the collection of soil samples
are indicated by yellow circles. The locations of the TDR measurements and
the soil samples are coincident with transect T1 in Figure 6.4. (Ortho-photos
are copyright Kampsax 1995.)

Three samples were collected within an area of 30 cm x 30 c¢m at each location
starting at the levee of the river. The soil samples were collected within the first
36 m of transect T1. Samples beyond the point of 36 m were not necessary due
to the saturated soil. In order to ensure a small estimation variance the derived
soil characteristics of the three samples at each location are averaged and listed
in Table 6.3.

The essence of Table 6.3 is as expected that the derived volumetric water content
0, is increasing away from the river. This is illustrated graphically in Figure 6.19
where the variation of ,, along T1 is shown. The figure again indicates that
there exists a relationship between 6,, and the topography.

In terms of the organic content one would expect there to be variations too due
to the sandy loam at the levee and the organic fibric to hemic peat in the central
parts of the floodplain. Indeed, this is also the case as reflected in Table 6.3
where there is an increase in Amg away from the levee. Furthermore pg and pg
are decreasing away from the river as the porosity 6, is increasing which also
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T1 Pf Sz(pf) Pd Ps 9;0 O 0, Amyg
m | g/em? | g2/ecm® | g/em? | g/cm? vol. % | vol. % | weight %

0 1.52 0.01 1.05 1.64 | 0.59 | 47.47 | 79.67 8.6

4 1.28 0.0009 0.60 1.37 | 0.77 | 67.84 | 88.37 18.5

8 1.29 0.0001 0.62 1.39 | 0.77 | 67.63 | 87.57 19.4

12 1.40 0.0036 0.76 1.45 | 0.70 | 64.60 | 92.93 13.8

16 1.32 0.0169 0.67 1.42 | 0.74 | 64.63 86.90 18.1

20 1.41 0.0004 0.74 148 | 0.74 | 67.22 | 90.43 16.5

24 1.43 0.0036 0.78 1.50 | 0.71 | 64.74 | 90.39 13.7

28 1.21 0.0001 0.41 1.26 | 0.85 | 79.23 | 93.45 26.3

32 1.15 0.0009 0.32 1.20 | 0.88 | 82.97 | 94.35 32.5

36 1.15 0.0016 0.32 1.17 | 0.84 | 82.40 | 97.90 33.4

Table 6.3: Soil samples collected at Ladegaards Enge July 1999. The fresh, dry
and saturated bulk densities of the soil samples are referred to as py, pq and
ps. The porosity of the samples is 6,, the volumetric water content is 6,, and
the relative water content 6,.. The organic content given in percent of the dried
soil sample is Amy. The variance of the bulk density of the fresh soil samples
is S%(ps). The samples are collected along transect T1 in Figure 6.4 starting
at the cliff of the river. The sites of collection are shown in Figure 6.17 with
yellow circles. The distance between the sites is 4 m and at each site 3 samples
were collected. The calculated characteristics in the Table are based upon an
average of the 3 samples at each site.

indicates an increase in the organic content.

The soil samples were collected at the locations of the TDR measurements and
immediately after that the TDR measurements were made. By doing so it is
possible to analyze to what extent the variations in K, the organic matter and
0, are coincident. Here the K, values were calculated from the TDR measure-
ments and 6,, and the organic matter were derived from the soil samples. By
examining Figure 6.19 it is striking that there exists an almost linear relation-
ship between K,(1999) and 6,, derived from the soil samples. This indicates
that K, reflects the soil moisture conditions within Ladegaards Enge.

The estimated 6,, along T1 using K,(1999) and Topp’s relation (3.1) is also
shown in Figure 6.19. Here the estimated 6,, derived from the soil samples is
diverging compared to the estimated 6,, based on Topp’s relation. This deviation
is also obvious in Figure 6.20 where our empirical relationship between K, and
0., at T1 in Ladegaards Enge is shown together with the relationship by Topp.
Here it should be noted that our calibration curve is improper in the sense that
it is based on soil samples collected in two sub-areas with two different soil types.
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Figure 6.18: A map illustrating K, in the test site at Ladegaards Enge 12
July 1999. The contours are based upon TDR readings shown in Figure 6.17.
(Ortho-photos are copyright Kampsax 1995.)

However, the bias between the two soil types does not affect the conclusion that
Topp’s calibration function is unsuitable for the organic soil types at Ladegaards
Enge.

6.4 Fusion of topography and K,

In Sections 6.3.3 and 6.3.2 it was indicated that a relationship between the
volumetric water content of the upper soil layer and the topography exists.
In this section this relationship is further analyzed and K, within Ladegaards
Enge 3 June 1997 is reconstructed. In addition a possible connection between
the volumetric water content of the upper soil layer in Ladegaards Enge and the
discharge in the river during periods of low precipitation is investigated.
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Figure 6.19: Variations in K,, the volumetric water content and the level along
transect T1 at Ladegaards Enge. K, is based on TDR measurements from June
1997 and July 1999. The estimated volumetric water content is derived from
soil samples from 1999 and based on K, from 1999 derived from Topp et al
(1980). The level corresponds to the height above sea level.

6.4.1 Ladegaards Enge 1997

In Figure 6.19 a relation between the topography and the volumetric water
content 6, along transect T1 is evident. Here 6,, is derived from soil samples
gathered 12 July 1999 and listed in Table 6.3.

In order to test the strength of the monotonic association between 6,, and the
topography we apply Spearman’s rank order correlation test. This is a dis-
tribution free test that determines whether or not a monotonic relation exists
between two variables. Because linear relations very often will be unrealistic
in practical situations Spearman’s test is more appropriate in this context than
Pearson’s correlation test.

Spearman’s rank order correlation coefficient r; is given by

6D
nd —n

re=1- , (6.1)



144 Gjern

100 T T T T T T T T

90 -

80 x -

70 - -

60 — -1

50 -1

Water, vol. %

30 - -

20 -
sandy loam + fibric/hemic peat x

Topp
0 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90

K{l,

Figure 6.20: Correlation between the estimates of the volumetric water content
0., in the soil samples and the estimates of the corresponding K, values from
12 July 1999 in Ladegaards Enge. The samples are collected along transect T1.
The solid black curve is a least squares fit using a third-order polynomial. The
solid grey curve shows the relation by Topp et al. (1980).

where D is the sum of the squared differences in rank order constants and n is
number of observations. The distribution of D is symmetrical around (n*—n)/6,
it is only defined for even numbers and 0 < D < %(n?’ —n). The distribution is

given under the constraint that no correlation exists, which is our Hy hypothesis.

Using (6.1) the correlation coefficient ¢ between 6,, and the topography is —0.77
for n = 10 and D = 292. We therefore have 1 — P(D > 292) = 0.0063 which
implies that Hj is rejected using the significance level 0.05. In other words we
may conclude that 6,, and the topography are correlated.

In Figure 6.19 there also is an almost linear relationship between the apparent di-
electric constant K,(1999) and 6,, derived from the soil samples. In Figure 6.20
these values are plotted against each other and the third-order polynomial re-
lationship is estimated using a least squares fit. This plot again suggests a
relationship and it would therefore be relevant to test to what extent K,(1999)
values and 6, are correlated.
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Figure 6.21: Scatter-plot of the kriged topography in Figure 6.15 against the
estimated K, derived from the TDR-measurements performed 3 June 1997 and
12 July 1999 at Ladegaards Enge. The height is metres above sea level and the
solid lines are the best fitted third-order polynomials in a least squares sense.

We again use (6.1) to estimate the correlation coefficient and get rs = 0.64
D =60 and n = 10. This results in P(D < 60) = 0.0272 which means that it is
unlikely that no correlation exists. Based on that we conclude that 6, and K,
are associated.

Given the correlations and test statistics above strong evidence suggests that
the topography and K, at T1 3 June 1997 are correlated. It therefore seems
relevant to test the correlation between the topography and K, values derived
from TDR-measurements performed 3 June 1997. This is possible due to the
kriged topography in Figure 6.15, which enables estimates of the topography
at every location where TDR-measurements are performed. The constraint
that the topography has not changed in the period from 3 June 1997 until the
measurements of the topography in the fall of 1998 is fulfilled.

In Figure 6.21 the kriged topography at Ladegaards Enge is plotted against
the K, estimates from 3 June 1997. Applying Spearman’s rank order corre-
lation test (6.1) we get D = 165670, n = 81 and ry; = —0.87. Because n is
high, D is approximately Gaussian distributed and the test statistic is therefore
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Figure 6.22: A map showing the kriged K, in the test site at Ladegaards Enge
3 June 1997. The resolution is 0.25 m.

1 — ®(7.8) < 0.00003. This rejects the Hy hypothesis and we conclude that K,
is correlated with the topography.

In order to establish a relation between the topography and the K, estimates
a third-order polynomial in a least squares sense is fitted to the points in the
scatter-plot in Figure 6.21. The polynomial relationship is

K, = 274305.04 — 41581.42h + 2099.20h — 35.289h°, (6.2)

where h is the height above sea level. The polynomial relationship between
the topography and K, is only valid for the test area at Ladegaards Enge 3
June 1997. Based on (6.2) and the kriged topography in Figure 6.15 a 2-D
representation of the variation of K, 3 June 1997 is constructed and illustrated
in Figure 6.22.
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Figure 6.23: Discharge and temperature in Ladegaards Enge from 1 June 1999
to 30 July 1999. The precipitation in the period is negligible. The additional
fieldwork was performed 12 July 1999. The river discharge is measured at
the gauging station in Ladegaards Enge and the temperature and precipitation
are averaged over 24 hours within an area of 20 km x 20 km. (Copyright
Danish Institute of Agricultural Science. The hydrometric data are from NERI’s
gauging station at Sminge Vad).

6.4.2 Ladegaards Enge 1999

In Section 6.4.1 it was shown that the topography and K, were correlated 3
June 1997 at Ladegaards Enge. It therefore would be interesting to explore to
what extent K, in general is governed by the topography and to what extent
K, is affected by the discharge in the river.

In this section we therefore will test the strength of the monotonic associa-
tion between the topography and the K, estimates derived from the TDR-
measurements performed 12 July 1999. Figure 6.21 illustrates the plot of the
topography against K, and the solid curve represents a least squares fit using a
third-order polynomial. The fitted third-order polynomial in the least squares
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sense is

K, = 487163.93 — 75812.97h + 3932.97h? — 68.014%, (6.3)

where h is the height above sea level. This relationship is valid for the test area
in Ladegaards Enge 12 July 1999.

Spearman’s rank order correlation test (6.1) is again applied and the calculated
statistics are n = 175, D = 1574235 and ry = —0.76. Thereby Hj is rejected
and K, is again correlated with the topography.

When comparing the two plots in Figure 6.21 it is obvious that K, and thereby
0, is lower 3 June 1997 than 12 July 1999 within the upper soil layer. This
is also in perfect accordance with the Figures 6.5 and 6.23 that state that the
discharge in the river 3 June 1997 was 0.6273 m®/s and 12 July 1999 0.77 m?3/s.
The assertion that the volumetric water content during periods of low precip-
itation is related to the discharge in the river and the topography is thereby
supported.

6.5 Discussion

The test site in Ladegaards Enge is a part of the Gjern catchment in the Eastern
Jutland. It is a riparian wetland where the water table is high and approximately
intersecting the ground surface at the river bed.

Within the area the various plant communities are strongly correlated with the
soil moisture content. In the drier part of the test site corresponding to sub-
area III Alopecurus pratensis is prevailing and in the more humid sub-area II
Deschampsia caespitosa is widely distributed. Ellenberg (1992) has classified
the plant species on a scale from 1-12 in accordance to their preference for
humidity [28]. Here Alopecurus pratensis scores 6 and Deschampsia caespitosa
7, which supports our experiences from the field that soil moisture and plant
communities are related.

The deposits in the upper 8 cm in the floodplain is fibric to hemic peat, which
is overlaying a cleyic loam. The coarser fraction of sandy loam is deposited at
or near the levee. These deposits originate from overflows and the meandering
of the river. It is therefore natural that the organic content and fine-textured
soil particles increase away from the river as Table 6.3 indicates.
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Fine-textured soil particles such as clay and organic matter bind the water mole-
cules, which results in a lower K, than if the soil had been coarse textured [39].
According to Table 6.3 the organic content increases along T1 away from the
river and as a consequence one might expect the estimated K, within Lade-
gaards Enge to be affected by the variability of the organic content. However,
according to Figure 6.19 the increase in the organic content along T1 does not
seem to affect the estimated K,. This is because the microwave frequencies are
strongly sensitive to water compared to the soil particles. Here the K, value for
water is approximately 80 whereas it is only 24 for the other soil constituents
[56]. Because the general conditions were quite humid 12 July 1999, especially
in the area where the organic content was high, the contribution from the fine
textured soil and organic content was negligible. The soil moisture conditions
were also high 3 June 1997 and it is therefore assumed that the derived K, from
the fieldwork 3 June 1997 is unaffected by the organic content within Ladegaards
Enge.

In Section 6.4.1 and 6.4.2 it was shown that K, is strongly correlated with
the topography within Ladegaards Enge. This was in Section 6.4.1 utilized in
the making of the map in Figure 6.22, which covers K, 3 June 1997. When
examining the plots in Figure 6.21 it is obvious that the spatial distribution of
K, 3 June 1997 and 12 July 1999 within the test site is different. The general
level of K, at the test site 12 July 1999 is higher than 3 June 1997 and the
variability of K, 12 July 1999 less than 3 June 1997. This suggests that the
best fitted line in the figures approaches the level of 80, which is the K, value
for water at 20°C, as the general soil moisture increases within the test site [35].
It is therefore necessary to have some prior knowledge of K, in order to utilize
the topography for estimating K, within the test site at a given time.
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CHAPTER 7

Mols Bjerge

Fieldwork was performed at Mols Bjerge 4 June 1997 at three test sites in order
to enable the study of the synergy between semi-natural grasslands and the
restored polarimetric EMISAR data in Chapter 9.

The test areas of investigation are located at Trehgje, Benlighgj and Stenhgje
and the in situ data collected comprise an evaluation of the vegetation char-
acteristics, estimation of biomass, soil samples and TDR-measurements. These
in situ data represent factors that are all known to affect the polarizations and
frequencies used by EMISAR. For a brief description of the sampling method-
ologies and the interaction between the in situ data and EMISAR refer to the
Sections 3.1.1, 3.1.2 and 3.1.3. In this chapter the sampling strategy at each
test site is outlined and the in situ data are presented and analyzed.

A lot of research has earlier been performed on grasslands at Mols Bjerge. For
a study of the spectral identification of plant communities for mapping of semi-
natural grasslands refer to Jacobsen (2000) [38].
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Figure 7.1: The geographical placement of Mols Bjerge. The blue arrow shows
the flightline of the EMISAR where the acquisitions are made within the start
and end points on 3 and 4 June 1997. The EMISAR is looking to the left and
the red spot to the South indicates the test sites Trehgje and Benlighgj. The
red spot to the North indicates Stenhgje. (Map material from the Danish Kort-
og Matrikelstyrelsen (KMS) is reproduced according to agreement G18/1997
between NERI and KMS).

7.1 Description of test sites

Mols Bjerge is located at the peninsula in the southern part of Djursland in
Jutland. It is a beautiful area where the hills are covered with heath, grassland
and forest. Geologically Mols Bjerge is a terminal glacial moraine from the last
glaciation Weichsel (Wiirm). The moraine is a mixture of sand, clay and pebbles

[64], [67).

Figure 7.1 shows the geographical placement of Mols Bjerge as well as the flight-
line of the EMISAR and the three test sites. The test areas of study are located
at Trehgje and Benlighgj, which are indicated by the southern red spot, and
Stenhgje indicated by the northern red spot.

In Figure 7.2 two of the test sites are indicated on an ortho-photo from 1995.
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Figure 7.2: An aerial view of two of the test sites at Mols Bjerge displayed on
an ortho-photo from 1995. The test area Trehgje is located within the four
red crosses to the left. The four red crosses to the right represent the test site
Benlighgj. (Ortho-photos are copyright Kampsax 1995).

The four red crosses to the left comprise the Trehgje test area whereas the
four red crosses to the right represent the test site Benlighgj. Likewise, the
displayed crosses in Figure 7.3 represent the test site at Stenhgje. The ortho-
photos are from 1995 and originally geometrically rectified according to system
34 for Jutland. However for practical purposes, the coordinate system used in
the following is Universal Transverse Mercator (UTM), zone 32, datum ED50.

The test areas are all classified as grasslands by Jacobsen (2000) [38]. The
Trehgje test site illustrated in the photo in Figure 7.4 (a) is an old abandoned
grassland, which was dominated by Deschampsia flexuosa. Stenhgje test site
was characterized by the green and vigorous vegetation of Festuca rubra as
displayed in the photo in Figure 7.4 (b). The photos in Figure 7.5 show the test
area at Benlighgj, which was grazed and dominated by Deschampsia flezuosa.

The criteria for selecting the test sites for this study have been homogeneity
in terms of soil moisture, above ground biomass and vegetation characteristics
within each site. Between the sites differences exist in the plant species, the
volumetric structure of vegetation and most likely in the biomass content. Al-
though Mols Bjerge is a very hilly area the three selected test sites are flat and
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Figure 7.3: An ortho-photo illustrating the test site Stenhgje at Mols Bjerge
1995. The test area is located within the red crosses. (Ortho-photos are copy-
right Kampsax 1995.)

orientated towards the EMISAR in such a way that the incidence angles ¢ for
the EMISAR images within Trehgje, Benlighgj and Stenhgje are almost identi-
cal. At the test areas Trehgje and Benlighgj the local ¢ is 39° whereas the local
@ at Stenhgje is 41°.

At the time the fieldwork was performed the weather was calm, sunny and hot
and dry conditions had been prevailing for some weeks. In Figure 7.6 is shown
the temperature and precipitation at Mols Bjerge from 1 May 1997 to 30 June
1997. Although the figure gives a hint of the weather conditions prior to the
fieldwork on 4 June 1997 at Mols Bjerge it should be noted that the temperature
and precipitation are averaged over 24 hours within an area of 40 x 40 km.

7.2 Trehgje 1997

The setup for the fieldwork at Trehgje is outlined in Figure 7.7. Here the corners
of the site are marked with crosses and the biomass samples were collected at
the red circles. The area which is displayed in Figure 7.4 (a) was dominated by
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Figure 7.4: (a) Abandoned grassland at the test site in Trehgje dominated by
Deschampsia flexuosa and (b) Festuca rubra at the test site in Stenhgje. Photos
were taken 4 June 1997 at Mols Bjerge.



156 Mols Bjerge

Figure 7.5: (a) The test area in Benlighgj with grazed vegetation dominated by
Deschampsia flexuosa and (b) close up of a typical scene within the test site
with manure. Photos were taken 4 June 1997 at Mols Bjerge.
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Figure 7.6: Temperature and precipitation at Mols Bjerge from 1 May 1997
to 30 June 1997. Fieldwork was performed 4 June 1997. The temperature
and precipitation are averaged over 24 hours within an area of 40 x 40 km.
(Copyright Danish Institute of Agricultural Sciences).

Deschampsia flexuosa with a 100% degree of covering.

Considerable complexity is introduced by the dense vegetation, which makes it
highly complicated to separate the soil and vegetation radar backscatter contri-
butions using C- and L-band. Such a separation would require a very detailed
description of the vegetation characteristics, which is not available. Neither
TDR measurements nor soil samples were therefore collected within this test
area.

7.2.1 Biomass samples

At Trehgje three biomass samples were collected at random within a sub-area
of 5m x 5 m. Based on a visual evaluation the vegetation within the sub-area
is representative for the whole test area. Each sample is numbered in such
a fashion that sample number i in Figure 7.7 corresponds to number BT, in
Table 7.1. The methodology in terms of collecting and analyzing the biomass is
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Figure 7.7: The test area in Trehgje within Mols Bjerge displayed on an ortho-
photo from 1995. The crosses marks the corners of the test site and the locations
of the biomass samples 1-3 collected 4 June 1997 are shown with red circles.
(Ortho-photos are copyright Kampsax 1995).

described in Section 3.1.1.

The tussocks of Deschampsia flexuosa, which were growing close together were
characterized by a dense tangled vegetation containing both withered and fresh
material. The average height of the tussocks was 25 cm and in places stems rise
above the tussocks by 15 cm. The moraine was layered by 10 cm humus and on
top came the Deschampsia flexuosa. The tussocks covered approximately 85%
of this area, the other 15% was due to narrow paths and a few mulberry bushes.

Sample BT; was at an area of tussocks of Deschampsia flexuosa and the dis-
tribution of vegetation was 70% fresh Deschampsia flexuosa, 40% withered De-
schampsia flexuosa and 60% moss. BTy was collected in a growth of Carez are-
naria and contains 5% fresh Deschampsia flexuosa, 40% withered Deschampsia
flezuosa, 20% fresh Carex arenaria, 60% withered Carex arenaria. Sample BT
was collected in the narrow space between two tussocks and its content was 5%
fresh Deschampsia flexuosa, 100% withered Deschampsia flexuosa, 50% moss,
and 5% Galium sazatile.

Referring to Table 7.1 the water in weight percent in the three samples is very
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Nr.: Fresh weight | Dry weight | Dry weight | Dry weight Water
kg/m? kg/m? mean kg/m? | std. kg/m? | weight %
BT, 7.96 4.31 - - 45.80
BT, 2.96 1.65 - - 44.30
BT; 3.26 1.58 2.51 0.90 51.50
BS, 1.59 0.74 - - 53.80
BS; 0.92 0.44 - - 52.00
BSs 1.59 0.49 - - 69.10
BS~ 0.98 0.37 0.51 0.081 62.50
BBsg 1.26 0.59 - - 53.50
BBy 0.98 0.50 - - 49.10
BB 0.61 0.39 - - 35.60
BB 1.31 0.58 - - 55.90
BBi» 3.34 1.05 0.62 0.11 68.60

Table 7.1: Biomass samples collected at Mols Bjerge 4 June 1997 at the test
sites in Trehgje, Stenhgje and Benlighgj. The index refers to the numbers of the
red circles in the Figures 7.7, 7.8 and 7.12.

much the same as expected due to the homogeneity in terms of vegetation.
Sample BT was collected at a tussock, hence the relatively high fresh and dry
weight.

7.3 Stenhgje 1997

The fieldwork at Stenhgje is outlined in Figure 7.8 where the area under study
is located at the beginning and end of the transects T1 and T2.

During the campaign TDR measurements were performed at the pink crosses at
the two transects. These transects are crossing each other in order to disclose a
possible anisotropy in the autocovariance function. The biomass samples were
collected at the red circles in Figure 7.8. Here the red circles constitute the four
corners in a square with its centre at the point where T1 and T2 cross each
other. The soil samples were collected at a and b. The points at which the
biomass and soil samples were collected were chosen prior to the fieldwork. The
area as it appears in the photo in Figure 7.4 (b) was very homogeneous with a
green and vigorous vegetation. The soil was a dry sandy loam with pebbles.
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Figure 7.8: Fieldwork performed in Stenhgje at Mols Bjerge on 4 June 1997
shown on an ortho-photo. The blue lines represent the transects T1 and T2
used for TDR measurements. The locations for the TDR measurements are
shown with pink crosses. Biomass samples 4-7 are collected at the red circles
and soil samples a and b are collected at the yellow circles. (Ortho-photos are
copyright Kampsax 1995).

7.3.1 Biomass samples

The vigorous vegetation was dominated by Festuca rubra and the estimated
average height was 20 cm. The degree of cover was almost 100% and although
there were local variations in the composition of the species the volumetrical and
geometrical structure was very much constant. The biomass samples 4-7 were
collected at random with one sample in each of the four quadrants in Figure 7.8.
Sample BS; in Table 7.1 refers to number i at the red circles in Figure 7.8. In
Section 3.1.1 is described how the biomass samples were collected and analyzed.

The content of BSy was 80% Festuca rubra, 10% Poa pratensis, < 5% FElymus
repens, 20% Achillea millefolium, < 5% Tarazacum ruderalia agg. and 30%
moss. The distribution of vegetation in BS5 was < 5% Poa pratensis, 60% Fes-
tuca rubra, 10% Tarazacum ruderalia agg. , 10% Convolvulus arvensis, < 5%
Achillea millefolium, < 5% FElymus repens, 60% moss and < 5% Vicia hirsuta.
In sample BSg the distribution was 10% Tarazacum ruderalia agg. , 40% Festuca
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Sample [ pr [ S(ps) | pa Ps 0, O Or Amy
Nr.: g/cm?® | g2/em® | g/cm?® | g/cm? vol. % | vol. % | weight %
SSa 1.31 0.15 1.21 1.72 0.51 | 10.53 20.75 5.0
SSy 1.29 0.11 1.19 1.71 0.52 9.69 18.25 5.9
SB. 0.94 0.11 0.79 1.48 0.7 15.6 22.25 11.8
SBy 1.08 0.1 0.87 1.52 0.65 | 21.51 33.25 14.0

Table 7.2: Soil samples collected at the test sites in Stenhgje and Benlighgj
4 June 1997 at Mols Bjerge. The fresh, dry and the saturated bulk densities of
the soil samples are referred to as py, pg and ps. The porosity of the samples
is 6, the volumetric water content is 6,, and the relative water content ¢,. The
organic content given in percent of the dried soil sample is Amgy. The variance
of the bulk density of the fresh soil samples is S?(ps). The index refer to the
sites of collection in the Figures 7.8 and 7.12 shown by the yellow circles a—d.
At each site 4 soil samples were taken and their average is listed in the table.

rubra, 50% Achillea millefolium, 5% Poa pratensis, < 5% Elymus repens and <
5% Hieracium pilosella. In the last sample BS; the various species were distrib-
uted as follows: 40% moss, in particular brachythecium sp., 80% Festuca rubra,
5% Poa pratensis, 5% Medicago lupulina, 20% Achillea millefolium, < 5% Vicia
lathyroides, 5% Plantago lanceolata, < 5% Elymus repens, < 5% Hypochoeris
radicata, < 5% Rumex acetosella and < 5% Hieracium pilosella.

The calculated characteristics in Table 7.1 show that the water content in the
samples BSg and BS7 was higher than in the samples BS, and BS5. Since there
was no significant change in soil moisture within the area there is no simple
explanation for that besides what may be caused by the natural sampling error
and the specific water content in the various species.

7.3.2 Soil samples

The soil samples were collected at the yellow spots a and b at transect T1 in
Figure 7.8, and at each location four samples were taken. For a description
of the method of collecting and analyzing the samples refer to Section 3.1.2.
Table 7.2 shows the averaged calculated characteristics, SS, and SS;, of the
four samples.

The analyzed characteristics of the samples SS, and SS; in Table 7.2 seem very
similar having a mean volumetric water content 6,, of 10%. What is noticeable
is the low 6, and the low content of organic matter.
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Figure 7.9: Plots showing the variations of the apparent probe length L, and
the volumetric water content 6,, along the transects T1-T4 at the test sites
Stenhgje and Benlighgj 4 June 1997 at Mols Bjerge. The volumetric water
content is estimated from a third-order polynomial relationship published by
Topp et al. (1980) [80]. The errorbars indicate the standard deviation.

7.3.3 Time-Domain Reflectometry

At Stenhgje the spatial distribution of the apparent dielectric constant K,, and
thereby the volumetric soil moisture content, was evaluated using TDR measure-
ments. For a brief introduction to the TDR methodology refer to Section 3.1.3.

The two transects T1 and T2 along which the TDR measurements were per-
formed are illustrated in Figure 7.8. In order to analyze to what extent anisotropy
exists in the TDR readings and in the autocorrelation, T1 and T2 are almost
perpendicular to each other. The points of measurements are indicated with
pink crosses at the transects and the spacing between the points was 6 m. At
each location four measurements were made within an area of 80 cm x 80 cm.
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Figure 7.10: The variation in the apparent probe length L, along the transects
T1-T4 at the test sites Stenhgje and Benlighgj 4 June 1997 in Mols Bjerge. The
straight line represents the best linear fit in a least squares sense.

Based on the apparent probe length L,, which is the average of the four TDR
readings at each location, the apparent dielectric constant K, is estimated using
(3.2). Given K, the volumetric water content 6,, can be estimated from the
third-order polynomial relationship (3.1) published by Topp et al. (1980) [30].
This calibration function is valid for four soils ranging from sandy loam to heavy
clay soils and it therefore seems appropriate at Stenhgje.

A graphical presentation of the estimated 6,, and L, along the transects T1-T2
at Stenhgje is shown in Figure 7.9. From the figures we note that the mean level
of the estimated 6,, along both transects using (3.1) was approximately 9%.

Of course, the TDR measurements along the transects T1 and T2 only provide
knowledge at the specific points of measuring. In order to get information at any
desired point at the transects interpolation between the points is needed. How-
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Figure 7.11: The experimental semi-variograms of the apparent probe length
L, along the transects T1-T4 at the test sites Stenhgje and Benlighgj 4 June
1997 in Mols Bjerge.

ever, using the kriging method for interpolating we have to require correlation
between point pairs.

At first glance, there is a trend in L, along T1 and T2 in Figure 7.9. In order
to calculate the autocorrelation this trend therefore has to be subtracted. In
Figure 7.10 a straight line has been fitted to the readings L, using a linear least
squares regression. According to the fitted lines there is a small trend along the
transects, which shows an anisotropy in the TDR readings.

The linear trends are subtracted from L, and based on the results and (3.3) the
experimental semi-variograms are estimated. These estimated semi-variograms
are presented in Figure 7.11. Due to the small number of point pairs it is not
possible to deduce anything about the nugget effect, sill or range of influence.
However, the semi-variograms and the plots in Figure 7.10 indicate an auto-
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Figure 7.12: Fieldwork accomplished in Benlighgj on 4 June 1997 at Mols Bjerge
displayed on an ortho-photo from 1995. The transects T3 and T4 used for TDR
measurements are in blue colours and the sites of TDR measuring are shown
with pink crosses. Biomass samples 812 are collected at the red circles and soil
samples ¢ and d are collected at the yellow circles. (Ortho-photos are copyright
Kampsax 1995).

correlation.

7.4 Benlighgj 1997

The setup for the fieldwork at Benlighgj is sketched in Figure 7.12, where the test
site is located within the start and endpoints of the transects T3 and T4. The
TDR measurements were performed at the pink crosses at T3 and T4 and again
the transects are crossing each other in order to disclose a possible anisotropy
in the autocovariance function. The red circles in Figure 7.12 are chosen at
random and mark the sampling points for the biomass. The locations of the
sampling points for the soil samples were chosen prior the the fieldwork and are
indicated by the yellow circles in the figure.

Benlighgj test site was grazed and showed evidence from cattle in terms of
manure and paths where the cattle walk. The upper soil layer was a dry and
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firm sandy loam with pebbles and manure. In Figure 7.5 the photos reflect that
the area was grazed and consequently the vegetation was low.

7.4.1 Biomass samples

The dominant species was Deschampsia flexuosa with an average height of 5 cm.
Also Carex arenaria was widely distributed with an average height of 20 cm.
The overall degree of covering was approximately 80%.

In Figure 7.12 the red circles 8-12 indicate the sampling points for the biomass,
which were chosen at random within sub-areas of different vegetation charac-
teristics. Again the sample number ¢ in Figure 7.12 corresponds to BB; in
Table 7.1. The methodology of collecting and analyzing the biomass is outlined
in Section 3.1.1.

Sample BBg was laid out in a growth of Agrostis capillaris. The content was
70% Agrostis capillaris, 20% Deschampsia flexuosa, 5% Poa pratensis, < 5%
Rumex acetosa and < 5% Campanula rotundifolia. The samples BBg was col-
lected in a belt dominated by Holcus mollis and the distribution of vegetation
in the samples was 60% Holcus mollis, < 5% Deschampsia flexuosa and 70%
alm. cypres-moss. Concerning BB, it was gathered in a thin growth of veg-
etation and the content was 20% Deschampsia flexuosa, 5% beegerlav arter,
60% alm. cypres-moss and < 5% Rumez acetosella. The content of BBy; was
90% Deschampsia flexuosa, 5% Carex arenaria, 90% alm. cypres-moss, < 5%
Poa pratensis and it was collected in a relative dense vegetation. Finally BB1o
was laid out in a sub-area which was dominated by Holcus mollis influenced by
manure. Here the distribution was 90% Holcus mollis and 40% Deschampsia
flezuosa.

It is obvious when examining Table 7.1 that the fresh weight and water in weight
percent of the samples is very much influenced by the sampling locations. BB1g
which was collected in a thin vegetation had, as expected, a low fresh weight.
The corresponding low water in weight percent is ascribed to withered material.
Likewise BB12 had a relatively high fresh weight and high amount of water in
weight percent. In this case the bias is due to the manure in the sample.

7.4.2 Soil samples

In Figure 7.12 the yellow spots indicate the two locations ¢ and d where soil
samples were collected. The samples were gathered at transect T3 and at each
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location four samples were collected. In Table 7.2 statistics of the four samples
collected at ¢ and d is referred to as SB. and SB,. A brief description concerning
the methodology of collecting and analyzing the samples is given in Section 3.1.2.

According to Table 7.2 the bulk densities of sample SB, are larger than the bulk
densities of SB.. This is due to the manure, which is more recent in SB4 than
in SB.. The mean 6,, is 18% and what is noticeable is the relative high content
of organic matter at the two locations ¢ and d.

7.4.3 Time-Domain Reflectometry

The over-all distribution of the apparent dielectric constant K, within the test
site at Benlighgj was evaluated using TDR measurements. For a brief introduc-
tion to the TDR device and the fundamental theory refer to Section 3.1.3.

The TDR measurements were performed at the transects T3 and T4 in Fig-
ure 7.12. The spacing between the points at which the measurements were
made was 6 m and at each point four measurements were performed within
80 cm x 80 cm. The apparent dielectric constant K, is estimated using (3.2)
and the apparent probe length L,, where L, is the average of the four TDR
measurements made at each location.

In Figure 7.9 the variations of 6, and L, along T3 and T4 is illustrated. The
volumetric water content #,, is here estimated using K, and the third-order
polynomial relationship (3.1) published by Topp et al. (1980) [80]. This relation
is valid for four soils ranging from sandy loam to heavy clay soils. According to
the figure the mean 6,, along T3 and T4 was 11%.

In order to be able to predict values of K, at every desired point along the
transects using the kriging method for interpolation we again have to require
that neighbouring points of TDR measurements are correlated. Based on L, the
experimental semi-variograms are estimated using (3.3). These semi-variograms
are presented in Figure 7.11. Unfortunately we again are forced to conclude that
it is not possible to deduce anything about the nugget effect, sill and range of
influence. The reason is the small number of point pairs. However, according
to Figure 7.9 and the semi-variogram for T3 in Figure 7.11 the point pairs at
T3 and T4 are correlated.

Apparently there is no trend in L, along T3 and T4 in Figure 7.9. Fitting
a straight line using a linear least squares regression supports the assertion,
as displayed in Figure 7.10. We hereby assume that L,, and thereby K,, is
isotropic within the test site at Benlighgj.
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7.5 Discussion

The three semi-natural grassland areas, which are the subject of the study,
are located at Trehgje, Stenhgje and Benlighgj within Mols Bjerge. Criteria for
selecting the test sites were homogeneity in terms of soil moisture, above ground
biomass and vegetation characteristics. This implies that the dominant plant
species and the volumetrical and geometrical appearance of the vegetation were
homogeneously distributed within each of the test areas. The final criterion
for selecting the test areas was that mutual differences between the sites exist
concerning one or more of the properties described above.

Based on a visual evaluation of the three test areas 4 June 1997 Trehgje test
site possessed the largest volume of above ground biomass, Stenhgje the second
largest and Benlighgj the smallest. This is also reflected by the photos in the
Figures 7.4 and 7.5 and again supported by the average height of the above
ground biomass, which was 25 cm, 20 cm and 5 c¢m in the test sites at Trehgje,
Stenhgje and Benlighg;j.

Within the three test sites biomass samples were collected. Statistics from
these in situ data are presented in Table 7.1 and here the calculated dry bio-
mass at Trehgje, Stenhgje and Benlighgj are 2.51 kg/m? +£0.90 std., 0.51 kg/m?
+0.081 std. and 0.62 kg/m? +0.11 std. In order to test to what extent the differ-
ence in the volume of the above ground biomass between Trehgje and the test site
at Benlighgj is expressed in the collected biomass samples the t-test for unequal
standard deviations is applied. The calculated result is 2(1 — F}(2)(2.08)) < 0.2
and the null hypothesis Hy that there is no difference between the biomass
samples at Trehgje and the test site at Benlighgj is therefore only unlikely on
the level of 20% [10]. Likewise, the difference in biomass between Trehgje and
Stenhgje and the difference between Stenhgje and Benlighgj is not detectable.
However, it should be noted that due to the very small number of samples the
uncertainty in estimating the standard error is too large to decide whether or
not differences based upon the collected biomass samples in Table 7.1 are sig-
nificant. Nevertheless, the estimated biomass reflects the experiences from the
field.

Based on the collected biomass samples a determination of the representative
plant species within the test sites was carried out. The determination showed
that within both test sites at Trehgje and Benlighgj the dominant species of
vegetation were Deschampsia flexuosa and Carex arenaria. Deschampsia flexu-
osa and Carez arenaria were not found within the test site at Stenhgje where
instead Festuca rubra was quite prominent.

Based on the soil samples in Table 7.2 the mean estimated volumetric water
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content 6, at Stenhgje was 10%. In Section 7.3 it was demonstrated that using
Topp’s relationship and the TDR measurements the mean 6, was 9%. It is
therefore concluded that Topp’s relationship, which is valid for soils ranging
from sandy loam to heavy clay soils, is well suited for the soil type at Stenhgje.

Again referring to Table 7.2 the mean 6,, derived from the soil samples at Ben-
lighgj was 18%. However, this is not consistent with the mean 0., of 11% derived
from Topp’s relationship and the TDR measurements in Section 7.4. Clearly
Topp’s relationship is not appropriate for the soil type in the test site at Ben-
lighgj. The reason is that Topp’s calibration function is not valid for soil types
with a high content of organic matter. Here Benlighgj, contrary to Stenhgje,
contains a significant amount of organic matter due to the manure. The fine-
textured organic soil in the test site at Benlighgj binds the water molecules and
therefore it is expected that the apparent dielectric constant K, and thereby the
estimate 6,, using Topp’s relation, will be lower than for a sandy coarse-textured
soil [39].

Although the actual soil moisture content in the test sites at Stenhgje and Ben-
lighgj was different, the estimated 6,, at the two test sites was quite similar using
Topp’s calibration function. This implies that K, at Stenhgje and Benlighgj was
almost the same.

In the Sections 7.3.3 and 7.4.3 evidence suggested that neighbouring points of
TDR measurements were correlated along the transects at Stenhgje and Ben-
lighgj. Because of the homogeneity of the physical properties at the test sites
the corresponding auto-covariance functions are believed to be isotropic within
the areas. At the transects at Stenhgje test site K, was ranging from 4.67 to
6.25, which corresponds to a range in the estimated 6, from 7% to 11%. Along
the transects at Benlighgj K, was ranging from 5.06 to 7.34. Dubois (1995) and
Ji (1996) showed that the standard deviation of soil moisture retrieval using
polarimetric SAR is less than 4.5% under near bare field conditions [26], [37].
Since the radar backscattering coefficient is strongly affected by K, it is there-
fore unlikely that a variation in soil moisture within and between Stenhgje and
Benlighgj test sites 4 June 1997 could be detected using polarimetric EMISAR.
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CHAPTER 8

EMISAR data versus Gjern

In Chapter 6 in situ data from Ladegaards Enge were presented and analyzed.
The key issue in this chapter is to investigate to what extent the collected in situ
data are correlated with the geometrically rectified one-look C-(5.3 Ghz) and
L-(1.25 Ghz) band polarimetric EMISAR data. The in situ data were collected
simultaneously with the EMISAR acquisitions 3 June 1997. The in situ data
to be used in this investigation are the apparent dielectric constant K, and the
dominant species of vegetation covering the test site. In the Figures 6.22 and
6.3, maps of K, and the dominant species of vegetation at Ladegaards Enge are
presented.

In order to support this investigation three training areas are selected each
assigned to the three sub-areas mentioned in Section 6.1. The criteria for se-
lecting the training areas are relative homogeneity in terms of vegetation and
soil moisture. The geographical locations of the three training areas are shown
in Figure 8.1 and in the analyses that follow the three training sets will be
identified by their colour codes. Sub-area I, which represents a marsh, was the
wettest part of the test site and is given a blue colour. Sub-area II, which was
intermediate in terms of soil moisture, is assigned a red colour and the driest
part of the test site was sub-area III which is given a green colour. The various
types of the dominant species of vegetation within the three sub-areas I, II and
IIT are shown in the Figures 6.8 (b), 6.8 (a) and 6.7 (b).



172 EMISAR data versus Gjern

Figure 8.1: The training areas or classes which represent the test site at Lade-
gaards Enge. The blue training area is located in sub-area I, which was a marsh
characterized with water above ground level. The red area is located in sub-
area II, which was dominated by Deschampsia caespitosa and the green area
is located in sub-area III where Alopecurus pratensis was prevailing. The grey
background represents a mixture of various types of vegetation.

As we have seen the test area at Ladegaards Enge is very small. It covers in
total only 10300 m? and the smallest patches of dominant species of vegetation
in Figure 6.3 correspond to the size of a pixel. Due to the small test site it follows
that substantial demands have to be put on the geometrically rectification of
the polarimetric EMISAR data, see Section 3.3. This is a crucial task in the
matching of the remotely sensed data with the available in situ data.

It is therefore relevant to know how accurately the geometry of the rectifica-
tion matches the reference. For re-sampling the bilinear interpolation is applied
and using (3.8) the measured geometric error 62 at a point is 2.3 [m?] in both
the Northern and Eastern directions. This corresponds to a standard devia-
tion of about 0.5 pixel, which is fairly good for our application. The affine
transformation is therefore well suited for the rectification of the EMISAR
data covering this small test area. After the re-sampling the number of pix-
els/observations is 1115 and one pixel corresponds to ~ 9.25 m?. In Section 3.3 is
presented the common methods for geometrical transformation and re-sampling
and our strategy
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Figure 8.2: Restored polarized C- and L-band EMISAR amplitude data using
the Gamma pizel prior in a simulated annealing algorithm. The data are geo-
metrically rectified and cover the test site at Ladegaards Enge 3 June 1997. One
pixel corresponds to ~ 9.25 m? and the images are stretched linearly between
their mean +3.5 std.
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C-band VV L-band VV

Figure 8.3: Restored polarized C- and L-band EMISAR amplitude data using
the Gamma pizel prior in a simulated annealing algorithm. The data are geo-
metrically rectified and cover the three training areas at Ladegaards Enge 3
June 1997, see Figure 8.1. One pixel corresponds to ~ 9.25 m? and the images
are stretched linearly between their mean +3.5 std.
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Figure 8.4: Mean amplitudes for the restored and geometrically rectified polar-
ized C- and L-band EMISAR data covering the three training areas at Lade-
gaards Enge 3 June 1997, see Figure 8.3. The blue colour represents sub-area I,
red colour represents sub-area Il and green represents sub-area II1. The errorbars
indicate the standard deviation of the mean amplitudes.

for sampling GCP is outlined.

When we recall that the smallest patches of dominant species of vegetation cor-
respond to the size of a pixel substantial demands also have to be put on the
quality of the restorations. In Section 5.7 it was demonstrated that the Gamma
pizel prior implemented in a SA algorithm performs fairly well when it comes
to reconstructing fine structures as well as preserving homogeneous areas and
boundaries between adjacent regions. We therefore have applied the Gamma
pizel prior and the SA algorithm in the restorations of CVV, CHV, CHH, LVV,
LHV and LHH. The restored data have been geometrically rectified to the UTM
system zone 32 ED(50) and the extracted data covering the test site at Lade-
gaards Enge are presented in Figure 8.2. In Figure 8.3 the equivalent restored
data are presented corresponding to the three training areas in Figure 8.1. A
representation of the mean amplitudes of the restored EMISAR data is given in
Figure 8.4.

In order to make further use of the polarimetric aspects of the EMISAR data
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Figure 8.5: Restored geometrically rectified L-band ratios and phase differences
in the test site at Ladegaards Enge 3 June 1997. HV/VV and HH/VV are
indicated by the dB scales and ZHH-VV is stretched linearly between -1.96 rad
and 2.38 rad. One pixel corresponds to ~ 9.25 m?2.
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Figure 8.6: Restored geometrically rectified L-band ratios and phase differences
in the three training areas at Ladegaards Enge 3 June 1997, see Figure 8.1. The
grey background represents the rest of the test site. HV/VV and HH/VV are
indicated by the dB scales and ZHH-VV is stretched linearly between -1.96 rad
and 2.38 rad. One pixel corresponds to ~ 9.25 m?.
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also lowpass filtered ZLHH-LVV and restored amplitude ratios LHV/LVV and
LHH/LVV are included in the analyses, see Section 1.2.1. These geometrically
rectified data are presented in Figures 8.5 and 8.6. All images are stretched
linearly between their mean +3.5 std.

The multivariate variables used in our analyses now include CVV, CHV, CHH,
LVV, LHV, LHH, LHV/LVV, LHH/LVV and ZLHH-LVV. The analyses com-
prise two multivariate data sets, one set containing observations from the whole
test site and one containing observations from the three training areas only.
Each of the variables in the multivariate data sets is standardized to zero mean
and variance one.

The following classical multivariate techniques are used in the preliminary analy-
ses of the EMISAR data: In Section 8.1 Principal Components (PC) are used
for detecting linear relationships and for measuring the ’interestingness’, which
is maximized in terms of the variance. The separation between the sub-areas is
maximized using Canonical Discriminant Analysis (CDA) in Section 8.2. This
is followed up by a discussion of what could be the reason for certain frequen-
cies and polarizations of the EMISAR to interact with the physical properties
of the sub-areas. In Section 8.3 Multiple Discriminant Analysis (MDA) is used
to classify observations (pixels) from the whole test site into the three prede-
fined classes based on observations from the three training areas. In Section 8.4
mapping of K, from EMISAR data is carried out using linear Multiple Regres-
sion Analysis (MRA). In Section 8.5 the natural grouping of the observations is
explored using Cluster Analysis (CA).

8.1 Principal components

In this section preliminary studies are made in order to disclose any possible
structure and to determine the “real” dimensionality of the multivariate data
set, see Section 3.5.1.

In Figure 8.7 are shown scatter-plots of the variables mentioned above after they
have been transformed into the PC space. The observations are here covering the
whole test site. Starting in the upper left corner going right the scatter-plots are:
PC1/PC2, PC1/PC3, ..., PC4/PC5. The colours used in the plots magenta-
blue-cyan-green-yellow and red represent the number of hidden observations 0,
1,2, 3,4 and > 4.

The scatter-plot PC1/PC2 of the first and second principal components is the
one that exhibits most structure. This is not surprising when we recall that the
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Figure 8.7: Scatter-plots of variables transformed into the principal component
space. The variables are restored geometrically rectified C- and L-band polarized
EMISAR amplitude data from the whole test site at Ladegaards Enge 3 June
1997, see text page 178. Starting in the upper left corner going right the scatter-
plots are: PC1/PC2, PC1/PC3, ..., PC4/PC5. The colours magenta-blue-
cyan-green-yellow and red represent the number of hidden observations 0, 1, 2,
3,4 and > 4.
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Figure 8.8: Scatter-plots of variables transformed into the principal component
space. The variables are restored geometrically rectified C- and L-band polarized
EMISAR amplitude data from Ladegaards Enge 3 June 1997, see text page 178.
Starting in the upper left corner going right the scatter-plots are: PC1/PC2,
PC1/PC3, ..., PC4/PC5. The green dots represent sub-area III which was the
dry area within the test site where Alopecurus pratensis was dominating. The
red dots represent sub-area II which was the humid part of the test area where
Deschampsia caespitosa was prevailing and the blue dots represent sub-area I
which was a wet marsh.



8.1 Principal components 181

Eigenvalue Difference Proportion Cumulative
1 4.2120 2.5694 0.4680 0.4680
2 1.6425 0.5653 0.1825 0.6505
3 1.0772 0.1275 0.1197 0.7702
4 0.9497 0.5067 0.1055 0.8757
5 0.4430 0.0447 0.0492 0.9249
6 0.3982 0.1606 0.0442 0.9692
7 0.2376 0.2030 0.0264 0.9956
8 0.0347 0.0295 0.0039 0.9994
9 0.0051 0.0006 1.0000

(a)

Variable PC1 PC2 PC3 PC4 PC5 PC6

CVV 0.1746  -.1323 0.8227 0.2596 0.0034 -.0549
CHV 0.3945 -.1346 0.2418 0.1773 -.1437 0.5177
CHH 0.3902 -.1395 -.0233 0.1747 0.0569 -.8188
LVV 0.3201  -.5087 -.2951 -.0292 0.0355 0.1501
LHV 0.4471 0.0188 -.1422 -.1121 0.4824 0.1353
LHH 0.4407 -.0143 -.2782 0.0738 -.3796 0.0547

LHV/LVV ~ 0.2834 0.5581 0.0870 -.1554 0.5063 0.0558
LHH/LVV ~ 0.2517 0.5996 -.0499 0.0804 -.5322 -.0345
ZLHH-LVV ~ -1464 0.1207 -.2636 0.9062 0.2419 0.1021

(b)

Table 8.1: Tables of variables transformed into the principal component space.
The variables are geometrically rectified C- and L-band polarized EMISAR data
from the whole test site at Ladegaards Enge 3 June 1997, see text page 178.
In (a) eigenvalues are listed in descending order and in (b) the eigenvectors
corresponding to the six highest eigenvalues are given in the basis vectors of the
original variables.
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PC5 PC6

Figure 8.9: Geographical placement of the principal components corresponding
to the six highest eigenvalues. The variables are geometrically rectified C- and
L-band polarized EMISAR data from Ladegaards Enge 3 June 1997, see text
page 178. One pixel corresponds to ~ 9.25 m? and the images are stretched
linearly between their mean £3.5 std.
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first PC are the linear transforms of the original variables with the highest
variance. The scatter-plots of the remaining PC, in particular those that do
not contain PC1, have less structure due to the smaller variance of the linear
transforms.

Observations belonging to the sub-areas I, II and III only are assigned the
colours blue, red and green and the variables listed on page 178 are in Figure 8.8
transformed into the PC space. The colours in the PC1/PC2 scatter-plot in
Figure 8.8 are concentrated in three clusters and we assume that the three
clusters represent the three sub-areas. Because the structure in the plots in
Figure 8.7 and 8.8 is similar it is therefore likely that the previously mentioned
structure in Figure 8.7 largely is explained by differences between the three
sub-areas.

In Table 8.1 (a) we note that 46.8% of the variance is explained by PC1 and
the PC1/PC2 scatter-plot in Figure 8.8 shows that PC1 is a good discriminator
especially between the sub-areas I and the sub-areas II and III. Referring to
Table 8.1 (b) and the first eigenvector we notice that the variables responsible
for most of the variance are CHV, CHH, LVV, LHV and LHH. A drawback of
PC is that it does not take into account how the observations are distributed
within the test site. In Figure 8.9 the geographical distribution of PC1 within
the test site at Ladegaards Enge is therefore shown. The image is stretched
linearly between its mean £3.5 std and as expected the bright and dark areas
correspond to sub-area I and the sub-areas II and III.

According to Table 8.1 (a) 18.3% of the variance is explained by PC2 and an ex-
amination of the PC1/PC2 scatter-plot in Figure 8.8 unveils that PC2 performs
poorly in discriminating between the sub-areas IT and III. However, PC3 is well
suited for discriminating between the sub-areas IT and III and here 12.0% of the
variance is accounted for. The variable responsible for most of the variance is
according to PC3 in Table 8.1 (b) CVV. The geographical distribution of PC3
is shown in Figure 8.9. The image is stretched linearly between its mean £3.5
std and some of the area corresponding to sub-area III is bright whereas the
area corresponding to sub-area II is dark.

Besides detecting linear relationships PC can be used for reducing the redun-
dancy in the data set. In Table 8.1 the eigenvalues and their corresponding
eigenvectors are listed. Here we note that 65.1% of the variance is explained
by PC1 and PC2 and 92.5% of the variance is accounted for by PC1, ..., PC5
alone. Since the measure of ’interestingness’ that is maximized is the variance,
much of the information is concentrated in PC1 and PC2.

Unfortunately the variance also is the Achilles’” heel of PC. That is to say PC has
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difficulties in separating the signal from the noise. This is in particular a prob-
lem in the presence of outliers, which are expected in the restored polarimetric
EMISAR data to be used, see text on page 112.

The polarized amplitudes VV, HV and HH of different frequencies e.g. CVV and
LHH are statistically uncorrelated whereas the polarized amplitudes VV, HV
and HH within each frequency e.g. CVV and CHH are statistically correlated.
However, during the annealing process this correlation is lost and the restored
amplitudes within each frequency are therefore statistically uncorrelated. As
mentioned on page 111, the variance of the restored EMISAR data is larger
in regions with large mean amplitude levels than in regions with small mean
amplitude levels. This is to some extent supported by Figure 8.4, where e.g. the
variances of CVV, CHH and LHH are larger for areas with high mean amplitude
levels compared to areas with small mean amplitudes levels.

8.2 Synergy between in situ data and EMISAR
data

In this section the interaction between the polarized wavebands of the EMISAR
and the physical properties of the sub-areas is studied. This is carried out
using Canonical Discriminant Analysis (CDA), which maximizes the separation
between the sub-areas, see Section 3.5.2.

In Figure 8.10 are shown the two canonical variates CAN1 and CAN2 of the
training data belonging to the sub-areas I, IT and III as described in the intro-
duction to this chapter. Based on the three training areas the canonical variates
and their geographical distributions covering the whole test site are shown in
Figure 8.11. Because there are three sub-areas or groups the discriminants span
two dimensions. The variables are given on page 178.

As it appears from Figure 8.10 the first linear discriminant CAN1 expresses the
difference between sub-area I and the sub-areas II and III. The corresponding
squared canonical correlation in Table 8.2 (a) shows that 79.8% of the variance
is accounted for by CAN1. The second linear discriminant CAN2 expresses
primarily the difference between sub-area II and sub-area III. Here the squared
canonical correlation in Table 8.2 (a) indicates that 56.1% of the variance is
explained by CAN2. The observed over all R? for testing of the null hypothesis
Hj that all three sub-areas have equal means is 0.42, which is significant at the
0.0001 level. We thereby reject Hy and conclude that the three sub-areas have
different means.
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Second canonical variate

First canonical variate

Figure 8.10: Linear discriminant plot for the three sub-areas within Ladegaards
Enge 3 June 1997. The variables and their correlations are shown in Table 8.2
(b). The blue dots represent a wet marsh which corresponds to sub-area I. The
red dots represent sub-area II which was a humid part of the test area where
Deschampsia caespitosa was prevailing and the green dots represent the dry
sub-area III where Alopecurus pratensis was dominating.

CANT1 in Table 8.2 (b) shows the total sample correlations between the first
canonical variables and the original variables. Here we see that the difference
between sub-area I and the sub-areas II, III to a large extent are due to the
variables CHV, CHH, LVV, LHV and LHH. This is also supported by the corre-
sponding mean amplitudes in Figure 8.4, which have high responses in sub-area I
and low responses in the sub-areas II, ITI. The same variables are also significant
in PC1 according to Table 8.1 (b). The geographical distribution of the first
canonical variate in Figure 8.11 therefore shows similarities with PC1 in Fig-
ure 8.9. According to CAN1 in Table 8.2 (b) the amplitude ratios LHV/LVV,
LHH/LVV and the phase difference ZLHH-LVV contribute to a lesser extent
to the separation of the sub-areas. The significance of the amplitude ratios is
discussed in Section 8.4.

Sub-area I was a swampy area with standing water saturated with vegetation
and pre-dominated by Glyceria mazima and Carex elata All. | see photo in Fig-
ure 6.8 (b). The biomass comprised fresh and withered material. The vegetation
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Adjusted  Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.8935 0.8918 0.0082 0.7984
2 0.7492 0.7466 0.0178 0.5613

(a)

Variable CAN1 CAN2

CVV 0.0204  0.9515
CHV 0.5687  0.5905
CHH 0.8407  0.0603
LvVv 0.7812  0.0327
LHV 0.9120  0.0172
LHH 0.9046  0.0631

LHV/LVV 0.4380 -0.0031
LHH/LVV 0.4030  0.0554
ZLHH-LVV  -0.4602 -0.2528

(b)

Table 8.2: (a) The squared canonical correlations and (b) the total sample cor-
relations between the canonical variables and the original variables. The sample
represents the three sub-areas within Ladegaards Enge of varying vegetation and
soil moisture. The variables are geometrically rectified C- and L-band polarized
EMISAR data covering Ladegaards Enge 3 June 1997, see text page 178.

rose approximately 0.5 m above the water and the straws were randomly orien-
tated. The straws of the withered material were to a large extent horizontal.

According to CAN1 in Table 8.2 (b) CHV, CHH, LVV, LHV and LHH are
responsible for most of the discriminating power between sub-area I and the sub-
areas II and IIT and the corresponding mean amplitudes in Figure 8.4 show that
sub-area I had the highest backscattering coefficient. Due to the wet conditions,
sub-area I was also the sub-area with the highest K, which probably explains
most of discriminatory power of CAN1. Sub-area II again had a higher K, than
sub-area III, which to a lesser extent is reflected in the mean amplitudes for
CHH, LVV, LHV and LHH in Figure 8.4.

However, differences in vegetation characteristics probably also explain why
CHV, CHH, LVV, LHV and LHH discriminate between sub-area I and the sub-
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"

CAN1 CAN2

Figure 8.11: The geographical distribution of the first and second canonical
variates in Figure 8.10. The canonical variates are based on the three training
areas shown in the Figures 8.3 and 8.6. The variables are geometrically rectified
C- and L-band polarized EMISAR data from Ladegaards Enge 3 June 1997, see
text page 178. One pixel corresponds to ~ 9.25 m? and the images are stretched
linearly between their mean £3.5 std.

areas II and III. Referring to Figure 8.4 and CAN1 in Table 8.2 (b) evidence
suggests that CHH and LHH is better at discriminating between sub-area I and
the sub-areas II and III than CHV and LHV. This could be explained by the
horizontal orientated straws of length ~ 6 cm and ~ 20 cm, which were more
frequent in sub-area I than in the sub-areas IT and III.

CAN2 in Table 8.2 (b) shows the total sample correlations between the second
canonical variables and the original variables. In this case the discriminatory
power between the sub-areas IT and III is concentrated in CVV and CHV. This
is supported by the corresponding restored CHV and CVV images in Figure 8.3
and mean amplitudes in Figure 8.4. In particular there is a powerful response
from the eastern part of sub-area III in the CVV image in Figure 8.3. According
to Table 8.1 (b) the variables CVV and CHV are also significant in PC3 and the
geographical distribution of the second canonical variate in Figure 8.11 therefore
has an appearance similar to the PC3 image in Figure 8.9.

The vegetation in sub-area II was dominated by Deschampsia caespitosa and
as the photo in Figure 6.8 (a) illustrates the straws from the fresh vegetation
were mainly ranging from oblique to vertical. Below the fresh vegetation was
withered material and here the prevailing direction was horizontal. From the
surface of the soil the maximum length of the fresh straws was approximately
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20 cm. The CAN2 sample correlation for CHV in Table 8.2 (b) is 0.59 and in
the CHV image in Figure 8.3 there is a faint response from the eastern part of
sub-area II. This suggests that oblique straws of length ~ 6 cm were present in
sub-area II. However, the CHV mean amplitudes in Figure 8.4 suggests that the
oblique orientation of straws of length ~ 6 cm were less frequent in sub-area II
than in the sub-areas I and III.

Again referring to the C-band HV image in Figure 8.3 it is striking that besides
the bright area, which corresponds to sub-area I, there is also a less bright area
located within sub-area III near the river. This suggests that the C-band HV
polarization, besides interacting with the swampy conditions in sub-area I, also
interacted with certain conditions within sub-area III. This bright area located
within sub-area III in the C-band HV image in Figure 8.3 is coincident with
a small plant community of Phalaris arundinacea. It is therefore likely that
the C-band HV polarization interacted with the leaves or seed-bearing parts of
Phalaris arundinacea.

A very characteristic feature of the vegetation was the ears of Alopecurus praten-
sis in the eastern part of sub-area III. As it appears from the photo in Figure 6.7
(b) the ears or the seed-bearing part of the grass were quite prominent. These
ears were approximately 6 cm long and vertically orientated. It is therefore
perfectly imaginable that the C-band VV polarization with its wavelength of
5.6 cm interacted with these ears. This interaction might possibly explain the
high response from CVV within sub-area III in Figure 8.3.

It is interesting that the green dots, which represent sub-area III in Figure 8.10,
are grouped together in three clusters. These clusters probably reflect three
communities of varying plant compositions. The clusters A and C both probably
correspond to regions where the ears of Alopecurus pratensis were dominating
or frequent. The clusters are due to the interaction between the ears and the
C-band VV polarization and according to the corresponding correlation of 0.95
in CAN2 in Table 8.1 (b) the discriminating power is outstanding. This is also
reflected by the mean CVV amplitudes in Figure 8.4 that indicates that the
vertical orientation of straws of length ~ 6 cm was more frequent in sub-area
IIT than in the sub-areas I and II. Cluster A corresponds to the bright region
in the eastern part of sub-area III in Figure 8.11 where the concentration of
ears was high. Cluster C represents the less bright area in the western part of
sub-area III near the river in Figure 8.11, where the ears were frequent. Cluster
B probably is partly due to the previously mentioned C-band HV response
from the small plant community of Phalaris arundinacea and partly due to a
transition zone between sub-area III and II, where the concentration of ears of
Alopecurus pratensis was smaller. This transition zone is faintly visible in the
CVV image in Figure 8.3 surrounding the brightest part of sub-area III.
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Figure 8.12: Supervised classification using Multiple Discriminant Analysis of
EMISAR data covering the three test sites at Ladegaards Enge. The training
areas are shown in Figure 8.1 where the colours red, green and blue corre-
spond to sub-area I, IT and III. The variables are geometrically rectified C- and
L-band polarized EMISAR data covering Ladegaards Enge 3 June 1997, see text
page 178. One square corresponds to ~ 9.5 m?.

In situations where the microwaves double-bounce from e.g. the soil surface and
the vegetation a phase shift of 7 radians between HH and VV is introduced [31],
[59]. The L-band HH-VV phase difference in the test site at Ladegaards Enge
is shown in Figure 8.6. Here the mean ZLHH-LVV for sub-area I was 0.00 rad
+0.05 std, 0.86 rad £0.03 std for sub-area IT and 0.64 rad +0.07 std for sub-area
III. The fact that the phase difference within sub-area II was larger than in sub-
area I and III supports the in situ knowledge from the field. Here sub-area II
was characterized by stems ranging from oblique to vertical with an approximate
length of 20 cm. The stems in sub-area I were more or less randomly orientated
and in sub-area III the prevailing orientation of the stems was vertical and their
length was approximately 1 m. The long stems and leaves in sub-area III made
multiple scattering for L-band more plausible than double-bounce scattering.
The discriminating power of the L-band phase difference in terms of separating
the three sub-areas is reflected by CAN1 and CAN2 in Table 8.2 (b). Here the
corresponding correlations for Z/LHH-LVV are -0.46 and -0.25.

It is noticeable that the blue dots in Figure 8.10 representing sub-area I seem to
have a large variance. As mentioned previously this is due to the high amplitude
level of sub-area I, which results in a large variance.
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From class I II 111 Total
206 194 107 507
(40.63)  (38.26) (21.10) (100.00)
I 163 0 0 163
(100.00)  (0.00) (0.00)  (100.00)
11 8 266 5 279
(2.87) (95.34)  (1.79)  (100.00)
II1 1 16 149 166
(0.60) (9.64) (89.76) (100.00)
Total 378 476 261 1115
(33.90)  (42.69) (23.41) (100.00)
(a)
From class I II 111 Total
206 194 107 507
(40.63) (38.26) (21.10) (100.00)
I 161 2 0 163
(98.77)  (1.23) (0.00)  (100.00)
1I 11 262 6 279
(3.94) (93.91) (2.15) (100.00)
111 2 19 145 166
(1.20)  (11.45) (87.35) (100.00)
Total 380 477 258 1115
(34.08) (42.78) (23.14) (100.00)
(b)

Table 8.3: (a) Number of observations and percent classified into class and
(b) number of observations and percent classified into class using leave-one-out
cross-validation. The observations are classified using quadratic discriminant
analysis. The classes I, II and III correspond to the three sub-areas within
Ladegaards Enge and the training areas and classified observations are shown
in the Figures 8.1 and 8.12. The variables are geometrically rectified C- and
L-band polarized EMISAR, data covering Ladegaards Enge 3 June 1997, see
text page 178. The dot represents observations which are not belonging to any
of the training areas.
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8.3 Supervised classification of EMISAR data

Based on a number of features each observation in the test area is classified into
one of the three classes defined by the three training areas. Supervised Bayes
classification is carried out using Multiple Discriminant Analysis (MDA), see
Section 3.6.1 for further description. The feature vector is the nine measured
or derived variables given on page 178. Feature extraction is a dimension re-
ducing technique that creates linear combinations of features which have good
discriminatory power between classes [69]. Thereby the unwanted effect of the
phenomenon termed the curse of dimensionality is reduced [9]. Methods of
feature extraction could e.g. be principal components or canonical correlations
analysis. However, in order to be able to compare the results obtained from the
MDA directly with the results obtained in the Sections 8.1 and 8.2 we will again
make use of all nine variables.

In Figure 8.12 is presented the result of the supervised classification using the
training areas given in Figure 8.1. As we see the over all impression is convincing.
The classes of the training areas are preserved during the classification and the
grey unclassified areas in Figure 8.1 have been classified in accordance with the
a priori knowledge from the field. An example is the blue area, representing the
swampy region, dominating in the right part of the image in Figure 8.12. This
is in perfect agreement with the experience from the test area that the swampy
area was increasing downstream.

Table 8.3 (a) shows the confusion matrix which contains information about
actual and predicted classifications. For example it appears that 95.3% of the
pixels which really belong to sub-area II are effectively assigned to sub-area II
and 2.9% are assigned to sub-area I. The dot represents observations which are
not belonging to any of the training areas prior to the classification. We note
that 100% of the observations belonging to sub-area I are assigned to sub-area
I, which indicates that sub-area I is well separated from sub-area II and III.

The error rate of the total number of observations correctly assigned within the
three training areas is according to Table 8.3 (a) 4.9%. This is surprisingly low
and we therefore use the leave-one-out cross-validation to evaluate the predictive
accuracy of the classification [69]. The confusion matrix of the cross-validation is
shown in Table 8.3 (b) and here the error rate of the total number of observations
correctly assigned within the three training areas is 6.6%. This suggests some
degree of inhomogeneity in one or two of the covariance matrices of the three
training areas. This could e.g. be due to sub-area III, which was inhomogeneous
in terms of the plant species. The observed over all R? for testing of the null
hypothesis Hy that all three classified areas have equal means is 0.35, which is
significant at the 0.0001 level. We thereby conclude that the three classified
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Figure 8.13: Linear discriminant plot for the classified result in Figure 8.12 of
Ladegaards Enge 3 June 1997 using the training areas in Figure 8.1. The vari-
ables and their correlations are shown in Table 8.4 (b). The blue dots represent
a wet marsh which corresponds to sub-area I. The red dots represent sub-area
IT which was a humid part of the test area where Deschampsia caespitosa was
prevailing and the green dots represent the dry sub-area III where Alopecurus
pratensis was dominating.

areas have different means. In Section 8.2 R? was 0.42, which shows that the
separation is better using the three training areas only. This difference could be
explained by the pixels outside the training areas, which belong to the transition
zone between the classes. Consequently, some of these pixels are assigned a class
membership based on a low a posteriori probability, which results in a decrease
of R2. This is also evident in the plot in Figure 8.13 of the two canonical variates
CAN1 and CAN2 of the classified observations. Here the classes are more grown
together than in Figure 8.10.

As in Section 8.2 the first linear discriminant CAN1 expresses the difference be-
tween sub-area I and the sub-areas II and III and the second linear discriminant
CAN2 expresses the difference between sub-area II and sub-area I11. Besides the
differences in terms of separating classes the structures in Figure 8.13 and Fig-
ure 8.10 remain very similar. This similarity is also reflected in the total sample
correlations between the two canonical variables CAN1 and CAN2 and the origi-
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.8604 0.8591 0.0078 0.7402
2 0.6796 0.6776 0.0161 0.4618

(a)

Variable CAN1 CAN2

(GAAY -0.0291  0.9483
CHV 0.5537  0.6034
CHH 0.7704  0.2136
LVV 0.8172  0.1381
LAV 0.8535  0.2082
LHH 0.8240  0.2022

LHV/LVV 0.3643  0.1555
LHH/LVV 0.2516  0.1483
ZLHH-LVV  -0.4059 -0.2544

(b)

Table 8.4: (a) The squared canonical correlations and (b) the total sample
correlations between the canonical variables and the original variables. The
sample represents the supervised classification of the test site in Figure 8.12
using the training areas in Figure 8.1. The variables are geometrically rectified
C- and L-band polarized EMISAR data covering Ladegaards Enge 3 June 1997,
see text page 178.

nal variables. A comparison between CAN1 and CAN2 in the Tables 8.4 (b) and
8.2 (b) shows that the variables that express most of the difference between the
sub-areas very much are the same. Again we notice that the green dots, which
represent sub-area I1I in Figure 8.13, are grouped together in three clusters. As
explained in Section 8.2 these clusters are probably reflecting three communities
of varying plant species and concentration of ears within sub-area III.

None of the classified observations are assigned to the reject class using the
threshold 0.05. That is to say the largest a posteriori probability for class
membership is larger than 0.05 for all observations. This supports that the
test area can be subdivided into the sub-areas I, IT and III represented by the
classified blue, red and green areas in Figure 8.12. The overall performance of
the classification is therefore good.
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Standard
Parameter  Estimate Error t Value Pr > |t|
Intercept 56.3494 0.3200 176.12 < .0001
CvVVv -5.5856 0.4038  -13.83 < .0001
CHV -3.3667 0.5331 -6.31 < .0001
CHH 6.7463 0.4926 13.70 < .0001
LVV 1.5121 1.1542 1.31 0.1904
LHV 6.7735 2.6213 2.58 0.0099
LHH 1.1543 2.4903 0.46 0.6431
LHV/LVV 0.5223 2.2062 0.24 0.8129
LHH/LVV -0.2869 2.0009 -0.14 0.8860
ZLHH-LVV 2.0875 0.3418 6.11 < .0001

Table 8.5: Estimates for the intercept and the coefficients for the model us-
ing multiple regression analysis. The dependent variable is the K, displayed
in Figure 6.22. The independent and standardized variables are geometrically
rectified C- and L-band polarized EMISAR data covering Ladegaards Enge 3
June 1997, see text page 178.

8.4 Mapping K, from EMISAR data

As mentioned in Section 3.1.3 the microwave data from the EMISAR are highly
affected by the apparent dielectric constant K, and thereby soil moisture. In this
section we wish to study a possible linear relationship between the estimated K,
in Figure 6.22, derived from the TDR-readings, and the polarimetric EMISAR
data. This is carried out using linear Multiple Regression Analysis (MRA),
which is briefly described in Section 3.4. Here the dependent variable is the
estimated K, in Figure 6.22 and the independent variables are the variables
given on page 178.

In Table 8.5 is given the model parameters, namely the intercept and the coef-
ficients including all nine independent variables. The ¢ test is used for testing
the null hypothesis Hy that the parameters equal zero. Here we notice from
Table 8.5 that the Pr > || values are not significant at the 0.05 level for all the
parameters. A backward-elimination technique is therefore used to eliminate the
variables one by one, that are likely to be zero, until all the remaining variables
in the model are significant at the 0.05 level. The result is given in Table 8.6
and using (3.9) the estimate 62 of how well the model as a whole accounts for
the variation in the dependent variables is 114.

The dependent variable K, is predicted by a linear combination of the inde-
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Standard
Parameter  Estimate Error t Value Pr > [t
Intercept 56.3494 0.3198  176.22 < .0001
CVV -5.7133 0.3905  -14.63 < .0001
CHV -3.1664 0.5066 -6.25 < .0001
CHH 6.9264 0.4666 14.84 < .0001
LVV 1.5062 0.4487 3.36 0.0008
LHV 7.7166 0.5316 14.52 < .0001
ZLHH-LVV 2.1097 0.3363 6.27 < .0001

Table 8.6: Estimates for the intercept and the coefficients for the model us-
ing multiple regression analysis. The table corresponds to Table 8.5 after a
backward-elimination of all variables that do not produce a t statistic signifi-
cant at the 0.05 level. The estimates are used in the regression equation for
predicting the K, values in the Figures 8.14 (a) and 8.16 at Ladegaards Enge 3
June 1997.

pendent variables in Table 8.6 and a geographical distribution of the predicted
K, is shown in Figure 8.14 (a). As mentioned above the dependent variable is
the estimated K, value in Figure 6.22. However, in order to make a pixel to
pixel comparison possible the map in Figure 6.22 is re-sampled to the size of
the geometrically rectified polarimetric EMISAR data. This re-sampled map is
shown in Figure 8.14 (b). A comparison between the Figures 8.14 (a) and 8.14
(b) shows that the spatial distribution of the predicted K, and the actual K,
is quite similar. At first glance this suggests that the model is well suited for
predicting K.

The measure of how much of the variation in K, can be accounted for by our
independent variables is R?. Using (3.10) R? is 0.58, which indicates that a
significant amount of the variation is explained by the model. Some reservation
should be taken in the interpretation of R? because outliers, which according to
text on page 112 are expected in the data, can seriously affect the statistics.

The difference between the predicted K, and the actual re-sampled K,, which
is called the residual, is illustrated in Figure 8.15. If our model had been good
the residuals in Figure 8.15 would have been randomly distributed about the
mean within the test site. However, there is some structure, showing that the
residuals are correlated. The reason for that is that the predicted K, is either
over- or under estimated within small patches at the test site. This indicates
that some 'unknown factor’ other than the soil moisture is operating. Although
the model as a whole is capable of predicting the spatial distribution of K, it
does not take this 'unknown factor’ into account.
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Figure 8.14: (a) Predicted K, values at Ladegaards Enge 3 June 1997 using
linear multiple regression. The dependent variable is the re-sampled K, shown
in (b). The independent variables are listed in Table 8.6. In (b) is shown the
K, values in Figure 6.22 re-sampled to the size of the geometrically rectified
polarimetric EMISAR data. One pixel corresponds to ~ 9.25 m?.

In Figure 8.16 is shown a scatter-plot of the re-sampled actual K, in Figure 8.14
(b) and the predicted K, in Figure 8.14 (a). The straight black line is the line
that best fits the points in a least squares sense. In the ideal case where R?
equals 1 the grey line would be the best fitted line. The two lines in Fig-
ure 8.16 cross each other at K, (actual) = 56 and the model over-estimates K,
for K, (actual) < 56 and under-estimates K, for K, (actual) > 56. The fact that
the two lines are crossing each other shows that a trend exists in the residuals
signifying that the dependent variable K, and the residuals are correlated. How-
ever, this correlation is to be expected while Cor(Y;,Y; — X;) =1— R? where Y;
is the dependent variable and X; the predicted result. The correlation between
the residuals and K, (actual) is therefore 1 — 0.58 = 0.42, which suggests that
another model might be more appropriate.

We note from Table 8.6 that CHH and LHV contribute to the predicted K,.
This is in agreement with results in Section 8.2 that suggested that the C-band
HH and L-band HV polarizations were affected by K, in the sub-areas I and
II. The yellow and red area in Figure 8.14 (b) with the highest K, is coincident
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Figure 8.15: The residual between the actual re-sampled K, values in Fig-
ure 8.14 (b) and the predicted K, values in Figure 8.14 (a). The standard
deviation ¢ is 10.7 and one pixel corresponds to ~ 9.25 m?2.

with a small bright area at the same location in the LHV image in Figure 8.2.
It is striking that this area again coincides with the small plant community of
Glyceria fluitans (8) in Figure 6.3. This suggests that the model besides being
affected by K, is strongly affected by the vegetation at Ladegaards Enge.

The assertion above that the model is strongly affected by the vegetation is
supported by Figure 8.16 where it is the green dots which significantly contribute
to the bias between the black and the grey lines. In case only the red and blue
dots had been included in the analysis the model fit would have been better.
Here we recall that the green dots represent the relatively dry sub-area III
dominated by the long vertical straws of Alopecurus pratensis. In Section 8.2
we made it probable that the C-band VV polarization interacted with the ears
of Alopecurus pratensis, which is also reflected by the relatively small CVV
coefficient in Table 8.6.

From the analyses above the previous mentioned 'unknown factor’ is probably
the vegetation cover at Ladegaards Enge, which played a central role in the
model for predicting soil moisture using MRA. This is a major problem because
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Figure 8.16: Scatter-plot of the re-sampled actual K, in Figure 8.14 (b) and
the predicted K, in Figure 8.14 (a). The straight black line is the line that best
fits the points in a least squares sense. The straight grey line shows the best
fitted line in the case R? = 1. The dots are assigned colours according to their
geographical distribution determined by the classification in Figure 8.12 (b) in
Ladegaards Enge 3 June 1997.

the model has difficulties separating the return caused by the soil moisture from
the return due to vegetation multiple scatter. This is also reflected in Figure 8.17
where the return from the restored C- and L-band polarized EMISAR data in
Figure 8.2 is plotted against the estimated K, in Figure 6.22. As we see there is a
weak correlation between the amplitude and K, for K, > 50. However, for K, <
50 corresponding to the dry sub-area III no correlation exists. This was possibly
due to the dense vegetation in sub-area III, which was less transparent to the
C- and L-band. Especially for CVV we note the high amplitudes for K, < 30.
These high amplitudes were possibly due to the previously mentioned interaction
between the ears of Alopecurus pratensis and the C-band VV polarization.

In order to assess how much the presence of vegetation cover affected the soil
moisture estimates various models have been proposed. Dubois et al. (1995)
[26] developed an empirical model for the retrieval of soil moisture and Ji et al.
(1996) [37] applied that model under near bare field conditions using C- and
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Figure 8.17: The restored and geometrically rectified polarimetric C- and L-band
EMISAR data in Figure 8.2 plotted against the actual K,. The K, values are
displayed in Figure 6.22 covering Ladegaards Enge 3 June 1997.
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L-band polarized EMISAR data. A criterion for the model to provide accurate
soil moisture estimates is that the L-band HV/VV ratio is less than —11 dB.

With the exception of a few pixels this criterion was unfortunately not met
at Ladegaards Enge where the L-band HV/VV ratio according to Figure 8.5
was mostly larger than —8 dB. Another criterion for separating the contribu-
tions from the soil and vegetation suggests the dry biomass to be less than
0.5 kg/m? using the polarized L-band [35]. Again this criterion was not met ac-
cording to Table 6.1. Here the dry biomass within Ladegaards Enge was greater
than 0.7 kg/m?. In case the criteria above had been fulfilled the co-polarized
L-band HH/VV ratio could be used for soil moisture retrieval [26]. However, as
demonstrated the test site probably was too vegetated. This is also indicated
in Table 8.5 where the contribution from the L-band HH/VV ratio is negligi-
ble. This suggests that a very detailed knowledge of e.g. the architecture of the
vegetation and its biomass is required in order to improve the model and the
prediction of K.

8.5 Unsupervised classification of EMISAR data

While the classes (clusters) were selected in advance in MDA we now seek the
natural grouping of the observations in a predetermined number of clusters.
The unsupervised classification of the observations is performed using Cluster
Analysis (CA). For a brief introduction to cluster analysis refer to Section 3.6.2.

In Figure 8.18 (a) is shown the geographical distribution of three clusters using
the nine measured and derived variables listed on page 178. It is hereby possible
to compare the unsupervised result in Figure 8.18 (a) with the supervised result
in Figure 8.12. In order to point out that the clusters in Figure 8.18 (a) are
possibly due to other physical properties than the ones separating the three
sub-areas in Section 8.2 and 8.3 the clusters are presented in grey levels. The
darkest grey level represents cluster 1, the intermediate grey level cluster 2 and
the brightest grey level cluster 3.

It is noticeable that the distribution of clusters in Figure 8.18 (a) to a large
extent reflects the field experiences. Cluster 1 is located in the part of the
test site that is less humid, corresponding to sub-area II and III and cluster
2 is located in the swampy sub-area 1. Except for two single pixels, cluster 3
coincides with the small plant community of Glyceria fluitans (8) in Figure 6.3.
Significant at the 0.0001 level the observed over all R? for testing of the null
hypothesis Hy that all three clusters have equal means is 0.44. This value is
only slightly better than the R? values 0.42 and 0.35 derived in the Sections 8.2
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(a) (b)

Figure 8.18: Unsupervised classification using cluster analysis of the geometri-
cally rectified C- and L-band EMISAR data covering Ladegaards Enge 3 June
1997. In (a) all nine variables given on page 178 are used in the analysis. Here
the darkest grey level represents cluster 1, the intermediate grey level cluster 2
and the brightest grey level cluster 3. In (b) the variables CVV, CHH, LVV and
LHV and LHH are used in the clustering. The red colour represents cluster 1,
cyan cluster 2, magenta cluster 3, blue cluster 4 and green cluster 5. One pixel
corresponds to ~ 9.25 m?.

and 8.3. One explanation of the improved separation is that cluster analysis is
well suited for outlier detection. One of the clusters could hold the outliers and
according to Figure 8.18 (a) the single pixels in cluster 3 are probably outliers.
Another explanation for the improved separation is that the observations in CA
are assigned to the nearest centroid, which not necessarily is the case when the
analysis is based on data from the training areas.

The canonical variates CAN1 and CAN2 of the clusters in Figure 8.18 (a) are
illustrated in Figure 8.19 and their corresponding eigenvalues and the total
sample correlation are listed in Table 8.7. As it appears from Figure 8.19 the
first canonical variate CAN1 expresses the difference between cluster 1 and
the clusters 2 and 3. According to Table 8.7 (a) the eigenvalue or squared
canonical correlation shows that 81% of the variance is accounted for by the
first linear discriminant. The second linear discriminant CAN2 discriminates
between cluster 2 and 3 and from the corresponding eigenvalue we note that
only 38% of the variance is explained.

An examination of the total sample correlations CAN1 between the first canon-
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Figure 8.19: Linear discriminant plot of the three clusters in Figure 8.18 (a).
The variables are geometrically rectified C- and L-band polarized EMISAR data
covering Ladegaards Enge 3 June 1997, see text page 178. The variables and
their canonical correlations are shown in Table 8.7.

ical variables and the original variables in Table 8.7 (b) shows that a major part
of the differences between cluster 1 and the clusters 2 and 3 is explained by
the variables CHV, CHH, LVV, LHV and LHH. The same variables played a
major role in the discriminatory power of CAN1 in Table 8.2 (b). For further
discussion refer to Section 8.2.

In an attempt to discover new classes five clusters instead of three are chosen in
the clustering in Figure 8.18 (b). This will also reduce the disturbing effect of
outliers. The variables now used are CVV, CHH, LVV, LHV and LHH because of
their large discriminating power in CDA, MDA and MRA in the sections 8.2 8.3
and 8.4. Due to the selected variables the location of the clusters in Figure 8.18
(b) are expected to more or less reflect the location of the sub-areas in Figure 8.1.
On the whole the colours of the clusters are therefore chosen to reflect the colours
of the sub-areas they are located in. The red cluster 1 consequently corresponds
to sub-area II, the cyan, magenta and blue clusters 2, 3 and 4 correspond to
sub-area I and the green cluster 5 corresponds to sub-area III.

The observed over all R? is 0.70, which is significant at the 0.0001 level. With
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.9001 0.8993 0.0057 0.8102
2 0.6148 0.6119 0.0186 0.3779

(a)

Variable CAN1 CAN2

(GAAY 0.3237 -0.0759
CHV 0.7907 -0.1473
CHH 0.7768  -0.3562
LVV 0.6483  -0.6096
LAV 0.9396  0.0435
LHH 0.8910 -0.1957

LHV/LVV 0.6300  0.7428
LHH/LVV 0.5267  0.5452
/ZLHH-LVV  -0.2658 0.0114

(b)

Table 8.7: (a) The squared canonical correlations and (b) the total sample cor-
relations between the canonical variables and the original variables. The sample
represents the grouping of the observations from Ladegaards Enge into the three
clusters in Figure 8.18 (a) using cluster analysis. The variables are geometrically
rectified C- and L-band polarized EMISAR data covering Ladegaards Enge 3
June 1997, see text page 178.

that Hj is rejected and it is concluded that the clusters have different means.
Obviously, this R? is larger than any of the previously calculated values but that
does not mean that the classes thereby are better separated using five clusters.
The reason for the larger value is that R? increases with increasing number of
classes.

The canonical variates CAN1 and CAN2 of the five clusters are shown in Fig-
ure 8.20. The first linear discriminant CAN1 expresses the differences between
the clusters 1, 5 and cluster 2 and the clusters 3, 4. The corresponding squared
canonical correlation in Table 8.8 (a) shows that 91% of the variance is accounted
for by CAN1. The second linear discriminant CAN2 expresses the difference be-
tween cluster 5 and the clusters 1, 2 and 4. Here the corresponding eigenvalue
in Table 8.8 (a) shows that 60% of the variance is explained by CAN2. Al-
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Figure 8.20: Linear discriminant plot of the five clusters in Figure 8.18 (b). The
variables are CVV, CHH, LVV, LHV and LHH and their canonical correlations
are shown in Table 8.8. The red cluster 1 is located in sub-area II. The cyan,
magenta and blue clusters represent cluster 2, 3 and 4, which are located in
sub-area I. The green cluster 5 corresponds to sub-area III. The variables are
geometrically rectified C- and L-band polarized EMISAR data covering Lade-
gaards Enge 3 June 1997, see text page 178.

though the discriminants span four dimensions due to the five clusters, CAN3
and CAN4 are neglected because according to their squared canonical correla-
tions in Table 8.8 (a) they are of less significance.

The total sample correlations between the first canonical variables and the origi-
nal variables in Table 8.8 (b) show that the discriminatory power of CANT most
widely is due to CHH, LVV, LHV and LHH. We find that the same variables had
a significant discriminatory power in CAN1 in the CDA in Section 8.2. From
Table 8.8 (b) we note that the discriminatory power of CAN2 almost solely is
concentrated in CVV. Not surprisingly CVV also played a central role in the
discriminatory power of CAN2 in Section 8.2. Here it was argued that the
high CVV in sub-area III to a large extent was due to the ears of Alopecurus
pratensis.

As we see the distribution of clusters in Figure 8.18 (b) largely reflects the dis-
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.9556 0.9553 0.0026 0.9132
2 0.7735 0.7723 0.0120 0.5983
3 0.5709 0.5699 0.0202 0.3259
4 0.2046 0.2032 0.0287 0.0419

(a)

Variable CAN1 CAN2 CAN3 CAN4
(AYAY 0.2810  0.9208 0.1715 -0.1992
CHH 0.8259 -0.0277  0.0632 -0.3879
LVV 0.7795 -0.1979  0.3464 -0.2008
LHV 0.9268  0.0025 -0.3463  0.0457
LHH 0.9257 -0.1144 0.1662 0.3073

(b)

Table 8.8: (a) The squared canonical correlations and (b) the total sample
correlations between the canonical variables and the original variables. The
sample represents the unsupervised classification of the test site at Ladegaards
Enge in Figure 8.18 (b) using cluster analysis. The variables are geometrically
rectified C- and L-band polarized EMISAR data covering Ladegaards Enge 3
June 1997, see text page 178.

tribution of vegetation communities in Figure 6.3. Furthermore it is noticeable
that the green dots in cluster 5 in Figure 8.18 (b) seem to comprise three clusters
as in Figure 8.10. As explained in Section 8.2 these clusters probably are due
to various plant communities within sub-area III.

8.6 Discussion

In this chapter the relation between the in situ data collected in the small
wetland environment at Ladegaards Enge and the polarized C- and L-band
EMISAR data, see text on page 178, has been analyzed. The in situ data
for the investigation are the apparent dielectric constant K, and the dominant
species of vegetation presented in Chapter 6 covering the test site 3 June 1997.
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In the initial phase of the analyses Principal Components (PC) in Section 8.1
were used to explore the structure and redundancy in the multivariate data
set. The scatter-plots in Figure 8.7 proved the existence of structure and in
Figure 8.8 it was made probable that the structure to a large extent is ascribed
by the three sub-areas in the test site of varying soil moisture and vegetation
characteristics. In terms of the redundancy in the multivariate data it turned
out that 92.5% of the variance is accounted for by the first five PC. This indicates
that the “real” dimensionality of the multi-variate data set is closer to 5 than 9.
The principal components PC4, ..., PC9 account for 23.0% of the information
carrying variance and their geographical distributions are shown in Figure 8.9.
The structure in these remaining PC indicates that a significant amount of
information is embedded in the polarimetric EMISAR data besides what can be
explained by the collected in situ data.

The dividing of the test site into three sub-areas was additionally supported
by the supervised classification using Multiple Discriminant Analysis (MDA) in
Section 8.3. Here the error rate of the total number of observations correctly
assigned within the three training areas was only 6.6% and none of the observa-
tions were assigned the reject class. In general the classified result in Figure 8.12
reflects the conditions at Ladegaards Enge 3 June 1997 remarkably well.

An unsupervised classification of the test site was in Section 8.5 performed using
Cluster Analysis (CA). Using all nine variables and three clusters the classifica-
tion in Figure 8.18 (a) to a large extent reflects the conditions in the test site at
Ladegaards Enge. However, due to the high dimensionality of the multivariate
data set and the relatively small number of observations some uncertainty in the
clustering is expected [9]. In order to reduce this problem and the disturbing
effect of outliers, the classified result in Figure 8.18 (b) was based on five clus-
ters and only five variables. Here the reduced number of variables were selected
due to their high discriminatory power in Section 8.2. Using these variables
the correspondence between the clusters in Figure 8.18 (b) and the classes in
Figure 8.12 is expected.

It is interesting that the blue swampy sub-area I in Figure 8.12 according to the
CA in fact comprises three sub-areas. These three sub-areas correspond to the
cyan, magenta and blue clusters 2, 3 and 4 in Figure 8.18 (b). This is in perfect
accordance with the field experience, where the clusters 3 and 4 are located in
an area with standing water and cluster 2 is located in a swampy area without
standing water.

According to Section 8.2 evidence suggested that the polarized frequencies were
affected by the soil moisture at Ladegaards Enge. This was valid for sub-area
IT and in particular for sub-area I. However, as shown in Section 8.4 the test
site was too vegetated for reliable soil moisture estimates to be made using the
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empirical model for soil moisture retrieval introduced by Dubois et al. (1995)
[26]. Due to the complexity introduced by the vegetation the vegetation char-
acteristics therefore have to be well explained in order to separate the return
due to soil moisture from the return due to vegetation. However, as the pre-
dicted K, in Figure 8.14 (a) shows, the vegetation multiple scattering seems to
reflect the actual soil moisture quite well. The explanation for this is that the
various plant communities require specific soil moisture conditions, which again
are reflected in the plant species.

Because the three sub-areas had different soil moisture contents this implies that
also the vegetation characteristics in the sub-areas were different. As shown in
Section 8.2 strong evidence suggested that this difference in vegetation char-
acteristics resulted in different backscattering coefficients from the sub-areas.
Here the C-band HV and VV and the L-band VV, HV and HH polarizations
discriminated between sub-area I and the sub-areas II and III. The C-band VV
and HV polarizations discriminated between sub-area II and III. To a smaller
extent the L.-band HH-VV phase difference also discriminated between the three
sub-areas. The phase difference within sub-area II was larger than in sub-area
I, which is surprising because rush in a wet area normally provides excellent
conditions for double-bounce scattering to occur. However, the straws or rush
in sub-area I were randomly orientated, whereas in sub-area II the straws were
ranging from oblique to vertical with an approximate length of 20 cm.
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CHAPTER 9

EMISAR data versus Mols
Bjerge

The in situ data collected at Mols Bjerge were presented and analyzed in Chap-
ter 7. The objective of this chapter is to analyze the relation between these in
situ data and the one-look C- and L- band polarimetric EMISAR data. The
fieldwork within Mols Bjerge was performed 4 June 1997, which was coincident
with the overflight by EMISAR making an acquisition at C-band (5.30 GHz).
The day before, the EMISAR had made an acquisition at L-band (1.25 Ghz).

Within Mols Bjerge the three test sites of interest are located at Trehgje, Ben-
lighgj and Stenhgje. Each of these grassland areas was selected in terms of
their homogeneity when it comes to vegetation cover and soil moisture con-
ditions. However, the volumetric structure of the above ground biomass, the
plant species and possibly the biomass in the three test areas were different.
The in situ data to be used are primarily the volumetric structure of the above
ground biomass content and the vegetation characteristics of the dominant plant
species.

For an aerial view of the three test areas refer to the ortho-photos in Figures 7.2
and 7.3. The three test sites are in Figure 9.1 assigned the colours red, green
and blue and in the succeeding analyses they represent Trehoje, Stenhgje and
Benlighgj respectively. Trehgje test site covers 6854 m? and was an old aban-
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Trehgje Stenhgje Benlighgj

Figure 9.1: The colours of the training areas or classes, which represent the
three test sites at Mols Bjerge.

doned grassland dominated by the dense and tangled vegetation of Deschampsia
flexuosa. This area had the largest volume of above ground biomass and is illus-
trated in Figure 7.4 (a). The test area at Stenhgje covers 1545 m? and is shown
in Figure 7.4 (b). Here the vegetation was green and vigorous and the dominant
species of vegetation was Festuca rubra. Benlighgj test site is displayed in the
Figures 7.5 (a)—(b) and covers 1425 m?. It was a grazed area with low vegeta-
tion and manure from cattle and the prevailing plant species was Deschampsia
flexuosa.

In order to match the EMISAR data with the collected in situ data the EMISAR
data are geometrically rectified to the UTM system zone 32 ED(50). For re-
sampling bilinear interpolation is applied. For a brief description of geometrical
transformations and sampling strategies of GCP refer to Section 3.3. The nearby
surroundings of the three test sites were quite similar to the conditions within
the test areas. Using (3.8) the observed or measured geometric error 62 of
the re-sampling is 2.3 m? in both the Northern and Eastern directions. The
relatively large test areas taken into consideration o2 is therefore negligible.

In Section 5.7 the Gamma pizel prior implemented in a SA algorithm was seen to
be convincing in terms of restoring fine structures and preserving homogeneous
regions. The three test sites at Mols Bjerge were all relatively homogeneous
and the Gamma pizel prior and the SA algorithm are therefore used in the
restorations of CVV, CHV, CHH, LVV, LHV and LVV. These restored and
geometrically rectified EMISAR amplitude data corresponding to the three test
areas are presented in Figures 9.2, 9.3 and 9.4. A graphical representation of
the mean amplitudes of the restored EMISAR data is given in Figure 9.5.
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Figure 9.2: Restored C- and L-band VV polarized EMISAR amplitude data
using the Gamma pizel prior in a simulated annealing algorithm. The data
are geometrically rectified and cover the three test sites at Mols Bjerge 3 and
4 June 1997. One square corresponds to ~ 9.25 m? and the three test areas are
stretched linearly among their mean £3.5 std.
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(a) C-band HV
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Trehgje Stenhgje Benlighgj

(b) L-band HV

Figure 9.3: Restored C- and L-band HV polarized EMISAR amplitude data
using the Gamma pizel prior in a simulated annealing algorithm. The data
are geometrically rectified and cover the three test sites at Mols Bjerge 3 and
4 June 1997. One square corresponds to ~ 9.25 m? and the three test areas are
stretched linearly among their mean £3.5 std.
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(a) C-band HH
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(b) L-band HH

Figure 9.4: Restored C- and L-band HH polarized EMISAR amplitude data
using the Gamma pizel prior in a simulated annealing algorithm. The data
are geometrically rectified and cover the three test sites at Mols Bjerge 3 and
4 June 1997. One square corresponds to ~ 9.25 m? and the three test areas are
stretched linearly among their mean £3.5 std.
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Figure 9.5: Mean amplitudes for the restored and geometrically rectified polar-
ized C- and L-band EMISAR data covering the three test sites at Mols Bjerge
3 and 4 June 1997. The geographical distribution of the restored and geomet-
rically rectified EMISAR data is shown in Figures 9.2, 9.3 and 9.4. The red
colour represents Trehgje, the green colour represents Stenhgje and blue rep-
resents Benlighgj. The errorbars indicate the standard deviation of the mean
amplitudes.

Besides the restored amplitudes important information is also carried by the am-
plitude ratios and phase differences, see Section 1.2.1. The analyses therefore in-
clude restored LHV/LVV and LHH/LVV ratios and lowpass filtered ZLHH-LVV.
These geometrically rectified data are presented in Figures 9.6 and 9.7, where
the data are stretched linearly between the mean amplitude of the three test
areas £3.5 std. After re-sampling one pixel corresponds to ~ 9.25 m?.

In order to explore the relation between the in situ data and the geometrically
rectified EMISAR data the following preliminary multivariate analyses are car-
ried out: In Section 9.1 Principal Components (PC) are used to study the infor-
mation bearing variances of the multi-dimensional EMISAR data. The synergy
between the in situ data and the polarized EMISAR data is explored in Sec-
tion 9.2 using Canonical Correlation Analysis (CDA). A supervised classification
of the three test sites at Mols Bjerge is performed in Section 9.3 using Multiple
Discriminant Analysis (MDA). The multivariate data set again comprises the
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Figure 9.6: Restored and geometrically rectified L-band ratios within the three
test sites at Mols Bjerge 3 June 1997. HV/VV and HH/VV are indicated by
the dB scales and one pixel corresponds to ~ 9.25 m?.
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Figure 9.7: Geometrically rectified phase differences between L-band HH-VV
data within the test sites at Trehgje, Benlighgj and Stenhgje at Mols Bjerge
3 June 1997. ZLHH-LVV is stretched linearly between -0.11 rad and 1.93 rad.
One pixel corresponds to ~ 9.25 m?.

variables CVV, CHV, CHH, LVV, LHV, LHH, LHV/LVV, LHH/LVV and ZLHH-
LVV. The variables are standardized to zero mean and variance one.

9.1 Principal components

Correlated multi-band data often possess a significant amount of redundancy.
Principal Components (PC) is a multivariate technique used to remove this
redundancy by simplifying the correlation structure in multivariate data. For a
brief description of PC refer to Section 3.5.1.

The variables transformed into the PC space are listed on page 216 and in
Figure 9.8 are shown scatter-plots of various combinations of PC. Starting in
the upper left corner going right the scatter-plots are: PC1/PC2, PC1/PC3,
..., PC4/PC5. The colours used in the plots magenta-blue-cyan-green-yellow
and red represent the number of hidden observations 0, 1, 2, 3, 4 and > 4.
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Figure 9.8: Scatter-Plots of variables transformed into the principal component
space. The variables are restored geometrically rectified C- and L-band polarized
EMISAR amplitude data from the three test sites at Trehgje, Benlighgj and
Stenhgje at Mols Bjerge 3 and 4 June 1997, see text page 216. Starting in the
upper left corner going right the scatter-plots are: PC1/PC2, PC1/PC3, ...,
PC4/PC5. The colours magenta-blue-cyan-green-yellow and red represent the
number of hidden observations 0, 1, 2, 3, 4 and > 4
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Figure 9.9: Scatter-Plots of variables transformed into the principal component
space. The variables are restored geometrically rectified C- and L-band polarized
EMISAR-data from the three test sites at Trehgje, Benlighgj and Stenhgje at
Mols Bjerge 3 and 4 June 1997, see text page 216. Starting in the upper left
corner going right the scatter-plots are: PC1/PC2, PC1/PC3, ..., PC4/PC5.
The red dots represent Trehgje, the green dots represent Stenhgje and the blue
dots Benlighgj.
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Figure 9.10: Geographical distribution of the principal components PC1 and
PC2 within the three test sites at Mols Bjerge. The variables are restored
geometrically rectified C- and L-band polarized EMISAR amplitude data from
3 and 4 June 1997, see text page 216. One pixel corresponds to ~ 9.25 m? and
the three test areas are stretched linearly among their mean 3.5 std.
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Figure 9.11: Geographical distribution of the principal components PC3 and
PC4 within the three test sites at Mols Bjerge. The variables are restored
geometrically rectified C- and L-band polarized EMISAR amplitude data from
3 and 4 June 1997, see text page 216. One pixel corresponds to ~ 9.25 m? and
the three test areas are stretched linearly among their mean £3.5 std.
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Figure 9.12: Geographical distribution of the principal components PC4 and
PC5 within the three test sites at Mols Bjerge. The variables are restored
geometrically rectified C- and L-band polarized EMISAR amplitude data from
3 and 4 June 1997, see text page 216. One pixel corresponds to ~ 9.25 m? and
the three test areas are stretched linearly among their mean 3.5 std.
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Eigenvalue Difference Proportion Cumulative
1 3.1686 1.5180 0.3521 0.3521
2 1.6507 0.2186 0.1834 0.5355
3 1.4321 0.4355 0.1591 0.6946
4 0.9966 0.2516 0.1107 0.8053
5 0.7449 0.2036 0.0828 0.8881
6 0.5414 0.0951 0.0602 0.9483
7 0.4462 0.4352 0.0496 0.9978
8 0.0111 0.0027 0.0012 0.9991
9 0.0084 0.0009 1.0000

(a)

Variable PC1 PC2 PC3 PC4 PCh PC6

Cvv 0.0339 0.6028 -.3105 0.1348 0.0936 0.2360
CHV 0.3009 0.2460 -.2065 0.5366 0.2907 0.3054
CHH 0.3037 0.3585 0.0526 -.2514 0.4623 -.7018
LvVv 0.4429 -.3057 -.3380 -.2139 0.0373 0.0949
LHV 0.4932 -.0292 0.1194 -.3699 -.0232 0.3481
LHH 0.4993 -.3043 0.0356 0.1467 0.0044 -.0364

LHV/LVV ~ 0.1005 0.3976 0.6200 -.2865 -.0904 0.3328
LHH/LVV ~ 0.2182 -.1003 0.5512 0.5841 -.0532 -.1803
ZLHH-LVV ~ -2639 -.3043 0.2006 -.0588 0.8247 0.2895

(b)

Table 9.1: Eigenvalues and eigenvectors from the principal component analysis.
The variables are geometrically rectified C- and L-band polarized EMISAR-data
from the test sites at Trehgje, Benlighgj and Stenhgje 3 and 4 June 1997, see
text page 216. In (a) the eigenvalues are listed in descending order and in (b)
the eigenvectors corresponding to the six highest eigenvalues are given in the
basis vectors of the original variables.
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The linear transforms of the original variables with the largest variation are the
first two linear transforms PC1 and PC2. It is therefore not surprising that
the scatter-plot PC1/PC2 in Figure 9.8 is the plot that exhibits most structure.
The remaining scatter-plots PC1/PC3, ..., PC4/PC5 possess less structure i.e.
smaller variance.

As it appears from the PC1/PC2 scatter-plot in Figure 9.8 the observations
seem to form three clusters in the PC space. For our purpose it is of particular
interest to know how these clusters are geographically distributed throughout
the three test areas at Mols Bjerge. A natural step is therefore to investigate if
the three clusters in fact represent the three test sites. In order to pursue that
objective observations from the test sites at Trehgje, Benlighgj and Stenhgje are
assigned the colours red, green and blue and the variables on page 216 are again
transformed into the PC space.

This is illustrated in Figure 9.9 and because the colours in the PC1/PC2 scatter-
plot are located in the three clusters we assume that the three clusters represent
the three test sites. The geographical distribution of the principal components
PC1, ..., PC6 is illustrated in the Figures 9.10, 9.11 and 9.12. In Table 9.1
(a) we see that 35.2% of the variance is accounted for by PC1 and according to
Figure 9.9 and the PC1/PC2 scatter-plot, PC1 is excellent in terms of separating
Trehgje from Benlighgj and Stenhgje. Referring to Table 9.1 (b) and the first
eigenvector we note that the variables responsible for most of the variance are
the L-band polarizations VV, HV and HH. The distribution of PC1 within the
three test sites is shown in Figure 9.10 and here it is obvious that the Trehgje
test site stands out.

We see from Table 9.1 (a) that 18.3% of the information bearing variance is
carried by PC2 and according to the PC1/PC2 scatter-plot in Figure 9.9 PC2
is satisfactory in discriminating between Stenhgje and Benlighgj. This is also
reflected by PC2 in Figure 9.10. The variable responsible for most of the vari-
ance is according to the second eigenvector in Table 9.1 (b) the C-band VV
polarization.

Certain reservations have to be made when PC are applied to SAR data. Al-
though the information is equated to variance the same variance can also be
the Achilles’ heel of PC. This is e.g. a problem when outliers, which are present
in the data to be used, can distort the eigenvalues, see text on page 112. It
should be noted, that C- and L-band polarimetric SAR data are statistically
uncorrelated whereas the polarized variables in C- and L-band respectively are
statistically correlated. However, during the annealing process this correlation is
lost and the restored amplitudes within each frequency are therefore statistically
uncorrelated.



224 EMISAR data versus Mols Bjerge

5 T T T T T T T T
4 = —
3 —
2
4 2 - -
=
= 1+ A -
i=!
S
8 0 —
=
S -1 -
[op]
2 ]
3 ]
" | | b ] ] | | |
-10 -8 -6 -4 -2 0 2 4 6 8

First canonical variate

Figure 9.13: Linear discriminant plot for the three test areas at Trehgje, Ben-
lighgj and Stenhgje. The eigenvalues and canonical correlations are shown in
Table 9.2 (b). The variables are geometrically rectified C- and L-band polar-
ized EMISAR-data from the test sites at Trehgje, Benlighgj and Stenhgje 3 and
4 June 1997, see text page 216. The red dots represent Trehgje, the green dots
Stenhgje and the blue dots Benlighg;j.

9.2 Synergy between in situ data and EMISAR
data

In this section the relation between the polarimetric EMISAR data and the
prevailing conditions in the test sites at Mols Bjerge is analyzed. In order
to make a possible improvement of the separation in Section 9.1 we will in
this section make use of Canonical Discriminant Analysis (CDA). For a brief
introduction to CDA refer to Section 3.5.2.

The two canonical variates CAN1 and CAN2 of the observations belonging to
the three test sites are displayed in Figure 9.13 and their geographical distri-
butions are shown in Figure 9.14. We note that the discriminants span two
dimensions due to the three test areas. The colour codes red, green and blue
are representing Trehgje, Stenhgje and Benlighgj respectively and the variables
and their correlations are listed in Table 9.2 (b).
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Figure 9.14: The geographical distribution of the first and second canonical
variates in Figure 9.13. The variables are geometrically rectified C- and L-band
polarized EMISAR-data covering Trehgje, Benlighgj and Stenhgje test sites 3
and 4 June 1997, see text page 216. One pixel corresponds to ~ 9.25 m? and
the three test areas are stretched linearly among their mean +3.5 std.
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The first linear discriminant CAN1 in Figure 9.13 discriminates between the
three test areas. In particular the difference between Trehgje and the areas
Stenhgje and Benlighgj is well expressed. The second linear discriminant CAN2
expresses the difference between Stenhgje and Benlighgj. Referring to Table 9.2
(a) the eigenvalues or squared canonical correlations indicate that 89.8% of the
variance is accounted for by CAN1 and 45.2% by CAN2. The observed over-
all R? is 0.33, which is significant at the 0.0001 level. This rejects the null
hypothesis Hy that all three test sites have equal means.

The total sample correlations between the first canonical variables and the orig-
inal variables are listed in CAN1 in Table 9.2 (b). As mentioned previously
CANT1 is in particular superior in discriminating between Trehgje and the ar-
eas Stenhgje and Benlighgj and according to Table 9.2 (b) this discriminating
power to a large extent is ascribed the variables LVV, LHV and LHH. This is in
agreement with the corresponding restored mean amplitude levels in Figure 9.5.
We recall that the variables LVV, LHV and LHH were also significant in PC1
in Table 9.1 (b) and the geographical distributions of CAN1 and PC1 in the
Figures 9.14 and 9.10 are therefore quite similar.

The photo in Figure 7.4 (a) illustrates Trehgje test site, which was character-
ized by the tussocks of Deschampsia flexuosa. As it appears the vegetation
was dense, tangled and dominated by randomly oriented stems. The average
height of the tussocks was 25 cm and vertical stems of Carez arenaria rose ap-
proximately 15 cm above the tussocks. The biomass comprised both fresh and
withered material of the approximate length ~ 20 ¢cm and we therefore could
expect a response from the L-band polarizations. Referring to Figure 9.5 this
was also the case. In Table 9.2 (b) the observed correlations for LVV, LHV and
LHH are 0.88, 0.89 and 0.94 for CAN1. Here differences in the above ground
biomass between Trehgje test site and the areas at Stenhgje and Benlighgj prob-
ably explain the discriminating power of the L-band. The dense vegetation
at Trehgje was transparent to the L-band, which leads to multiple scattering
and thereby higher backscattering coefficient. In particular horizontal stems of
length ~ 20 ¢m seem to have been more frequent in Trehgje test site than in the
other two. According to CAN1 in Table 9.2 (b) the C-band polarizations had
less discriminating power. This suggests that the difference between Trehgje
test site and the areas at Stenhgje and Benlighgj was smaller, when it comes to
stems of length ~ 6 c¢m in the upper part of the vegetation.

Due to the volume scattering in the vegetation, SAR has shown to be well suited
for biomass discrimination. The effect from the vegetation is relatively large for
the cross-polarized channels and the cross-polarized ratio HV/VV has proved to
be a good vegetation index [26]. Vegetation is more transparent to L-band than
C-band and because the vegetation cover in the three test sites was relatively
high the L-band HV/VV ratio is used. The L-band HV/VV ratio is illustrated in
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.9478 0.9474 0.0031 0.8983
2 0.6721 0.6697 0.0168 0.4517

(a)

Variable CAN1 CAN2

(GAAY -0.2138  0.4066
CHV 0.2710 -0.0217
CHH 0.3115  0.4862
LVV 0.8849 -0.0029
LAV 0.8922  0.3008
LHH 0.9440 -0.0926

LHV/LVV 0.0513  0.5599
LHH/LVV 0.3508 -0.2583
ZLHH-LVV  -0.2198 -0.2406

(b)

Table 9.2: (a) The squared canonical correlations and (b) the total sample
correlations between the canonical variables and the original variables. The
sample represents the test sites at Trehgje, Benlighgj and Stenhgje at Mols.
The variables are geometrically rectified C- and L-band polarized EMISAR data
covering Mols Bjerge 3 and 4 June 1997, see text page 216.

Figure 9.6 and here the mean ratio for Trehgje is —7.03 dB 40.05 std, —6.51 dB
40.08 std for Stenhgje and —8.4 dB 40.1 std for Benlighgj. According to these
L-band HV/VV ratios, Stenhgje had the highest biomass content and Benlighgj
the lowest. This, however, is not quite consistent with the field experiences
and the considerations above where the volume of the above ground biomass at
Trehgje was larger than at Stenhgje. The explanation probably is the orientation
of the stems, which affected the cross-polarized ratio. At Stenhgje the stems
were more likely to be oblique than at Trehgje.

As mentioned above both Stenhgje and Benlighgj can be separated by CAN1 and
CAN2. A comparison between the total sample correlations in Table 9.2 (b) and
the mean amplitudes in Figure 9.5 shows that the discriminatory power between
Stenhgje and Benlighgj expressed by CANI to a large extent is due to LVV and
LHH. Likewise a comparison between Table 9.2 (b) and Figure 9.5 discloses
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that a major part of the discriminatory power between Stenhgje and Benlighgj
expressed by CAN2 is ascribed to the variables CVV, CHH and LHV/LVV.

Concerning the L-band VV polarization in Figure 9.5 it is evident that the mean
amplitude level for Benlighgj was higher than for Stenhgje. This probably was
due to the long stems of Carex arenaria, which were frequent at Benlighgj but
not found at Stenhgje. The stems of Carez arenaria illustrated in Figure 7.5
(b) were vertically oriented and rose approximately 20 cm above the ground.
This is coincident with the wavelength of L-band and it is therefore likely that
the L-band VV polarization interacted with the stems of Carex arenaria. Also
the L-band HH polarization had, according to Figure 9.5, great significance
in terms of separating Stenhgje from Benlighgj and again the mean amplitude
level for Benlighgj is higher than for Stenhgje. This phenomenon most likely was
caused by the withered material from Deschampsia flexuosa and Carex arenaria
at Benlighgj, which was mostly horizontal oriented as displayed in the photo in
Figure 7.5 (b).

Another explanation for the amplitude level of the test site at Benlighgj to be
higher than at Stenhgje for LVV and LHH could be that the actual soil moisture
content was higher at Benlighgj than at Stenhgje, see Table 7.2. This is due
to the microwave frequencies of the EMISAR, which are strongly sensitive to
the dielectric constant K, and thereby the soil moisture [35]. However, this
explanation is not consistent with the discussion in Section 7.5. Here it was
argued that although the actual soil moisture content within the test sites at
Stenhgje and Benlighgj was different, K, was very much the same due to the
different soil constituents.

According to Figure 9.5 and the C-band polarizations CVV, CHV and CHH we
note that the mean amplitude level for Stenhgje is higher than for Benlighg;j.
The reason probably is the ears of Festuca rubra, which were present at Stenhgje
but almost absent at Benlighgj. The Stenhgje test site is illustrated in the
photo in Figure 7.4 (b) and here the stems and ears of Festuca rubra were quite
prominent. The ears were randomly oriented and had a length of approximately
5 cm and they were therefore likely to interact with the wavelength of C-band
polarizations.

A conspicuous feature of Figure 9.13 is that the green dots representing Stenhgje
seem to be well separated along CAN2 forming at least three clusters. In accor-
dance with the field experiences this could be explained by the concentration of
ears of Festuca rubra, which was varying within Stenhgje test site.

The discriminating power of LHV/LVV in CAN2 in Table 9.2 (b) and the
LHV/LVV image in Figure 9.6 suggests that the biomass content in Stenhgje
test site was larger than at Benlighgj. This is consistent with the experiences
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from the field where the volume of the above ground biomass at Stenhgje was
larger than at Benlighgj.

In order to assess how much the presence of vegetation cover affects the backscat-
ter contribution from the soil moisture various models have been proposed.
Dubois et al. (1995) [26] developed a criterion that requires that the L-band
HV/VYV ratio is less than —11 dB for the model to provide accurate soil mois-
ture estimates. Unfortunately this criterion was not met within any of the three
test sites where the mean L-band HV/VV ratio was larger than —8.4 dB. An-
other criterion for separating the backscatter contributions from the soil and
vegetation suggests the dry biomass to be less than 0.5 kg/m? [35] using the po-
larized L-band. That criterion was also not met according to Table 7.1 with the
reservation that the biomass estimates are uncertain. This is also indicated by
the L-band HH/VV ratios, which are displayed in Figure 9.6. The co-polarized
ratio decreases with increasing K, and is therefore well suited for retrieving soil
moisture if the vegetation is sparse [26]. The mean HH/VV ratio for Trehgje
is 1.56 dB £0.04 std, 0.17 dB +£0.1 std for Stenhgje and 1.34 dB £0.09 std for
Benlighgj. We note that the ratios are close to one which indicates that the test
areas were heavily vegetated.

In the case of double-bounce scattering from the soil surface and the vegetation
a phase shift of = radians between HH and VV occurs [81]. In Figure 9.7
is illustrated the L-band HH-VV phase differences in the three test sites at
Mols Bjerge. The estimated phase statistics in terms of the mean radians and
standard deviation were 0.53 rad £+0.01 std for Trehgje, 0.61 rad £0.02 std for
Stenhgje and 1.93 rad £0.03 std for Benlighgj. It is noticeable that the phase
difference was larger in the test area at Benlighgj than in the areas at Trehgje
and Stenhgje. This probably was due to the long vertical stems of Carex arenaria
and the relatively bare soil surface at Benlighgj. The discriminatory power of
/LHH-LVV between Benlighgj and Stenhgje is faintly reflected by CAN2 in
Table 9.2 (b) where the observed correlation is -0.24.

9.3 Supervised classification of EMISAR data

In this section a supervised Bayes classification of the three test sites at Mols
Bjerge is carried out using Multiple Discriminant Analysis (MDA). For a brief
introduction to MDA refer to Section 3.6.1. The training areas or classes are
the three test sites Trehgje, Stenhgje and Benlighgj shown in Figure 9.1. These
classes each represent different characteristics in terms of the above ground
biomass and plant species. The feature vector consists of the variables listed on
page 216. Using all nine variables the classified result is then comparable with
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Trehgje Stenhgje Benlighgj

Figure 9.15: Supervised classification using Multiple Discriminant Analysis of
EMISAR data covering the three test sites at Mols Bjerge. The training areas
are shown in Figure 9.1 where the colours red, green and blue correspond to
the areas at Trehgje, Stenhgje and Benlighgj. The variables are geometrically
rectified C- and L-band polarized EMISAR data covering Mols Bjerge 3 and
4 June 1997, see text page 216. One square corresponds to ~ 9.5 m?.

the results obtained in the Sections 9.1 and 9.2. Based on the features each
observation within the test areas is classified into one of the three classes.

The classified result is presented in Figure 9.15 and according to the training ar-
eas in Figure 9.1 the classification is good. This is also reflected by the confusion
matrix in Table 9.3 (a), which contains information about actual and predicted
classifications. Here we note that all observations which originally belong to the
Trehgje test site are assigned to the Trehgje test site. The error rate of the total
number of observations correctly assigned within the three training areas is, ac-
cording to Table 9.3 (a), less than 1.0%. However, this result is to be expected.
Obviously, when the discriminant functions that best discriminate between the
three test sites, are based on the same three test sites which are used to evaluate
how accurate the prediction is, we are likely to get good classifications.

In order to assess the accuracy of this post hoc prediction we therefore use the
leave-one-out cross-validation [69]. According to the confusion matrix of the
cross-validation in Table 9.3 (b) the error rate of the total number of correctly
assigned observations within the three test sites is still 1.0%, which suggests
homogeneity of the covariance matrix within each of the three test areas. The
observed over all R? for testing of the null hypothesis Hy that all three classified
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From class T S B Total

T 741 0 0 741
(100.00)  (0.00)  (0.00)  (100.00)

S 0 161 6 167
(0.00)  (96.41) (3.59)  (100.00)

B 3 2 149 154
(1.95)  (1.30)  (96.75) (100.00)

Total 744 163 155 1062
(70.06)  (15.35) (14.60) (100.00)

(a)

From class T S B Total

T 741 0 0 741
(100.00)  (0.00)  (0.00)  (100.00)

S 0 161 6 167
(0.00)  (96.41) (3.59)  (100.00)

B 3 2 149 154
(1.95)  (1.30)  (96.75) (100.00)

Total 744 163 155 1062
(70.06)  (15.35) (14.60)  (100.00)
(b)

Table 9.3: (a) Number of observations and percent classified into class and
(b) number of observations and percent classified into class using leave-one-out
cross-validation. The observations are classified using Multiple Discriminant
Analysis. The classes T, S and B correspond to the three test areas Trehgje,
Benlighgj and Stenhgje at Mols Bjerge. The training areas and classified obser-
vations are shown in the Figures 9.1 and 9.15. The variables are geometrically
rectified C- and L-band polarized EMISAR data covering Mols Bjerge 3 and
4 June 1997, see text page 216.
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Figure 9.16: Linear discriminant plot for the classified result in Figure 9.15
of the three test sites at Mols Bjerge. The canonical correlations are shown
in Table 9.4 (b). The colours red, green and blue correspond to the areas
Trehgje, Stenhgje and Benlighgj. The variables are geometrically rectified C-
and L-band polarized EMISAR data covering Mols Bjerge 3 and 4 June 1997,
see text page 216.

areas have equal means is 0.33, which is significant at the 0.0001 level. It is
therefore safe to assume that the three classified areas have different means.
The classified areas in Figure 9.15 are almost identical with the training sites
and it is therefore not surprising that both R? in Section 9.2 and in this section
are identical.

As mentioned above the classified areas in Figure 9.15 are very similar to the
training areas, and we therefore would expect the statistics from the CDA to
be like the corresponding analysis in Section 9.2. The canonical variates CAN1
and CAN2 of the classified observations are shown in Figure 9.16. Like in
Section 9.2 the three test sites are separated by the first linear discriminant
CANI1. Especially the separation between the test site at Trehgje and the test
areas Stenhgje and Benlighgj is good. The second linear discriminant CAN2
expresses the difference between Stenhgje and Benlighgj. This separation is
also good i.e. only few pixels are misclassified.
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.9482 0.9478 0.0031 0.8991
2 0.6865 0.6842 0.0162 0.4713

(a)

Variable CAN1 CAN2

(GAAY -0.2184  0.4108
CHV 0.2696 -0.0134
CHH 0.3024  0.4947
LVV 0.8889  0.0101
LAV 0.8850  0.3025
LHH 0.9469 -0.0737

LHV/LVV 0.0359  0.5530
LHH/LVV 0.3514 -0.2372
ZLHH-LVV  -0.2208 -0.2461

(b)

Table 9.4: (a) The squared canonical correlations and (b) the total sample cor-
relations between the canonical variables and the original variables. The sample
represents the supervised classification of the test sites at Trehgje, Stenhgje and
Benlighgj in the Figures 9.15 and 9.16. The training areas are displayed in Fig-
ure 9.1 and the variables are geometrically rectified C- and L-band polarized
EMISAR data covering Mols Bjerge 3 and 4 June 1997, see text page 216.

The corresponding two eigenvalues or squared canonical correlations given in
Table 9.4 are 0.90 and 0.47. In Table 9.2 they were 0.90 and 0.45. In fact a
comparison between CAN1 and CAN2 and their correlations in Table 9.4 and
Table 9.2 unveils, as expected, that the statistics and the variables that express
most of the difference between the three test sites are very much the same. For a
discussion concerning the variables and their correlations the reader is therefore
referred to Section 9.2.
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9.4 Unsupervised classification of EMISAR data

In this section the natural grouping or association of the observations from
the three test sites at Mols Bjerge is explored. This is carried out using the
unsupervised classification technique Cluster Analyses (CA). In CA nothing
or little is known about the number of clusters (classes) and their structure
beforehand. For a short description of this technique refer to Section 3.6.2.

At first it seems natural to study to what extent the clustering algorithm chooses
to group the observations into three clusters using all nine variables. The dis-
tribution of the clusters is shown in Figure 9.17 (a) and the variables are the C-
and L-band polarized EMISAR data listed on page 216. The clusters might re-
flect other physical properties of the test sites than the ones separating the test
sites in the Sections 9.2 and 9.3. This is emphasized by displaying the clusters
in Figure 9.17 (a) in grey levels. Here the darkest grey level represents cluster
1, the intermediate grey level cluster 2 and the brightest grey level cluster 3.

It is noteworthy that Stenhgje and Benlighgj in Figure 9.17 (a) are assigned to
cluster 3, whereas Trehgje appears more inhomogeneous containing both cluster
1 and 2. In order to test the null hypothesis Hy that the three clusters have equal
means the over all R? is calculated. Significant on the 0.0001 level R? is 0.38.
This rejects Hy and we hereby conclude that the clusters are different. This
value is larger than R? derived in the Sections 9.2 and 9.3 indicating that the
clusters are better separated than the classes derived from the training areas.
The separation is improved because the observations in CA are assigned to the
nearest centroid. This is far from always the case when the classification is based
on data from training samples.

In Figure 9.18 the canonical variates CAN1 and CAN2 of the clusters in Fig-
ure 9.17 (a) are illustrated. The corresponding eigenvalues and total sample
correlations are listed in Table 9.5. The first canonical variate CANT1 is convinc-
ing in separating cluster 3 from the clusters 1 and 2 and according to Table 9.5
(a) 88.9% of the variance is accounted for. The second linear discriminant
CAN2 accounts for 51.2% of the variance and here cluster 1 is to a lesser extent
separated from cluster 2.

The total sample correlations between the first canonical variables and the orig-
inal variables in Table 9.5 (b) show that the discriminatory power of CAN1
most widely is due to the variables LVV, LHV and LHH. These variables were
also responsible for the major part of the discriminatory power of CAN1 in Ta-
ble 9.2 (b). In Section 9.2 was accounted for what possibly could be the reason
for LVV, LHV and LHH to discriminate between the test site at Trehgje and
the test areas at Stenhgje and Benlighgj
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Trehgje Stenhgje Benlighgj

—~
&
~—

Trehgje Stenhgje Benlighgj

(b)

Figure 9.17: Unsupervised classification of polarimetric EMISAR data using
Cluster Analysis. The data are geometrically rectified C- and L-band polarized
EMISAR data covering the three test sites at Mols Bjerge 3 and 4 June 1997 In
(a) all of the variables presented on page 216 are used in the clustering. Here
the darkest grey level represents cluster 1, the intermediate grey level cluster 2
and the brightest grey level cluster 3. In (b) the variables CHH, LVV, LHV,
LHH and LHV/LVV are used in the clustering. Here the blue colour represents
cluster 1, green cluster 2, red cluster 3, cyan cluster 4 and magenta cluster 5.
One pixel corresponds to ~ 9.5 m?.
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Figure 9.18: Linear discriminant plot for the classified result in Figure 9.17 (a)
of the three test sites Trehgje, Stenhgje and Benlighgj. The variables are geo-
metrically rectified C- and L-band polarized EMISAR data covering Mols Bjerge
3 and 4 June 1997, see text page 216. The canonical correlations are shown in
Table 9.5 (b).

As mentioned above CAN2 discriminates between cluster 1 and cluster 2. We
note that the distribution of the clusters in Figure 9.17 (a) is not reflecting
any difference between the test sites Stenhgje and Benlighgj. Observations
from these sites are located in cluster 3. According to Table 9.5 (b) the dis-
criminatory power of CAN2 is concentrated in the variables CVV, CHV, CHH
and LHV/LVV. Since the observations in the clusters 1 and 2 are located in
the Trehgje test area these variables apparently discriminate between two sub-
environments within Trehgje test area. In situ data to confirm the existence of
these sub-environments are not available.

In order to reduce the disturbing effect of outliers and enable the detection of
potential new classes, a new set of variables is selected and the number of clusters
is extended from three to five. The selected variables are CHH, LVV, LHV, LHH
and LHV/LVV because they have proven to be of major significance in both
CDA and MDA in the Sections 9.2 and 9.3. The classification using this new
set is presented in Figure 9.17 (b). Due to the selected variables the location
of the clusters are expected to be more or less coincident with the training
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.9427 0.9422 0.0034 0.8886
2 0.7158 0.7138 0.0150 0.5123

(a)

Variable CAN1 CAN2

(GAAY -0.0976  0.5864
CHV 0.3274  0.5677
CHH 0.4396  0.5754
LVV 0.8514 -0.2915
LAV 0.9372  0.1176
LHH 0.9184 -0.1367

LHV/LVV 0.1756  0.5241
LHH/LVV 0.3417  0.1841
ZLHH-LVV  -0.2896 -0.2806

(b)

Table 9.5: (a) The squared canonical correlations and (b) the total sample
correlations between the canonical variables and the original variables. The
sample represents the unsupervised classification of the test sites at Trehgje,
Stenhgje and Benlighgj in the Figures 9.17 (a) and 9.18. The variables are
geometrically rectified C- and L-band polarized EMISAR data covering Mols
Bjerge 3 and 4 June 1997, see text page 216.

sites. That is the blue colour represents cluster 1 corresponding to Benlighgj,
green represents cluster 2 corresponding to Stenhgje and red, cyan and magenta
colours represent the clusters 3, 4 and 5 corresponding to Trehgje.

In order to test Hy that the five clusters have equal means the over all R?
is calculated. Significant at the 0.0001 level the calculated R? is 0.73, which
rejects Hy. We therefore conclude that the clusters have different means. It is
noticeable that the value of 0.73 is larger than any of the previously calculated
R? values. However, R? is a measure of how well the clusters are separated and
consequently R? increases with increasing number of clusters. It is therefore
expected that the R? value of 0.73 is larger than the others because this value
represents five classes whereas previously calculated values represent only three.
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Figure 9.19: Linear discriminant plot for the classified result in Figure 9.17 (b) of
the three test sites Trehgje, Stenhgje and Benlighgj. The blue colour represents
cluster 1, green cluster 2, red cluster 3, cyan cluster 4 and magenta cluster 5.
The variables used in the clustering are CHH, LVV, LHV, LHH and LHV/LVV,
which are geometrically rectified C- and L-band polarized EMISAR data cov-
ering Mols Bjerge 3 and 4 June 1997, see text page 216. The corresponding
canonical correlations are shown in Table 9.6 (b).

Using CDA the linear discriminants span four dimensions due to the five clusters.
However, because the squared canonical correlations for CAN3 and CAN4 in
Table 9.6 (a) are relatively small, they are neglected. The canonical variates
CAN1 and CAN2 are displayed in Figure 9.19. The first linear discriminant
CANT1 is primarily well suited for separating the clusters 1 and 2 from the
clusters 3, 4 and 5. The corresponding squared canonical correlation in Table 9.6
(a) shows that 89.2% of the variance is accounted for by CAN1. The second
linear discriminant CAN2 expresses the difference between clusters 2, 4 and 5
and the clusters 1 and 3. Here the corresponding squared canonical correlation
in Table 9.6 (a) shows that 67.2% of the variance is explained by CAN2.

According to CAN1 in Table 9.6 (b) the total sample correlations between the
first canonical variables and the original variables are to a large extent explained
by LVV, LHV and LHH. As demonstrated previously these variables also played
a significant role in the discriminatory power of CANT1 in Section 9.2. Concern-
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Adjusted ~ Approximate Squared
Canonical Canonical Standard Canonical
Correlation  Correlation Error Correlation
1 0.9444 0.9441 0.0033 0.8920
2 0.8203 0.8193 0.0100 0.6728
3 0.6696 0.6687 0.0169 0.4483
4 0.4711 . 0.0239 0.2219

Variable CAN1 CAN2 CAN3 CAN4
CHH 0.4094  0.5288  0.6757 -0.3048
LVV 0.8728 -0.3698  0.2050 0.1384
LHV 0.9242  0.2819 -0.0903  0.1170
LHH 0.9308 -0.2067 -0.0467 -0.0519
LHV/LVV 0.1171 0.9344 -0.2915 0.1643

(b)

Table 9.6: (a) The squared canonical correlations and (b) the total sample
correlations between the canonical variables and the original variables. The
sample represents the unsupervised classification of the three test sites Trehgje,
Stenhgje and Benlighgj at Mols Bjerge in the Figures 9.17 (b) and 9.19. The
variables are geometrically rectified C- and L-band polarized EMISAR data
covering Mols Bjerge 3 and 4 June 1997, see text page 216.

ing CAN2 the total sample correlations between the second canonical variables
and the original variables are also listed in Table 9.6 (b). Here the discrimi-
natory power of CAN2 is concentrated in CHH and LHV/LVV. We find that
the same variables had significant discriminatory power in CAN2 in Section 9.2.
For a discussion concerning the discriminatory power of CAN1 and CAN2 in
relation to the physical properties of the three test sites refer to Section 9.2.

9.5 Discussion

Using multivariate techniques EMISAR, data have in this chapter been analyzed
in terms of their correlation with the in situ data. The EMISAR data were
geometrically rectified one-look C- and L-band polarized EMISAR data from
3 and 4 June 1997, see text page 216. The in situ data were collected 4 June
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1997 in three grassland areas located at Trehgje, Stenhgje and Benlighgj at
Mols Bjerge, see Chapter 7. Here the volumetric structure of the above ground
biomass and the dominant plant species were of particular interest.

In order to explore the presence of structure and compress the information in
the multivariate data, the variables were in Section 9.1 transformed into the
Principal Components (PC) space. The scatter-plots in Figure 9.9 proved the
existence of structure and that a majority of the structure was due to differences
between the three sub-areas. Here 53.6% of the information-bearing variance
was concentrated in PC1 and PC2. However, the geographical distribution of
the next four PC, that is PC3, ..., PC6, in Figures 9.11 and 9.12 showed
also structure. This suggests that additional information was embedded in the
polarimetric EMISAR data besides what was explainable by the in situ data
available. We also note that the first five principal components PC1, ..., PC5
explain 88.8% of the variance. This level of redundancy shows that it is worth-
while compressing the information in the first few PC.

Also the supervised classification using MDA in Section 9.3 discriminated be-
tween the three test areas. Here the training areas were represented by the
three test areas themselves. Using the threshold of 0.05, none of the classified
observations were assigned to the reject class. In addition the cross-validated er-
ror rate of correctly assigned observations was only 1.0%. With the reservation
that the prediction was post hoc, the overall performance of the classification
was therefore good.

An unsupervised classification of the test sites was in Section 9.4 performed
using Cluster Analysis (CA). Using all nine variables and only three clusters the
classified result in Figure 9.17 (a) discriminated between Trehgje test site and
the areas at Stenhgje and Benlighgj. However, the classification was unable to
distinguish between Stenhgje and Benlighgj. In order to suppress the unwanted
effect of outliers and reduce the curse of dimensionality, the number of clusters
was increased to five and the number of variables reduced to the five [9]. Here the
five variables with the highest discriminatory power in Table 9.2 were selected.
As expected the clusters in Figure 9.17 (b) therefore separate the three test sites.
From the cluster analysis we note that the test area at Trehgje in Figure 9.17
(b) comprises the red cluster 3, the cyan cluster 4 and the magenta cluster 5.
This suggests an inhomogeneity in Trehgje test site, which it is not possible to
account for by the in situ data available.

In Section 9.2 it was shown that the L-band VV, HV and HH polarizations
discriminated between Trehgje and the test areas at Stenhgje and Benlighgj.
This was most likely due to the large volume of above ground biomass at Trehgje,
which is illustrated in Figure 7.4 (a). The volume of the above ground biomass
in the test areas at Stenhgje and Benlighgj was smaller as indicated in the
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Figures 7.4 (b) and 7.5 (a)-(b). As demonstrated in Section 7.5 the number of
biomass samples was unfortunately too small to confirm this difference.

Due to volume scattering in the vegetation the cross-polarized amplitude ra-
tio HV/VV is often used as an indicator of biomass. However, according to
the L-band HV/VV ratios in Section 9.2 the biomass contents in Stenhgje test
site was higher than at Trehgje. Apparently this is inconsistent with sugges-
tion stated above, that Trehgje test site had the largest biomass content. The
explanation probably is differences in the geometrical structure of the domi-
nant plant species within the two test sites. Here the oblique straws were more
frequent at Stenhgje than at Trehgje, which affected the cross-polarized ratio.
The co-polarized amplitude ratio HH/VV is sensitive to the dielectric constant
and is therefore used for retrieving soil moisture. However, as shown in Sec-
tion 9.2 the test areas were too vegetated for reliable soil moisture estimates to
be made using the criterion of Dubois et al. (1995) [26]. A detailed knowledge
of the vegetation characteristics in the test sites would therefore be necessary
for the backscatter contribution due to soil moisture to be separated from the
vegetation backscatter.

The plant species in the test sites at Stenhgje and Benlighgj were different.
Stenhgje was dominated by Festuca rubra and at Benlighgj Deschampsia flezu-
osa and Carex arenaria were dominating. The L-band VV and the C-band VV,
HV and HH polarizations were affected by the difference in vegetation char-
acteristics and discriminated between the test sites at Stenhgje and Benlighgj.
Faint evidence suggested a larger phase difference between L-band HH and VV
in Benlighgj test area than in the test sites at Trehgje and Stenhgje. This prob-
ably was due to double-bounce scattering between the straws of Carex arenaria
and the relatively bare soil surface at Benlighgj.
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CHAPTER 10

Conclusion

10.1 Summary

In order to facilitate the extraction of biotope relevant information the main
part of this thesis has been concerning restoration of SAR data. Due to the
small size of the semi-natural ecosystems under study, it has been of paramount
importance for this investigation that the proposed restoration methods are
capable of restoring fine structures as well as preserving homogeneous areas.
The restorations are carried out in a signal adaptive mode using MRF in a
Bayesian framework. Various a priori models have been implemented in both the
local optimizer Tterated Conditional Modes (ICM) and the global optimization
technique Simulated Annealing (SA).

In Oliver and Quegan (1998) and Stewart et al. (2000) ratios of SAR data are
used as a quality measure of various reconstructions and segmentations [59],
[78]. In this work a new technique for algorithm optimization, which relies on
ratios of SAR data and their histograms, has been proposed. A quantitative
evaluation of the restorations based on statistics of the ratio images and their

histograms is presented together with comparative analyses of restorations using
ICM and SA.

The Gaussian a priori model, the exponential a priori model and the LaPlace
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a priori model have been implemented in the ICM algorithm. Among these
three a priori models the exponential prior proved to be the most convincing
in terms of preserving discontinuities and mean amplitude levels in SAR data.
Unfortunately, the exponential prior was not satisfactory in terms of preserving
sharp transitions between regions. We have therefore developed two new a priori
models, namely, the Gamma pizel prior and the Gamma mean prior, which aim
at solving this problem using a specially designed energy function. Implemented
in the ICM algorithm the Gamma pizel prior showed to be a little better than
the Gamma mean prior when it comes to preserving discontinuities and mean
amplitude levels.

As our study has demonstrated, the restored SAR data using the presented a
priori models and the ICM algorithm possessed some unwanted clutter. This is
due to the ICM algorithm, which performs gradient descent and therefore easily
gets trapped in local energy minima. This property of ICM unfortunately makes
ICM unsuitable for preserving details and homogeneous areas in SAR data.

In order to avoid the artefacts created by ICM the Gamma pizel prior has
been implemented in a SA algorithm. The preservation of details and homoge-
neous areas was further enhanced by introducing a Multi-Temperature Anneal-
ing (MTA) schedule, where the temperature is adapted to the statistics of the
local energy represented by the clique potentials. As the results show, our pro-
posed annealing algorithm is fast and satisfactory in terms of preserving small
details, edges, homogeneous areas and mean amplitude levels.

In the presented a priori models pair-site cliques with different weights in a
2nd order neighbourhood configuration have been used. For comparison, also
interactions involving pair-site cliques with equal weights in a 2nd order neigh-
bourhood configuration are implemented in the Gamma pizel prior. Our results
show that a small but significant amount of additional contextual information
can be extracted using pair-site cliques with different weights instead of using
pair-site cliques with equal weights.

Another aspect of this thesis was to explore to what extent the geophysical
and biophysical properties characterizing the semi-natural environments are de-
tectable in polarimetric SAR data. Because the preservation of fine structures
and homogeneous areas was crucial for this investigation, the Gamma pixel prior
implemented in the SA algorithm was used for restoration.

Our analyses show that the VV, HV and the HH polarizations for both C- and L-
band possessed power in discriminating between the different plant communities.
Also the L-band HV/VV and HH/VV ratios and the L-band phase difference
between HH and VV contributed to the discrimination, but to a lesser extent.
The cross-polarized ratio HV/VV is known to be a good vegetation index and
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is therefore used as an indicator of biomass. However, as the analyses from the
grasslands at Mols Bjerge show, differences in the geometrical structure of the
dominant plant species are more likely to affect the cross-polarized ratio than
differences in biomass. The results also show that the empirical model for soil
moisture retrieval introduced by Dubois et al. (1995) was unsuitable for reliable
soil moisture estimates to be made in the test areas [26]. This was due to the
dense vegetation and the co-polarized L-band HH/VV ratio was therefore more
likely to reflect vegetation backscatter than backscatter due to soil moisture.
The L-band phase difference between HH and VV has in this work proven to
be a useful indicator of plant communities in wetlands and grasslands where
vertical oriented straws are frequent.

Using multivariate techniques we have demonstrated that a strong relation ex-
ists between the biophysical properties in the wetland at Gjern and the three
grasslands at Mols Bjerge and the polarized EMISAR data. In other words, po-
larimetric SAR can provide important vegetation structural information about
wetlands and grasslands.

The analyses presented in this thesis show that a vast amount of information is
embedded in polarized SAR data even at very small scales and that SA using the
Gamma pizel prior and the MTA schedule is convincing in terms of retrieving
it. The analyses also show that the results using the Gamma pizel prior through
a SA algorithm are generally applicable. This is demonstrated in Appendix B
where the algorithm is applied on EMISAR data covering a large scene from the
Gjern area. Here human artefacts such as houses and roads and cover types such
as forests and towns to a large extent are preserved. The reservation concerns
thin line features, point scatterers and very small object corresponding to the
size of a few pixels which are likely to be smoothed out by the Gamma pizel
Prior.

10.2 Discussion

The new optimization principle has in the work presented proved to possess
some very advantageous properties. Firstly, it is completely data-driven and no
prior knowledge about the image scene is required. Secondly, using appropriate
a priori models, it is possible via synthetic SAR data to tune the algorithms in
such a fashion that discontinuities and mean levels of amplitudes are preserved.
This is of course of great importance in situations where the preservation of the
radiometric content or the preservation of boundaries between adjacent regions
is of concern.
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Although the Gamma pizel prior implemented in the SA algorithm has proved
to be successful in terms of restoring details and homogeneous areas in polarized
SAR data, it still possesses some flaws in terms of e.g. creating artefacts and
badly restored edges. Further research in the development of more sophisticated
energy functions and a priori models is therefore required for these problems to
be reduced. The presented algorithms are applied to SAR amplitude data only.
In order to take full advantage of the information embedded in the polarized
SAR data the algorithms need to be extended for restoration of the complex
covariance matrix.

We have restated some of the results obtained by Ozesmi and Bauer (2002), Price
et al. (2002) and Kouskoulas et al. (1999) that show that polarimetric SAR is well
suited for characterizing vegetation characteristics [61], [66], [44]. However, our
research has extended the knowledge further by showing that C- and L-band
polarimetric SAR also provides a prospective platform for characterizing the
biophysical properties of wetlands and grasslands and at very small scales.

This opens up possibilities in detailed mapping of plant communities in semi-
natural grasslands and wetlands using multifrequency polarized SAR data. One
possibility is the application of Discriminant Analysis (DA) and representative
training areas to explore the distribution of specific plant communities and sub-
environments. Another possibility is the use of Principal Components (PC) and
Cluster Analysis (CA) to obtain a general view of a region and possibly disclose
unknown biotopes.

The fusion of polarimetric SAR data with data from other sources provides the
most promise for improving wetland and grassland classification. Here another
source could e.g. be spectral data, which in Jacobsen et al. (2000) have proven
to be excellent for identification of plant communities in semi-natural grasslands
at Mols Bjerge [38].



APPENDIX A

Synthetic SAR images

In Chapter 5 ICM and SA algorithms were evaluated on synthetic SAR- and
EMISAR amplitude data. Here the performance of the algorithms was analyzed
using statistics derived from ratio images and their histograms.

This appendix is organized as follows: Figure A.1 shows the original five grey-
levels image and 5.1 (b) shows the image with synthetic SAR speckle. The
corresponding ratio image with histogram is displayed in Figure A.2. Restora-
tions using SA and the Gamma pizel prior involving eight pair-site interactions
with equal weights w. = w are shown in Figure A.3. In the figure the restora-
tions comprise both synthetic one grey-level and five grey-levels SAR data. The
corresponding ratio images with histograms are shown in the Figures A.4 and
A.5. The filtering of the synthetic one grey-level and five grey-levels SAR data
using the 40% quantile filter is illustrated in Figure A.6. The corresponding ra-
tio images with histograms are shown in the Figures A.7 and A.8. In Figure A.9
are shown a segmentation of the synthetic one grey-level and five grey-levels
SAR data using SA and the segann algorithm. The corresponding ratio images
with histograms are shown in the Figures A.10 and A.11

The data constitute a 150 x 150 array and if nothing else is mentioned the al-
gorithms involve the eight pair-site interactions with the weights of the cliques
given in Figure 4.2. Parameters from the fine tuning of the SA and ICM algo-
rithms are listed in the Tables A.1 and A.2 together with statistics derived from
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Figure A.1: The original synthetic five grey-levels image.

the ratio images.

The homogeneous synthetic one grey-level SAR data are presented in Figure 5.1.
The mean value is 0.05, which corresponds to the mean of the EMISAR data
in Figure 5.2. The speckle is independent, identically-distributed without any
traces of structure except for the natural clutter. The synthetic five grey-levels
SAR data are shown in Figure 5.1 (b). The five grey levels are uniformly dis-
tributed within the range of 0.02 and 0.12, which corresponds to the range of
interest in the EMISAR data in Figure 5.2. The smallest objects measure 3 x 3
pixels.

The basic properties of SAR speckle, upon which the generation of the synthetic
SAR amplitude data is founded, is outlined in Section 2.5. Using the expressions
(2.5) and (2.6) the synthetic Rayleigh distributed speckle with mean p is easily

generated. The variance o? is given by
2 2
o2 =1 (A1)
T

and subsequently o2 is used in the pseudo-random generator gnoise to produce
the identically distributed independent zero-mean Gaussian noise of X and Y.



249

The timings are obtained on a PC with a 350 MHz Intel Pentium II processor
over a 150 by 150 pixel image. The execution speed for the SA algorithm is
46.9 kpixels/s, which is equivalent to an execution time per iteration of 0.48
s. The ICM algorithms require an execution speed of 56.2 pixels/s, which cor-
responds to the 1000 grey-levels or classes used in the ICM algorithms. The
execution time per iteration is thereby 400 s.
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Figure A.2: (a) The ratio between the synthetic five grey-levels SAR data in
Figure 5.1 (b) and the original image in Figure A.1 and (b) a comparison of the
histogram of the ratio image and the theoretical Rayleigh distribution. The esti-
mated values Z and S?(z) are 1.0021 and 0.2744, see Section 5.2. The chi-square
test statistics x?(84) is 72.1. The value corresponding to the 0.05 significance
level for the x?(84) distribution is 106.39. The hypothesis that the observed
ratio frequencies match the Rayleigh distribution is therefore accepted.
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Figure A.3: (a) The restored synthetic one grey-level SAR data in Figure 5.1
(a) and (b) the restored five grey-levels SAR data in Figure 5.1 (b) using the
Gamma pizel priorin a SA algorithm with eight pair-site interactions with equal
weights. The length of the Markov chain is one and the cooling schedule used
is logarithmic. The data are stretched linearly between their mean £3 std.
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Figure A.4: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored data in Figure A.3 (a) using the
Gamma pizel prior and SA. The SA algorithm involves eight pair-site inter-
actions with equal weights. In (b) is the histogram of the ratio image shown
together with the theoretical Rayleigh distribution.
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Frequency

Figure A.5: (a) The ratio between the synthetic five grey-level SAR data in
Figure 5.1 (b) and the restored data in Figure A.3 (b) using the Gamma pizel
prior and SA. The SA algorithm involves eight pair-site interactions with equal
weights. In (b) is the histogram of the ratio image shown together with the

theoretical Rayleigh distribution.
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Figure A.6: (a) The restored homogeneous synthetic one grey-level SAR data
in Figure 5.1 (a) and (b) the restored five grey-levels SAR data in Figure 5.1
(b) using the 40% quantile filter with window size 7. The data are stretched
linearly between their mean £3 std.
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Figure A.7: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the restored data in Figure A.6 (a) using the
40% quantile filter with window size 7. In (b) is the histogram of the ratio image
shown together with the theoretical Rayleigh distribution.
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Figure A.8: (a) The ratio between the synthetic five grey-level SAR data in
Figure 5.1 (b) and the restored data in Figure A.6 (b) using the 40% quantile
filter with window size 7. In (b) is the histogram of the ratio image shown
together with the theoretical Rayleigh distribution.
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Figure A.9: (a) The segmented homogeneous synthetic one grey-level SAR data
in Figure 5.1 (a) and (b) the segmented five grey-levels SAR data in Figure 5.1
(b) using the segann SA algorithm from Sheffield. The shape penalty is set to 5
and the probability for merging regions is 3e-4. The data are stretched linearly
between their mean £3 std.
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Figure A.10: (a) The ratio between the homogeneous synthetic one grey-level
SAR data in Figure 5.1 (a) and the segmented data in Figure A.9 (a) using the
segann SA algorithm from Sheffield. In (b) is the histogram of the ratio image
shown together with the theoretical Rayleigh distribution.
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Figure A.11: (a) The ratio between the synthetic five grey-level SAR data in
Figure 5.1 (b) and the segmented data in Figure A.9 (b) using the segann SA
algorithm from Sheffield. In (b) is the histogram of the ratio image shown
together with the theoretical Rayleigh distribution.
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Iterated Conditional Modes, T =1
parameters Gauss | Exponential | LaPlace | Gamma, | Gamma,
mean pixel
k 7 5
«@ 2 2 2 2 2
15 3 5 3 0.5 0.5
n 9 9 9 9 9
z 1.1083 0.9957 1.0554 1.0554 1.0440
S2(2) 0.3307 0.2571 0.2920 0.2901 0.2813
f 75 78 7 74 76
() 1216 97 545 797 573
p{r < 2(f)} | > 0.999 < 0.95 >0.999 | >0.999 | > 0.999
(a)
Iterated Conditional Modes, T =1
parameters Gauss | Exponential | LaPlace | Gamma, | Gamma,
mean pixel
k 7 5
@ 2 2 2 2 2
15 3 5 3 0.5 0.5
n 9 9 9 9 9
zZ 1.0905 0.9757 1.0587 1.0598 1.0450
S2(2) 0.4061 0.2892 0.3122 0.311 0.2970
f 7 81 68 54 55
2(f) 5496 214 1206 1404 748
pl{z < 2(f)} | > 0.999 > 0.999 >0.999 | >0.999 | > 0.999
(b)

Table A.1: Parameters from the fine tuning of the ICM algorithms and sta-
tistics derived from the corresponding ratio images. In (a) are shown results
based on synthetic homogeneous one grey-level SAR data and in (b) the results
are applied to synthetic five grey-levels SAR data. The quantity k is a control
parameter that governs the peak of the Gamma distribution, « is a shape para-
meter, 5 is a weighting factor and n is number iterations, see Section 5.6. The
values z and S?(z) are the mean and variance of the ratio image. The “Good-
ness of Fit” test statistics between the observed frequencies and the theoretical
Rayleigh distribution is x2(f), where f is degrees of freedom.
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One grey-level image
parameters SA SA SA 40% quantile
pixel prior | pixel prior | Segann filter
equal w. | different w,
k 3.75 3.75
To 0.65 0.65
X0 0.30 0.30
z 1.014 1.010 0.999 1.25
S2(2) 0.271 0.267 0.2425 0.44
f 7 78 79 79
2 (f) 84 91 283 12687
p{r < 2(f)} < 0.95 < 0.95 > 0.999 > 0.999

(a)

Five grey-levels image
parameters SA SA SA 40% quantile
pixel prior | pixel prior | Segann filter
equal w, | different w,
k 3.75 3.75
T 0.65 0.65
X0 0.30 0.30
z 1.025 1.023 0.999 1.32
S2(2) 0.312 0.310 0.2698 0.63
f 62 53 78 67
() 232 156 103 > 40000
p{r < %(f)} > 0.999 > 0.999 < 0.95 > 0.999
(b)

Table A.2: Parameters from the fine tuning of various algorithms and statistics
derived from the corresponding ratio images. In (a) are shown results based
on synthetic homogeneous one grey-level SAR data and in (b) the results are
applied to synthetic five grey-levels SAR data. In the pizel prior using the
SA algorithm the Markov chain is homogeneous and the cooling schedule used
is logarithmic. The quantity k governs the peak of the Gamma distribution,
Ty is the starting temperature and yg is the acceptance ratio, see Section 5.7.
The values Z and S?(z) represent the mean and variance of the ratio image.
The match between the observed frequency data and the theoretical Rayleigh
distribution is measured by the means of the x?(f) “Goodness of Fit” test,
where f is degrees of freedom.
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APPENDIX B

Large EMISAR scene

The results presented in this thesis using the Gamma pizel prior through a SA
algorithm have been based on very limited datasets. In order to investigate
to what extent the results are more generally applicable the SA algorithm is
applied on a wider scene containing more human artefacts and a larger range of
cover types. The human artefacts include e.g. houses, roads and point scatterers
and the cover types include textured regions such as towns and forests.

The wider scene used is the slant-range C-band VV-polarized EMISAR ampli-
tude data in Figure B.1, see Section 1.2. The EMISAR is looking down from the
top. The size of the image in the azimuth direction is ~ 7.4 km and the ground
range of the image in the range direction is ~ 9.5 km. The area covered by
the EMISAR data is hereby approximately 70 km?. The data, which constitute
a 2450 x 2450 array, were acquired 3 June 1997 and cover the river valley of
Gjern and its surroundings in Jutland. From the left the river Gudena flows
into the small lake Sminge Sg and continues from there to the upper part of the
image. From the right Sminge S¢ has inflow from the stream Gjern A, which
cuts through the Gjern Stream Valley situated in the middle of the image. The
surroundings of Gjern Stream Valley are hilly and covered with forest. In the
bottom left corner of the image the town Voel is situated. The town Gjern
is situated in the middle of the image just right of the Gjern Stream Valley
and in the upper right corner the town Farvang is recognizable. Within and
between the towns roads are detectable. In the country small farms are visible
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and between the various agriculture fields hedges, small forests and trees can be
located. The small test area at Ladegaards Enge can be recognized 1 c¢cm to the
right of Sminge Sg.

Figure B.2 illustrates the restoration of the slant-range C-band VV-polarized
EMISAR amplitude data in Figure B.1 using (5.8). The ratio between the
C-band VV-polarized EMISAR data in Figure B.1 and the restored data in
Figure B.2 is presented in Figure B.3. The ratio image in Figure B.4 (a) shows
a small region extracted from Figure B.3. The region covers a 150 x 150 array
of relatively homogeneous agricultural fields located in the upper middle part
of the image in Figure B.1. The ratio data in Figures B.5 (a) also constitute
an 150 x 150 array extracted from Figure B.3, but this time covering the upper
part of the forest surrounding the Gjern Stream Valley in Figure B.1. The
ratio image in Figure B.6 (a) covers the town Farvang and again the ratio data
constitute an 150 x 150 array extracted from Figure B.3.

The C-band EMISAR data in Figure B.1 contain various line features such
as rivers, streams, hedges and roads. The river Gudena is very distinct in
Figure B.1 and so is the restored equivalent in Figure B.2. Here all the coils of
the river are preserved and the boundaries appear sharp. The stream Gjern A
is too small to be clearly identified in the Gjern Stream Valley in Figure B.1.
However, the few places in Figure B.1, where there is small evidence of the
stream, are preserved in Figure B.2. The major part of the hedges, which are
surrounding the agricultural fields and pastures in Figure B.1, is preserved in
Figure B.2. This also includes most of the roads between the towns.

In Section 5.7 it was demonstrated that although (5.8) is well suited for restoring
discontinuities such as edges and sharp transitions, the reconstruction is not
perfect as indicated by the structure in Figure 5.32(a). This is also indicated
in the ratio image in Figure B.3 where the structure reflects the discontinuities
at e.g. rivers, hedges and roads. Although the consequences of the smoothing
effect using (5.8) are small and negligible for large areas, the smoothing has
sever consequences for very small areas of the size of 3 x 3 pixels or less. This
is evident for the very narrow roads and single-row hedges in Figure B.1, which
are either only partly restored or over-smoothed in Figure B.2. Note, that the
line features are equally well restored using the proposed annealing algorithm
whether they have relatively small amplitudes levels like e.g. the river Gudena
and the roads, or they have relatively high amplitudes levels like e.g. the hedges.

The ratio data in Figure B.4 (a) possess very little structure. This indicates
that the agricultural fields, which they represent, are relatively homogeneous.
The statistics of the ratio image in Figure B.4 (a) are z = 1.026, S?(z) = 0.352
and x2(63) is estimated to 1200. Hj is hereby rejected, which is supported by
the histogram in Figure B.4 (b) where the observed frequencies do not match
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the theoretical Rayleigh distribution.

As demonstrated in Section 5.7 (5.8) is capable of restoring homogeneous ar-
eas in SAR amplitude data. However, this is not in agreement with the bias
in the histogram in Figure B.4 (b). Given that the data are not radiometri-
cally distorted the reason probably is, that the agricultural fields are not truly
homogeneous. Instead they probably contain large amplitude point scatterer
or small patches of different vegetation and soil moisture characteristics of the
size of a resolution cell i.e. a pixel. In the EMISAR data the pixels covering
these individual patches are recognized as outliers that are independent of their
neighbours. These outliers are also defined as a MRF although with an empty
neighbourhood. As a consequence the ratio data in Figure B.4 (a) are not iden-
tically distributed and therefore neither Rayleigh distributed everywhere. Since
the proposed annealing algorithm is designed to restore Rayleigh distributed
SAR data this probably explains the bias between the observed frequencies and
the theoretical Rayleigh distribution in Figure B.4 (b). Nevertheless, a visual
comparison between the EMISAR data in Figure B.1 and the reconstructed re-
sult in Figure B.2 shows, that relatively homogeneous regions such as Sminge
S¢ and the agricultural fields are well restored. This also includes the small
variations in brightness located within these areas.

Texture plays a dominant role in the discrimination of different forest types.
Within the scene in Figure B.1 the various forest types can be seen as the bright
areas surrounding the Gjern River Valley. These forest texture types include
secondary forest and cultivated forest. The secondary forest, which is covering
the hilly surroundings of the river valley, is a mixture of natural and planted
deciduous and coniferous forest. The cultivated forest is primarily located on
the fringes and is possibly coniferous. The small gaps in the forest, which stand
out as darker, often rectangular areas, originate from selective logging activities.
The forest is more transparent to the L-band than to the C-band. Since the
EMISAR data in Figure B.1 are C-band VV polarized, we will therefore expect
the major part of the backscatter from the forest to be due to multiple scattering
in the forest canopy and not double-bounce scattering from e.g. the ground and
trunks. Due to the multiple scattering a significant part of the microwaves is
reflected back towards the radar. This explains the relative bright appearance
of the forest.

The ratio data in Figure B.5 (a) cover an area with forest and the statistics of
the data are z = 1.05, S?(z) = 0.47 and x*(72) > 17000. This again rejects the
Hy hypothesis, which is also reflected in the poor match between the theoretical
Rayleigh distribution and the observed frequencies in Figure B.5 (b). A com-
parison between the statistics and histograms of the ratio data in Figure B.4
(a), (b) and Figure B.5 (a), (b) shows, that the histogram of the ratio data in
Figure B.5 (b) has the largest bias between the theoretical Rayleigh distribu-
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tion and the observed frequencies. This again is reflected in the structure in
Figure B.5 (a), which is slightly more pronounced than in Figure B.4 (a).

Based upon the analyses above it is concluded, that the agricultural fields are
better preserved than the forest. This has two main reasons. Firstly, in Fig-
ure B.1 the EMISAR data covering the forest contain more outliers than the
EMISAR data covering agricultural fields. This is mainly due to large ampli-
tude point scatterer or gaps between the trees and gaps within the canopy of
the size of a pixel. As mentioned above these outliers are independent of their
neighbours and as the number of outliers increases, the SAR amplitude data
are less likely to be Rayleigh distributed everywhere. Because the number of
outliers is smaller in the agricultural fields than in the forest and because the
annealing algorithm is only designed to restore Rayleigh distributed data, it
follows that the agricultural fields in Figure B.2 are better preserved than the
forest.

Secondly, the EMISAR data covering the forest possess more discontinuities
than the EMISAR data covering the agricultural fields. This is mainly due to
the different tree species and gaps between the trees. Since discontinuities are
not completely restored by the annealing algorithm, the larger number of dis-
continuities in the forest has the effect that the agricultural fields in Figure B.2
are better preserved than the forest. However, despite the fact that the forest is
not perfectly restored in a statistical sense, a comparison of the forest texture
in Figure B.1 and the restored equivalent in Figure B.2 shows, that most of the
structure and details are preserved.

Texture plays also an important role in the classification of towns. In Figure B.1
the three towns Voel, Gjern and Farvang are easily identified by their charac-
teristic coarse texture. This coarse texture is due to the high concentration of
man-made features such as houses, buildings, streets and roads. The charac-
teristic bright response these features gives rise to in the towns in Figure B.1
is caused by the so-called double-bounce scattering. This phenomenon occurs
when the micro-waves are able to first bounce off e.g. a street and then again
bounce off a building and directly towards the radar.

Ratio data covering the town Farvang are displayed in Figure B.6 (a). Given
the statistics z = 1.12, S%(z) = 1.05 and x?(72) > 10'2 of the ratio image,
the Hy hypothesis is rejected. This is strongly supported by the structure in
Figure B.6 (a) and by the bias between the observed frequencies and the the-
oretical Rayleigh distribution in Figure B.6 (b). Comparing the statistics and
histograms of the ratio data in the Figures B.4 (a), B.5 (a) and B.6 (a) it is
obvious, that the ratio data in Figure B.6 (a) possesses the largest bias between
the observed frequencies and the theoretical Rayleigh distribution. This implies
that the town Farvang is not as well restored as the agricultural fields and the
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forests using (5.8) and the annealing schedule.

This worse restoration is partly due to a larger number of outliers and partly due
to a larger number of discontinuities in the region covering the town Farvang
than in the regions that cover the agricultural fields and the forest in Figure B.1.
The outliers are due to large amplitude point scatterer or objects of the size of
a pixel e.g. houses, roads, streets and vehicles. As previously mentioned these
outliers are independent of their neighbours which implies, that they are not
properly restored by the proposed annealing algorithm. Furthermore, neither
the large number of discontinuities is properly restored through the annealing,
which additionally deteriorates the restoration. The reservations made above
concerning the restoration of Farvang are clear in Figure B.2, where the smallest
details of the town in Figure B.1 are smoothed out.

In summary, it is demonstrated that the results presented in this thesis using the
Gamma pizel prior through a SA algorithm are generally applicable. The various
human artefacts and texture types in Figure B.1 are on the whole reproduced
in Figure B.2. The reservation concerns thin line features, point scatterers and
very small object corresponding to the size of a few pixel. They have a tendency
of being smoothed out by the Gamma pizel prior and the annealing schedule.
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Figure B.1: The C-band VV-polarized EMISAR amplitude data covering the
river valley of Gjern and its surroundings 3 June 1997
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Figure B.2: The restored C-band VV-polarized EMISAR amplitude data in Fig-
ure B.1 using the Gamma pizel prior and SA. The cooling schedule is logarithmic
with an inhomogeneous Markov chain
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Figure B.3: The ratio between the C-band VV-polarized EMISAR amplitude
data in Figure B.1 and the restored data in Figure B.2 using the Gamma pizel
prior and SA.
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Figure B.4: (a) Region in the ratio image in Figure B.3, that covers agricultural
fields. In (b) is the histogram of the ratio image shown together with the
theoretical Rayleigh distribution.
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Frequency

Figure B.5: (a) Region in the ratio image in Figure B.3, that covers a forest.
In (b) is the histogram of the ratio image shown together with the theoretical

Rayleigh distribution.
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Figure B.6: (a) Region in the ratio image in Figure B.3, that covers the town
Farvang. In (b) is the histogram of the ratio image shown together with the

theoretical Rayleigh distribution.
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APPENDIX C

Vegetation list

Vegetation from biomass samples collected within the test sites at Gjern and

Mols Bjerge. Both the Danish and Latin names of the species are listed:

Almindelig Rgllike
Almindelig Hvene
Eng-Raevehale
Liden Klokke
Eng-Karse
Nikkende Star
Sand-Star

Stiv Star
Ager-Snerle
Mose-Bunke
Bglget Bunke
Almindelig Kvik
Rod Svingel

Almindelig Mjgdurt

Lyng-Snerre
Manna-Sgdgraes
Hgj Sedgraes
Haret Hogeurt

Achillea millefolium
Agrostis capillaris
Alopecurus pratensis
Campanula rotundifolia
Cardamine pratensis ssp. pratensis
Carex acuta

Carex arenaria

Carex elata ssp. elata
Convolvulus arvensis
Deschampsia cespitosa
Deschampsia flexuosa
Elymus repens

Festuca rubra
Filipendula ulmaria
Galium sazatile
Glyceria fluitans
Glyceria mazxima
Hieracium pilosella
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Vegetation list

Flgjlsgraes

Krybende Hestegraes
Almindelig Kongepen
Lyse-Siv
Humle-Sneglebzelg
Rgrgraes
Lancet-Vejbred
Almindelig Eng-Rapgraes
Almindelig Rapgraes
Kragefod

Lav Ranunkel
Almindelig Syre
Almindelig Rgdknae
Vand-Skraeppe

Fandens Maelkebgtte
Smalbladet Dunhammer
Tofrget Vikke
Var-Vikke

Holcus lanatus
Holcus mollis
Hypochoeris radicata
Juncus effusus
Medicago lupulina
Phalaris arundinacea
Plantago lanceolata
Poa pratensis

Poa trivialis
Potentilla palustris
Ranunculus repens
Rumex acetosa
Rumez acetosella
Rumez hydrolapathum

Tarazacum ruderalia agg.

Typha angustifolia
Vicia hirsuta
Vicia lathyroides



APPENDIX D

Vegetation data Gjern 1997

The vegetation at Ladegaards Enge June 1997 was mapped according to a co-
ordinate system with its origin at the centre of the test area and its axes going
south-north and east—west, see Figure D.1.

The botanical evaluation was carried out by botanist J. Petersen along 13 tran-
sects all in the south-north direction with 10 metres spacing. Furthermore the
vegetation was evaluated along the 6 transects illustrated in Figure 6.4. Along
each transect the distribution of the various plant species was evaluated on a
scale from 1-4. The most dominant species were assigned the score 4 and the
least dominant species received the score 1. For the most dominant species the
distribution was estimated together with the average height of the vegetation.

Based on this botanical evaluation the distribution of the dominant plant species
at Ladegaards Enge June 1997 is shown in the Figures 6.3 and D.1.
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Figure D.1: Outline of the coordinate system used in the mapping of the vege-
tation at Ladegaards Enge June 1997. The distribution of the dominant plant
species is sketched.



APPENDIX E

Programs

A significant part of this work has been the development of computer programs
implementing the different optimization algorithms presented in Chapter 5. The
programs were developed in the C programming language on a PC with a
350 MHz Intel Pentium II processor running Linux. The serial programs have
been adapted to the HIPS-2 image processing software. For pseudo-random
number generation is used the linear congruential algorithm (rand) with 32-bit
integer arithmetic [65].

The following list contains the main software developed.

e Algorithms based on MRF and ICM:

icm_gauss: Performs a restoration of Rayleigh distributed SAR data us-
ing the Gaussian a priori model involving the 8 pair-site cliques with
different weights in a second order neighbourhood configuration.

icm_exp: Performs a restoration of Rayleigh distributed SAR data using
the exponential a priori model involving the 8 pair-site cliques with
different weights in a second order neighbourhood configuration.

icm_LaPlace: Performs a restoration of Rayleigh distributed SAR data
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using the LaPlace a priori model involving the 8 pair-site cliques with
different weights in a second order neighbourhood configuration.

icm_Gamma mean: Performs a restoration of Rayleigh distributed SAR
data using the Gamma a priori model involving the 8 pair-site cliques
with different weights in a second order neighbourhood configuration.
The estimate of the local energy level is defined as the mean of the
pixels involved in the neighbourhood configuration.

icm_Gamma_cpix: Performs a restoration of Rayleigh distributed SAR
data using the Gamma a priori model involving the 8 pair-site cliques
with different weights in a second order neighbourhood configuration.
The estimate of the local energy level is defined as the centre pixel
itself.

e Algorithms based on MRF and SA:

sa_cpix: Performs a restoration of Rayleigh distributed SAR data using
the Gamma a priori model and the Metropolis algorithm. The 8 pair-
site cliques with different weights in a second order neighbourhood
configuration are involved and the estimate of the local energy level
is defined as the centre pixel itself.

sa_cpix9: Performs a restoration of Rayleigh distributed SAR data using
the Gamma a priori model and the Metropolis algorithm. Here the 8
pair-site cliques with equal weights in a second order neighbourhood
configuration are involved and the estimate of the local energy level
is defined as the centre pixel itself.
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