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Abstract

We consider the problem of locating a spherical circle with respect
to existing facilities on a sphere, such that the sum of weighted distan-
ces between the circle and the facilities is minimized, or such that the
maximum weighted distance is minimized. The problem properties are
analyzed, and we give solution procedures. When the circle to be located
is restricted to be a great circle, some simplifications are possible.

1 Introduction

The location of a linear facility in space has many potential applications. For
example, the facility may represent a new highway in two-dimensional space or
a pipeline. It could be an electrical power line, a string of radio or mobile phone
transmission towers, or radar stations, and on a smaller scale, a main electrical
conduit on a circuit board.

The problem of locating a linear facility in the plane has been well studied begin-
ning with the work of Wesolowsky [15]. Here the objective is to find a line that
minimizes the weighted sum of shortest Euclidean distances from the line to a
set of fixed points representing the users or customers. A fundamental property
of this problem that leads to an efficient solution procedure is that the ’median’
line must intersect at least two of the existing points. Further refinements and
extensions to the basic model are investigated by Morris and Norback [8, 9] and
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Norback and Morris [10]; meanwhile Schöbel [13] examines general distance mea-
sures and other forms of generalizations to the problem. Finding a line that
minimizes the maximum distance to a set of users has been studied in Schömer
et al. [14], and in the context of determining the width of a set in Houle and
Toussaint [4]. For a recent overview of line location in the plane, see Schöbel [13],
and [7] for a survey on extensive facility location in general.

It is well recognized that the planar model becomes inaccurate when the users
are spread over larger areas of the earth’s surface, and that spherical distances
should be used to account for the earth’s curvature. Early work on locating a
point facility on a sphere was done by Drezner and Wesolowsky [2] and Katz and
Cooper [5], among others, and summarized by Wesolowsky [16]. As the general
single facility minisum problem on a sphere is nonconvex, unlike the planar model,
Hansen et al. [3] propose a branch-and-bound algorithm to solve it. The idea
is to divide the surface of the sphere into smaller and smaller sections, using
alternative bounds provided by the authors to fathom unattractive zones, and to
proceed in this fashion until the solution is found within an acceptable accuracy.
The problem of locating a point facility on a sphere with the minimax objective
is examined more recently by Das et al. [1] and Patel and Chidambaram [11].

The purpose of this paper is to study the problem of locating circles on a sphere,
which is a natural (yet new) extension of the line location problem on the plane.
In the next section, some basic concepts of spherical distances are reviewed and
the notation we will use is specified. Section 3 investigates the problem of locating
great circles by the minimax criterion, while section 4 generalizes to any spherical
circle. The remaining sections are devoted to finding minisum great circles and
general circles.

2 Notation

We use the following notation, based on [6]. The sphere is denoted by S, and
without loss of generality we may assume that the radius of the sphere is 1.

A point x = (x1, x2) on the sphere is given by its latitude x1 (angle from the
equator) and its longitude x2 (angle from the Greenwich meridian). We assume
−π

2
≤ x1 ≤ π

2
, with a negative latitude denoting a point south of the equator,

and −π ≤ x2 ≤ π, with a negative longitude denoting a point west of Greenwich.
Henceforth, by a point we mean a point on the sphere.

A great circle is the intersection between the sphere and a plane through the
center of the sphere. The distance between two points is measured along the
great circle containing the points; it is the shorter of the lengths of the two
great circle arcs connecting the points, measured in radians. The largest possible
distance between two points is π, realized when one point is the antipode of
the other point. The distance d(x, a) between the two points x = (x1, x2) and
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a = (a1, a2) may be computed from the relation

cos d(x, a) = cos x1 cos a1 cos(x2 − a2) + sin x1 sin a1.

A spherical circle is the intersection between the sphere and a plane. Henceforth,
by a circle we mean a spherical circle. A circle is the locus of points with a fixed
distance r from a given point c = (c1, c2). c is called the center and r is called
the radius of the circle. Denoting the circle by C(c, r), we have

C(c, r) = {x ∈ S : d(x, c) = r}.
If a circle C(c, r) has radius r > π

2
, it may be viewed as a circle with center in

the antipode of c and radius π − r. Thus it suffices to consider circles with radii
in the interval 0 ≤ r ≤ π

2
, and henceforth we shall do so. A circle with radius 0

is a point, and a circle with radius π
2

is a great circle.

The distance between a point a and a circle C = C(c, r), defined as

D(C, a) = min
x∈C

d(x, a)

can be calculated as follows: Consider the great circle containing a and c. If
this great circle intersects the circle C in the points x and z, the point to circle
distance D(C, a) is given by

D(C, a) = min{d(x, a), d(z, a)} =: d(y, a).

The closer of the two points x and z is called the footpoint y of a with respect to
C. Furthermore, let P be the shorter part of the great circle connecting a and y.
Note that the length of P equals D(C, a).

For the special case r = 0, we have D(C, a) = d(c, a), and for the special case
c = a, we have D(C, a) = r.

It is particularly easy to compute the point to circle distance, when the center
of the circle is a Pole of the sphere. Suppose for instance that the center of
a circle C is the North Pole; then the distance from the point a = (a1, a2) to
the circle is r + a1 − π

2
if a is north of the circle, and π

2
− r − a1 otherwise, or

D(C, a) = |r + a1 − π
2
|.

In general, we have
D(C, a) = |r − d(c, a)|.

For the case when C is a great circle, there is a simple relation between the point
to great circle distance, D(C, a) and the smallest Euclidean distance from the
point to the plane H containing the great circle, E(H, a): sin D(C, a) = E(H, a).

Let n be the number of existing point facilities, located at aj = (aj1, aj2) ∈ S with
positive weight wj, for j = 1, . . . , n. Denote the set of existing facility locations
by A.
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Then our optimization problem is finding a circle C = C(c, r) with center c =
(c1, c2) and radius r ∈ [0, π

2
] so as to minimize

f(C) = f(c, r) =
n∑

j=1

wjD(C(c, r), aj)

or so as to minimize

g(C) = g(c, r) = max
j=1,...,n

wjD(C(c, r), aj).

The first objective refers to the minisum or median problem, whereas the second
objective refers to the minimax or center problem.

Any given circle C = (c, r) separates the sphere in two parts, and it is convenient
to define the index sets J+ = {j : d(aj , c) < r}, J− = {j : d(aj, c) > r}, and
J= = {j : d(aj , c) = r}.

3 Finding minimax great circles

We first consider the equally weighted Great-Circle-Minimax problem (GCM) of
locating a great circle on the sphere, minimizing the maximum distance to the
existing facilities. When all the weights are equal, we may assume without loss
of generality that they are all 1. Let us assume that n ≥ 3.

Lemma 1 Let C∗ be an optimal solution of (GCM) with objective value g(C).
Then there exist at least three existing facilities a ∈ A satisfying

D(C, a) = g(C).

Proof: Let C∗ be an optimal great circle and assume first that there exist exactly
two points ai, aj ∈ A with g(C∗) = D(C∗, ai) = D(C∗, aj). Without loss of
generality let i = 1, j = 2 and assume that g(C∗) > 0, otherwise all points a ∈ A
satisfy D(C, a) = g(C).

Determine the corresponding footpoints and great circle segments y1 ∈ P1 and
y2 ∈ P2. Let ε > 0 and define two points y′1 ∈ P1 and y′2 ∈ P2 such that

d(a1, y1)− d(a1, y
′
1) = ε,

d(a2, y1)− d(a2, y
′
1) = ε.

Since a great circle is uniquely defined by two points we define C ′ as the great
circle passing through y′1 and y′2. Note that the function C mapping two points
y1, y2 to the great circle defined by these points is well-defined and continuous
whenever y1 6= y2 and y1 and y2 are not antipodes to each other. For this reason
we distinguish the following three cases.
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• First assume that y1 6= y2 and the points are not antipodes to each other.
Hence, y′1 6= y′2.

We obtain for k = 1, 2:

D(C ′, ak) = min
x∈C′ d(x, ak) ≤ d(y′i, ak) < d(yi, ak) = g(C∗)

Denote g′ = max{D(C ′, a1, D(C ′, a2)} and note that g′ < g(C∗). For all
other a ∈ A \ {a1, a2} the continuity of C yields

g(C∗) > D(C∗, a),

hence g′ ≥ D(C ′, a) holds if ε is chosen small enough.

Together,
g(C ′) = max

a∈A
D(C ′, a) = g′ < g(C∗)

contradicting the optimality of C∗.

• In the case that y1 = y2, the existing facilities a1 and a2 must be on opposite
sides of C∗ (otherwise they would coincide). Then rotate C∗ a small amount
as in the previous case, but this time about the axis through the common
foot point, y1 = y2. Again we obtain a reduction in distance, d(a1, y

′
1) =

d(a2, y
′
2) < g(C∗), leading to a similar contradiction as before.

• If y1 and y2 are antipodes of each other, there are two possibilities: either a1

and a2 are on the same side of C∗, in which case rotate C∗ a small amount
about the axis through y1 and y2; or a1 and a2 are on the opposite sides of
C∗, in which case use the line on C∗ perpendicular to (y1, y2) as the axis of
rotation. Again we obtain a similar contradiction as before.

To exclude that there exists only one unique point a on C∗ satisfying g(C) =
D(C∗, a) we proceed as follows. Let a be such a unique point, y ∈ P be the
corresponding footpoint and P be the great circle segment between a and y.
Similar to the first part of the proof, we fix an arbitrary point x ∈ C∗ \ {y}, find
y′ ∈ P such that

d(a, y)− d(a, y′) = ε

for some ε > 0 and choose a new circle C ′ as the great circle passing through x
and y′. Since g(C ′) < g(C∗), we again have a contradiction.

QED

Note that a similar proof carries through also for the weighted great circle mini-
max problem. In this case we allow positive weights for the existing facilities and
minimize the maximum weighted distance to the circle. Lemma 1 then states
that there exist three existing facilities i, j, k satisfying
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wiD(C, ai) = wjD(C, aj) = wkD(C, ak) = g(C).

Now we turn our attention back to computing an optimal great circle in the
unweighted case.

First, we remark that it can happen that all three existing facilities with the
maximum distance to the circle may lie on the same side of the circle, as the
following example demonstrates.

Consider three existing facilities all on the northern hemisphere, but all three of
them close to the equator, e.g.,

A = {(ε, 0), (ε,
2

3
π), (ε,−2

3
π)}.

Using Lemma 1 and checking all great circles at equal distance to the three
existing facilities yields the equator C((π

2
, 0), π

2
) with optimal distance of ε to all

three points as optimal great circle.

From Lemma 1 we know that all optimal circles of (GCM) have the same positive
distance to at least three points aj , ai, ak ∈ A. Note that in the case that not all
points are contained in one common great circle, no pair of these points aj , ai,
and ak can be antipodes to each other, since they all have the same positive
distance to an optimal great circle. Furthermore, at least two of these points lie
on the same side of C, without loss of generality let us assume that i, k ∈ J+.
Since D(C, a) = |r − d(a, c)| and i, k ∈ J+ we obtain d(c, ai) = π

2
−D(C, ai) =

π
2
− D(C, ak) = d(c, ak), i.e., the distance from both points ai and ak to the

center c of the circle is the same. In other words, c lies in the set Bik = {x ∈ S :
d(x, ai) = d(x, ak)}, which is the bisector of ai and ak. Note that bisectors on the
sphere are great circles. Hence, to find the center point c∗ of an optimal circle
C∗ only points on one of the bisectors Bik, i 6= k, i, k ∈ {1, . . . , n} need to be
investigated. Finding the best great circle with center c on some bisector (great
circle) Bik hence reduces to a one-dimensional optimization problem.

To tackle this problem we can furthermore use that the distance of an optimal
great circle D(C∗, aj) to a third point aj is the same as to the points ai and ak

defining the bisector Bik.

We hence only have to investigate the points aj satisfying that D(C, aj) =
D(C, ai) which can be reformulated as |π

2
− d(c, aj)| = |π

2
− d(c, ai)|.

We need to consider two cases.

Case 1: Assume that aj is on the same side of the optimal circle C∗ as ai and
ak. In this case, aj satisfies

d(c, aj) = D(C, aj)− π

2
= D(C, ai)− π

2
= d(c, ai),
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hence the set of candidates to be investigated can be determined by inter-
secting Bik with all bisectors Bij, j = 1, . . . , n, j 6= i, j 6= k.

Case 2: Assume that aj lies on the opposite side of C∗ as ai and ak do. Conse-
quently, aj satisfies π

2
− d(c, aj) = −π

2
+ d(c, ai), or, equivalently,

π = d(c, ai) + d(c, aj).

As candidates for the optimal center c we hence have to consider all points
c ∈ Cij = {x ∈ S : d(x, ai) + d(x, aj) = π}

For Case 1 it is well known that Bij is a great circle. In the following we show that
also Cij is a great circle and how the centers of Bij and Cij can be constructed.
To this end, let C denote the (unique) great circle passing through ai and aj .
Let cij be the midpoint on the great circle segment of C joining ai and aj and
choose bij ∈ C such that d(bij , cij) = π

2
. Note that by construction we have

d(cij, ai) = d(cij , aj) and d(bij , ai) + d(bij , aj) = π. Then the following holds.

Lemma 2

1. Bij = C(bij ,
π
2
)

2. Cij = C(cij ,
π
2
)

Proof:

1. Consider any point x ∈ S such that d(x, a1) = d(x, a2). Since d(cij, ai) =
d(cij, aj) it follows by congruence that the great circle segment joining x
and cij belongs to Bij , or d(bij , x) = π

2
. The reverse obviously holds: If

x ∈ Bij , then d(x, ai) = d(x, aj).

2. Suppose x ∈ S satisfies d(x, ai)+d(x, aj) = π, and without loss of generality,
d(x, a1) ≤ d(x, a2). Consider the plane containing {a1, a2, x}. We may use
symmetry of triangles and projections back on the sphere to conclude that

d(x, cij) =
1

2
(d(x, a1) + d(x, a2)) =

π

2
,

hence x ∈ Cij . The argument also applies in reverse such that from x ∈ Cij

we conclude that d(x, ai) + d(x, aj) = π.

QED

This means, in both cases we have to find the intersection of two great circles.
This gives two points x1, x2 ∈ S. But note that x1 and x2 are antipodes to each
other and hence define the same great circle. This means that only one of these
points needs to be further investigated.
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Algorithm 1 for (GCM)

Step 1: Let the candidate set K = ∅
Step 2: For all triples {i, j, k} ∈ {1, . . . , n}, determine an intersection point h1

ijk

of the bisectors Bik and Bij , and h2
ijk of the bisector Bik and the great circle Cij.

let K = K ∪ {h1
ijk, h

2
ijk}

Step 3: Evaluate all candidates c ∈ K by calculating
f(C(c, π

2
)) = maxj=1,...,n |d(aj, c) − π

2
| and take the one with the best objective

value.

Consider an arbitrary great circle C and the plane containing it, H . For all
existing facilities, we have E(H, aj) = sin(D(C, aj)). Since sin(v) is increasing
on the relevant interval, 0 ≤ v ≤ π

2
, the existing facility, j′, that is furthest

from H (measured by Euclidean distance) is also furthest from C (measured
by angle). This observation means that E(H, aj′) = maxj=1,...,n E(H, aj) and
D(C, aj′) = maxj=1,...,n D(C, aj), and allows us to characterize the relationship
between the two problems.

Lemma 3 The problems (GCM) and (REM) are equivalent: If a plane H∗ solves
(REM), then the great circle contained in H∗ solves (GCM), and if a great circle
C∗ solves (GCM), then the plane containing C∗ solves (REM).

Proof:
Let H∗ solve (REM), and let j∗ be the furthest existing facility. Optimality means
that E(H∗, aj∗) ≤ E(H, aj′) for an arbitrary plane H with furthest existing facil-
ity j′. Since arcsin is increasing, we have arcsin(E(H∗, aj∗)) ≤ arcsin(E(H, aj′)).
Let C∗ and C be the great circles contained in H∗ and H , respectively. Then we
obtain
maxj=1,...,n D(C∗, aj) = D(C∗, aj∗) = arcsin(E(H∗, aj∗) ≤

arcsin(E(H, aj′) = D(C, aj′) = maxj=1,...,n D(C, aj),
or maxj=1,...,n D(C∗, aj) ≤ maxj=1,...,n D(C, aj). Since C is arbitrary, this estab-
lishes the optimality of C∗.
The converse is shown similarly.

QED

A similar proof establishes the equivalence for the weighted case. This gives an
alternative proof of Lemma 1 by using Theorem 3 of [12] which states that all
optimal hyperplanes of (REM), i.e., all hyperplanes in IR3 through one specified
point that minimize the maximum distance to a given set of points a1, . . . , an

pass through at least three affinely independent points of this set.

The algorithmic implication is clear: To solve the great circle minimax problem,
we just need to solve the restricted Euclidean minimax problem.
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4 Finding minimax circles

Now we pass our attention to the unweighted Circle-Minimax problem (CM) in
which we relax the restriction that the optimal circle must be a great circle, but
allow any circle on the sphere. Again our goal is to minimize the maximum
distance to the existing facilities. Although many more circles are allowed as
feasible solutions the problem is easier to solve. First of all we prove the following
result which is stronger than the result of Lemma 1. Here we need to assume
that n > 3.

Theorem 1 Let C∗ be an optimal solution of (CM) with objective value g(C∗).
Then there exist at least four existing facilities a ∈ A satisfying

D(C, a) = g(C∗).

Proof: Let C∗ be an optimal circle which is at maximum distance from exactly
m ∈ {1, 2, 3} existing facilities. Without loss of generality assume that these
facilities are a1, . . . , am and that g(C∗) > 0, i.e.,

g(C∗) = D(C∗, a1) > 0

. . .

g(C∗) = D(C∗, am) > 0

The goal is to define a circle C ′ with better objective value. This is done as
follows: For k = 1, . . . , m consider the footpoint yj ∈ Pj of aj with respect to C∗

and the great circle segment Pj between yj and aj . As in the proof of Lemma 1
we assume that no two footpoints coincide, otherwise we disturbe the footpoints
slightly. Choose ε > 0 and define a new point y′j by moving yj along Pj ε closer to
aj , i.e., y′j ∈ Pj and d(yj, aj)−d(y′j , aj) = ε. Furthermore, choose 3−m arbitrary
points in C \ {a1, . . . , am}. This defines m + 3 − m = 3 points which uniquely
define a new circle C ′, and if the footpoints are different the function C’ mapping
these 3 points to a circle C ′ is well-defined and continuous. Hence, we can choose
ε > 0 in such a way that

|D(C∗, aj)−D(C ′, aj)| ≤ δ for all j = 1, . . . , n.

To calculate the objective value of C ′ we first consider j = 1, . . . , m and obtain

D(C ′, aj) = min
x∈C′ d(x, aj)

≤ d(y′j, aj)

= d(yj, aj)− ε

= g(C∗)− ε.
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Defining g′ := maxj=1,...,m D(C ′, aj) this yields

0 < ε ≤ g(C∗)− g′ ≤ δ.

On the other hand, for all j = m + 1, . . . , n we know that

D(C∗, aj) < g(C∗),

hence, choosing δ ≤ 1
2
(g(C∗)−maxj=m+1,...,n D(C∗, aj)) implies that

D(C ′, aj) ≤ D(C∗, aj) + δ ≤ g(C∗)− δ ≤ g′.

Together, D(C ′, aj) ≤ g′ for all j = 1, . . . , n and hence g(C ′) = g′ < g(C∗)
proving the result.

QED

Again, a similar proof can be made for the weighted circle problem, in which
positive weights for the existing facilities are allowed. In this case, Theorem 1
can be extended to four existing facilities at the same weighted distance to the
optimal circle. Unfortunately that does not help much for finding the optimal
circle in the weighted case, since “weighted” bisectors are hard to compute. For
the unweighted case, however, the following rather simple procedure can be used
to determine an optimal circle with respect to the minimax objective function.

Algorithm 2 for (CM)

Step 1: Let K = ∅
Step 2: For all pairs {i, j} ∈ {1, . . . , n} and all distinct pairs {k, l} ∈ {1, . . . , n},
determine an intersection point hijkl of the bisectors Bij and Bkl, and let K =
K ∪ {hijkl}
Step 3: Evaluate all candidates c ∈ K by calculating
f(C(c, π

2
)) = maxj=1,...,n |d(aj, c) − π

2
| and take the one with the best objective

value.

5 Finding minisum great circles

Here we consider the problem of finding a great circle minimizing the sum of
distances to the given facilities. This problem will be called (GCS).

In a first result we relate the median great circle problem to that of locating a
plane H through the center of the sphere, such that the sum of the Euclidean
distances to the points a1, . . . , an is minimized. We denote this problem as re-
stricted Euclidean minisum problem (RES). It can be stated as the problem of
minimizing

F (H) =
∑

j=1,...,n

wjE(H, aj).
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Recall that the Euclidean distance E(H, a) = sin(D(C, aj)), if H is the hyper-
plane containing the great circle C. Unfortunately, we cannot show that (RES)
and (GCS) are equivalent as it is true in the minimax case, but we can at least
use the hyperplane location problem for getting an upper and a lower bound.

Lemma 4 Let H∗ be an optimal hyperplane for (RES), and let C∗ be an optimal
great circle for (GCS). Furthermore, let C(H∗) = H∗ ∩ S be the great circle
contained in H∗ and H(C∗) be the hyperplane passing through C∗. Then

F (H∗) ≤ F (H(C∗)) ≤ f(C∗) ≤ f(C(H∗)).

Proof:

F (H∗) ≤ F (H(C∗))

=
∑

j=1,...,n

wjE(H(C∗), aj)

=
∑

j=1,...,n

wj sin D(C∗, aj)

≤ ∑

j=1,...,n

wjD(C∗, aj)

= f(C∗)

≤ f(C(H∗))

QED

Note that for (RES) it is known that all optimal hyperplanes pass through at least
two of the existing facilities, see Theorem 3 of [12], i.e., C(H∗) always contains
two of the points ai, aj.

Locating a great circle may be viewed as the spherical equivalent of locating a
line on the plane; this motivates the following result.

Lemma 5 An optimal solution C∗ of (GCS) may be found that intersects at least
two of the existing points.

Proof: Consider first the trivial case where all existing points are contained on
some great circle, C. Obviously, C∗ = C is the optimal solution, with f(C∗) = 0.

Now assume that all existing points are not contained on the same great circle.
The problem is to minimize
f(C) = f(c, π

2
) =

∑
j∈J+

wj(
π
2
− d(c, aj)) +

∑
j∈J− wj(

π
2
− d(c′, aj)),

where the index sets J+ and J− contain the existing points on each side of the
great circle, and c′ is the antipode of c. Suppose we have an optimal solution
C∗ = (c∗, π

2
) that does not contain any existing points. It is known that the
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distance from a given point a to a point on the sphere is a convex function within
a circle of radius π

2
and center a (e.g., see [3]). Hence d(c, aj) is convex in a local

neighborhood of c∗ for j ∈ J+, and d(c′, aj) is convex in a local neighborhood
of c∗′ for j ∈ J−. Furthermore, since c′ = c + (π, 0) the convexity extends to
c for j ∈ J−. We conclude that f(C) is locally concave at c∗, and hence, C∗

may be rotated a small amount in any direction without increasing the objective
function. (Otherwise, rotating in the opposite direction would decrease f , leading
to a contradiction). The argument extends until the rotated great circle intersects
one of the existing points, say ar. Now use the line through ar and the center
of the sphere as the axis of rotation, to conclude in similar fashion (for adjusted
J+, J−) that C∗ may be rotated further until it intersects a second existing point.

QED

This result permits a finite solution method for (GCS): Compute the objective
function value for the great circle through each pair of existing points; the optimal
solution is the great circle with lowest value.

6 Finding minisum circles

The problem we discuss here, denoted by (CS), is to find a circle minimizing the
sum of (weighted) distances to the existing facilities.

Recall that for this purpose we identify a circle C = C(c, r) ⊂ S by its center
point c ∈ S and its radius r.

The objective function of (CS) may be written as
f(c, r) =

∑n
j=1 wjD(C, aj) =

∑n
j=1 wj|r − d(c, aj)|.

The first observation is the following.

Lemma 6 There exists an optimal solution C∗ to problem (CS) passing through
at least one of the existing facilities.

Proof: Let C = C(c, r) be an optimal solution of (CS) with objective value
f = f(c, r) =

∑n
j=1 wj|r − d(c, aj)|. Fix the center c and consider the problem of

finding the optimal radius r∗, i.e.,
minr

∑n
j=1 wj|r − d(c, aj)|.

This problem is a one-dimensional (point) location problem for which it is well
known that there exists an optimal solution r∗ satisfying r∗ = d(c, aj∗) for some
j∗ ∈ {1, . . . , n}. Consequently, C∗ = C(c, r∗) contains aj∗ and its objective value
f ∗ satisfies
f ∗ = f(c, r∗) =

∑n
j=1 wj|r∗ − d(c, aj)| ≤ ∑n

j=1 wj|r − d(c, aj)| = f.

QED
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(CS) is a non-convex problem with many local minima, so one solution method
is finding a fair number of local minima and choosing the best one.

For a given C, the circle separates the existing facilities in two sets: the ones on
one side of the circle, and the ones on the other side. Using the index sets J+

and J− the objective function may be written without the absolute value,

f(c, r) =
∑

j∈J+

wj(r − d(c, aj)) +
∑

j∈J−

wj(d(c, aj)− r).

Ignoring that J+ and J− depend on c, and ignoring the terms for which d(c, aj) =
r, we obtain these approximate expressions for the partial derivatives of f,
∂f/∂c1 ≈ ∑

j∈J− wj(sin c1 cos aj1 cos(c2 − aj2)− cos c1 sin aj1)/Bj

− ∑
j∈J+

wj(sin c1 cos aj1 cos(c2 − aj2)− cos c1 sin aj1)/Bj ,
∂f/∂c2 ≈ ∑

j∈J− wj cos c1 cos aj1 sin(c2 − aj2)/Bj

− ∑
j∈J+

wj cos c1 cos aj1 sin(c2 − aj2)/Bj, where
Bj = sin(arccos(cos c1 cos aj1 cos(c2 − aj2) + sin c1 sin aj1)).

Setting the two approximations equal to zero and simplifying considerably yields

tan c2 =

∑
j∈J+

wj cos aj1(sin aj2)/Bj − ∑
j∈J− wj cos aj1(sin aj2)/Bj

∑
j∈J+

wj cos aj1(cos aj2)/Bj − ∑
j∈J− wj cos aj1(cos aj2)/Bj

,

tan c1

sin c2

=

∑
j∈J+

wj(sin aj1)/Bj −∑
j∈J− wj(sin aj1)/Bj

∑
j∈J+

wj cos aj1(sin aj2)/Bj −∑
j∈J− wj cos aj1(sin aj2)/Bj

Now a procedure for finding a local minimum may be outlined. We start by
choosing an arbitrary point c on the sphere and use this as the center of a circle.
Given this center, the optimal radius, r, is easily found by solving the median
problem of locating a point facility on a line. Given these three numbers, we find
the index sets, J+ and J−. Now the expression for tan c2 is used for finding a
better value for c2, and the expression for tan c1/ sin c2 is then used to find a better
value for c1. The procedure is continued iteratively until significant changes in
the three decision variables no longer occur.
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