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ABSTRACT

This paper describes the multivariate alteration detection (MAD) transformation which is based
on the established canonical correlation analysis. It also proposes post-processing of the change
detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis.
As opposed to most other multivariate change detection schemes the MAD and the combined
MAF/MAD transformations are invariant to affine transformations of the originally measured
variables. Therefore, they are insensitive to, for example, differences in gain and off-set set-
tings in a measuring device, and to the application of radiometric and atmospheric correction
schemes that are linear or affine in the gray numbers of each image band. Other multivariate
change detection schemes described are principal component type analysis of simple differ-
ence images. A case study with Landsat TM data using simple linear stretching and masking
of the change images shows the usefulness of the new MAD and MAF/MAD change detec-
tion schemes. A simple simulation of a no-change situation shows the power of the MAD and
MAF/MAD transformations.

INTRODUCTION

When analysing changes in panchromatic images taken at different points in time it is customary
to analyse the difference between two images, possibly after some normalisation. The idea is of
course that areas with no or little change have zero or low absolute values and areas with large
changes have large absolute values in the difference image. If we have two multivariate images
with variables at a given location written as vectors (without loss of generality we assume that
E{X} = E{Y } = 0)

X = [X1 . . . Xk]
T and Y = [Y1 . . . Yk]

T (1)

wherek is the number of spectral bands, then a simple change detection transformation is

X − Y = [X1 − Y1 . . . Xk − Yk]
T . (2)

If our image data have more than three channels it is difficult to visualise change in all channels
simultaneously. To overcome this problem and to concentrate information on change, linear
transformations of the image data that optimise some design criterion can be considered. A
linear transformation that will maximise a measure of change in the simple multispectral differ-
ence image is one that maximises deviations from no change for instance the variance

Var{v1(X1 − Y1) + · · ·+ vk(Xk − Yk)} = Var{vT (X − Y )}. (3)

1In I. Kanellopoulos, G.G. Wilkinson and T. Moons (Eds.), 1999:Machine Vision and Advanced Image
Processing in Remote Sensing, Springer, invited contribution, extended version.



Areas in the image data with high absolute values ofvT (X − Y ) are maximum change areas.
A multiplication of vectorv with a constantc will multiply the variance withc2. Therefore we
must make a choice concerningv. A natural choice is to request thatv is a unit vector,vT v = 1.
This amounts to finding principal components of the simple difference images. Other change
detection schemes based on simple difference images include factor analysis and maximum
autocorrelation factor (MAF) analysis (Switzer and Green, 1984).

A more parameter rich measure of change that allows different coefficients forX andY and
different numbers of spectral bands in the two sets,p andq respectively (p ≤ q), are linear
combinations

aT X = a1X1 + · · ·+ apXp and bT Y = b1Y1 + · · ·+ bqYq (4)

and the difference between themaT X−bT Y . This measure also accounts for situations where
the spectral bands are not the same but cover different spectral regions, for instance if one set of
data comes from Landsat MultiSpectral Scanner (MSS) and the other set comes from Landsat
Thematic Mapper (TM) or from SPOT High Resolution Visible (HRV) which may be valuable
in historical change studies. In this case one must be more cautious when interpreting the
multivariate difference as multivariate change.

To find a andb Fung and LeDrew (1987) use principal components (PC) analysis onX and
Y considered as one concatenated vector variable. Gong (1993) applies PC analysis to simple
difference images as described above. The Fung and LeDrew (1987) approach definesa andb
simultaneously but the method does not have a clear design criterion. Also, bands are treated
similarly whether or not they come from different points in time. The Gong (1993) approach
depends on the scale at which the individual variables are measured (for instance it depends on
gain settings of a measuring device). Also, it forces the two sets of variables to have the same
coefficients (with opposite sign), and it does not allow for the case where the two sets of images
have different numbers of channels. A potentially better approach is to define a set ofa andb
simultaneously in the fashion described below. Again, let us maximise the variance, this time
Var{aT X−bT Y }. A multiplication ofa andb with a constantc will multiply the variance with
c2. Therefore we must make choices concerninga andb, and natural choices in this case are
requesting unit variance ofaT XandbT Y . The criterion then is: maximise Var{aT X − bT Y }
with Var{aT X} = Var{bT Y } = 1. With this choice we have

Var{aT X − bT Y } = Var{aT X}+ Var{bT Y } − 2Cov{aT X, bT Y } (5)

= 2(1− Corr{aT X, bT Y }).

We shall request thataT X andbT Y are positively correlated. Therefore, determining the dif-
ference between linear combinations with maximum variance corresponds to determining linear
combinations with minimum (non-negative) correlation. Determination of linear combinations
with extreme correlations brings the theory of canonical correlations analysis to mind.

Canonical correlations analysis investigates the relationship between two groups of variables. It
finds two sets of linear combinations of the original variables, one for each group. The first two
linear combinations are the ones with the largest correlation. This correlation is called the first
canonical correlation and the two linear combinations are called the first canonical variates.
The second two linear combinations are the ones with the largest correlation subject to the
condition that they are orthogonal to the first canonical variates. This correlation is called the

2



second canonical correlation and the two linear combinations are called the second canonical
variates. Higher order canonical correlations and canonical variates are defined similarly. The
technique was first described by Hotelling in 1936 and a treatment is given in most textbooks
on multivariate statistics (good references are Cooley and Lohnes, 1971 and Anderson, 1984).

Multivariate change detection techniques are also described in Hanaizumi and Fujimura (1992),
and in Hanaizumi et al. (1994) who work with multiple regression and canonical correlations
methods applied to specific change detection. Wiemker et al. (1997) work with (iterated) PC
analysis of the same variable at the two points in time and consider the second PC as a (mar-
ginal) change detector for that variable. They also introduce spatial measures such as inverse
local variance weighting in statistics calculation and Markov random field modelling of the
probability of change (vs. no change).

THE MULTIVARIATE ALTERATION DETECTION (MAD) TRANSFORMATION

In accordance with the above we define the multivariate alteration detection (MAD) transfor-
mation as

[XT Y T ]T → [aT
p X − bT

p Y . . . aT
1 X − bT

1 Y ]T , (6)

whereai andbi are the defining coefficients from a standard canonical correlations analysis.X
andY are vectors with E{X} = E{Y } = 0. The dispersion matrix of the MAD variates is

D{aT X − bT Y } = 2(I −R) (7)

whereI is thep×p unit matrix andR is ap×p matrix containing the sorted canonical correla-
tions on the diagonal and zeros off the diagonal.

The MAD transformation has the very important property that if we consider linear combina-
tions of two sets ofp respectivelyq (p ≤ q) variables that are positively correlated then thep’th
difference shows maximum variance among such variables. The(p − j)’th difference shows
maximum variance subject to the constraint that this difference is uncorrelated with the previous
j ones. In this way we may sequentially extract uncorrelated difference images where each new
image shows maximum difference (change) under the constraint of being uncorrelated with the
previous ones. Ifp < q then the projection ofY on the eigenvectors corresponding to the eigen-
values 0 will be independent ofX. That part may of course be considered the extreme case of
multivariate change detection. As opposed to the principal components the MAD variates are
invariant to linear scaling, which means that they are not sensitive to for example gain settings
of a measuring device, and to linear radiometric and atmospheric correction schemes. This type
of multivariate change detection technique was first sketched in Conradsen and Nielsen (1991).

To find maximum change areas with high spatial autocorrelation a MAF post-processing of the
MAD variates is suggested. The MAF transformation can be considered as a spatial extension
of PC analysis in which the new variates maximise autocorrelation between neighbouring pixels
rather than variance (as with PCs). Also the MAF transformation is invariant to linear scaling.

For other descriptions of the transformation described here see Nielsen (1994) who describes the
MAD transformation and introduces the MAF post-processing of the MADs, Nielsen and Con-
radsen (1997) who describe the MAD transformation in more detail, and Nielsen et al. (1998)
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where one case study very successfully applies the MAD transformation on pre-processed
AVHRR data (correction for atmospheric water vapour attenuation, and cloud- and land-masking)
in an oceanographic case study on ENSO-related (El Niño/Southern Oscillation) mid-latitude
warming events where principal components analysis of simple difference images fail. Another
case in Nielsen et al. (1998) deals with urbanisation in Australia using Landsat MSS data.

CASE STUDY - LANDSAT TM DATA

The applicability of the MAD transformation with the MAF post-processing to multivariate
and bi-temporal change detection studies is demonstrated in a case using Landsat-5 Thematic
Mapper (TM) data covering a small forested area approximately 20 kilometres north of Umeå in
northern Sweden. The data consist of six spectral bands with 512×512 20 meter pixels rectified
to the Swedish national grid by the Swedish Space Corporation who also provided the data.
The acquisition dates are 6 June 1986 and 27 June 1988. The intention of this case study is to
illustrate the method and not to accurately assess the actual change on the ground.

The images in Figures 1 and 2 are stretched linearly from mean minus three standard deviations
to mean plus three standard deviations. Figure 1 shows the original Landsat TM data from 1986
in column one, the original Landsat TM data from 1988 in column two, the simple difference
images (“1988 minus 1986”) in column three, and the principle components of the simple dif-
ference images in column four. The change information from all bands is concentrated in the
first three or four PCs. Because of the stretching applied areas that are very bright or very dark
are maximum change areas.

Figure 2 shows the canonical variates of the 1986 data in column one, the canonical variates of
the 1988 data in column two, the MADs of the original TM images (the differences between
the CVs in reverse order) in column three, and the MAF/MADs of the original TM images
in column four. Again, areas that are very bright or very dark are maximum change areas.
The low order MADs are quite noisy. It is to be expected that scanner noise and differences
in atmospheric conditions are among the most different characteristics of the two scenes. In
the MAF/MADs areas that are very bright or very dark are areas of change with high spatial
autocorrelation. The change information from all bands is concentrated in the first three or four
MAF/MADs.

Figure 3 shows negated absolute values stretched from mean (before taking absolute values)
plus two standard deviations (before taking absolute values) to mean plus three standard de-
viations. Column one shows simple differences, column two principal components of simple
differences, column three MADs, and column four MAF/MADs. This time bright regions are
no-change areas and dark regions are maximum change areas.

Figure 4 shows the first three PCs of simple differences as RGB, stretched linearly from mean
minus three standard deviations to mean plus three standard deviations (left), as (left) but with
region from mean minus two standard deviations to mean plus two standard deviations col-
lapsed to mean to enhance change regions (middle), and absolute values stretched linearly be-
tween mean (before taking absolute values) plus two standard deviations and mean plus six
standard deviations, again to enhance change (right). Figure 5 shows the first three MAF/MAD
components as RGB, stretching as in Figure 4.

4



Figure 1: 1986 TM data (first column), 1988 TM data (second column), simple differences
“1988–1986” (third column), and PCs of simple differences (fourth column)
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Figure 2: CVs of 1986 TM data (first column), CVs of 1988 TM data (second column), MADs
(third column), and MAF/MADs (fourth column)
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Figure 3: Negated absolute values of simple differences (first column), PCs of simple dif-
ferences (second column), MADs (third column), and MAF/MADs (fourth column); white
represents no-change areas

7



MAF/ MAF/ MAF/ MAF/ MAF/ MAF/
MAD1 MAD2 MAD3 MAD4 MAD5 MAD6

1986 TM1 0.0089 0.5935 –0.1123 0.0142 –0.0399 0.1668
1986 TM2 0.1818 0.5589 –0.0567 0.1529 0.0260 0.0356
1986 TM3 0.0069 0.6548 –0.1052 0.0469 –0.1466 –0.0197
1986 TM4 0.4557 0.3039 0.0719 0.1630 –0.0217 0.1591
1986 TM5 0.1503 0.6145 0.1020 0.0729 –0.0636 0.0362
1986 TM7 –0.0320 0.6562 0.0816 –0.0990 –0.1077 –0.1077
1988 TM1 0.5343 –0.2053 0.2689 0.0991 –0.2147 –0.0293
1988 TM2 0.3632 –0.0964 0.3141 0.0098 –0.1771 0.1695
1988 TM3 0.6167 –0.2964 0.2591 0.0685 0.0021 0.0319
1988 TM4 –0.4385 0.3866 0.1113 0.0951 –0.0136 0.1285
1988 TM5 0.3976 –0.3634 –0.1730 –0.0676 –0.0137 –0.0148
1988 TM7 0.5884 –0.4006 –0.0838 0.1065 –0.0392 0.0488

Table 1: Correlations between MAF/MADs and Landsat TM bands

Band/Component 1 2 3 4 5 7/6
1) Simple diff. 0 0 0 0 0 0
2) PC diff. (cov) –1.28 0.06 0.09 0.91 –0.03 0.26
3) PC diff. (corr) –0.06 –1.53 0.19 0.40 0.03 –0.01
4) Factors diff. –0.10 –0.81 1.22 0.22 –0.58 –0.05
5) MAF diff. –1.52 0.05 0.46 0.03 0.01 0.01
6) MAD 0.01 0.01 0.01 0.01 0.01 –0.03
7) MAF/MAD –0.00 0.01 0.02 0.00 –0.02 0.02

Table 2: Change detected (standardised scores) in no change region, value should be 0

For all change detection schemes an interpretation of the resulting change images can be based
on correlations between the transformed variates and the original data. Table 1 shows the cor-
relations between the MAF/MADs and the original Landsat TM bands calculated only where
the standardised score of any MAF/MAD variate is outside the plus/minus three standard devia-
tions interval. MAF/MAD1 is positively correlated with 1986 TM4 and uncorrelated with 1986
TM3. MAF/MAD1 is negatively correlated with 1988 TM4 and positively correlated with 1988
TM3. Therefore MAF/MAD1 is a sort of vegetation index change detector. MAF/MAD2 is a
change detector of the weighted mean of all bands except TM4, presumably a non-vegetation
related change detector. MAF/MAD3 seems to be a non-vegetation related change detector
also. MAF/MAD5 and 6 have their highest correlations with TM1 and TM2 and are therefore
likely to represent change in atmospheric conditions. The MAF analysis of the MADs seems
to have concentrated the change related to atmospheric conditions and change related to vege-
tation in each end of the autocorrelation “spectrum”. Also, scanner noise is concentrated in the
high order MAF/MADs.

Simple No Change Simulation

As a simple simulation of a situation with no change in all bands we pad the two 512×512
scenes described above into the central part of 600×600 backgrounds with values 0 in all bands
in both years. Change between the two 600×600 scenes is estimated by means of 1) simple
differences, 2) principal components of simple differences (based on covariance matrix), 3)
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principal components of simple differences (based on correlation matrix), 4) varimax rotated
factors of simple differences, 5) MAFs of simple differences, 6) MADs, and 7) MAF/MADs.
Change detected in the region with no change (the 44 pixels broad edge around the actual image
data) as indicated by standardised values of the results from the above change detection methods
is given in Table 2.

The value in this region in the simple difference images is zero. Therefore the change detected
here by most multivariate methods is due to the subtraction of the mean value of the entire
image before calculating the relevant linear combinations of the original bands. This can easily
be identified in this very simple situation, but had the no-change pixels been scattered as several
fields inside the image this would not have been possible and the statistics for calculating the
MADs would have been exactly the same. Therefore the situation simulated though very simple
is indeed a realistic one.

It is obvious that MAD and MAF/MAD are the only multivariate techniques that perform well
in this situation. All other methods give change values much higher than zero.

CONCLUSIONS

A new approach to change detection in multivariate, bi-temporal, spatial data based on canon-
ical correlations analysis called the multivariate alteration detection (MAD) transformation
and maximum autocorrelation factor (MAF) post-processing is described. The success of this
scheme is demonstrated in a case with Landsat TM data from a forested region in Sweden.
The difference between this scheme and the one based on principal components analysis of
the simple difference images suggested by Gong (1993) is the invariance af the MAD and
MAF transformations to linear and affine transformations which makes the use of the combined
MAF/MAD transformation insensitive to for instance 1) differences in gain and off-set in a
measuring device, and 2) linear radiometric and atmospheric calibration methods. A simple but
realistic simulation of a no-change situation favours the MAD and the combined MAF/MAD
methods.
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Figure 4: The first three PCs of simple differences as RGB, left: stretched linearly from mean
minus three standard deviations to mean plus three standard deviations, middle: as left but
with region from mean minus two standard deviations to mean plus two standard deviations
collapsed to mean, right: absolute values stretched linearly between mean (before taking ab-
solute values) plus two standard deviations and mean plus six standard deviations

Figure 5: The first three MAF/MAD components as RGB, stretching as in Figure 4

11


